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ABSTRACT: Gelatin B and xanthan gum aqueous mixtures (GB/XG, (0.2-2%)/0.2% w/v) exhibit 20 

enhanced gelling properties compared to their pure component solutions at similar compositions. 21 

The mixed gels comprise co-localized networks of GB and XG–rich domains. Our results show 22 

that these domains are composed of intermolecular complexes and their aggregates stabilized by 23 

the neutralization effect of GB, and linked together by formation of GB triple helices. GB/XG 24 

mixtures display composition-dependent microstructural transitions: from discontinuous 25 

aggregates (GB/XG ratio ≤ 1) to a continuous GB/XG network (ratio = 2-6), followed by network 26 

fragmentation (ratio = 8-10). Increasing the GB Bloom index accelerates network formation and 27 

results in higher elastic modulus (G’), while increasing the XG molecular weight causes the 28 

opposite effect due to diffusion limitations. This work provides a set of fundamental guidelines to 29 

design novel thickeners and/or gelling agents based on proteins and polysaccharides, for food or 30 

pharmaceutical applications. 31 
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1. Introduction 41 

Proteins and polysaccharides are two of the most important functional biopolymers in food 42 

products. Their interactions in aqueous solutions can result in coacervates, complexes or gels 43 

depending on charge density, protein/polysaccharide binding affinity and other molecular 44 

characteristics (conformation, contour length, chain flexibility and molecular weight) (Turgeon & 45 

Laneuville, 2009).  These three phase states consequently exhibit different functional properties. 46 

For example, protein/polysaccharide coacervates and electrostatic gels can be utilized for 47 

ingredient encapsulation (Schmitt & Turgeon, 2011; Turgeon & Laneuville, 2009); complexes and 48 

electrostatic gels have excellent texturing properties (Schmitt, Sanchez, Desobry-Banon & Hardy, 49 

1998; Turgeon & Laneuville, 2009); and complexes can provide stabilization due to their 50 

interfacial properties (Le, Rioux & Turgeon, 2016; Turgeon & Laneuville, 2009). 51 

Protein/polysaccharide electrostatic gels can be formed without heat, enzyme or crosslinking 52 

agents, and are therefore promising for the protection of bioactive molecules when used as 53 

encapsulation and delivery systems (Le, Rioux & Turgeon, 2016; Turgeon & Laneuville, 2009). 54 

In addition, they can be formed at extremely low concentrations of biopolymers (Turgeon & 55 

Laneuville, 2009). In order to fully control their functional properties for application design, it is 56 

necessary to understand the mechanisms involved in the interactions between proteins and 57 

polysaccharides and the way in which these interactions can be tuned (Bernal, Smajda, Smith & 58 

Stanley, 1987).  59 

Protein/polysaccharide mixed gel formation depends on the nature and characteristics of the 60 

biopolymers. For both proteins (Le, Rioux & Turgeon, 2016) and polysaccharides (Ballester, 61 

Turgeon, Sanchez & Paquin, 2005), a higher biopolymer concentration is needed to form a gel 62 

when the molecular weight and charge density are lower. Electrostatic forces are the dominant 63 
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interactions between proteins and polysaccharides in solution, but other interactions such as 64 

hydrogen bonding and hydrophobic interactions can also be involved (Cooper, Dubin, Kayitmazer 65 

& Turksen, 2005; Turgeon, Schmitt & Sanchez, 2007). Proteins and polysaccharides can both repel 66 

and attract each other even when they carry the same net charge due to the amphiprotic properties 67 

of proteins (Seyrek, Dubin, Tribet & Gamble, 2003; van der Wielen, van de Heijning & Brouwer, 68 

2008; Weinbreck, de Vries, Schrooyen & de Kruif, 2003). Electrostatic forces are affected by the 69 

protein/polysaccharide ratio, pH, ionic strength and biopolymer charge density (Cooper, Dubin, 70 

Kayitmazer & Turksen, 2005; van der Wielen, van de Heijning & Brouwer, 2008).  71 

The gelation properties of protein/polysaccharide electrostatic hydrogels are the result of a 72 

delicate balance between repulsive and attractive interactions (van der Wielen, van de Heijning & 73 

Brouwer, 2008; Wang, Natale, Virgilio & Heuzey, 2016). Optimal pH, protein/polysaccharide 74 

ratio and ionic strength are required to tune their gelation properties. For example, our previous 75 

study demonstrated that the highest elastic modulus (G’) of a gelatin B (referred to here as L-GB) 76 

and XG mixed gel occurs at pH 5.5 (Wang, Natale, Virgilio & Heuzey, 2016). Similarly, β-77 

lactoglobulin/XG and whey protein isolate (WPI)/XG mixtures require an optimum pH and protein 78 

to polysaccharide ratio for gelation (Bertrand & Turgeon, 2007; Le & Turgeon, 2013; Sanchez, 79 

Schmitt, Babak & Hardy, 1997).  80 

We have also shown that GB/XG aqueous mixtures exhibit time-dependent, pH sensitive 81 

synergistic gelation properties (Wang, Natale, Virgilio & Heuzey, 2016). The objective of this 82 

work is to investigate the effects of composition, GB Bloom index and XG molecular weight on 83 

the rheological properties and microstructure of GB/XG aqueous mixtures, in order to elucidate 84 

the mechanism behind the synergistic gelation of this specific protein/polysaccharide pair.  85 

2. Materials and methods 86 
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2.1 Materials 87 

Two grades of gelatin (type B), G6650 (Bloom index = 75, Mw = 20-25 kDa, critical gelling 88 

concentration ccrit ≈ 4.0 % w/v) (L-GB) and G9382 (Bloom index = 225, Mw = 50 kDa, ccrit ≈ 2.0 89 

% w/v) (H-GB) were purchased from Sigma-Aldrich, Canada. Four grades of xanthan gum (XG) 90 

were used: one grade (G1253) was purchased from Sigma-Aldrich Canada (the grade used in our 91 

previous work (Wang, Natale, Virgilio & Heuzey, 2016), referred to here as R-XG), while the 92 

other three grades with different viscosities (see Figure S1), i.e. Keltrol SF (Low-XG), Keltrol 93 

(Med-XG) and Keltrol AP (High-XG), were kindly supplied by CP Kelco U.S., Inc. Other 94 

chemicals (HCl, NaOH, Nile Blue A and 5-(4,6-dichlorotriazinyl) aminofluorescein) were of 95 

analytical grade (Sigma Aldrich, Canada), and used as received. 96 

2.2 Preparation of GB, XG and GB/XG solutions 97 

GB solutions (0.4-4.0 % w/v) were prepared by allowing GB powder to swell in Milli-Q water 98 

(18.2 Ω) for 15-20 min at room temperature, followed by gentle stirring at 60 oC for 15 min. XG 99 

solutions (0.2 and 0.4 % w/v) were prepared by dissolving the powder into Milli-Q water at a 100 

magnetic stirring speed of 600-700 rpm for at least 12 h at room temperature. Mixed GB/XG 101 

solutions with a fixed XG concentration (0.2 % w/v) and different GB concentrations (0.2-2.0 % 102 

w/v) were prepared by mixing equal volumes of GB and XG primary solutions, with magnetic 103 

stirring, at 60 oC for approximately 30 min. The pH of the mixtures was adjusted using 1M HCl 104 

or NaOH to the desired values.  105 

2.3 Zeta potential measurements 106 

Zeta potential values of GB and XG solutions were determined by laser doppler velocimetry and 107 

phase analysis light scattering (M3-PALS) using a Malvern Zetasizer Nano ZSP instrument 108 
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(Malvern Instruments Ltd., Malvern, Worcestershire, UK). The zeta potential was determined 109 

from the direction and velocity of the molecules in the applied electric field. The Smoluchowski 110 

model was used by the software to convert the electrophoretic mobility measurements into zeta 111 

potential values. All the samples were diluted to about 0.05 % (w/v) and then put into a disposable 112 

folded capillary cell (DTS1060) to measure the zeta potential. The temperature of the cell was 113 

maintained at 25 oC. The data presented are the average values of three individual measurements. 114 

2.4 “Table-top” rheology 115 

Small volumes (7-8 mL) of freshly prepared GB/XG mixed solutions were transferred into 20 116 

mL vials (Fisherbrand, O.D. × H (with cap): 28 x 61 mm) and kept at room temperature for 24 h. 117 

The vials were then inverted to qualitatively assess gel formation and strength. 118 

2.5 Time-resolved small amplitude oscillatory shear 119 

Freshly prepared GB, XG or GB/XG mixed solutions were directly poured into a rough surface 120 

Couette flow geometry (cup and bob diameters of 18.066 mm and 16.66 mm, respectively) and 121 

measurements were performed using a stress-controlled Physica MCR 501 rheometer (Anton Paar, 122 

Graz, Austria). Before the time sweep tests, all systems were heated at a rate of 5 C/min up to 60 123 

°C. The samples were kept at this temperature for 10 min to erase the previous thermal histories 124 

and were subsequently cooled down to 20 C at a rate of 5 C/min. Dynamic time sweep 125 

measurements were performed at 1 rad/s and 20 °C in the LVE regime (strain = 3 %) for 8 h. The 126 

elastic modulus (G’), loss modulus (G”), and related complex viscosity (|η*|) were recorded as 127 

functions of time. Samples were covered with a thin film of low viscosity mineral oil to prevent 128 

water evaporation. The oil was shown not to affect the rheological measurements. The experiments 129 

were performed at least twice with good reproducibility (< 5 %). The results of L-GB solutions 130 
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alone in the investigated concentration range (0.2 - 2.0 %, w/v) and of H-GB at concentrations less 131 

than 1.0 % w/v were too low and noisy to be reported. 132 

2.6 Confocal laser scanning microscopy (CLSM) 133 

CLSM observations of the GB/XG solutions were performed with an Olympus IX 81 inverted 134 

Confocal Microscope (Olympus Canada Inc., Richmond Hill, ON, Canada). GB was stained with 135 

Nile Blue A (N0766, Sigma) in solution under magnetic stirring for 30 min before mixing with 136 

XG solutions. On the other hand, XG was covalently labeled with 5-(4,6-dichlorotriazinyl) 137 

aminofluorescein (DTAF) (D0531, Sigma) using a method described previously (Wang, Natale, 138 

Virgilio & Heuzey, 2016). Preliminary experiments showed that labeling did not change the 139 

rheological behavior of the solutions. After mixing, solution samples were poured into Petri dishes 140 

(P35G-1.5-14-C, MatTek), which were closed with cover slips and hermetically sealed with oil. 141 

Observation of XG was made by excitation of DTAF at 488 nm, the emission being recorded 142 

between 510 and 550 nm. Observation of GB was made by excitation of Nile Blue A at 633 nm, 143 

the emission being recorded between 650 and 680 nm. Micrographs were taken using a 60x 144 

objective lens at a 2048 x 2048 pixels resolution. All micrographs were subsequently analyzed 145 

using Image J software. To calculate the average size of GB-poor domains, at least 10 small bright 146 

regions (50 x 50 μm) from no less than 2 different CLSM images for each sample were selected. 147 

Brightness and contrast were adjusted to make GB-poor domains clearer, and the micrographs 148 

were then transformed into 8-bit binary images. A median filter was used to remove noise and 149 

smooth contours. By modeling GB-poor domains as cylinders, an average diameter value 150 

corresponding to a microstructure length scale could be obtained (Esquirol, Sarazin & Virgilio, 151 

2014; Galloway, Montminy & Macosko, 2002; Li & Favis, 2001). The calculation method is 152 

briefly described next (Wang, Natale, Virgilio & Heuzey, 2016).  153 
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The specific interfacial area, S, between GB-rich domains and GB-poor domains is first given 154 

by 155 

ܵ = 		 ௉
஺
                                                           (1) 156 

where P is the interfacial perimeter between GB-rich and GB-poor domains (obtained by image 157 

analysis), and A is the micrograph area. The average diameter d of GB-poor domains is then 158 

obtained as follows: 159 

݀	 = 	 ସఃಸಳష೛೚೚ೝ
ௌ

                 (2) 160 

where ΦGB-poor is the volume fraction of GB-poor domains in solution, also obtained by image 161 

analysis (because of microstructure isotropy, the GB-poor domains surface fraction on the 162 

micrographs is taken equal to the volume fraction in solution). 163 

In this work, GB-rich domains can also be referred to as biopolymer-rich domains since XG and 164 

GB are mixed at pH close to the pI of GB, where strong complexation occurs. 165 

2.7 Micro-differential scanning calorimetry (Micro-DSC)  166 

Micro-DSC experiments were performed on a micro-calorimeter (Microcal Inc., Northampton, 167 

MA, US) with a cell volume of 0.520 mL and under an external pressure of 180 kPa. The samples 168 

were first degassed using a bath sonicator (FS110, Fisher Scientific, Pittsburgh, PA, US) operated 169 

at 135 W for 30 min while heating (final temperature ≈ 80 oC), and were then injected into the 170 

sample cell and kept at 90 oC for 15 min to remove any effects of thermal history. The samples 171 

were subjected to cooling and heating cycles over a temperature range of 10-90 oC at a rate of 1 172 

oC/min. The sample cell was cleaned by a continuous flow of hot deionized water after each 173 

experiment followed by a water-water baseline test to ensure there was no contamination of the 174 

sample cell. The experimental data were analyzed using the Origin-based software provided by 175 
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the manufacturer. The transition temperatures were taken at the transition peaks maxima, and the 176 

transition enthalpies were determined from the area of the endothermic or exothermic peaks. 177 

3. Results and discussion 178 

3.1 Zeta potential of GB and XG 179 

Figure 1 shows the zeta potential values of all GB and XG grades. The isoelectric point (pI) of 180 

L-GB is around 5.2-5.3, which is higher than that of H-GB ( 4.9) (Figure 1a). The values agree 181 

with those reported in the literature (Derkach, Ilyin, Maklakova, Kulichikhin & Malkin, 2015; 182 

Williams, Phillips & McKenna, 2003), and both GB grades show positive zeta potential at pH 183 

below the pI, while negative values are exhibited above the pI, indicating a change of the overall 184 

charge.  185 

Consistent with literature (Le & Turgeon, 2013), the different XG grades show no significant 186 

difference in zeta potential values (Figure 1b): a strong negative dependency of zeta potential on 187 

pH occurs over the range of pH 3.5-5.0. This is due to the deprotonation of -COOH groups with 188 

increasing pH, and is followed by a plateau after deprotonation is complete. Note that the data for 189 

R-XG were reported in our previous work (Wang, Natale, Virgilio & Heuzey, 2016)  .  190 
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Figure 1. Zeta potential values of the GB (a) and XG (b) grades used in this work. 194 



 11

3.2 “Table-top” rheology 195 

The effects of pH, GB concentration, GB Bloom index and XG molecular weight on the visual 196 

aspects of the GB/XG mixed gels are exhibited in Figure 2. The properties of GB/XG mixed gels 197 

are primarily controlled by a delicate charge balance and are therefore affected by pH and GB 198 

concentration. At a given XG concentration, increasing the GB content decreases the charge 199 

density of XG due to complexation, which favors the eventual formation of a network. However, 200 

the GB content should be carefully controlled to avoid low XG charge densities, which may reduce 201 

stability and lead to aggregate formation. For example, L-GB/R-XG mixed gels become more 202 

elastic with increasing L-GB concentration and as shown in Figure 2a, they exhibit self-supporting 203 

properties at L-GB concentrations between 1.0-1.6 % w/v. At 2.0 % w/v L-GB, the system loses 204 

its self-holding ability. The decrease in gelation properties is not observed by “table-top” rheology 205 

when the GB concentration is close to the critical gelling concentration, as indicated by H-GB/R-206 

XG mixed gels (Figure 2b). Here the gels become firmer with increasing H-GB concentration at 207 

a given pH. 208 

Similarly, at a pH below the pI of GB, positively charged GB can interact strongly with 209 

negatively charged XG. This results in phase separation via the formation of insoluble complexes. 210 

At a pH equal to or above the pI of GB, complexation decreases, which makes network formation 211 

unlikely. In other words, an optimal pH exists to obtain the strongest gelation properties. For 212 

example, see the results for L-GB/R-XG (Wang, Natale, Virgilio & Heuzey, 2016), H-GB/R-XG 213 

in Figure 2b, and L-GB/Low-, Med-, High-XG mixed gels in Figure 2c.  214 

The “table-top” rheology (Figure 2c) indicates that the elastic properties decrease with 215 

increasing XG molecular weight. These results also show that a synergistic gelation effect occurs 216 
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since the critical gelling concentration is much lower for the mixture (cL-GB = 1.0-1.6 % w/v and 217 

cH-GB ≥ 0.4 % w/v) than for GB alone (ccrit  4.0 % w/v for L-GB and ccrit  2.0 % w/v for H-GB). 218 

 219 

 220 
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221 

 222 

a) 

b) 



 14

 223 

Figure 2. a) Effect of L-GB concentration (cGB = 0.2-2.0 % w/v) on the visual aspect of L-224 

GB/R-XG aqueous mixtures, at pH 5.5; b) effects of pH (4.0-7.0) and H-GB concentration 225 

(cGB = 0.2–1.6 % w/v) on the visual aspect of H-GB/R-XG mixtures, H-GB/R-XG ratio = 1-226 

8; c) effects of pH (4.0-7.0) and XG molecular weight on the visual aspect of L-GB/XG 227 

mixtures (L-GB:XG ratio = 6, cXG = 0.2 % w/v). The photos were taken after overnight 228 

storage. 229 

3.3 Time-resolved small amplitude oscillatory shear 230 

The effects of L-GB concentration and XG molecular weight on the time-dependent rheological 231 

properties of GB/XG mixtures were evaluated by dynamic time sweep tests, and the results are 232 

presented, respectively, in Figure 3 and Figure 4. The elastic modulus (G’) of the XG solution is 233 

almost constant in time and always less than the values of the mixtures. The LVE properties of the 234 

L-GB solutions are below the resolution limit of our instrument and are therefore not reported. 235 

Mixing GB and XG significantly enhances the rheological properties and endows the system with 236 

L-GB/Low-XG 

L-GB/Med-XG 

L-GB/High-XG 

c) 
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time-dependent properties. In addition, G’ is always higher than G” for these GB/XG mixtures 237 

after 8 hrs (Figure 3b and Figure S2), showing a soft solid-like behavior. 238 

The G’ of the mixtures initially increases rapidly followed in most cases by a slow rise, as shown 239 

in Figure 3a, Figure 4 and Figure S2. The elastic modulus after 8 hrs (G8h’) increases significantly 240 

for the mixtures containing H-GB as compared to those containing L-GB (compare Figure 3 and 241 

Figure S2) but decreases as XG molecular weight increases (Figure 4). Note that we observe the 242 

inverse effect of XG molecular weight on the initial G’ (at t = 0 s). The mixtures show a maximum 243 

G’ at a certain GB concentration (cL-GB = 1.2 % w/v and cH-GB = 1.6 % w/v) and further increasing 244 

the GB content leads to a decrease in gelation properties. These results are coherent with the “table-245 

top” rheology observations presented in §3.2.  246 

 247 

 248 

 249 
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Figure 3. a) Evolution of G’ as a function of time for the L-GB/R-XG mixtures at ratios (1-252 

10), at pH 5.5; b) G’ and G” after 8 hrs, as a function of L-GB/R-XG ratio. cXG = 0.2 % w/v, 253 

ω = 1 rad/s 254 
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Figure 4. G’ as a function of time, for the mixtures of L-GB and Low-XG, Med-XG and 256 

High-XG respectively, at ratio 6 and pH 5.5. XG concentration = 0.2 % w/v, ω = 1 rad/s. 257 

The ratios of the G8h’ of H-GB/R-XG mixtures, to the sum of the G8h’ of neat H-GB and R-XG 258 

solutions at the concentrations in the corresponding mixtures, were calculated to better evaluate 259 

the synergistic effects and are presented in Figure 5. This ratio is 22.2 at a GB/XG ratio of 5 (cGB 260 

= 1 % w/v and cXG = 0.2 % w/v), and decreases exponentially as GB concentration increases, 261 

clearly showing a weakening synergistic effect when the ratio ≥ 5. The H-GB/R-XG mixture even 262 

shows a lower G8h’ than H-GB alone at ratio GB/XG ratio of 10, showing antagonist or detrimental 263 

gelation properties. 264 
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Figure 5. Comparison of G8h’ of H-GB solution with and without R-XG after 8 hrs in the 266 

rheometer at 20oC, ω = 1 rad/s, cXG = 0.2 % w/v. The insert shows the ratio of the G8h’ of H-267 

GB/R-XG mixtures over the sum of the G8h’ of neat H-GB and R-XG at concentrations in 268 

the corresponding mixtures, as a function of H-GB concentration. 269 

In the next section, confocal laser scanning microscopy is employed to analyze the 270 

microstructure of the mixtures. 271 

3.4 Confocal laser scanning microscopy (CLSM) 272 

Figure 6 shows a set of images for L-GB/Sigma-XG mixtures at different ratios, while Figure 273 

7 exhibits the effect of XG molecular weight on L-GB microstructure. The microstructure of 274 

GB/XG mixed gels generally consists of biopolymer-rich and biopolymer-poor domains. In 275 
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comparison, neat GB and XG solutions at similar concentrations have no visible structure and 276 

appear homogeneous (images not shown). Both GB and XG exhibit a composition-dependent 277 

structural transition in mixed gels. GB has a discontinuous agglomerated morphology at low GB 278 

content (cGB ≤ 0.2 % w/v); a continuous network structure at intermediate GB content followed by 279 

a fragmented network structure at high GB content (cL-GB = 1.6 % w/v and cH-GB = 2.0 % w/v). 280 

This is seen in the left column of Figure 6, Figure 7, Figure S4 and Figure S5. No XG structure 281 

is observed at GB concentrations of 0.2-0.6 % w/v, but a network structure appears when the GB 282 

concentration ≥ 1.0 % w/v (middle column of Figure 6, Figure S4). In this composition range the 283 

biopolymer-rich domains consists of GB-rich domains colocalized with XG-rich domains (right 284 

column of Figure 6, Figure S4). For the systems with GB/XG ratios of 5 and 6 we observe 285 

significant XG content in the biopolymer-poor domains whereas at higher ratios most of the XG 286 

appears to be colocalized with the GB-rich domains. The biopolymer-rich domains first decrease 287 

in size (up to ratio 6) and then grow again (ratio ≥ 8) with increasing GB concentration. As we 288 

reported previously, the XG network disappears when increasing the pH to 7.0 (Figure S5), 289 

probably due to the stronger electrostatic repulsion between the molecules (Wang, Natale, Virgilio 290 

& Heuzey, 2016).  291 

 292 

 293 

 294 

 295 
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 298 
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Figure 6. Microstructures of L-GB (red) and R-XG (green) domains in the mixtures at 299 

different ratios (1, 2 6 and 10) and merge of the two imaging, at pH 5.5. The images were 300 

taken after storage for 24 hrs. Image size: 210 μm x 210 μm. 301 

Increasing GB Bloom index leads to much finer microstructures (compare Figures 6 and Figure 302 

S5), whereas increasing XG molecular weight reduces the connectivity of the co-localized 303 

networks at ratio 6, finally leading to a granular microstructure (L-GB/High-XG) (Figure 7).  304 

 305 

 306 

 307 

 308 

 309 

 310 

 311 

 312 

 313 

 314 

 315 

 316 

 317 

 318 

 319 

 320 

 321 



 22

 Ratio = 2 Ratio = 6 Ratio = 8 

Low-XG 

Med-XG 

High-XG 

Figure 7. Microstructure of L-GB (red) when mixed with Low-XG, Med-XG and High-XG, 322 

respectively, at different ratios (2, 6, and 8) and pH 5.5. The images were taken after 323 

storage for 24 hrs at room temperature. Image size: 210 μm x 210 μm. 324 

By modeling biopolymer-poor domains as cylinders, an average diameter value dbiopolymer-poor can 325 

be calculated, corresponding to a characteristic microstructural length scale (Esquirol, Sarazin & 326 

Virgilio, 2014; Galloway, Montminy & Macosko, 2002; Li & Favis, 2001; Wang, Natale, Virgilio 327 

30 μm 
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& Heuzey, 2016). The results are shown in Figure 8. The average size of biopolymer-poor 328 

domains increases with GB content. The biopolymer-poor domain size is always higher for L-329 

GB/R-XG gels as compared to that of H-GB/R-XG gels.  330 

 331 
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Figure 8. a) Average size of biopolymer-poor (BP-poor) domains in L-GB/R-XG and H-342 

GB/R-XG mixtures, as a function of GB/R-XG ratio; and b) average size of biopolymer-343 

poor domains in L-GB/Low-XG, L-GB/Med-XG and L-GB/High-XG mixtures, as a 344 

function of L-GB/XG ratio. 345 

3.5 Micro-calorimetry 346 

Micro-DSC is a powerful technique to study the helix-to-coil (order-to-disorder) transition of 347 

polysaccharides and proteins, such as XG (Fitzpatrick, Meadows, Ratcliffe & Williams, 2013; 348 

Fitzsimons, Tobin & Morris, 2008; Norton, Goodall, Frangou, Morris & Rees, 1984; Pelletier, 349 

Viebke, Meadows & Williams, 2001), DNA (Chiu & Prenner, 2011; Sturtevant, 1987), 350 

carrageenan (Liu, Huang & Li, 2016; Liu & Li, 2016) and gelatin (Alqahtani, Ashton, Katopo, 351 

Jones & Kasapis, 2016; Sarbon, Badii & Howell, 2015). Here, micro-DSC was used to study the 352 

R-XG and L-GB conformation transitions in L-GB/R-XG mixtures, shedding more light on the 353 

gelation mechanism.  354 

As shown in Figure 9, the R-XG solution at 1.0 % w/v exhibits two peaks located at 35.6 (T2) 355 

and 52.3 oC (T3) in the heating cycle. The second peak is consistent with the transition temperatures 356 

of 52 oC observed by Pelletier et al (Pelletier, Viebke, Meadows & Williams, 2001) and ~50 oC 357 

observed by Fitzsimons et. al (Fitzsimons, Tobin & Morris, 2008).  This peak is therefore attributed 358 

to the XG order-to-disorder (helix-to-coil) transition upon heating (Fitzpatrick, Meadows, 359 

Ratcliffe & Williams, 2013; Fitzsimons, Tobin & Morris, 2008; Norton, Goodall, Frangou, Morris 360 

& Rees, 1984; Pelletier, Viebke, Meadows & Williams, 2001). The reason for the first peak 361 

remains unknown, but it is likely related to impurities in the XG sample, as discussed at the end 362 

of this section.  363 
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L-GB at 1 % (Figure 9) exhibits a peak located at 23.5 oC attributed to the gelatin helix-to-coil 364 

transition (Alqahtani, Ashton, Katopo, Jones & Kasapis, 2016; Sarbon, Badii & Howell, 2015)-365 

(Cheow, Norizah, Kyaw & Howell, 2007).  366 
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Figure 9. Micro-DSC heating curves, shifted vertically for clarity. Scanning rate = 1 369 

oC/min. 370 
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Table 1. Specific enthalpies and transition temperatures (peak maximum) of L-GB, R-XG 377 

and their mixtures during the second micro-DSC heating segment. 378 

 Peak 1 Peak 2 Peak 3 

GB (%) XG (%) GB/XG ratio T1 (oC) ΔH1
a (J/g) T2 (oC) ΔH2

b (J/g) T3 (oC) ΔH3
b (J/g) 

0.5 1.0 0.5 23.3 5.74 40.3 0.34 58.3 2.66 

0.5 0.5 1 23.4 4.91 - - 51.0 2.06 

1.0 1.0 1 23.7 8.64 45.0 1.09 63.3 2.99 

1.0 0.5 2 23.4 8.02 39.6 0.82 61.3 2.52 

0 1.0 - - - 35.6 0.49 52.3 1.54 

1.0 0 - 23.5 5.03 - - - - 

2.0 0 - 23.6 7.78 - - - - 

a: normalized by the mass of GB; 379 
b: normalized by the mass of XG; 380 
 381 

The mixtures (Figure 9) exhibit three peaks: peak 1 corresponds to L-GB and peak 2 and 3 to 382 

R-XG. When R-XG concentration is 1.0 % w/v, the two peaks of the R-XG shift to higher 383 

temperatures in the presence of L-GB as compared to those of neat R-XG. The enthalpy of XG 384 

also increases with increasing L-GB concentration (Table 1). At a XG concentration of 0.5% w/v, 385 

peak 2 is no longer visible. These features indicate that more stable XG microstructures are formed 386 

with the help of GB. This phenomenon is due to the neutralization of XG molecules after 387 

complexation with GB, which then promotes the formation of the XG ordered structure. 388 

Furthermore, the enthalpy of L-GB increases in the presence of R-XG. The enthalpy values of 1.0 389 

% w/v L-GB in the mixtures are even higher than that of 2.0 % w/v L-GB alone (Table 1). This 390 

suggests that XG also enhances or promotes L-GB gelling by triple helix formation. 391 
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Note that clarified XG and its mixtures with L-GB were also studied, and they exhibit similar 392 

results except that there is only one peak instead of two for the neat clarified XG, and two peaks 393 

rather than three for the mixtures (see Figure S7).  394 

3.6 Proposed synergistic gelation mechanism 395 

XG molecules are known to undergo a disorder-to-order (coil-to-helix) transition in response to 396 

charge screening and/or temperature decrease. The XG backbone takes on a helical conformation 397 

and the trisaccharide side chains collapse onto the backbone and stabilize the ordered conformation  398 

(Katzbauer, 1998; Rochefort & Middleman, 1987; Stephen, 1995). Weakly associated XG 399 

aggregates can subsequently form side-by-side associations between neighboring ordered regions, 400 

which gives a tenuous network structure and endows XG dispersions with a weak “gel-like” 401 

behavior (Morris, Franklin & I'Anson, 1983; Norton, Goodall, Frangou, Morris & Rees, 1984; 402 

Stephen & Phillips, 2010). Based on the properties of XG, the results above and previous 403 

observations (Wang, Natale, Virgilio & Heuzey, 2016), a mechanism is proposed to explain the 404 

synergistic gelation behavior displayed by GB/XG mixtures (Figure 10).  405 
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 406 

Figure 10. Proposed gelation mechanism in GB/XG mixtures, based on their interactions 407 

and molecular conformations. 408 

When mixing the two biopolymers in aqueous solution near the pI of GB, and above the coil-to-409 

helix transition temperature of XG (represented by T3’), the electrostatic attraction between the 410 

negative charges of XG and the positive patches of GB gives rise to soluble GB/XG complexes 411 

(Figure 10a). This complexation decreases the XG charge density. When the temperature is in-412 

between T3’ and T1’ (representing the coil-to-helix transition of GB), the soluble complexes 413 

assemble into interpolymer complexes in the form of XG ordered structures (Figure 10b). Since 414 

factors that stabilize the ordered structure also favor the formation of XG aggregates (Norton, 415 

Goodall, Frangou, Morris & Rees, 1984; Stephen & Phillips, 2010), it is reasonable to say that 416 
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large scale assemblies of interpolymer complexes stabilized by GB are also formed under these 417 

conditions through side-by-side associations between the ordered XG domains. The local 418 

concentrations of both GB and XG are therefore increased. When the system is cooled down below 419 

T1’, GB triple helix formation occurs, promoted by its enhanced local concentration. With time, 420 

GB/XG interpolymer complexes and aggregates concentrate locally in space and become linked 421 

together due to GB gelling (Figure 10c). This finally results in a percolated network of 422 

biopolymer-rich domains, explaining the observed increase in G’ of GB/XG mixtures with time 423 

(Figure 3, Figure 4 and Figure S2). When the network is heated again, the system first goes 424 

through the helix-to-coil transition of GB (T1 in Table 1), then through the helix-to-coil transition 425 

of XG (T3 in Table 1), since the process is reversible. 426 

The proposed mechanism is further supported by a rheological temperature sweep (Figure 11). 427 

Starting at 20 °C, when the temperature increases, we can clearly observe the helix-to-coil 428 

transition in the 4.0 % L-GB system at ~25 °C, while no such features are evident in the case of 429 

0.2 % w/v R-XG due to the low concentration. However, we do see the helix-to-coil transition at 430 

around 52 oC if the R-XG concentration is increased to 1 % w/v (Figure S8), which is consistent 431 

with the micro-DSC results (Figure 9 and Table 1). For the mixture, we observe the helix-to-coil 432 

transition of the GB at just above 25 °C with the characteristic drop in the G’. This demonstrates 433 

that the viscoelastic properties of the GB/XG gels, are mainly the result of the GB network up to 434 

about 30 °C.  435 
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Figure 11. Evolution of G’ during heating of three systems: (◄) L-GB = 4.0 % w/v, (▲) L-437 

GB/R-XG = 6, total concentration = 1.4 % w/v and (■) R-XG 0.2 % w/v. Heating rate: 0.2 438 

oC/min 439 

4 Conclusion 440 

A gelation mechanism is proposed for gelatin B (GB)/xanthan gum (XG) aqueous mixtures. 441 

Soluble GB/XG complexes form near the isoelectric point of GB, above the coil-to-helix transition 442 

temperature of XG, followed by a disorder-to-order transition of XG due to the GB neutralization 443 

effect when the temperature is in-between the coil-to-helix transition temperature of XG and GB. 444 

The two biopolymers are locally concentrated due to the formation of large scale assemblies of 445 

interpolymer complexes stabilized by GB, and once cooled below the transition temperature of 446 

GB, a network composed of biopolymer-rich domains forms and develops over time. Increasing 447 
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GB concentration favors the disorder-to-order transition of XG by decreasing its charge density - 448 

however, too low XG charge density destabilizes the system and results in aggregation. Therefore, 449 

the GB/XG ratio must be carefully controlled to maintain the network structure and the gelation 450 

properties. Stronger interactions between GB/XG interpolymer complexes when cooling down 451 

leads to a faster initial evolution and higher G’, as well as a denser network. Increasing the XG 452 

molecular weight decreases the mobility of soluble and/or interpolymer complexes, which then 453 

weakens the concentrating effect and resulting gel properties. We are now currently investigating 454 

if this mechanism applies to other protein/polysaccharide systems. This work brings a fundamental 455 

understanding to the effects of proteins and polysaccharides interactions in solutions, and provides 456 

important guidelines to design novel thickeners and/or gelling agents, encapsulation and delivery 457 

systems.  458 

 459 

Supporting Information: additional rheological results, confocal microscopy observations and 460 

micro-DSC characterization. 461 
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