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Abstract: Using Maxwell’s equations for the incoming and outgoing electromagnetic field,
in interaction with a metallic arm-chair graphene nanoribbon (AGNR), and the relationship
between the density-density response function and the conductivity, we study surface plasmons
(SPs) in a AGNR following the Lindhard, random-phase approximation (RPA), and Hubbard
approaches. For transverse magnetic (TM) modes we obtain analytical dispersion relations (DRs)
valid for q ≤ kF and assess their width dependence. In all approaches we include screening. In
the long-wavelength limit q → 0 there is a small but noticeable difference between the DRs of
the three approaches. In this limit the respective, scattering-free conductivities differ drastically
from those obtained when scattering by impurities is included. We demonstrate that the SP field
is proportional to the square of the quality factor Q. The reflection amplitude shows that metallic
AGNRs do not support Brewster angles. In addition, AGNRs do not support transverse electric
(TE) SPs.
© 2017 Optical Society of America
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1. Introduction

Reducing the size of semiconductor devices, circuits, and components exerts an influence on
their performance and speeds up information processes [1, 2]. However, size reduction poses
major problems such as short-channel effects, gate leakage, and drastically increasing power
density [3]. One successful effective solution is to supersede electromagnetic waves as information
carriers [1]. Due to their extremely high bandwidth, fibre-optics communication devices can
carry information by three oders of magnitude faster than electronic circuits [4]. Nevertheless,
because of diffraction limits, this does not allow to localize the electromagnetic field in regions
smaller than half of the wavelength and integrating optical devices and circuits has encountered
serious problems [1, 3]. One of the promising solutions is surface plasmons (SPs). SPs are
evanescent electromagnetic fields that can propagate along the interface of two media under
specific conditions [5] which, however, can be provided by a joint metal-dielectric medium. Due
to the SP’s evanescent character, the SP wavelength is smaller than that of a free electromagnetic
wave. This SP feature plays a pivotal role in many applications, such as integrated photonic
systems, biosensing, photovoltaic devices, single-photon transistors for quantum computing,
optical modulators, photonic memory devices, surface enhanced Raman spectroscopy [6–9], and
boosting nonlinear optical effects [10].
SPs provide extremely fast processing, in the order of a few femtoseconds [10]. Gold and

silver as noble metals are predominant materials for plasmonics. However, they suffer from
disadvantages such as high ohmic losses and non-tunability [11]. Size reduction of plasmonic



materials give rises to SPs with smaller wavelength. In addition to gold and silver, two-dimensional
(2D) plasmonic materials, such as a 2D electron gas (2DEG), polar interfaces of oxides, and
oxide nanosheets have more merits than bulk 3D materials. Because of high losses, SPs in 2D
materials can be observed just at low temperatures. These SPs lie in the mid-infrared (MIR)
wavelength range [3]. Another 2D plasmonic material is graphene that has several advantages,
such as high confinement, chemical doping or electrical gating tunability, low losses [11], and
terahertz-to-MIR SPs [6, 12] at room temperatures.

SPs in graphene can be controlled by doping or electrical gating. The SP dispersion in graphene
nanoribbons can be modified by varying their width [13–17]. In condensed-matter literature the
plasmon modes of a system are obtained from the zeros of its dielectric function [18]. In 2D
and 1D systems, such as graphene and its nanoribbons, they become SPs. The SP modes in a
AGNR, schematically shown in Fig. 1, have been obtained numerically from the zeros of its
dielectric function for zero and finite temperatures, as well as different geometries [13–17], only
in the RPA approximation and usually without including screening and scattering. This approach
cannot distinguish between TM and TE SP modes. Moreover, the quality factor of the SP field
apparently has not been calculated.

Fig. 1. Geometry of a AGNR.

The width of the nanoribbons and the type and quality of their edges determine whether they
are metallic or semiconducting. The aforementioned studies [13–17,19] and many others consider
metallic nanoribbons but their existence has been seriously questioned by first-principle and
tight-binding band-structure calculations [20] which find that they are semiconducting. Of course
such a behaviour is found in nanoribbons created from graphene on a hBN substrate [21]. However,
recent experimental studies reported both, (zero gap) metallic and (finite gap) semiconducting
nanoribbons for widths as small as 4.5 nm [22].
In this work we evaluate the TM Lindhard, RPA, and Hubbard SPs in a metallic AGNR by

satisfying the boundary conditions for the incoming, reflected, and transmitted EM fields that
enter Maxwell’s equations. In Sec. 2 we present the formalism, analytic dispersion relations
(DRs) for each approach that include screening, and relate the SP field with the quality factor
Q. We also include scattering by impurities in the long-wavelength limit. In Sec. 3 we present
various numerical results and in Sec. 4 our summary. Some results are derived in appendices
A-D.

2. Formalism

In this work we consider only AGNRs. A AGNR is surrounded by two media with permittivities
ε1 and ε2, as shown in Fig. 2, in which the incident, reflected, and transmitted components of
the light’s electric field are shown. We assume that the two media have the same permeabilities
µ2 = µ1 = µ0. By satisfying the boundary conditions for the normal (⊥) and tangential (‖)
components of the field, Maxwell’s equations lead to

ε1E⊥1 − ε2E⊥2 = ρs, (1)



where ρs is surface charge density, and

E ‖1 − E ‖2 = 0. (2)

As detailed in appendix A, combining Eqs. (1) and (2) with the continuity equation we obtain

Fig. 2. A AGNR at the interface of two media with permittivities ε1 and ε2.

the transmission t and reflection r amplitudes

t(k, ω) = 2
[

n1
n2
+

sin θT
sin θI

+
sin θT
n2ε0c

σ(k, ω)
]−1

(3)

r (k, ω) = 1 −
sin θT
sin θI

t (k, ω) ; (4)

here σ is the conductivity, ε i = n2
i ε0, i = 1, 2, and ni the refractive index. For low energies σ

can be obtained from the continuity equation and the linear-response charge density, see appendix
B, as

σ(q, ω) = (iNe2ω/q2) χ(q, ω), (5)

where χ(q, ω) and N are the polarization function and dimer respectively. This SP dispersion
relation (DR) is obtained from the pole of the transmission or reflection amplitudes [23]. Now
from Fig. 2 we readily have sin θT = k1z/k1 = k1zc/n1ω and sin θI = k2z/k2 = k2zc/n2ω.
Inserting these expressions in the denominator of Eq. (3), set equal to zero, and taking k jz ' ikx ,
cf. Eq. (C.2), leads to the DR [24]

q ' iω(ε1 + ε2)/σ(q, ω). (6)

This DR depends on whether the evaluation of σ(q, ω) includes scattering or not. Below we
consider the two cases separately and show results without and with screening.

2.1. Absence of scattering

We consider surface plasmons with energy smaller that Fermi energy, that is, we consider only
intraband transitions. Then for zero temperature, and q ≤ kF the polarization function of a
metallic AGNR, of width W , when the electron-electron interaction is neglected, is [17]

χ0(q, y, ω) = −
2

W h
vFq2

v2
Fq2 − ω2

. (7)



The Lindhard polarization is

χLin(q, ω) = χ0(q, ω) =
∫ W

0
χ0(q, y, ω)dy, (8)

A better approximation is the RPA which works very well for high electron densities. In it the
Coulomb interaction changes the polarization function and gives

χRPA(q, ω) =
χ0(q, ω)

1 − V (q) χ0(q, ω)
, (9)

Here V (q) is the Fourier transform of the matrix element of the 2D screened Coulomb potential,
with respect to x, V (x, y) = e−ksr/r, r2 = x2 + y2,

V (q) =
2e2

ε0

∫ 1

0

∫ 1

0
K0

[
δλ��(y − y

′

)��
]
dydy

′

, (10)

where δλ = W (k2
s + q2)1/2 = W kF (λ2 + k ′s

2)1/2, λ = q/kF, k ′s = ks/kF , and K0 is the zeroth
order modified Bessel function, see Eq. (4) on p. 495 of Ref. [25], and ks measures the strength
of screening. As a test, if we set ks = 0 we obtain the usual q → 0 logarithmic divergence.
If one takes into account the exchange interaction between electrons as well as correlation

effects, the polarization function becomes more accurate. In this Hubbard approach one obtains

χHub (q, ω) =
χ0(q, ω)

1 − V (q)
[
1 − G(q)

]
χ0(q, ω)

, (11)

where G(q) is the local field factor. For 1D systems G(q) is given by [26]

G(q) = V ((q2 + k2
F )1/2)/2V (q). (12)

We plot V (q) versus q/kF in Fig. 3(a) for different ks. As seen, V (q) decreases with ks
but only for very small q, i.e., only in the long-wavelength limit, and is insensitive to ks
for q/kF ≥ 0.2. This behaviour is contrasted with the screened V (q) for 2D graphene in
panels (b) and (c): (b) is the RPA result, Eq. (2.23) of Ref. [27] with 1/q → 1/

√
q2 + k2

s and
ε = ε0 + (π/2)e2/~vF the effective dielectric constant, while (c) is the Thomas-Fermi one,
Eq. (2.23) of Ref. [27] with VTF

sc (q) = (1/ε0)(2πe2/(q + qTF ), qTF = 2πe2D(EF )/ε0 the
Thomas-Fermi wave vector, and D(EF ) the density of states at the Fermi level. If D(EF ) is
broadened due to scattering, qTF can take several values depending on the level width γ. Notice
that in (a) q ≡ qx whereas in (b) and (c) q is the 2D wave vector and q′TF ≡ qTF/kF . Note also
that for ks → 0, the results in (a) and (b) diverge for q → 0.

The SP DRs are obtained by substituting Eq. (5) into Eq. (6) and by usingW =
√

3(N +1)acc/2
with acc the carbon-carbon bond length. The results are

~ω/EF =

√
λ2 + ζλ, Lindhard, (13)

~ω/EF =

√
λ2(1 + λ βλ) + ζλ, RPA, (14)

~ω/EF =

√
λ2(1 + λγλ) + ζλ. Hubbard (15)



Here N = 3m − 1, m is an integer,

ζ = 2e2/ [π√3(ε1 + ε2)accEF
]
(N/(N + 1)) (16)

βλ =
2e2

~vF ε0

∫ 1

0

∫ 1

0
K0

[
δλ ��(y − y′)��

]
dydy′, (17)

with γλ = βλ − 0.5βλ′ , and λ
′

= (
√

1 + λ2). As a test, we expect that in the long-wavelength
limit the SP DR becomes that of graphene [28] for W or N sufficiently large. Indeed, for N
very large N/(N + 1) → 1 and λ � 1 we have ~ω/EF ∝

√
λ as in graphene’s case [11, 28–32].

Furthermore, in the long-wavelength limit the SP field is proportional to ζ1/2 or 1/
√

W in line
with expectations [33–35] and observations Ref [12, 36]. Another partial test is that Eq. (7) was
also obtained from the collisionless Boltzmann equation.

2.2. Presence of scattering

For scattering by impurities the polarization function in the long-wavelength limit becomes [37]

χ0
im(q, ω) =

(1 − iωτ) χ0(q, ω + iγ)
1 − iωτ +

[
χ0(q, ω + iγ)/χ0(q, 0) − 1

] , (18)

with γ = 1/τ and τ the relaxation time. Then, as detailed in Appendix E, using Eqs. (5), (6), (18)
and setting ~ω/EF = ν, ~γ/EF = γ

′, and S = ν2 + γ′2 we obtain the Lindhard DR

λ =
[
P1 + ζ

2√P2
/
2S

]1/2. (19)

The polynomials of ν2, P1 and P2, are given in Appendix E. Using the same procedure we obtain
the RPA DR

λ =
[
P4 +

√
P5

/
2P3

]1/2, (20)
with P3, P4, and P5 given in Appendix E. For the Hubbard DR we find Eq. (20) with βλ changed
to γλ. It is easy to verify that for γ = 0 Eqs. (19) and (20) reduce to Eqs. (13) and (14), respectively.
Also, Eq. (20) gives Eq. (15) if we change βλ to γλ and set γ = 0.

As indicated by Eq. (18), when scattering is present χ becomes complex and its imaginary part
measures the plasmon strength [37]. We will consider only the RPA result in the long-wavelength
limit. Then

Im χRPA =
Im χ0

imp
[
1 − V (q)<χ0

imp

]2
+

[
V (q)Im χ0

imp

]2 (21)
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Fig. 3. Matrix element of the screened potential vs q/kF in (a) a AGNR for N = 14,
EF = 0.1 eV, and 2D graphene in (b) the RPA and (c) Thomas-Fermi approaches.



is a measure of the plasmon strength that we will plot.

2.3. Transmission, reflection, and quality factor

The reflection coefficient is given by

R (θ, ω) =
(
1 − δθ,θB

)
|r |2, (22)

with θ the angle of incidence and θB the Brewster angle. When the phase matching condition is
satisfied for SPs, the transmission amplitude becomes (see appendix C)

t ∼ 4Q2/rn, (23)

where rn = (n2
1 + n2

2)/n1n2 and Q is the quality factor defined by Q = <q/Im q. Then the SP
field becomes

ESP ∼ 4Q2EI/rn, (24)

with EI the amplitude of ~EI shown in Fig. 2.

3. Numerical results

We first present results without including screening and scattering. In Fig. 4 we plot the
Lindhard and Hubbard TM SP DRs for different widths (N = 5, 8, 20) of a metallic AGNR, with
n1 = 2, n2 = 1, and EF = 0.1 eV. For fixed energy, especially in the long-wavelength limit, the
SP wavelength increases with the width W of the AGNR and so does the SP group velocity. The
opposite occurs when W is decreased. The RPA result is similar to the fully numerical ones of
Refs. [13–16].
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Fig. 4. (a) TM Lindhard and (b) Hubbard SP DRs in a metallic AGNR with n1 = 2, n2 = 1,
and EF = 0.1 eV. From top to bottom the AGNR width is N = 5, 8, 20.

The N dependence shown in Fig. 4 can be understood as follows. The energy of a system in a
EM field is directly related to the induced polarization which leads to a charge density oscillation.
The polarization can be considered as an ensemble of dipole moments (DMs). For an oscillation
with specific displacement from equilibrium, by increasing the number of DMs, which in a
AGNR is proportional to the width W (or the dimmer number N), the generated EM field has
more energy. Therefore, we expect that, as shown in Fig. 4, its frequency or photon energy to
increase with the AGNR width W .
In Fig. 5 we contrast the TM Lindhard, RPA, and Hubbard SP dispersions for N = 8. As the

inset shows, even in the long-wavelength limit there is a small but noticeable difference between
them.



The difference between the DRs shown in Fig. 5 can be understood as follows. The strength
of the charge displacement/polarization due to a EM field is reduced when, e.g., we take into
account electron-electron interaction and go from Eq. (8) to Eq. (9) and subsequently to Eq.
(11) upon including exchange. To have the same polarization, which determines the SP photon
energy, as in the case without electron-electron interaction, the charge displacement must be
increased. Then the uncertainty principle indicates that the modified momentum (∝ q) is smaller.
In addition, from photon energy conservation one can conclude that for a specific SP mode its
intensity in the Lindhard case is stronger than in Hubbard and RPA cases because of the SP
wavelength increase in the former case as compared to the latter ones.

We now turn to the conductivity given by Eq. (5). In the absence of scattering we use Eqs. (5),
(7) and (8) for χ0(q, ω), and plot it in Fig. 6. The three "lines" shown in the contour plots follow
the roots of the denominators in χ(q, ω). We also see that the slope of the Lindhard case increases
as we move to the Hubbard and RPA results. This reflects the change in the denominators of
χ due to the factors V (q) and G(q) in Eqs. (9) and (11). To better appreciate the differences
between the three approaches we plot cross sections of Fig. 6 in Fig. 7(a) for fixed q/kF = 0.18
and in Fig. 7(b) for fixed ~ω/EF = 0.48. The dependence of the Hubbard conductivity on the
width of the AGNR is shown in Fig. 8 for widths N = 8, 14, 20. As seen, the dips move to the
right with increasing N . However, we cannot increase N indefinitely because the 1D potential
V (q), given by Eq. (10), is less and less valid for increasing N . The results in Figs. 4-8 do not
include screening and one may wonder how much they change when screening is included. The
answer is that, apart from the removal of the logarithmic divergence for q → 0, the DRs and
Fig. 6 change very little, the changes are not visible on the scales used. More substantial changes
occur in the plasmon strength, see below.

In the presence of scattering the conductivity has a real and an imaginary part. In Fig. 9 we
plot its magnitude, in the long-wavelength limit, for N = 14 and EF = 0.1 eV.
The top panels are for γ′ = 0, the middle ones for γ′ = 0.001, and the bottom panels for

γ′ = 0.03. As seen, increasing the scattering strength γ, drastically changes its magnitude
especially for the right part of the panels in the third row. At the same time we see that increasing
γ reduces the slopes of the straight "lines" in Fig. 6 and slightly shortens the ~ω/EF regions of
maximal conductivity.

Regarding the plasmon strength we present, in Fig. 10, a (ω, q) contour plot of −π~vF Im χRPA.
On the first row the three panels are for γ′ = 0.001, 0.005, 0.009, respectively, and screening
is neglected. On the second one screening is included and the panels are for γ′ = 0.001, and
k
′

s = 0.001, 0.01, 0.1., respectively.
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Fig. 5. TM Lindhard, RPA, and Hubbard SP dispersions in a AGNR for EF = 0.1 eV and
width N = 8 for (a) q/kF ≤ 1 and (b) long wavelength limit, q/kF → 0.
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Fig. 8. Hubbard conductivity for N = 8, 14, 20 and EF = 0.1 eV. Panel (a) is for fixed
~ω/EF = 0.48 and panel (b) for fixed q/kF = 0.18.
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Fig. 9. (ω, q) amplitude contour plot of the RPA, Hubbard, and Lindhard conductivities of a
metallic AGNR, in the long-wavelength limit, for N = 14 and EF = 0.1 eV. The top panels
are for γ′ = 0, the middle ones for γ′ = 0.001, and the bottom panels for γ′ = 0.03.
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Fig. 10. (ω, q) contour plot of −π~vF Im χRPA for a metallic AGNR with N = 14 and
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and 0.009., the second row for a screened one with γ′ = 0.001 and k

′

s = 0.001, 0.01, 0.1..

In the experiments when phase matching occurs, for a fixed frequency the wave vector of the
incoming field is the same as the SP, the reflected field that reaches the detector, which measures
its coefficient, vanishes. It also vanishes at the Brewster angle.
In Fig. 11(a) we plot the RPA reflection coefficient R, given by Eq. (22) versus the angle

of incidence θ for N = 14, EF = 0.1 eV, n1 = 2 and n2 = 1 in the absence of screening and
scattering. A cross section of this graph for ~ω/EF = 0.5 is shown in Fig. 11(b) together with
the 2D substrate result (dot-dashed blue curve) which shows that the substrate supports Brewster
angles. Notice that the two results differ drastically and that there is no Brewster angle in a AGNR.
This means that, e.g., in the Kretschmann geometry, if the detector shows a zero value the SP has
been launched.

Graphene itself supports both TM and TE modes. However, AGNR nanoribbons support only
TM modes, there is no TE mode (see appendix D). This suggests the application of a suspended
AGNR as a TM polarizer.
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Fig. 11. (a) RPA Reflection coefficient for N = 14, EF = 0.1 eV, n1 = 2 and n2 = 1 in
the absence of screening and scattering. (b) The solid red curve is a cross section of (a) for
~ω/EF = 0.5 and the dot-dashed blue one the result for a 2D substrate.

4. Summary

We investigated SPs in AGNRs following the Lindhard, random-phase approximation (RPA),
and Hubbard approaches. For TM modes we obtained analytical DRs valid for q ≤ kF and
assessed their width dependence. In addition, we included screening using a Yukawa-type
potential; the results though, apart from those in the long-wavelength limit q → 0 are
not drastically affected. We also rederived these DRs for scattering by impurities in the
long-wavelength limit and highlighted the differences in the conductivity magnitudes, in the
three approaches, with increasing scattering strength. In this limit scattering can drastically
modify the respective, scattering-free conductivities. Further, we showed that the SP field is
proportional to the square of the quality factor Q. For TE modes the pole of the reflection
amplitude shows thatAGNRs do not support TESPs.Also,AGNRs do not support Brewster angles.

Appendices

A. TM transmission and reflection amplitudes

Written explicitly in terms of the field amplitudes and angles of incidence θI , transmission θT ,
and refraction θR, Eqs. (1) and (2) take the form

ε2(EI cos θI + ER cos θR) − ε1ET cos θT = ρs, (A.1)

(EI sin θI − ER sin θR) − ET sin θT = 0. (A.2)

Fourier transforming the continuity equation gives

− ωρs (q, ω) + kx Jx (q, ω) = 0, (A.3)

where kx = kT cos θT . Setting

Jx (q, ω) = σ(q, ω)Ex (q, ω), (A.4)



and noticing Ex (q, ω) = ET (q, ω) sin θT gives

ρs (q, ω) = [σ(q, ω)/ω]kT ET sin 2θT /2. (A.5)

We now use Snell’s law n2 cos θI = n1 cos θT , θI = θR, and write ER = rEI , ET = tEI .
Furthermore, we have ε1/ε2 = n2

1/n
2
2, kT = n1ω/c, and ε i/ε0 = n2

i . Then Eqs. (A.1) and (A.2)
become

(1 + r) cos θI =
(
ε1 + [σ(q, ω)/ω] kT sin θT

)
t cos θT /ε2, (A.6)

(1 − r) sin θI = t sin θT . (A.7)

Solving Eqs. (A.6) and (A.7) for r and t gives Eqs. (3) and (4) of Sec. II.

B. Conductivity

The surface charge densityρs can be expressed as

ρs (~x, t) =

N∑
i=1

∫ ∫
ρ(x, y, z, t)δ(y − yi)δ(z)dydz

= N ρ(x, t), (B.1)

where N is the dimer number. Then the Fourier transform of the continuity equation is given by
Eq. (A.3) with ρs (k, ω) = N ρ(k, ω). We now use Eq. (A.4) for the current density J, write the
electric field E in terms of the external potential Φext ,

E(k, ω) = −∇φ(k, ω) = −i~kφext (k, ω), (B.2)

and substitute these expressions in the general form [18]

ρ(k, ω) = e2 χ(k, ω)φext (k, ω). (B.3)

Then Eqs. (A.3), (B.2), and (B.3) give the conductivity in the form of Eq. (5).

C. Transmission amplitude, quality factor

Expressed in terms of wave vectors, with the help of Fig. 2, the denominator in Eq. (3) becomes
n1
n2
+

k2zn2
k1zn1

+
k2z

n1n2ε0

σ(k, ω)
ω

, (C.1)

where k jz = i[k2
x − k2

j ]
1/2, j = 1, 2, and

k jz = i |kx |[1 − (k j/kx )2]1/2 ' i |kx |, (C.2)

since, after the surface plasmon is launched, we have kx ≡ ksp and k j/kx � 1. Because the
surface plasmon will be damped after a distance, its wave vector has a damping term that we
denote by kI x . Then Eq. (C.2) becomes

|kx | = [k2
Rx + k2

I x]1/2 = kRx[1 +Q−2]1/2, (C.3)

where Q = <q/Im q is the quality factor. Using Eq. (C.3), |kx | = ωε0(n2
1 + n2

2)/σ(k, ω), and
the approximation 1 − [1 +Q−2]1/2 ≈ Q−2/2 gives the transmission amplitude, when the phase
matching condition for launching surface plasmons occurs, in the form (rn = (n2

1 + n2
2)/n1n2)

t(k, ω) ∼ 4 Q2/rn, (C.4)

with Q = ωτ = ω/γ and τ the relaxation time.



D. TE transmission and reflection amplitudes

By satisfying the boundary conditions for the normal and tangential components of the magnetic
field B in Maxwell’s equations, see Fig. 2 with the electric field E replaced by B = µH, the
tangential components give

H | |2 − H | |1 =
~k f × n̂, (D.1)

with ~k f the vector of free surface current, and the normal components

B⊥2 − B⊥1 = 0. (D.2)

For simplicity we assume µ1 = µ2 = µ0. Also, θI = θR and n2 cos θT = n1 cos θI . Then Eqs.
(D.1) and (D.2) are first rewritten in terms of BI, BR, and BT , similar to Eqs. (A.1) and (A.2),
and then in terms of the refractive indices like Eqs. (A.6) and (A.7). The result is

1 − r = t
(

n2
n1
+

σyy

n1ε0 sin θT

)
sin θT
sin θI

, (D.3)

1 + r = t. (D.4)
From Eqs (D.3) and (D.4) we readily obtain

t = 2
[
1 +

(
n2
n1
+

σyy

n1ε0 sin θT

)
sin θT
sin θI

]−1
. (D.5)

For graphene nanoribbons we have σyy = 0. Then, as proven in [5], Maier, the pole of the
transmission amplitude does not lend any support to TE surface plasmons.

E. DRs in the presence of scattering

For scattering by impurities the polarization function in the long-wavelength limit is given by
Eq. (18). Then using Eqs. (5), (6), (18) and setting ~ω/EF = ν and ~γ/EF = γ

′ we obtain the
Lindhard SP DR by solving

λ2ζ2 S = ν2 (S − λ2)2
+ γ′2

(
2ν2 − λ2

)2
, (E.1)

with S = ν2 + γ′2, for λ2 or ν2. Equation (E.1) is quadratic in λ2 but cubic in ν2. Solving it for
λ2, λ = q/kF , we find Eq. (19) with

P1 =
[
3γ′2ν2 + S/2ζ2 + ν4

]
/S (E.2)

P2 = S2 + 4ν2(S + 2γ′2)[γ′2(S − 2γ′2)/ζ2 + S]/ζ2. (E.3)
Using the same procedure we obtain the RPA DR

λ2ζ2 S = (S − λ2)2
+ γ′2

[
2ν2 − λ2 (1 + βλ)

]2
. (E.4)

The solution is Eq. (20) with P3, P4, and P5 given by

P3 =
[
S(1 + β2

λ) + 2βλγ′2(1 + ν2)]/ζ2, (E.5)

P4 =
[
ν2 (S + 2γ′2

)
(1 + βλ) + Sζ2

]
/2ζ2, (E.6)

P5 = 4P2
4 − 4P3 ν

2 (
S2 + 4γ′2ν2)/ζ2, (E.7)

respectively. For the Hubbard dispersion we find Eq. (19) with βλ changed to γλ.
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