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Abstract

Minimizing Direct Operating Cost for Turbojet and Turboprop Aircraft in Cruise

Alexander Botros

Canada’s greenhouse gas emissions increased by 20% between the years 1990 and 2014, and

the aviation industry is a large contributor to this increase. The optimization of fuel consumption

is therefore of paramount importance. This thesis focuses on minimizing the direct operating cost

(DOC) for a cruising turbojet and turboprop aircraft. The DOC is a trade-off of fuel costs and time

costs that are related by the cost index CI . By determining DOC-optimal trajectories, aircraft may

balance the need to arrive at their target destination in a timely fashion with the need to keep fuel

emissions low. The main contribution of this thesis is a two-part approach to determining the DOC-

optimal trajectories of a cruising turbojet and turboprop aircraft. For a turbojet, the first part of the

proposed methodology is the derivation of an analytic expression for the optimal speed in terms of

position and optimal initial speed, while the second part derives an analytic implicit definition of

the optimal initial speed. For a turboprop, the first part of the proposed methodology is concerned

with developing a suboptimal approximation for the DOC-optimal speed presented in terms of the

weight of the aircraft and the optimal final speed. The second part presents a recursive algorithm

by which the optimal final speed may be obtained. This thesis assumes that the aircraft cruises

below its drag divergence Mach number at constant altitude. Numerical examples will illustrate the

proposed methodologies.

iii



Acknowledgments

The author would like to acknowledge TRU Simulation and Training for their simulation data

and support, and Maplesoft for their software and guidance.

The author would also like to thank Dr. Luis Rodrigues, Dr. Tom Cain, Jack Riley, Susan Botros

and Carolyn Wyse.

This work is dedicated to my Dad, Dr. Adel Botros. Life does not last long. Math does. Thank

you for both.

iv



Contents

List of Figures viii

List of Tables ix

1 Introduction 4

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Problem Overview and Thesis Contributions . . . . . . . . . . . . . . . . . . . . . 5

1.3 Literature Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Mathematical Preliminaries 13

2.1 Dynamic Model of a Cruising Aircraft . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 The HJB Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Calculus of Variations and PMP . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.1 Calculus of Variations: a Necessary Condition for Optimality . . . . . . . 21

2.3.2 PMP : Necessary, Transversality, and H-minimality Conditions . . . . . . 24

2.4 The Relationship Between HJB and PMP, Time and State . . . . . . . . . . . . . . 27

2.4.1 Equivalence of HJB and PMP for Time Invariant OCPs . . . . . . . . . . . 28

2.4.2 Time as a Function of X and Implications for a Class of Time Invariant OCPs 30

2.4.3 Theorem on Corner Points . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Flight Management System for a Turbojet in Cruise 34

3.1 Optimal Control Problem Formulation and Previous Work . . . . . . . . . . . . . 35

v



3.1.1 OCP Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1.2 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Preliminary Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Expressions for v∗, t∗f ,W
∗
f , V

∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3.1 Correction of vJ(W ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3.2 Exact expressions for v∗, t∗f , W ∗f , V ∗ . . . . . . . . . . . . . . . . . . . . 50

3.4 Determining Unknowns Part 1: v∗f ,W
∗
f as Functions of v∗c . . . . . . . . . . . . . 55

3.5 Determining Unknowns Part 2: Expression for v∗c . . . . . . . . . . . . . . . . . . 57

3.6 Algorithm for Turbojet ECON mode Methodology for Cruise . . . . . . . . . . . . 61

3.7 Numerical Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.7.1 Worked Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.7.2 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.8 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4 Flight Management System for a Turboprop in Cruise 70

4.1 Optimal Control Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2 Preliminary Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3 The Maximum Range Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.4 Comparison of Turboprop and Turbojet OCPs . . . . . . . . . . . . . . . . . . . . 81

4.5 Approximation of the Optimal Speed . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.6 Determining v∗f , v∗c , t∗f , W ∗f , and V ∗ . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.7 Algorithm for Determining the ECON mode-Optimal Turboprop Cruise Trajectory 86

4.8 Numerical Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.8.1 Obtaining Aircraft Parameters and Suggested Speeds . . . . . . . . . . . . 88

4.8.2 Example Flight and Cost Savings . . . . . . . . . . . . . . . . . . . . . . 92

4.8.3 Validation Against Shooting Method . . . . . . . . . . . . . . . . . . . . . 95

4.9 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5 A Comparison of Earlier Research 98

5.1 Work of Villarroel and Rodrigues (2016) . . . . . . . . . . . . . . . . . . . . . . . 99

vi



5.2 Previous Work in the Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.3 Work of at Miele (1959) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.4 Analysis of v∗J,(JW=0), v
∗
P,(JW=0) . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.5 Summary of Earlier Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6 Conclusion and Future Work 112

Appendix A Proof of Identity (153) 114

Appendix B Maple(TM) Code 115

B.1 Procedure 1: Newton’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

B.2 Procedure 2: Optimal Initial Jet Cruise Speed . . . . . . . . . . . . . . . . . . . 116

B.3 Procedure 3: Optimal Initial and Final Turboprop Cruise Speed . . . . . . . . . . 118

B.4 Procedure 4: Turbojet Shooting Method . . . . . . . . . . . . . . . . . . . . . . . 119

B.5 Procedure 5: Turboprop Shooting Method . . . . . . . . . . . . . . . . . . . . . 122

Bibliography 125

vii



List of Figures

Figure 1.1 Block Diagram of a FMS (courtesy of Villarroel and Rodrigues (2016)) . . 5

Figure 3.1 A comparison of vCI>0(x, vN,3f ) given by (174), vCI>0(x, vJf ) given by

(177), vJ(x) proposed in Villarroel and Rodrigues (2016), and the optimal speed

v∗(x) obtained using the shooting method. . . . . . . . . . . . . . . . . . . . . . . 67

Figure 3.2 Theoretically optimal v∗(W ) obtained using the shooting method compared

with v1(W, vN,3f ) (a result of Algorithm 1), and vJ(W ) (speed proposed in Villarroel

and Rodrigues (2016)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Figure 4.1 CD(ε) (orange) and the linear trend-line (blue) over the entire simulated flight 89

Figure 4.2 The value of SFC calculated from (233) for Ẇ , v given in Table 4.2 for
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J∗ Minimal cost to go lbs
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S Wing reference area ft2
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t Time from start of cruise s
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Wf Final cruise weight lbs
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Chapter 1

Introduction

1.1 Motivation

Canada’s total greenhouse gas (GHG) emissions experienced a 20% increase between the years

1990 and 2014 (613 to 732 mega-tonnes of carbon dioxide equivalent (CO2 eq)) (see (Greenhouse

Gas Emissions (2016))). According to Environment and Climate Change Canada (ECCC) (see

Greenhouse Gas Emissions (2016)), the transportation sector was one of the primary contributors to

this increase. In 2014, the Canadian government in cooperation with the Canadian aviation industry,

released an action plan to reduce the GHG emissions due to air travel. The document included

eight classifications of measures including fleet renewals, alternative fuels and more efficient air

operations (see Canada’s Action Plan to Reduce Greenhouse Gas Emissions from Aviation (2015)).

Of the proposed measures, one of the least costly to implement is the amelioration of air operations

which is the focus of this thesis, in particular, the computation of the cruising velocity.

Flying at high speeds increases the amount of fuel consumed during the flight which in turn

increases GHG emissions as well as fuel related costs to the airline. However, flying at very low

speeds increases the travel time for the passengers, crew and other time related costs. A truly

beneficial question in light of the need to decrease GHG emissions while keeping costs low for

airlines is: how slowly can an aircraft fly while maintaining a reasonable flight time? This question

motivates the research presented here.Each gallon of jet fuel emits roughly 21.1 pounds of C02

(see Carbon Dioxide Emissions Coefficients (2015)), and it will be shown that by reconsidering air
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operations, over 2 million pounds per year of C02 can be saved for two round trips per day between

Montreal and Toronto (see section 4.8).

1.2 Problem Overview and Thesis Contributions

A Flight Management System (FMS) is the brain of a modern aircraft. A FMS not only de-

termines optimal trajectories by interfacing with navigation and performance databases, but it also

guides the aircraft along those trajectories. The block diagram of a typical FMS is shown in Fig.1.1

Figure 1.1: Block Diagram of a FMS (courtesy of Villarroel and Rodrigues (2016))

This thesis will focus on the functionality of the Performance and Guidance (PG) block of a

FMS. During flight, the PG subsystem interfaces with the Flight Plan Management (FPM) subsys-

tem to determine the position of the waypoints and the desired heading of the aircraft between those

waypoints. The navigation block communicates the aircraft’s position and heading to the PG block.

Once the PG subsystem obtains the position and heading of the aircraft, it interfaces with the Perfor-

mance Database (PD) to determine the speed at which the aircraft should travel. It is the mechanism

of determining the optimal speed that defines the Economy Mode (ECON) problem which is the

focus of this thesis. Two types of aircraft will be considered: Turbojet and Turboprop. The Turbojet

and Turboprop ECON mode problems will be discussed in Chapters 3 and 4, respectively.

In Sorensen, Morello, and Erzberger (1979), the authors note that the ECON mode problem
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for cruise can be formulated as an Optimal Control Problem (OCP). The OCP involves minimizing

the Direct Operating Cost (DOC) accrued by a cruising aircraft from the top of the aircraft’s climb

(TOC) at initial time t = 0 to the top of its descent (TOD) at final time t = tf . The DOC is defined

as the functional

DOC =

∫ tf

0
(Ct + Cff)dt (1)

where Ct is the cost of one unit of cruise time, Cf is the cost of one unit weight of fuel, and f is the

aircraft’s fuel flow rate. Both Ct and Cf are assumed to be positive constants. Because Cf > 0 is

constant, minimizing DOC is equivalent to minimizing V , where V is defined as

V =
DOC

Cf
=

∫ tf

0
(f + CI)dt (2)

and where CI = Ct/Cf is a parameter called the cost index. The cost index is known to the pilot

prior to flight, and is an input of a FMS. Let J denote the cost-to-go functional defined by

J(t) =

∫ tf

t
(f + CI)dτ (3)

The cost-to-go represents the cost accrued from time t to the final time. Therefore, V = J(0).

The ECON mode problem for cruise is concerned with determining the optimal speed v and

final time tf for a given altitude that minimize (2) subject to the dynamics of the aircraft and mission

constraints. This problem is one that involves the minimization of a cost functional (2) subject to

the dynamics of the aircraft and as such, is an OCP. The objective of this thesis is to develop analytic

expressions for v,Wf , and tf for a cruising turbojet and turboprop aircraft.

By analyzing the resulting ECON mode OCP, the main contributions of this thesis are as follows:

(1) For turbojet aircraft, analytic expressions are presented for

• the DOC-minimal cruising speed of a turbojet aircraft in terms of position (see (129)),

• the optimal final cruise time (see (137)),

• the optimal final cruise weight (see (139)),

• the minimal DOC (see (140)),
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• A near-optimal expression for the optimal cruising speed in terms of weight is also

developed (see (119)),

• Algorithm 1 summarizes the turbojet ECON mode trajectory optimization techniques

proposed in this thesis

Analytic expressions are important as they allow for the computation of sensitivities, which

allow one to understand which physical variables play a role in conditioning the value of the

variable of interest, and enable real-time implementations that are more efficient than numer-

ical iterative algorithms. For example, computing the sensitivity of the optimal final time to

changes in the cost index becomes trivial with an analytic expression for the optimal final

time. It may be that decreasing the cost index saves a substantial amount of fuel at the ex-

pense of a minimal increase it the optimal final time. The importance of analytic expressions

is addressed further in Mason (1990).

(2) For turboprop aircraft, analytic expressions are presented for

• A near-optimal approximation of the DOC-minimal cruising speed of a turboprop air-

craft with error bound (see (221)),

• the optimal final cruise time (see (228)),

• the optimal final cruise weight (see (200)),

• the minimal DOC (see (229))

The contributions to the turboprop FMS of this thesis are, to the best of the author’s knowl-

edge, the only existing work in the open literature that derives an analytic expression for the

optimal speed of a turboprop. As it was mentioned earlier, analytic expressions are impor-

tant as they allow for the computation of sensitivities. Analytic expressions also capture the

physics of the system and allow one to see the effect of a parameter on the system itself, and

lead to efficient real-time implementations. Algorithm 4 summarizes the turboprop ECON

mode trajectory optimization techniques proposed in this thesis. Using certified flight simu-

lators courtesy of TRU Simulation and Training, the cost savings associated with flying at the
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speed proposed in this thesis (see (221)) versus the speeds suggested in the Pilot’s Operat-

ing Handbook (see Beech Aircraft Corporation, Essco Aircraft Manuals and supplies (2015))

is validated over 300 data points. The cost savings are higher than $8000 for a 300 mile

flight (roughly the distance between Montreal and Toronto) with a cost index of 16 lbs/s. At

two flights between montreal and Toronto per day, this represents cost savings of more than

$6, 000, 000 per year.

1.3 Literature Survey

The application of optimal control techniques to the ECON mode problem is not a new field

of study. Textbooks such as (Tewari (2011)), (Bryson and Ho (1969)) use Pontryagin’s maximum

principle to derive analytic expressions for the the speeds that minimize the fuel consumed, mini-

mize the cruising time, maximize the range and rate of climb. They do not, however, address the

ECON mode problem for cruise. In (Sorensen et al. (1979)) and (Erzberger and Homer (1980)),

it is assumed that the optimal cruising speed is constant and that the change in weight due to fuel

consumption is negligible. This assumption is equivalent to assuming that the optimal cost-to-go is

insensitive to weight as was done in (Villarroel and Rodrigues (2016)). This will be discussed in

Chapter 5. In (Miele (1959)), the author does not explicitly address the ECON mode problem for

cruise, but the tools presented in the paper can be extrapolated to an analysis of the ECON mode

problem for cruise. The result is identical to the analysis in (Villarroel and Rodrigues (2016)) and

(Erzberger and Homer (1980)) and will be discussed in Chapter 5. In (Erzberger (1981)), the au-

thors use Pontryagin’s Maximum Principle to address the problem of trajectory optimization for the

climb and descent stages of flight.

In (Diaz-Mercado, Lee, Egerstedt, and Young (2013)), the authors establish a linear quadratic

cost functional which penalizes the control effort as well as the distance from the true trajectory

to a reference trajectory. Thus, instead of the final position of the aircraft being a hard constraint,

the authors penalize the distance from the desired final position to the actual final position. The

authors assume that the final time is known and develop necessary conditions for optimality though

no explicit analytic equation for the optimal speed is given.
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The computational power of an on-board FMS has increased dramatically over the last two

decades. It is therefore no surprise that a large body of research has emerged that takes advan-

tage of the real-time computational capabilities of modern aircraft to generate optimal trajectories.

Works such as (Waller (1990), Hagelauer and Mora-Camino (1998), H. Wu, Cho, Bouadi, Zhong,

and Mora-Camino (2012), Wickramasinghe, Harada, and Miyazawa (2012)) have developed meth-

ods that rely on dynamic programming to generate optimal trajectories. While (Bonami, Olivares,

Soler, and Staffetti (2013), Milam, Franz, and Murray (2002), Hok, Sridhar, and Grabbe (2012),

Guijarro and Ruben (2015)) also provide computational methods for optimal trajectory genera-

tion, the methodologies are different from earlier works. The authors of (Bonami et al. (2013))

use mixed-integer nonlinear programming in their development of an optimal trajectory algorithm,

while Hok et al. (2012) uses Pontryagin’s maximum principle to develop algorithms that minimize

flight time and fuel burn while considering the effect of wind and Salvador and Botez (2015) uses

genetic algorithms to develop optimal flight trajectories. The authors of Guijarro and Ruben (2015)

use Legendre’s pseudospectral method to discretize the problem of obtaining a trajectory that mini-

mizes fuel burned.

The range of an aircraft has also been considered in (Torenbeek (1997), Bert (1999)). Reference

(Torenbeek (1997)) develops analytic expressions for the coefficients of lift and drag that minimize

direct operating cost which are valid for turbojets, turboprops, and turbofans. The authors also

provide an estimate for the range of the aircraft. Compressibility effects are considered in the

development of their expressions. No analytic expression for the DOC-optimal speed is provided.

In (Bert (1999)), the authors use a combination of optimal control techniques and empirical data

to develop analytic expressions for the cruising range and endurance of a turboprop, turbofan or

piston-propeller aircraft.

Computational algorithms, while useful, make the determination of sensitivities difficult. If,

for example, one wishes to determine the effect of increased initial weight, or decreased frontal

area on cruising speed, one would have to run numerous simulations to develop the relationship.

However, if an analytic expression for cruising speed is known in terms of initial weight or frontal

area, then obtaining the sensitivities becomes trivial. In (Almegren and Tourin (2014)), the author

uses the Hamilton-Jacobi-Bellman equation to obtain optimal flight speeds and sink rate of a glider.
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The problem differs from the ECON mode problem for a cruising aircraft in one crucial respect:

the weight of a glider is assumed constant. Similar to (Diaz-Mercado et al. (2013)), the endpoint

constraint on position is penalized in the cost functional instead of being a hard constraint.

There are several papers in the open literature that investigate analytic expressions for the DOC-

optimal or fuel-optimal trajectories (see Erzberger and Homer (1980), S. Wu and Guo (1994), S. Wu

and Shen (1993), Burrows (1983), Burrows (1982), Villarroel and Rodrigues (2016), Miele (1959)).

Though the authors of these papers approach the problem in different ways, and use different cost

functionals to define the OCPs, there is a strong similarity in the work. The similarity is strong

enough to warrant study, and a comparison can be found in chapter 5.

In (Franco, Rivas, and Valenzuela (2010)), the authors investigate the DOC-minimizing thrust

setting where final time is known and it is assumed that the aircraft cruises at constant altitude.

Because the final time is known, the cost functional considered looks like (2) where CI = 0. The

authors of Franco et al. (2010) derive analytic expressions for the thrust setting π that minimizes

the DOC of cruise. The analysis performed is not valid for free final time for two reasons: first, the

free final time ECON mode OCP introduces the notion of the cost functional which does not apply

if the final time is fixed, and second, the results of HJB and PMP analysis change depending on

foreknowledge of final time.

Turbofan and all-electric optimal cruise speeds are considered in (Kapstov (2017)) in which

optimal cruise speeds are are represented as the solution to quintic polynomial equations. The

methodology used by the authors of (Kapstov (2017)) is similar to that employed by this thesis

but on a system with different dynamics to those considered here. In (Morbidi, Cano, and Lara

(2016), Candido, Galvao, and Yoneyama (2014), Ritz, Hehn, Lupashin, and D’Andrea (2011)), the

authors apply optimal control techniques to the problem of performance optimization and energy

management of Unmanned Aerial Vehicles (UAVs), and in (Traub (2011)), the maximum range and

endurance optimal control problems for battery powered aircraft are considered.

To the best of the author’s knowledge, the only previous work done on obtaining an analytic

state-feedback solution to the ECON mode problem for a cruising jet was in reference Villarroel

and Rodrigues (2016). The authors of Villarroel and Rodrigues (2016) considered the HJB equation

that results from optimizing (2) subject to the dynamics of a jet. They did not, however, solve the
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resulting PDE, but did provide an approximate suboptimal control law that agreed with the well-

known maximum range solution vMR when CI = 0. However, the approximation deviates from

the expected optimal velocity (obtained using, for example, the shooting method) for larger values

of CI . The authors of Villarroel and Rodrigues (2016) also did not provide an upper bound for the

error in their approximation.

To the best of the author’s knowledge, no analytic expression exists in the open literature for the

DOC-optimal cruising speed of turboprop aircraft. As it was mentioned earlier, the development of

analytic expressions is of paramount importance when attempting to determine the sensitivities of

the optimal speeds, final time, final weight, and minimal DOC to changes in aircraft and mission

parameters. Though the expression presented in this thesis is a suboptimal approximation, it is (to

the best of the author’s knowledge) the only such analytic expression. Furthermore, no FMS exists

for turboprop aircrafts. Optimization is done by referring to printed look-up tables like those in

Beech Aircraft Corporation, Essco Aircraft Manuals and supplies (2015), that include suggested

true air speeds obtained by trial and error.

1.4 Thesis Structure

This thesis is organized as follows: Chapter 2 will present some preliminary information re-

quired to mathematically pose and analyse the ECON mode problem for turbojet and turboprop

aircraft which is done in chapters 3 and 4, respectively.

The ECON mode problem for a turbojet will be addressed in Chapter 3 starting with the math-

ematical formulation of the problem and a brief overview of previous work. Chapter 3 presents

expressions for the optimal cruising speed, the final time and weight at TOD, as well as the mini-

mal DOC. These expressions all have one or two unknown arguments when CI > 0: the optimal

initial cruise speed v∗c and the optimal final cruise speed v∗f . The complete maximum range solution

(when CI = 0) is also derived in Chapter 3. When CI > 0, however, the values of v∗c , v
∗
f must

be determined in order to use the expressions presented. This chapter will also derive an analytic

expression for v∗f in terms of v∗c , and presents an implicit expression for v∗c as the solution to an

algebraic equation. The methodology is summarized in Algorithm 1 which is in turn validated with
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a numerical example.

Chapter 4 begins with the mathematical formulation of the turboprop ECON mode problem for

cruise. This chapter also presents a suboptimal approximation for the optimal speed when CI > 0,

the complete maximum range solution, and analytic expressions for the final cruise time at TOD,

final weight and minimal DOC. As in the turbojet case, the expressions presented in Chapter 4 are

in terms of one or two unknowns when CI > 0: the optimal initial and final cruise speeds v∗c , v
∗
f . A

recursive algorithm by which v∗c and v∗f can be determined will also be presented. The methodology

of solving the Turboprop OCP is summarized in Algorithm 4 which is validated with a numerical

example.

An in depth comparison of the work done previously by the authors of Erzberger and Homer

(1980), S. Wu and Guo (1994), S. Wu and Shen (1993), Burrows (1983), Miele (1959), and Villar-

roel and Rodrigues (2016) can be found in Chapter 5. This comparison is performed in light of the

results developed in chapters 3.2, 3 and 4 and thus must be presented after these chapters.

Chapter 6 draws the conclusions of this thesis.

Chapter 3 has been accepted for publication to the 56th IEEE Conference on Decision and

Control in the following paper:

A. Botros, L. Rodrigues, ”State Feedback Optimal Solution for the ECON mode Velocity for a

Cruising Turbojet”, 56th IEEE Conference on Decision and Control, December 12-15, 2017,

Melbourne, Australia.
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Chapter 2

Mathematical Preliminaries

The objective of this chapter is to present preliminary information required to properly formulate

and analyse the ECON mode OCP. An OCP is characterized by two ingredients: the dynamics of

the system under consideration, and a cost functional. The system dynamics describe how, for a

given control input, the states of a system transition through time. The cost functional marks the

”cost” of these transitions. The cost functional for the ECON mode OCP is the expression V given

in (2). The dynamics of a cruising Turbojet and Turboprop aircraft will be presented in section 2.1.

This chapter will also present tools used to analyse and solve OCPs including the HJB equation

and PMP given in sections 2.2 and 2.3 respectively. These tools will be used to analyse the turbojet

and turboprop ECON mode problems (see Chapters 3 and 4 respectively). Finally, section 2.4.3 will

present the Weierstrass-Erdmann corner conditions.

2.1 Dynamic Model of a Cruising Aircraft

In order to properly formulate the ECON mode problem for a cruising turbojet or turboprop

aircraft as an OCP, the flight dynamics of each type of aircraft must first be presented. The dynamic

model for the longitudinal flight of a cruising aircraft is given by the following system of differential

13



equations (see Tewari (2011), Hull (2007), Anderson (2016)):

ẋ = v cos(γ)

ḣ = v sin(γ)

v̇ =
( g
W

)
(T cos(α)−D −W sin(γ))

γ̇ =
( g

Wv

)
(T sin(α) + L−W cos(γ))

Ẇ =


−SFCT : Turbojet model

−SFCTv : Turboprop model

(4)

where the variables may be broken into four categories:

States =



x =


Horizontal position;

x(0) = 0, x(tf ) = xd

v = True airspeed; v > 0

h = Altitude

W =


Weight;

W (0) = Wc, W > 0

γ = Flight path angle

Control Inputs =


T = Thrust

α = Angle of attack

Aerodynamic Forces =


L = L(h, v, α) = Lift

D = D(h, v, α) = Drag

Fuel Flow =


SFC = Specific fuel consumption

f = −Ẇ = Fuel flow rate

(5)
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The aerodynamic forces acting on the aircraft are given by

L =
1

2
ρSv2CL (6a)

D =
1

2
ρSv2CD (6b)

whereCL, CD are strictly positive constants representing the coefficient of lift and drag respectively,

ρ = ρ(h) is the air density, and S is the surface area of the wing. The assumptions for cruise will

now be stated. These assumptions are identical to those made in Erzberger and Homer (1980),

S. Wu and Guo (1994), S. Wu and Shen (1993), Burrows (1983), Burrows (1982), Miele (1959),

and Villarroel and Rodrigues (2016) for a cruising aircraft:

• Assumption 1: The aircraft flies at constant altitude.

Therefore, γ = γ̇ = ḣ = 0

• Assumption 2: The angle of attack α is small (this assumption is standard practice in perfor-

mance analysis for commercial aircraft)

Therefore, cos(α) ≈ 1, sin(α) ≈ α

• Assumption 3: The altitude dictated by air traffic control is less than the maximum altitude,

hmax.

Therefore, h(t) ≤ hmax, ∀t ∈ [0, tf ].

• Assumption 4: The thrust and speed are within the flight envelope dictated by the engine and

structural limits of the aircraft.

• Assumption 5: The component of the thrust that is perpendicular to the velocity vector is

small in comparison to L and W .

Therefore, T sin(α) ≈ Tα << L−W cos(γ) = L−W

• Assumption 6: The speed of the aircraft results in a Mach number that is below the drag

divergence Mach number. Therefore, we need not consider drag due to the compressibility of

air.
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• Assumption 7: The density of air, ρ, is constant at constant altitude. The specific fuel con-

sumption SFC is constant at constant altitude for a Turbojet aircraft and inversely proportional

to velocity for a Turboprop aircraft.

• Assumption 8: The aircraft is cruising steadily.

Therefore, v̇ ≈ 0

• Assumption 9: The aircraft is cruising in a straight line from one waypoint to another some

known distance xd away.

Under Assumptions 1-9, the dynamic model (4) reduces to (see Anderson (2016))

Turbojet Turboprop


ẋ = v

Ẇ = −SFCT

L = W

(7)


ẋ = v

Ẇ = −SFCTv

L = W

(8)

SFC expressed as the change

in weight per unit time per

unit thrust

SFC expressed as change in

weight per unit time per unit

power.

In the reduced models (7) and (8), the parameters x,W are the states, and v is the control input.

Let us consider now the aerodynamic force of drag. Under Assumption 6, the coefficient of drag is

modeled as

CD = C0 + C2C
2
L
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where C0, C2 are the positive coefficients of parasitic and lift induced drag respectively. Solving

(6a) for CL and using L = W , we may rewrite the drag coefficient as

CD = C0 + C2

(
2L

ρSv2

)2

= C0 + C2

(
2W

ρSv2

)2

(9)

Thus the force of drag, according to (6b), is given by

D =
1

2
C0ρSv

2 +
2C2W

2

ρSv2
(10)

2.2 The HJB Equation

One of the two major approaches to solving OCPs is dynamic programming (see Athans and

Falb (1966), Bellman (1963)) which is based on Bellman’s Principle of Optimality (BPO). Dynamic

programming leads to the Hamilton-Jacobi-Bellman equation. This section presents BPO and uses

it to derive the HJB equation. An investigation into the necessity and sufficiency of the HJB equa-

tion for optimality will also be presented in this section.

Bellman’s Principle of Optimality (see Bellman (1957))

Consider a process involving many stages of decisions. If a sequence of decisions constitutes an

optimal policy then, regardless of the initial state and decisions, any sub-sequence must also con-

stitute an optimal policy.

To see how the principle of optimality is used, consider the following general OCP:

J∗(x(t), t) = inf
u∈U,tf

[J(x(t), u(t), t, tf )] where

J(x(t), u(t), t, tf ) = φ(x(tf ), tf ) +

∫ tf

t
L(x(τ), u(τ), τ)dτ

s.t. (x(t), u(t), tf ) ∈ A =


(x, u, tf ) s.t.


ẋ(t) = f(x(t), u(t), t), ∀t ∈ [0, tf ]

Ψ(x(tf ), tf ) = 0

Ω(x(t0)) = 0



(11)
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where J∗ is a class C1 function. Then, J∗(x, t) can be rewritten as

J∗(x(t), t) = inf
u

[∫ t+∆t

t
L(x(τ), u(τ), τ)dτ + φ(x(tf ), tf ) +

∫ tf

t+∆t
L(x(τ), u(τ), τ)dτ

]
(12)

for some small ∆t > 0 such that t + ∆t < tf . Note that the equation (12) represents a sequence

of decisions made in two sub-sequences of time: from time t to t + ∆t and then from time t + ∆t

to tf . From BPO, it must hold that in order for J∗ to be an optimal policy of decisions made from

time t to time tf , then the subset of decisions made from time t+ ∆t to time tf must also constitute

an optimal policy. Therefore, (12) may be rewritten as

J∗(x(t), t) = inf
u

[∫ t+∆t

t
L(x(τ), u(τ), τ)dτ + inf

u

(
φ(x(tf ), tf ) +

∫ tf

t+∆t
L(x(τ), u(τ), τ)dτ

)]
(13)

From the definition of J∗(x(t), t) in (11), it must hold that

inf
u

(
φ(x(tf ), tf ) +

∫ tf

t+∆t
L(x(τ), u(τ), τ)dτ

)
= J∗

(
x(t+ ∆t), t+ ∆t

)
(14)

Therefore, (13) can be rewritten as

J∗(x(t), t) = inf
u

[∫ t+∆t

t
L(x(τ), u(τ), τ)dτ + J∗

(
x+ ∆x, t+ ∆t

)]
(15)

where x+∆x = x(t+∆t). Because J∗ ∈ C1, we may take the first order Taylor series expansions

of both terms inside the square brackets of (15) to obtain

J∗(x+ ∆x, t+ ∆t) = J∗(x, t) + J∗x(x, t)∆x+ J∗t (x, t)∆t+O(∆t2)∫ t+∆t

t
L(x(τ), u(τ), τ)dτ = 0 + L(x, u, t)∆t+O(∆t2)

(16)

Replacing (16) in (15) yields

J∗(x(t), t) = inf
u

[
L(x(t), u(t), t)∆t+ J∗(x(t), t) + J∗x(x, t)∆x+ J∗t (x, t)∆t+O(∆t2)

]
(17)
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Because J∗(x(t), t) is independent of u, we may rewrite (17) as

= J∗(x(t), t) + inf
u

[
L(x(t), u(t), t)∆t+ J∗x(x, t)∆x+ J∗t (x, t)∆t+O(∆t2)

]
(18)

Therefore, by (18),

inf
u

[
L(x(t), u(t), t)∆t+ J∗x(x, t)∆x+ J∗t (x, t)∆t+O(∆t2)

]
= 0 (19)

Note that (19) must hold for any ∆t sufficiently small and independent of u, by construction. Di-

viding both sides of (19) by ∆t and taking the limit as ∆t → 0 while noting that ẋ = f(x, u, t)

yields

inf
u

[L(x, u, t) + J∗x(x, t)f(x, u, t) + J∗t (x, t)] = 0 (20)

Because J∗t (x, t) is independent of u, (20) can be written as

inf
u

[L(x, u, t) + J∗x(x, t)f(x, u, t)] + J∗t (x, t) = 0 (21)

Define the Hamiltonian, H , as

H(x(t), u(t), Jx, t) = L(x, u, t) + Jxf(x, u, t) (22)

Then, (21) can be written as

J∗t + inf
u
{H} = 0 (23)

which is the celebrated HJB equation. From the derivation of the HJB equation, it is apparent that

(23) is a necessary condition for the optimality of u∗ provided that J∗ is a class C1 function. It will

now be shown that under certain circumstances, the HJB equation is also a sufficient condition for

the optimality of u∗.

Definition 1. If the Hamiltonian H , as a function of the control input u, has a strong absolute

minimum at u∗, i.e. if

H(x, u∗, Jx, t) < H(x, u, Jx, t), ∀u 6= u∗ (24)
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then H is said to be normal and u∗ is called the H-minimal control.

Theorem 1 (Sufficient Condition). For the OCP given in (11), if

(1) φ(x(tf ), tf ) = 0

(2) tf is free

(3) the Hamiltonian H , is normal with H-minimal control u∗

(4) (J∗, u∗) is a solution to the HJB equation (23) with boundary conditions J∗(tf ) = 0

then u∗ is optimal.

Proof. Let

L̃(x, u, t) = J∗t (x, t) +H(x, u, J∗x , t) (25)

Then

L̃(x, u, t) > L̃(x, u∗, t) (26)

because u∗ is the H-minimal control. Furthermore, because J∗, u∗ are solutions to the HJB equa-

tion, it must hold that

L̃(x, u∗, t) = 0 (27)

Consider that

L̃(x, u, t) = J∗t (x, t) + J∗xf + L = J̇∗ + L

from the definition of L̃. Therefore,

∫ tf

t
L̃(x, u, τ)dτ =

∫ tf

t
J̇∗ + L(x, u, t)dτ =

∫ tf

t
L(x, u, t)dτ + J∗(tf )− J∗(t)

=

∫ tf

t
L(x, u, t)dτ − J∗(t) > 0

(28)

by the boundary condition J∗(tf ) = 0, and equations (26), (27). Similarly,

∫ tf

t
L̃(x, u∗, τ)dτ =

∫ tf

t
J̇∗ + L(x, u∗, τ)dτ =

∫ tf

t
L(x, u∗, τ)dτ − J∗(t) = 0 (29)

20



by (27). Solving (29) for J∗(t) and replacing the result in (28) yields

∫ tf

t
L(x, u, t)dτ >

∫ tf

t
L(x, u∗, τ)dτ

from which the result follows

2.3 Calculus of Variations and PMP

Besides the HJB equation, the other major approach to solving OCPs is Pontryagin’s Maximum

Principle which contains transversality conditions, necessary conditions and an H-minimality con-

dition. This section is devoted to providing a brief overview of the Calculus of Variations (COV),

and a derivation of the necessary and transversality conditions of PMP. This section will also present

the statement of the H-minimality condition.

2.3.1 Calculus of Variations: a Necessary Condition for Optimality

The purpose of this section is to use the calculus of variations to develop a necessary condition

for the minimality of a cost functional. The procedure follows closely the development presented in

(Liberzon (2012), Miele (1962), Bryson and Ho (1969)).

The perturbation of a continuously differentiable function x(t) is a new continuously differen-

tiable function x̂(t) defined by

x̂(t) = x(t) + εδx(t)

where δx is a continuously differentiable function of t, and ε ∈ R is assumed to be small. The total

variation in the variable x, denoted dx, over an infinitesimal increment of time dt is given by

dx = εδx+ ẋdt (30)

For an increment in time, the total variation dt is identical to the perturbation δt:

dt = δt (31)
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Let F be a functional F : S ⊆ Rn → R.

Define the first variation of F at s∗(t) ∈ S as a linear functional δF |s∗ : S → R such that if

ŝ = s∗ + ν(t)ε then

F (ŝ) = F (s∗) + δF |s∗(ν)ε+ o(ε) (32)

for all ν ∈ S, ε ∈ R, and where o(ε) satisfies

lim
ε→0

o(ε)

ε
= 0 (33)

Suppose that it is desirable to determine a local minimum of F over a subsetA of S. ThenA is called

the set of admissible trajectories of s. The vector ν is called an admissible perturbation if ŝ ∈ A

for all |ε| sufficiently small (note that this implies that s∗ ∈ A). Suppose s∗ is a local minimum of

F over A, and let ν be any admissible perturbation, then by the definition of admissible trajectories,

there exists ε̃ > 0 such that

F (ŝ) = F (s∗ + νε) ≥ F (s∗), ∀|ε| ≤ ε̃ (34)

where s∗+ νε ∈ A for all |ε| ≤ ε̃. The inequality (34) implies that if G(ε) = F (s∗+ νε), then G(ε)

has a local minimum at ε = 0 over the ball Bε̃. Therefore, if s∗ minimizes F over A, then ε = 0

must minimize the scalar function G : Bε̃ ⊆ R→ R for each admissible perturbation ν. If ε = 0 is

a local minimum of the scalar function G over Bε̃, then it must hold from calculus that

dG

dε

∣∣
ε=0

= lim
h→0

G(h)−G(0)

h
= 0 (35)

Replacing the definition of G in (35) yields

lim
h→0

F (s∗ + νh)− F (s∗)

h
= 0 (36)

Recall that in the definition of the first variation of F , the equation (32) was said to hold for all
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ε ∈ R. Therefore, from (32) and (33),

δFs∗(ν) = lim
ε→0

F (s∗ + νε)− F (s∗)

ε
(37)

which is identical to (36). Therefore, if s∗ is a local minimum of F over A, then

δFs∗(ν) = 0 (38)

for all admissible perturbations ν.

Suppose now that X = {x, a, b} and the functional F is given in integral form as

F (X) =

∫ b

a
f(x(t), t)dt

where f is continuously differentiable for all time t ∈ T ⊆ R where T completely contains (a, b).

Let X + εδX = {x + εδx, a + εda, b + εdb}1 be an admissible perturbation of X such that (a +

εda, b+ εdb) is completely contained in T . Then,

F (X + εδX)− F (X) =

∫ b+εdb

a+εda
f(x+ εδx, t)dt−

∫ b

a
f(x, t)dt

=

∫ b

a
f(x+ εδx, t)− f(x, t)dt+

∫ b+εdb

b
f(x+ εδx)dt

−
∫ a+εda

a
f(x+ εδx)dt

(39)

Because f is continuously differentiable in T , it must hold that

f(x+ εδx, t) = f(x, t) + fx(x, t)εδx+ o(δxε)∫ b+εdb

b
f(x+ εδx)dt =

[
f(x, t)εdb+ fx(x, t)ε2δxdb+ o(δxε)εdb

] ∣∣∣
t=b

−
∫ a+εda

a
f(x+ εδx)dt =

[
−f(x, t)εda− fx(x, t)ε2δxda− o(δxε)εda

] ∣∣∣
t=a

(40)

1In the definition of X + εδX , the perturbations of a and b are da, db respectively as opposed to δa, δb. This is
because a, b are values of t, and therefore, by (31), da = δa, db = δb
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Replacing (40) in (39), dividing the result by ε, taking the limit as ε approaches 0 and replacing the

result in (38) yields

δF |X(δX) = lim
ε→0

F (X + εδX)− F (X)

ε

=

∫ b

a
fx(x, t)δxdt+ f(x(b), b)db− f(x(a), a)da

(41)

If X∗ = (x∗, a∗, b∗) minimizes F (X), then by (41) and (38)

δF |X∗(δX) =

∫ b∗

a∗

(
fx(x, t)|x=x∗δx

)
dt+ f(x∗(b∗), b∗)db− f(x∗(a∗), a∗)da = 0 (42)

The result (42) will be used in the following section

2.3.2 PMP : Necessary, Transversality, and H-minimality Conditions

The goal of this section is to use the necessary condition (42) applied to a general OCP to

develop the necessary and transversality conditions and to state the H-minimality condition that

make up PMP. The proof of the H-minimality necessary condition has been omitted.

Consider the general OCP with boundary constraints given in (11), and define the total cost V

and optimal total cost V ∗ as

V (x(t), u(t), tf ) = J(x(t), u(t), t0, tf )

V ∗(x(t)) = inf
u,tf

(
V (x, u, tf )

) (43)

where t0, the initial time is assumed fixed. Then the OCP (43) is a minimization problem of a

functional V over trajectories X =
{
s =

(
x(t), u(t)

)
, tf
}

, where the set of admissible trajectories,

A, is given in (11) and is defined by restrictions on the dynamics and boundary values of x , and the

set of admissible controllers is the set of all controllers that generate trajectories in A. Suppose that

X∗ =
{
s∗ =

(
x∗(t), u∗(t)

)
, t∗f

}
solves (43). Let X̂ = {ŝ, t̂f} denote a perturbation of X∗ where

ŝ = (x∗ + δx, u∗ + δu)

t̂f = t∗f + δtf

(44)
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and assume that X̂ ∈ A. Define the augmented cost function, Ṽ as

Ṽ (X) =
[
φ(xf , tf ) + ζTΨ(xf , tf )

]
+

∫ tf

t0

(
L(x, u, t) + λT f − λT ẋ

)
dt

=Φ(xf , tf ) +

∫ tf

t0

H(x, u, λ, t)− λT ẋdt
(45)

where Φ(xf , tf ) = φ(xf , tf ) + ζTΨ(xf , tf ), H is the Hamiltonian defined in (22), and λ, ζ, called

Lagrange multipliers, are of dimension dim(x) and dim(Ψ) respectively. Because it is assumed

that X̂ ∈ A, it must hold that Ψ(x̂(t̂f ), t̂f ) = 0, ˙̂x = f(x̂(t), û(t), t) and so Ṽ (X̂) reduces to V (X̂)

for any admissible perturbation X̂ . Therefore, if X∗ is optimal (and therefore admissible), then

according to (38), it must hold that

δVX∗(X̂) = δṼX∗(X̂) = 0 (46)

for any admissible perturbation X̂ of X∗. Thus (46) is a necessary condition for optimality on the

augmented cost function (45). From (42), and assuming that t0 is constant,

δṼX∗(X̂) =
[
Φxdx|tf + Φtdt|tf + [H − λT ẋ]|tfdtf

+

∫ tf

t0

Hxδx+Huδu− λT δẋdt
]∗ (47)

where the notation [·]∗ means that [·] is evaluated along X∗. Now, using integration by parts and the

identity (30):

−
∫ tf

t0

λT δẋdt = −λT δx|tf + λT δx|t0 +

∫ tf

t0

λ̇T δxdt

= −λTdx|tf + λT ẋdt|tf + λTdx|t0 − λT ẋdt|t0 +

∫ tf

t0

λ̇T δxdt
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Note that dt0 = 0 as t0 is assumed fixed in the formulation of (43). Thus,

δṼX∗ =

[
Φxdx|tf + Φtdt|tf + [H − λT ẋ]|tfdtf

−λTdx|tf + λT ẋdt|tf + λTdx|t0

+

∫ tf

t0

Hxδx+Huδu+ λ̇T δxdt

]∗ (48)

=

[
[Φx − λT ]dx|tf + [Φt +H − λT ẋ+ λT ẋ]dt|tf + [λT ]dx|t0

+

∫ tf

t0

(
Hx + λ̇

)
δx+Huδudt

]∗

=

[
[Φx − λT ]dx|tf + [Φt +H]dt|tf + [λT ]dx|t0

+

∫ tf

t0

(
Hx + λ̇

)
δx+Huδudt

]∗
(49)

This must be true for all possible admissible variations which implies that each term must be 0. To

summarize, if X∗ minimizes (43), then the following must hold along X∗:

Transversality Conditions :



(
[Φx − λT ]dx

)
|tf = 0

([Φt +H]dt) |tf = 0(
λTdx

)
|t0 = 0

(50a)

Necessary Conditions :


Hx = −λ̇

Hu = 0

(50b)

From the definition of the Hamiltonian (22), the partial derivative of H with respect to λ is given by

Hλ(x, u, λ, t) = f(x, u, t) (51)

Therefore, by (50b) and (51) the time derivative of the Hamiltonian along the optimal trajectory is
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given by

Ḣ(x, u, λ, t)|X∗ =
[
Hxẋ+Huu̇+Hλλ̇+Ht

]∗
=
[
− λ̇ẋ+ fλ̇+Ht

]∗
= H∗t

(52)

Therefore, along the optimal trajectory, the time rate of change of the Hamiltonian is given by

the partial derivative of H with respect to time. If H does not depend explicitly on time, then

(52) implies that H is a constant along the optimal trajectory. Furthermore, if H does not depend

explicitly on time and Φt = 0, then by (50a)

H|X∗ = 0 (53)

The second part of PMP, called the H-minimality condition is stated as follows:

Theorem 2. [H-minimality condition] If u∗ minimizes the OCP (43), then for all admissible con-

trollers u, it must hold that

H(x∗, u∗, λ∗, t) ≤ H(x∗, u, λ∗, t) (54)

where λ∗ = λ|X∗ .

The Transversality conditions and necessary conditions (50b) (50a) together with (54) form

Pontryagin’s Maximum Principle.

2.4 The Relationship Between HJB and PMP, Time and State

The objective of this section is to compare the techniques outlined in sections 2.2 and 2.3 for

a certain class of OCPs, and to determine the relationship between the states of an OCP and time.

It will first be shown that for time independent OCPs where the optimal cost-to-go is a class C1

function, the HJB equation and PMP result in an identical PDE. Second, a method by which a

time-based cost functional can be transformed into a state-based cost functional will be provided.
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2.4.1 Equivalence of HJB and PMP for Time Invariant OCPs

This section will illustrate that the sufficient condition with respect to the HJB equation pre-

sented in Theorem 1, and PMP result in an identical system of PDEs when the OCP in question

does not depend explicitly on time, where there is no final penalty on the states, where the Hamilto-

nian is a twice continuously differentiable function of u, and where the optimal cost-to-go is a class

C1 function.

Consider the general OCP in (11), and suppose that J∗ ∈ C1, φ(x(tf ), tf ) = 0, that H is a

twice continuously differentiable function of u, and that ∂L∂t = ∂f
∂t = 0. Then from the definition of

H in (22), it must hold that ∂H∂t = 0. The results of PMP are summarized in table 2.1

Result Condition Equation

H|X∗ = 0 Transversality and necessary conditions (53)

Hu = 0 Necessary condition (50b)

H(x∗, u∗, J∗x , t) ≤ H(x∗, u, J∗x , t) H-minimality condition (54)

Table 2.1: PMP results for OCP (11) when J∗ ∈ C1, Ht = 0

Therefore, from PMP, if X∗ constitutes an optimal trajectory, then

H|X∗ = L(x∗, u∗) + J∗xf(x∗, u∗) = 0

Hu = Lu(x∗, u∗) + Jxfu(x∗, u∗) = 0

L(x∗, u∗) + J∗xf(x∗, u∗) ≤ L(x∗, u) + J∗xf(x∗, u), ∀u ∈ U

(55)

From Theorem (1), (X∗, J∗) solves the general OCP (11) with J∗ ∈ C1, φ = 0, and Lt = ft = 0

if the results in table (2.2) hold.

Result Condition Equation

J∗t + infu{H} = 0 HJB equation (23)

H(x, u∗, Jx, t) < H(x, u, Jx, t), ∀u 6= u∗ H is normal (24)

Table 2.2: HJB results for OCP (11) when J∗ ∈ C1, Ht = 0
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If H is a twice continuously differentiable function of u and there exists an admissible controller u∗

such that

Hu|u=u∗ = 0

Huu|u=u∗ > 0

(56)

then H is normal with H-minimal controller u = u∗ and in particular,

H|X∗ = H(x∗, u∗, J∗x , t) < H(x∗, u, J∗x , t), ∀u ∈ U, u 6= u∗ (57)

Thus the necessary and H-minimality condition of PMP are recovered by the condition that H be

normal in Theorem 1. The inequality (57) implies that

H|X∗ = inf
u∈U
{H}

Therefore the HJB equation (23) reduces to:

0 = J∗t + inf
u
{H} = J∗t +H|X∗ = J∗t + L(x∗, u∗) + J∗xf(x∗, u∗) = 0 (58)

It will now be shown that there exists a solution J∗ to the PDE (58) such that J∗t = 0. Let

t̃ = t+ s

J̃∗ = J∗ + s

x̃1 = x1

x̃2 = x2

(59)

where s ∈ R. Then

J̃∗x̃1 =
∂J̃∗

∂x1
+ ∂J̃∗

∂J∗J
∗
x1

∂x̃1
∂x1

+ ∂x̃
∂J∗J

∗
x1

=
0 + J∗x1
1 + 0

= J∗x1

Similarly, J̃∗x̃2 = J∗x2 , and J̃∗
t̃

= J∗t . Therefore, the PDE (58) is invariant under the transformation

(59) which implies that there must exist a solution J∗ to (58) that does not depend explicitly on
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time. Therefore, J∗t = 0, and the HJB equation (58) reduces to

H|X∗ = 0

and the Transversality and necessary condition (53) is recovered from the HJB equation.

To summarize, if J∗ ∈ C1,H is a twice continuously differentiable function of u, φ(x(tf ), tf ) =

0, L ∈ C1, ∂L∂t = ∂f
∂t = 0, and if

H|X∗ = 0

Hu|u∗ = 0

Huu|u∗ > 0

(60)

Then the conditions of PMP and of Theorem (1) are simultaneously satisfied for the OCP defined

in (11) with φ = ft = Lt = 0.

2.4.2 Time as a Function of X and Implications for a Class of Time Invariant OCPs

Consider a specific case of the general OCP defined in (11) defined by

J∗(x(t), t) = inf
u,tf

[J(x(t), u(t), t, tf )] where

J(x(t), u(t), t, tf ) =

∫ tf

t

(
L
(
x2(τ), u(τ)

)
+K

)
dτ

s.t. (x1(t), x2(t), u(t), tf ) ∈ A =


(x1, x2, u, tf ) ∈ R4 s.t.



ẋ1 = G
(
x2(t), u(t)

)
ẋ2 = −L

(
x2(t), u(t)

)
x1(tf ) = x1,f

Ω(x1(t0), x2(t0)) = 0


(61)

where K is a constant in R, and G,L : R2 → R are continuously differentiable for all t ∈ [0, t∗f ]

and x1, x2 are continuous, one-to-one functions of time. The assumption that x1, x2 are continuous

and one-to-one functions of time implies that if X∗ = {x∗1, x∗2} denotes the optimal trajectory of
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the states, then time can be expressed as a continuous function of X∗. That is,

t = Γ(X∗) (62)

Therefore, the cost function in (61) may be rewritten as

J∗ =

∫ tf

t

(
L
(
x∗2(τ), u∗(τ)

)
+K

)
dτ = x∗2(t)− x∗2(tf ) +K (Γf − Γ(X∗)) (63)

where Γf = Γ(x1,f , x
∗
2(tf )). Then, according to (63),

J∗x1 = −KΓx∗1(X∗)

J∗x2 = 1−KΓx∗2(X∗)

(64)

From (50b), it must hold that

J̇x∗1 = H∗x∗1 =
∂

∂x∗1
(L(x∗2, u

∗) +K + Jx1G(x∗2, u
∗)− Jx2L(x∗2, u

∗)) = 0

Thus by (64),

J̇∗x1 = KΓ̇x∗1 = 0 ⇒ Γ̇x∗1 = 0 ⇒ Γx∗1 = Γ1

for some real constant Γ1. Therefore Γ may be separated as

Γ = Γ1x
∗
1 + Γ2(x∗2) (65)

where the function Γ2 is only in terms of x∗2. Note that (62) and (65) imply that

dΓ

dt
=
dt

dt
= Γ1G(X∗)− Γ′2(x∗2)L(X∗) = 1 (66)

Furthermore, by (65), the equation (63) may be rewritten as

J∗ = x∗2 − x∗2(tf ) +KΓ1(x1f − x∗1) +K
(

Γ2

(
x∗2(tf )

)
− Γ2

(
x∗2
))

(67)
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Recall the time invariant HJB equation (53). A secondary proof of (53) is obtained by taking the

time derivative of both sides of the equation (67) and equating the result to the derivative of the

original cost functional in (61). The result is

J̇∗ = −L(X∗)−KΓ1G(X∗) +KΓ′2(X∗)L(X∗) = −L(X∗)−K (68)

Note that by (65), and (64)

Γx∗1 = Γ1 = −
J∗x1
K
, Γx∗2 = Γ′2(x∗2) =

1− J∗x2
K

(69)

Replacing (69) in (68) yields

− L(X∗)−K = −L(X∗) + J∗x1G(X∗) + (1− J∗x2)L(X∗) (70)

which holds if and only if

K + J∗x1G(X∗) + (1− J∗x2)L(X∗) = H|X∗ = 0 (71)

which is exactly (53). Replacing (69) in (67) yields

J∗ = x∗2 − x∗2(tf )− J∗x1(x1f − x∗1) +

∫ x∗2(tf )

x∗2(t)
(1− J∗x2)dx2

= −J∗x1(x1f − x∗1)−
∫ x∗2(tf )

x∗2(t)
J∗x2dx2

(72)

To summarize the results of this section, It is possible to rewrite the cost functional J∗ in terms of

time as an equivalent cost functional in terms of the states as

J∗ = x∗2 − x∗2(tf ) +KΓ1(x1f − x∗1) +K
(

Γ2

(
x∗2(tf )

)
− Γ2

(
x∗2
))

where, by (66),

Γ1G(X∗) + Γ′2(x∗2)L(X∗) = 1
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The cost functional J∗ may also be written as

J∗ = −J∗x1(x1f − x∗1)−
∫ x∗2(tf )

x∗2(t)
J∗x2dx2

2.4.3 Theorem on Corner Points

This section will present the Weierstrass-Erdmann corner condition that will be used in the

analysis of the turbojet and turboprop OCPs in chapters 3 and 4 respectively. The proof of the

conditions is omitted (see Bryson and Ho (1969), Athans and Falb (1966)).

Theorem 3. [ Weierstrass-Erdmann corner condition] Suppose that u∗ is the solution to (11). Sup-

pose further, x∗, the trajectory associated with u∗, is continuous everywhere, but that u∗ experiences

a jump discontinuity at a finite number of times {ti ∈ [0, tf ], i = 1, .., n}. Then the set {ti} are call

corner points, and λ∗, the optimal costate, is continuous everywhere in [0, tf ].
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Chapter 3

Flight Management System for a

Turbojet in Cruise

The objective of this chapter is to formulate and solve the ECON mode problem for a cruising

Turbojet aircraft. The resulting solution will include analytic expressions for the optimal cruise

speed, final time, final weight and minimal DOC. The importance of obtaining analytic expressions

was addressed in Chapter 1. Section 3.1 will use the cost functional (2) as well as the simplified

dynamics of flight (7) to formulate the ECON mode problem for cruise as an OCP. Section 3.1 will

also present the previous work done by the authors of Villarroel and Rodrigues (2016) in solving

the ECON mode OCP for a Turbojet aircraft. Preliminary results will be presented in Section 3.2.

Three expressions for optimal speed v∗ that solves the ECON mode problem for cruise are

presented in Section 3.3. The first of the expressions provided is an approximation of v∗ each in

terms of the weight of the aircraft and the optimal final speed v∗f . An upper bound on the error of

this approximation is included. The remaining two expressions are exact, one describing v∗ in terms

of position for the case when CI = 0 and the other in terms of position and v∗f for the case when

CI > 0.

The value of v∗f is unknown but is an argument of both of the expressions presented in this

chapter when CI > 0. Section 3.4 provides an analytic expression for v∗f in terms of v∗c , thus it is

necessary to develop methods by which v∗c can be obtained in order to use the expressions for v∗
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detailed in section 3.3. In Section 3.5, an implicit analytic definition for v∗c is given.

The approximations and exact expressions for v∗ presented in this chapter are in terms of the

weight of the aircraft and v∗c (a constant) which must be approximated or obtained numerically (see

section 3.5), while the expression for the optimal speed presented in Villarroel and Rodrigues (2016)

is it terms of the aircrafts’ weight and the unknown J∗W (a function of time) which is the sensitivity

of the optimal cost-to-go J∗ to W . In other words, both the expressions presented here and the one

detailed in Villarroel and Rodrigues (2016), are in terms of a state and an unknown that must be

approximated. There are three major differences, however, between the analytic expressions given

in this thesis and the one from Villarroel and Rodrigues (2016). First, the unknown v∗c is a constant

that must be computed only once and can be done prior to flight. Second, unlike the unknown J∗W ,

an expression for v∗c (though implicit) is provided. Finally, an upper bound on the error accrued

when approximating v∗ and v∗c are provided.

This chapter will also present expressions for the optimal final cruise time t∗f , optimal final

weight W ∗f , and the minimal direct operating cost V ∗. The results of this chapter will be validated

with a numerical example in section 3.7. The type of aircraft (Airbus A320) used in the validation

of the proposed speeds is identical to that used in Villarroel and Rodrigues (2016) to validate the

author’s results. The results proposed in Villarroel and Rodrigues (2016) as well as the results ob-

tained using the shooting method were validated against real flight data in Villarroel and Rodrigues

(2016).

3.1 Optimal Control Problem Formulation and Previous Work

The goal of this section is to pose the ECON mode problem for a cruising jet aircraft as an OCP,

and to detail the work done thus far by the authors of Villarroel and Rodrigues (2016). The method-

ology in formulating the ECON mode OCP in section 3.1.1 follows very closely that presented in

Villarroel and Rodrigues (2016).
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3.1.1 OCP Formulation

For a cruising Turbojet aircraft, it is assumed that T = D. Under Assumptions 1-9, combining

the cost functional (2) and the reduced dynamics (7) and (10), yields the following OCP:

V ∗(x0,W0) = inf
v,tf

∫ tf

0
(SFCD + CI)dt

s.t.

ẋ = v

Ẇ = −SFCD

D =
1

2
C0ρSv

2 +
2C2W

2

ρSv2

x(0) = 0, x(tf ) = xd, W (0) = Wc

v ∈ U = {v : v > 0,

v is piecewise continuous}

(73)

The position x(t) and weightW (t) are absolutely continuous functions of time. Note that the initial

and final positions (0, xd respectively) are known, as are the initial weight (Wc) and time. However,

the final weightWf and final time tf are left free. The speed v is the control input we wish to design.

The cost-to-go, J = J(t, x0,W0, v), is defined as the total cost accrued from time t to tf . It is

given by the expression

J(t, x(t),W (t), v) =

∫ tf

t
(SFCD + CI)dt

= (W (t)−W (tf )) + CI(tf − t)
(74)

The optimal cost-to-go is given by

J∗(t0, x0,W0) = inf
v,tf

J(t, x0,W0, v) (75)

The following section describes the suboptimal approximation to the solution of (73) presented in

Villarroel and Rodrigues (2016). This suboptimal speed is (to the best of the authors’ knowledge)
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the only existing analytic expression for the speed of a jet aircraft which minimizes DOC during

cruise for CI = 0.

3.1.2 Previous Work

In Villarroel and Rodrigues (2016), the authors prove that the optimal velocity that minimizes

the OCP (73) is

v∗(W,J∗W ) =

√√√√CI +
√
C2
I + 12(1− J∗W )2S2

FCC0C2W 2

(1− J∗W )SFCC0ρS
(76)

Where W denotes the weight of the aircraft at any time t, and JW denotes the sensitivity of the

optimal cost-to-go J∗ to changes in weight. The authors of (Villarroel and Rodrigues (2016)) were

also able to show that

J̇∗W < 0 ∀t ∈ [0, tf ]

JW (tf )∗ = 0

(77)

and that if the Legendre-Clebsch sufficient condition Hvv > 0 holds, then J∗W < 1. The equations

(77) and the sufficiency condition J∗W < 1 prompted the approximation J∗W ≈ 0, which resulted in

the suboptimal cruising speed

v∗(W,JW ) ≈ vJ(W ) =

√√√√CI +
√
C2
I + 12S2

FCC0C2W 2

SFCC0ρS
(78)

The approximation v∗ ≈ vJ works well for smaller values of CI and reduces to the well known

maximum range speed (Bryson and Ho (1969), Anderson (2016), Miele (1959))

vMR =

(
12

C2W
2

C0S2ρ2

)1/4

(79)

when CI = 0. However, as CI increases the difference in speeds between optimal and suboptimal

regimes also increases, and the authors of Villarroel and Rodrigues (2016) were unable to determine

a bound on the error incurred for their suboptimal speed. It was shown in Villarroel and Rodrigues
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(2016) that JW ∈ [0, 1). However, it must be noted that by (76),

lim
JW→1−

v∗(W,JW ) =∞

Therefore, the optimal speed could conceivably be much greater than the suboptimal speed vJ(W ).

Furthermore, the authors of Villarroel and Rodrigues (2016) did not provide an expression for the

optimal final weight, final time or J∗ all of which are required outputs of a FMS. In order to compute

the final time, final weight, and DOC associated with vJ(W ), one must refer to numerical methods

such as Euler’s method which greatly increases the number of computations required. It will be

shown in section 3.7, that resorting to Euler’s method can require 29188 computations for every 1

computation involved in the proposed methods of this thesis.

3.2 Preliminary Results

This section will provide some preliminary findings required to prove the results in the remain-

der of the chapter. The following notation will be used

Aβ(v) = C0SSFCρv(v∗f )2 + CIv − βCIv∗f , β ∈ R

Bβ = C0SSFCρ(v∗f )2 − βCI , β ∈ R

Eβ(v) = C0S
2ρ2v4 − βC2W

2
c , β ∈ R

(80)

where v∗f is the optimal final (at TOD) cruise speed.

Lemma 4. A minimizer v∗ to the OCP in (73) exists.

Proof. If CI = 0, then the OCP in (73) reduces to the maximum range problem with minimizer

vMR given by (79). Suppose that CI > 0. The Hamiltonian of the OCP in (73) is given by

H(x,W, v, Jx, JW ) = SFCD(1− JW ) + Jxv + CI (81)

where D is the drag given in (10), and JW , Jx are the sensitivities of the cost-to-go to weight and

position respectively. Noting that the Hamiltonian in (81) does not depend explicitly on time, and
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that the final time for the OCP in (73) is free, it must hold from equation (53) of the PMP that

H∗ = SFCD(1− J∗W ) + J∗xv
∗ + CI = 0 (82)

The PMP also states that H as a function of v must obtain a minimum at v∗ (see Theorem 2).

Thus, because H given in (81) is a class C2 function of v for admissible control inputs, a necessary

condition for optimality inside the feasible set is Hv = 0 along the optimal trajectory:

H∗v = SFCDv(1− J∗W ) + J∗x = 0 (83)

Solving (83) for J∗W , replacing the result in (82) with D in (10) and rearranging terms yields

H∗ = C0ρ
2S2v∗4(J∗xv

∗ + 2CI)− 4W 2C2(3J∗xv
∗ + 2CI) = 0 (84)

Note that H∗ is a continuous function of v. From the necessary conditions of the PMP (see 50b),

J̇∗x = −H∗x = 0

J̇∗W = −H∗W = −4SFCWC2

ρSv∗2
(1− J∗W )

(85)

implying that J∗x is a constant (the expression for J̇∗W will be used later). Furthermore, solving (84)

for J∗x yields

J∗x = −
2CI

(
C0S

2ρ2v∗4 − 4C2W
2
)

v∗
(
C0S2ρ2v∗4 − 12C2W 2

) (86)

The expression (86) is well defined and negative. Indeed, in Rodrigues (2017), the authors show

that

v∗ > vMR for CI > 0 (87)

Replacing (79) in (87) yields

v∗ >

(
12

C2W
2

C0S2ρ2

)1/4

⇐⇒

v∗4C0S
2ρ2 > 12C2W

2 because v∗ > 0

(88)
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The result (88) together with J̇∗x = 0 and C0S
2ρ2v∗4 − 4C2W

2 > C0S
2ρ2v∗4 − 12C2W

2 imply

that J∗x given by (86) is a well defined negative constant.

Replacing v = vMR in (84) yields

H∗(vWMR) = 16C2CIW
2 > 0 (89)

If a value v2 > 0 can be found such that H∗(v2) < 0, then by the continuity of H∗ in v, there must

exist a solution v∗ ∈ (vMR, v2) to H∗(v∗) = 0. Consider

v2 = −2CI(8AC2W
2 + 1)

J∗x
(90)

where A > 0. It was already shown that J∗x is a negative constant, thus (90) implies that v2 > 0.

Noting that

lim
A→∞

−
1048576C5

2C
5
IW

10C0ρ
2S2A5

J4
x

× (H∗(v2))−1 = 1

it may be concluded that there exists a sufficiently large value of A such that H∗(v2) < 0 which

finishes to proof.

Lemma 5. The time rate of change of the optimal speed v̇∗ is given as a function v∗ and W by

v̇∗ = − 8SFCWC2C0v
∗3ρS

C0S2ρ2v∗4 + 12C2W 2
< 0 (91)

Proof. Solving (83) for J∗x and replacing the result in (82) with D given by (10) yields

H∗(v∗,W, J∗W ) = CI − SFC(1− J∗W )
C0S

2ρ2v∗4 − 12C2W
2

2v∗2ρS
= 0 (92)

Noting that H∗(v∗,W, J∗W ) = 0 for all time t ∈ [0, tf ], it must hold that

Ḣ∗(v∗,W, J∗W ) =
∂H∗(v∗,W, J∗W )

∂W
Ẇ +

∂H∗(v∗,W, J∗W )

∂J∗W
J̇∗W +

∂H∗(v∗,W, J∗W )

∂v∗
v̇∗ = 0 (93)

Replacing (92), (85), and the dynamics of W from (73) in (93) and solving the result for v̇∗ yields

(91).
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Lemma 6. Let CIc = 1
2B0 where B is given by (80). Assuming CI < CIc , the following equalities

hold concerning the OCP defined in (73):

(1) The sensitivity of the optimal cost with respect to position x, is a constant given by

J∗x = −2

3

B(−1)

vf
(94)

(2) The sensitivity of the optimal cost with respect to changes in weight is a continuous function

of time for all t ∈ [0, tf ] and is given by

J∗W =
(v − vf )(C0SSFCρvvf − CI)

C0SSFCρv2vf
(95)

and J∗W ∈ [0, 1).

(3) The optimal speed v∗ that minimizes the OCP (73) is unique and a continuous function of

time for all time t ∈ [0, tf ].

(4) The optimal weight as a function of speed and the final speed v∗f is given by

W ∗ =
1

6

√
3
C0

C2
Sρv2

√
A3(v∗)

A1(v∗)
(96)

Proof. Recall from the proof of Lemma 4 that J∗x is a negative constant. Furthermore, J∗W (tf ) = 0

from the PMP transversality conditions (see (50a)), as W (tf ) is unspecified and the OCP in (73)

has no terminal cost. Thus,

J∗x(tf ) = J∗x(t) = J∗x

J∗W (tf ) = 0

(97)

Evaluating (81) and (83) at the final time when W = W (tf ) = Wf , v∗ = v∗f , J∗W (tf ) = 0, and D

is given by (10) yields a system of two equations which may be solved for J∗x , Wf resulting in J∗x

given by (94) and

Wf =

√
3ρSv∗f

6
√
C2SFC

√
C0SSFCρv∗2f − 2CI (98)

41



which is well defined and positive for CI < CIc . Therefore, in order to ensure that the final weight

is strictly positive, it must hold that CI < CIc .

Replacing (94) in equations (82) and (83) and solving the resulting system of two equations for

J∗W and W results in (95) and (96) respectively. It must now be shown that J∗W is continuous and

bounded by the interval [0, 1), that v∗ is continuous for all time t ∈ [0, tf ], and that the expression

(96) is well defined

To show that J∗W is a continuous function of time for all t ∈ [0, tf ], note that J∗W presented in

(95) is a continuous function of v∗ for all possible values of v∗. Therefore, as a function of time,

J∗W has at most the same countable discontinuities that v∗ has. Such discontinuities in v∗ are called

corner points and the continuity of J∗W follows from Theorem 3.

In order to prove that J∗W ∈ [0, 1) that (96) is well defined, and that v∗ is unique, it must first

be shown that v∗ is a continuous function of time for all t ∈ [0, tf ]. If CI = 0, then v∗ = vMR

where vMR is a continuous function of W given by (79). Because W is a continuous function

of time, it may be concluded that v∗ is continuous if CI = 0. Assume that CI > 0. Recall

that v∗ exists by Lemma 4. Because v∗ ∈ U , it must hold that v∗ is piecewise continuous in

the interval (0, tf ). Suppose v∗ experiences a jump discontinuity at t1 ∈ (0, tf ). Suppose that

v∗(t+1 ) = vR, v
∗(t−1 ) = vL where vR− vL = δ for |δ| > 0. Then, because equation (92) must hold

for all time,

H∗(t−1 ) = H∗(t+1 ) = 0

⇐⇒ SFC(1− J∗W (t−1 ))
C0S

2ρ2v∗4(t−1 )− 12C2W
2(t−1 )

2v∗2(t−1 )ρS

=SFC(1− J∗W (t+1 ))
C0S

2ρ2v∗4(t+1 )− 12C2W
2(t−1 )

2v∗2(t+1 )ρS

(99)

Noting that J∗W ,W are continuous for all time in (0, tf ), it must hold that J∗W (t−1 ) = J∗W (t+1 ) =

J∗W (t1),W (t−1 ) = W (t+1 ) = W (t1). Therefore, (99) reduces to

0 = (1− J∗W )(vL − vR) (100)

Which has two solutions: J∗W (t1) = 1 or vL = vR. If J∗W (t1) = 1, then evaluating equation (92) at
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time t1 yields CI = 0 which is a contradiction. Therefore

CI > 0 ⇒ J∗W 6= 1 ∀t ∈ [0, tf ] (101)

and vL = vR is the only solution to (100) which implies that v∗ is continuous at t1 and thus for all

time t ∈ [0, tf ].

Note that v̇∗ < 0 by Lemma 5, thus it must hold by the continuity of v∗ that

v∗ > v∗f , ∀t ∈ [0, tf ) (102)

Equation (102) implies that

0 > −C0SSFCρv
∗v∗2f − CI(v∗ − v∗f ) (103)

which in turn implies that

J∗W < 1 ∀t ∈ [0, tf ] (104)

for J∗W given in (95). To show that J∗W > 0, note that J∗W < 1 together with J̇∗W given by (85)

imply that J̇∗W < 0 for all time t ∈ [0, tf ]. Furthermore, J̇∗W < 0 and J∗W (tf ) = 0 (see (97)) and

the continuity of J∗W imply that J∗W > 0 for all time t ∈ [0, tf ).

Note that H∗ is a class C2 function of v∗. Therefore, to show the uniqueness of v∗, it suffices

to verify the Legendre Clebsch condition H∗vv > 0. From (81) and (10),

H∗vv = SFC

(
C0ρS +

12W 2C2

ρSv∗4

)
(1− J∗W ) (105)

Because it was just shown that J∗W ∈ [0, 1), equation (105) implies that Hvv > 0 and so v∗ is

unique.

Finally, note that (96) is well defined if A3(v∗) > 0 as A1(v∗) > A3(v∗). Furthermore,

A3(v∗) = C0SSFCρv
∗v∗2f + CIv

∗ − 3CIv
∗
f > 0 ⇐⇒ v∗ >

3CIv
∗
f

C0SSFCρv∗2f + CI
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Note that
3CIv

∗
f

C0SSFCρv∗2f + CI
< v∗f ⇐⇒ CI < CIc (106)

which holds by assumption. Equations (106) and (102) imply that

v∗ ≥ v∗f >
3CIv

∗
f

C0SSFCρv∗2f + CI
(107)

and,

A1(v∗) ≥ A3(v∗) > 0

thus (96) is well defined

Lemma (6) introduced the constraint CI < CIc . It may appear that this constraint limits the

application of the lemma. In actuality, the constraint is a necessary condition for the existence of a

solution to the OCP (73). This is illustrated in the following remark:

Remark 7. Suppose thatCI ≥ CIc . Solving (83) for J∗x , replacing the result in (82), and evaluating

at the final time when W = Wf , v
∗ = v∗f , J

∗
W = 0 (see (97)) yields

CI −
SFC(C0S

2ρ2v∗4f − 12C2W
2
f )

2ρSv∗2f
= 0 (108)

If CI = CIc + δ where δ ≥ 0, then (108) reduces to

6C2SFCW
∗2
f

ρSv∗2f
+ δ = 0

If δ > 0 that is, if CI > CIc then this equation is unsolvable. If δ = 0, that is, if CI = CIc then

the only solution is W ∗f = 0 which cannot happen as W > 0. Therefore, if CI ≥ CIc then the OCP

(73) has no solution.

In chapter 2, an equivalent result of the HJB equation and PMP was noted provided that J∗ was

a class C1 function of time. The following corollary shows that the optimal cost-to-go J∗ for a

cruising turbojet meets this condition

Corollary 1. The optimal cost-to-go J∗ given in (75) is a class C1 function of time
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Proof. For any admissible controller v, the cost-to-go given by (74) is a continuous function of time

as W (t) is continuous. Furthermore,

J̇ = SFCD + CI

From the definition of drag in (10), D is a continuously differentiable function of both v and W

for any admissible v. By the continuity of W and v∗ (a result of theorem 6), it must hold that

J̇∗ = J̇ |v=v∗ is also be a continuous function of time for all t ∈ [0, tf ].

Lemma 8. Let CIc = 1
2B0. Assuming CI < CIc , the time rate of change of the optimum speed that

minimizes (73) denoted v̇∗ is given as a function of the optimal speed v∗ by

v̇∗ = −2SFCv
∗√3C0C2

3

√
A1(v∗)A3(v∗)

A2(v∗)
(109)

Proof. Replacing W with (96) in (91) yields (109)

Lemma 9. Let CI > 0, then it must hold that the optimal cruising speed v∗ that minimizes the OCP

defined in (73) is such that

v∗ > vJ > vMR, ∀t ∈ [0, tf ] (110)

and

|v∗(W )− vJ(W )| ≤ |v∗(Wc)− vJc | (111)

where vJ is given by (78), vJc = vJ(Wc), and vMR is the maximum range speed defined in (79).

Proof. Let A = (1− J∗W ). From (76), it follows that

∂v∗

∂A
= −1

2

CI

√
CI +

√
12A2C0C2S2

FCW
2 + C2

I√
C0SFCρSA3(12A2C0C2S2

FCW
2 + C2

I )
< 0 (112)

From Lemma 6, it must hold that

A = (1− J∗W ) ∈ (0, 1] (113)
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therefore, v∗ > v∗|A=1 = vJ for vJ given by (78). Note now that from (78), it follows that

∂vJ
∂CI

=
1

2

√
CI +

√
12C0C2S2

FCW
2 + C2

I√
ρSC0SFC(12C0C2S2

FCW
2 + C2

I )
> 0

Thus vJ > vJ |CI=0 = vMR and (110) holds. To show (111), note that (76) implies:

∂v∗

∂J∗W
> 0 (114)

which in turn implies that

∂

∂J∗W

(
v∗(W )− vJ(W )

)
=

∂v∗

∂J∗W
> 0 (115)

By (50b),

J̇∗W = −HW = −
4SFCWC2(1− J∗W )

ρSv∗2
< 0 (116)

as J∗W < 1 by Lemma 6. Thus (111) follows from (115), (116), and the continuity of v∗ (a result of

Lemma 6).

3.3 Expressions for v∗, t∗f ,W ∗
f , V

∗

This section will use the preliminary results of section 3.2 to propose three analytic expressions

for the optimal speed v∗ that minimizes the OCP (73). The first expression, presented in Theorem

10 is a suboptimal approximation of v∗, denoted v1 and is given in terms ofW and v∗f . The speed v1

is obtained by correcting the approximation vJ presented in Villarroel and Rodrigues (2016). The

second expression for v∗ presented in Theorem 12 of section 3.3.2 is the exact expression for v∗ and

is given in terms of x, v∗f for the case when CI > 0. The third expression is the maximum range

solution (the case when CI = 0) is presented in Theorem 14.

This section will also present analytic expressions for the optimal final time at TOD, the optimal

final weight, and the minimal DOC.
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3.3.1 Correction of vJ(W )

The approximation vJ proposed by the authors of Villarroel and Rodrigues (2016), and given in

equation (78) is obtained from the exact expression (76) via the approximation J∗W ≈ 0. Consider

the following equation for v∗ that is equivalent to (76):

v∗ =

√√√√Q+
√

12C0C2S2
FCW

2 +Q2

ρSC0SFC
(117)

where

Q =
CI

(1− JW )

Then vJ is obtained from (117) via the approximation Q ≈ CI . Replacing J∗W given in (95) into Q

yields

Q =
CIC0SSFCρ(v∗)2v∗f

A1(v∗)
(118)

Replacing (118) in (117) and attempting to solve for v∗ yields a fifth order polynomial equation for

which no analytic solution can be found. In this section, an estimate, v1, of the optimal speed v∗ will

be presented in theorem 10 that is obtained by replacing Q as it appears in (117) with a simplified

expression Q̃.

Theorem 10. Let CIc = 1
2B0. Assuming CI < CIc , the speed v∗ that minimizes the OCP (73) can

be approximated using v1 given in terms of W and the optimal final speed v∗f by

v∗ ≈ v1(W, v∗f ) =

√
2v∗f
2

√√√√R+

√
48C0C2S2

FCW
2

B0B1 + C2
I

+R2 (119)

where

R =
CIB(−1)

B0B1 + C2
I

(120)

The maximum error occurs at the initial time because

|v∗ − v2| ≤
∣∣v∗c − v2(Wcv

∗
f )
∣∣ (121)
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Proof. Let Q as it appears in (118) be approximated by

Q ≈ Q̃ = M1(v∗)2 +M2

where M1,M2 are the solutions to the system of equations


Q|v∗=v∗f = Q̃|v∗=v∗f(
∂Q
∂v∗

∣∣∣
v∗=v∗f

)
=

(
∂Q̃
∂v∗

∣∣∣
v∗=v∗f

) (122)

Solving (122) for M1,M2 yields

M1 =
CIB1

2B0(v∗f )2
, M2 =

CIB(−1)

2B0
(123)

Therefore,

Q ≈ Q̃ = M1(v∗)2 +M2 =
CI

2B0(v∗f )2

(
B1(v∗)2 +B(−1)(v

∗
f )2
)

(124)

Replacing (124) in (117) results in a biquadratic equation of v∗ which can be solved resulting in a

single positive real solution given by (119).

To show (121), note that from equation (117), it holds that |v∗−v2| varies directly with |Q−Q̃|.

Thus it suffices to show that

|Q− Q̃| ≤
∣∣Q− Q̃∣∣

v∗=v∗c

Note that Q− Q̃ ≤ 0. Indeed,

Q− Q̃ = −
CI(v

∗ − v∗f )2B(−1)

2B0(v∗f )2

(
C0SSFCρv

∗(v∗f )2 − CIv∗ − CIv∗f
C0SSFCρv∗(v∗f )2 + CIv∗ − CIv∗f

)
(125)

From the definition of Bβ ,
CI(v

∗ − v∗f )2B(−1)

2B0(v∗f )2
≥ 0

Furthermore, because

C0SSFCρv
∗(v∗f )2 + CIv

∗ − CIv∗f > C0SSFCρv
∗(v∗f )2 − CIv∗ − CIv∗f
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the result Q− Q̃ ≤ 0 follows if it can be shown that

C0SSFCρv
∗(v∗f )2 − CIv∗ − CIv∗f > 0

or equivalently, that

v∗ >
CIv

∗
f

C0SSFCρv∗2f − CI
(126)

It is assumed that

CI < CIc =
1

2
C0SSFCρv

∗2
f

⇒ v∗f >
CIv

∗
f

C0SSFCρv∗2f − CI

(127)

Therefore, (126) follows from (127) and (102) and Q − Q̃ ≤ 0 holds. It will now be shown that

d(Q−Q̃)
dv∗ ≤ 0 which, together with Q− Q̃ ≤ 0 implies that the maximum value of |Q− Q̃| occurs at

the largest value of v∗. Recall from (102), that v∗ is a monotonically decreasing function. Thus the

larges possible value of v∗ is v∗c . Taking the derivative with respect to v∗ of equation (125) yields

d(Q− Q̃)

v∗
= −κ(v∗)

(
B1B(−1)v

∗ − CIv∗f (2C0SSFCρv
∗2
f − CI)

)
(128)

where κ(v∗) ≥ 0. By the monotonically decreasing nature of v∗, and the assumption thatCI < CIc ,

v∗ ≥ v∗f >
CIv

∗
f (2C0SSFCρv

∗2
f − CI)

C2
0S

2S2
FCρ

2v∗4f − C2
I

⇒
(
B1B(−1)v

∗ − CIv∗f (2C0SSFCρv
∗2
f − CI)

)
> 0

thus by (128), d(Q−Q̃)
v∗ ≤ 0 which finishes the proof.

Remark 11. The approximation v1(W, v∗f ) reduces to the maximum range speed vMR(W ) given in

(79) when CI = 0.
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3.3.2 Exact expressions for v∗, t∗f , W ∗
f , V ∗

The objective of this section is to propose exact expressions for v∗, to determine the optimal

final time at TOD, and to provide an expression for V ∗ the solution to (73). Begin by assuming that

CI > 0.

Assuming CI > 0

Theorem 12. Let CIc = 1
2B0. Assuming 0 < CI < CIc , the optimal speed v∗ that minimizes the

OCP (73) is given in terms of position and the optimal final speed v∗f by

v∗CI>0(x, v∗f ) =
2

3

−2
CI
J∗x

+

√
3C2C0S2

FC∆(x)2 +
C2
I

(J∗x)2

 (129)

where

∆(x) = xd − x+
(v∗f )2

2B−1

√
3B2Sρ

C2SFC
(130)

and J∗x is given by (94).

Proof. An expression for the time rate of change of the optimal velocity, v̇∗, is equation (109) in

lemma 8. Because the final position x(tf ) = xd is known, and the dynamics of x are ẋ = v, the

following must hold

xd − x =

∫ tf

t
vdt =

∫ v∗f

v∗

v

v̇
dv

= −
√

3

2SFC
√
C0C2

∫ v∗f

v∗

A2(v)√
A1(v)A3(v)

dv

= −
√

3

2SFC
√
C2C0

√
A1(v)A3(v)

B−1

∣∣∣∣∣
v∗f

v∗

= −
√

3

2

√
Sρ

C2SFC

√
B2

B−1
(v∗f )2 +

√
3
√
A1(v∗)A3(v∗)

2SFC
√
C0C2B−1

(131)
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Solving (131) for v∗ yields two solutions:

v∗ = v1(x) =
1

3

6CIv
∗
f +

√
12∆(x)2C0C2S2

FCB
2
−1 + 9C2

I (v∗f )2

B−1

v∗ = v2(x) =
1

3

6CIv
∗
f −

√
12∆(x)2C0C2S2

FCB
2
−1 + 9C2

I (v∗f )2

B−1

(132)

which are well defined as ∆(x) is well defined and non-negative. Indeed B2 > 0 for CI < C∗Ic and

x ≤ xd for all time t ∈ [0, tf ]. It will now be shown that v2(x) given in (132) is not a valid solution.

From (102) v∗ is a monotonically decreasing function of time. From the equation for v2(x) in (132),

v2 < 2
CIv

∗
f

B−1
= 2

CIv
∗
f

C0SSFCρ(v∗f )2 + CI
(133)

Equation (133) implies that v2 < v∗f . Indeed,

2
CIv

∗
f

C0SSFCρ(v∗f )2 + CI
< v∗f ⇐⇒ CI < B0 (134)

which holds as CI < CIc = 1
2B0 and B0 > 0. Thus v2 < v∗f for all time t ∈ [0, tf ] which

contradicts the monotonically decreasing nature of v∗. Therefore, the unique optimal speed is given

by v1(x). Note that by (94),

J∗x = −2B−1

3v∗f
⇒ B−1

v∗f
= −3J∗x

2

and v1(x) reduces to (129).

Theorem 12 provides the optimal speed v∗ that minimizes the OCP (73) when CI ∈ (0, CIc).

The following theorem will provide the minimal cost as well as the optimal final time at TOD.

Theorem 13. Let CIc = 1
2B0. Assuming 0 < CI < CIc , then the following hold

• Time as a function of velocity along the optimal trajectory is given by

t = Ψ(v∗)−Ψ(v∗c ) (135)
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where

Ψ(v) =

2 tanh−1

(
2
√

3A3/2(v)

3
√
A1(v)A3(v)

)
− ln

(
A2(v) +

√
A1(v)A3(v)

)√
3

2
√
C0C2SFC

(136)

• The optimal final time at TOD is given by

t∗f = Ψ(v∗f )−Ψ(v∗c ) (137)

• Time as a function of position along the optimal trajectory is given by

t = Ψ
(
v∗CI>0(x, v∗f )

)
−Ψ(v∗c ) (138)

where v∗CI>0(x, v∗f ) is given by the equation (129).

• The optimal final weight is given by (98) rewritten here:

W ∗f =
v∗f
6

√
3SρB2

C2SFC
(139)

• The minimal DOC is given by

V ∗ = Wc −
v∗f
6

√
3SρB2

C2SFC
+ CI

(
Ψ(v∗f )−Ψ(v∗c )

)
(140)

Proof. The result (135) is obtained by noting that

t =

∫ t

0
dτ =

∫ v∗

v∗c

1

v̇(τ)
dτ (141)

Replacing (109) in (141) and integrating yields (135). The results (137)-(138) follow from

(135). To prove (140), evaluate the cost-to-go (74) along the optimal trajectory. The result is

J∗(t, x∗,W ∗) = (W ∗ −W ∗f ) + CI(t
∗
f − t)
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Therefore,

V ∗ = J∗(0) = (Wc −W ∗f ) + CI(t
∗
f )

Replacing (139) in V ∗ yields

V ∗ = Wc −
v∗f
6

√
3SρB2

C2SFC
+ CI(t

∗
f )

Replacing t∗f given by (137) in V ∗ yields (140).

It was shown in Corollary 1, that the optimal cost-to-go J∗ is a class C1 function of time.

Furthermore, by Lemma 5 and the dynamics of x,W in (73) ẋ, Ẇ < 0, ∀t ∈ [0, tf ) which implies

that x(t),W (t) are one-to-one, continuous functions of time ∀t ∈ [0, tf ). Therefore, by (72), it

must hold that the optimal cost to go can be written as

J∗(t, x∗,W ∗) = −J∗x(xd − x) +

∫ W ∗

W ∗f

J∗W (τ)dτ (142)

Under the assumption made in Villarroel and Rodrigues (2016), that J∗W ≈ 0, and from the defini-

tion of J∗x in (94), the optimal cost-to-go can be approximated as a function of x only as

J∗ ≈ Japprox(x∗) =
2

3

B(−1)

v∗f
(xd − x) (143)

Assuming CI = 0 (The Complete Maximum Range Solution)

Theorem 14. If CI = 0, let vMR denote the speed that minimizes (73). Let vMR,f , vMR,c denote

vMR evaluated at the final time and initial time respectively. Let J∗MR denote the total DOC for the

maximum range OCP ((73) for CI = 0), and let WMR,f , tMR,f denote the final weight and final
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time after flying at a speed of vMR. Then, the following must hold

vMR,c =

√
2
Wc

ρS

√
3
C2

C0
(144a)

vMR(x) = vMR,c −
2
√

3

3

√
C0C2SFCx (144b)

vMR,f = vMR(xd) (144c)

WMR,f =
1

6

√
3C0

C2
Sρv2

MR,f (144d)

tMR,f =
1

2SFC

√
3

C0C2
ln
( vMR,c

vMR,f

)
(144e)

V ∗MR = Wc −WMR,f (144f)

Furthermore, if Wmin is the minimum allowable weight of the aircraft, let vMR,min = vMR(Wmin)

and xd,max denote the maximum range of the aircraft. It must hold that

vMR,min =

√
2
Wmin

ρS

√
3
C2

C0
(145a)

xd,max = −1

2

√
3√

C0C2SFC
(vMR,min − vMR,c) (145b)

Proof. The result (144a) holds by evaluating (79) at the initial time when W = Wc. Replacing

CI = 0 and v∗ = vMR in (109) yields

v̇MR = −2

3

√
3C0C2SFCvMR (146)

Consider the boundary constraint on position

x =

∫ t

0
vMRdt =

∫ vMR

vMR,c

vMR

v̇MR
dv =

∫ vMR

vMR,c

− 3

2
√

3C0C2SFC
dv

= −
√

3(vMR − vMR,c)

2
√
C0C2SFC

(147)

Solving (147) for vMR yields (144b) and (144c) follows from evaluating (144b) at the final time

when x = xd.
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Substituting CI = 0 in (98) yields (144d). To show (144e), consider the identity

tMR,f =

∫ tMR,f

0
dt =

∫ vMR,f

vMR,c

1

v̇MR
dvMR

= − 1

2SFC

√
3

C0C2

∫ vMR,f

vMR,c

1

vMR
dvMR

=
1

2SFC

√
3

C0C2
ln
( vMR,c

vMR,f

)
(148)

which proves (144e). Equation (144f) follows from (74). The result (145a) follows from (79), and

(145b) is a result of (147) and (145a).

3.4 Determining Unknowns Part 1: v∗f ,W ∗
f as Functions of v∗c

The speeds that have been proposed in this chapter are summarized in Table 3.1.

Summary of Speeds from Section 3.3

Methodology Expression Arguments Equation
Upper Error

Bound

From Villarroel and

Rodrigues (2016)
vJ W (78) EJ ≥ 0

Correction of vJ v1 W, v∗f (119) (121)

Using endpoint constraint

x(tf ) = xd and assuming

CI > 0

v∗CI>0 x, v∗f (129) 0

Using endpoint constraint

x(tf ) = xd and assuming

CI = 0

vMR x (144b) 0

Table 3.1: Summary of Expressions for v in Section 3.3

Note that the two expressions proposed by this thesis for the case when CI ∈ (0, CIc), namely

v1, v
∗
CI>0, have an unknown v∗f in their argument. It is therefore necessary to develop methods by

which v∗f can be determined. This section provides analytic expressions for v∗f and W ∗f in terms

of the optimal initial cruising speed v∗c thus reducing the problem of determining v∗f to one of
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determining v∗c . Section 3.5 will propose methods by which v∗c can be determined.

Lemma 15. If CI < CIc , then the optimal final weight W ∗f that is associated with the optimal

velocity v∗ is given in terms of the optimal initial speed v∗c by

W ∗f = − CI
SFCv∗c

SFCxdE4(v∗c )− 2SWcρ(v∗c )
3

E12(v∗c )
(149)

Proof. Evaluating (131) at the initial time when x = 0, v = v∗c yields

xd = −
√

3

2

√
Sρ

C2SFC

√
B2

B−1
(v∗f )2 +

√
3
√
A1(v∗c )A3(v∗c )

2SFC
√
C0C2B−1

(150)

From the definition of W in (96), we may rewrite (150) as

xd = −
3W ∗f v

∗
f

B−1
+

3A1(v∗c )Wc

C0SSFCρ(v∗c )
2B−1

(151)

Solving (151) for Wf yields

W ∗f = −xdB−1

3v∗f
+

A1(v∗c )Wc

C0(v∗c )
2SρSFCv∗f

= −xdB−1

3v∗f
+
Wc(v

∗
cB−1 − CIv∗f )

C0(v∗c )
2SρSFCv∗f

(152)

To eliminate the dependence of (152) on v∗f , consider the identity (See appendix A)

B−1

v∗f
=

3CI
v∗c

E4(v∗c )

E12(v∗c )
⇒ B−1 = 3CI

v∗f
v∗c

E4(v∗c )

E12(v∗c )
(153)

Replacing (153) in (152) yields the result of the Lemma

Corollary 2. If CI < CIc , then the optimal final speed v∗f is given in terms of the optimal initial

speed by

v∗f =

√√√√ CI
ρSC0SFC

(
1 +

√
1 +

12C0C2(E4(v∗c )SFCxd − 2SWcρv∗3c )2

v∗2c E
2
12(v∗c )

)
(154)

Proof. It was shown in the proof of Lemma 6 that JW (tf ) = 0, therefore, by equation (76), it must
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hold that v∗(tf ) = v∗f = vJ(W ∗f ). Furthermore, it was shown in Lemma 15 that The optimal final

weight may be expressed in terms of the optimal initial speed by equation (149). Replacing (149)

in vJ(W ∗f ) yields the result of the Corollary.

3.5 Determining Unknowns Part 2: Expression for v∗c

The expressions v1, v
∗
CI>0 summarized in Table 3.1 have the unknown v∗f in their arguments.

The previous section provided expressions for W ∗f and v∗f in terms of the optimal initial cruising

speed v∗c . This section provides an implicit definition of v∗c as the solution to an algebraic equation,

and illustrates how Newton’s method may be implemented

Theorem 16. Assuming CI < CIc , then the following holds:

(1) If CI = 0, then the optimal initial speed vMR,c and the optimal final speed vMR,f are given

by Theorem 14.

(2) If CI > 0, then the optimal initial speed v∗c is the solution to the nonlinear equation

CI = f(v∗c ) (155)

where

f(y) =
1

9

y2ρSSFCC0E
2
12(y)

(
2 +

√
ε(y) +

(
E−12(y)
E12(y)

)2
)2

E2
4(y)

(
1 +

√
ε(y) +

(
E−12(y)
E12(y)

)2
) (156)

and

ε(y) =
12C0C2SFCxdE4(y)(SFCxdE4(y)− 4SWcρy

3)

y2E2
12(y)

(157)

Proof. Replacing (154) in the identity (153) and solving the result for CI yields (155).

Remark 17. For any given initial speed vc, the function f(vc) given by (156) will return a value of

CI , say, ĈI such that vc is the optimal initial speed for an OCP defined by (73) with CI = ĈI . It is
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therefore unsurprising that fy > 0 for all y > vMR,c. I.e, the larger the value of CI , the larger the

initial speed.

Remark 18. The value of vJ(Wc) where vJ(W ) is given by (78), is the solution to (155) with

ε(v∗c ) = 0.

Lemma 19. Let

β =

√
2SρWc

√
C0 − C0SFCSρC

1/4
2 xd (158)

If

CI <

√
25WcC2

ρS

√
C0

3
SFCβ (159)

then

f ′(y) >
CI
v∗c
, ∀y > vMR,c (160)

where f(y), vMR,c are given by (156) and (144a) respectively.

Proof. Suppose (159) holds. Let

L(y, δ) =
SFC

(
C0S

2ρ2y4 + 12C2W
2
c

)
Sρy3

− CI
v∗c
− δ (161)

where δ ≥ 0. Then, L is smooth in (y, δ) ∈ R+ × R. The value of

min
y≥vMR,c

L(y, δ) (162)

will now be determined. From (161), it must hold that

Ly(y, δ) =
SFC

(
C0S

2ρ2y4 − 36C2W
2
c

)
Sρy4

Thus, Ly = 0 for y > 0 if and only if

y = ỹ =

√
6
Wc

Sρ

√
C2

C0
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Furthermore,

Lyy(ỹ) =
2
√

6

3

SFC(Sρ)3/2C
5/4
0

C
1/4
2

√
Wc

> 0

Thus L(y, δ) ≥ L(ỹ, δ). Let δ1 be such that L(ỹ, δ1) = 0. Then, replacing y = ỹ, δ = δ1 in (161)

and solving for δ1 yields the unique solution

δ1 =
4

3
SFC

√
6WcSρ

√
C2C3

0 −
CI
v∗c

(163)

Because Lδ(y, δ) = −1 < 0, L(y, δ) ≥ L(ỹ, δ), and L is smooth in (y, δ), it must hold that

L(y, δ) ≥ L(ỹ, δ) > L(ỹ, δ1) = 0, ∀δ < δ1, y > 0 (164)

Suppose there exists δ2 ≥ 0 such that

δ2 ∈ [0, δ1) (165a)

f ′(y)− CI
v∗c

> L(y, δ2), ∀y > vMR,c (165b)

then, by (164),

f ′(y)− CI
v∗c

> L(y, δ2) > L(ỹ, δ1) = 0

which proves the result of the theorem. Thus it must now be shown that there exists a value δ2 that

meets the requirements (165a), (165b). Let

δ2 =

(
SFC

(
C0S

2ρ2y4 + 12C2W
2
c

)
Sρy3

− f ′(y)

)∣∣∣
y=vMR,c

=
4

3
S2
FCSρ

√
3C2C3

0xd

(166)

Then δ2 satisfies the requirement (165a). Indeed, it is clear from (166) that δ2 > 0. Furthermore,

δ1 − δ2 =
4

3
SFC

(√
6SρWc

√
C2C3

0 −
√

3C2C3
0SSFCρxd

)
− CI
v∗c

> 0

⇐⇒ v∗c >

√
3

4

CI

SFC
√
C0C

1/4
2 β

(167)
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where β is given by (158). Noting that v∗c > vMR,c by Lemma 9, and by the definition of vMR,c

given in (144a), the inequality (167) holds if

v∗c > vMR,c =

√
2
Wc

ρS

√
3
C2

C0
>

√
3

4

CI

SFC
√
C0C

1/4
2 β

which in turn holds by (159). It must now be shown that δ2 satisfies the requirement (165b). That

is, that

δ2 >
SFC

(
C0S

2ρ2y4 + 12C2W
2
c

)
Sρy3

− f ′(y) (168)

From the definition of δ2 in (166), showing (168) is equivalent to showing that

argmaxy≥vMR,c

(
SFC

(
C0S

2ρ2y4 + 12C2W
2
c

)
Sρy3

− f ′(y)

)
= vMR,c (169)

Consider f in (156) as a function of y and ε, then, by the definition of f in (156), the left hand side

of the expression (169) can be written as

argmaxy≥vMR,c

( d
dy
f
(
y, ε(y)

)
|ε(y)≡0 −

d

dy
f
(
y, ε(y)

))
=argmaxy≥vMR,c

(|ε(y)|)
(170)

Thus, the value of y that maximizes

d

dy
f
(
y, ε(y)

)
|ε(y)≡0 −

d

dy
f
(
y, ε(y)

)
is the value of y that maximizes |ε(y)|. Finally, noting that

lim
y→v+MR,c

( d
dy
f
(
y, ε(y)

)
|ε(y)≡0 −

d

dy
f
(
y, ε(y)

))
= δ2

lim
y→v+MR,c

|ε(y)| =∞
(171)

finishes the proof.
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The following Theorem uses the results of Lemma 19 to develop an upper bound on the error

incurred after k iterations of Newton’s method on equation (155).

Theorem 20. If the inequality (159) holds, let vN,kc denote the result of k iterations of Newton’s

method applied to the definition of v∗c in (155) with initial guess vN,0c = vMR,c where vMR,c is

given in (144a). Let

f(vN,kc )− CI = δ

where f is given by (156). Then, ∣∣∣vN,kc − v∗c
v∗c

∣∣∣ < ∣∣∣ δ
CI

∣∣∣ (172)

Proof. by the smoothness of f(vc) in vc > vMR,c and the intermediate value theorem, there must

exist a point m ∈ [min(v∗c , v
N,k
c ),max(v∗c , v

N,k
c )] such that

δ

vN,kc − v∗c
= f ′(m)

⇐⇒ vN,kc − v∗c =
δ

f ′(m)

< v∗c
δ

CI
by Lemma 19

(173)

∴
∣∣∣vN,kc − v∗c

v∗c

∣∣∣ < ∣∣∣ δ
CI

∣∣∣
where

vN,kc = vN,k−1
c +

CI − f(vN,k−1
c )

f ′(vN,k−1
c )

for k ∈ Z, k ≥ 1.

3.6 Algorithm for Turbojet ECON mode Methodology for Cruise

This chapter has provided two novel expressions for v∗ whenCI > 0, namely the approximation

v1 in terms ofW and v∗f and the exact solution v∗CI>0 in terms of x and v∗f summarized in Table 3.1.

Furthermore, the optimal final time at TOD, final weight at TOD and minimal DOC are provided in

terms of v∗f , and v∗c in Theorem 13. An analytic expression for v∗f in terms of v∗c is given by (154),
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and an implicit definition of v∗c is presented in (155). Finally, Theorem 20 shows that under certain

circumstances, the error incurred by using Newton’s Method to solve (155) can by easily bounded.

The complete methodology proposed in this chapter is summarized in Algorithm 1:

Algorithm 1 Determining the optimal turbojet cruise trajectory
Require: SET = {CI , C0, C2, S, SFC , ρ,Wc, xd}

1: if CI=0 then

2: Use Theorem 14 for the complete maximum range solution

3: else

4: Determine v∗c using Newton’s Method (code found in Procedure 3 of Appendix B). Use

Equation (172) to bound the error.

5: Determine v∗f from v∗c using equation (154)

6: if CI ≥ CIc = 1
2B0 then No solution exists

7: else

8: Replace v∗f in (129) to obtain v∗CI>0(x, v∗f ). . An expression in terms of x

9: Replace v∗f in (119) to obtain v1(W, v∗f ). . An expression in terms of W

10: Replace v∗f , v
∗
c in (137) to obtain t∗f . Optimal final time at TOD

11: Replace v∗f in (139) to obtain W ∗f . Optimal weight at TOD

12: Replace v∗f , v
∗
c in (140) to obtain V ∗ . Minimal DOC

13: end if

14: end if

3.7 Numerical Example

This section will follow the methodology proposed in Algorithm 1 to solve the ECON mode

problem for a cruising jet. The methodology of Algorithm 1 will be validated against the work in

Villarroel and Rodrigues (2016) which was itself validated against flight simulation data.
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3.7.1 Worked Example

Consider the example of an Airbus A320 first proposed in Villarroel and Rodrigues (2016), with

the following aircraft and mission parameters (see Rieck, Richter, and Holzapfel (2013)):

CI = 0.3674 [lbs/s] C0 = 0.026659 C2 = 0.038726

SFC = 0.00012402 [1/s] S = 1319.6554 [ft2] hc = 30000 [ft]

ρ = 0.00089068 [slug/ft3] xc = 0 [ft] xd = 5016000 [ft]

Wc = 127673 [lbf ] Λ = 25 [deg] t/c = 0.108

Table 3.2: A320 aircraft and mission parameters from Villarroel and Rodrigues (2016).

Following Algorithm 1, and noting that CI > 0, we proceed to step 4.

Step 4

The value of v∗c must be determined using Newton’s Method (See Appendix B.2), and the percent

error on the approximation v∗c ≈ v
N,k
c must be bounded using Theorem 20.

Using three iterations Newton’s method to solve (155) with an initial guess of v∗c = vN,0c =

vMR,c = 673.43 where vMR,c is the maximum range speed given by (144a), yields a value denoted

vN,3c and given by

v∗c ≈ vN,3c = 748.81 ft/s

According to Theorem 20, in order to bound the error in vN,3c , we must first test that (159) holds

where β is given by (158). Replacing the example parameters in (159) yields 0.3674 < 2.97 . Thus,

by Theorem 20, an upper bound on the percent error is given by

PE(vN,3c ) =
∣∣∣vN,3c − v∗c

v∗c

∣∣∣× 100 <
∣∣∣f(vN,3c )− CI

CI

∣∣∣× 100 =
(
2.72× 10−8

)
%

where f is given by (156).

Step 5

Step 5 states that the value of v∗f must be obtained from the determined value of v∗c using equation
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(154). According to (154), the optimal final speed associated vN,3c , is given by

v∗f ≈ v
N,3
f = vf(vN,3c ) = 726.22 ft/s

Step 6

Now that v∗c , v
∗
f have been computed, line 6 of Algorithm 1 states that we must test CI < CIc :

CIc =
1

2
C0SSFCρv

∗2
f =

1

2
C0SSFCρ(726.22)2 = 1.02

Therefore, CI = 0.03674 < CIc = 1.02, and we may proceed with step 8 of Algorithm 1.

Step 8

To obtain an analytic expression for the optimal speed in terms of x, according to step 8, replace v∗f

in vCI>0(x, v∗f ). Therefore,

vCI>0(x, vN,3f ) = 220.79 +
1

3

√
1.91× 10−10(1.12× 108 − x)2 + 1.10× 105 (174)

Step 9

An approximation of the optimal speed v∗ expressed in terms of W may be obtained by replacing

v∗f in (119). Performing this substitution yields:

v∗(W ) ≈ v1(W, vN,3f ) = 513.52

√
0.25 +

√
2.13× 10−10W 2 + 0.061 (175)

Steps 10, 11, 12

The remaining results of the algorithm are as follows:

t∗f = 6801.6 s by line 10

W ∗f = 1.19× 105 lbs by line 11

V ∗ = 11239.7 lbs by line 12

(176)

This concludes the method proposed in Algorithm 1. The results presented above will now be

validated.
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Validation of Results

Four expressions for the optimal cruise speed, given in terms of position, will be compared. The first

expression vCI>0(x, vN,3f ) is the result replacing v∗f = vN,3f in (129). This expression is the result

of following Algorithm 1, and can be found in (174). The second expression, vCI>0(x, vJf ) is the

result of replacing vJ(Wc) in (154) to obtain vJf = vf (vJ(Wc)) where vJ(W ) is the speed proposed

in Villarroel and Rodrigues (2016) and is given by (78). Replacing v∗f = vJf = vf (vJ(Wc)) in (129)

results in:

vCI>0(x, vJf ) = 219.24 + 0.33
√

1.91× 10−10(1.14× 108 − x)2 + 1.01× 105 (177)

The third expression that will be compared is vJ(x) which is obtained directly from vJ(W ) in (78)

using Euler’s method. Finally, the fourth expression, denoted v∗(x) is the theoretically optimal

trajectory obtained using the shooting method.

The initial and final speeds of the four expressions are summarized in Table 3.3:

Expression
Initial speed vc

(ft/s)

Initial speed

error (ft/s)

Final speed

vf (vc) (ft/s)

(From (154))

Final speed

error (ft/s)

vCI>0(x, vJf ) 756.11 1.31 733.54 7.29

vCI>0(x, vN,3f ) 748.81 0. 726.26 0.

vJ(x) 746.86 1.95 726.27 0.01

v∗(x) 748.81 0 726.26 0

Table 3.3: Initial and final speed comparison for four speeds

The final time at TOD, final weight and DOC associated with the speed vCI>0(x, vN,3f ) are

given in (176) and were obtained by replacing the appropriate values in analytic expressions (137),

(139) and (140) respectively. To obtain tf ,Wf and the DOC associated with vJ(x), one must use

Euler’s method as no analytic expressions exist. Table 3.4 compares the final time, final weight and

DOC for the four speeds considered here. Table 3.4 also considers the number of computations
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required to obtain tf ,Wf , and DOC considering that Euler’s method would be employed to obtain

these values for all expressions except vCI>0(x, vN,3f ) and v∗(x) which use analytic expressions

(see 137, 139, and 140) and the shooting method respectively. Here, a computation is defined as the

replacement of quantities in an expression and the evaluation of that expression.

Expression Final Time (s) Final Weight (lbs) DOC (lbs) Computations required

vCI>0(x, vJf ) 6735.0 1.19× 105 11240.9 204,322

vCI>0(x, vN,3f ) 6801.6 1.19× 105 11239.7 7

vJ(x) 6801.6 1.19× 105 11239.8 204,318

Shooting Method 6801.6 1.19× 105 11239.7 2,044,490

Table 3.4: Final time, final weight, DOC, and computation time comparison for four speeds

Tables 3.3 and 3.4 imply that using the approximation v∗(x) ≈ vCI>0(x, vN,3f ) is not only more

accurate than vCI>0(x, vJf ) and vJ(x) (the speed proposed in Villarroel and Rodrigues (2016)),

but also requires less computation time than any other method due to the existence of analytic

expressions for tf ,Wf , andDOC. Figure 3.1 illustrates the four speeds considered here graphically.
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Figure 3.1: A comparison of vCI>0(x, vN,3f ) given by (174), vCI>0(x, vJf ) given by (177), vJ(x)

proposed in Villarroel and Rodrigues (2016), and the optimal speed v∗(x) obtained using the shoot-

ing method.

Figure 3.2 compares v1(W, vN,3f ) proposed by Algorithm 1 (see step 9) and given by (175) with

vJ(W ) developed in Villarroel and Rodrigues (2016) and given by (78), and v∗(W ) obtained using

the shooting method.
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Figure 3.2: Theoretically optimal v∗(W ) obtained using the shooting method compared with

v1(W, vN,3f ) (a result of Algorithm 1), and vJ(W ) (speed proposed in Villarroel and Rodrigues

(2016))

Figure 3.2 implies that using the approximation v∗(W ) ≈ v1(W, vN,3f ) for v1 given in (119)

yields a more accurate approximation of the optimal speed than vJ(W ). Furthermore, as the initial

weight Wc increases, the error incurred by making the approximation v∗ ≈ vJ(W ) grows almost

linearly, while v1(W, vN,3f ) remains close to the optimal speed.

3.7.2 Case Study

To see the monetary impact of cruise speed, consider a single airline (see “A320-200” (2017)):

Airbirlin has 62 Airbus A320s in its fleet and these jets cruise at a constant speed of 781 ft/s.

Calculating the DOC with this speed and the parameters of the example yields a DOC of

V = 11278.29704
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Thus V − V ∗ = 38.59 lbs for V ∗ = 11239.7 lbs given in (176). With 62 A320s in its fleet, at

one trip per day and $0.24/lb as the price of jet fuel (see Fuel Price Analysis (2017)), the potential

savings are $210, 000 per year for one class of jet alone by flying at a speed of v∗(x, vN,3f ) instead

of 781 ft/s.

3.8 Chapter Summary

This chapter has presented analytic expressions for

• the DOC-minimal cruising speed of a turbojet aircraft in terms of position (see (129)),

• the optimal final cruise time (see (137)),

• the optimal final cruise weight (see (139)),

• the minimal DOC (see (140)),

A suboptimal expression for the optimal cruising speed in terms of weight has also been developed

(see (119)). An upper bound for the approximation is also provided. Algorithm 1 summarizes

the turbojet ECON mode trajectory optimization techniques proposed in this thesis which were

validated against the results of Villarroel and Rodrigues (2016) (which were in turn validated against

the results of flight simulator data) in section 3.7.
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Chapter 4

Flight Management System for a

Turboprop in Cruise

The objective of this chapter is to formulate and solve the ECON mode problem for a cruising

turboprop aircraft. Section 4.1 will use the cost functional (2) as well as the simplified dynamics of

flight (8) to formulate the ECON mode problem for cruise as an OCP. Preliminary results will be

presented in Section 4.2.

An exact equation for the optimal cruising speed in terms of position could not be determined for

values ofCI > 0. However, the a complete solution for the maximum range problem (whenCI = 0)

for a cruising turbojet is presented in section 4.3. The turbojet and turboprop OCPs are similar

in many respects. An in depth comparison, including a transformation Φ between turbojet and

turboprop OCPs can be found in section 4.4. The transformation Φ motivates an approximation for

v∗ the optimal speed that minimizes the ECON mode of a cruising turboprop. This approximation,

denoted v1 is based on the result for v1(x, v∗f ) presented in equation (119) of chapter 3 that has been

modified using Φ. The expression v1 is in terms of the weight W of the turboprop and the optimal

final cruising speed at TOD v∗f and can be found in section 4.5.

Like the results of chapter 3, in order to use the approximation presented in section 4.5, a

method by which v∗f may be obtained must be determined. Unfortunately, unlike v∗f for the turbojet,

no analytic expression was obtained for v∗f . However, the transformation Φ in section 4.4 motivates
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the development of a recursive algorithm that may be employed to determine v∗f and v∗c the optimal

initial cruising speed. The pseudocode for this algorithm is presented in section 4.6 and a Maple

(TM) version of the code may be found in appendix B procedure 3.

The results of this chapter will be validated with a numerical example in section 4.8. In particular

the algorithm presented in section 4.6 is timed to ensure that it is fast enough to be employed in real

time. It is important to note that v∗f is a constant that need only be calculated once before takeoff.

4.1 Optimal Control Problem Formulation

For a cruising turboprop aircraft, it is assumed that T = D. Under Assumptions 1-9, combining

the cost functional (2) and the reduced dynamics (8) and (10), yields the following OCP:

V ∗(x0,W0) = inf
v,tf

∫ tf

0
(SFCDv + CI)dt

s.t. ẋ = v

Ẇ = −SFCDv

D =
1

2
C0ρSv

2 +
2C2W

2

ρSv2

x(0) = 0, x(tf ) = xd, W (0) = Wc

v ∈ U = {v : v > 0, v is piecewise continuous}

(178)

The position x(t) and weightW (t) are absolutely continuous functions of time. Note that the initial

and final positions (0, xd respectively) are known, as are the initial weight (Wc) and time. However,

the final weight Wf and final time tf are left free. The speed v is the control input we wish to

design.

The optimal cost-to-go is given by

J∗(t, x0,W0) = inf
v,tf

J(t, x0,W0, v) where

J(t, x,W, v) =

∫ tf

t
(SFCDv + CI) dt

(179)

The set of admissible trajectories U is defined as the set of positive speeds v which are piecewise
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continuous. Note that the force of drag D given in (10) is a well defined continuous function of v

for v > 0. Therefore, for any admissible speed v, the function Ẇ = −SFCDv is a well defined

piecewise continuous function of time in the interval [0, tf ] which is integrable over its domain. The

cost-to-go (179) may thus be rewritten as

J = W (t)−W (tf ) + CI(tf − t) (180)

Noting that W (t) is continuous and Wc, CI , tf are constants, it must hold from (180), that J(t)

is also a continuous function of time for all time t ∈ [0, tf ] and for any admissible controller v.

Because v∗ must be admissible, we may conclude that J∗(t, x(0),W (0)) is a continuous function of

time provided v∗ exists. The following section presents some preliminary results on the Turboprop

OCP.

4.2 Preliminary Results

This section will present some preliminary results required to perform further analysis of the

OCP (178). The results presented in this section are similar to the results presented in section 3.2

for the Turbojet. The extent to which the Turbojet and Turboprop OCPs are similar is investigated

in the section 4.4. The following notation will be used:

Fβ,n,k,l(v) = 2C0SSFCρv
βv∗nf + kCIv − lCIv∗f , ∀(β, n, k, l) ∈ R4

Gβ = 2C0SSFCρ(v∗f )3 − βCI , ∀β ∈ R
(181)

where v∗f is the optimal initial and final speeds of cruise respectively.

Lemma 21. A minimizer v∗ to the OCP in (178) exists.

Proof. If CI = 0, then the OCP in (178) reduces to the maximum range problem. The speed

vWMR(W ) known as the maximum range speed and given by

vWMR(W ) =

√
2
W

Sρ

√
C2

C0
(182)

72



is the solution to the resulting OCP (see Miele (1959)). Suppose that CI > 0. The Hamiltonian of

the OCP in (178) is given by

H(x,W, v, Jx, JW ) = SFCDv(1− JW ) + Jxv + CI (183)

where D is the drag given in (10), JW , Jx are the sensitivities of the cost-to-go to weight and

position respectively. Noting that the Hamiltonian in (183) does not depend explicitly on time, and

that the final time for the OCP in (178) is free, it must hold from Pontryagin’s Maximum Principle

(PMP) (see equation (53))

H∗ = SFCDv
∗(1− J∗W ) + J∗xv

∗ + CI = 0 (184)

Because H given in (183) is a class C2 function of v for admissible control inputs, a necessary

condition for optimality inside the feasible set is Hv = 0 along the optimal trajectory (See equation

(50b)):

H∗v = SFC(Dvv
∗ +D)(1− J∗W ) + J∗x = 0 (185)

Solving (185) for J∗W , replacing the result in (184) with D in (10) and rearranging terms yields

H∗ =(2J∗xv
∗ + 3CI)(C0S

2ρ2v∗4 − 4C2W
2) + 8C2CIW

2 = 0 (186)

Note that H∗ is a continuous function of v∗. From equation (50b) of the PMP,

J̇∗x = −H∗x = 0

J̇∗W = −H∗W = −4SFCWC2

ρSv∗
(1− J∗W )

(187)

implying that J∗x is a constant. Furthermore, solving (186) for J∗x yields

J∗x = −CI(3C0S
2ρ2v∗4 − 4C2W

2)

2v∗(C0S2ρ2v∗4 − 4C2W 2)
(188)
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The expression (188) is well defined and negative. Indeed, it was shown in Rodrigues (2017), that

v∗ > vWMR(W ) for CI > 0 (189)

Replacing vWMR given in (182) in (189) yields

v∗ >

√
2
W

Sρ

√
C2

C0
⇐⇒

v∗4 >
4W 2

S2ρ2

C2

C0
because v∗ > 0

⇒ v∗4S2ρ2C0 > 4W 2C2

(190)

Therefore, noting that 3C0S
2ρ2v∗4 > C0S

2ρ2v∗4, the inequality (190) implies that

3C0S
2ρ2v∗4 − 4C2W

2 > C0S
2ρ2v∗4 − 4C2W

2 > 0

which in turn implies that J∗x given in (188) is a well defined negative constant.

Replacing v = vWMR in H∗ given by (186) yields

H∗(vWMR) = 8C2CIW
2 > 0 (191)

If a value v2 > 0 can be found such that H∗(v2) < 0, then by the continuity of H∗ in v, there must

exist a solution v∗ ∈ (vWMR, v2) to H∗(v∗) = 0. Consider

v2 = −CI(8AC2W
2 + 3)

2J∗x
(192)

where A > 0. It was already shown that J∗x is a negative constant, thus (192) implies that v2 > 0.

Noting that

lim
A→∞

−
2048C5

2C
5
IW

10C0ρ
2S2A5

J4
x

× (H∗(v2))−1 = 1

for H∗ given in (186), it may be concluded that there exists a sufficiently large value of A such that

H∗(v2) < 0 which finishes the proof.

74



Lemma 22. The time rate of change of the optimal speed v̇∗ is given by

v̇∗ = − 8SFCWC2C0v
∗4ρS

3C0S2ρ2v∗4 + 4C2W 2
< 0 (193)

Proof. Solving (185) for J∗x and replacing the result in (184) yields

H∗(v∗,W, J∗W ) = CI − (1− J∗W )
SFC(C0S

2ρ2v∗4 − 4C2W
2)

ρSv∗
= 0 (194)

Noting that equation (194) holds for all time t ∈ [0, tf ], and since H∗(v∗,W, J∗W ) is differentiable

it must hold that

Ḣ∗(v∗,W, J∗W ) =
∂H∗(v∗,W, J∗W )

∂W
Ẇ +

∂H∗(v∗,W, J∗W )

∂J∗W
J̇∗W +

∂H∗(v∗,W, J∗W )

∂v∗
v̇∗ = 0

(195)

Replacing J̇∗W given by (187), H∗ given by (194), and the dynamics of W from (178) in (195) and

solving the result for v̇∗ yields (193).

Lemma 23. LetCIc = 1
2G0 whereG is given in (181). AssumingCI < CIc , the following equalities

hold concerning the OCP (178).

(1) The sensitivity of the optimal cost with respect to position, is a constant given by

J∗x = −
G(−1)

2v∗f
(196)

(2) The sensitivity of the optimal cost with respect to changes in weight is a continuous function

of time for all t ∈ [0, tf ] and is given by

J∗W =
(v∗ − v∗f )

(
2C0SSFCρv

∗2v∗f + 2C0SSFCρv
∗v∗2f − CI

)
2ρSC0SFCv∗3v∗f

(197)

with J∗W ∈ [0, 1).

(3) The optimal speed v∗ is a continuous function of time for all time t ∈ [0, tf ] and is unique.
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(4) The optimal weight as a function of speed is given by

W ∗ =
v∗2Sρ

2

√
C0

C2

√
F1,3,1,3(v∗)

F1,3,1,1(v∗)
(198)

Proof. Recall from the proof of Lemma 21 that J∗x is a negative constant. Furthermore, from the

PMP transversality conditions (see equation (50a)), J∗W (tf ) = 0 because W (tf ) is unspecified and

the OCP in (178) has no terminal cost. Thus,

J∗x(tf ) = J∗x(t) = J∗x

J∗W (tf ) = 0

(199)

Evaluating (184) and (185) at the final time when W = W (tf ) = Wf , v∗ = v∗f , J∗W (tf ) = 0, and

D is given by (10) yields a system of two equations with the solution J∗x given by (196) and

Wf =
1

2

√
Sρv∗f
C2SFC

(C0SSFCρv∗3f − CI) (200)

which is well defined and positive for CI < CIc . Therefore, in order to ensure that the final weight

is strictly positive, it must hold that CI < CIc .

Replacing (196) in equations (184) and (185) and solving the resulting system of two equations

for J∗W and W results in (197) and (198), respectively. It must now be shown that J∗W is continuous

and bounded and its value belongs to the interval [0, 1), that v∗ is continuous for all time t ∈ [0, tf ],

and that the expression (198) is well defined

To show that J∗W is a continuous function of time for all t ∈ [0, tf ], note that J∗W presented in

(197) is a continuous function of v∗ for all possible values of v∗. Therefore, as a function of time,

J∗W has at most the same countable discontinuities that v∗ has. Such discontinuities in v∗ are called

corner points. The continuity of J∗W follows from Theorem 3.

In order to prove that J∗W ∈ [0, 1) and (198) is well defined, it must first be shown that v∗ is a

continuous function of time for all t ∈ [0, tf ]. Recall that v∗ exists by Lemma 21. Because v∗ ∈ U ,

it must hold that v∗ is piecewise continuous in the interval (0, tf ). Suppose v∗ experiences a jump

discontinuity at t1 ∈ (0, tf ). Suppose that v∗(t+1 ) = vR, v
∗(t−1 ) = vL where vR − vL = δ for
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|δ| > 0. Then, because equation (194) must hold for all time,

H∗(t−1 ) = H∗(t+1 ) = 0

⇐⇒ SFC
(
1− J∗W (t−1 )

)C0S
2ρ2v∗4(t−1 )− 4C2W

2(t−1 )

v∗(t−1 )ρS

=SFC
(
1− J∗W (t+1 )

)C0S
2ρ2v∗4(t+1 )− 4C2W

2(t+1 )

v∗(t+1 )ρS

(201)

Noting that J∗W ,W are continuous for all time in (0, tf ), it must hold that J∗W (t−1 ) = J∗W (t+1 ) =

J∗W (t1),W (t−1 ) = W (t+1 ) = W (t1). Therefore, (201) reduces to

(vL − vR)
(
C0S

2ρ2vLvR(v2
L + vLvR + v2

R) + 4C2W (t1)2
)

= 0 (202)

which has only one real root vL = vR. Therefore v∗ is continuous at t1 and thus for all time

t ∈ [0, tf ].

Recall from (197) that J∗W is given by

J∗W =
(v∗ − v∗f )

(
2C0SSFCρv

∗2v∗f + 2C0SSFCρv
∗v∗2f − CI

)
2ρSC0SFCv∗3v∗f

(203)

which holds for all t ∈ [0, tf ). Note that v̇∗ < 0 by Lemma 22, thus it must hold by the continuity

of v∗ that v∗ − v∗f ≥ 0 for all time t ∈ [0, tf ], which implies that

0 > −2C0SSFCρv
∗v∗3f − CI(v∗ − v∗f ) (204)

This in turn implies that J∗W < 1 for all time t ∈ [0, tf ]. Note that H∗ is a class C2 function of

v∗. Therefore, to show the uniqueness of v∗, it suffices to verify the Legendre Clebsch condition

H∗vv > 0. From (183) and (10),

H∗vv = SFC(1− J∗W )
3C0S

2ρ2v∗4 + 4C2W
2

v∗3ρS
(205)

Because it was just shown that J∗W ∈ [0, 1), equation (205) implies that Hvv > 0 and so v∗ is

unique.
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To show that J∗W > 0, note that J∗W < 1 together with J̇∗W given by (187) imply that J̇∗W < 0

for all time t ∈ [0, tf ]. Furthermore, J̇∗W < 0 and J∗W (tf ) = 0 (see (199)) and the continuity of J∗W

imply that J∗W > 0 for all time t ∈ [0, tf ).

Finally, note that (198) is well defined if F1,3,1,3 ≥ 0 since, by the definition of F in (181),

F1,3,1,3(v∗) < F1,3,1,1(v∗). If v∗ ≥ 3vf , then

F1,3,1,3(v∗) = 2C0SSFCρv
∗v∗3f + CIv

∗ − 3CIvf > 0

If v∗ < 3v∗f , note that
∂F1,3,1,3(v∗)

∂CI
= v∗ − 3v∗f < 0

Therefore, by the continuity of F1,3,1,3(v∗) in CI , and the assumption CI < CIc ,

F1,3,1,3(v∗) > F1,3,1,3(v∗)|(CI=CIc )

= 3C0SSFCρv
∗3
f (v∗ − v∗f ) ≥ 0 (206)

since v∗ ≥ v∗f which follows from v̇∗ < 0 (see Lemma 22) and the continuity of v∗ for all time

t ∈ [0, tf ].

Lemma (23) introduced the constraint CI < CIc . It may appear that this constraint limits the

application of the lemma. In fact the constraint is a necessary condition for the existence of a

solution to the OCP (178). This is illustrated in the following remark:

Remark 24. Suppose that CI ≥ CIc . Solving (185) for J∗x , replacing the result in (184), and

evaluating at the final time when W = Wf , v
∗ = v∗f , J

∗
W = 0 (see (199)) yields

CI −
SFC(C0S

2ρ2v∗4f − 4C2W
2
f )

ρSv∗f
= 0 (207)

If CI = CIc + δ where δ ≥ 0, then (207) reduces to

4C2SFCW
∗2
f

ρSv∗f
+ δ = 0
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If δ > 0 that is, if CI > CIc then this equation is unsolvable. If δ = 0, that is, if CI = CIc then

the only solution is W ∗f = 0 which cannot happen as W (t) > 0 for all t ∈ [0, tf ]. Therefore, if

CI ≥ CIc then the OCP (178) has no solution.

4.3 The Maximum Range Solution

This section uses the results of Lemmas 21, 22, and 23 to determine the optimal trajectory that

minimizes the OCP (178) when CI = 0 and presents an equivalent expression for vWMR in (182)

denoted by vxMR that is given in terms of position instead of weight. This section also presents

expressions for the optimal final time at TOD, final weight, and minimal DOC when CI = 0.

Theorem 25. Let CI = 0 for the OCP in (178). Then, the following must hold:

(1) The optimal speed that minimizes (178) for CI = 0 is given in terms of position by

vxMR(x) = vWMR(Wc)e
−xSFC

√
C2C0 (208)

where vWMR(W ) is given by (182)

(2) The optimal final time at TOD for CI = 0 is given by

tf,MR =
vWMR(Wc)− vxMR(xd)

vWMR(Wc)vxMR(xd)
√
C0C2SFC

(209)

(3) The optimal final weight at TOD for CI = 0 is given by

Wf,MR =
1

2

(
vxMR(xd)

)2
ρS

√
C0

C2
(210)

(4) The minimal cost V ∗ that solves (178) for CI = 0 is

V ∗ = Wc −Wf,MR (211)

(5) Let Wmin denote the minimal allowable weight of a turboprop. Then, the minimal allowable
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speed is given by vWMR(Wmin), and the maximum possible range is given by

xd,max =
1

SFC
√
C0C2

ln

(
vWMR(Wc)

vWMR(Wmin)

)
(212)

Proof. The optimal initial speed v∗(t = 0) is given by vWMR(Wc). From the dynamics of x in (178),

x =

∫ t

0
vdt =

∫ v∗

vWMR(Wc)

v

v̇∗(v)
dv (213)

Replacing (198) in (193) yields an expression for v̇∗ given in terms of v∗ by:

v̇∗(v∗) = −
√
C2C0SFCv

∗2
√
F1,3,1,1(v∗)F1,3,1,3(v∗)

F1,3,1,3/2(v∗)
(214)

Setting CI = 0 in (214) yields

v̇∗(v∗) = −
√
C0C2SFCv

∗2 (215)

Replacing (215) in (213), evaluating the integral, and solving for v∗ yields (208). The result (208)

implies that the optimal final cruising speed v∗f is given by vxMR(xd). To prove the result (209), note

tf =

∫ tf

0
1dt =

∫ vxMR(xd)

vWMR(Wc)

1

v̇∗(v)
dv (216)

Replacing (215) in (216) and evaluating the resulting integral yields (209). The result (210), follows

from replacing CI = 0 in (200). Setting CI = 0 in (178) yields

V ∗ = Wc −W ∗f = Wc −Wf,MR

Replacing Wf,MR given by (210) proves (211).

Finally, the result (212) follows from replacing (215) in (213) and evaluating the integral from

the initial maximum range speed vWMR(Wc) to the minimum possible final speed vWMR(Wmin).
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4.4 Comparison of Turboprop and Turbojet OCPs

This section compares the turboprop and turbojet OCPs, and develops a transformation Φ be-

tween them. The transformation developed in this section motivates the suboptimal approximation

of the optimal turboprop cruise speed presented in the following section.

A note on notation: This section will compare speeds and costs-to-go for turbojet and turboprop

aircraft. To avoid confusion, supplemental notation will be used when comparing these values. This

notation is summarized in table 4.1.

Turbojet Turboprop

Optimal speed v∗J v∗P

Optimal initial speed v∗Jc v∗Pc

Optimal final speed v∗Jf v∗Pf

Optimal cost-to-go J∗J J∗P

Optimal total cost V ∗J V ∗P

Table 4.1: Supplemental notation

Recall from equation (117), that the optimal cruising speed of a turbojet aircraft is

v∗J =

√√√√Q+
√

12C0C2S2
FCW

2 +Q2

ρSC0SFC

where

Q =
CI

(1− J∗JW )

and J∗JW is given by (95). Unfortunately, solving the turboprop necessary condition (185) for J∗Px

and replacing the result in the turboprop HJB equation (184), does not yield a biquadratic in v∗P .

However, rearranging terms results in

v∗P =

√
2

2

√√√√R+
√

16C0C2S2
FCW

2 +R2

ρSC0SFC
(217)
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where

R =
CI

v∗P (1− J∗PW )
(218)

and J∗PW is given by (197). Consider the transformation

Φ :
(
SFC , C2, CI , v

∗
J

)
→

(
SFCv

∗
Jf
,
C2

3
,
CI
2
, v∗P

)
(219)

Then, replacing (95) in (117) and (197) in (217), it holds that

v∗P (SFC , C2, CI , v
∗
Pf
,W ) = v∗J

(
Φ(SFC , C2, CI , v

∗
Jf

),W
)

(220)

Therefore, an optimal cruising speed for a turboprop in therms of weight may be obtained from the

optimal cruising speed for a turbojet in terms of weight via a transformation of constant parameters.

The equation (220) motivates the theorems presented in the following sections.

4.5 Approximation of the Optimal Speed

The purpose of this section is to present a suboptimal analytic expression for the optimal cruising

speed of a turboprop aircraft that solves the OCP (178).

Theorem 26. Let CIc = 1
2G0. Assuming CI < CIc , the speed v∗ that minimizes the OCP (178) can

be approximated using v1 given in terms of W and the optimal final speed v∗f by

v∗ ≈ v1(W, v∗f ) =

√
2

2
v∗f

√√√√
R̃+

√
64C0C2S2

FCv
∗2
f W

2

G0G1 + C2
I

+ R̃2 (221)

where

R̃ =
G(−1)CI

G0G1 + C2
I

The maximum error of the approximation occurs at the initial time because:

|v∗ − v1(W, v∗f )| ≤ |v∗c − v1(Wc, v
∗
f )| (222)
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Proof. The results of this theorem follow from Theorem 10 and equation (220)

Remark 27. The approximation u1(W,u∗f ) given in (221) reduces to the maximum range speed

uWMR(W ) given in (182) when CI = 0.

In chapter 3, the optimal final cruising speed was given in terms of the optimal initial cruising

speed by (154) which was derived from v∗(W,J∗W ) in (76). The expression (76) was in turn derived

(in Villarroel and Rodrigues (2016)) by solving the turbojet necessary condition (83) for J∗x and

replacing the result in the equation (82). The resulting equation was shown to be a biquadratic in

v∗ the solution to which is (76). Performing the same process for the turboprop case yields a fourth

order polynomial equation in v∗ that is not biquadratic. Though this equation can be solved for v∗

in terms of W and J∗W , the solution is too long to repeat. Furthermore, while the equation (131) can

be solved for v resulting in v∗(x) for given in (129) for a turbojet aircraft, the equivalent integral

expression for a turboprop:

xd − x =

∫ tf

0
v∗dt =

∫ v∗f

v∗c

τ

v̇∗(τ)
dτ (223)

where v̇∗ is given by (214), cannot be solved for v∗. Therefore, no exact expression of the optimal

speed in terms of x can be found for a turboprop aircraft.

The approximation v1 in equation (221) is given in terms of the state W , and the optimal final

cruise speed v∗f . Therefore, a method by which v∗f can be found must be determined. The following

section presents an implicit definition of v∗f and v∗c as the solutions to a system of two equations.

4.6 Determining v∗f , v∗c , t∗f , W ∗
f , and V ∗

The objective of this section is to present a method by which v∗f and v∗c can be determined, and

to use the values of v∗f , v
∗
c to determine the optimal final time at TOD t∗f , the optimal final weight

W ∗f and the minimal DOC V ∗ that solves (178).

Theorem 28. The optimal initial and final cruise speeds that minimize the OCP (178) are defined

83



implicitly as the solutions to the following system of equations:

CI
2

=

v∗2c G0E
2
4

(
2 +

√
A1 +

(
E−4

E4

)2
)2

v∗2f E
2
4/3

(
1 +

√
A1 +

(
E−4

E4

)2
) (224a)

G0 = CI(1 +
√

1 +A2) (224b)

where

A1 =
4C0C2SFCv

∗
fxdE4/3

(
SFCv

∗
fxdE4/3 − 4SWcρv

∗3
c

)
(v∗cE4)2

A2 =
4C0C2

(
SFCv

∗
fxdE4/3 − 2SWcρv

∗3
c

)2

(v∗cE4)2

Eβ = C0S
2ρ2v∗4c − βC2W

2
c

(225)

Proof. The proof follows from equation (220), the proof of Corollary 2, and Theorem 16.

Theorem 28 presents a system of equations which can be solved numerically to obtain values

for v∗c and v∗f . The values of the constants v∗f , v
∗
c need only be computed once before flight. An al-

gorithm written in Maple (TM) code is presented in Procedure 3 of Appendix B. The algorithm uses

Newton’s method to quickly solve the system of equations (224a), (224b) to within an acceptable

error. The pseudocode for the Maple procedure is presented in Algorithm 3, which takes

(
SET = {CI , C0, C2, S, SFC , ρ,Wc, xd}, ERROR

)

as its argument, and returns v∗f , v
∗
c .
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Algorithm 3 Determine u∗f , u
∗
c for a Turboprop

Require: SET = {CI < CIc , C0, C2, S, SFC , ρ,Wc, xd}, ERROR> 0

1: vfEQ := Equation (154);

2: vf[0] := 0; . declare a first guess of the optimal final cruising speed of a turboprop

3: vf[1] := 1; . declare a second guess of the optimal final cruising speed of a turboprop

4: i := 2;

5: while |vf[i-1]-vf[i-2]| >ERROR do

6: TransitionSet[i] := { 12CI , C0,
1
3C2, S, vf[i-1]SFC , ρ,Wc, xd} . Φ(SET );

7: vc[i] := Solve (155) for a turbojet with parameters = TransitionSet[i];

8: vf[i] := vfEQ evaluated with vc =vc[i], and parameters = TransitionSet[i];

9: i := i+1;

10: end while

return optimal initial turbojet speed = vc[i], optimal final turbojet speed = vf[i];

The following theorem presents expressions for the optimal final time, weight, and minimal

DOC for a cruising turboprop in terms of v∗c , v
∗
f .

Theorem 29. Let CIc = 1
2G0. Assuming 0 < CI < CIc , then the following hold

• Time as a function of the optimal speed v∗ is given by

t = ζ(v∗)− ζ(v∗c ) (226)

where

ζ(v∗) =−
√
F1,3,1,1(v∗)F1,3,1,3(v∗)

2CISFC
√
C2C0v∗v∗f

(227)

• The optimal final time at TOD is given by

t∗f = ζ(v∗f )− ζ(v∗c ) (228)

• The optimal final weight at TOD is given by (200).
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• The minimal DOC is given by

V ∗ =Wc −
1

2

√
Sρv∗f (C0SSFCρv∗3f − CI)

C2SFC

+ CI
(
ζ(v∗f )− ζ(v∗c )

) (229)

Proof. Consider the identity

t =

∫ t

0
1dτ =

∫ v∗

v∗c

1

v̇∗(τ)
dτ (230)

Replacing v̇∗ with (214) in (230) and evaluating the integral yields (226). The result (228) follows

from (226). Finally, (229) is obtained by replacing (200) and (228) in (180).

4.7 Algorithm for Determining the ECON mode-Optimal Turboprop

Cruise Trajectory

This chapter has provided a novel analytic expression v1(W, v∗f ) (see 221) for the optimal cruis-

ing speed of a turboprop aircraft that minimizes the OCP (178) and reduces to the maximum range

speed vWMR(W ) in (182) when CI = 0. Furthermore, an upper bound on the error of the estimate v1

was provided in (222) in terms of v∗c . This chapter has also provided the complete maximum range

solution that solves the OCP (178) when CI = 0 (see Theorem 25).

Expressions for the optimal final time, final weight and minimal DOC when CI > 0 are given

in terms of v∗c , v
∗
f by Theorem 29. Theorem 28 and Algorithm 3 provide the means by which v∗c , v

∗
f

can be determined. The complete methodology outlined in this chapter is summarized in Algorithm

4:
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Algorithm 4 Determining the optimal turboprop cruise trajectory
Require: SET = {CI , C0, C2, S, SFC , ρ,Wc, xd}

if CI=0 then

Use Theorem 25 for the complete maximum range solution

else

Determine v∗c , v
∗
f using Algorithm 3.

if CI ≥ CIP = 1
2G0 then no solution exists

else

Replace v∗f in (221) to obtain v∗(W ) ≈ v1(W, v∗f )

Test the error of the approximation u1(W,u∗f ) by replacing v∗f , v
∗
c in (222):

|v∗(W )− v1(W, v∗f )| < |v∗c − v1(Wc, v
∗
f )|

Replace v∗f , v
∗
c in (228) to obtain t∗f . Optimal final time at TOD

Replace v∗f in (200) to obtain W ∗
f . Optimal weight at TOD

Replace v∗f , v
∗
c in (229) to obtain V ∗ . Minimal DOC

end if

end if

4.8 Numerical Example

This section uses Algorithm 4 to approximate the optimal cruising speed, final cruise time, final

cruise weight and minimal DOC for the Super King Air 350C. The aircraft parameters for the King

Air A350 were measured directly from flight simulation data obtained courtesy of TRU Simulation

and Training.

It was mentioned in chapter 1, that no FMS exists for turboprop aircraft. In order to optimize

flight performance, pilots refer to printed look-up tables that provide suggested true air speeds based

on weight and altitude. This section will compare the speeds suggested by Beech Aircraft Corpo-

ration, Essco Aircraft Manuals and supplies (2015) against the speeds proposed by Algorithm 4.

The next section will detail how the aircraft parameters of the KA were collected and will introduce

the suggested TAS at each altitude and weight provided by Beech Aircraft Corporation, Essco Air-

craft Manuals and supplies (2015). Once the aircraft parameters have been obtained, Section 4.8.2
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will consider an example flight and analyse the cost of flying at the speed proposed in Algorithm

4 against the cost of flying at the speeds suggested in Beech Aircraft Corporation, Essco Aircraft

Manuals and supplies (2015).

4.8.1 Obtaining Aircraft Parameters and Suggested Speeds

An excerpt of the suggested speeds and resulting fuel flow rates of reference Beech Aircraft

Corporation, Essco Aircraft Manuals and supplies (2015) are summarized in Table 4.2

W → 14,000 lbs 13,000 lbs 12,000 lbs 11,000 lbs

Altitude (ft) TAS (KTS) f (LBS/HR) TAS (KTS) f (LBS/HR) TAS (KTS) f (LBS/HR) TAS (KTS) f (LBS/HR)

0 256 1064 257 1062 258 1062 258 1062

2000 261 1040 262 1040 263 1038 263 1038

4000 266 1016 267 1016 268 1016 268 1016

6000 272 994 272 994 273 994 274 994

8000 277 976 278 976 278 976 279 976

10,000 282 958 283 956 284 956 285 956

12,000 288 940 289 940 290 940 291 940

...

35,000 273 468 281 470 287 472 292 474

Table 4.2: Excerpt of data available in Beech Aircraft Corporation, Essco Aircraft Manuals and

supplies (2015).

Note that a speed is suggested in Table 4.2 that is a function of altitude and weight, but that does

not depend on a cost index. For each speed, a resulting fuel flow-rate, f , is also provided.

Using a flight simulator at TRU Simulation and Training, it was determined that the wing area of

a King Air 350C is S = 287.9346 ft2. The simulation was run at a constant altitude of 10, 000 ft

for 21 miles. After 21 miles, the aircraft climbed to 20, 000 ft over 15 miles. At 36 miles, the

aircraft cruised again at a constant altitude of 20, 000 ft for an additional 15 miles. During the

simulated flight, the following data was collected: t,W,CD, ρ, v.

To obtain the parameters of the aircraft, it was noted that by (9), the coefficient of drag CD is an

affine function of ε given by

CD = C0 + C2ε (231)

where

ε =

(
2W

ρSv2

)2
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Noting that ε is unit-less and may be obtained from the data collected, a plot ofCD(ε) was produced,

and a linear trend-line was added. The slope of the trend-line is, by (231), the value C2, and the

y−intercept is C0. Figure 4.1 illustrates the recorded coefficient of drag as a function of ε and the

affine trend-line.

Figure 4.1: CD(ε) (orange) and the linear trend-line (blue) over the entire simulated flight

Figure 4.1 suggests that the coefficients of parasitic and induced drag are relatively constant

despite changes in altitude, and have the values

C0 = 0.0185, C2 = 0.0263 (232)

From the dynamics of W in (178), the specific fuel consumption is given by

SFC(hc,Wi) =
Ẇi(

1
2C0Sρv2

i +
2W 2

i C2

ρSv2i

)
vi
, i = 1..4 (233)

where W = {14000, 13000, 12000, 11000} and Ẇi, vi are the resulting values of fuel flow rate and

speed at altitude hc associated with weight Wi in Table 4.2. Therefore, at each weight increment in

Table 4.2, the value of SFC may be determined as a function of hc for C0, C2 given in (232). The

results are summarized in Figure 4.2:
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Figure 4.2: The value of SFC calculated from (233) for Ẇ , v given in Table 4.2 for varying weights

Figure 4.2 suggests that SFC is a function of altitude, but remains relatively constant at constant

altitude (maximum of 1.7 % spread). The value of SFC(hc) is taken to be the average SFC at each

altitude:

SFC(hc) =
1

4

4∑
i=1

SFC(hc,Wi) (234)

and is the red line in Figure 4.2. The values of SFC(hc) are summarized in Table 4.3:
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hc (ft) SFC(hc) (×10−7 ft−1)

0 5.39

2000 5.267

4000 5.15

6000 5.03

8000 4.94

10,000 4.85

12,000 4.75

14,000 4.62

16,000 4.62

18,000 4.58

20,000 4.55

22,000 4.53

24,000 4.48

26,000 4.46

28,000 4.44

29,000, 4.43

31,000 4.41

33,000 4.41

35,000 4.40

Table 4.3: SFC computed from (234) for various altitudes

To validate the aircraft model, the weight trajectory of the simulated flight is graphically com-

pared (see Figure 4.3) to the theoretical (modeled) weight trajectory obtained from the dynamics of

W in (178) where S = 287.9346 ft2, C0, C2 are given in (232), and SFC is in (4.3). Note that

Figure 4.3 suggests that the maximum error in the weight trajectories occurs at the final time and

has a maximum value of 0.35%.
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Figure 4.3: Simulated and Predicted weight trajectories over time

The parameters of the aircraft have been obtained and validated. The next section compares the

DOC for two different speeds: the speed suggested in Beech Aircraft Corporation, Essco Aircraft

Manuals and supplies (2015), and the speed obtained using Algorithm 4.

4.8.2 Example Flight and Cost Savings

Consider a KA 350C with the following mission and aircraft parameters

S = 287.9346 ft2 C0 = 0.0185 C2 = 0.0263

CI = 0.1 lbs/s hc = 10000 ft SFC = 4.85× 10−7 ft−1

ρ = 0.001756 slug/ft3 Wc = 14000 xd = 1580000 ft

Table 4.4: King Air 350C aircraft parameters and example mission parameters

Note that the values C0, C2 are given by (232), and SFC by (4.3) at 10000 feet. According to

4.2, the suggested TAS is v = 282 kts = 475.96 ft/s and Ẇ = 958 lbs/hr = 0.261 lbs/s. At this
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constant speed and fuel flow rate, the final time and weight are given by

tf,POH =
1580000 ft

475.96 ft/s
= 3319.6 s

with a final weight

Wf,POH = Wc + Ẇ tf,POH = 14000− 0.261(3319.6) = 13116.61 lbs

Therefore, by (180) for any cost index CI , the DOC associated with the speed suggested in Beech

Aircraft Corporation, Essco Aircraft Manuals and supplies (2015) at 10000 feet is

DOCPOH(CI) = Wc −Wf,POH + CItf,POH = 883.38 + CI3319.6 lbs (235)

Thus, for a cost index CI = 0.1, the DOC is given by

DOCPOH(0.1) = 1215.86 lbs

Using Algorithm 4 results in

v∗f = 325.622 ft/s

v∗c = 328.875 ft/s

tf = 3943.436 s

Wf = 13571.833 lbs

V ∗ = DOHTHEO = 822.5101215. lbs

(236)

Therefore, the savings is given by

DOCPOH −DOCTHEO = 393.350

If the cost of fuel is assumed to be $0.24/lb (See Fuel Price Analysis (2017)), this results in a

savings of $94. This cost savings are a substantial improvement over the POH for two reasons. First
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consider that for example the final position is around 300 miles (roughly the distance from Montreal

to Toronto). Therefore, at only two round trips per day between Montreal and Toronto, the cost

savings amounts to $137, 240 per year. Second, consider the amount of fuel saved: −Wf,POH +

Wf,THEO = 455.22lbs. At 21.1lbs of CO2 per gallon of jet fuel (see Carbon Dioxide Emissions

Coefficients (2015)), and 6.71lbs of jet fuel per gallon of jet fuel (see Handbook of Products (2000)),

the savings of 455.22 pounds of jet fuel is equivalent to 1499.32 pounds of C02 saved for a single

trip from Montreal to Toronto. At two round trips per day, that equates to more than 2.1 million

pounds of C02 saved every year for a single destination. The process of computing the cost savings

DOCPOH−DOCTHEO was repeated for varying values of the cost index and computed at varying

altitudes for over 300 data points using a certified flight simulator courtesy of TRU Simulation and

Training. The results are summarized for CI ∈ [0, 2] in Figure 4.4 and for higher values of CI in

Figure 4.5.

Figure 4.4: The savings in DOC (DOCPOH − DOCTHEO)Cf for Cf = 0.24 $/lbs at varying

cruise altitudes and for various values of CI ∈ [0, 2]
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Figure 4.5: The savings in DOC (DOCPOH − DOCTHEO)Cf for Cf = 0.24 $/lbs at varying

cruise altitudes and for various values of CI ∈ [0, 16]

Figure 4.5 implies that for high values of CI (say, 16lbs/s), and at high altitudes (35000 ftt),

the cost savings can become as high as 8000 dollars for a 300 mile flight. Therefore, at two round

trips per day, the cost savings are equivalent to more than $11680000 saved each year for a single

destination. Figures 4.4 and 4.5 suggest that the possible savings of cruising at speeds proposed in

Algorithm 4 have the potential to be much cheaper than those suggested by Beech Aircraft Corpo-

ration, Essco Aircraft Manuals and supplies (2015). It should be noted that at each cruising altitude,

there is a value of CI for which the speeds in Beech Aircraft Corporation, Essco Aircraft Manuals

and supplies (2015) are close to the optimal speeds. This is depicted as the minimum values of the

cost savings curves in Figure 4.4.

4.8.3 Validation Against Shooting Method

According to Algorithm 4, an approximation for the optimal speed in terms of weight is given

by

v∗(W ) ≈ v1(W, 543.726) = 384.472

√
0.944 +

√
1.351× 10−9W 2 + 0.890
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This speed is compared graphically against the speed obtained using the shooting method in Figure

4.6. Table 4.5 compares the initial and final speeds of v1(W, 543.726) obtained using Algorithm 4

to v∗(W ), the theoretically optimal cruise speed obtained using the shooting method

Expression Initial Speed (ft/s) Initial Speed Error (%) Final Speed (ft/s) Final Speed Error (%)

v1(W, 543.726) 546.215 7.8× 10−3 543.726 8.8× 10−3

v∗(W ) 546.257 0. 543.679 0.

Table 4.5: Endpoint speeds of v1(W, 543.726) obtained using Algorithm 4 compared to v∗(W ), the

theoretically optimal cruise speed obtained using the shooting method.

Figure 4.6: A comparison of the speed v1(W, 543.726) obtained using Algorithm 4 with the theo-

retically optimal speed v∗(W ) obtained using the shooting method.

Table 4.5 and Figure 4.6 suggest that the speed obtained using Algorithm 4 is close (within

8.8× 10−3%) of the theoretically optimal speed v∗(W ) obtained using the shooting method.
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4.9 Chapter Summary

This chapter has presented analytic expressions for

• A suboptimal approximation of the DOC-minimal cruising speed of a turboprop aircraft with

error bound (see (221)),

• the optimal final cruise time (see (228)),

• the optimal final cruise weight (see (200)),

• the minimal DOC (see (229))

Algorithm 4 summarizes the turboprop ECON mode trajectory optimization techniques proposed

in this thesis. To date (to the best of the author’s knowledge) no FMS or analytic expression exists

to address the ECON mode problem for a cruising turboprop aircraft. In order to optimize per-

formance, pilots refer to look-up tables like those in Beech Aircraft Corporation, Essco Aircraft

Manuals and supplies (2015). The results of Algorithm 4 are validated against simulation results

courtesy of TRU Simulation and Training in section 4.8. Figures 4.4, 4.5 illustrate the possible sub-

stantial savings of flying at speeds determined by 4 as opposed to those suggested in Beech Aircraft

Corporation, Essco Aircraft Manuals and supplies (2015).
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Chapter 5

A Comparison of Earlier Research

In the literature survey, it was noted that since the 1980s, six major contributors have ad-

vanced the goal of obtaining an analytic expression for the optimal speed that minimize (73), (178):

Erzberger and Homer (1980), S. Wu and Guo (1994), S. Wu and Shen (1993), Burrows (1983),

Burrows (1982), Miele (1959), and Villarroel and Rodrigues (2016). This chapter will use the tools

outlined in section (2.4.2) and some of the results of chapters 3, and 4 to show that the work done by

these major contributors yields equivalent results that differ from the results proposed in this thesis.

This chapter uses the notation outlined in Table 4.1.

Begin by noting that the ECON mode optimal control problems (73) and (178) are specific cases

of the more general OCP given in (61) where

Turbojet Turboprop



G = vJ

L = SFCD

K = CI

u = vJ

x1 = x

x2 = W

x1,f = xd, x2c = Wc

(237)



G = vP

L = SFCDvP

K = CI

u = vP

x1 = x

x2 = W

x1,f = xd, x2c = Wc

(238)
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Thus the OCPs in (73) and (178) are of the class investigated in section 2.4.2 and by (72), the

optimal costs-to-go J∗J , J
∗
P given in (74) and (180) may be rewritten as

J∗J = −J∗Jx(xd − x)−
∫ W ∗f

W
J∗JW (239a)

J∗P = −J∗Px(xd − x)−
∫ W ∗f

W
J∗PW (239b)

5.1 Work of Villarroel and Rodrigues (2016)

In order to obtain the suboptimal expression (78) from the optimal (76), the authors of (Villarroel

and Rodrigues (2016)) make the assumption that J∗JW ≈ 0 for all time t ∈ [0, tf ]. Under this

assumption the cost functional (239a) reduces to

J∗J = −J∗Jx(xd − x) (240)

and the optimal cost to go is approximately an affine function of x with positive slope as J∗Jx is

a negative constant by (94). Therefore, minimizing the cost-to-go if J∗JW ≡ 0, is equivalent to

minimizing the slope −J∗x . Similarly, under the assumption J∗Px ≡ 0, the cost-to-go (239b) reduces

to

J∗P = −J∗Px(xd − x) (241)

and minimizing the cost-to-go J∗P is equivalent to minimizing the positive constant −J∗Px (recall

J∗Px is a negative constant by (196)).

Replacing J∗JW = 0 in (82) and (83) and replacing J∗PW = 0 in (184) and (185) results in

SFCD + J∗Jxv
∗
J + CI = 0 (242a)

SFCDvJ + J∗Jx = 0 (242b)

SFCDvP + J∗Pxv
∗
P + CI = 0 (242c)

SFC(DvP vP +D) + J∗Px = 0 (242d)

Solving (242b) for J∗Jx and (242d) for J∗Px and replacing the results in (242a) and (242c) respectively
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yields a governing necessary condition for the turbojet and turboprop respectively. These equations

are

C0S
2SFCρ

2v∗4J − 2CISρv
∗2
J − 12C2SFCW

2 = 0 (243a)

C0S
2SFCρ

2v∗4P − CISρv∗P − 4C2SFCW
2 = 0 (243b)

Note that the suboptimal velocity vJ(W ) in (78) was obtained by solving the biquadratic (243a) for

v∗J directly.

As stated above, the equations (243a), (243b) are a set of necessary equations for the optimality

of v∗J , v
∗
P respectively and are thus one method of solving the turbojet and turboprop OCPs and will

result in expressions v∗J(W ), v∗P (W ). However, if J∗JW ≡ 0, J∗PW ≡ 0, a second set of constant

solutions for v∗J , v
∗
P arise. Indeed, by (239a) and (239b), the turbojet and turboprop OCPs may

also be solved by determining the speeds that minimize −J∗Jx ,−J
∗
Px

respectively. To this end,

expressions for J∗Jx , J
∗
Px

are determined by solving (242b) and (242d) for W , replacing the results

in (242a) and (242c) respectively, and solving the resulting equations for J∗Jx and J∗Px respectively:

J∗Jx = −2

3

C0SSFCρv
∗2
J + CI

v∗J
(244a)

J∗Px = −1

2

2C0SSFCρv
∗3
P + CI

v∗P
(244b)

Note that (244a), (244b) are identical to (94), (196) where v∗Jf , v
∗
Pf

have been replaced with v∗J , v
∗
P

respectively implying that v∗J = v∗Jf , v
∗
P = v∗JP , ∀t ∈ [0, tf ] which in turn implies that v∗J , v

∗
P are

constants. Therefore, if v∗J minimizes −J∗Jx , then

−
∂J∗Jx
∂v∗J

=
2

3

C0SSFCρv
∗2
J − CI

v∗2J
= 0

Which has only one positive, real solution

v∗J = v∗J,(JW=0) ,

√
CI

C0SSFCρ
(245)

To show that v∗J,(JW=0) truly minimizes −J∗Jx , take the second derivative of J∗Jx with respect to v∗J
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and evaluate the result at v∗J = vJ,(JW=0) which yields

−
∂2J∗Jx
∂v∗2J

∣∣∣
v∗J=vJ,(JW=0)

=
4

3

(
C0SSFCρ

)3/2
√
CI

> 0

Therefore, v∗J,(JW=0), a constant, would minimize −J∗Jx and thus J∗J if J∗JW ≡ 0. Similarly, it can

be shown that the constant

v∗P = v∗P,(JW=0) ,
(2CI)

1/3

2(C0SSFCρ)1/3
(246)

uniquely minimizes −J∗Px .

To summarize, if J∗JW , J
∗
PW

= 0, then two solutions exist for each of the turbojet and turboprop

OCPs. The first solutions are functions of weight and are determined by solving (243a), (243b)

respectively. The second set of solutions are constants determined by minimizing −J∗Jx ,−J
∗
Px

and

are given by (245) and (246) respectively. Note that if v∗J , v
∗
P are constants, then the necessary

equation for turboprop optimality given by (243b) reduces to (243a) under the transformation Φ in

(219). Recall that the mapping Φ transforms v∗P into v∗J when J∗JW 6= 0, J∗PW 6= 0. Therefore, it

may be concluded that the mapping that relates turboprop to turbojet OCPs is preserved in the case

when J∗JW = J∗PW = 0 if and only if v∗P , v
∗
J are constants.

The repercussions of the assumptions J∗JW ≡ 0, J∗PW ≡ 0 are summarized in the following table

Turbojet Turboprop

Assumption J∗JW ≡ 0 J∗PW
≡ 0

H|X∗ = 0 (53) SFCD + J∗Jxv
∗
J + CI = 0 SFCDv

∗
P + J∗Px

v∗P + CI = 0

Hu|X∗ = 0 (50b) SFCDvJ + J∗Jx = 0 SFC(DvP v
∗
P +D) + J∗Px

= 0

Governing Equation SFC(D −DvJ v∗J ) + CI = 0 (243a) −SFC(DvP v
∗2
P ) + CI = 0 (243b)

Cost-to-to J∗J = −J∗Jx (xd − x) J∗P = −J∗Px
(xd − x)

Speed that minimizes Cost-to-go (245) or (78) (246) or (221)

Table 5.1: Result of J∗JW ≡ 0, J∗PW ≡ 0
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5.2 Previous Work in the Literature

In (Erzberger and Homer (1980), S. Wu and Guo (1994), S. Wu and Shen (1993), Burrows

(1983)), Burrows (1982), the authors propose to minimize the cost functional (2) under the assump-

tions that the weight loss due to fuel burn is negligible, and that the energy during cruise is constant.

The authors of the aforementioned work note that the cost-to-go can be decoupled into each stage

of flight: climb, cruise, and descent, and, for the cruise portion, write the cost-to-go for cruise as

Jcr =

∫ tf

t
−Ẇ + CIdt ≡

∫ tf

t
Pdt = (xd − x)λ (247)

where Jcr denotes the cruise portion of the total flight cost, and λ denotes the cost of cruising at a

given energy level Ec where

Ec = h+
1

2g
v2

Under the change of variables

dt =
dE

Ė
=

WdE

(T −D)V

the authors reduce the states of the OCP to a single state x = xup + xdn which is equal to the total

flight distance minus the cruise distance. Therefore, under the change of variables, the Hamiltonian

for the entire flight contains a single costate denoted ψ(E) which is noted to be constant. It is also

shown that

ψ(E) = ψ(Ec) = −λ

Thus the single constant costate is equal to the negative of the cruise costs, and the cruise costs are

computed from

λ(Ec, v) =
−Ẇ + CI

v
(248)

Thus

ψ =
Ẇ − CI

v
(249)
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The Hamiltonian of the cruising portion of the OCP (247) is

H = P + ψxv + ψW Ẇ

where ψx, ψW are the costates. By (53), it must hold that

H = P + ψxv + ψW Ẇ = 0

The equation is valid for turbojet and turboprop aircrafts. The assumption that the weight loss due

to fuel burn is negligible, allows us to reduce the equation to

P + ψxv = 0

and rearranging terms yields

ψx =
Ẇ − CI

v
= ψ (250)

Thus the costate ψ presented in the aforementioned papers is equal to the costate that would arise

from the application of the HJB equation to (247) with the assumption that the weight loss due to

fuel burn is negligible. The value of the costate in (250) is identically J∗Jx for a turbojet and J∗Px

for a turboprop. Indeed, let ψJ , ψP denote the values of ψ for the turbojet and turboprop OCPs

respectively, and let λJ = −ψJ , λP = −ψP . Then, for the dynamics in (73) and (178), the value of

the costate for a turbojet and turboprop aircraft are thus

ψJ =
−SFCD − CI

v

ψP =
−SFCDv − CI

v

Therefore, minimizing (247) is equivalent to minimizing

λJ = −ψJ =
SFCD + CI

v

λP = −ψP =
SFCDv + CI

v

(251)
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for the turbojet and turboprop, respectively. If v∗J and v∗P minimize λJ and λP , respectively, then

(λJ)v = 0 (252a)

⇐⇒ C0S
2SFCρ

2v∗4J − 2CISρv
∗2
J − 12C2SFCW

2 = 0 (252b)

(λP )v = 0 (252c)

⇐⇒ C0S
2SFCρ

2v∗4P − CISρv∗P − 4C2SFCW
2 = 0 (252d)

Therefore, the necessary conditions for minimizing the OCP (247) for a turbojet and turboprop un-

der the assumption that the weight loss due to fuel burn is negligible are given by (252b) and (252d),

respectively which are identical to the generating equations (243a) and (243b) used to develop the

results of Villarroel and Rodrigues (2016). Furthermore, solving (252b), (252d) for W and replac-

ing the results in λJ , λP in (251), respectively yields λJ = −J∗Jx , λP = −J∗Px for J∗Jx , J
∗
Px

given

in (244a), (244b). Therefore, the approach used by the authors of Erzberger and Homer (1980),

S. Wu and Guo (1994), S. Wu and Shen (1993), Burrows (1983), and Burrows (1982) results in an

identical minimization problem as that used in Villarroel and Rodrigues (2016), namely

min
v
−JJx = min

v
λJ turbojet,

min
v
−JPx = min

v
λP turboprop

with identical necessary conditions (243a)≡(252b), (243b)≡(252d).

The results of this section are summarized in Table (5.2):

Turbojet Turboprop

Necessary Condition (252b)≡(243a) (252d)≡(243b)

Cost-to-to J∗J = −J∗Jx (xd − x) J∗P = −J∗Px
(xd − x)

Speed that minimizes Cost-to-go (245) or (78) (246) or (221)

Table 5.2: Result of Ẇ ≡ 0

The authors of (Erzberger and Homer (1980), S. Wu and Guo (1994), S. Wu and Shen (1993),
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Burrows (1983), Burrows (1982)) do not provide an explicit expression for the DOC-optimal cruis-

ing speed, but as Table (5.2) suggests, the methodologies they employed and the necessary condi-

tions they develop are identical to those in Villarroel and Rodrigues (2016).

5.3 Work of at Miele (1959)

The work of Miele (1959) was written before the development of the first FMS in the 1970s.

It is therefore unsurprising that the ECON mode is not directly addressed. Instead the authors of

Miele (1959) focus on performance in certain long standing modes using the method of Lagrange

multipliers to tackle such aeronautical OCPs as the maximum range problem at a given altitude,

and the maximum endurance problem. An ECON mode cost functional is not provided, but from

maximum range at a given altitude OCP, one may develop the ECON mode problem that may be

addressed by the methodologies presented in Miele (1959).

The author of Miele (1959) begins by establishing six equations that define the OCP in question.

For a cruising aircraft in level flight, the first five of these equations are

Φ1 ≡ T (π,M, β)−D(π,M,L) = 0 (253a)

Φ2 ≡ L−W = 0 (253b)

Φ3 ≡ π − const = 0 (253c)

Φ4 ≡ θ = 0 (253d)

Φ5 ≡ ω = 0 (253e)

where T is the thrust, M is the Mach number, β is a variable controlling the engine performance, L

the lift, θ the inclination fo the velocity with respect to the horizontal axis, ω the inclination of the

thrust with respect to the velocity vector, and π the ratio of the static pressure at the cruising altitude

to the static pressure in the tropopause. The sixth equation is the cost functional to be maximized or

minimized. In the case of maximum range at a given altitude, the cost functional provided is

ΨMR ≡
Ma(π)

c(π,M, β)T (π,M, β)
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where a denotes the speed of sound, and c denotes the fuel consumption (c = SFC for a turbojet,

c = SFCvP for a turboprop). The value of cT is therefore the weight of fuel consumed. In the

case of maximum range, where CI = 0, the total DOC is exactly the fuel consumed and therefore,

the maximum range OCP with cost functional ΨMR can be interpreted as the the maximization of

the speed per unit DOC. Therefore, if CI > 0, the ECON mode-minimizing cost functional can be

interpreted as the minimal DOC per unit speed (i.e. the inverse if ΨMR) where the total DOC is

now give by c(π,M, β)T (π,M, β) + CI = −Ẇ + CI . We therefore define the ECON mode cost

functional as

Ψ ≡ c(π,M, β)T (π,M, β) + CI
Ma(π)

=
−Ẇ + CI

v
(254)

This cost functional is developed from the presentation of the maximum range cost functional, but

is also equivalent to the familiar (251) used in section 5.2 and (240), (241) used in section 5.1. Let

Φ6 = Ψ, and

z1 = π, z2 = M, z3 = L, z4 = θ, z5 = β, z6 = ω

Let A be a 6× 6 matrix with [
Aij

]
≡
[∂Φi

∂zj

]
Then a necessary condition for an extrema trajectory of Ψ with constraints Φ1, ...,Φ5 is (see Miele

(1959))

|A| = 0

Constructing A and finding the determinant under the ideal engine case when cβ = Tβ = 0, as-

suming cruise conditions when T = D, and replacing c = SFC for a turbojet and c = SFCvP

for a turboprop yields the now familiar equations (243a) for a turbojet, and (243b) for a turboprop.

Therefore, analysis of the ECON mode problem for cruise using the methodology presented in

(Miele (1959)) yields identical necessary conditions as those presented by the authors of (Erzberger

and Homer (1980), S. Wu and Guo (1994), S. Wu and Shen (1993), Burrows (1983), Burrows

(1982),Villarroel and Rodrigues (2016) ).
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Let

ΨJ =
SFCD + CI

vJ
(255a)

ΨP =
SFCDvP + CI

vP
(255b)

where ΨJ ,ΨP are derived from replacing Ẇ with−SFCD (for turbojet dynamics (7)) and−SFCDvP

(for turboprop dynamics (8)), respectively in Ψ given by (254). Then,

ΨJ = λJ = −JJx

and

ΨP = λP = −JPx

by (251). Therefore, from the analysis of (Erzberger and Homer (1980)), it follows that ΨJ ,ΨP are

constants and rearranging (255a) and (255b) and integrating yields:

∫ tf

t
Ψvdt =

∫ tf

t
−Ẇ + CIdt

⇐⇒

Ψ(xd − x) = Jcr

(256)

where Jcr is presented in (247) and applies to the turbojet and turboprop (for differing equations

for Ẇ ). Therefore, the cost functional Ψ which is formed using the techniques outlined in (Miele

(1959)) is identical to that presented in (Erzberger and Homer (1980)) and (Villarroel and Rodrigues

(2016)), and we may replace the weight dynamics of the turbojet and turboprop in (256) to produce

JJ = ΨJ(xd − x) = −ψJ(xd − x) = −JJx(xd − x) (257a)

JP = ΨP (xd − x) = −ψP (xd − x) = −JPx(xd − x) (257b)

To summarize,
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Turbojet Turboprop

Necessary Condition (252b)≡(243a) (252d)≡(243b)

Cost-to-to J∗J = −J∗Jx (xd − x) J∗P = −J∗Px
(xd − x)

Speed that minimizes Cost-to-go (245) or (78) (246) or (221)

Table 5.3: Result of Miele (1959)

which is identical to Tables 5.1 and 5.2.

5.4 Analysis of v∗J,(JW =0), v
∗
P,(JW =0)

The previous sections show that v∗J,(JW=0), v
∗
P,(JW=0) given in (245) and (246), minimize the

costs-to-go

J∗J = −J∗Jx(xd − x)

J∗P = −J∗Px(xd − x)

for the turbojet and turboprop, respectively which arise when J∗JW = J∗PW = 0. This section will

show that the expressions v∗J,(JW=0), v
∗
P,(JW=0) not only validate the assumption J∗JW = 0, J∗PW =

0, but also verify the necessary conditions H|X∗ = Hv|X∗ = 0 (see 53, 50b).

Solving J∗JW = 0, J∗PW = 0 for J∗JW , J
∗
PW

given by (95), (197) respectively, yields two positive

real solutions each that are summarized in Table 5.4.

Turbojet Solution for J∗JW = 0 Turboprop Solution for J∗PW = 0


v∗J = v∗Jf , or

v∗J = CI
C0SSFCρv

∗
Jf

(258)


v∗P = v∗Pf , or

v∗P = 1
2

(√
C0SSFCρv

∗3
Pf

+2CI

C0SSFCρv
∗
Pf

− v∗Pf

)
(259)

Table 5.4: Speeds in the Kernel of J∗JW (v∗J), J∗PW (v∗P )

Noting that v∗Jf , v
∗
Pf

are constants, we see that the solutions in (258) and (259) are also constants
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which implies that if J∗JW = J∗PW = 0, then v∗J = v∗Jf and v∗P = v∗Pf for all time t ∈ [0, tf ].

Therefore, from (258), J∗JW = 0 if

v∗J = v∗Jf =
CI

C0SSFCρv∗Jf

⇐⇒ v∗J =

√
CI

C0SSFCρ
= v∗J,(JW=0)

(260)

and from (259), J∗PW = 0 if

v∗P = v∗Pf =
1

2


√√√√C0SSFCρv∗3Pf + 2CI

C0SSFCρv∗Pf
− v∗Pf


⇐⇒ v∗P =

(2CI)
1/3

2(C0SSFCρ)1/3
= v∗P,(JW=0)

(261)

Therefore, the solution v∗J,(JW=0) minimizes the the cost-to-go J∗ = −J∗Jx(xd − x) and verifies

the assumption J∗JW = 0. Furthermore, the solution v∗P,(JW=0) minimizes the the cost-to-go J∗ =

−J∗Px(xd − x) and verifies the assumption J∗PW = 0.

If v∗J,(JW=0) is an optimal solution, as suspected, then it must hold that v∗J,(JW=0) also verifies

the equations H = 0 (see 82) and Hv∗ = 0 (see 83). It was just shown that

J∗W
(
v∗J,(JW=0)

)
= 0

Therefore, by (81)

H|v=v∗
J,(JW=0)

= SFCD + J∗Jxv
∗
J,(JW=0) + CI (262)

Hv|v=v∗
J,(JW=0)

= SFCDvJ + J∗Jx = 0 (263)

Solving (263) for W yields

W =
v
∗3/2
J,(JW=0)

2

√
Sρ(C0SSFCρv∗J,(JW=0) + J∗Jx)

C2SFC
(264)
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Replacing (264) in (262) results in

C0ρS
(
v∗(J,JW=0)

)2
SFC +

3

2
J∗Jxv

∗
J,(JW=0) + CI = 0 (265)

Finally, replacing v∗J = v∗J,(JW=0) in J∗Jx given by (244a) and replacing the result in (265) yields

0 = 0 as expected. Therefore, v∗J,(JW=0) satisfies J∗JW = 0, H = 0, Hv = 0 and minimizes the cost

to go J∗J = −J∗Jx(xd − x) that arises if J∗JW = 0. A similar argument can be made to show that

v∗P,(JW=0) satisfies J∗PW = 0, H = 0, Hv = 0 and minimizes the cost to go J∗P = −J∗Px(xd − x)

that arises if J∗PW = 0.

To summarize, though the assumptions J∗JW = J∗PW = 0 simplify the necessary conditions

H = 0, Hv = 0 and, in the case of turbojet aircraft, yield a biquadratic equation (243a) that

can be solved for v∗J , they also lead to the existence of a second set of optimal constant solutions

v∗J,(JW=0), v
∗
P,(JW=0) that have not been previously addressed in the open literature.

5.5 Summary of Earlier Research

As the above three sections suggest, the methodologies presented in (Erzberger and Homer

(1980), S. Wu and Guo (1994), S. Wu and Shen (1993), Burrows (1983), Burrows (1982),Villarroel

and Rodrigues (2016) , Miele (1959)) are equivalent in the case of an ideal engine and no wind.

Of the authors presented here, only the authors of (Villarroel and Rodrigues (2016)) were able to

determine an analytic expression for the optimal speed vJ for a cruising turbojet. This expression

is obtained by solving the biquadratic equation (243a) which is shared by all papers presented in

this section. Unfortunately, the equivalent expression for the turboprop (243b) is not biquadratic.

Though a unique positive real solution to (243b) exists, it is too long to include and is suboptimal

as it assumes that J∗PW = 0. It is for this reason that the analysis presented in chapter 4 is required.

It is also important to note that the assumption J∗JW = J∗PW = 0, or equivalently, that Ẇ = 0 gives

rise to a second set of optimal speeds v∗J,(JW=0), v
∗
P,(JW=0) given in (245) and (246) respectively

that are not addressed in the earlier research cited in this chapter.

The actual techniques employed by modern FMS to determine the ECON mod-optimizing cruise

speed is confidential. However, it should be noted that Angelo Miele, the author of (Miele (1959))
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was director of Astrodynamics and Flight Mechanics at Boeing. It is therefore suspected by the

author of this thesis that the techniques employed by Boeing to determine the DOC-optimizing

cruise speed is similar to the minimization of the cost functional common to all papers proposed in

this chapter and summarized in Table 5.5.

Turbojet Turboprop

OCP J∗J = minvJ JJ J∗P = minvP JP

Cost-to-go from (Villarroel and Rodrigues (2016)) JJ = −JJx (xd − x) JP = −JPx (xd − x)

Cost-to-go from (Erzberger and Homer (1980)) −ψJ (xd − x), ψJ = JJx −ψP (xd − x), ψP = JPx

Cost-to-go from (Miele (1959)) ΨJ (xd − x), ΨJ = −JJx ΨP (xd − x), ΨP = −JPx

Speed that minimizes Cost-to-go (245) or (78) (246) or (221)

Table 5.5: Equivalence of Previous Work

The cost functionals summarized in Table 5.5 result in suboptimal cruise speeds. Recall from

section 3.7, that number of computations required to determine the optimal final time, final weight,

and DOC associated with these suboptimal speeds require up to 29188 times the number of compu-

tations involved in the proposed methods of this thesis.
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Chapter 6

Conclusion and Future Work

This thesis has presented two novel expressions for the DOC-optimal cruising speed of a jet air-

craft including one optimal and suboptimal expressions. Similarly, a suboptimal expression for the

DOC-minimizing velocity of a turboprop has been derived. The techniques employ a combination

of the HJB equation and PMP. Furthermore, expressions for the optimal final time, final weight,

and minimal DOC are derived. Knowledge of these expressions is important as they are required

outputs of an FMS and would have to be computed numerically if analytic expressions could not

be found. The expressions provided in this thesis are in terms of the optimal initial and final speeds

of the aircraft. For Turbojet aircrafts, the optimal final speed v∗f is given in terms of the optimal

initial speed, and the initial speed is defined implicitly. However, for a Turboprop aircraft, a novel

algorithm presented here must be employed to obtain the values of the initial and final speeds u∗c , u
∗
f .

The merits of the contributions of this thesis are

• The speeds presented in chapter 3 are analytic expressions and provide a better view of the

optimal speed than what exists in the open literature as they do not assume that the optimal

DOC is insensitive to weight, or that the weight loss due to fuel consumption is negligible.

It is shown that the suboptimal speed that exists in the open literature is necessarily lower

than the optimal speed. Therefore, it could happen that though the suboptimal formulation

predicts speeds lower than the Mach divergence speed, the true optimal speed lies above the

Mach divergence speed. In this case, the definition of the drag force used in this paper and in

(Villarroel and Rodrigues (2016)) is invalid.
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• The suboptimal speed presented in chapter 4 is the first analytic expression for the optimal

cruising speed of a turboprop aircraft in the open literature (to the best of the author’s knowl-

edge).

• The analytic expressions for the optimal final time at TOD, final weight and minimal DOC of

cruising turbojet and turboprop aircraft are the first that do not assume that the optimal DOC

is insensitive to weight, or that the weight loss due to fuel consumption is negligible (to the

best of the author’s knowledge).

The work of this thesis may be extended in future as follows:

• If the implicit definition for the optimal initial speed of a turbojet could be solved explicitly,

that is, if (155) could be solved explicitly for v∗c , then the complete explicit DOC-optimal

trajectory of a turbojet would be known.

• The optimal initial and final speeds of a turboprop are presented in this thesis as the simulta-

neous solution to a system of two algebraic equations or as the result of a recursive algorithm.

Determining explicit analytic expressions of these speeds is crucial to the development of a

fully analytic expression for the DOC-optimal turboprop cruise speed.

• The analysis performed above does not take into account the climb or descent phases of flight.

Though for long hall flights, these phases are small in comparison to the cruise phase, they

are still important for the development of a full flight solution.

• It is also important to extend the results presented here to lateral flight.

• It is assumed that the optimal speed remains below the Mach divergence speed. This can

be extended to transonic flight by adding a transonic drag term to the drag force in (10) and

resolving the ECON mode cruise OCPs for a turbojet and turboprop.

• The analysis above does not consider the affects of wind or the efficiency of the engine. Using

methods similar to those in (Miele (1959), Erzberger and Homer (1980)), it may be possible

to extend the results presented in this thesis to take these factors into account.
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Appendix A

Proof of Identity (153)

To prove Identity (153):
B−1

v∗f
=

3CI
v∗c

E4(v∗c )

E12(v∗c )

note that it has already been seen in the proof of Lemma 6 that J̇∗x = 0. Therefore, it must hold

that J∗x(0) = J∗x(tf ) where J∗x(0) is the value of J∗x evaluated at time t = 0 and is obtained by

evaluating the necessary condition for optimality (83) at the initial time, and J∗x(tf ) is given by

(94). Thus it must hold that

− SFCE4(1− JW (0)∗)

ρS(v∗)3
c

= −2

3

B−1

v∗f
(266)

where J∗W (0) is the function J∗W evaluated at time t = 0. Replacing J∗W (0) with (95) evaluated at

the initial time in (266) yields
B−1

v∗f
=

3

2

E4A1(v∗c )

E0v∗cv
∗
f

(267)

Evaluating the expression for W ∗ given in (96) at the initial time when v = v∗c and rearranging

terms, yields
1

2

A1(v∗c )

E0v∗cv
∗
f

=
CI

v∗cE12
(268)

for CI > 0. Combining (267) and (268) results in the identity (153)
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Appendix B

Maple(TM) Code

The following procedures are written in Maple code. The first procedure in section B.1 solves

an arbitrary equation where both sides of the equation are continuously differentiable in the variable

to be solved using Newton’s method. The second procedure found in section B.2 calls the first pro-

cedure to solve (155) for a set of aircraft and mission parameters. Section B.3 presents a procedure

which returns the optimal initial and final cruise speeds of a turboprop aircraft. Finally, sections

B.4 and B.5 present the shooting method procedures for a turbojet and turboprop respectively. The

latter two procedures are used to validate the findings of this thesis.

B.1 Procedure 1: Newton’s Method

###### QuickSolver Procedure.

###### Inputs 1) An equation of the form A=B (EQ)

###### 2) The variable (var) in the equation A=B to be solved

###### 3) An initial guess of the value of var that solves A=B (LB)

###### 4) The acceptable percent error of [(A(var)-B(var))/A(var)] (ERROR)

######

###### Hidden Input 1) an initial value of counter, declared to be 0.

###### The value of counter is the number of iterations of Newton’s method used.

######

###### Returns 1) The value of var such that [(A(var)-B(var))/A(var)]<=ERROR

###### 2) The number of iterations used to compute the value of var
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######

###### Notes: This procedure assumes that the input equation EQ has only

###### one non-numeric unknown (var) and that EQ is solvable

###### with Newton’s method.

QuickSolver:=proc(EQ, var, LB, ERROR, counter:=0)

local L, R, func, PERERROR, newguess:

L:=lhs(EQ): # Decalre ’L’ as the left hand side of equation EQ

R:=rhs(EQ): # Declare ’R’ as the right hand side of equation EQ

func:=L-R: # Declare ’func’ as the error L-R (a function of var)

PERERROR:=evalf(abs((subs(var=LB, L)-subs(var=LB, R))/subs(var=LB, L))):

# Declare ’PERERROR’ as the percent error |(L(var)-R(var))/L(var)|

if PERERROR<ERROR

then return (LB, counter): # Return initial guess LB and counter if PERERROR<ERROR

else

newguess:=evalf(LB-subs(var=LB, func)/subs(var=LB, diff(func,var))):

# If PERERROR>ERROR, use Newton’s method on func to determine a new guess (newguess)

QuickSolver(EQ, var, newguess, ERROR, counter+1):

#Invoke Quicksolver with LB=newguess,counter:=counter+1

end if:

end proc:

B.2 Procedure 2: Optimal Initial Jet Cruise Speed

###### vc_solver Procedure

###### Inputs 1) An input set ’SET_INPUT’ containing values for

###### CI, C0, C2, SFC, S, rho, xd, Wc

######

###### Returns 1) Optimal initial speed for a cruising turbojet
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###### 2) The number of iterations of Newton’s method used by QuickSolver

###### to obtain a maximum percent error ERROR=0.000001

######

###### Notes: This procedure assumes an initial position x(t=0)=0

###### To call the vc_solver procedure, first declare a set of the form:

###### SET:={CI=value, C0=value, C2=value, SFC=value, S=value, rho=value,

###### xd=value, Wc=value}

###### then call vc_solver(SET)

vc_solver:=proc(SET_INPUT)

local EQvc, vcMR_SET, EQSET, vc_OUT, num_iters_out:

EQvc := (1/9)*C0*S*SFC*rho*(2*C0*Sˆ2*rhoˆ2*vcˆ5-24*C2*Wcˆ2*vc+

sqrt(12*C0ˆ3*C2*Sˆ4*SFCˆ2*rhoˆ4*vcˆ8*xdˆ2+C0ˆ2*Sˆ4*rhoˆ4*vcˆ10

-48*C0ˆ2*C2*Sˆ3*SFC*Wc*rhoˆ3*vcˆ7*xd

-96*C0ˆ2*C2ˆ2*Sˆ2*SFCˆ2*Wcˆ2*rhoˆ2*vcˆ4*xdˆ2

+24*C0*C2*Sˆ2*Wcˆ2*rhoˆ2*vcˆ6+192*C0*C2ˆ2*S*SFC*Wcˆ3*rho*vcˆ3*xd

+192*C0*C2ˆ3*SFCˆ2*Wcˆ4*xdˆ2+144*C2ˆ2*Wcˆ4*vcˆ2))ˆ2*(C0*Sˆ2*rhoˆ2*vcˆ4

-12*C2*Wcˆ2)*vc/((C0*Sˆ2*rhoˆ2*vcˆ5-12*C2*Wcˆ2*vc

+sqrt(12*C0ˆ3*C2*Sˆ4*SFCˆ2*rhoˆ4*vcˆ8*xdˆ2

+C0ˆ2*Sˆ4*rhoˆ4*vcˆ10-48*C0ˆ2*C2*Sˆ3*SFC*Wc*rhoˆ3*vcˆ7*xd

-96*C0ˆ2*C2ˆ2*Sˆ2*SFCˆ2*Wcˆ2*rhoˆ2*vcˆ4*xdˆ2

+24*C0*C2*Sˆ2*Wcˆ2*rhoˆ2*vcˆ6+192*C0*C2ˆ2*S*SFC*Wcˆ3*rho*vcˆ3*xd+

192*C0*C2ˆ3*SFCˆ2*Wcˆ4*xdˆ2+144*C2ˆ2*Wcˆ4*vcˆ2))*(C0*Sˆ2*rhoˆ2*vcˆ4-4*C2*Wcˆ2)ˆ2):

# Declare ’EQvc’ as as f defined in (156)

vcMR_SET:=evalf(subs(SET_INPUT, sqrt(2)*3ˆ(1/4)*sqrt(Wc)*C2ˆ(1/4)/(C0ˆ(1/4)*sqrt(S)*sqrt(rho)))):

# Declare ’vcMR_SET’ as the maximum range speed (144a) for the parameters SET_INPUT

EQSET:=subs(vc=y, SET_INPUT, EQvc=CI):

# Declare ’EQSET’ as the equation EQvc=CI which is equation (155).

vc_OUT:=[QuickSolver(EQSET, y, vcMR_SET, 0.000001)][1]:

# Declare ’vc_OUT’ as the first returned value of procedure QuickSolver with

# EQ=EQSET, var=y, LB=vcMR_SET, ERROR=.000001

num_iters_out:=[QuickSolver(EQSET, y, vcMR_SET, 0.000001)][2]:

# Declare ’num_iters_out’ as the number of iterations of Newton’s method used.

# The value of num_iters_out is the second returned value of QuickSolver.
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return (initial_speed=evalf(vc_OUT), iterations=num_iters_out):

end proc:

B.3 Procedure 3: Optimal Initial and Final Turboprop Cruise Speed

###### vf_solver_PROP Procedure

######

###### Inputs 1) An input set ’SET_INPUT’ containing values for

###### CI, C0, C2, SFC, S, rho, xd, Wc

###### 2) An acceptable error ERROR>0 such that |uf[i]-uf[i+1]|<ERROR => Stop code

###### where uf[i] is the optimal cruising speed of a turboprop after i

###### iterations of vf_solver_PROP

######

###### Returns 1) Optimal initial cruising speed of a turboprop

###### 2) Optimal final cruising speed of a turboprop

###### 3) Number of iterations of required to obtain speed values.

######

###### Notes: The procedure vf_solver_PROP assumes an initial position of 0

###### vf_solver_PROP calls vc_solver in its body.

vf_solver_PROP:=proc(SET_INPUT, ERROR)

local vfEQ, vf, SET_IN_TRANS_1, SET_IN_TRANS_2, SET_IN_TRANS, vc, counter:

vf_EQ:=sqrt(CI+sqrt(12*C0*C2*CIˆ2*(SFC*xd*(C0*Sˆ2*rhoˆ2*vcˆ4-4*C2*Wcˆ2)-2*S*Wc*rho*vcˆ3)ˆ2

/(vcˆ2*(C0*Sˆ2*rhoˆ2*vcˆ4-12*C2*Wcˆ2)ˆ2)+CIˆ2))/(sqrt(rho)*sqrt(S)*sqrt(C0)*sqrt(SFC)):

# Declare ’vf_EQ’ as equation (154) the optimal final jet cruise speed

# in terms of the optimal initial jet cruise speed

vf[0]:=0: # Declare an initial guess of the optimal turboprop final speed

vf[1]:=1: # Declare a second guess of the optimal turboprop final speed

counter:=0: # Initiate a counter

SET_IN_TRANS_1:=subs(rhs(op(select(has, SET_INPUT, C2)))

=1/3*rhs(op(select(has, SET_INPUT, C2))), SET_INPUT):

SET_IN_TRANS_2:=subs(rhs(op(select(has, SET_IN_TRANS_1, CI)))
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=1/2*rhs(op(select(has,SET_IN_TRANS_1, CI))), SET_IN_TRANS_1):

#’SET_IN_TRANS_2’ is SET where C2, CI have been replaced

with Φ(C2),Φ(CI), for Φ in (219)

for i from 2 while abs(vf[i-1]-vf[i-2])>ERROR do

SET_IN_TRANS[i]=subs(rhs(op(select(has, SET_IN_TRANS_2, SFC)))

=vf[i-1]*rhs(op(select(has, SET_IN_TRANS_2, SFC))), SET_IN_TRANS_2):

#SET_IN_TRANS[i] is Φ(SET )

vc[i]:=rhs(vc_solver(SET_IN_TRANS[i])[1]): # Call vc_solver on the set Φ−1
2 (SET )

# to obtain the inititial cruise speed for a jet.

vf[i]:=evalf(subs(vc=vc[i], SET_IN_TRANS[i], vf_EQ)):

# obtain the optimal final cruising speed of the jet from vf_EQ

counter:=counter+1:

end do:

return (initial_speed=vc[counter], final_speed=vf[counter], iterations=counter):

end proc:

B.4 Procedure 4: Turbojet Shooting Method

###### Shooting_Method Procedure

######

###### Inputs 1) An input set ’SET_input’ containing values for

###### CI, C0, C2, SFC, S, rho, xd, Wc

###### 2) A guess of the optimal initial cruise speed ’v0_guess’

###### 3) An acceptable increment in time ’time_step’ in seconds

###### 4) A value of the allowable error ’error_allowed’. The

###### final value of Jw is computed for an initial speed.

###### The procedure is recursive and will correct the initial speed

###### until the value of the final Jw is within error_allowed

###### of 0.

######

###### Prints 1) Optimal initial speed

119



###### 2) Optimal final speed

###### 3) Optimal final weight

###### 4) Final value of Jw (within error_allowed of 0)

###### 5) Optimal initial value of Jw

###### 7) Final position

###### 8) Optimal final cost (lbs)

###### 9) Optimal final time

######

###### Returns 1) An array ’OPT_TRAJ’ where OPT_TRAJ[i]=[W[i], v[i]] at time i

######

###### Notes 1) This procedure assumes an initial position of x=0

###### 2) This procedure assumes an initial time of t=0

Shooting_Method:=proc(SET_input, v0_guess, time_step, error_allowed)

local v_true, DRAG_out, Jwtc, x, W, v, DRAG, Jw, counter, i,

epsilon, Jwtcnext_gen, OPT_TRAJ, j, plot1, new_v, Cost:

v_true := subs(SET_input, sqrt((CI+sqrt(12*(1-Jw_in)ˆ2*C0*C2*SFCˆ2*W_inˆ2+CIˆ2))

/((1-Jw_in)*SFC*C0*rho*S))):

# Declare ’v_true’ as the optimal speed in terms of W, Jw given by (76).

DRAG_out:= subs(SET_input, (1/2)*C0*rho*S*(v_in)ˆ2+2*C2*(W_in)ˆ2/(rho*S*(v_in)ˆ2)):

# Declare ’DRAG_out’ as the equation for drag (10)

Jwtc := subs(SET_input, (C0*Sˆ2*SFC*rhoˆ2*v_inˆ4-2*CI*S*rho*v_inˆ2-12*C2*SFC*W_inˆ2)

/(SFC*(C0*Sˆ2*rhoˆ2*v_inˆ4-12*C2*W_inˆ2))):

# Declare ’Jwtc’ as the initial value of Jw for a given initial speed. The

# expression Jwtc is derived by solving (83) for Jx, replacing

# the result in (82), solving for Jw and evaluating the result

# at the initial time

x[0]:=0: # Set the initial value of position to 0

W[0]:=subs(SET_input, Wc): # Set the initial value of weight to Wc in SET_input

v[0]:=v0_guess: # Set the initial speed as the guess v0_guess

DRAG[0]:=subs(v_in=v[0], W_in=W[0], DRAG_out): # Replace v[0], W[0] in DRAG_out
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Jw[0]:=subs(v_in=v[0], W_in=W[0], Jwtc): # Replace v[0], W[0] in Jwtc

counter:=0:

for i from 1 while x[i-1]<=subs(SET_input, xd) do

x[i]:=x[i-1]+v[i-1]*time_step:

W[i]:=W[i-1]-subs(SET_input, SFC)*DRAG[i-1]*time_step:

Jw[i]:=Jw[i-1]+subs(SET_input, ((Jw[i-1]-1)*4*SFC*C2*W[i-1]

/(rho*S*(v[i-1])ˆ2))*time_step):

# The time derivative of Jw is obtained from (50b) which

# states that J̇∗W = −HW =
4SFCC2W (1−Jw)

ρSv2

v[i]:=subs(Jw_in=Jw[i], W_in=W[i], v_true):

DRAG[i]:=subs(v_in=v[i], W_in=W[i], DRAG_out):

counter:=counter+1:

end do:

epsilon:=Jw[counter-1]: # The final value of Jw is the error ’epsilon’

if evalf(abs(epsilon))<=error_allowed then

OPT_TRAJ:=Array(1..counter-1): #Construct the optimal trajectory in terms of W

for j from 1 to counter-1 do

OPT_TRAJ[j]:=[W[j], v[j]]:

end do:

Cost:=subs(SET_input, (Wc-W[counter-1])+CI*(counter-1)*time_step):

# The value of ’Cost’ comes from (74)

print(v_initial=v[0], v_final=v[counter-1], W_final=W[counter-1],

Jw_initial=Jw[0], Jw_final=Jw[counter-1], x_final=x[counter-1],

COST=Cost, tf=(counter-1)*time_step):

# Print all of the desired results

return OPT_TRAJ:

else

Jwtcnext_gen:=Jw[0]-epsilon: #Correct the initial Jw based on the error epsilon

new_v:=subs(Jw_in=Jwtcnext_gen, W_in=W[0], v_true):

# Correct initial speed for corrected Jw

Shooting_Method(SET_input, new_v,time_step, error_allowed):

# Call the procedure again with corrected initial speed as v0_guess.
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end if:

end proc:

B.5 Procedure 5: Turboprop Shooting Method

###### Shooting_Method_PROP Procedure

######

###### Inputs 1) An input set ’SET_IN’ containing values for

###### CI, C0, C2, SFC, S, rho, xd, Wc

###### 2) A guess of the optimal initial cruise speed ’v0_guess’

###### 3) An acceptable increment in time ’time_step’ in seconds

###### 4) A value of the allowable error ’error_allowed’. The

###### final value of Kw is computed for an initial speed.

###### The procedure is recursive and will correct the initial speed

###### until the value of the final Kw is within error_allowed

###### of 0.

######

###### Prints 1) Optimal initial speed

###### 2) Optimal final speed

###### 3) Optimal final weight

###### 4) Final value of Kw (within error_allowed of 0)

###### 5) Optimal initial value of Kw

###### 7) Final position

###### 8) Optimal final cost (lbs)

###### 9) Optimal final time

######

###### Returns 1) An array ’OPT_TRAJ’ where OPT_TRAJ[i]=[W[i], v[i]] at time i

######

###### Notes 1) This procedure assumes an initial position of x=0

###### 2) This procedure assumes an initial time of t=0

Shooting_Method_PROP:=proc(SET_IN, v0_guess, time_step, error_allowed)

local DR, vdot, Kw_IN, v, x, W, Kw, DRAG, counter, epsilon, Kwtcnext_gen, v0_NEW,

i, OPT_TRAJ, j, Cost:

DR:=(1/2)*C0*rho*S*vˆ2+2*Wˆ2*C2/(rho*S*vˆ2):
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# Declare ’DR’ as the equation for drag (10)

vdot:=-8*C0*C2*vˆ4*W*S*SFC*rho/(3*C0*Sˆ2*rhoˆ2*vˆ4+4*C2*Wˆ2):

# Declare ’vdot’ as the time derivative of v in terms of v (214)

Kw_IN:=(C0*Sˆ2*SFC*rhoˆ2*vˆ4-4*C2*SFC*Wˆ2-CI*S*rho*v)/(SFC*(C0*Sˆ2*rhoˆ2*vˆ4-4*C2*Wˆ2)):

# Declare ’Kw_IN’ as the value of Kw in terms of v and W. The

# expression Kw_IN is derived by solving (185) for Kx, replacing

# the result in (184), and solving for Kw

v[0]:=v0_guess:

x[0]:=0:

W[0]:=subs(SET_IN, Wc):

Kw[0]:=subs(v=v[0], W=W[0], SET_IN, Kw_IN):

DRAG[0]:=subs(v=v[0], W=W[0], SET_IN, DR):

counter:=0:

for i from 1 while x[i-1]<subs(SET_IN, xd) do

x[i]:=evalf(x[i-1]+v[i-1]*time_step):

v[i]:=v[i-1]+subs(v=v[i-1], W=W[i-1], SET_IN, vdot)*time_step:

W[i]:=W[i-1]+subs(v=v[i-1], W=W[i-1], SET_IN, -SFC*DR*v)*time_step:

Kw[i]:=subs(v=v[i], W=W[i], SET_IN, Kw_IN):

counter:=counter+1:

# Update x, v, W, Kw using ẋ = v, v̇ =vdot, Ẇ = −SFCDv

# and Kw is given by Kw_IN

end do:

epsilon:epsilon:=Kw[counter-1]: # The final value of Kw is the error ’epsilon’

if evalf(abs(epsilon))<=error_allowed then

OPT_TRAJ:=Array(1..counter-1): #Construct the optimal trajectory in terms of W

for j from 1 to counter-1 do

OPT_TRAJ[j]:=[W[j], v[j]]:

end do:

Cost:=subs(SET_IN, (Wc-W[counter-1])+CI*(counter-1)*time_step):

# The value of ’Cost’ comes from (74)
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print(v_initial=v[0], v_final=v[counter-1], W_final=W[counter-1],

Kw_initial=Kw[0], Kw_final=Kw[counter-1], x_final=x[counter-1],

COST=Cost, final_time=(counter-1)*time_step):

# Print all of the desired results

return OPT_TRAJ:

else

Kwtcnext_gen:=Kw[0]-epsilon: # Correct the initial value of Kw

v0_NEW:=max(op(select(is, remove(has, [solve(subs(W=Wc, SET_IN, Kw_IN)

=Kwtcnext_gen, v)], I), positive))):

# Solve Kwtcnext_gen=Kw_IN, that is, the corrected value of Kw equals Kw_IN

# for v to obtain the new corected initial speed. Select the maximum positive

# real solution

Shooting_Method_PROP(SET_IN, v0_NEW,time_step, error_allowed):

# Call the procedure again with corrected initial speed as v0_guess.

end if:

end proc:
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