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ABSTRACT

Computing the average root number of a one-parameter family of elliptic curves defined over Q

Iakovos Jake Chinis

The root number w of an elliptic curve defined over Q has an intrinsic definition as an infinite product of local

root numbers wp, over all places p of Q, with wp = ±1 for all p and such that wp = 1 for all but finitely-many p. By

considering a one-parameter family of elliptic curves defined over Q, we might ask ourselves if there is any bias in the

distribution (or parity) of the root numbers at each specialization.

From the work of Helfgott in his Ph.D. thesis, we know (at least conjecturally) that the average root number of an

elliptic curve defined over Q(T ) is zero as soon as there is a place of multiplicative reduction over Q(T ) other than

− deg.

In this paper, we are concerned with elliptic curves defined over Q(T ) with no place of multiplicative reduction

over Q(T ), except possibly at − deg. More precisely, we use the work of Helfgott to compute the average root number

of an explicit family of elliptic curves defined over Q and show that this family is “parity-biased” infinitely-often.
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Chapter 1

Introduction

Let E be an elliptic curve defined over Q. For every prime p, let Ẽp denote the reduction of E modulo p and set

ap := p + 1 − #Ẽp(Fp), where #Ẽp(Fp) denotes the number of Fp-points on Ẽp. The L-series associated to E is

defined by the Euler product

L(s, E) :=
∏

p prime
p|∆

(1− app
−s)−1

∏

p prime
p-∆

(1− app
−s + p1−2s)−1,

where ∆ is the discriminant of E. It is well known that the product defining L(s, E) converges and gives rise to an

analytic function, provided <(s) > 3
2 , which follows from Hasse’s bound: |ap| ≤ 2

√
p; we refer the reader to [Sil09].

The Modularity Theorem [Wil95] tells us that much more is true; namely,

Λ(s, E) := N
s
2

E (2π)−sΓ(s)L(s, E),

has an analytic continuation to the entire complex plane and satisfies the functional equation

Λ(s, E) = wΛ(2− s, E),

for some w = wE = ±1, where NE = NE/Q is the conductor of E and where Γ(s) :=
∫∞

0
ts−1 e−t dt is the Gamma

function. We call w the root number of E.

In this paper, we use the techniques developed by Rizzo [Riz03] and generalized by Helfgott [Hel09] to compute

the average root number of an explicit family of elliptic curves defined over Q. To do so, we implement the methods

outlined in [BDD16].

By a family of elliptic curves defined over Q, we mean an elliptic curve defined over Q(T ); equivalently, it is a

one-parameter family of elliptic curves given by a Weierstrass equation

F : y2 = x3 + a2(T )x
2 + a4(T )x+ a6(T ),

for some a2(T ), a4(T ), a6(T ) ∈ Z[T ]. For every t ∈ Z, we let F(t) denote the specialization of F at t and note that

F(t) defines an elliptic curve for all but finitely-many t. Moreover, the map which sends F to F(t) is injective for all
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but finitely-many t (Silverman’s Specialization Theorem, [Sil83]). From here, we let

εF (t) :=







the root number of F(t) if F(t) is an elliptic curve,

0 otherwise,

and define the average root number of F over Z by

AvZ(εF ) := lim
T→∞

1

2T

∑

|t|≤T

εF (t),

provided the limit exists.

In [Hel09], Helfgott showed (conditionally, and unconditionally in some cases) that AvZ(εF ) = 0 whenever F
has a place of multiplicative reduction over Q(T ) other than − deg. In order to make the statement precise, we first

state the following conjectures:

Conjecture 1.0.1 (Chowla’s Conjecture). Let P be a squarefree polynomial with integer coefficients. Then,

lim
N→∞

1

N

∑

n≤N

λ(P (n)) = 0,

where λ(n) :=
∏

p|n(−1)νp(n) is Liouville’s function and where νp(n) denotes the p-adic valuation of n.

Remark 1.0.1. By “Strong Chowla’s Conjecture” for a polynomial P , we mean that Chowla’s Conjecture holds for

P (ax+ b) for all a, b ∈ Z, a 6= 0.

Conjecture 1.0.2 (Squarefree Sieve Conjecture). Let P be a squarefree polynomial with integer coefficients. Then,

lim
N→∞

1

N
#{1 ≤ n ≤ N : ∃ prime p >

√
N s.t. p2|P (n)} = 0.

Proposition 1.0.1 ([Hel09]). Let F be a family of elliptic curves defined over Q. Let MF (T ) and BF (T ) be the

polynomials defined by

MF (T ) :=
∏

ν mult.
ν 6=− deg

Qν(T ), BF (T ) :=
∏

ν quite bad
ν 6=− deg

Qν(T ),

where the products are over all places ν of Q(T ) for which F has multiplicative reduction over Q(T ) and quite bad 1

reduction over Q(T ), respectively, and where Qν(T ) is the polynomial associated to ν. Then, for all but finitely-many

t ∈ Z,

εF (t) = sgn(g∞(t))λ(MF (t))
∏

p prime

gp(t),

where g∞ is a polynomial, sgn(g∞(t)) denotes the sign of g∞ at t, and gp : Qp → {±1} are functions satisfying:

• gp are locally constant outside a finite set of points;

• for all but finitely-many primes p, gp(τ) = 1 whenever νp(BF (τ)) < 2.

1
ν is a place of quite bad reduction if no quadratic twist of F has good reduction at ν.

2



Moreover, if F has at least one place of multiplicative reduction over Q(T ) other than − deg, and if the Squarefree

Sieve Conjecture holds for BF (T ) and Strong Chowla’s Conjecture holds for MF (T ), then AvZ(εF ) = 0.

On the other hand, if F has no place of multiplicative reduction over Q(T ), except possibly at − deg, and if the

Squarefree Sieve Conjecture holds for BF (T ), then

AvZ(εF ) =
c− + c+

2

∏

p prime

∫

Zp

gp(t)dt,

where dt denotes the usual p-adic measure and where c± = limx→±∞ sgn(g∞(x)).

Remark 1.0.2. The above theorem is conditional on the Squarefree Sieve Conjecture as well as on Chowla’s Conjec-

ture, which are known to hold in some cases; namely, Chowla’s Conjecture is known to hold for polynomials of degree

1, whereas the Squarefree Sieve Conjecture is known to hold for polynomials whose irreducible factors have degree

less than or equal to 3 [Hel04].

There has been little work dealing with the case where F has no place of multiplicative reduction over Q(T ), except

possibly at − deg. In [Riz03], Rizzo showed that Washington’s family [Was87] W : y2 = x3+ tx2− (t+3)x+1 has

εW(t) = −1 for all t ∈ Z (so that AvZ(εW) is trivially non-zero) and he also gave an example of a family of elliptic

curves whose j-invariant is not constant and whose average root number is not equal to ±1, 0. There are other such

isolated examples, see [BDD16] for a more thorough survey.

In [BDD16], the authors attempted to give a more systematic approach to describing families of elliptic curves

defined over Q whose average root number is not zero: they classified all such “potentially parity-biased” families

whose factors, in the parameter T , have degree less than or equal to 2. More precisely,

Definition 1.0.1. Let F be an elliptic curve defined over Q(T ), let jF (T ) denote the j-invariant of F , and let rF

denote the rank of F over Q(T ). Then,

• F is potentially-parity biased over Z if F has no place of multiplicative reduction over Q(T ), except possibly

at − deg.

• F is parity-biased over Z if AvZ(εF ) exists and is non-zero.

• F is non-isotrivial if jF (T ) is non-constant; otherwise, F is isotrivial.

• F has excess rank if AvZ(εF ) exists and AvZ(εF ) = −(−1)rF

Remark 1.0.3. As the authors in [BDD16] remark, there are many examples of isotrivial families. For example,

quadratic twists of a fixed elliptic curve E : y2 = x3+a2x
2+a4x+a6 defined over Q by a polynomial d(T ) ∈ Z[T ],

Ed(T ) : d(T )y2 = x3 + a2x
2 + a4x+ a6, ai ∈ Z, i = 2, 4, 6. Furthermore, we have the following implications:

Excess Rank ⇒ Parity-Biased
Helfgott
=====⇒

Conj.
Potentially Parity-Biased.

In Theorems 7 and 8 of [BDD16], the authors show that there are essentially 6 different classes of non-isotrivial,

potentially parity-biased families of elliptic curves defined over Q whose coefficients, in the parameter T , have degree

3



less than or equal to 2; namely,

Fs(t) : y
2 = x3 + 3tx2 + 3sx+ st, with s ∈ Z 6=0;

Gw(t) : wy
2 = x3 + 3tx2 + 3tx+ t2, with w ∈ Z 6=0;

Hw(t) : wy
2 = x3 + (8t2 − 7t+ 3)x2 − 3(2t− 1)x+ (t+ 1), with w ∈ Z 6=0;

Iw(t) : wy2 = x3 + t(t− 7)x2 − 6t(t− 6)x+ 2t(5t− 27), with w ∈ Z 6=0;

Jm,w(t) : wy
2 = x3 + 3t2x2 − 3mtx+m2, with m,w ∈ Z 6=0;

Lw,s,v(t) : wy
2 = x3 + 3(t2 + v)x2 + 3sx+ s(t2 + v), with v ∈ Z, s, w ∈ Z 6=0.

The authors then compute the average root number for two subfamilies of Fs,

Wa(t) : y
2 = x3 + tx2 − a(t+ 3a)x+ a3, with a ∈ Z 6=0,

Va(t) : y
2 = x3 + 3tx2 + 3atx+ a2t, with a ∈ Z 6=0,

highlighting the key ideas in implementing Helfgott’s and Rizzo’s work (see also the “Sketch of the proof of Theorem

6” on pages 6-9 in [BDD16], where the authors give a general overview on the correct way to proceed).

Remark 1.0.4. Note that Wa(t) ∼= F−354a2(12t+ 18a) and Va(t) ∼= F4a2(4t− 2a).

In this paper, we complement the work of [BDD16] by computing AvZ(εFs
); that is, we prove the following:

Theorem 1.0.1. Let Fs denote the family of elliptic curves defined over Q whose specializations are given by the

Weierstrass equation

Fs(t) : y
2 = x3 + 3tx2 + 3sx+ st, with s ∈ Z 6=0.

Then, AvZ(εFs
) exists with

AvZ(εFs
) = −

∏

p prime

EFs
(p),

where the EFs
(p) are given by Propositions 3.2.1, 3.3.1, and 3.4.1, for p ≥ 5, p = 3, and p = 2, respectively. In

particular, Fs is parity biased over Z iff s 6≡ 1, 3, 5 (mod 8).

1.1 Applications

In this section, we present some areas of mathematics where average root numbers play a role. We only briefly discuss

the results here, leaving the rest to the imagination.

1.1.1 One-level density functions of elliptic surfaces

As mentioned in [BDD16], the average root numbers of elliptic surfaces defined over Q appear naturally in the study

of elliptic curves and their associated L-functions. They show in upcoming work that the one-level density function
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of an elliptic surface F , denoted by WF , is equal to

WF (τ) = rFδ0(τ) +
1 + (−1)rF AvZ(εF )

2
WSO(even)(τ) +

1− (−1)rF AvZ(εF )

2
WSO(odd)(τ),

where rF is the rank of F over Q(T ), δ0 is the Dirac measure at 0, and WSO(even) (resp. WSO(odd)) is the one-level

density function of the special orthogonal group of even size (resp. odd size). For more on one-level densities and

applications of Helfgott’s work, see [Mil04].

1.1.2 Constructing families of elliptic curves with elevated rank

Assuming the Birch-Swinnerton-Dyer Conjecture, Silverman’s Specialization Theorem [Sil83] tells us that

rank(F(t)(Q)) ≥ rF +
1

2
(1− εF (t)(−1)rF )

for all but finitely-many t ∈ Q; in particular, the average root number of F provides a lower bound for the rank of each

specialization. In [CCH05], the authors use this lower bound to construct families of elliptic curves with elevated rank;

that is, to construct families of elliptic curves for which rF is strictly less than rank(F(t)(Q)) for all but finitely-many

t.

Remark 1.1.1. Without assuming BSD, Silverman’s Specialization Theorem tells us that rF ≤ rank(F(t)(Q)) for all

but finitely-many t ∈ Q.

1.1.3 Generalizing the congruent number problem

Given an angle π
3 ≤ θ ≤ π, a squarefree integer n is called θ-congruent if there exists a triangle whose largest angle

is θ, whose sides are all rational, and whose area is n. In [Rol11], the author gives an elliptic curve criterion for when

a given integer is θ-congruent, he then uses the work of Helfgott [Hel09] to prove some density results concerning

θ-congruent numbers.

1.2 Overview of this thesis

In this section, we provide a general overview of the work contained herein. Once again, our goal is to combine the

work of Helfgott [Hel09] and Rizzo [Riz03], and then use the methods outlined in [BDD16], to compute the average

root number of an explicit family of elliptic curves defined over Q.

The main tool in proving Theorem 1.0.1 is the work of Helfgott; namely,

Proposition 1.2.1 ([Hel09], Proposition 7.7). Let S be a finite set of places of Q, including the place at infinity. For

every place ν ∈ S, let gν : Qν → C be a bounded function that is locally constant almost everywhere. For every

prime p 6∈ S, let hp : Qp → C be a function that is locally constant almost everywhere and such that |hp(x)| ≤ 1 for

all x. Let B(x) ∈ Z[x] be a non-zero polynomial and assume that hp(x) = 1 whenever νp(B(x)) < 2. Let

W (n) =
∏

ν∈S

gν(n)
∏

p 6∈S

hp(n).

5



If the Squarefree Sieve Conjecture holds for B(x), then

AvZ(W ) =
c− + c+

2

∏

p∈S

∫

Zp

gp(x)dx
∏

p 6∈S

∫

Zp

hp(x)dx,

where c± = limx→±∞ g∞(x) and where AvZ(W ) := limN→∞
1

2N

∑

|n|≤N W (n).

Remark 1.2.1. (i) When we say that a function is locally constant almost everywhere, we mean that it is locally

constant outside a finite set of points. Recall further that a function f from topological space X into a set Y is locally

constant if for every x ∈ X there exists a neighbourhood U about x such that f is constant on U .

(ii) We use ν to represent a place of Q that is either finite or infinite, so that Qν = Qp is the field of p-adic numbers

if ν = p is a (finite) prime and Qν = R if ν = ∞ is the prime/place at infinity. The products indexed by p are over

finite primes, under the respective conditions.

(iii) Note that a function f : R → C that is locally constant almost everywhere (that is, outside a finite set of

points) is a step function with finitely-many discontinuities; in particular, g∞(x) is constant for all x sufficiently large

(sufficiently large and negative, respectively).

In order to use Proposition 1.2.1, our first goal is to write εF (t) as an infinite product: this is accomplished by

writing the root number of F(t) as a product of local root numbers wp(t),

εF (t) = −
∏

p prime

wp(t).

Remark 1.2.2. Alternatively, one may define the root number w of an elliptic curve E/Q to be the infinite product

of local root numbers (independently of the functional equation associated to L(s, E)). The local root numbers are

themselves defined by representations of the Weil-Deligne group of Qp (with w∞ = −1 for all elliptic curves defined

over R); we refer the reader to [Del73] and [Tat79].

Sadly, the local root numbers do not, in general, satisfy the hypotheses of Proposition 1.2.1 (see section 1.2 of

[Hel09]). In order to rectify this, we then express εF (t) as a product of modified local root numbers w∗
ν(t),

εF (t) = −w∗
∞(t)

∏

p prime

w∗
p(t),

with w∗
ν(t) satisfying the hypotheses of Proposition 1.2.1; our choice of w∗

ν(t) is a natural one (see Remark 3.1.2). At

this point, computing the average root number of F amounts to computing the p-adic integrals
∫

Zp
w∗

p(t)dt, which we

break into three sections (for p ≥ 5, p = 3, p = 2), and we have that

AvZ(εF ) = −
∏

p prime

∫

Zp

w∗
p(t)dt,

as our choice of w∗
∞(t) is equal to 1 for all but finitely-many t ∈ Z.

Remark 1.2.3. In all that follows, the letter p will denote a (finite) prime and products over p are understood to be

over all (finite) primes. In the case where a product involves the added “prime/place at infinity,” we will make this

explicit by writing the product over p ≤ ∞. As usual, Zp denotes the ring of p-adic integers and for all n ∈ Zp,

νp(n) denotes the p-adic valuation of n. We use the identification Z ↪→ Zp freely and set np := np−νp(n) for all

n ∈ Zp \{0}.

6



Chapter 2

Background on root numbers and p-adic

integrals

In this chapter, we attempt to give as much background as possible on root numbers of elliptic curves and the basics

of p-adic integration; we confine ourselves to what is needed for this thesis.

2.1 Root numbers: a history

In this section, we give a brief survey on root numbers of elliptic curves defined over Q, beginning with the work of

Deligne [Del73] and ending with the work of Rizzo [Riz03].

The root number w of an elliptic curve E defined over Q has an intrinsic definition as an infinite product of local

root numbers wp over all (finite) primes of Q and the prime at infinity p = ∞. In particular, wp = ±1 for all primes p

with wp = 1 for all but finitely-many p, so that the expression

w :=
∏

p≤∞

wp

is well-defined.

Defining local root numbers is quite a process; we mention the bare minimum here and refer back to the work of

Deligne [Del73] and Tate [Tat79]. So, let E be an elliptic curve defined over Q and let p be a prime (either finite or

infinite). The local root number wp of E at p is defined by

wp :=
ε(σ′

E,p, ψ, dx)

|ε(σ′
E,p, ψ, dx)|

,

where ψ is any non-trivial, unitary character on Qp, dx is any Haar measure on Qp, σ′
E,p is some representation of the

Weil-Deligne group of Qp, and ε(σ′
E,p, ψ, dx) is the corresponding ε-factor as in [Del73] and [Tat79].

There are several classical results related to computing wp for various p and for various E/Q. For example, it is

well-known that w∞ = −1 for all E/R, and that wp = 1 whenever E has good reduction at p; see [Roh93] for a

complete exposition of well-known results, or [Con94] for a more concise exposition.

In [Roh93], Rohrlich computed wp for all p ≥ 5 and for allE/Q. For p = 2, 3, Rohrlich was only able to compute
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wp in the case where E has bad, potentially good reduction at p, with E abelian at p, j 6= 0, 1728. Unfortunately,

Rohrlich’s work for p = 2, 3 is not effective for computations, in the sense that his results are not explicit: for p = 2, 3,

his work relies on finding a totally ramified cyclic extension K of Qp and a nontrivial character µ on Q∗
p such that µ

has order [K : Qp], with µ trivial on the norm group NK/Qp
(K∗). From there, he shows that wp = µ(−1).

Connell [Con94] improved upon the work of Rohrlich in the case where E has bad, potentially good reduction at

p = 2, 3, with E abelian at p, j 6= 0, 1728, by making Rohrlich’s results explicit: Connell gave formulas for w2, w3 in

terms of the covariants c4, c6,∆, and the invariant j associated to E.

For j = 0, 1728, the local root numbers of E were computed by Birch-Stephens [BS66] and Liverance [Liv95].

Halberstadt [Hal98] then completed the study of local root numbers of elliptic curves defined over Q by considering

the remaining cases at p = 2, 3. Again, the results are not effective for computations (at least when one considers a

parametrized family of elliptic curves) as the work of Halberstadt gives values for w2, w3 which depend upon the

coefficients of a minimal Weierstrass equation for E.

Rizzo [Riz03] brought the study of local root numbers full circle by revisiting the work of Halberstadt and removing

the minimality condition for the Weierstrass equation definingE, thereby providing explicit formulas for the local root

numbers of all elliptic curves defined over Q and for all p. For these reasons, we use [Riz03] for our computations.

Remark 2.1.1. As the authors in [BDD16] remark, there are the following misprints in [Riz03]: in Table II, the line

corresponding to (a, b, c) = (≥ 5, 6, 9) should read c′6 + 2 6≡ 3c4,4 (mod 9); in Table III, the second line should read

(a, b, c) = (0, 0,≥ 0) and the Kodaira symbol at (a, b, c) = (2, 3, 1) should read I∗2 .

2.2 p-adic analysis

In this section, we mention the basics of p-adic integration for complex-valued functions. All that follows is essentially

an exercise in general measure theory, we use [Roy10] as a general reference.

We begin our study of p-adic analysis by “constructing” the Haar measure µ = µHaar on Zp. For all a ∈ Zp and

all n ∈ N, define µp(a + pn Zp) := p−n; we extend µp to all compact-open subsets of Zp by additivity, noting that

all compact-open subsets of Zp can be written as the disjoint union of a finite number of sets of the form a + pn Zp.

From here, we define the outer-measure µ∗
p induced by µp, by setting µ∗

p(∅) = 0 and by defining

µ∗
p(O) := inf

{Ok}

∑

k

µp(Ok),

for all O ⊂ Zp, where the infimum is taken over all countable sets of compact-open subsets of Zp whose union covers

O. Now, let M denote the σ-algebra of µ∗
p-measurable sets of Zp; that is,

M = {O ⊂ Zp : µ∗
p(A) = µ∗

p(A
⋂

O) + µ∗
p(A

⋂

Oc) for all A ⊂ Zp}.

Finally, we let µ = µHaar denote the restriction of µ∗
p on the Borel σ-algebra of subsets of Zp, B ⊂ M; i.e., µ = µ∗

p|B
.

We are now in a position to define p-adic integrals of the simplest kind, pun intended. Let X ∈ B and let f be a

complex-valued function on X . Suppose further that f can be written as a finite linear combination of characteristic

functions of pairwise disjoint, Borel subsets of X , say f =
∑n

i=1 ciχOi
, for some ci ∈ C,Oi ⊂ X . The integral of f

8



over X with respect to µ is then defined by

∫

X

f(x)µ(x) :=

n
∑

i=1

ciµ(Oi).

Remark 2.2.1. We often write
∫

X
f(x)dx in place of

∫

X
f(x)µ(x).

2.2.1 p-uniformly locally constant multiplicative functions and their p-adic integrals

In our work, we deal with functions Rizzo calls p-uniformly locally constant multiplicative functions. We will see

that these functions are locally constant everywhere, except possibly at 0, which is what we need in order to apply

Proposition 1.2.1.

Definition 2.2.1 ([Riz03], p.11). A function f : Zp → R is a p-uniformly locally constant multiplicative function

if there exists a positive integer η such that the value of f at x ∈ Zp is completely determined by νp(x) and xp :=

xp−νp(x) (mod pη). We call η a uniformity constant of f

Remark 2.2.2. Note that uniformity constants are not unique: if the value of f at x is determined by νp(x) and

xp (mod pη), then it is certainly determined by νp(x) and xp (mod pη
′

) for any η′ ≥ η.

From the definition above, it should be clear that all p-uniformly locally constant multiplicative functions are

locally constant on pe Z∗
p := {x ∈ Zp : νp(x) = e} for all e ≥ 0. To see this, let η be a uniformity constant of f ,

partition pe Z∗
p into pη−1(p− 1) disjoint balls of radius pe+η ,

pe Z∗
p =

⋃

αi=0,1,...,p−1
α0 6=0

pe(α0 + α1p+ · · ·+ αη−1p
η−1) + pe+η Zp,

and note that f is constant on each ball. From here, it is easy to see that

∫

νp(t)=e

f(t)dt :=

∫

pe Z∗
p

f(t)dt =
∑

d∈(Z /pη Z)∗

f(dpe)

pe+η
.

We extend the above expression to all of Zp by writing

∫

Zp

f(t)dt =

∞
∑

e=0

∫

νp(t)=e

f(t)dt,

provided the sum converges absolutely.
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Chapter 3

The family Fs and its average root number

In all that follows, we concern ourselves with the Weierstrass equation

Fs(t) : y
2 = x3 + 3tx2 + 3sx+ st, s ∈ Z, s 6= 0,

for which we have

c4(t) = 2432(t2 − s),

c6(t) = −2633t(t2 − s),

∆(t) = −2633s(t2 − s)2,

j(t) =
−2633

s
(t2 − s).

We prove the following:

Theorem 3.0.1. Let

εFs
(t) =







the root number of Fs(t) if Fs(t) is an elliptic curve,

0 otherwise.

Then,

AvZ(εFs
) : = lim

T→∞

1

2T

∑

|t|≤T

εFs
(t)

= −
∏

p prime

EFs
(p),

where the EFs
(p) are given by Propositions 3.2.1, 3.3.1, and 3.4.1, for p ≥ 5, p = 3, and p = 2, respectively; in

particular, Fs is parity biased over Z iff s 6≡ 1, 3, 5 (mod 8).
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3.1 Finding local root numbers for the family F s

We begin by using tables I, II, and III of [Riz03] to find the local root numbers wp(t) of Fs(t). From there, we choose

appropriate w∗
p(t) so that

εFs
(t) = −

∏

p prime

wp(t) = −w∗
∞(t)

∏

p prime

w∗
p(t),

with w∗
p(t) satisfying the hypotheses of Proposition 1.2.1.

The local root numbers of Fs(t) for p ≥ 5 are presented below. For p = 2, 3, similar calculations ensue, but we

only present the final results in Appendix A.

Proposition 3.1.1. For p ≥ 5,

• if 0 ≤ 2νp(t) < νp(s), then

wp(t) =







−
(

3tp
p

)

if νp(t) is even,
(

−1
p

)

if νp(t) is odd;

• if 0 ≤ νp(s) < 2νp(t), then

wp(t) =











(

−1
p

)

νp(s)

2

if νp(s) is even,
(

−2
p

)

if νp(s) is odd;

• if 0 ≤ 2νp(t) = νp(s), then

wp(t) =



















(

−1
p

)

if νp(t) + νp(t
2 − s) ≡ 1 (mod 2),

(

−3
p

)

if νp(t) + νp(t
2 − s) ≡ 2, 4 (mod 6),

1 if νp(t) + νp(t
2 − s) ≡ 0 (mod 6).

Remark 3.1.1.
(

·
p

)

represents the Legendre symbol.

Proof. In order to find wp(t), it suffices to find the smallest triplet of non-negative integers (a, b, c) such that

νp(c4(t)) ≡ a (mod 4),

νp(c6(t)) ≡ b (mod 6),

νp(∆(t)) ≡ c (mod 12).

Given such a triplet, we merely locate the corresponding value ofwp(t) in Table I of [Riz03]. For the sake of simplicity,

we write νp(c4, c6,∆) for the triplet (νp(c4(t)), νp(c6(t)), νp(∆(t))) and

(a, b, c) ∼ (a′, b′, c′),

for non-negative integers a, b, c, if a = a′ + 4k, b = b′ + 6k, and c = c′ + 12k, for some k ∈ Z.
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For p ≥ 5,

νp(c4, c6,∆) = (νp(t
2 − s), νp(t) + νp(t

2 − s), νp(s) + 2νp(t
2 − s)).

From here, we consider three cases:

• If 0 ≤ 2νp(t) < νp(s), then νp(t
2 − s) = min(2νp(t), νp(s)) = 2νp(t); in particular,

νp(c4, c6,∆) = (2νp(t), 3νp(t), νp(s) + 4νp(t)).

Writing νp(t) = 2k + λ, for some k ∈ Z≥0, λ ∈ {0, 1}, we have that

νp(c4, c6,∆) ∼ (2λ, 3λ, νp(s)− 4k + 4λ).

Since νp(s) > 2νp(t) = 4k + 2λ,

νp(c4, c6,∆) ∼ (2λ, 3λ,> 6λ).

Looking into Table I of [Riz03],

wp(t) =







−
(

−c6p
−νp(c6)

p

)

if λ = 0,
(

−1
p

)

if λ = 1.

Moreover, −c6p−νp(c6) = 2633t(t2 − s)p−3νp(t), as νp(c6) = 3νp(t). If we let tp = tp−νp(t), then

(−c6p−νp(c6)

p

)

=
(3tp(t

2
p − sp−2νp(t))

p

)

=
(3tp
p

)( t2p − sp−2νp(t)

p

)

.

Finally, the assumption that 2νp(t) < νp(s) implies sp−2νp(t) is divisible by p; and so,

( t2p − sp−2νp(t)

p

)

=
( t2p
p

)

= 1,

which is the desired result.

• If 0 ≤ νp(s) < 2νp(t), then νp(t
2 − s) = min(2νp(t), νp(s)) = νp(s); in particular,

νp(c4, c6,∆) = (νp(s), νp(s) + νp(t), 3νp(s)).

Writing νp(s) = 4k + λ, for some k ∈ Z≥0, λ ∈ {0, 1, 2, 3}, we have that

νp(c4, c6,∆) ∼ (λ, νp(t)− 2k + λ, 3λ).

Since νp(t) >
νp(s)

2 = 2k + 1
2λ,

νp(c4, c6,∆) ∼ (λ,>
3

2
λ, 3λ).
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Looking into Table I of [Riz03], we have that

wp(t) =











(

−1
p

)

νp(s)

2

if λ = 0, 2,
(

−2
p

)

if λ = 1, 3,

as claimed.

• If 0 ≤ 2νp(t) = νp(s), then

vp(c4, c6,∆) = (vp(t
2 − s), vp(t) + vp(t

2 − s), vp(s) + 2(vp(t
2 − s))

= (vp(t
2 − s), vp(t) + vp(t

2 − s), 2(vp(t) + vp(t
2 − s)).

Writing vp(t) + vp(t
2 − s) = 6k + λ, for some k ∈ Z≥0, λ ∈ {0, 1, 2, 3, 4, 5},

vp(c4, c6,∆) ∼ (2k + λ− vp(t), λ, 2λ).

Since vp(t
2 − s) ≥ min(2vp(t), vp(s)) = 2vp(t), 6k + λ = vp(t) + vp(t

2 − s) ≥ 3vp(t); in particular,

2k ≥ vp(t)− 1
3λ. So,

vp(c4, c6,∆) ∼ (≥ 2

3
λ, λ, 2λ).

Looking into Table I of [Riz03],

wp(t) =



















(

−1
p

)

if λ = 1, 3, 5,
(

−3
p

)

if λ = 2, 4,

1 if λ = 0,

which is the desired result.

So far, we have written the root number of Fs(t) as a product of local root numbers

εFs
(t) = −

∏

p prime

wp(t),

with wp(t) given by Proposition 3.1.1 for p ≥ 5 and w3(t), w2(t) given by Propositions A.0.1, A.0.2 in Appendix A,

respectively. Our next goal is to modify the local root numbers in order to apply Proposition 1.2.1 (this is accomplished

in the following lemma).

Lemma 3.1.1. For p ≥ 5, let w∗
p(t) = wp(t)

(

−1
p

)νp(t
2−s)

, with wp(t) as in Proposition 3.1.1. For p = 2, 3, and for

the prime at infinity, let w∗
2(t), w

∗
3(t), w

∗
∞(t) ∈ {±1} be defined by

w∗
2(t) ≡ (t2 − s)2w2(t) (mod 4),

w∗
3(t) = (−1)ν3(t

2−s)w3(t),

w∗
∞(t) = sgn(t2 − s),
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where w2(t), w3(t) are given by Propositions A.0.2, A.0.1, respectively. Then,

εFs
(t) = −

∏

p prime

wp(t) = −w∗
∞(t)

∏

p prime

w∗
p(t). (1)

Remark 3.1.2. The choice of w∗
p(t) is a natural one, more or less. We begin by assuming p ≥ 5, p - s, and

p|∆(t) = −2633s(t2 − s)2, so that νp(t
2 − s) > 0 (if p - ∆, then wp(t) = 1 and this does not pose a problem in

applying Proposition 1.2.1; similarly, the assumption that p - 6s throws away a finite number of primes, which will

belong to the set S in Proposition 1.2.1). We have two cases to consider: νp(t) = νp(s) = 0 and νp(t) > νp(s) = 0.

In the first case,

wp(t) =



















(

−1
p

)

if νp(t
2 − s) ≡ 1 (mod 2),

(

−3
p

)

if νp(t
2 − s) ≡ 2, 4 (mod 6),

1 if νp(t
2 − s) ≡ 0 (mod 6),

whereas, wp(t) = 1 in the second case. Taking

w∗
p(t) = wp(t)

(−1

p

)νp(t
2−s)

,

we see that w∗
p(t) = 1 whenever p - 6s and νp(t

2 − s) ≤ 1. The choices of w∗
2(t), w

∗
3(t), w

∗
∞(t) are then made so that

Equation 1 holds. Combining this remark together with Lemma 3.1.1 allows us to apply Proposition 1.2.1.

Proof. For p odd,
(

−1
p

)

≡ p (mod 4), so that

∏

p 6=2,3

w∗
p(t) =

∏

p 6=2,3

(−1

p

)νp(t
2−s) ∏

p 6=2,3

wp(t)

≡
∏

p 6=2,3

pνp(t
2−s)

∏

p 6=2,3

wp(t) (mod 4)

≡ (−1)ν3(t
2−s)

∏

p 6=2

pνp(t
2−s)

∏

p 6=2,3

wp(t) (mod 4)

= (−1)ν3(t
2−s)|(t2 − s)2|

∏

p 6=2,3

wp(t);

thus,

−w∗
∞(t)

∏

p prime

w∗
p(t) = −

∏

p prime

wp(t).

Applying Proposition 1.2.1 with S = {p : p - 6s}⋃{∞}, gν = w∗
ν , hp = w∗

p, and B(x) = x2 − s, we have that

AvZ(εFs
) = −

∏

p prime

∫

Zp

w∗
p(t)dt,

as w∗
∞(t) = 1 for all but finitely-many integers t.
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Remark 3.1.3. Recall that the Squarefree Sieve Conjecture (Conjecture 1.0.2) holds for all polynomials whose irre-

ducible factors are of degree ≤ 3 [Hel04]. Since we are applying Proposition 1.2.1 with B(x) = x2 − s, our results

are unconditional.

The next few sections are devoted to computing the p-adic integrals
∫

Zp
w∗

p(t)dt for p ≥ 5, p = 3, and p = 2,

respectively.

3.2 Computing
∫

Zp
w∗
p(t)dt for p ≥ 5

During the calculations involved in computing
∫

Zp
w∗

p(t)dt for p ≥ 5, we will need to deal with integrals of the form

∫

νp(t)=
νp(s)

2

νp(t
2−s)=νp(s)+k

1dt,

for k ∈ Z≥0; this is accomplished in the following lemma,

Lemma 3.2.1. For k ∈ Z≥0, let Sk := {t ∈ Zp : νp(t) =
νp(s)

2 , νp(t
2 − s) = νp(s) + k}. Then, Sk has measure

µ(Sk) =



















































0 if νp(s) is odd,






































p−1

p
νp(s)

2
+1

if
(

sp
p

)

= −1 and k = 0,

p−3

p
νp(s)

2
+1

if
(

sp
p

)

= 1 and k = 0,

0 if
(

sp
p

)

= −1 and k ≥ 1,

2(p−1)

p
νp(s)

2
+k+1

if
(

sp
p

)

= 1 and k ≥ 1,

if νp(s) is even.

Proof. We assume that νp(s) is even; otherwise, Sk = ∅ and there is nothing to prove. Let χk denote the characteristic

function of Sk. For t ∈ Zp, χk(t) = 1 iff νp(t) =
νp(s)

2 and t2p ∈ sp + pk Z∗
p. Point is, χk is a p-uniformly locally

constant multiplicative function with uniformity constant η = k + 1. Hence,

µ(Sk) :=

∫

νp(t)=
νp(s)

2

νp(t
2−s)=νp(s)+k

1dt

=
1

p
νp(s)

2 +k+1

∑

d∈(Z /pk+1 Z)∗

χk(dp
νp(s)

2 ).

We begin with the case k = 0 and treat the other cases separately.

For k = 0, χ0(dp
νp(s)

2 ) = 1 iff d2 6≡ sp (mod p). If sp is not a square modulo p, then all d ∈ (Z /pZ)∗

possess the preceding quality; on the other hand, if sp is a square modulo p, exactly two d ∈ (Z /pZ)∗ are such that

d2 ≡ sp (mod p). Therefore,

µ(S0) =











p−1

p
νp(s)

2
+1

if
(

sp
p

)

= −1,

p−3

p
νp(s)

2
+1

if
(

sp
p

)

= 1.

Now, suppose that k ∈ N and let S∗
k := {t ∈ Zp : νp(t) =

νp(s)
2 , νp(t

2 − s) ≥ νp(s)+ k}. Since Sk = S∗
k \S∗

k+1,
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with µ(S∗
k+1) <∞, µ(Sk) = µ(S∗

k)−µ(S∗
k+1). Moreover, if we let χ∗

k denote the characteristic function of S∗
k , then

χ∗
k is a p-uniformly locally constant multiplicative function with uniformity constant η = k. Therefore,

µ(S∗
k) =

1

p
νp(s)

2 +k

∑

d∈(Z /pk Z)∗

χ∗
k(dp

νp(s)

2 ),

with χ∗
k(dp

νp(s)

2 ) = 1 iff d2 ≡ sp (mod pk). Since an integer a relatively prime to p is a square modulo p iff a is a

square modulo pn for every n ∈ N, we have that

µ(S∗
k) =











0 if
(

sp
p

)

= −1,

2

p
νp(s)

2
+k

if
(

sp
p

)

= 1;

and so,

µ(Sk) = µ(S∗
k)− µ(S∗

k+1) =











0 if
(

sp
p

)

= −1

2(p−1)

p
νp(s)

2
+k+1

if
(

sp
p

)

= 1,

as claimed.

We are now in a position to prove the following:

Proposition 3.2.1. For p ≥ 5,

∫

Zp

w∗
p(t)dt

=















(

−1
p

)

νp(s)

2 1

p
νp(s)

2
+1

if νp(s) is even,
(

2
p

)

1

p
νp(s)+1

2

if νp(s) is odd,

+































0 if νp(s) = 0, 1, 2,
(

−1
p

)

p−1
p2 if νp(s) = 3, 4, 5, 6,

(

−1
p

)

1
p+1 ·







1− p−2α if νp(s) ≡ 2 (mod 4),

1− p−2α−2 otherwise,
if νp(s) ≥ 7,

+















































0 if νp(s) is odd,


































(

−1
p

)

j
2 p−1

p
νp(s)

2
+1

if
(

sp
p

)

= −1,

(

−1
p

)

j
2 p−1

p
νp(s)

2
+1

if
(

sp
p

)

= 1 and p ≡ 1 (mod 3),

(

−1
p

)

j
2 1

p
νp(s)

2
+1

(

p− (2j + 1)− 4(−1)
j
2

p4+ j
2p

3+p2+ j
2

(p+1)(p4+p2+1)

)

if
(

sp
p

)

= 1 and p ≡ 2 (mod 3),

if νp(s) is even,

where α = b νp(s)−2
4 c and j ∈ {0, 2} such that νp(s) ≡ j (mod 4) (for νp(s) even).
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Remark 3.2.1. In the case where νp(s) = 0, such a hideous expression reduces to something quite nice; namely,

∫

Zp

w∗
p(t)dt =



















1 if
(

sp
p

)

= −1,






1 if p ≡ 1 (mod 3),

1− 4 p(p2+1)
(p+1)(p4+p2+1) if p ≡ 2 (mod 3),

if
(

sp
p

)

= 1.

Proof. By Proposition 3.1.1,

∫

Zp

w∗
p(t)dt =

∫

0≤2νp(t)<νp(s)

w∗
p(t)dt+

∫

0≤νp(s)<2νp(t)

w∗
p(t)dt+

∫

0≤νp(s)=2νp(t)

w∗
p(t)dt

=

∫

0≤2νp(t)<νp(s)
2|νp(t)

−
(3tp
p

)

dt+

∫

0≤2νp(t)<νp(s)
2-νp(t)

(−1

p

)

dt

+











∫

0≤νp(s)<2νp(t)

(

−1
p

)

νp(s)

2

dt if νp(s) is even,
∫

0≤νp(s)<2νp(t)

(

2
p

)

dt if νp(s) is odd,

+

∞
∑

k=0

∫

0≤νp(s)=2νp(t)

νp(t
2−s)=νp(s)+k

w∗
p(t)dt,

where the infinite sum is simply a partition of
∫

0≤νp(s)=2νp(t)
w∗

p(t)dt. We consider each line separately, noting that

the third line is the most difficult to deal with.

We begin by partitioning the first two integrals as a sum over all t ∈ Zp with νp(t) = 2k and νp(t) = 2k + 1,

respectively, to obtain

∫

0≤2νp(t)<νp(s)
2|νp(t)

−
(3tp
p

)

dt =
∑

0≤k<
νp(s)

4

∫

νp(t)=2k

−
(3tp
p

)

dt

=
∑

0≤k<
νp(s)

4

−
(3

p

) 1

p2k+1

∑

d∈(Z /pZ)∗

(d

p

)

and

∫

0≤2νp(t)<νp(s)
2-νp(t)

(−1

p

)

dt =
∑

0≤k<
νp(s)−2

4

∫

νp(t)=2k+1

(−1

p

)

dt

=
∑

0≤k<
νp(s)−2

4

(−1

p

)

µ({t ∈ Zp : νp(t) = 2k + 1}).

In the first case,
∫

0≤2νp(t)<νp(s)
2|νp(t)

−
(

3tp
p

)

dt = 0: simply note that there are exactly p−1
2 squares and p−1

2 non-squares

modulo p; i.e.,

∑

d∈(Z /pZ)∗

(d

p

)

= 0

17



In the second case, µ({t ∈ Zp : νp(t) = 2k + 1}) = p−1
p2k+2 , so that

∫

0≤2νp(t)<νp(s)
2-νp(t)

(−1

p

)

dt =
∑

0≤k<
νp(s)−2

4

(−1

p

) p− 1

p2k+2

=
(−1

p

)p− 1

p2

∑

0≤k<
νp(s)−2

4

(p−2)k.

Now, it is merely a matter of simplifying the geometric sum, taking into account the range of k: if νp(s) = 0, 1, 2,

then the sum is empty and the integral vanishes; if νp(s) = 3, 4, 5, 6, then the only contribution comes from k = 0, so

that the integral is equal to
(

−1
p

)

p−1
p2 ; for the remaining cases, let α = b νp(s)−2

4 c and note that

(−1

p

)p− 1

p2

∑

0≤k<
νp(s)−2

4

(p−2)k =
(−1

p

)p− 1

p2
1

1− p−2
·







1− p−2α if νp(s) ≡ 2 (mod 4),

1− p−2α−2 otherwise.

We have the following:

∫

0≤2νp(t)<νp(s)

w∗
p(t)dt =































0 if νp(s) = 0, 1, 2,
(

−1
p

)

p−1
p2 if νp(s) = 3, 4, 5, 6,

(

−1
p

)

1
p+1 ·







1− p−2α if νp(s) ≡ 2 (mod 4),

1− p−2α−2 otherwise,
if νp(s) ≥ 7.

For the integral over {t ∈ Zp : 0 ≤ νp(s) < 2νp(t)}, a quick calculation yields:

∫

0≤νp(s)<2νp(t)

w∗
p(t)dt =











∫

0≤νp(s)<2νp(t)

(

−1
p

)

νp(s)

2

dt if νp(s) is even,
∫

0≤νp(s)<2νp(t)

(

2
p

)

dt if νp(s) is odd,

=















(

−1
p

)

νp(s)

2 1

p
νp(s)

2
+1

if νp(s) is even,

(

2
p

)

1

p
νp(s)+1

2

if νp(s) is odd.

Finally, for the integral over {t ∈ Zp : 0 ≤ 2νp(t) = νp(s)}, we assume νp(s) is even (otherwise, the domain of

integration is empty and there is nothing to prove) and we have the following:

∫

0≤2νp(t)=νp(s)

w∗
p(t)dt =

∞
∑

k=0

∫

0≤2νp(t)=νp(s)

νp(t
2−s)=νp(s)+k

w∗
p(t)dt,

where, in this case,

w∗
p(t) =























(

−1
p

)k+1

if k ≡ 1− 3νp(s)
2 (mod 2),

(

−3
p

)(

−1
p

)k

if k ≡ − 3νp(s)
2 (mod 2), 6≡ 0 (mod 3)

(

−1
p

)k

if k ≡ − 3νp(s)
2 (mod 6).
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Moreover,

∞
∑

k=0

∫

0≤νp(s)=2νp(t)

νp(t
2−s)=νp(s)+k

w∗
p(t)dt

=
∑

k≡1−
3νp(s)

2 (mod 2)

(−1

p

)k+1

µ(Sk) +
∑

k≡
−3νp(s)

2 (mod 2)
k 6≡0 (mod 3)

(−3

p

)(−1

p

)k

µ(Sk) +
∑

k≡
−3νp(s)

2 (mod 6)

(−1

p

)k

µ(Sk),

with µ(Sk) as in Lemma 3.2.1. If we let j ∈ {0, 2} be such that νp(s) ≡ j (mod 4), this becomes

(−1

p

)

j
2

(

∑

k≡1− j
2 (mod 2)

µ(Sk) +
∑

k≡ j
2 (mod 2)

k 6≡0 (mod 3)

(−3

p

)

µ(Sk) +
∑

k≡ 3j
2 (mod 6)

µ(Sk)

)

.

In the case where
(

sp
p

)

= −1,

µ(Sk) =











p−1

p
νp(s)

2
+1

if k = 0,

0 if k ≥ 1;

in particular,

∫

0≤νp(s)=2νp(t)

w∗
p(t)dt =

(−1

p

)

j
2 p− 1

p
νp(s)

2 +1
,

as the only contribution comes from µ(S0). The case where
(

sp
p

)

= +1 requires more work. We begin by recalling

that

µ(Sk) =











p−3

p
νp(s)

2
+1

if k = 0,

2

p
νp(s)

2
+k+1

if k ≥ 1.

By separating µ(S0) from µ(Sk) for k ≥ 1, we obtain

∫

0≤νp(s)=2νp(t)

w∗
p(t)dt

=
(−1

p

)

j
2

(

µ(S1− j
2
) + µ(S 3j

2
) +

(−3

p

)

(

µ(S j
2
)− µ(S 3j

2
)

)

+

∞
∑

k=1

µ(S2k+1− j
2
) +

∞
∑

k=1

µ(S6k+ 3j
2
) +

(−3

p

)

(

∞
∑

k=1

µ(S2k+ j
2
)−

∞
∑

k=1

µ(S6k+ 3j
2
)

))

,

where

∞
∑

k=0

µ(S2k+ j
2
)−

∞
∑

k=0

µ(S6k+ 3j
2
) =

∑

k≡ j
2 (mod 2)

k 6≡0 (mod 3)

µ(Sk).
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For k ≥ 1, µ(Sk) =
2(p−1)

p
νp(s)

2
+k+1

and it is easy to see that

∫

0≤νp(s)=2νp(t)

w∗
p(t)dt

=
(−1

p

)

j
2

(

µ(S1− j
2
) + µ(S 3j

2
) +

(−3

p

)

(

µ(S j
2
)− µ(S 3j

2
)

)

+
2(p− 1)

p
νp(s)

2 +1

(

1

p1−
j
2 (p2 − 1)

+
1

p
3j
2 (p6 − 1)

+
(−3

p

)

(

1

p
j
2 (p2 − 1)

− 1

p
3j
2 (p6 − 1)

)))

.

If p ≡ 1 (mod 3), then
(

−3
p

)

= 1 and we get that

∫

0≤νp(s)=2νp(t)

w∗
p(t)dt =

(−1

p

)

j
2

(

µ(S1− j
2
) + µ(S j

2
) +

2(p− 1)

p
νp(s)

2 +1
· p

j
2 + p1−

j
2

p(p2 − 1)

)

.

Upon further simplification,

∫

0≤νp(s)=2νp(t)

w∗
p(t)dt =

(−1

p

)

j
2 p− 1

p
νp(s)

2 +1
.

On the other hand, for p ≡ 2 (mod 3),
(

−3
p

)

= −1; in particular,

∫

0≤νp(s)=2νp(t)

w∗
p(t)dt =

(−1

p

)

j
2

(

µ(S1− j
2
) + 2µ(S 3j

2
)− µ(S j

2
) +

2(p− 1)

p
νp(s)

2 +1

(

p
j
2 − p1−

j
2

p(p2 − 1)
+

2

p
3j
2 (p6 − 1)

))

.

Simplifying once again,

∫

0≤νp(s)=2νp(t)

w∗
p(t)dt =

(−1

p

)

j
2 1

p
νp(s)

2 +1

(

p− (2j + 1)− 4(−1)
j
2
p4 + j

2p
3 + p2 + j

2

(p+ 1)(p4 + p2 + 1)

)

,

which is the desired result.

To complete our proof, it suffices to sum our results, recalling that

∫

Zp

w∗
p(t)dt =

(

∫

0≤2νp(t)<νp(s)

+

∫

0≤νp(s)<2νp(t)

+

∫

0≤νp(s)=2νp(t)

)

w∗
p(t)dt.

3.3 Computing
∫

Z3
w∗

3(t)dt

We begin by recalling that w∗
3(t) = (−1)ν3(t

2−s)w3(t), with w3(t) given by Proposition A.0.1 in Appendix A. From

here, we consider the usual cases: 0 ≤ ν3(s) < 2ν3(t), 0 ≤ 2ν3(t) < ν3(s), 0 ≤ 2ν3(t) = ν3(s).
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3.3.1 0 ≤ ν3(s) < 2ν3(t)

If 0 ≤ ν3(s) < 2ν3(t), then ν3(t
2 − s) = ν3(s) and w∗

3(t) = (−1)ν3(s)w3(t). Since w3(t) depends only on ν3(t)

and t3 (mod 3) (and possibly on ν3(s) and s3), w3(t) is a 3-uniformly locally constant multiplicative function with

uniformity constant η = 1. Therefore,

∫

0≤ν3(s)<2ν3(t)

w∗
3(t)dt = (−1)ν3(s)

∑

e>
ν3(s)

2

(

1

3e+1

∑

d∈(Z /3Z)∗

w3(d · 3e)
)

and it is not hard to show that

∫

0≤ν3(s)<2ν3(t)

w∗
3(t)dt =























1

3
ν3(s)

2
+2

if ν3(s) ≡ 0 (mod 2),

1−2χ3(s3)

3
ν3(s)+3

2

if ν3(s) ≡ 1 (mod 4),

−1

3
ν3(s)+1

2

if ν3(s) ≡ 3 (mod 4),

where χ3 is the non-principal character modulo 3.

3.3.2 0 ≤ 2ν3(t) < ν3(s)

If 0 ≤ 2ν3(t) < ν3(s), then ν3(t
2 − s) = 2ν3(t) and w∗

3(t) = w3(t). Once again, w3(t) is a 3-uniformly

locally constant multiplicative function with uniformity constant η = 1. We begin by partitioning the integral
∫

0≤2ν3(t)<ν3(s)
w∗

3(t)dt according to the cases in Proposition A.0.1:

∫

0≤2ν3(t)<ν3(s)

w∗
3(t)dt

=

∫

ν3(s)−2ν3(t)=1
2|ν3(t)

w3(t)dt+

∫

ν3(s)−2ν3(t)=2
2|ν3(t)

w3(t)dt+

∫

ν3(s)−2ν3(t)≥3
2|ν3(t)

w3(t)dt

+

∫

ν3(s)−2ν3(t)=1
2-ν3(t)

w3(t)dt+

∫

ν3(s)−2ν3(t)=2
2-ν3(t)

w3(t)dt+

∫

ν3(s)−2ν3(t)=3
2-ν3(t)

w3(t)dt+

∫

ν3(s)−2ν3(t)≥4
2-ν3(t)

w3(t)dt,

From Proposition A.0.1,

∫

ν3(s)−2ν3(t)=2
2|ν3(t)

w3(t)dt,

∫

ν3(s)−2ν3(t)=2
2-ν3(t)

w3(t)dt,

∫

ν3(s)−2ν3(t)≥4
2-ν3(t)

w3(t)dt = 0,
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whereas

∫

ν3(s)−2ν3(t)=1
2|ν3(t)

w3(t)dt =







2

3
ν3(s)+1

2

if ν3(s) ≡ 1 (mod 4) and ν3(s) ≥ 1,

0 otherwise,

∫

ν3(s)−2ν3(t)≥3
2|ν3(t)

w3(t)dt =
∑

3≤k≤ν3(s)
k≡ν3(s) (mod 4)

−2

3
ν3(s)−k

2 +1
=















1
4

(

31−2b
j
3
c

3
ν3(s)−j

2

− 3

)

if ν3(s) ≥ 3,

0 otherwise,

∫

ν3(s)−2ν3(t)=1
2-ν3(t)

w3(t)dt =







2χ3(s3)

3
ν3(s)+1

2

if ν3(s) ≡ 3 (mod 4) and ν3(s) ≥ 3,

0 otherwise,

∫

ν3(s)−2ν3(t)=3
2-ν3(t)

w3(t)dt =







2

3
ν3(s)−1

2

if ν3(s) ≡ 1 (mod 4) and ν3(s) ≥ 5,

0 otherwise,

where j ∈ {0, 1, 2, 3} such that ν3(s) ≡ j (mod 4) and where χ3 is the non-principal character modulo 3.

Summing the individual contributions,

∫

0≤2ν3(t)<ν3(s)

w∗
3(t)dt =



















































































0 if ν3(s) = 0,

2
3 if ν3(s) = 1,

0 if ν3(s) = 2,

2(χ3(s3)−3)
9 if ν3(s) = 3,

−2
3 if ν3(s) = 4,

1
4

(

31−2b
j
3
c

3
ν3(s)−j

2

− 3

)

+























0 if ν3(s) ≡ 0 (mod 2),

8

3
ν3(s)+1

2

if ν3(s) ≡ 1 (mod 4),

2χ3(s3)

3
ν3(s)+1

2

if ν3(s) ≡ 3 (mod 4),

if ν3(s) ≥ 5,

where j ∈ {0, 1, 2, 3} such that ν3(s) ≡ j (mod 4) and where χ3 is the non-principal character modulo 3.

3.3.3 0 ≤ 2ν3(t) = ν3(s)

For 0 ≤ 2ν3(t) = ν3(s), we write ν3(t
2 − s) = ν3(s) + k with k ≥ 0, so that

∫

2ν3(t)=ν3(s)

w∗
3(t)dt =

∞
∑

k=0

(−1)k
∫

0≤2ν3(t)=ν3(s)

ν3(t
2−s)=ν3(s)+k

w3(t)dt.

By splitting the contributions from k = 0, k 6≡ 0 (mod 3), and k ≡ 0 (mod 3)(k 6= 0), we write

∫

2ν3(t)=ν3(s)

w∗
3(t)dt

=

∫

0≤2ν3(t)=ν3(s)

ν3(t
2−s)=ν3(s)

w3(t)dt+
∑

k≡0 (mod 3)
k 6=0

(−1)k
∫

0≤2ν3(t)=ν3(s)

ν3(t
2−s)=ν3(s)+k

w3(t)dt+
∑

k 6≡0 (mod 3)

(−1)k
∫

0≤2ν3(t)=ν3(s)

ν3(t
2−s)=ν3(s)+k

w3(t)dt.
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Notice that if 2ν3(t) = ν3(s), then ν3(t
2− s) = ν3(s)+ k iff t23− s3 ∈ 3k Z∗

3; in other words, ν3(t
2− s) = ν3(s)+ k

iff






t23 6≡ s3 (mod 3) if k = 0,

t23 ≡ s3 (mod 3k), 6≡ s3 (mod 3k+1) if k ≥ 1.

Since w∗
3(t) = (−1)ν3(t

2−s)w3(t) and since w3(t) depends only on t3(t
2
3 − s3)3 (mod 9) (and possibly on s3 and

ν3(s)), we have that

∫

0≤2ν3(t)=ν3(s)

ν3(t
2−s)=ν3(s)+k

w3(t)dt =
1

3
ν3(s)

2 +k+2

∑

d∈(Z /3k+2 Z)∗

d2≡s3 (mod 3k)

d2 6≡s3 (mod 3k+1)

w3(d · 3
ν3(s)

2 ).

We consider two cases: s3 ≡ 1 (mod 3) and s3 ≡ 2 (mod 3).

In the case where s3 ≡ 2 (mod 3), s3 is not a square modulo 3; in particular,

∑

d∈(Z /3k+2 Z)∗

d2≡s3 (mod 3k)

d2 6≡s3 (mod 3k+1)

w3(d · 3
ν3(s)

2 ) = 0

for all k ≥ 1 (as the sums are empty). Therefore, if s3 ≡ 2 (mod 3),

∫

2ν3(t)=ν3(s)

w∗
3(t)dt =

1

3
ν3(s)

2 +2

∑

d∈(Z /32 Z)∗

d2 6≡2 (mod 3)

w3(d · 3
ν3(s)

2 )

=
1

3
ν3(s)

2 +2

∑

d∈(Z /32 Z)∗

w3(d · 3
ν3(s)

2 ).

In this case, w3(d · 3
ν3(s)

2 ) = 1 iff s3d 6≡ 2, 4 (mod 9). Since s3 is invertible modulo 9, as d varies over (Z /9Z)∗, so

does s3d; i.e.,

∑

d∈(Z /32 Z)∗

w3(d · 3
ν3(s)

2 ) = 2

with

∫

2ν3(t)=ν3(s)

w∗
3(t)dt =

2

3
ν3(s)

2 +2
if s3 ≡ 2 (mod 3).

In the case where s3 ≡ 1 (mod 3), let ±√
s3 denote the square roots of s3 in Z3. Since s3 is a square modulo

3, there exist exactly two d in (Z /3k Z)∗ ∼= (Z3 /3
k Z3)

∗ such that d2 ≡ s3 (mod 3k) (namely, ±√
s3 + 3k Z3).

Each such solution lifts in exactly three ways to solutions of x2 ≡ s3 (mod 3k) in (Z /3k+1 Z)∗; namely, ±(
√
s3 +

α · 3k) + 3k+1 Z3 with α ∈ {0, 1, 2}. The condition that x2 6≡ s3 (mod 3k+1) tells us to throw away two of our

solutions (those corresponding to α = 0). From here, we lift our solutions to (Z /3k+2 Z)∗ by writing ±(
√
s3 + α ·

3k + β · 3k+1) + 3k+2 Z3 with β ∈ {0, 1, 2}. By working with the isomorphism (Z /3k+2 Z)∗ ∼= (Z3 /3
k+2 Z3)

∗ and

choosing an appropriate representative for d, we have that there are exactly 12 solutions to d ∈ (Z /3k+2 Z)∗ such that
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d2 ≡ s3 (mod 3k), 6≡ s3 (mod 3k+1); namely,

d = ±(
√
s3 + α · 3k + β · 3k+1) + 3k+2 Z3,

with α ∈ {1, 2}, β ∈ {0, 1, 2}. Now, the value of w3(d · 3
ν3(s)

2 ) depends only on the value of d(d2 − s3)3 modulo 9,

with d as above (in the case where k ≡ 0 (mod 3), the value of w3(d · 3
ν3(s)

2 ) depends only on d(d2 − s3)3 modulo

3). But, if d = ±(
√
s3 + α · 3k + β · 3k+1) + 3k+2 Z3, then, for k ≥ 1,

d(d2 − s3)3 ≡







±2s3(α+ 3β) (mod 9) if k ≡ 0 (mod 3),

±2s3α (mod 3) if k 6≡ 0 (mod 3).

From here, it is easy to see that

1

3
ν3(s)

2 +k+2

∑

d∈(Z /3k+2 Z)∗

d2≡s3 (mod 3k)

d2 6≡s3 (mod 3k+1)

w3(d · 3
ν3(s)

2 ) =







0 if k 6≡ 0 (mod 3),

4

3
ν3(s)

2
+k+2

otherwise,

whenever k ≥ 1. When k = 0,

∫

0≤2ν3(t)=ν3(s)

ν3(t
2−s)=ν3(s)

w3(t)dt = 0,

as the sum

∑

d∈(Z /9Z)∗

d2 6≡s3 (mod 3)

w3(d · 3
ν3(s)

2 )

is empty (simply note that d2 ≡ 1 (mod 3) for all d ∈ (Z /9Z)∗). Putting all of this together,

∫

2ν3(t)=ν3(s)

w∗
3(t)dt =

∑

k≡0 (mod 3)
k 6=0

(−1)k
4

3
ν3(s)

2 +k+2
=

−1

7
· 1

3
ν3(s)

2 +2
;

that is,

∫

0≤2ν3(t)=ν3(s)

w∗
3(t)dt =

































2

3
ν3(s)

2
+2

if s3 ≡ 2 (mod 3),

−1
7 · 1

3
ν3(s)

2
+2

if s3 ≡ 1 (mod 3),
if ν3(s) ≡ 0 (mod 2),

0 if ν3(s) ≡ 1 (mod 2).

Hence,
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Proposition 3.3.1.

∫

Z3

w∗
3(t)dt =























1

3
ν3(s)

2
+2

if ν3(s) ≡ 0 (mod 2),

1−2χ3(s3)

3
ν3(s)+3

2

if ν3(s) ≡ 1 (mod 4),

−1

3
ν3(s)+1

2

if ν3(s) ≡ 3 (mod 4),

+



















































































0 if ν3(s) = 0,

2
3 if ν3(s) = 1,

0 if ν3(s) = 2,

2(χ3(s3)−3)
9 if ν3(s) = 3,

−2
3 if ν3(s) = 4,

1
4

(

31−2b
j
3
c

3
ν3(s)−j

2

− 3

)

+























0 if ν3(s) ≡ 0 (mod 2),

8

3
ν3(s)+1

2

if ν3(s) ≡ 1 (mod 4),

2χ3(s3)

3
ν3(s)+1

2

if ν3(s) ≡ 3 (mod 4),

if ν3(s) ≥ 5,

+

































2

3
ν3(s)

2
+2

if s3 ≡ 2 (mod 3),

−1
7 · 1

3
ν3(s)

2
+2

if s3 ≡ 1 (mod 3),
if ν3(s) ≡ 0 (mod 2),

0 if ν3(s) ≡ 1 (mod 2),

where j ∈ {0, 1, 2, 3} such that ν3(s) ≡ j (mod 4) and where χ3 is the non-principal character modulo 3.

3.4 Computing
∫

Z2
w∗

2(t)dt

We begin by recalling that w∗
2(t) ∈ {±1} with w∗

2(t) ≡ (t2 − s)2w2(t) (mod 4). We consider the usual cases:

0 ≤ ν2(s) < 2ν2(t), 0 ≤ 2ν2(t) < ν2(s), and 0 ≤ 2ν2(t) = ν2(s).

3.4.1 0 ≤ ν2(s) < 2ν2(t)

If 0 ≤ ν2(s) < 2ν2(t), then ν2(t
2 − s) = ν2(s) and 2ν2(t) = ν2(s) + k, for some k ≥ 1; in particular,

(t2 − s)2 = (t2 − s)2−ν2(s)

= t22 · 2k − s2

≡







s2 (mod 4) if k = 1,

−s2 (mod 4) if k ≥ 2.

Therefore,

∫

2ν2(t)−ν2(s)=k

w∗
2(t)dt =

∫

2ν2(t)−ν2(s)=k

w2(t)dt ·







χ4(s2) if k = 1,

−χ4(s2) if k ≥ 2,
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where χ4 is the non-principal character modulo 4.

Since w2(t) depends only on ν2(t) and t2 (mod 4) (and possibly on ν2(s) and s2), we have that w2(t) is a 2-

uniformly locally constant multiplicative function with uniformity constant η = 2; i.e.,

∫

2ν2(t)−ν2(s)=k

w2(t)dt =
1

2
ν2(s)+k

2 +2

∑

d∈(Z /4Z)∗

w2(d · 2
ν2(s)+k

2 ).

Putting all of this together,

∫

0≤ν2(s)<2ν2(t)

w∗
2(t)dt = χ4(s2) ·







−∑∞
k=1

∫

ν2(t)=
ν2(s)

2 +k
w2(t)dt if ν2(s) ≡ 0 (mod 2),

∫

ν2(t)=
ν2(s)+1

2

w2(t)dt−
∑∞

k=1

∫

ν2(t)=
ν2(s)+1

2 +k
w2(t)dt if ν2(s) ≡ 1 (mod 2),

where χ4 is the non-principal character modulo 4 and with
∫

ν2(t)=e
w2(t)dt as above.

From here, a tedious, but straightforward, computation yields:

∫

0≤ν2(s)<2ν2(t)

w∗
2(t)dt =



















0 if ν2(s) ≡ 0 (mod 2),

(−1)
ν2(s)−1

2

2
ν2(s)+3

2

·







1 if s2 ≡ 1, 7 (mod 8),

−1 if s2 ≡ 3, 5 (mod 8),
if ν2(s) ≡ 1 (mod 2).

3.4.2 0 ≤ 2ν2(t) < ν2(s)

If 0 ≤ 2ν2(t) < ν2(s), then ν2(t
2 − s) = 2ν2(t) and ν2(s) = 2ν2(t) + k, for some k ≥ 1; in particular,

(t2 − s)2 = (t2 − s)2−2ν2(t)

= t22 − s2 · 2k

≡







−1 (mod 4) if k = 1,

1 (mod 4) if k ≥ 2.

Therefore,

∫

ν2(s)−2ν2(t)=k

w∗
2(t)dt =

∫

ν2(s)−2ν2(t)=k

w2(t)dt ·







−1 if k = 1,

1 if k ≥ 2.

Since w2(t) depends only on ν2(t) and t2 (mod 8) (and possibly on ν2(s) and s2), w2(t) is a 2-uniformly locally

constant multiplicative function with uniformity constant η = 3; that is,

∫

ν2(s)−2ν2(t)=k

w2(t)dt =
1

2
ν2(s)−k

2 +3

∑

d∈(Z /8Z)∗

w2(d · 2
ν2(s)−k

2 ),
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with

∫

0≤2ν2(t)<ν2(s)

w∗
2(t)dt

= −
∫

ν2(s)−2ν2(t)=1
2|ν2(t)

w2(t)dt+

∫

ν2(s)−2ν2(t)=2
2|ν2(t)

w2(t)dt+

∫

ν2(s)−2ν2(t)=3
2|ν2(t)

w2(t)dt

+

∫

ν2(s)−2ν2(t)=4
2|ν2(t)

w2(t)dt+

∫

ν2(s)−2ν2(t)=5
2|ν2(t)

w2(t)dt+

∫

ν2(s)−2ν2(t)=6
2|ν2(t)

w2(t)dt+

∫

ν2(s)−2ν2(t)≥7
2|ν2(t)

w2(t)dt

−
∫

ν2(s)−2ν2(t)=1
2-ν2(t)

w2(t)dt+

∫

ν2(s)−2ν2(t)=2
2-ν2(t)

w2(t)dt+

∫

ν2(s)−2ν2(t)=3
2-ν2(t)

w2(t)dt+

∫

ν2(s)−2ν2(t)≥4
2-ν2(t)

w2(t)dt,

where we partitioned the integral according to the cases in Proposition A.0.2. From Proposition A.0.2, it is also easy

to see that

∫

ν2(s)−2ν2(t)=1
2|ν2(t)

w2(t)dt,

∫

ν2(s)−2ν2(t)=3
2|ν2(t)

w2(t)dt,

∫

ν2(s)−2ν2(t)=6
2|ν2(t)

w2(t)dt,

∫

ν2(s)−2ν2(t)=1
2-ν2(t)

w2(t)dt,

∫

ν2(s)−2ν2(t)=2
2-ν2(t)

w2(t)dt,

∫

ν2(s)−2ν2(t)≥4
2-ν2(t)

w2(t)dt = 0,

whereas

∫

ν2(s)−2ν2(t)=2
2|ν2(t)

w2(t)dt =



















1

2
ν2(s)

2
+1

·







1 if s2 ≡ 1 (mod 4),

−2 if s2 ≡ 3 (mod 4),
if ν2(s) ≡ 2 (mod 4) and ν2(s) ≥ 2,

0 otherwise,

∫

ν2(s)−2ν2(t)=4
2|ν2(t)

w2(t)dt =







1

2
ν2(s)

2

if ν2(s) ≡ 0 (mod 4) and ν2(s) ≥ 4,

0 otherwise,

∫

ν2(s)−2ν2(t)=5
2|ν2(t)

w2(t)dt =







1

2
ν2(s)−1

2

if ν2(s) ≡ 1 (mod 4) and ν2(s) ≥ 5,

0 otherwise,

∫

ν2(s)−2ν2(t)≥7
2|ν2(t)

w2(t)dt =
∑

7≤k≤ν2(s)
k≡ν2(s) (mod 4)

−2

2
ν2(s)−k

2 +3
=















1
3

(

22d
7−j
4

e

2
ν2(s)−j

2
+2

− 1

)

if ν2(s) ≥ 7,

0 otherwise,

∫

ν2(s)−2ν2(t)=3
2-ν2(t)

w2(t)dt =







−χ4(s2)

2
ν2(s)−1

2

if ν2(s) ≡ 1 (mod 4) and ν2(s) ≥ 5,

0 otherwise.
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Summing the individual contributions,

∫

0≤2ν2(t)<ν2(s)

w∗
2(t)dt

=























































































































































0 if ν2(s) = 0,

0 if ν2(s) = 1,

1
4 ·







1 if s2 ≡ 1 (mod 4),

−2 if s2 ≡ 3 (mod 4),
if ν2(s) = 2,

0 if ν2(s) = 3,

1
4 if ν2(s) = 4,

1−χ4(s2)
4 if ν2(s) = 5,

1
16 ·







1 if s2 ≡ 1 (mod 4),

−2 if s2 ≡ 3 (mod 4),
if ν2(s) = 6,

1
3

(

22d
7−j
4

e

2
ν2(s)−j

2
+2

− 1

)

+ 1

2
ν2(s)−j

2











































1 if ν2(s) ≡ 0 (mod 4),

1− χ4(s2) if ν2(s) ≡ 1 (mod 4),






1
4 if s2 ≡ 1 (mod 4),

−1
2 if s2 ≡ 3 (mod 4),

if ν2(s) ≡ 2 (mod 4),

0 if ν2(s) ≡ 3 (mod 4),

if ν2(s) ≥ 7,

where j ∈ {0, 1, 2, 3} such that ν2(s) ≡ j (mod 4) and where χ4 is the non-principal character modulo 4.

3.4.3 0 ≤ 2ν2(t) = ν2(s)

To deal with the case where 0 ≤ 2ν2(t) = ν2(s), we first write

∫

0≤2ν2(t)=ν2(s)

w∗
2(t)dt =

∞
∑

k=0

∫

2ν2(t)=ν2(s)

ν2(t
2−s)=ν2(s)+k

w∗
2(t)dt,

with w∗
2(t) ∈ {±1} such that

w∗
2(t) ≡ (t2 − s)2w2(t) (mod 4),

where w2(t) is given by Proposition A.0.2 in Appendix A.

Since w∗
2(t) depends only on ν2(t), t2 (mod 8), and (t2 − s)2 (mod 8), we have that

∫

2ν2(t)=ν2(s)

ν2(t
2−s)=ν2(s)+k

w∗
2(t)dt =

1

2
ν2(s)

2 +k+3

∑

d∈(Z /2k+3 Z)∗

d2≡s2 (mod 2k)

d2 6≡s2 (mod 2k+1)

(d2 − s2)
′
2w2(d · 2

ν2(s)
2 ),
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where the ′ indicates that we take (d2 − s2)
′
2 in {±1} such that (d2 − s2)2 ≡ (d2 − s2)

′
2 (mod 4); hence,

∫

0≤2ν2(t)=ν2(s)

w∗
2(t)dt =

∞
∑

k=0

1

2
ν2(s)

2 +k+3

∑

d∈(Z /2k+3 Z)∗

d2≡s2 (mod 2k)

d2 6≡s2 (mod 2k+1)

(d2 − s2)
′
2w2(d · 2

ν2(s)
2 ). (2)

From here, we consider various cases:

(1) s2 ≡ 3 (mod 4): Let d ∈ (Z /2k+3 Z)∗ and suppose that d2 ≡ s2 (mod 2k), with k ≥ 2. Then, d2 ≡
s2 (mod 4). Under the assumption that s2 ≡ 3 (mod 4), we have that d2 ≡ 3 (mod 4), a contradiction, as all

d ∈ (Z /2k+3 Z)∗ have squares equivalent to 1 modulo 4; and so, the sums

∑

d∈(Z /2k+3 Z)∗

d2≡s2 (mod 2k)

d2 6≡s2 (mod 2k+1)

(d2 − s2)
′
2w2(d · 2

ν2(s)
2 )

are empty for all k ≥ 2. Similarly, there are no d ∈ (Z /8Z)∗ with d2 6≡ 1 (mod 2), so that the above sum is

also empty for k = 0. On the other hand, all d ∈ (Z /16Z)∗ are such that d2 ≡ 1 (mod 2), 6≡ 3 (mod 4); that is,

∑

d∈(Z /16Z)∗

d2≡s2 (mod 2)

d2 6≡s2 (mod 4)

(d2 − s2)
′
2w2(d · 2

ν2(s)
2 ) =

∑

d∈(Z /16Z)∗

(d2 − s2)
′
2w2(d · 2

ν2(s)
2 ).

It now follows that the only contribution to Equation 2, when s2 ≡ 3 (mod 4), comes from k = 1; in other

words,

∫

0≤2ν2(t)=ν2(s)

w∗
2(t)dt =

1

2
ν2(s)

2 +4

∑

d∈(Z /16Z)∗

(d2 − s2)
′
2w2(d · 2

ν2(s)
2 ).

By considering (d2 − s2)2 for s2 ≡ 3, 7, 11, 15 (mod 16) and as d varies over (Z /16Z)∗, we get that

∫

0≤2ν2(t)=ν2(s)

w∗
2(t)dt =

























































0 if s2 ≡ 3 (mod 8),

−1

2
ν2(s)

2
+1

if s2 ≡ 7 (mod 16),

1

2
ν2(s)

2
+1

if s2 ≡ 15 (mod 16),

if ν2(s) ≡ 0 (mod 4),

0 if ν2(s) ≡ 2 (mod 4).

(2) s2 ≡ 5 (mod 8): Similarly to the case above, let d ∈ (Z /2k+3 Z)∗ and suppose that d2 ≡ s2 (mod 2k), with

k ≥ 3. Then, d2 ≡ s2 (mod 8). Under the assumption that s2 ≡ 5 (mod 8), we have that d2 ≡ 5 (mod 8), a

contradiction, as all d ∈ (Z /2k+3 Z)∗ have squares equivalent to 1 modulo 8. So, the sums

∑

d∈(Z /2k+3 Z)∗

d2≡s2 (mod 2k)

d2 6≡s2 (mod 2k+1)

(d2 − s2)
′
2w2(d · 2

ν2(s)
2 )

are empty for all k ≥ 3. Similarly, there are no d ∈ (Z /8Z)∗ (resp. (Z /16Z)∗) with d2 6≡ 1 (mod 2) (resp.
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d2 ≡ 1 (mod 2), 6≡ 1 (mod 4)), so that the above sums are also empty for k = 0, 1. On the other hand, all

d ∈ (Z /32Z)∗ are such that d2 ≡ 1 (mod 4), 6≡ 5 (mod 8); that is,

∑

d∈(Z /32Z)∗

d2≡s2 (mod 4)

d2 6≡s2 (mod 8)

(d2 − s2)
′
2w2(d · 2

ν2(s)
2 ) =

∑

d∈(Z /32Z)∗

(d2 − s2)
′
2w2(d · 2

ν2(s)
2 ).

It now follows that the only contribution to Equation 2, when s2 ≡ 5 (mod 8), comes from k = 2; i.e.,

∫

0≤2ν2(t)=ν2(s)

w∗
2(t)dt =

1

2
ν2(s)

2 +5

∑

d∈(Z /32Z)∗

(d2 − s2)
′
2w2(d · 2

ν2(s)
2 ).

By considering (d2 − s2)2 for s2 ≡ 5, 13 (mod 16), d ∈ (Z /32Z)∗, it is also not hard to show that

∫

0≤2ν2(t)=ν2(s)

w∗
2(t)dt =























0 if ν2(s) ≡ 0 (mod 4),










1

2
ν2(s)

2
+2

if s2 ≡ 5 (mod 16),

1

2
ν2(s)

2
+1

if s2 ≡ 13 (mod 16),
if ν2(s) ≡ 2 (mod 4).

(3) s2 ≡ 1 (mod 8): In the case where s2 ≡ 1 (mod 8), we apply a less barbaric approach to computing
∫

0≤2ν2(t)=ν2(s)
w∗

2(t)dt. Firstly, notice that there are no d ∈ (Z /2k+3 Z)∗ such that d2 ≡ 1 (mod 2k) 6≡
1 (mod 2k+1) for k = 0, 1, 2; that is,

∫

0≤2ν2(t)=ν2(s)

w∗
2(t)dt =

∞
∑

k=3

1

2
ν2(s)

2 +k+3

∑

d∈(Z /2k+3 Z)∗

d2≡s2 (mod 2k)

d2 6≡s2 (mod 2k+1)

(d2 − s2)
′
2w2(d · 2

ν2(s)
2 ).

Our next goal is to characterize all d ∈ (Z /2k+3 Z)∗ such that d2 ≡ s2 (mod 2k), 6≡ s2 (mod 2k+1), for

k ≥ 3. We begin by noting that all integers congruent to 1 modulo 8 admit a square root in Z2 (this follows

from Hensel’s Lemma). So, let ±√
s2 denote the square roots of s2 in Z2 and consider

d = d(α1, α2) = ±(
√
s2 + 2k−1(1 + α1 · 2 + α2 · 22 + α3 · 23)) + 2k+3 Z2 (3)

∈ (Z2 /2
k+3 Z2)

∗ ∼= (Z /2k+3 Z)∗, (4)

where αi ∈ {0, 1}, i = 1, 2, 3. Then, d2 ≡ s2 (mod 2k), 6≡ s2 (mod 2k+1). Moreover,

(d2 − s2)2 ≡



















2(1 + 2α1) +
√
s2(1 + 2α1 + 4α2) (mod 8) if k = 3,

4 +
√
s2(1 + 2α1 + 4α2) (mod 8) if k = 4,

√
s2(1 + 2α1 + 4α2) (mod 8) if k ≥ 5.

Remark 3.4.1. The reason we label d above as d(α1, α2) will become apparent. Essentially, we only care for

the values of d, (d2 − s2)2 modulo 8, so that the value of α3 is irrelevant in our calculations: from Proposition

A.0.2, w2(t) is completely determined by ν2(t) and t2, (t
2
2 − s2)2 (mod 8).

What’s important to note is that the value of (d2 − s2)
′
2 depends only on α1. Furthermore, the values of
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(d2−s2)′2 at α1 = 0 and α1 = 1 are negatives of one another! We claim further that Equation 3 characterizes all

d ∈ (Z /2k+3 Z)∗ such that d2 ≡ s2 (mod 2k), 6≡ s2 (mod 2k+1): this follows from a simple counting argument.

First note that there are exactly four d ∈ (Z /2k Z)∗ such that d2 ≡ s2 (mod 2k), each of which lifts in exactly

two ways to d ∈ (Z /2k+1 Z)∗ such that d2 ≡ s2 (mod 2k). Of these eight solutions, exactly four satisfy d2 ≡
s2 (mod 2k+1); that is, there are exactly four d ∈ (Z /2k+1 Z)∗ such that d2 ≡ s2 (mod 2k), 6≡ s2 (mod 2k+1),

each of which lifts in exactly four ways to d ∈ (Z /2k+3 Z)∗ such that d2 ≡ s2 (mod 2k), 6≡ s2 (mod 2k+1).

By the preceding remarks, we may write

∑

d∈(Z /2k+3 Z)∗

d2≡s2 (mod 2k)

d2 6≡s2 (mod 2k+1)

(d2 − s2)
′
2w2(d · 2

ν2(s)
2 )

as

(2χk=3(k) +
√
s2)

′

(

(

w2(d(0, 0) · 2
ν2(s)

2 ) + w2(−d(0, 0) · 2
ν2(s)

2 ) + w2(d(0, 1) · 2
ν2(s)

2 ) + w2(−d(0, 1) · 2
ν2(s)

2 )
)

−
(

w2(d(1, 0) · 2
ν2(s)

2 ) + w2(−d(1, 0) · 2
ν2(s)

2 ) + w2(d(1, 1) · 2
ν2(s)

2 ) + w2(−d(1, 1) · 2
ν2(s)

2 )
)

)

.

A case by case analysis then shows that, for s2 ≡ 1 (mod 8),

∫

0≤2ν2(t)=ν2(s)

w∗
2(t)dt =







0 if ν2(s) ≡ 0 (mod 4),

−1

2
ν2(s)

2
+2

if ν2(s) ≡ 2 (mod 4).

For the sake of completeness, we say a few more words. We deal with the case where ν2(s) ≡ 0 (mod 4), the

case where ν2(s) ≡ 2 (mod 4) being eerily similar. Firstly, recall that k ≥ 3.

If k ≡ 0, 2, 3, 4 (mod 6), k 6= 2, 3, then w2(d · 2 ν2(s)
2 ) = 1 iff d ≡ (d2 − s2)2 (mod 4); in particular,

w2(d · 2
ν2(s)

2 ) + w2(−d · 2
ν2(s)

2 ) = 0 for all d. Therefore, the sums over k ≡ 0, 2, 3, 4 (mod 6), k 6= 2, 3, 4 are

all equal to 0.

If k ≡ 1, 5 (mod 6), k 6= 1, 5, then w2(d · 2
ν2(s)

2 ) = −1 for all d; in this case,

w2(d(0, 0) · 2
ν2(s)

2 ) + w2(−d(0, 0) · 2
ν2(s)

2 ) + w2(d(0, 1) · 2
ν2(s)

2 ) + w2(−d(0, 1) · 2
ν2(s)

2 )

= w2(d(1, 0) · 2
ν2(s)

2 ) + w2(−d(1, 0) · 2
ν2(s)

2 )) + w2(d(1, 1) · 2
ν2(s)

2 ) + w2(−d(1, 1) · 2
ν2(s)

2 ).

Again, the sums over k ≡ 1, 5 (mod 6), k 6= 1, 5, are equal to 0.

For k = 3, w2(d · 2 ν2(s)
2 ) = 1 iff d ≡ 1 (mod 4) and d(d2 − s2)2 ≡ 5, 7 (mod 8) or d ≡ 3 (mod 4) and

d(d2 − s2)2 ≡ 3, 5 (mod 8). Since d ≡ ±√
s2 (mod 4) and since

d(d2 − s2)2 ≡ ±































6
√
s2 + 1 if α1 = 0, α2 = 0,

6
√
s2 + 5 if α1 = 0, α2 = 1,

6
√
s2 + 3 if α1 = 1, α2 = 0¡

6
√
s2 + 7 if α1 = 1, α2 = 1,

31



it is easy to see that the sum at k = 3 is also 0.

Similarly, for the sum at k = 5, w2(d · 2
ν2(s)

2 ) = 1 iff d(d2 − s2)2 ≡ 1, 3, 7 (mod 8). In this case,

d(d2 − s2)2 = ±































1 if α1 = 0, α2 = 0,

5 if α1 = 0, α2 = 1,

3 if α1 = 1, α2 = 0,

7 if α1 = 1, α2 = 1;

in particular, the sum at k = 5 is 0.

To summarize this subsection,

∫

0≤2ν2(t)=ν2(s)

w∗
2(t)dt =























































































0 if ν2(s) ≡ 1 (mod 2),






















0 if s2 ≡ 1, 3, 5 (mod 8),

−1

2
ν2(s)

2
+1

if s2 ≡ 7 (mod 16),

1

2
ν2(s)

2
+1

if s2 ≡ 15 (mod 16),

if ν2(s) ≡ 0 (mod 4),



































0 if s2 ≡ 3 (mod 4),

−1

2
ν2(s)

2
+2

if s2 ≡ 1 (mod 8),

1

2
ν2(s)

2
+2

if s2 ≡ 5 (mod 16),

1

2
ν2(s)

2
+1

if s2 ≡ 13 (mod 16),

if ν2(s) ≡ 2 (mod 4).

Combining the results of the previous three subsections,
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Proposition 3.4.1.

∫

Z2

w∗
2(t)dt

=



















0 if ν2(s) ≡ 0 (mod 2),

(−1)
ν2(s)−1

2

2
ν2(s)+3

2







1 if s2 ≡ 1, 7 (mod 8),

−1 if s2 ≡ 3, 5 (mod 8),
if ν2(s) ≡ 1 (mod 2),

+























































































































































0 if ν2(s) = 0,

0 if ν2(s) = 1,

1
4 ·







1 if s2 ≡ 1 (mod 4),

−2 if s2 ≡ 3 (mod 4),
if ν2(s) = 2,

0 if ν2(s) = 3,

1
4 if ν2(s) = 4,

1−χ4(s2)
4 if ν2(s) = 5,

1
16 ·







1 if s2 ≡ 1 (mod 4),

−2 if s2 ≡ 3 (mod 4),
if ν2(s) = 6,

1
3

(

22d
7−j
4

e

2
ν2(s)−j

2
+2

− 1

)

+ 1

2
ν2(s)−j

2











































1 if ν2(s) ≡ 0 (mod 4),

1− χ4(s2) if ν2(s) ≡ 1 (mod 4),






1
4 if s2 ≡ 1 (mod 4),

−1
2 if s2 ≡ 3 (mod 4),

if ν2(s) ≡ 2 (mod 4),

0 if ν2(s) ≡ 3 (mod 4),.

if ν2(s) ≥ 7,

+























































































0 if ν2(s) ≡ 1 (mod 2),






















0 if s2 ≡ 1, 3, 5 (mod 8),

−1

2
ν2(s)

2
+1

if s2 ≡ 7 (mod 16),

1

2
ν2(s)

2
+1

if s2 ≡ 15 (mod 16),

if ν2(s) ≡ 0 (mod 4),



































0 if s2 ≡ 3 (mod 4),

−1

2
ν2(s)

2
+2

if s2 ≡ 1 (mod 8),

1

2
ν2(s)

2
+2

if s2 ≡ 5 (mod 16),

1

2
ν2(s)

2
+1

if s2 ≡ 13 (mod 16),

if ν2(s) ≡ 2 (mod 4),

where j ∈ {0, 1, 2, 3} such that ν2(s) ≡ j (mod 4) and where χ4 is the non-principal character modulo 4.
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Appendix A

Local root numbers of Fs(t) at p = 2, 3

Recall that

Fs(t) : y
2 = x3 + 3tx2 + 3sx+ st, s ∈ Z, s 6= 0,

with

c4(t) = 2432(t2 − s),

c6(t) = −2633t(t2 − s),

∆(t) = −2633s(t2 − s)2,

j(t) =
−2633

s
(t2 − s).

Proposition A.0.1. The local root number of Fs(t) at p = 3 is given by:

• if 0 ≤ ν3(s) < 2ν3(t), then

◦ if ν3(s) ≡ 0 (mod 4), then

∗ if ν3(t) =
ν3(s)
2 + 1, then w3(t) = 1 iff t3 ≡ 1 (mod 3);

∗ if ν3(t) >
ν3(s)
2 + 1, then w3(t) = 1;

◦ if ν3(s) ≡ 1 (mod 4), then

∗ if ν3(t) =
ν3(s)
2 + 1

2 , then w3(t) = 1 iff s3 ≡ 1 (mod 3);

∗ if ν3(t) >
ν3(s)
2 + 1

2 , then w3(t) = −1;

◦ if ν3(s) ≡ 2 (mod 4), then

∗ if ν3(t) =
ν3(s)
2 + 1, then w3(t) = 1 iff t3 6≡ s3 (mod 3);

∗ if ν3(t) >
ν3(s)
2 + 1, then w3(t) = 1;

◦ if ν3(s) ≡ 3 (mod 4), then w3(t) = 1;

• if 0 ≤ 2ν3(t) < ν3(s), then

◦ if ν3(t) ≡ 0 (mod 2), then
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∗ if ν3(s)− 2ν3(t) = 1, then w3(t) = 1;

∗ if ν3(s)− 2ν3(t) = 2, then w3(t) = 1 iff t3 ≡ s3 (mod 3);

∗ if ν3(s)− 2ν3(t) ≥ 3, then w3(t) = −1;

◦ if ν3(t) ≡ 1 (mod 2), then

∗ if ν3(s)− 2ν3(t) = 1, then w3(t) = 1 iff s3 ≡ 1 (mod 3);

∗ if ν3(s)− 2ν3(t) = 2, then w3(t) = 1 iff t3 ≡ 2 (mod 3);

∗ if ν3(s)− 2ν3(t) = 3, then w3(t) = 1;

∗ if ν3(s)− 2ν3(t) ≥ 4, then w3(t) = 1 iff t3 ≡ 2 (mod 3);

• if 0 ≤ 2ν3(t) = ν3(s), then

◦ if ν3(s) ≡ 0 (mod 4), then

∗ if ν3(t
2 − s) = ν3(s), then w3(t) = 1 iff s3 ≡ 2 (mod 3) and s3t3 6≡ 2, 4 (mod 9);

∗ if ν3(t
2−s)−ν3(s) ≡ 0 (mod 6), ν3(t

2−s) 6= ν3(s), then w3(t) = 1 iff t3(t
2
3−s3)3 6≡ 7, 8 (mod 9);

∗ if ν3(t
2 − s)− ν3(s) ≡ 1, 2 (mod 6), then w3(t) = 1 iff t3(t

2
3 − s3)3 ≡ 1 (mod 3);

∗ if ν3(t
2 − s)− ν3(s) ≡ 3 (mod 6), then w3(t) = 1 iff t3(t

2
3 − s3)3 6≡ 1, 2 (mod 9);

∗ if ν3(t
2 − s)− ν3(s) ≡ 4, 5 (mod 6), then w3(t) = 1 iff t3(t

2
3 − s3)3 ≡ 2 (mod 3);

◦ if ν3(s) ≡ 2 (mod 4), then

∗ if ν3(t
2 − s) = ν3(s), then w3(t) = 1 iff s3 ≡ 2 (mod 3) and s3t3 6≡ 2, 4 (mod 9);

∗ if ν3(t
2−s)−ν3(s) ≡ 0 (mod 6), ν3(t

2−s) 6= ν3(s), then w3(t) = 1 iff t3(t
2
3−s3)3 6≡ 1, 2 (mod 9);

∗ if ν3(t
2 − s)− ν3(s) ≡ 1, 2 (mod 6), then w3(t) = 1 iff t3(t

2
3 − s3)3 ≡ 2 (mod 3);

∗ if ν3(t
2 − s)− ν3(s) ≡ 3 (mod 6), then w3(t) = 1 iff t3(t

2
3 − s3)3 6≡ 7, 8 (mod 9);

∗ if ν3(t
2 − s)− ν3(s) ≡ 4, 5 (mod 6), then w3(t) = 1 iff t3(t

2
3 − s3)3 ≡ 1 (mod 3).

Proposition A.0.2. The local root number of Fs(t) at p = 2 is given by:

• if 0 ≤ ν2(s) < 2ν2(t), then

◦ if ν2(s) ≡ 0 (mod 4), then

∗ if ν2(t) − ν2(s)
2 = 1, then w2(t) = 1 iff s2 ≡ 3 (mod 4) or s2 ≡ 1, 13 (mod 16) and t2 ≡ 3 (mod 4)

or s2 ≡ 5, 9 (mod 16) and t2 ≡ 1 (mod 4);

∗ if ν2(t)− ν2(s)
2 = 2, then w2(t) = 1 iff s2 ≡ 5, 9 (mod 16);

∗ if ν2(t)− ν2(s)
2 ≥ 3, then w2(t) = 1 iff s2 ≡ 1, 13 (mod 16);

◦ if ν2(s) ≡ 1 (mod 4), then

∗ if ν2(t)− ν2(s)
2 = 1

2 , then w2(t) = 1 iff s2 ≡ 1, 3 (mod 8) and t2 ≡ 3 (mod 4) or s2 ≡ 5, 7 (mod 8)

and t2 ≡ 1 (mod 4);

∗ if ν2(t)− ν2(s)
2 ≥ 1, then w2(t) = 1 iff s2 ≡ 5, 7 (mod 8);

◦ if ν2(s) ≡ 2 (mod 4), then

∗ if ν2(t)− ν2(s)
2 = 1, then w2(t) = 1 iff s2 ≡ 1 (mod 4) or s2 ≡ 3, 7 (mod 16) and t2 ≡ 1 (mod 4) or

s2 ≡ 11, 15 (mod 16) and t2 ≡ 3 (mod 4);
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∗ if ν2(t)− ν2(s)
2 = 2, then w2(t) = 1 iff s2 ≡ 7, 11 (mod 16);

∗ if ν2(t)− ν2(s)
2 ≥ 3, then w2(t) = 1 iff s2 ≡ 3, 15 (mod 16);

◦ if ν2(s) ≡ 3 (mod 4), then

∗ if ν2(t)− ν2(s)
2 = 1

2 , then w2(t) = 1 iff s2 ≡ 1, 7 (mod 8) and t2 ≡ 1 (mod 4) or s2 ≡ 3, 5 (mod 8)

and t2 ≡ 3 (mod 4);

∗ if ν2(t)− ν2(s)
2 ≥ 1, then w2(t) = 1 iff s2 ≡ 1, 3 (mod 8);

• if 0 ≤ 2ν2(t) < ν2(s), then

◦ if ν2(t) is even, then

∗ if ν2(s) − 2ν2(t) = 1, then w2(t) = 1 iff s2 ≡ 1 (mod 4) and t2 ≡ 1, 7 (mod 8) or s2 ≡ 3 (mod 4)

and t2 ≡ 1, 3 (mod 8);

∗ if ν2(s)− 2ν2(t) = 2, then w2(t) = 1 iff s2 ≡ 1 (mod 8) and t2 ≡ 3, 5, 7 (mod 8) or s2 ≡ 5 (mod 8)

and t2 ≡ 1, 3, 7 (mod 8);

∗ if ν2(s) − 2ν2(t) = 3, then w2(t) = 1 iff s2 ≡ 1 (mod 4) and t2 ≡ 3, 5 (mod 8) or s2 ≡ 3 (mod 4)

and t2 ≡ 1, 3 (mod 8);

∗ if ν2(s) − 2ν2(t) = 4, then w2(t) = 1 iff t2 ≡ 1 (mod 4) or s2 ≡ 1 (mod 4) and t2 ≡ 3 (mod 8) or

s2 ≡ 3 (mod 4) and t2 ≡ 7 (mod 8);

∗ if ν2(s)− 2ν2(t) = 5, then w2(t) = 1 iff t2 ≡ 1 (mod 4) or t2 ≡ 7 (mod 8);

∗ if ν2(s)− 2ν2(t) = 6, then w2(t) = 1 iff t2 ≡ 3 (mod 4);

∗ if ν2(s)− 2ν2(t) ≥ 7, then w2(t) = 1 iff t2 ≡ 7 (mod 8);

◦ if ν2(t) is odd, then

∗ if ν2(s)− 2ν2(t) = 1, then w2(t) = 1 iff t2 ≡ s2, s2 + 2 (mod 8);

∗ if ν2(s)− 2ν2(t) = 2, then w2(t) = 1 iff t2 ≡ s2 (mod 4);

∗ if ν2(s)− 2ν2(t) = 3, then w2(t) = 1 iff s2 ≡ 3 (mod 4);

∗ if ν2(s)− 2ν2(t) ≥ 4, then w2(t) = 1 iff t2 ≡ 3 (mod 4).

• if 0 ≤ 2ν2(t) = ν2(s), then

◦ if ν2(s) ≡ 0 (mod 4), then

∗ if ν2(t
2 − s)− ν2(s) ≡ 0 (mod 6), then w2(t) = 1 iff t2 ≡ (t2 − s)2 (mod 4);

∗ if ν2(t
2 − s) − ν2(s) = 1, then w2(t) = 1 iff t2 ≡ 1 (mod 4) and t2(t

2 − s)2 ≡ 1, 7 (mod 8) or

t2 ≡ 3 (mod 4) and t2(t
2 − s)2 ≡ 5, 7 (mod 8);

∗ if ν2(t
2 − s)− ν2(s) ≡ 1 (mod 6) and ν2(t

2 − s)− ν2(s) > 1, then w2(t) = −1;

∗ if ν2(t
2 − s)− ν2(s) = 2, then w2(t) = 1 iff t2 ≡ 3 (mod 4);

∗ if ν2(t
2−s)−ν2(s) ≡ 2 (mod 6) and ν2(t

2−s)−ν2(s) > 2, thenw2(t) = 1 iff t2 ≡ (t2−s)2 (mod 4);

∗ if ν2(t
2 − s) − ν2(s) = 3, then w2(t) = 1 iff t2 ≡ 1 (mod 4) and t2(t

2 − s)s ≡ 5, 7 (mod 8) or

t2 ≡ 3 (mod 4) and t2(t
2 − s)2 ≡ 3, 5 (mod 8);

∗ if ν2(t
2−s)−ν2(s) ≡ 3 (mod 6) and ν2(t

2−s)−ν2(s) > 3, thenw2(t) = 1 iff t2 ≡ (t2−s)2 (mod 4);

∗ if ν2(t
2 − s)− ν2(s) ≡ 4 (mod 6), then w2(t) = 1 iff t2 ≡ (t2 − s)2 (mod 4);
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∗ if ν2(t
2 − s)− ν2(s) = 5, then w2(t) = 1 iff t2(t

2 − s)2 ≡ 1, 3, 7 (mod 8);

∗ if ν2(t
2 − s)− ν2(s) ≡ 5 (mod 6) and ν2(t

2 − s)− ν2(s) > 5, then w2(t) = −1.

◦ if ν2(s) ≡ 2 (mod 4), then

∗ if ν2(t
2 − s)− ν2(s) ≡ 0 (mod 6), then w2(t) = 1 iff t2 ≡ (t2 − s)2 (mod 4);

∗ if ν2(t
2 − s) − ν2(s) = 1, then w2(t) = 1 iff t2 ≡ 3 (mod 8) or t2 ≡ 1 (mod 8) and (t2 − s)2 ≡

1, 5 (mod 8) or t2 ≡ 5 (mod 8) and (t2 − s)2 ≡ 3, 7 (mod 8);

∗ if ν2(t
2−s)−ν2(s) ≡ 1 (mod 6) and ν2(t

2−s)−ν2(s) > 1, thenw2(t) = 1 iff t2 ≡ (t2−s)2 (mod 4);

∗ if ν2(t
2 − s) − ν2(s) = 2, then w2(t) = 1 iff t2 ≡ (t2 − s)2 ≡ 1 (mod 4) or t2 ≡ 7 (mod 8) and

(t2 − s)2 ≡ 1 (mod 4);

∗ if ν2(t
2 − s)− ν2(s) ≡ 2 (mod 6) and ν2(t

2 − s)− ν2(s) > 2, then w2(t) = −1;

∗ if ν2(t
2 − s)− ν2(s) = 3, then w2(t) = 1 iff (t2 − 2)2 ≡ 3 (mod 4);

∗ if ν2(t
2−s)−ν2(s) ≡ 3 (mod 6) and ν2(t

2−s)−ν2(s) > 3, thenw2(t) = 1 iff t2 ≡ (t2−s)2 (mod 4);

∗ if ν2(t
2 − s) − ν2(s) = 4, then w2(t) = 1 iff t2 ≡ 1 (mod 4) and t2(t

2 − s)2 ≡ 3, 5, 7 (mod 8) or

t2 ≡ 3 (mod 4) and t2(t
2 − s)2 ≡ 1, 3, 7 (mod 8);

∗ if ν2(t
2 − s)− ν2(s) ≡ 4 (mod 6) and ν2(t

2 − s)− ν2(s) > 4, then w2(t) = −1;

∗ if ν2(t
2 − s)− ν2(s) ≡ 5 (mod 6), then w2(t) = 1 iff t2 ≡ (t2 − s)2 (mod 4).
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[Del73] Pierre Deligne. Les constantes des équations fonctionelles des fonctions L. In Modular functions of one

variable, II, SLN 349, pages 501–595. Springer-Verlag, New York, 1973.

[Hal98] Emmanuel Halberstadt. Signes locaux des courbes elliptiques en 2 et 3. C. R. Acad. Sci. Paris, Sér. I Math.,

326:1047–1052, 1998.

[Hel04] Harald A. Helfgott. On the square-free sieve. Acta Airth., 115(4):349–402, 2004.

[Hel09] Harald A. Helfgott. On the behaviour of root numbers in families of elliptic curves. Preprint,

arXiv:math/0408141v3, 2009.

[Liv95] Eric Liverance. A formula for the root number of a family of elliptic curves. J. Number Theory, 51(2):288–

305, 1995.

[Mil04] Steven J. Miller. One- and two-level densities for rational families of elliptic curves: evidence for the

underlying group symmetries. Compos. Math., 140(4):952–992, 2004.

[PAR16] Group PARI. PARI/GP, version 2.8.1. Bordeaux, 2016.

[Riz03] Ottavio G. Rizzo. Average root numbers for a nonconstant family of elliptic curves. Compos. Math.,

136:1–23, 2003.

[Roh93] David E. Rohrlich. Variation of the root number in families of elliptic curves. Compos. Math., 87(2):119–

151, 1993.

[Rol11] Larry Rolen. A generalization of the congruent number problem. Int. J. Number Theory, 7(8):2237–2247,

2011.

38



[Roy10] Halsey L. Royden. Real analysis. Prentice Hall, Boston, 2010.

[Sil83] Joseph H. Silverman. Heights and the specialization map for families of abelian varieties. J. Reine Angew.

Math., 342:197–211, 1983.

[Sil09] Joseph H. Silverman. The airthmetic of elliptic curves. Springer, Dordrecht, 2009.

[Tat79] John Tate. Number theoretic background. In Automorphic forms, representations, and L-functions (Proc.

Symp. Pure Math., Vol. 33-Part 2), pages 3–26. Amer. Math. Soc., Providence, R.I., 1979.

[Was87] Lawrence C. Washington. Class numbers of the simplest cubic fields. Math. Comp., 48(177):371–384,

1987.

[Wil95] Andrew J. Wiles. Modular elliptic curves and Fermat’s last theorem. Ann. of Math. (2), 141(3):443–551,

1995.

39


	Introduction
	Applications
	One-level density functions of elliptic surfaces
	Constructing families of elliptic curves with elevated rank
	Generalizing the congruent number problem

	Overview of this thesis

	Background on root numbers and p-adic integrals
	Root numbers: a history
	p-adic analysis
	p-uniformly locally constant multiplicative functions and their p-adic integrals


	The family `39`42`"613A``45`47`"603AFs and its average root number
	Finding local root numbers for the family `39`42`"613A``45`47`"603AFs
	Computing `39`42`"613A``45`47`"603AZpwp*(t)dt for p5
	Computing `39`42`"613A``45`47`"603AZ3w3*(t)dt
	03(s)< 23(t)
	023(t)<3(s)
	023(t)=3(s)

	Computing `39`42`"613A``45`47`"603AZ2w2*(t)dt
	02(s)<22(t)
	022(t)<2(s)
	022(t)=2(s)


	Appendix Local root numbers of `39`42`"613A``45`47`"603AFs(t) at p=2,3
	Bibliography

