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Abstract 

Compressive Behaviour of C-Shaped Confined Masonry 

Boundary Elements 
 

Ala’ Taleb Mufleh Obaidat, Ph.D. 

Concordia University, 2017 

 

Reinforced masonry (RM) shear walls are commonly used in mid- and high-rise masonry 

buildings as the main lateral load resisting system. The seismic performance of RM shear walls 

can be enhanced by integrating reinforced boundary elements at the wall most stressed zone (i.e. 

wall ends). Evaluating the compression behaviour of the boundary elements is key for predicting 

the seismic response of the RM shear walls. Unlike reinforced concrete (RC), the experimental 

studies that focused on compressive stress-strain behaviour of reinforced masonry are scarce. 

This study quantifies the stress-strain relationship of sixteen C-shape full-scale and fifty four 

C-shape half-scale fully grouted unreinforced and reinforced masonry boundary element 

(RMBE) specimens tested under concentric compression loading up to failure. The effect of 

changing hoop spacing, vertical reinforcement ratio, the strength of grout, and aspect ratio 

(height to thickness) on the axial compressive stress-strain behaviour of RMBE is investigated. 

Enhancement in both peak and post peak stress-strain behaviour were observed by decreasing the 

hoop spacing, increasing the grout strength, decreasing the aspect ratio, and increasing the 

vertical reinforcement ratio. Out of the studied parameters, the hoop spacing had the most 

noticeable effect on the stress-strain relationship. 

Finite element modelling (FEM) numerical simulations are employed to simulate the 

compression behaviour of the full-scale RMBE. The proposed FEM procedure provides good 
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prediction of the compression stress-strain behaviour of RMBEs and captures the influence of 

the confinement reinforcement ratio on the RMBE response. In addition, this study investigates 

the capability of three existing stress-strain models in predicting the RMBE stress-strain 

relationship. The considered models overestimated the enhancement in the RMBE stress and 

significantly overestimated the enhancement in the RMBE strain.  

Finally, an analytical compressive stress-strain model capable of predicting the RMBE 

compressive response considering various confinement effects is proposed. The proposed 

empirical stress-strain model is capable of capturing the overall compressive stress-strain 

behaviour where a good agreement with the test results was achieved. This model can be 

implemented in different design and assessment frameworks aiming at better prediction of the 

seismic response of RM walls with boundary elements. 
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Chapter1 

Introduction 

1.1 Background and Motivation 

Masonry is one of the oldest building material that is still used to date in North America and 

all over the globe. Reinforced masonry systems are vital alternative for low- and mid-rise 

residential and commercial buildings. In general, the perception that masonry structures have a 

limited ductility and poor seismic performance may be due to the poor performance of 

unreinforced masonry (URM) structures under seismic loading. However, several studies have 

shown that reinforced masonry (RM) seismic force resisting systems (SFRS) can survive 

extreme seismic events with minimal damage (e.g. Abrams 1986, Seible et al. 1994).  

Shear walls are commonly used as the SFRS in RM structures to provide lateral strength, 

stiffness, and energy dissipation that is required to resist the lateral loads arising from wind or 

from earthquakes. As shown in Figure 1.1, when an earthquake strikes, the inertia forces will be 

distributed through the diaphragm in-plane stiffness to the RM shear walls. Designing the RM 

shear wall to behave elastically during severe ground motion is not economical and unpractical. 

As such, RM shear walls are expected to undergo inelastic deformation during severe ground 

motion. Hence, enhancing the wall ductility is a key factor for enhancing the building seismic 

performance. This could be attained by achieving a better reinforcement detailing.  

Reinforced concrete (RC) shear walls usually accommodate more than one layer of vertical 

steel reinforcement that are commonly enclosed by horizontal reinforcement (i.e. hoops) at the 

wall toes; wall’s most stressed zone. However, a rectangular RM wall typically accommodates 

only one layer of vertical reinforcement bars. Consequently, this single bar per cell will not allow 

the placement of confinement hoops at the end zones of the wall, which are subjected to high 

inelastic strains during an earthquake. Adding boundary elements, BEs, to RM shear walls’ toes 

was recently introduced (CSA) to allow the placement of at least four vertical reinforcing bars 

enclosed by transversal hoops. This offers a reinforcement cage that provides core confinement 

to the wall’s toes and thus enhances the seismic performance of the RM wall which was not 

attained in rectangular RMSW (Shedid et al. 2010, and Banting and El-Dakhakhni 2012).  
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The failure mechanism of RM shear wall systems can be categorized into two main 

mechanisms, shear failure and flexural failure. Shear failure is sub categorized into sliding shear 

failure along mortar bed joints and formation of diagonal shear cracks. Shear failure mode is 

relatively brittle and is usually accompanied with rapid strength and stiffness degradation. 

Flexure failure is characterized by the formation of cracks along the bed joints and tensile 

yielding of the vertical reinforcement at the ends of the wall (Toes). This is followed by the 

formation of a plastic hinge zone at the bottom of the wall. Finally, flexural failure is 

characterized by compression crushing of the masonry and the grout in the plastic hinge region, 

buckling, and fracture of vertical reinforcement under compression and tension, respectively. 

Flexural failure is the favoured failure mode compared to shear failure. It dissipates energy 

effectively, due to the tensile yielding of the vertical reinforcement and its ductile nature, in 

addition to its inelastic deformation of the masonry.  

 

 

 

Figure 1.1 Schematic of a masonry building with RM walls 
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Improving the ductility of masonry prisms by adding confinement was investigated in a 

number of studies in the literature (Priestley and Elder 1983, Hart et al. 1988, Shing et al. 1993, 

Dhanasekar and Shrive 2002, Malmquist 2004, and Abo Elzz et al. 2015).  Moreover, 

experimental Studies on the seismic performance of RM shear walls with boundary elements 

(Shedid et al. 2010, and Banting and El-Dakhakhni 2012) concluded that the wall ductility and 

lateral response can be improved by integrating boundary elements at the wall’s end zones. 

Adding BEs at RM shear walls’ toes increases the area at the wall ends and thus decreasing the 

compression stress block depth (Park et al., 2007). Subsequently, this will result in enhancing the 

ultimate compression strain, the RM wall’s curvature and displacement ductility (Paulay and 

Priestley, 1992). Moreover, the transversal hoops delays both the buckling of vertical 

reinforcement and compression crushing of the masonry at the plastic hinge region which 

improves the seismic performance of RM shear wall (Shedid, 2010). 

In order to improve the displacement ductility capacity of the RM walls, recent North 

American codes and masonry standards (MSJC, 2013 and CSA S304-14, 2014) have introduced 

the use of ductile RM walls with boundary elements. The U.S. Building Code Requirements and 

Specifications for Masonry Structures (MSJC, 2013) allow integrating BE with RM walls, 

however, MSJC (2013) only imposes some geometric rules with no emphasis on the effect of 

confinement on the wall performance. Also, in the most recent Canadian Standard for the Design 

of Masonry Structures (CSA S304, 2014), the correlation between specific parameters (e.g., 

detailing of confinement reinforcement) and the corresponding enhancement of the strength and 

strain capacity is yet to be presented. The 2014 CSA S304 code recently added a new clause 

discussing RM shear walls with boundary elements. The new clause allowed, with experimental 

evidence, the use of higher ultimate strain values for RM shear walls with confined end zones. 

As such, understanding the stress-strain response of the RM boundary element is key in the 

analysis and design of RM shear walls with boundary elements. Therefore, there is a need for 

experimental research to investigate the stress-strain response of RM boundary elements 

considering the effect of different parameters. 

Recently, the compression stress-strain behaviour of RM boundary elements made of standard 

block was investigated by Abo Elzz et al. (2015) based on the experimental study of 17 full 

scale, fully grouted concrete masonry boundary elements that represented  the end zones of a  

RM shear wall. It was concluded that the confinement reinforcement increased the axial 
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compression capacity and the strain ductility of the boundary elements. It should be noted that 

Abo Elzz et al. (2015) utilized standard concrete block to build the RMBE which introduce some 

limitations on the hoop spacing and placement. However, C-shaped blocks (Fig. 1.2) offer a 

larger single core where the mass of the block is lower compared to the standard hollow block, 

which makes the placement of reinforcement and grout easier. According to the literature, the 

stress-strain behaviour of RMBE constructed with C-shaped blocks is yet to be investigated. 

 

Figure 1.2 Half-Scale C-Shaped Concrete Masonry Block Unit 

1.2 Objectives  

This dissertation presents a part of an ongoing research project focusing on the seismic 

response of RM boundary elements at Concordia University. As illustrated in the previous 

section, investigating the compression behaviour of RMBE is essential to understand the 

nonlinear response of RM boundary element walls under lateral loading.  

The main objective of this study is to investigate, experimentally, numerically, and 

analytically, the compression stress-strain behaviour of unreinforced and reinforced RMBE built 

using C-shaped concrete block (see Figure 1.3). Throughout this study, the effect of the 

following parameters on the stress-strain behaviour of RMBE were investigated; 

1. Vertical reinforcement ratio, v   

2. Volumetric ratio of lateral reinforcement, h   

3. Strength of the grout, 
grf    
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4. Aspect ratio of boundary element (height to thickness), h
t

  

5. The effect of changing the gauge length on the measured axial strain. 

In addition to the aforementioned objectives, other objectives were adopted based on the 

analyzed research results: 

 Introducing equations of strains at the peak load, 75% of the peak load, and 50% of the 

peak load, CSA S304 permits the use of the maximum compressive strain of masonry 

more than 0.0025 by either adding boundary elements or another technique which can be 

shown through testing.  

 Proposing an empirical stress-strain model that can be adopted in different analysis and 

assessments frameworks. 

 

Figure 1.3 Reinforced masonry boundary element, RMBE 
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1.3 Scope of Work 

The scope of this work is divided into three phases. 

1.3.1  Phase I  

The main objectives of this phase are: 

 Investigating the compression behaviour of full-scale RMBE, having different 

confinement ratios, under compression concentric loading. 

 Complementary to experimental investigations, a Finite element modeling (FEM) 

procedure, using ABAQUS software, need to be employed to simulate the 

compression behaviour of the RMBE. 

 The FEM procedure shall be validated with experimental results on the full-scale 

confined RMBE by comparing stress-strain curves and damage progression.  

To achieve these objectives, a total of 16 full-scale fully grouted RMBE were constructed and 

tested. These specimens were divided into six groups. Some of the groups had three identical 

specimens and some of them had two. All of the reinforced specimens contained four vertical 

rebars, except the first group. The first group was unreinforced, the second group was 

unconfined but vertically reinforced, and the rest of groups were confined with horizontal 

reinforcement (hoops) with different confinement ratios. The total length of the test unit was 

1250 mm with an effective (gauge) length of 1000 mm. Each RMBE consisted of five block 

layers placed on a concrete footing with dimensions of 400 mm x 400 mm x 250 mm (length x 

width x depth). Each course of the RMBE was made of two block units placed together in 

alternating directions along its height. Complementary to the experimental investigation, a 

nonlinear finite element ABAQUS software package was employed for the numerical simulation 

of the compression stress-strain behaviour of the tested RMBE. 

1.3.2  Phase II  

The main objectives of this phase are: 

 Investigating the effect of changing the volumetric ratio of transverse reinforcement, 

the longitudinal reinforcement ratio, and grout strength on the compression stress-

strain behaviour of half scale RMBE. 
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 Introducing Equations of strains at the peak load, 75% of the peak load, and 50% of 

the peak load function with confinement ratio, vertical reinforcement ratio, and grout 

strength.  

 Investigating the capability of three existing stress-strain models in predicting the 

RMBE stress-strain relationship. 

In order to achieve these objectives, thirty half scale RMBE with an aspect ratio of 5 (i.e. 

height to thickness ratio h/t) were tested, until failure, under concentric compression loading. The 

specimens were divided into ten groups, each group had three identical specimens. All the 

confined specimens contained four vertical bars. The first and second groups were unreinforced 

and grouted with 15 and 45 MPa grout, respectively. The rest of the groups were vertically 

reinforced with different vertical reinforcement ratios, confined with hoops with different 

confinement ratios, and constructed with 15 and 45 MPa grout strength.  

1.3.3  Phase III 

The main objectives of this phase are: 

 Investigating the compression stress-strain behaviour of half scale RMBE with 

different aspect ratios under compression concentric loading. 

 Investigating the effect of changing gauge length on the compression stress-strain 

behaviour of the half scale RMBE. 

 Proposing an empirical model to predict the compressive stress-strain curve of the 

unconfined and confined RMBE. 

Thirty RMBE were constructed and tested, up to failure, to achieve these objectives. Phase III 

specimens were detailed similar to those of Phase II but they had different aspect ratios (i.e. 2 

and 3). The specimens were divided into ten groups with different aspect ratios, each group had 

three identical specimens. All the specimens were constructed using 15 MPa grout strength and 

they all had a different h/t. They contained two layers of vertical reinforcement with two bars of 

#3 per each layer and confined with hoops with different confinement ratios, except the first and 

second groups, which were un-grouted.  

Finally, a stress-strain empirical model is proposed. This model is capable of predicting the 

complete stress-strain relationship of both the unconfined and confined zone for RMBE. The 
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model formulation take into account the effect of changing, the grout strength, aspect ratio, 

volumetric ratio of lateral reinforcement and vertical reinforcement ratio on the axial stress-strain 

behaviour of RMBE. Hence, the proposed compression stress-strain analytical model can be 

adopted in forced- or displacement-based design frameworks to predict the seismic response of 

RM shear walls with boundary elements.  

1.4 Organization of the Dissertation  

The dissertation is comprised of six chapters (including the present one), a list of figures and 

tables, notations, appendix, and references. These chapters provide all the experimental, 

numerical, and analytical details of this research project. These details are used to investigate the 

compression stress-strain behaviour of the RMBE. The content of the chapters are as follows: 

 Chapter 1 presents the problem statement, the research significance and motivation of 

the dissertation, the main objectives followed by the scope of work to achieve the 

research objectives, and the organization of the dissertation.  

 Chapter 2 reviews the previous research on confined RC columns, RM boundary 

elements, the applications and techniques of confinement in improving the seismic 

performance of RC and RM boundary elements, and the effect of adding boundary 

elements to the end of RM shear walls.   

 Chapter 3 contains a description of an experimental and numerical compression 

behaviour of full scale RMBE considering the effect of changing the confinement 

ratio. The properties of materials that were used in the construction of RMBE 

specimens were obtained by tests conducted at the structures laboratory of Concordia 

University. These tests are presented in this chapter. Furthermore, the setup utilized 

for testing the specimens of RMBE is described. This chapter also presents the 

numerical model including: the details of finite element, the definition of constitutive 

materials, details of boundary conditions and meshes, and the employed software for 

simulation of the RMBE behaviour. Finally, the results of the experimental and the 

numerical study are presented in this chapter. These results include: validation of the 

numerical model, comparison of results, the effect of changing confinement ratio on 

the strength of RMBE, and ductility capacity at 75% and 50% of the peak stress. 
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It should be noted that this chapter presents a separate accepted paper.   

 Chapter 4 focuses on the compression stress-strain behaviour of half scale confined 

concrete masonry boundary elements considering the effect of changing the 

volumetric ratio of transverse reinforcement, vertical reinforcement ratio, and grout 

strength. The chapter starts by reporting the significance of investigating the 

compression stress-strain behaviour that can be employed for any masonry analysis 

process. This chapter documents the effect of aforementioned parameters on the 

RMBE ultimate strength, strain corresponding to peak, and post-peak behaviour. Also, 

this chapter presents a linear relationship that can be used by engineers to predict the 

RMBE stress and strain corresponding to the ultimate stage, 25%, and 50% stress 

degradation. Finally, this study investigated the capability of three existing stress-

strain models in predicting the RMBE stress-strain relationship. 

It should be noted that this chapter presents a separate submitted paper.  

 Chapter 5 presents the compression stress-strain behaviour of half scale confined 

concrete masonry boundary elements considering the effect of changing the aspect 

ratio (height to thickness), confinement ratio of transverse reinforcement, and gauge 

length. In addition, this chapter presents the proposed empirical compressive stress-

strain model which can be adopted in forced- or displacement-based design frame 

work to predict the seismic response of RM shear walls with boundary elements. The 

proposed model is important in a numerical analysis especially that this model capture 

nicely the descending part of the copressive stress-strain curve especially the sudden 

stress drop after the peak stress due to the face shell spalling 

It should be noted that this chapter presents a separate submitted paper.  

 Chapter 6 presents a summary, the main conclusions of the dissertation, and 

recommendations for future research. 

Chapters 3, 4, and 5 complement each other. 
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Chapter 2 

Literature Review 

2.1 Background 

This chapter presents a concise review of the response of reinforced concrete (RC) columns, 

reinforced masonry (RM) boundary elements, RM prisms, and RM shear walls with boundary 

elements under compression and lateral cyclic loading. Due to the wealth of knowledge that 

exists on the stress-strain axial response of RC columns, this chapter starts by presenting a 

summary of some relevant studies.  

On the other hand, experimental studies that investigate and quantify the compression strain 

ductility of reinforced masonry boundary elements (RMBEs) are scarce. Abo El Ezz et al. (2015) 

experimentally investigated the compression behaviour of boundary elements with standard 

concrete blocks. More research was conducted on the evaluation of compression behaviour of 

confined RC columns, and several analytical stress-strain models were proposed (e.g. Vallenas et 

al., 1977; Mander et al., 1988; Kent and Park, 1971 and Hoshikuma et al., 1997). That being 

said, the compression behaviour of a confined RM column is not necessarily similar to that of 

RC columns since there are complex interactions between the mortar, grout, the block, and the 

longitudinal and transverse steel reinforcement. On the other hand, most of the experimental, 

analytical, and numerical work on the RM columns were focused on evaluation of the ultimate 

compression strength (Köksal et al. 2004, Sturgeon et al. 1980, and Khalaf et al. 1993). 

Three different expressions are used in this chapter in order to describe masonry boundary 

elements. “Unreinforced masonry” is used to describe unreinforced and unconfined masonry 

boundary elements. On the other hand, “unconfined reinforced” is implemented to describe 

vertically reinforced masonry boundary elements. Finally, “confined reinforced” is used to 

describe vertically and transversely reinforced masonry boundary elements. 
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2.2 Behaviour of Unconfined and Confined Concrete Columns 

Early  experimental research (e.g. Park and Paulay 1975), reported that the stress-strain 

relationship of a RC member is almost identical to the plain concrete column subjected to 

uniaxial load after excluding the contribution of the vertical reinforcement in increasing strength. 

However, in the post-peak strains, the relationship is completely different. In the plain concrete, 

the lateral expansion is too large when the vertical strain in the concrete exceeds the strain 

corresponding to the peak stress, due the absence of confinement, which leads to a brittle failure.  

In the absence of the lateral support (no confinement), the failure of RC prism is characterized by 

splitting and crushing of the concrete followed by the buckling of longitudinal reinforcement 

rebars (MacGregor and Wight, 2004).  

2.2.1 Vallenas et al. (1977)  

Vallenas et al. (1977) proposed a more reliable compression stress-strain relationship for the 

confined RC columns considering the effect of the following parameters: concrete cover, 

horizontal reinforcement (hoops), and longitudinal reinforcement. Fourteen one-third scale 

specimens of plain and reinforced concrete were tested under concentric loading. These 

specimens had square cross sections of 254 mm x 254 mm with their cover, 229 mm x 229 mm 

without a cover, and 762 mm in height. These specimens represented the boundary elements of 

wall specimens used for the ongoing project on structural walls. The specimens were 

longitudinally reinforced with ratios of 0.0353 and 0.0434 for the specimens with a cover and 

without a cover, respectively. The axial strain was measured using three different gauge lengths 

in order to record the deformation in the most heavily damaged branch. The first one was at the 

middle and used four LVDT’s that were mounted on the embedded crossing bars in the concrete 

core. The second one, at the region on the ends of the specimens, used two linear potentiometers 

that were attached on one end of the specimen and on one of the embedded bars. The last one 

was placed at the whole height of the specimens and measured the relative displacement of the 

heads of the testing machine, using wire potentiometers (see Figure 2.1). It was concluded that 

adding longitudinal reinforcement improved the confinement of the concrete, increased the 

strength stress, and prevented slippage of the end hook of the hoops. The buckling of 

longitudinal reinforcement rebars was observed at an axial strain in the range of 0.023 to 0.03, 

therefore it was not considered to affect the stress-strain relationship of the confined reinforced 
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concrete. It was found that the load capacity of the specimens without a cover was similar to that 

of the specimens with a cover, before cover spalling. Moreover, no sudden drop in load capacity 

was observed after the start of spalling. Finally, adding lateral confinement in the form of hoops 

showed an increase in strength, concrete stress, and ductility compared to the unreinforced 

concrete specimens.  A lower modulus of elasticity was seen for the confined reinforced 

concrete, as compared to the unreinforced concrete specimens, due to the disruption of the 

continuity of the concrete from the hoops. Moreover, not all of the hoops had yielded when the 

maximum stress in concrete was reached.  

 

Figure 2.1 External instrumentation 

(Vallenas et al., 1977) 

Vallenas et al. (1977) proposed the following stress-strain relationship based on the analysis 

of experimental results shown in Figure 2.2. The stress-strain relationship consists of three 

branches as follows: 

For branch AB  0 L    is given by Eq. 2.1 and Eq. 2.2.      
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Figure 2.2 Analytical curve and experimental results for: (a) confined reinforced concrete with 

longitudinal reinforcement; and (b) confined concrete without longitudinal reinforcement 

(redrawn from Vallenas et al., 1977) 

k is the maximum stress ratio and it’s a function of lateral, longitudinal confinement, and the 

concrete strength as seen in the following equation. 
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  Eq. 2.2 

s  is the lateral reinforcement spacing, h is the width of the confined reinforced concrete, d  and 

''d are the nominal diameter of the longitudinal and lateral reinforcement, respectively. 
''

yf is the 

yield strength of the lateral reinforcement, 
'

cf  is the compressive strength of concrete,   and 
''  

are the longitudinal reinforcement ratio and volumetric ratio of lateral reinforcement, 

respectively.   

For branch BC  0 0.     L k     is given by Eq. 2.3 and Eq. 2.4. 
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For branch CD  0.    k L   is given by Eq. 2.5.   

'
0.3 c

c

f
k

f
      Eq. 2.5 



14 

 

2.2.2 Kent and Park (1971) 

Kent and Park (1971) proposed a compression stress-strain model for both unreinforced and 

confined reinforced square concrete columns. This model generalized Hognestad’s (1951) 

equation to completely describe the post-peak stress-strain behaviour. Based on the experimental 

results, the compression stress-strain curve for confined reinforced concrete consists of three 

branches: the ascending branch, the falling branch, and the horizontal linear branch. This model 

considers the increase in ductility due to the confinement steel (hoops), however, neglects the 

increase in concrete strength, as depicted in Figure 2.3. The ascending branch is formulated by 

modifying the Hognestad’s (1951) second degree parabola and is considered to be unaffected by 

confinement, the 
'0.85 cf  and 0 are replaced by

'

cf   and 0.002, respectively. The ascending 

branch is given by Eq. 2.6 as follows: 

2

' 2
   c c

c c

co co

f f
 

 

  
    
   

   Eq. 2.6 

Unconfined concrete

Strain 

S
tr

es
s 

(

Confined concrete

 

Figure 2.3 Proposed stress-strain model for confined reinforced and unreinforced concrete 

(redrawn from Kent and Park, 1971) 

The falling branch (post-peak) is idealized by a sloping line, which is a function of concrete 

strength, and given by Eq. 2.7 to Eq. 2.8. 

 '   1  (  c c c cof f Z        Eq. 2.7 

in which 
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50

0.5
Z  

 u co 



   Eq. 2.8 

where 50u  is the strains corresponding to the stress of 50% of the maximum concrete strength for 

unreinforced concrete as follows: 

'

50 '

3 0.29 

145  1000

c
u

c

f

f


 
  

 
   Eq. 2.9 

The third portion is formulated by horizontal linear with stress equal to the 20% of the 

maximum concrete stress at the end of the descending curve at a strain beyond the 20c . 

2.2.3  Scott et al. (1982) 

Scott et al. (1982) tested twenty five square RC columns vertically reinforced with either 8 

or 12 rebars and confined by overlapping hoop sets. This test was conducted with rapid strain 

rates, which is typical for seismic loading, to investigate the stress-strain behaviour of confined 

RC concrete. It was observed that the strength enhanced due to the presence of the confinement 

of hoops, unlike the Kent and Park (1971) model. In order to incorporate the effect of 

confinement to increase the strength of confined reinforced concrete (see Figure 2.4), simple 

modifications were made to the Kent and Park (1971) model. The maximum concrete stress is 

reached to the
'

cKf at a strain of 0.002K . The modified Kent and Park stress-strain relationship 

consists of two branches: 

For 0.002c K   is given by Eq. 2.10. 

2

' 2
   

0.002K 0.002K

c c
c cf Kf

   
   

   
   Eq. 2.10 

For 0.002c K  is given by Eq. 2.11 to Eq. 2.13. 

 '   1   0.002c c m cf Kf Z K        Eq. 2.11 

but not less than 
'0.2 cKf  , in which  

'

'

0.5
 

3 0.29  3
      0.002

145 1000 4
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c h

z
f h

K
f s












  
 Eq. 12 

The value of K is obtained from the following expression: 
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'

 
1  

s yh

c

f
K

f


     Eq. 13 

where
'

cf  is the maximum strength of concrete in MPa, s  is the ratio of the volume of hoops to 

the volume of concrete core measured to the outside of the peripheral of the hoop, ''h  is the 

width of concrete core measured to the outside of the peripheral of the hoop, hs  is the center to 

center spacing of the hoop sets, and yhf  is the yield strength of the hoop reinforcement. 

The modified Kent and Park relationship can be used for high strain rates by applying a 

multiplying factor of 1.25 to the peak stress, the strain corresponding to the peak stress, and the 

slope of the post peak descending curve. Hence, the stress-strain relationship for the high strain 

is given by Eq. 2.10 and Eq. 2.11, however the values of K and  are changed to: 

'

 
1.25  1  

s yh

c

f
K

f

 
  

 
   Eq. 2.14 

and 

'

'

0.625
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c h
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

 



  

 Eq. 2.15 
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Figure 2.4 Proposed stress-strain model for confined reinforced and unreinforced concrete-

Modified Kent and Park (Scott et al., 1982) model 

(redrawn from Scott et al., 1982) 
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2.2.4 Mander et al. (1988a) 

Mander et al. (1988a) developed a stress-strain model for confined reinforced concrete 

subjected to uniaxial compressive loading with cross sections that were either spiral or 

rectangular hooped steel confinement. The proposed stress-strain model for confined reinforced 

and unreinforced concrete under monotonic loading with slow strain rate is illustrated in Figure 

2.5. The longitudinal compressive concrete stress cf  is given by Eq. 2.16 to Eq. 2.32.  

'    
 

1

cc
c r

f x r
f

r x


 
  

 

 Eq. 2.16 

where
'

ccf  = compressive strength of confined reinforced concrete. 

εc 

Confined concrete

First hoop fracture

Unconfined concrete

Assumed for cover

concrete

εcuεccεsp2εcoεcoεt

Ec

Esec

 _ 0^′

 _ ^′

 

Figure 2.5 Stress-strain model proposed for monotonic loading of confined reinforced and 

unreinforced concrete 

(redrawn from Mander et al., 1988a) 

  c

cc

x



   

 

 Eq. 2.17 

where c  = longitudinal compressive concrete strain. 

'

'
  1 5 1cc

cc co

co

f

f
 

  
    

  
  

 

 Eq. 2.18 

where 
'

cof  and co   are the unreinforced concrete strength and corresponding strain, respectively, 

and r is given by Eq. 2.19. 
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c

c sec

E
r
E E




  

 

 Eq. 2.19 

'5,000 c cE f , 
'

cf in MPa, is the tangent modulus of elasticity of concrete, and
'  /sec cc ccE f  . 

The behaviour of the concrete cover is assumed to be a straight line at the end of the 

descending curve, at a strain beyond the 2 co . 

The core section is susceptible to the maximum pressure of transverse reinforcement when 

the confining stress has fully developed due to the arching action. The arching occurs 

horizontally and vertically between vertical and horizontal reinforcement rebars, respectively, 

with second degree parabolas that have an initial slope of 45o. The effective lateral confining 

pressure is given by Eq. 2.20. 

'    l l ef f k    Eq. 2.20 

lf  is the lateral  reinforcement confining pressure which is assumed to be uniformly distributed 

over the surface of the concrete core. The confinement effectiveness coefficient is given by Eq. 

2.21. 

  
 

e
e

cc

A
k

A
    Eq. 2.21 

where  is the area of confined concrete core, and ccA is given by Eq. 2.22. 

  1  cc c ccA A      Eq. 2.22 

cc is the ratio of the area of the longitudinal reinforcement to the area of the core of section. cA  

is the area of the core section enclosed by the centerlines of the perimeter hoop. 

The effective confined area of concrete is calculated by subtracting the area of the parabolas 

containing the ineffectively confined concrete (Eq. 2.23) from the confined core section as 

shown in Figure 2.6; 

 
2

'

1

 
 6

n
i

i

i

w
A



    Eq. 2.23 

Then the area of effectively confined concrete between the hoops (at the mid-way) is given by 

Eq. 2.24. 
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 
2

'
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          1       1    
 6   2   2 

n
i

e c c

i c C

w s s
A b d

b d

 
        

   
 

 
    Eq. 2.24 

Hence, from Eq. 2.21, the confinement effectiveness coefficient for rectangular hoops is;   

 
2

'

1
1       1       1    
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       
   









  

 Eq. 2.25 
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Figure 2.6 Effectively confined core for rectangular hoop reinforcement 

(redrawn from Mander et al., 1988a) 

 

Basically, the rectangular section has different quantities of transverse confining steel in the 

x and y directions and they may be expressed by Eq. 2.26 and Eq. 2.27, respectively. 

   
   

sx
x

c

A

sd
     Eq. 2.26 

 
   

sy

y

c

A

sb
     Eq. 2.27 

The total area of longitudinal reinforcement is equal to the summation of the sxA  and syA . The 

lateral confining pressure stress coming from the hoop on the concrete is the total area of 

transverse steel rebars divided by vertical area of confined concrete and is given by Eq. 2.28. 

 
 

p
f

A
    Eq. 2.28 
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By substituting in Eq. 2.20, the effective confining stresses in x and y directions are given in Eq. 

2.29 and Eq. 2.30, respectively. 

'      l x e x yhf k f    Eq. 2.29 

and,  

'  ρ  l y e y yhf k f    Eq. 2.30 

Finally, the confined reinforced compressive strength  '

ccf and the corresponding strain  cc  

are given by Eq. 2.31 and Eq. 2.32. 

' '
' '

' '

7.94 
    1.254 2.254  1   2 i i

cc co

co co

f f
f f

f f

 
     

 
 

   Eq. 2.31 

'

'
  1 5 1cc

cc co

co

f

f
 

  
    

  
  

 

 Eq. 2.30 

It was concluded that the proposed stress-strain curve for confined reinforced concrete 

required three control parameters:
'

 cf , cc   and cE .  The ultimate concrete compressive strain of 

the section is defined as the strain corresponding to the first hoop fracture. 

2.2.5 Mander et al. (1988b) 

Mander et al. (1988b) tested thirty one concrete columns with circular, rectangular, and 

rectangular wall cross sections under compression. These columns were tested in order to 

investigate compression stress-strain behaviour of the columns and compare it with the predicted 

theoretical model considering the effects of strain rate, configuration of the confinement 

reinforcement, and cyclic loading. Longitudinal strain was measured using four potentiometers 

which were mounted on embedded cross bars in the core concrete with gauge lengths of 450 

mm. It was concluded that the most significant parameter that has influence on the longitudinal 

stress-strain behaviour was the quantity of the confining reinforcement, for all the different 

sections of columns. The circular column that was confined and reinforced with spiral 

reinforcement exhibited an increase in strength and ultimate strain more than the square column. 

It was found that as the confinement ratio of lateral reinforcement increased, the strength 

increased, the slope of the post peak descending curve decreased, and the strain corresponding to 

the first hoop fracture increased. Finally, it was shown that the proposed analytical stress-strain 

model is in agreement with experimental results for all shapes of the columns. 
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2.2.6 Hoshikuma et al. (1997)   

Hoshikuma et al. (1997) proposed a stress-strain curve for the behaviour of RC columns 

under compression considering the effect of confinement. Thirty one RC column specimens with 

square, circle, and wall type sections were tested. This test was conducted to study the 

compression behaviour of RC columns considering the effects of confinement reinforcement in 

terms of the volumetric ratio, hoop’s spacing, configurations of the hoops, cross sectional shape, 

and cross ties. Two linear potentiometers were used to measure the axial strain with gauge 

lengths equal to the height of the specimen. It was found that the buckling of the longitudinal 

reinforcement and the crushing of the core concrete occurred after 50% degradation. Based on 

these observations, the ultimate strain was assumed to be the strain corresponding the 50% of the 

peak stress. It was found that as the confinement ratio increases the peak stress, the strain 

corresponding to the peak stress, and the strain ductility. The results show that the confinement 

decreased the deterioration of the specimens after the peak. In addition, as the spacing of hoops 

increases the deterioration of the specimen increases. The stress-strain model proposed by 

Hoshikuma et al. (1997) was based on the results of compression loading tests. This model 

consists of three branchs; an ascending branch, a falling branch, and a sustaining branch. The 

ascending branch of proposed stress-strain models is formulated by a second order parabola with 

the following four boundary conditions: 

Initial condition 0 cf   at  ε 0c   , Initial stiffness condition  
ε

c
c

c

df
E

d
  at ε 0c  , Peak 

condition   c ccf f  at  ε  εc cc  , Peak stiffness condition  0  
ε

c

c

df
d

  at  ε  εc cc   

where ccf is the peak stress;  εcc is the strain at peak stress; cE is the initial stiffness. 

The second-order parabola of the ascending branch is expressed in Eq. 2.33: 

2

2
   c c

c cc

cc cc

f f
 

 

  
    
   

   Eq. 2.33 

By satisfying the boundary conditions and substituting in Eq. 2.33, the Eq. 2.34 is obtained. 

1

1
  1  

n

c
c c c

cc

f E
n






  
    
   

   Eq. 2.34 

where n is a coefficient and is given by Eq. 2.35. 
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
   Eq. 2.35 

The falling branch of proposed stress-strain curve is idealized by a straight line as indicated by 

the test results shown in Figure 2.7, and is formulated as in Eq. 2.36. 
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Figure 2.7 Definition of ultimate strain and deterioration rate 

(redrawn from Hoshikuma et al., 1997) 

  c cc des c ccf f E       
 

 Eq. 2.36 

where, desE is the deterioration rate which is developed from regression analysis of test data in 

the range of cc to cu . The ultimate strain can be obtained by substituting 0.5c ccf f into Eq. 

2.36, as in Eq. 2.37. 

   
2

cc
cu cc

des

f

E
      Eq. 2.37 

In this proposed model, the sustained branch is not formulated, since that branch is not critical in 

the seismic design of bridges. 
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2.3 Behaviour of Unconfined and Confined Masonry Prisms 

The failure mechanism of unreinforced fully-grouted masonry prisms tested under 

concentric compression axial loading is defined as a combined compression-tension failure. As 

the compression load increases, the lateral expansion of mortar and grout increases, leading to 

tensile splitting of the block face shell and compression-tension failure of the unreinforced grout 

cores (Drysdale and Hamid 2005). However, when unconfined RM prisms fail, their vertical 

reinforcement buckles. Therefore, the failure mode of the unreinforced and the unconfined RM 

prisms is characterized by a brittle failure mechanism. Adding confinement reinforcement in 

masonry prisms prevents the brittle failure mechanism and provides a more ductile response to 

the tested prism. Different techniques have been implemented in the literature to confine the 

masonry prisms. However, the conventional technique of confining reinforced masonry wall 

ends using transversal hoops is typically restricted due to the geometry of the available concrete 

blocks.     

2.3.1 PRIESTLEY AND ELDER (1983) 

In 1974, Priestley and Bridgeman (1974) introduced the steel plate technique to confine the 

bed joint which became known as the Priestley plate. Priestley and elder (1983) tested twenty 

one masonry prisms, with heights of 980 mm, to investigate the compressive stress-strain 

relationship of the grouted concrete masonry prisms. The test program aimed to investigate the 

influence of the block width, strain rate, vertical reinforcement, and confining steel plate 

(Priestley plate) on the failure modes and compressive stress-strain relationship of masonry 

prisms. The Priestley plate was fabricated from 3.1 mm of stainless steel with an area slightly 

smaller than the block’s net area (see Figure 2.8). The results showed that the failure mechanism 

of unreinforced masonry prism was similar to the failure mechanism suggested by Drysdale and 

Hamid (1979). The failure of a masonry unit/mortar occurs earlier by vertically splitting and it is 

initiated by lateral expansion of the crushing mortar which leads to lower strain corresponding to 

the peak stress. The width of the block and the presence of the vertical reinforcement exhibited 

no significant effect on the masonry prism’s behaviour. Increasing the strain rate from 0.005 to 

0.5 percent/sec produced an increase in strength and exhibited a steeper descending curve of the 

compressive stress-strain relationship for confined reinforced prisms. Adding a stainless steel 

confining plate eliminated the vertical splitting of the block and changed the failure mechanism 
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to a shear/crushing failure within one or two courses of the block. In addition, the stainless steel 

confining plate produced a more gradual descending curve on the compressive stress-strain 

relationship.  

  

Figure 2.8 Priestley plate for concrete masonry prism   

 

Priestley and Elder (1983) applied a modified Kent-Park curve with a modification to 

consider the low strain at peak stress (i.e. 0.0015 c  instead of 0.002  0.002). Priestley and 

elder’s (1983) model for confined reinforced and unreinforced masonry consists of three 

branches: 

Unreinforced masonry 

 Rising branch is given by Eq. 2.38.  

2

' 2
1.067    

0.002 0.002

m m
m mf f

   
   

   

  for 0.0015c    Eq. 2.38 

where, mf  and m are stress and axial strain in masonry, respectively, and 
'

mf is the maximum 

compressive strength of concrete masonry prism. 

 Falling branch is given by Eq. 2.39.  

 '   1   0.0015m m m cf f Z        for 0.0015c    Eq. 2.39 

 Horizontal plateau,        mf  is assumed equivalent to 
'0.2 mf   

Confined reinforced masonry 

 Rising branch is given by Eq. 2.40. 
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2

' 2
1.067K    

0.002K 0.002K

c c
m mf f

   
   

   

  for 0.002c K   Eq. 2.40 

 Falling branch is given by Eq. 2.41. 

 '

d  1   0.002Km m m cf Kf Z        for 0.002c K   Eq. 2.41 

The value of  and  are obtained from the Eq. 2.42 and Eq. 2.43, respectively: 

'
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    Eq. 2.42 
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 Eq. 2.43 

 Horizontal plateau 

mf  is assumed equivalent to 
'0.2 mf   

2.3.2  HART ET AL. (1988) 

Hart et al. (1988) used different types and techniques of confinement to confine masonry 

prisms, including: closed wire mesh and open wire mesh. A total of 71 prisms with a height of 4 

courses each were tested. This test was conducted to investigate the compression stress-strain 

behaviour of masonry prisms considering the following five confinement techniques: modified 

Priestly plate, square steel ties equivalent to the minimum confinement reinforcement required 

by the 1988 UBC for masonry (#3 bars (9.5 mm diameter) at 8” (203 mm) spacing), cage (hoop) 

reinforcement, spiral reinforcement, and cage (spiral) reinforcement.  

Figure 2.9 shows the different confinement techniques that were used by Hart et al. (1988) 

to confine the masonry prisms. Based on the experimental results of each confinement 

configuration, a compression stress-strain curve for typical confined reinforced concrete masonry 

shown in Figure 2.10 was defined. It was observed that the curve can be divided into four strain 

branches.  

It was concluded that the unreinforced and unconfined reinforced specimens failed in a 

brittle manner. The result showed that the different confinement configurations had a minimal 

effect on the ascending portion of stress-strain curve, however, it had a significant effect on post-

peak curves. Henceforth, enhancing the prism’s ductility and its energy dissipation. The study 
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concluded that the most effective confinement technique was the Priestley plate, which produced 

a more gradual descending curve. 

Ties Cage (hoop) Spiral Cage (spiral) Polymer Fibers
 

Figure 2.9 Confinement techniques 

(redrawn from Hart et al. (1988)) 
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Figure 2.10 Confined reinforced concrete masonry stress-strain curve 

(redrawn from Hart et al., 1988) 

2.3.3 HART ET AL. (1989) 

Hart et al. (1989) presented two analytical models for the stress-strain behaviour of masonry 

in compression for both confined reinforced and unreinforced concrete. One hundred and six 

concrete masonry prisms were tested including unreinforced, unconfined reinforced, and 

confined reinforced masonry prisms. The confined reinforced prisms utilized seven confinement 

techniques. Based on the experimental results, two analytical models were developed: acceptable 

fit model and the best fit model. Acceptable fit model is very simple. On the other hand, best fit 
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model is developed to provide a closer agreement with the experimental results, however, with 

an increase in complexity. The parameters used in each model were obtained from experimental 

data using the least squares curve fitting technique. These stress-strain models were divided into 

two branches: rising branch and falling branch. 

The Acceptable Fit Model 

The rising branch is formulated by a straight line from the origin up to the peak stress. The 

straight line is a function of two parameters  mtmf and mtm , and can be written as in Eq. 2.44. 

       m
m m mtm

mtm

f f





 
  

 
   Eq. 2.44 

The falling branch is formulated by an exponential function, and can be written by Eq. 2.45. 

    
      mA

m m mtmf f Be





    Eq. 2.45 

By applying the boundary condition that   m mtmf f  at   mt mtm  , the parameter B can be 

eliminated, thus Eq. 2.45 will be as Eq. 2.46. 

      
      m mtmA

m m mtmf f e
 


       Eq. 2.46 

where, mf  = concrete masonry compressive strength, m  = concrete masonry compressive strain, 

mtmf  = maximum average measured compressive stress of masonry, mtm  = strain corresponding 

to maximum compressive stress, and A is the shape parameter. 

The Best Fit Model 

The rising branch is formulated by a second degree polynomial form and is given by Eq. 2.47. 

  2     m m m mf A B       Eq. 2.47 

By applying the boundary condition that   m mtmf f  at   mt mtm  and defining a new 

parameter / mtmC A f , the equation Eq. 2.47 can be written as Eq. 2.48. 

  2 1
       m m mtm m mtm m

mtm

f f C C   


  
    

  
   Eq. 2.48 

The falling branch is formulated by an exponential function, and can be written by Eq. 2.49. 

    
    mE

m mf B Ce





     Eq. 2.49 
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By applying the boundary condition that   m mtmf f  at   mt mtm  and defining a new 

parameter / mtmD B f , the equation can be written by Eq. 2.50: 

        
   [ 1  m mtmE

m m mtmf f D D e
 


         Eq. 2.50 

To completely describe the stress-strain curve for the Best Fit Model, three shape parameters (A, 

D, and E) and two parameters mtmf  and   mtm  must be defined.  

2.3.4 SHEDID ET AL. (2010B) 

Shedid et al. (2010b) tested rectangular and square half scale masonry prisms under 

compression that were four-blocks in height and grouted. This test was conducted to investigate 

the stress-strain relationship, the modulus of elasticity, and the effect of the vertical 

reinforcement and confinement on the compression stress-strain relationship. Twenty rectangular 

and square masonry specimens, made of standard and pilaster blocks, were tested to evaluate the 

effect of the presence of vertical reinforcement and confinement reinforcement, as shown in 

Figure 2.11.      

 

Figure 2.11 Confined reinforced prisms  

(Adopted from Shedid et al., 2010b) 

The axial strain was measured using two linear potentiometers placed on opposite faces of 

the prisms with a gauge length of 300 mm. The results showed that the rectangular prisms’ 

failure was characterized by diagonal and/or horizontal cracks through their face shells. The 

modulus of elasticity for the tested masonry prisms was found with an average of 830 times
'

mf . 

The failure of the unreinforced square masonry prisms was characterized by vertical cracks, after 

reaching a maximum load, followed by face shell spalling. The unconfined reinforced masonry 

prisms exhibited less damage compared to the unreinforced masonry prisms, however, they 
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exhibited an increase in strength due to the presence of vertical reinforcement. The confined 

reinforced masonry prisms with lateral reinforcement exhibited a slight increase in strength 

compared to the unconfined reinforced masonry prisms. The vertical cracks and face shell 

spalling were observed after reaching a maximum load, however, the buckling of vertical 

reinforcement was not observed. Additionally, confined reinforced masonry prisms produced 

more gradual post-peak stress-strain curves. Finally, the confined reinforced pilaster masonry 

prisms exhibited an increase in strength, moreover, exhibited an increase in strain, at 30% of the 

peak stress, by 50% higher than unreinforced pilaster masonry prisms.  
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Figure 2.12 Stress-strain relationship for square prisms 

(redrawn from Shedid et al., 2010b) 

2.3.5 JOYAL (2014) 

Joyal, M. (2014) employed a new technique of confinement called Self-Reinforced concrete 

block (SR Block) to improve the ductility of RM shear walls. The internal reinforcement devices 

are placed into concrete blocks during the standard masonry block manufacturing process (see 

Figure 2.13).  
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(a)                                                                      (b)  

Figure 2.13 SR block device: (a) Confining Device; and (b) Confining device exposed by 

removal of compacted exterior concrete 

(Adopted from Joyal, 2014) 

Figure 2.14 shows the adopted new prototype block with larger circular cells and a smaller 

block mass, compared to the traditional hollow block, to ease the placement of reinforcement and 

grout.  

 

Figure 2.14 Prototype block design 

(Adopted from Joyal, 2014) 

Joyal, M. (2014) tested a total of 51 masonry prisms, including standard and prototype 

masonry unit blocks, in both ungrouted and grouted states. The prototype block was divided into 

two categories: Type I had 101.6 mm diameter cells and type II had 154.4 mm diameter cells. All 

prisms were constructed with a height of four courses and tested under compression using 2500 

kN servo-hydraulically controlled testing machine (Rhiele). Axial strain was measured using 

eight 50 mm, draw-wire potentiometers. The first four potentiometers were placed on each face 

of the masonry prism and were mounted directly on the block. They had a gauge length of 600 

mm from the mid-height of the bottom block to mid-height of the top block. The second four 

potentiometers were placed on each face of masonry prism, however, these had a gauge length 

equal to the full height of the prism. 
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Figure 2.15 Stress-Strain Curves for Unreinforced and Self-Reinforced Prisms 

(Joyal,  2014) 

It was found that all SR block prisms reached a peak capacity that was almost equal to the 

unreinforced counterpart’s peak capacity. However, all SR block prisms reached a second peak 

capacity considerably more than the first peak, after spalling of the block and mortar. 

Additionally, the SR block prisms exhibited an increase in strength about six times and ten times 

compared to the unreinforced prisms at strain of 0.3% and 2% of peak stress, respectively 

(Figure 2.15). The presence of the SR block in the compression zones of the shear walls 

produced a significant increase in the lateral capacity and the ductility capacity of the shear wall.   

2.3.6 ABO EL EZZ ET AL. (2015) 

Abo El Ezz et al. (2015) experimentally and analytically investigated the compression 

behaviour of boundary elements with standard concrete blocks, considering the effects of the size 

and the spacing of the transverse reinforcement (seismic hoops). A simplified stress-strain model 

of unreinforced and confined reinforced boundary element was proposed. To achieve this 

objective, a total of 17 full scale, fully grouted concrete masonry boundary elements were tested, 

that represented the end zone of a RM shear wall. The boundary element specimens included; 

unreinforced, unconfined reinforced, and confined reinforced specimens that were confined with 

different lateral reinforcement in terms of hoops. The hoop diameters were 10M and 15M at 

vertical spacing’s of 100 mm and 200 mm. The boundary element specimens were constructed 

using standard concrete block stretcher units with 15 MPa nominal compressive strength. Each 
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boundary element specimen consisted of 5 courses with two block units placed adjacent to each 

other in an alternating direction. The axial strain of the boundary element specimen was 

measured using four potentiometers. These potentiometers were attached to the embedded cross 

bars at each face of the specimen, with a gauge length of 600 mm, between the three middle 

blocks. The simplified stress-strain model is similar to the Kent and Park (1971) model with 

some modifications. For the unreinforced boundary element, the model is divided into three 

branchs as follows: 

 A parabolic rising branch as in Eq. 2.51.    
2

1 1

2
     m m

m max u

max max

f f
 

 


  
    
   

  for 1m max    Eq. 2.51 

 A plateau with constant stress as in Eq. 2.52. 

 m max uf f    for 1 2max m max       Eq. 2.52 

 A linear falling branch as in Eq. 2.53 and Eq. 2.54. 

  2    1    m max u m maxf f Z      for 2m max    Eq. 2.53 

50 2

0.5
 

 u max

Z
 




   Eq. 2.54 

For the confined reinforced boundary element, the model is divided into two branchs as follows: 

 The ascending branch is formulated by a second order parabola similar to Kent and Park 

(1971) as in Eq. 2.55. 

2

2
     m m

m max c

max c max c

f f
 

 


 

  
    
   

  for m max c     Eq. 2.55 

Where, max max1.15c rf f   

 The descending branch is formulated by a straight line and modified based on the 

experimental results in this study as in Eq. 2.56 and Eq. 2.57. 

      1    m max c c m max cf f Z       for m max c     Eq. 2.56 

50

0.5
 

 c max c

Z
  




   Eq. 2.57 

mf  is the compression stress and m  is the corresponding compression strain, max cf   is the peak 

compressive stress for the confined reinforced boundary element and max c  is the corresponding 

strain, and max rf  is the average strength of the unconfined reinforced boundary element. 
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It was concluded that adding confinement reinforcement improved the axial compression 

capacity and the strain ductility of the boundary elements. Moreover, the confinement 

reinforcement produced a more gradual post-peak stress-strain curve and had a significant effect 

on the compression stress-strain behaviour of masonry boundary elements. The proposed 

analytical model was in agreement with the experimental results. 

2.4 Masonry Shear Walls With End Confined Zones 

2.4.1 SAJJAD (1990) 

Sajjad (1990) tested four masonry shear walls, at the University of California, Los Angeles, 

to study their behaviour while considering the effects of three confinements: hoop reinforcement 

(equivalent to the minimum confinement reinforcement required by 1988 UBC), confinement 

reinforcement Comb, and a spiral cage reinforcement. One of four the walls did not have 

confinement while the other three walls were confined with aforementioned confinement 

techniques. All four masonry walls had the same dimensions, horizontal reinforcement ratio, 

vertical reinforcement ratio, and applied axial load. Table 2.1 shows the test results from of 

unreinforced and confined reinforced shear masonry walls.  

Table 2.1 Results from testing of unreinforced and confined reinforced shear walls  

(from Sajjad 1990) 

 
Unreinforced 

wall 

Confined reinforced walls 

Hoops spaced 

at 8" 

Confining 

comb 
Spiral cage 

Ratio of confinement 

reinforcement (Volumetric) 
- 0.0042 0.0022 0.0029 

Max Force (kN) 

Mean 352.7 374.1 403.0 374.5 

Ratio to 

Unreinforced 
1.00 1.06 1.14 1.06 

Drift (%) at 

Maximum Force 

Mean 0.73 1.22 1.16 1.2 

Ratio to 

Unreinforced 
1.00 1.66 1.58 1.64 

Force (kN) at 

Maximum Drift 

Mean 181.9 165.0 338.5 230.0 

Ratio to 

Unreinforced 
1.00 0.91 1.86 1.26 

Maximum Drift 

(%) 

Mean 1.17 1.70 2.15 2.61 

Ratio to 

Unreinforced 
1.00 1.45 1.83 2.24 
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It was concluded that the confined reinforced walls had increased maximum loads by 6% to 

14% compared to the unreinforced wall. Wherein, the maximum load exists when the strain of 

concrete masonry at the extreme compression fiber is equal to the usable strain. The results show 

that the drift at the maximum load increased by 58% to 64% compared to the unreinforced wall. 

Finally, adding confinement to the wall increased the maximum drift by up to 123% as compared 

to the unreinforced wall. 

2.4.2 SHEDID (2009) 

Shedid (2009) tested seven half scale, fully grouted masonry walls to investigate the cyclic 

flexure response of the reinforced concrete masonry rectangular walls, walls with flanges, and 

walls with boundary elements. The purpose of the test was to investigate the influence of adding 

flanges or boundary elements on the stability of the compression zone (see Figure 2.16). The 

main goal of this study was to evaluate the effect of connecting flanges or boundary elements to 

the ends of the wall on the behaviour of the RM wall. All the walls had the same length, 

however, they had different end configurations and aspect ratios. All of the walls were subjected 

to identical axial loading. It was concluded that the flanged and end-confined reinforced masonry 

walls exhibited an increase in ductility of at least 39 and 106% higher than that of the rectangular 

walls, respectively.  

1802

Horizontal reinforcement

Flange

Horizontal reinforcement

185

185

90

185

185

282

Boundary elements
(Pilaster unit)

Horizontal reinforcement

Boundary elements
(2 blocks)

Closed ties

 

Figure 2.16 End-confined reinforced wall configurations 

(Adopted from Shedid, 2009) 



35 

 

The rectangular, flanged, and end-confined reinforced walls produced a drift at 20% strength 

of at least 1.0, 1.5, and 2.0%, respectively. The test’s results showed that all the walls provided 

the same capacity and elastic stiffness, hence, saving more than 40% in the amount of vertical 

reinforcement for the end-confined reinforced walls. Table 2.2 shows the results of the walls 

tested by Shedid (2009).   

 

Table 2.2 Results from testing of unreinforced and end-confined reinforced shear walls  

(from Shedid, 2009) 

 
Unreinforced 

wall 

Confined reinforced walls 

Flanged 

Two-block 

boundary 

elements 

Pilaster 

boundary 

elements 

Max Force (kN) Mean 266 242 238 238 

Drift at 

maximum Force 

Mean 0.5 0.75 0.91 0.76 

Ratio to 

Unreinforced 
1.00 1.50 1.82 1.52 

Drift at 20% 

strength 

degradation 

Mean 1.04 1.64 2.05 2.42 

Ratio to 

Unreinforced 
1.00 1.58 1.97 2.33 

Displacement ductility 

(idealized elastic-plastic) 
4.8 6.6 9.8 9.7 

 

2.4.3 BANTING (2013) 

Banting (2013) tested nine half scale, fully grouted masonry walls integrated with boundary 

elements (BE). The objective of the study was to investigate the force-displacement behaviour 

and performance-based seismic design consideration for the RM walls containing BEs. For 

comparison purposes, two walls from Shedid (2009) were included in this study. The parameters 

that were considered for comparison in this study included the wall height, the wall length, the 

height to length aspect ratio, the number of inter-storey floor slabs, the discontinuity of 

confinement detailing above the plastic hinge, the axial load, and the vertical reinforcement ratio. 

Two out of the eleven walls had the same height to length ratio which matched the one of the 

walls tested by Shedid (2009). Each wall had the same boundary element, which in turn 

produced differing relative wall to BE lengths. Banting (2013) tested a series of four courses BEs 

composed of two block units under uniaxial compression, to investigate the compression stress-
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strain behaviour. These BEs were constructed with blocks and grout that were consistent with 

those used for the walls. It was concluded that adding BE to the RM walls delayed the buckling 

of the vertical reinforcement and kept the inner core intact and stable, without a drop in 

resistance. It was observed that the mode of failure was characterized by buckling of the vertical 

reinforcement, crushing of the grouted core, and eventually fracturing of the reinforcement.   

2.5 Summary of Literature Review 

The majority of the literature review focused on the experimental and analytical 

investigations and evaluations of the compression behaviour of confined RC columns, including 

the quantification of the post-peak strain capacity. On the other hand, the majority of 

experimental, analytical, and numerical works that have been conducted on the structural 

behaviour of RM columns have focused on the evaluation of the ultimate compression strength 

rather than the evaluation of the post-peak strain capacity. A few researchers were focused on the 

investigation and evaluation of the compression stress-strain behaviour of masonry BEs. It can 

be seen that the standard blocks have been used in the construction of masonry BEs in previous 

studies. In addition, the open space within each cell is very restricted, hence, the volume of grout 

that can be confined will be limited. This in turn leads to leaving more than 50% of the cross-

sectional area unreinforced and may be subjected to spalling under a compressing load. 

Moreover, the construction of boundary elements with standard concrete blocks requires the 

cutting of their webs and shells to make a seat that accommodates the confinement hoops. On the 

other hand, C-shaped concrete masonry blocks do not need to be cut. This alternative can be 

more practical in terms of constructability because a reinforcing steel cage is placed prior to the 

construction of the boundary element. As such, there is a need for experimental and numerical 

investigations on the compression stress-strain behaviour of confined reinforced boundary 

elements constructed with C-shaped concrete masonry blocks in order to determine their use in 

ductile RM walls with boundary elements. 

Moreover, the majority of the analytical stress-strain model in literature describe the 

compression behaviour of RC columns. However, the analytical stress-strain model of the RM 

prisms and boundary element are scarce. For predicting the effect of different parameters (e.g. 

transverse reinforcement confinement), the analytical studies of analyzing the seismic response 

of the RMSW integrating with boundary element are implemented the stress-strain models 
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developed originally for concrete materials. Henceforth, there is a need for proposing an 

analytical stress-strain model focusing on the behaviour of RM boundary element because using 

stress-strain concrete material may or may not be true due to the anisotropic characteristics of 

reinforced masonry assemblage.     

The objective of this research is to investigate the compression stress-strain behaviour of 

isolated unreinforced and confined reinforced RMBE, that represent a highly compressed end 

zone of a RM wall, experimentally, numerically, and analytically. Throughout this research, the 

effects of the following parameters on the stress-strain behaviour of RMBE are investigated; 

1- Vertical reinforcement ratio,  

2- Volumetric ratio of transverse reinforcement,  

3- Strength of the grout,  

4- Aspect ratio of boundary element (height to thickness), h/t, and 

5- Proposed a compression stress-strain analytical model for the shaped masonry boundary 

element.  
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Chapter 3 

Compression Behaviour of Confined Concrete Masonry Boundary 

Elements 

3.1 Abstract 

The seismic performance of reinforced masonry (RM) walls can be enhanced by integrating 

confined boundary elements at the end zones of the wall. The evaluation of the compression 

behaviour of the boundary elements is essential to the reliable assessment of displacement 

ductility and the seismic performance of the walls. Complementary to the experimental 

evaluation of the compression behaviour, finite element numerical simulations are particularly 

useful in assessing the influence and sensitivity of various design parameters. In this study, 

experimental and numerical investigations are conducted to evaluate the compression stress-

strain behaviour of confined C-shaped reinforced concrete masonry block boundary elements 

(RMBEs). Compression tests are conducted on 16 full-scale confined RMBEs with different 

configurations of confinement reinforcement. A finite element modeling (FEM) procedure using 

the ABAQUS software is employed to simulate the compression behaviour of a RMBE. The 

FEM procedure is validated with experimental results on a full-scale confined RMBE. 

Comparative compression stress-strain curves and damage progression are presented and 

discussed. The study shows the significance of the confinement reinforcement in the 

improvement of the compression strain capacity of the RMBE. Moreover, the proposed FEM 

procedure provides a good approximation of the compression stress-strain behaviour in the 

elastic and inelastic regions and captures the influence of the confinement reinforcement ratio on 

the compression response of the RMBE. 

 

Keywords: Reinforced Concrete Masonry Walls; Boundary Elements; Confinement; Finite 

Element; ABAQUS; Stress-Strain; Damage Plasticity. 
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3.2  Introduction 

Reinforced masonry (RM) shear walls are commonly used in medium-rise and high-rise 

masonry buildings as the lateral load resisting system to provide the lateral strength, stiffness and 

energy dissipation capacity required to resist seismic loading. RM walls are expected to exhibit 

an inelastic response during severe ground motions. Furthermore, the end zones of the RM wall 

will be subjected to cycles of tension and compression, arising from seismic overturning 

moments, as seen in Figure 3.1. Therefore, ductile detailing of the horizontal and vertical 

reinforcements, especially at the end zones of the walls (toe region), is required. Typical 

rectangular RM walls would have only a single vertical reinforcement bar placed in the masonry 

block cells without violating the maximum reinforcement and spacing requirements specified in 

masonry design standards (e.g., MSJC-2013 and CSA-S304, 2014). Consequently, this single bar 

disallows the placement of confinement hoops at the end zones of the wall, which are subjected 

to high inelastic strains during earthquake-induced cyclic loading (Figure 3.1(a)). On the other 

hand, adding boundary elements at the wall ends allows the placement of at least four vertical 

reinforcing bars enclosed by hoops (Figure 3.1(b, c)), thus enhancing the wall performance by 

providing core confinement to the wall ends through the reinforcement cage. As such, RM walls 

constructed with boundary elements at the end zones ensure stability under high compression 

loading and demonstrate an enhanced curvature ductility for the wall. The compression strain 

capacity can be increased using confinement reinforcement (Paulay and Priestley, 1992). 

Therefore, compared to a rectangular wall, adding a confined boundary element will increase the 

width of the RM wall end. As such, the sustainable compression strain will be increased, and the 

compression zone depth will be decreased (Park et al. 2007). Hence, adding boundary elements 

will enhance the curvature capacity of the wall cross-section. 

The use of ductile reinforced concrete masonry shear walls with column-like boundary 

elements has been introduced in recent North American codes and standards for the design of 

masonry structures to improve the ductility capacity of walls. The US Building Code 

Requirements and Specifications for Masonry Structures (MSJC, 2013) allows the use of 

confined boundary elements and only imposes some geometrical rules. The code requires testing 

to be conducted to verify that the detailing provided is capable of developing a strain capacity in 
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the boundary element that would be in excess of the maximum imposed strain. The most recent 

Canadian Standard for the Design of Masonry Structures (CSA S304, 2014) also allows for the 

use of confined boundary elements. However, this design standard does not provide a correlation 

between specific detailing for confinement reinforcement and the corresponding improvement in 

the strain capacity and required testing and analysis to satisfy the level of required strain. 

Experimental studies that quantify the compression strain ductility of concrete masonry 

boundary elements are scarce in the literature. 

Boundary Element
Hoops

Grout

Masonry Block

(a)

(c)

(b)

 

Figure 3.1 Schematics of a masonry building: (a) Rectangular RM wall; (b) RM wall 

connected with boundary elements; and (c) RM boundary element 

The evaluation of the compression behaviour of the confined end zones of an RM wall is a 

key component in the assessment of the curvature and displacement ductility capacities of RM 

walls. Recent experimental investigations on RM shear walls with confined boundary elements 

(e.g., Shedid et al, 2010 and Banting et al. 2012) have concluded that the geometry of the 

boundary element allows for more than one layer of vertical reinforcement enclosed by hoops, 

which delays or prevents buckling of the vertical reinforcement, confines the compression zone, 

and limits the damage at the ends of the RM wall. Integrating the boundary element enhances the 

seismic performance of RM walls by improving the compression strain capacity and the 
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corresponding curvature and displacement capacities. Abo El Ezz et al. (2015) investigated the 

compression behaviour of boundary elements with standard concrete blocks experimentally. 

However, the construction of boundary elements with standard concrete blocks requires cutting 

of the webs and shells of the blocks to accommodate the placement of the confinement hoops 

(Figure 3.2 (a and c)). On the other hand, C-shaped concrete masonry blocks can provide a more 

attractive alternative in terms of constructability, with a reinforcing steel cage placed prior to the 

construction of the boundary element without the need to cut the blocks (Figure 3.2 (b and d)). 

As such, there is a need for experimental and numerical investigations on the compression stress-

strain behaviour of confined boundary elements constructed with C-shaped concrete masonry 

blocks toward investigating their use in ductile RM walls with boundary elements. 

The majority of experimental, analytical and numerical works that have been conducted on 

the structural behaviour of RM columns have focused on the evaluation of the ultimate 

compression strength rather than the evaluation of the post-peak strain capacity (e.g., Köksal et 

al, 2004, Feeg et al, 1979, Sturgeon et al, 1980, Khalaf et al, 1993, Hamid and Chuckwunenye, 

1986, Ganesan and Ramamurthy, 1992, and Sayed-Ahmed and Shrive, 1996). On the other hand, 

considerable research has been conducted on the evaluation of the compression behaviour of 

confined reinforced concrete (RC) columns, including the quantification of the post-peak strain 

capacity. In addition, analytical stress-strain models for confined RC columns have been 

proposed (e.g., Sheikh and Uzumeri, 1980, Vallenas et al, 1977, and Mander et al, 1988). The 

compression behaviour of a confined RM column is not necessarily similar to that of RC 

columns since there are complex interactions between the mortar, grout, block and steel 

reinforcement. 
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Figure 3.2 Horizontal cross-section of an RM wall with boundary elements using (a) 

standard blocks and (b) C-shaped block units. Vertical cross-section of a boundary element using 

(c) standard blocks and (d) C-shaped block units 

Complementary to experimental investigations, a validated numerical model using a detailed 

FEM enables the investigation of the influence of the combination of different design parameters 

for the mortar, grout, masonry block, and steel reinforcement on the compression behaviour of 

RM boundary elements. This article presents experimental and numerical investigations on the 

compression stress-strain curve characteristics of isolated unconfined and confined reinforced 

RMBEs, representative of the highly compressed end zones of RM walls. Full-scale RMBEs 

were constructed and tested under axial compression loading until failure. A three-dimensional 

FEM was developed using the software ABAQUS, therein considering nonlinear constitutive 

material models for the mortar, steel, grout, and masonry block; then, the model was validated 

with experimental results. In this study, the influence of different configurations of the 

confinement reinforcement on the compression behaviour and a comparison between the 

experimental and numerical results, including the compression stress-strain curves and damage 

progression, are presented. 

3.3 Experimental Work 

3.3.1 Boundary element construction and design  

A total of 16 full-scale fully grouted RMBEs were constructed and tested. All the 

unconfined and confined RMBEs were constructed by professional certified masons. Each 

specimen has an individual designation, where the first letter, BE, represents a boundary 

element. The second letter, R or U, denotes a reinforced or unreinforced specimen, respectively. 

The numbers following the letters refer to the hoop bar size and the spacing of the hoops, as 

shown in Figure 3.3. Typical dimensions of the unreinforced and reinforced RMBEs are shown 

in Figure 3.3. The total length of the test unit is 1250 mm, with an effective (gauge) length of 

1000 mm. Each RMBE consists of five block layers placed on a concrete footing with 

dimensions of 400 mm x 400 mm x 250 mm (length x width x depth). Each course of the RMBE 

was composed of two block units placed together in alternating directions along its height. The 

blocks were joined together with 10 mm type-S mortar joints. The RMBE contained an internal 

vertical reinforcement of four bars of 20M (Asv=300 mm2) that extended continuously from the 

base of the footing to over the height of the RMBE without lap splices. The horizontal 
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reinforcement in the form of closed hoops was placed before the construction of the concrete 

blocks. The RMBEs had different volumetric reinforcing ratios, represented by the different 

diameters and spacings of the hoops. The hoop diameters were 10M and 15M at vertical 

spacing’s of 100 mm and 200 mm (Table 3.1). The hoops were placed around a vertical 

reinforcement with outer dimensions of 230 mm x 230 mm. Figure 3.4 shows the sequence of the 

placement of the ties and C-shaped concrete blocks of the RMBEs. The RMBEs were filled with 

a standard coarse grout mixed in the lab. The confinement ratio Cf is calculated as 

( / )f sC H S , as shown in Table 3.1, where ρs is the volumetric ratio of the confinement 

reinforcement (the volume of the confinement hoops to the volume of the core concrete at a 

spacing S), H is the width of the confined core (230 mm in this case), and S is the spacing 

between the confinement hoops.  
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Figure 3.3 Construction details of unreinforced and reinforced concrete RMBEs 
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Figure 3.4 Construction sequence of placing steel bars and blocks in the RMBEs 

Table 3.1 Test matrix of concrete RMBE 
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BE-U-0 2 - - 0 0 

BE-R-0 3 4-20M - 0 0 

BE-R-10/200 3 4-20M 10M@200mm 0.0091 0.01 

BE-R-15/200 2 4-20M 15M@200mm 0.0183 0.02 

BE-R-10/100 3 4-20M 10M@100mm 0.0183 0.028 

BE-R-15/100 3 4-20M 15M@100mm 0.0373 0.057 

 

3.3.2 Material Properties 

The properties of the materials used for the construction of the RMBEs are summarized in 

Table 3.2. Type-S mortar was used to join different courses with an average thickness of 10 mm, 

as shown in Figure 3.4. The proportions of the materials of the coarse grout mix are summarized 

in Table 3.3. Quasi-static tension tests were conducted on five 600-mm-long tensile specimens 
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for each diameter to determine the yield strength of the steel reinforcement used in the 

construction of the RMBE. The measured value of the yield strength was 420 MPa. The 

reinforcement characteristic stress-strain curves for three different diameters are shown in Figure 

3.5. Full-scale 70-mm-thick shaped concrete blocks 190 mm x 190 mm x 390 mm (depth x width 

x length) were used in the RMBE construction, as shown in Figure 3.6. The average compressive 

strength based on the net area of three full-scale shaped concrete masonry block units was 15 

MPa. The C-shaped concrete masonry block units were joined together with 10 mm of type-S 

mortar. Six 50 mm cubes were molded and tested under compression. The average compressive 

strength of the mortar at the beginning of testing of the RMBEs was 13.7 MPa. Course grout was 

used for grouting the RMBEs. The average grout compression strength of the six 100 mm x 200 

mm (diameter x height) cylinders was 35 MPa when the RMBEs were tested. All materials used 

for the construction are available on the Montreal commercial market. 

Table 3.2 Tested material properties 

Material Property 
Compressive 

strength (MPa) 

C.O.V. 

% 

Masonry block 

 

15 3.5 

Mortar 

 

13.7 10 

Grout 

 

35 6.5 

Reinforcement steel 
 

420 7.5 

C.O.V. (coefficient of variation) 
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Figure 3.5 Stress-strain curves for the reinforcement steel used in the construction of the 

RMBEs 

Table 3.3 Grout mix proportions 

Element  Part 

Portland 

cement  

1 

Fine aggregate  1.68 

Coarse 

aggregate 

1.68 

Water  0.5 
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Figure 3.6 Full-scale C-shaped concrete masonry block unit 

3.3.3 Test setup and instrumentation 

The RMBE specimens were tested under compression using a displacement-controlled MTS 

machine (Figure 3.7) at École Polytechnique de Montréal. The displacement-controlled setting 

enabled capturing of the post-peak descending branch of the stress-strain curve, which is needed 

to quantify the influence of the confinement reinforcement on the strain capacity of the RMBEs. 

The test setup consisted of a steel frame transferring the load to the strong floor supporting the 

test unit, a 12000 kN hydraulic cylinder controlled by an MTS controller and a 50 mm rigid 

rectangular steel plate for transferring a uniformly distributed load to the test unit. High-strength 

gypsum was placed on the top and bottom of the RMBE to ensure that the top and bottom of the 

test unit were leveled and that the load was uniformly distributed on the specimen. 
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50 mm Steel

Plate

Potentiometers

C-RMBE

MTS Machine 12MN

Strong Concrete Floor
 

Figure 3.7 Test setup 

The rate of displacement was 0.45 mm per minute, and the load was recorded from an MTS 

controller attached to a data acquisition system. To measure the continuous deformation of the 

RMBE, the vertical displacement of the RMBE was measured using four cable-extension 

transducers (potentiometers) attached at the centerline of each side of the unit while being fixed 

underneath the bearing plate and at the top of the concrete footing. The gauge length of the 

potentiometers was 1000 mm, measured from underneath the bearing plate to the top of the 

concrete footing. 
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3.4 Experimental Results 

Figure 3.8 shows the observed compression stress–strain curves for all test units, including 

unreinforced, vertically reinforced and reinforced confined RMBEs.  
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Figure 3.8 Observed stress-strain curves for all test units, including unreinforced, vertically 

reinforced and reinforced RMBEs 

It can be seen that the vertically reinforced RMBE (BE-R-0) exhibited an increase in 

strength compared to the unreinforced RMBE (BE-U-0) due to the presence of the vertical 

reinforcement bars. The presence of the confinement horizontal reinforcement (hoops) produced 

a more gradual post-peak stress-strain behaviour and improved the strain capacity of the RMBE. 

As the horizontal confinement reinforcement increased, the strain capacity of the RMBE 

increased. For the test units BE-R-10/200 with Cf = 0.01, the test results indicated that post-peak 

strain at 75% and 50% of the strength an increase of 29% and 45%, respectively, compared to 

the test units BE-U-0 (the unreinforced units). The test units BE-R-15/200 with Cf = 0.02 
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exhibited an increase of 37.5% and 100% in the post-peak strain at 75% and 50% of the strength, 

respectively, compared to the test units BE-U-0. In contrast, the post-peak strains at 75% and 

50% of the strength for the test units BE-R-10/100 with Cf = 0.028 were higher by 58.4% and 

122.5%, respectively, compared to the test units BE-U-0. The highest increases in the post-peak 

strain at 75% and 50% of the strength were obtained with test units BE-R-15/100 with Cf = 

0.057, which resulted in an increase of 83% and 232%, respectively, compared to the test units 

BE-U-0. 

RMBEs BE-R-10/100 and BE-R-15/100 exhibited a milder post-peak strain softening 

behaviour compared to RMBEs BE-R-10/200 and BE-R-15/200 due to the presence of a higher 

confinement ratio. RMBEs with confinement reinforcement experienced an average drop in 

strength of 25% after reaching the RMBE’s peak load. This is mainly attributed to the difference 

in the compressive strengths of the C-shaped concrete block (15 MPa) and the grout (35 MPa). 

The concrete block represents approximately 50% of the RMBE cross-sectional area that exhibits 

spalling after reaching the peak load. 

3.5 Finite Element Analysis 

The nonlinear finite element software package ABAQUS was employed for the numerical 

simulation of the compression stress-strain behaviour of the tested RMBEs. Details of the 

assumptions concerning the constitutive laws of the materials that are used in this FEM are 

discussed in the following subsections. 

3.5.1 Constitutive models 

For simulating the behaviour of grout, mortar, and masonry block, the damage plasticity 

model from ABAQUS was applied in this study. The plastic damage model requires the 

parameters of the concrete damage plasticity and the values of the modulus of elasticity, density 

and Poisson’s ratio. Being cementitious material, the concrete damage plasticity parameters for 

the concrete block, grout and mortar were assumed to be the same (Alwathaf  et al, 2012). The 

parameters of the concrete plastic damage that were used for the grout, mortar, and masonry 

block are the dilation angle (36°), the plastic potential eccentricity (0.1), the ratio of the strength 

in the biaxial state to the strength in the uniaxial state (1.16), the ratios of the distance between 

the hydrostatic axis and the compression meridian and the tension meridian, separately, in the 
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deviatoric cross section (0.667), and the viscosity parameter that defines viscoplastic 

regularization (0) (Kmiecik  and Kaminski , 2011). A perfect bond between the steel 

reinforcement and grout was achieved using the embedded regions available in the ABAQUS 

library. 

3.5.2 Grout, mortar and masonry block material model 

The stress-strain behaviours of the grout and concrete blocks under uniaxial compression 

are modeled using the stress-strain relationship proposed by Saenz’s (1964) equation (Obaidat et 

al, 2010, Ascione et al, 2005, Lam and Dai, 2010, and Sousa and Caldas, 2005). 
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where Ec is the initial modulus of elasticity, R is the ratio relation, RE is the modular ratio, Rơ 

is the stress ratio, RƐ is the strain ratio, and E0 is the secant modulus. The strain corresponding to 

the peak stress, 0, was calculated to be equal to 0.0028 and 0.0019 for the grout and masonry 

block, respectively, based on plotting the stress-strain curve equations using Eq. 3.3 , where fc
' is 

the average compressive strength, =4 , and =4, where the last two values are as reported in 

(Hu  and Schnobrich , 1989). The fitted mortar stress-strain curve used in the numerical model in 

this study is captured graphically from Kaushik at al. 2007. Kaushik et al. 2007 obtained a 

compression stress-strain curve for mortar by testing mortar cubes 50 mm in size with a similar 

mortar strength that was used in this study. The stress-strain curve of the mortar was obtained by 

averaging the data from nine specimens. The stress-strain curve under uniaxial compression is 

shown in Figure 3.9. The ultimate compressive strengths of the grout, masonry block, and mortar 

are 35, 15, and 13.7 MPa, respectively, as recorded during the material testing. 
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Figure 3.9 Stress-strain behaviour of concrete under uniaxial compression for the grout, 

masonry block, and mortar 

3.5.3 Steel reinforcement 

The plastic model from the ABAQUS software was applied to simulate the reinforcement 

stress-strain behaviour. The material constitutive model of the steel reinforcement bars is 

assumed to behave in tension, with multi-linear stress-strain curves for hoops and the 

longitudinal bars, which have a bar aspect ratio (S/D) of less than 8 (Yalcin and Saatcioglu, 

2000), where S is the spacing between the hoops and D is the diameter of the longitudinal bar. In 

this case, the stress-strain behaviour in tension and compression is assumed to be similar (Feng, 

2009) and was idealized from the as-tested curves shown in Figure 3.5. This curve consists of 

three segments and was idealized by three straight lines, as shown in Figure 3.10.a. The elastic 

and yield segments are linear. The strain hardening is also represented by a linear instead of 

parabolic curve. Whereas longitudinal bars have a bar aspect ratio (S/D) of greater than 8, the 

material constitutive model of steel reinforcement bars is assumed to behave in compression both 

linear elastically for buckling consideration and with the instability of the rebars, as shown in 

Figure 3.10b (Yalcin and Saatcioglu, 2000). In the figure, fy, fsh, and fu represent the steel yield, 

strain-hardening, and ultimate stresses, respectively, and Ɛy, Ɛsh, and Ɛu are the corresponding 

strains. 
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Figure 3.10 Stress-strain relationship for reinforcing steel rebars in a) Tension and 

compression for a bar aspect ratio (S/D) of less than 8 and in b) Compression for a bar aspect 

ratio (S/D) of greater than 8 

In ABAQUS, the linear elastic portion of the steel stress-strain curve is defined by the 

modulus of elasticity. However, the non-linear portion requires the true stress, f, versus the 

plastic strain, Ɛpl, relationship; this plastic strain must be calculated from the engineering stress-

strain relationship. The steel reinforcement used in the FEM of the RMBE has a yielding stress 

of 420 MPa, modulus of elasticity of 200 GPa and Poisson’s ratio of 0.3, as indicated in Figure 

3.5. A perfect bond was assumed between the steel reinforcement and the grout (Wang et al, 

2014 and Hassanein , 2010). 

3.5.4 Geometry and boundary conditions  

The FE models considered all the degrees of freedom of the nodes at the bottom of the RM 

RMBE to be restrained using the displacement and rotation commands available in the 

ABAQUS library, whereas the other nodes were considered to be free to rotate and translate in 

any direction. The boundary condition was applied at the top end of the RM RMBE geometry 

with a reference point at the middle to apply a concentrated load in increments using the static 

command available in the ABAQUS library (Figure 3.11.a). 
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Figure 3.11 RM RMBE modeled specimen: (a) Typical geometry and finite element 

boundary conditions and (b) Element mesh sizes 

To ensure that the nodes on the top of the geometry (i.e., all elements that are located at the 

top surface of the modeled specimen) have the same vertical displacement, and to ensure that the 

load is distributed uniformly, the multi-point connection (MPC) constraint commands available 

in the ABAQUS library were used. 

3.5.5 Finite element type and mesh 

3D simulations were conducted to obtain an accurate approximation of the overall 

compression behaviour of the RM RMBEs. Three-dimensional eight-node solid elements were 

used for the grout, mortar, and masonry block. A beam element was used for the reinforcement 

steel rebars. The perfect bond between the steel reinforcement and the grout was achieved using 

the embedded region available in the ABAQUS library. A fine mesh was used to provide more 

detailed recording of the elastic and inelastic behaviours (Hassanein , 2010), as shown in Figure 

3.11.b. The RMBE has 28,800 solid elements and 32,435 nodes in total. Different element sizes 

were used within the single model (i.e., the model is discretized into small elements, and these 

elements are grouped into three groups based on element size). The first group, with an element 

size of 23.3 mm x 23.3 mm x 22.5 mm, is located at the corners of the masonry block along the 

height of the modeled specimen. The second group, with an element size of 15 mm x 23.3 mm x 

22.5 mm, is located on the flange and web face of the masonry block along the height and depth 

of the modeled specimen. The third group, with an element size of 23.3 mm x 10 mm x 22.5 mm, 

is located on the bed and head mortar joints, as shown in Figure 3.11.b. 
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3.6 Validation of the Numerical Model 

To verify the FEM approach of the RMBEs, six RMBE configurations, tested by the 

authors and as presented in the previous section, are modeled in this study using the ABAQUS 

software package. Table 3.4 shows the numerical and experimental results of the maximum 

stress fmax, strain at the peak stress Ɛmax, strain at 75% of the peak stress Ɛ75, strain at 50% of the 

peak stress Ɛ50, and strain ductility µ of the RMBE. The strain ductility is defined as the ratio 

between the strain at 50% of the peak stress on the descending curve and the strain at the peak 

stress, as shown in Table 3.4. These results are based on the calculated and measured stress-

strain behaviour of the RMBE. In the following subsections, a comparison of the experimental 

and numerical results of the compression stress-strain behaviour is presented. 

3.6.1 Comparison of results 

The compression stress-strain relationships of the RMBEs and the mechanisms of damage 

obtained from the FEM analysis, compared to the experimental results, are presented in this 

section. Figure 3.12 shows the average experimental compressive stress-strain curves and the 

FEM numerical curves of the RMBEs. It is clear that the initial elastic stage of the FEM 

calculated curves shows a good agreement with the experimentally measured curves. However, 

the FEM presents over-estimates in the post-peak behaviour, which can be attributed to the 

assumption of a perfect bond between the steel reinforcement and the grout and the perfect bond 

assumption between the block units, grout and mortar. However, the overall trends of the stress-

strain curves obtained from the FEM show satisfactory agreement with the experimental results, 

and in general, the trends are quite similar. 
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Table 3.4 Numerical and experimental results of the RM RMBEs for the observed maximum stress, strains at the peak stress, strains at 

75% and 50% of the peak stress, and strain ductility 

RMBE ID 
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BE-U-0-1 20.37 18.83 

12% 

18.81 
0.0019 0.00195 

4% 

0.0018 
0.0023 0.0024 

3% 

0.0024 0.0030 0.0031 

5% 

0.0033 1.59 1.83 
BE-U-0-2 17.29 0.0020 0.0024 0.0032 

BE-R-0-1 25.60 
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0.0080 2.71 2.97 BE-R-10/100-2 25.30 0.0029 0.0038 0.0066 
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Figure 3.12 Average stress-strain curves of unreinforced and reinforced RMBE obtained by 

the numerical and experimental work 

3.6.2 Definition of compression damage  

The compression damage parameter, dc, is shown in the output as DAMAGEC, which is 

used in the concrete damage plasticity model as a numerical indicator of material degradation in 

the post-peak range. The damage parameter values varied from zero, representing undamaged 

material, to one, which represents a total loss of strength. The damage variable, dc, was computed 

using the following equation (Batikha and Alkam, 2015, Jankowiak and Lodygowski, 2005, and 

Yu et al. 2010): 
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                                                                                                        Eq. 3.4 

where cu  is the compression ultimate strength and  is the compression stress along the 

descending stress-strain curve. The attainment of a 50% reduction in the strength of the materials 

(dc > 0.5) is used as an indicator of the extensive damage and spalling of the materials. 

3.6.3 The unreinforced RMBE (Units BE-U-0) 

As shown in Figure 3.13, the unconfined unit failed in a brittle manner, as initiated by 

vertical splitting cracks of the face shells of the C-shaped concrete blocks, with an increase in the 

density of cracking followed by spalling of the face shells. At the ultimate load, the strength of 

the test unit decreased quickly, and the cracking increased due to the crushing of the grouted 

core. 

Damage at face shell

At peak At 75% of  peak At 50% of  peak

Experimental results

At peak At 75% of  peak At 50% of  peak

(b) (c)

(

b

)

 

Figure 3.13 Comparison between the damage results from the FEM and experimental tests 

for the unreinforced RMBE 

As shown in Figure 3.12, the average maximum compressive stress of the test unit was 18.83 

MPa, and the corresponding maximum strain was 0.00195. It can be observed that the descending 

branch reached 50% of the strength with an average strain of 0.0031. Figure 3.13 shows the 

comparison of the damage result from the FEM analysis and the damage from the experimental 

tests, where the damage parameter (dc) provides an indication of the damage propagation in the 

RMBE after the attainment of the peak load. 
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3.6.4 The vertically reinforced block RMBE (Units BE-R-0) 

The vertically reinforced RMBE test units showed the first signs of failure immediately 

before experiencing the maximum compression load on the rising curve of the compressive 

stress-strain relationship. When the maximum load was reached, the vertically reinforced RMBE 

(BE-R-0) exhibited a similar cracking pattern as the unreinforced RMBE. However, the resulting 

1.27-fold increase in strength compared to the unreinforced units (BE-U-0) was due to the 

presence of the vertical reinforcement, as shown in Figure 3.12. The post-peak behaviour was 

similar to that of the unreinforced units, with a steep slope after the peak load. Figure 3.14 shows 

the damage of the vertically reinforced RMBE and a comparison with the damage pattern 

recorded from the numerical simulation.  

At peak At 75% of  peak At 50% of  peak

Damage at face shellExperimental results

At peak At 75% of  peak At 50% of  peak

 

Figure 3.14 Comparison between the damage results from the FEM and the experimental 

tests for the vertically reinforced RMBE 

The damage mechanisms of the units are as follows: vertical splitting cracks were observed 

at the peak loads, followed by spalling of the face shells and simultaneous core crushing and 

vertical bar buckling. Figure 3.14 shows the damage parameter, dc, for the face shell of the 

concrete blocks. The extensive damage and spalling of the concrete blocks are indicated by the 

red color range, with an average value of dc of 0.5. On the other hand, the post-yield stress in the 

longitudinal steel bars was used as an indicator for buckling. At the peak load, the yield stress 

was attained for the vertical bars. In the post-yield range, a reduction in the stress in the vertical 

bars was observed and provided an indication of bar buckling. This is compatible with the 

modeling assumptions shown in Figure 3.10.b for the stress-strain curves of the vertical bars in 

compression because the ratio of the spacing between the hoops and the diameter of the 

longitudinal bars is greater than 8. As seen in this figure, when the yield point is attained, the bars 

become unstable. Thus, the stress in the steel decreases linearly as the strain increases. Such a 

behaviour has been observed experimentally, as reported by Yalcin and Saatcioglu, 2000. The 
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average maximum compressive stress of the test unit was 23.80 MPa, and the corresponding 

maximum strain was 0.0022. As shown in Figure 3.12, the descending branch reached 50% of the 

strength, with an average strain of 0.0037. 

3.6.5 The reinforced confined RMBE (BE-R-10/200 and BE-R-15/200) 

Test units BE-R-10/200 and BE-R-15/200 were confined by hoops of 10M@200mm and 

15M@200mm, respectively. As shown in Figure 3.12 and Table 3.4, the confinement 

reinforcement had a significant effect on the post-peak behaviour and produced a more gradual 

post-peak stress-strain curve. A slight 1.06-fold increase in the strength compared to the 

vertically reinforced units was observed. Figure 3.15 shows the comparison between the damage 

progression between the experimental and numerical results. In the experimental work, the 

damage mechanisms of the units were as follows: vertical splitting cracks at the peak load 

followed by spalling of the face shells and simultaneous core crushing and buckling of the 

vertical bars. The test unit BE-R-10/200 confined by hoops obtained a maximum strength of 

25.32 MPa, resulting in a 34.5% higher strength compared to unreinforced RMBE test units BE-

U-0 due to the presence of the confined reinforcement hoops. The strains at 75% and 50% of the 

strength were 0.0031 and 0.0045, respectively, which represent increases of 29% and 45%, 

respectively, compared to the unreinforced units (BE-U-0) due to the effects of the higher hoop 

confinement. For the unit BE-R15/200, the maximum strength of 25.53 MPa resulted in a 

maximum of 35.6% higher strength compared to test units BE-U-0. The strains at 75% and 50% 

of the strength were 0.0033 and 0.0062, respectively, resulting in an average increase in the strain 

of 37.5% and 100%, respectively, compared to the unreinforced units (BE-U-0) due to the effects 

of the higher hoop confinement. 

At peak At 75% of  peak At 50% of  peak

Experimental results Damage at face shell

At peak At 75% of  peak At 50% of  peak

 

Figure 3.15 Comparison between the damage result from the FEM and the experimental 

tests for RMBE BE-R-10/200 and BE-R-15/200 



61 

 

3.6.6 The reinforced confined RMBE (BE-R-10/100 and BE-R-15/100) 

The RMBE BE-R-10/100 and BE-R-15/100 behaved similarly to their counterparts RMBE 

BE-R-10/200 and BE-R-15/200, with a milder strain softening and gradual post-peak behaviour 

due to the presence of the higher confinement ratio. The strain ductility after obtaining the 

maximum strength was increased due to the closer spacing of the confinement transverse 

reinforcement (i.e., 100 mm instead of 200 mm). Figure 3.16 shows the comparison between the 

damage obtained from the FEM predictions and the experimental tests. From Figure 3.12, it can 

be observed that the test unit BE-R-10/100 confined by hoops obtained a maximum strength of 

25.83 MPa, representing a 37.2% higher strength compared to test units BE-U-0 due to the 

presence of the confined reinforcement hoops. The strains at 75% and 50% of the strength were 

0.0038 and 0.0069, respectively, representing increases of 58.4% and 122.5%, respectively. For 

the unit BE-R15/100, the maximum strength reached was 26.4 MPa, resulting in a 40% higher 

strength compared to test units BE-U-0. The strains at 75% and 50% of the strength were 0.0044 

and 0.0103, respectively, representing average increases of 83% and 232% compared to the 

unreinforced units BE-U-0. 

(a)

At peak At 75% of  peak At 50% of  peak

Damage at face shellExperimental results

At peak At 75% of  peak At 50% of  peak

 

Figure 3.16 Comparison between the damage results from the FEM and the experimental 

tests for RMBE BE-R-10/100 and BE-R-15/100 

3.7 Effect of Confinement Ratio 

Figure 3.17 shows the correlation between the confinement ratio and the ratio of the 

maximum strength of the confined units to the unreinforced units based on the numerical and 

experimental results. For each unit, the peak stress of the confined unit is normalized by the peak 

stress of the unconfined unit, where fmax,c is the average strength of the confined RMBE and fmax,u 

is the average strength of the unreinforced RMBE. It can be observed that the confinement 
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introduces an increase in the axial strength in the range of 1.19 to 1.46 compared to the 

unreinforced units.  
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Figure 3.17 Correlation between the strength enhancement ratio and the confinement ratio 

based on experimental tests and numerical results 
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Figure 3.18 Correlation between the strain at 75% strength reduction and the confinement 

ratio based on the experimental tests and numerical results 
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Figure 3.19 Correlation between the strain at 50% strength reduction and the confinement 

ratio based on the experimental tests and numerical results 

On the other hand, an increase in the confinement reinforcement provided an increase in the 

range of 1.25 to 1.87 and 1.42 to 3.55 for the 75% and 50% strains, respectively, compared to the 

unreinforced units and had a significant effect on the post-peak behaviour, with softening of the 

descending branch of the stress-strain curve, as shown in Figure 3.18 and Figure 3.19. 

The effect of the confinement ratio on the compressive strain is substantially more 

pronounced than that on the compression strength. In addition, the post-peak compressive strain 

behaviour of the confined RMBE depends on the confinement ratio of the transverse 

reinforcement. As the confinement ratio increases, the strains at 75% and 50% of the peak stress 

increase, and the severe deterioration of the RMBEs after the peak stress is reduced. Hence, the 

strain ductility increases, leading to an increase in the wall’s curvature ductility. From the 

regression analysis presented in Figure 3.17, the observed trend representing the line of the value 

of fmax,c compared to the fmax,u based on the experimental average, the numerical results and 95% 

of the data above it, which is determined by subtracting 1.645 times the standard deviation from 

the experimental average, are given by the following equations: 

f max,c / f max,u=1.34+1.28 Cf         for Cf ≥ 0.01 (Numerical results)                            Eq. 3.5 

f max,c / f max,u=1.32+1.58 Cf          for  Cf ≥ 0.01 (Experimental average)                   Eq. 3.6 
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f max,c / f max,u=1.20+1.85 Cf          for  Cf ≥ 0.01 (95th percentile)                              Eq. 3.7 

The values of the strains at 75% (Ɛ75%) and 50% (Ɛ50%) of the peak stress of the RMBEs are 

obtained from equations based on the regression analysis with the confinement ratio. Eq. 3.8 

(R2=0.96 and RMSE=4.71x10-8) and Eq. 3.9 (R2=0.97 and RMSE=1.12x10-7) represent the 

numerical results, where R2 is the coefficient of determination and the RMSE is the residual 

mean square error. Eq. 3.10 (R2=0.96 and RMSE=3.67x10-8) and Eq. 3.11 (R2=0.99 and 

RMSE=3.81x10-4) represent the experimental average. Eq. 3.12 (R2=0.98 and RMSE=3.22x10-8) 

and Eq. 3.13 (R2=0.99 and RMSE=4.15x10-4) represent the line that considers 95% of the 

experimental results above it, which is determined by subtracting 1.645 times the standard 

deviation from the experimental average, as shown in Figure 3.18 and Figure 3.19. 

Ɛ75% = 0.0027+0.039 Cf  for  Cf ≥ 0.009 (Numerical results)    Eq. 3.8 

Ɛ50% = 0.0047+0.10 Cf   for  Cf ≥ 0.009  (Numerical results)     Eq. 3.9 

Ɛ75% = 0.0029+0.028 Cf   for  Cf ≥ 0.009  (Experimental average)   Eq. 3.10 

Ɛ50% = 0.0035+0.12 Cf  for  Cf ≥ 0.009 (Experimental average)   Eq. 3.11 

Ɛ75% = 0.0027+0.029 Cf   for  Cf ≥ 0.009  (95th percentile)   Eq. 3.12 

Ɛ50% = 0.0034+0.11 Cf   for  Cf ≥ 0.009  (95th percentile)                             Eq. 3.13 

The current North American masonry codes apply a displacement-based method for the 

evaluation of the inelastic rotation demand and capacity of shear walls. CSA-S304 [2] estimates 

the rotation capacity of shear walls based on a maximum compression strain of 0.0025. If the 

rotation demand from seismic loading exceeds the rotation capacity, the compression region of 

the wall must be detailed to produce an increased compressive strain capacity in the masonry 

either by adding boundary elements or using another technique that can be demonstrated through 

testing. CSA-S304 [2] does not provide a correlation between the specific detailing for 

confinement reinforcement and the corresponding improvement in the strain capacity and thus 

requires testing and analysis to satisfy the strain demand requirements. Similarly, the MSJC-2013 

[1] code requires testing to be conducted to verify that the provided confinement detailing is 

capable of ensuring a strain capacity in the boundary element that would be in excess of the 

maximum imposed strain. The conducted research in this paper provides a contribution to bridge 

the gap in knowledge on the correlation between the detailing of confinement reinforcement and 

the ratio to the increase in the compression strain. Such correlations were developed in this paper. 
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These correlations can be used to update the design methods in masonry standards by calculating 

the required confinement ratio based on the imposed strain demand corresponding to the 

earthquake-induced design inelastic rotation demand. 

3.8 Conclusions 

The prediction of the deformation and ductility capacity of RM walls with boundary 

elements requires an investigation of their compression behaviour. This article presented 

experimental and numerical investigations of the effects of the confinement ratio on the 

compression stress-strain behaviour of RM boundary elements at the ends of RM shear walls. 

Full-scale RMBE test units were constructed and tested under axial compression loading until 

failure. An FEM procedure was developed and validated with the experimental results. The FEM 

considered the specific stress-strain characteristics of the grout, mortar and concrete blocks. In 

this study, the influence of different configurations of the confinement reinforcement on the 

compression behaviour, as well as a comparison between the experimental and numerical results, 

including the compression stress-strain curves and damage progression, was presented. The 

results showed that increasing the confinement reinforcement ratio significantly affected the post-

peak behaviour. This was indicated by a softening of the descending branch of the stress-strain 

curves resulting in an increase in the post-peak strain at 75% and 50% of the compressive 

strength of approximately 1.25 to 1.87 times and 1.42 to 3.55 times that of the unreinforced units, 

respectively. Regression equations were developed to correlate the confinement ratio with the 

corresponding improvement in the strain capacity. The proposed FEM procedure provided a good 

approximation of the compression stress-strain behaviour in the elastic and inelastic ranges and 

captured the influence of the confinement ratio on the compression response of the RMBE. The 

obtained results from this study provide greater insight into the complete compression stress-

strain behaviour of confined concrete masonry boundary elements, an area with limited study in 

the literature. This is particularly important since recent masonry codes and standards in North 

America do not provide guidelines on how to correlate specific detailing for confinement 

reinforcement to the corresponding improvement in the compression strain capacity. 

3.9 Recommendations for Future Research  

The following lists some recommendations for future research toward improving the 

knowledge on the seismic behaviour and design of RM shear walls with boundary elements: 
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 Extending the experimental and numerical methodology developed in this paper to 

investigate the effects of design variables, such as the compressive strength of the 

constituent materials, and to update the proposed regression equations with additional 

data.  

 Testing of full-scale shear walls with different configurations of boundary elements to 

develop recommendations for their seismic design.  

 Developing numerical models for shear walls with boundary elements to evaluate the 

effects of confinement at the boundary elements on the ductility capacity of the wall. This 

can be performed using the validated FEM approach applied in this study.  

 Based on these experimental and numerical studies, correlations between displacement 

ductility, inelastic rotation and the required compression strain at the boundary elements 

can be developed. These correlations will help in providing recommendations for 

confinement reinforcement for achieving a specific level of ductility. 
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Chapter 4 

Stress-Strain Behaviour of C-Shape Confined Concrete Masonry 

Boundary Elements of RM Shear Walls  

4.1 Abstract 

Reliable material stress-strain relationship is the cornerstone of any analysis process. Unlike 

reinforced concrete, limited studies focused on the stress-strain behaviour of confined reinforced 

masonry. This could be due to the difficult reinforcement detailing in rectangular reinforced 

masonry shear walls (RMSWs), where they usually don’t have enough space for placing 

confined reinforcement cage at the wall’s ends. However, with the recent promotion of RMSWs 

with boundary elements there is a need for understanding the effect of different confinement 

levels in the boundary elements on the wall’s behaviour. Reinforced C-shaped masonry 

boundary element (RMBE) allows placing of at least four vertical reinforcement bars confined 

by transverse hoops and thus introducing confinement to the wall’s most stressed zone. Many 

studies highlighted the enhancement in the wall’s lateral response (i.e. capacity and ductility) due 

to the introduction of RMBEs. However, predicting the improvement in the masonry response 

corresponding to different confinement ratios is yet to be investigated. This study presents the 

observed stress-strain relationship of thirty C-shape half-scale fully grouted unreinforced and 

reinforced masonry boundary element specimens tested under concentric compression loading up 

to failure. The effect of changing hoop spacing, vertical reinforcement ratio and the strength of 

grout on the axial stress-strain behaviour of RMBE is investigated. This study quantifies the 

effect of these parameters on the RMBE peak stress, strain corresponding to peak, and post-peak 

behaviour. In addition, this study presents linear correlations relationships that can be used by 

engineers to predict the RMBE stress and strain corresponding to peak, 75% and 50% of peak 

stress. Finally, this study investigates the capability of three existing stress-strain models in 

predicting the RMBE stress-strain relationship. Enhancement in both peak and post peak stress-

strain behaviour were observed by decreasing the hoop spacing, increasing the vertical 

reinforcement ratio and increasing the grout strength. However, the hoop spacing had the most 

noticeable effect on the stress-strain relationship. None of the considered three material models 

was capable of capturing the drop in the RMBE strength that occurred due to the face shell 

spalling of the masonry block following the peak stress. Moreover, the studied models 
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overestimated the enhancement in the RMBE stress and significantly overestimated the 

enhancement in the RMBE strain. This study emphasizes the need for a new stress-strain model 

that can predict the RMBE response considering various confinement effects. 

Keywords: Boundary elements, Concentric loading, Concrete block, C-shaped block, 

Confinement, Grout strength, Shear walls, Masonry prism, Reinforced masonry, Stress-strain 

behaviour. 

4.2  Introduction 

Reinforced masonry shear walls (RMSWs) are the main lateral force resisting system in 

reinforced masonry structures that are commonly used in low and mid-rise buildings. Adding 

confinement reinforcement cage at the wall extremities is a common practice in reinforced 

concrete (RC) structural shear walls to increase the wall’s curvature and displacement ductilities 

as well as its lateral load capacity. This practice was recently adopted in RMSWs by introducing 

a boundary element column at the wall toes (e.g. Shedid et al. 2010, and Banting and El-

Dakhakhni 2012). These boundary elements allow the placement of at least four vertical 

reinforcement bars that are enclosed by horizontal hoops; hence, enhancing the wall performance 

by providing core confinement to the wall ends through the reinforcement cage which was not 

attained in rectangular RMSW. Moreover, increasing the wall thickness in the most stressed zone 

in the wall (i.e. wall ends) decreases the compression stress block depth and thus enhance the 

wall curvature capacity (Park et al. 2007). Adding boundary elements to the RMSW improves 

the compression strain capacity and the displacement ductility, hence, improves the seismic 

performance of RMSW (Shedid et al. 2010).  

Understanding the material stress-strain behaviour is key for reliable structural analysis and 

design. Recent numerical studies that focused on analyzing the lateral response of RMSW with 

boundary elements, (e.g. Ezzeldin et al. 2016, Hamzeh et al. 2015) implemented the available 

material stress-strain models that were originally developed for concrete materials (e.g. Mander 

et al. 1988) to estimate the effect of confinement on the reinforced masonry stress-strain 

behaviour. However, this approach may or may not be true due to the anisotropic characteristics 

of reinforced masonry assemblage. RMSW is composed of concrete masonry blocks that are 

connected with weak mortar joints and reinforced with vertical and horizontal steel bars, then 

filled with grout. The axial compressive stress-strain behaviour of RMSW boundary elements is 
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essential to predict the lateral wall response (see Figure 4.1), especially when having different 

confinement ratios in the boundary elements. 

Ʈ
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+σf

-σa

Q

 

Figure 4.1 Internal stresses in reinforced masonry shear wall with boundary elements 

Limited studies explored the behaviour of reinforced masonry boundary elements (RMBEs) 

considering different confinement ratios. Abo El Ezz et al. (2015) tested 17 full-scale fully-

grouted concrete masonry boundary element columns utilizing standard concrete blocks (i.e. 

double cell stretchers). It was concluded that the confinement reinforcement enhances the strain 

ductility and has a noticeable effect on the post-peak behaviour. In addition, Abo El Ezz et al. 

(2015) proposed a smeared compression stress-strain model for confined boundary elements 

capable of predicting the RMBE stress-strain response. However, using standard stretcher 

concrete blocks to build the RMBEs introduce limitations on the hoop spacing, as the hoops can 

be placed only at the mortar bed joint. Therefore, Obaidat et al. (2017) introduced the use of C-

shaped concrete masonry blocks in the RMBEs, which allows having any hoop spacing; thus 

enhancing the confinement effect. Obaidat et al. (2017) tested 16 full-scale fully grouted RMBE 

to evaluate the compression stress-strain behaviour considering different confinement ratios of 

lateral reinforcement (i.e. different hoop spacing). The results showed that as the confinement 

ratio increases, the compression strain capacity increases. Moreover, Obaidat et al. (2017) 

presented correlations between the confinement reinforcement ratio and the corresponding 
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enhancement in the compression peak stress and post peak strain, which can be used to calculate 

the required confinement ratio to achieve a specific strain demand.   

The focus of the current study is to investigate the effect of changing confinement ratio (i.e. 

by changing the hoop spacing), vertical reinforcement ratio, and grout strength on the C-shaped 

RMBE compressive stress-strain behaviour. It should be noted that the C-shaped blocks 

introduced in this study are more slender than those used in Obaidat et al. (2017), thus increasing 

the confined core area within the RMBE. Thirty half-scale fully grouted RMBE specimens were 

tested under concentric loading up to failure. In the current study, three spacing were considered 

between the hoops, namely, 30, 45 and 60 mm. Moreover, two vertical reinforcement ratios were 

investigated: i.e. four #3 bars (with area of 71 mm2 each) and #4 bars (with area of 129 mm2 

each), and two grout strengths: 15 and 45 MPa. The effect of these parameters on the peak stress, 

strain at the peak stress, post peak behaviour, ductility, and RMBE damage is investigated. Also, 

the current study aims at investigating the capability of the available stress-strain concrete model 

by Mander et al. (1988) in predicting the stress-strain behaviour of RMBE. Moreover, this study 

investigates the capability of stress-strain models proposed by Priestley and Elder (1983) and 

Abo El Ezz et al. (2015) for masonry assemblages in predicting the effect of the aforementioned 

parameters on the stress-strain behaviour. 

4.3 Experimental Program 

4.3.1 Test matrix 

 Thirty half-scale fully grouted RMBE specimens (see Figure 4.2) were constructed in 

Concordia University’s structures laboratory and tested under concentric compression load up to 

failure. The specimens were divided into ten groups; each group consisted of three identical 

specimens to avoid the natural variability in masonry construction which may lead to wrong 

conclusions (Table 4.1). The identification of each group, e.g. BE15-R#3-D4/30-A, consisted of 

three parts: grout strength in MPa (i.e. BE15), vertical reinforcement bar size (i.e. R#3), and 

transversal reinforcement size and spacing in mm (i.e. D4/30). The letter A, B, or C that follows 

the group name identifies the sample in each group. 
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Figure 4.2 RMBE specimens during construction 

The first two groups represent unreinforced boundary element prisms. On the other hand, the 

other eight groups represent the RMBE having two grout strengths, two vertical reinforcement 

ratios, ρv and various hoop spacing. All the reinforced specimens had four vertical reinforcement 

bars placed in each corner. Deformed wires D4 (25.8 mm2) were used as transverse 

reinforcement (i.e. hoops). It should be noted that the confinement ratio Cf is calculated 

according to Eq. 4.1 and presented in Table 4.1. 

  ( / )f sC H S                                                    Eq. 4.1 

where; ρs is the volumetric ratio of the confinement reinforcement (the volume of 

confinement hoops to the volume of core concrete at spacing S); H is the width of the confined 

core and S is the spacing between the confinement hoops. 
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Table 4.1 Details of RMBE test specimens 

Group 

# 
RMBE ID 

Number 

of tested 

specimens 

Grout 

Strength 

(MPa) 

Longitudinal 

Reinforcement 

Transverse 

Reinforcement Confinement 

ratio Cf Number-size 

of Bars 
ρv%   

Bar size 

(spacing mm) 
ρh%   

1 BE15-U-0 3 15 - - - - - 

2 BE45-U-0 3 45 - - - - - 

3 BE15-R#3-D4/30 3 15 4#3 0.8 D4 (30) 3.15 0.062 

4 BE15-R#3-D4/45 3 15 4#3 0.8 D4 (45) 2.1 0.034 

5 BE15-R#3-D4/60 3 15 4#3 0.8 D4 (60) 1.57 0.022 

6 BE15-R#4-D4/30 3 15 4#4 1.4 D4 (30) 3.15 0.062 

7 BE15-R#4-D4/45 3 15 4#4 1.4 D4 (45) 2.1 0.034 

8 BE15-R#4-D4/60 3 15 4#4 1.4 D4 (60) 1.57 0.022 

9 BE45-R#3-D4/60 3 45 4#3 0.8 D4 (60) 1.57 0.022 

10 BE45-R#4-D4/60 3 45  4#4 1.4 D4 (60) 1.57 0.022 

 

Table 4.2 Materials compressive strength 

Material Notation 
Average compressive 

strength (MPa) 

C.V. 

% 

Concrete cylinder (footings) 
cf  83.8 6.20 

Masonry concrete block 
bf  22.0 13.80 

Mortar cubes 
mcf  12.3 7.15 

Grout cylinders grf  
15.0 8.70 

45.0 4.75 

*C.V.: coefficient of variation
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4.3.2 Construction of RMBE 

The RMBE specimens were constructed by professional masons from Ontario and Québec 

following the Canadian construction practices. As shown in Figure 4.3(a to h), the construction 

started by assembling the reinforcement cage for each specimen. The reinforcement cage 

consisted of four reinforcement bars (#3 or #4), and deformed wire (D4) hoops tied at a specific 

spacing (30, 45 or 60 mm). All hoops were anchored with 135º bends extending 55 mm into the 

grout core. Each sample had 250 mm thick top and bottom reinforced concrete footings. The 

hoops size was increased to #4 (129 mm2) in the upper and lower transfer footings to avoid 

footing’s failure. After assembling the reinforcement cage, each six RMBE were placed in a 

timber form to pour the bottom footing.  After pouring the high strength concrete in the lower 

footing, the RMBE were cured for at least one week, and then the strain gauges were mounted on 

the mid-height of the four vertical reinforcement bars. 

(a) (b)

(c) (d) (e)

(f) (g) (h)

 

Figure 4.3 Construction sequence of RMBE 
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All RMBE specimens were constructed in a stacked bond pattern with two C-block units in 

each course. The stacked bond pattern represents the layout envisioned for RMSW with 

boundary elements. Each RMBE consisted of ten courses placed on a concrete footing with 

dimensions of 200 mm x 200 mm (length x width). Type S mortar was used to join the block 

units with 5 mm joints. The RMBE specimens had a height to thickness (aspect ratio A/R) of 5 to 

avoid any correction factor related to the specimen height as per CSA S304-14 (2014). The 

vertical reinforcement bars were extended continuously, over the height of the RMBE specimen, 

without splices from the base of the bottom footing to the top footing. Then the RMBE 

specimens were strapped before grouting to avoid any cracks in mortar head joints. Finally, the 

top footings were poured then cured in a preassembled formwork. The RMBE were stored for at 

least one month before testing. 

4.3.3 Test Setup and Instrumentation 

A newly upgraded 3000 kN servo controlled actuator was used to test the RMBE under 

constant displacement loading rate throughout the loading history up to failure. Consequently, 

this system allows capturing the stress-strain post-peak descending branch curve, which is 

essential to quantify the influence of different variables on the strain capacity of the RMBEs. The 

test was conducted at a displacement controlled rate of 0.003 mm/sec, and the corresponding 

load was recorded by a high precision load cell connected to control panel attached to a Vishay 

data acquisition system. The test was considered completed when the specimens reach 25% of its 

peak stress (75% stress degradation).  

Figure 4.4(a) shows typical dimensions of the reinforced RMBE. It should be noted that the 

unreinforced RMBE specimens were constructed without the top and bottom footings. The total 

height of tested specimen is 1455 mm with an effective (gauge) length of 955 mm from the 

lower edge of the top footing to the upper edge of the bottom footing. Various precautions 

including a spherical head, two laser aligning devices, and two layers of high strength material at 

the top and bottom surfaces of the specimen, were taken to ensure the specimen leveling, 

verticality, alignment, and the uniform distribution of the applied load. Two rectangular steel 

plates, having high hardness coefficient, were used for transferring a uniformly distributed load 

from the actuator head to the test specimen.  
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At least one sample from each RMBE reinforced specimens was instrumented by strain 

gauges mounted on the vertical reinforcement bars at the specimen mid height. In all RMBE 

specimens, the load versus axial deformation behaviour of the tested region was measured using 

four Linear Variable Differential Transducers (LVDTs) that were attached (screwed) at the 

centerline of each side of the specimen as shown in Figure 4.4(b).  

50 mm Steel plate

4 LVDTs

Bottom footing built using 

high strength concrete

Gage length

Servo controlled 

hydraulic actuator

4 Strain 

gages

Top footing built using 

high strength concrete

Grout

Mortar

2
5

0
2

5
0

9
5

5

High-strength Plaster

High-strength Plaster

Steel plate

(a) (b)
 

Figure 4.4 Schematic of the test set-up, RMBE components, and instrumentations (all 

dimensions are in mm)  

4.3.4 Material Properties 

The materials used for RMBE specimen’s construction were: high strength concrete, steel 

reinforcement bar and deformed wires, C-shaped concrete masonry block, mortar, and grout (i.e. 

normal and high strength). All materials used for the construction are available in the Canadian 

market and were tested at the same time of testing the RMBE specimens. It should be noted that 

various pilot mixes have been conducted before the construction phase in order to adjust the 

concrete and grout strength. Moreover, various samples of the deformed wires and reinforcement 
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bars were tested to check the samples’ yield stress and ductility. However, these data are not 

presented in the current study to avoid any confusion with the materials used in the construction. 

 Table 4.2 summarizes the compressive strength of the materials used for the construction of 

the RMBEs. The average of the concrete strength of the RC top and bottom footing was 83.8 

MPa having a coefficient of variation (C.V. = 6.2%). C-shape half-scale concrete block units 

with 25 mm thickness 190 mm x 190 mm x 92.5 mm (width x length x depth) were used in 

RMBE specimens’ construction. Fourteen coupons of half-scale concrete masonry blocks (100 

mm x 50 mm x 25 mm) were tested under compressive loading as per ASTM C140 / C140M 

(2013). The average compressive strength of the 14 tested coupons was 22 MPa (C.V. = 13.8%). 

Pre-bagged type S mortar was used to join the masonry block units in the stacked bond as shown 

in Figure 4.4. An approximately 5 mm thickness mortar joints were used to meet the scaling 

requirements. A sample of 3 cubes was taken from each patch; fifteen mortar cubes in total were 

tested under compression at the time of the RMBE specimens testing. The average compressive 

strength of mortar cubes was 12.3 MPa (C.V. = 7.15%). All the RMBE specimens were fully 

grouted using two types of grout; pre-mixed fine grout and high strength grout having computed 

compressive strength of 15 MPa (C.V. = 8.7%) and 45 MPa (C.V. = 4.75%) according to CSA 

A179 (2004), respectively.  

Standard deformed reinforcement steel bars, #3 and #4, were used for the vertical 

reinforcement and footing transversal reinforcement, whereas deformed wires D4 were used for 

hoops. Tension test was performed on steel samples of 600 mm long in order to measure the 

stress-strain of the tested samples. Figure 4.5 shows the stress-strain behaviour of the tested 

samples. An Epsilon extensometer having 200 mm gauge length and 50 mm stroke was used to 

measure the deformation. The observed average yield strength of #3 and #4 was 455 MPa and 

482 MPa, respectively, whereas the computed proof yield strength of D4 was 600 MPa. A clear 

yield region did not exist for the steel deformed wire (D4). Therefore, for D4 tested samples the 

proof yield strength was defined corresponding to a 0.2% strain. 
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Figure 4.5 Stress-strain relationship for the reinforcement steel bars (#3 & #4) and deformed 

wire (D4) used in the construction of the RMBE 

4.4 Experimental Results 

The compression stress-strain curves for all RMBE specimens are presented in Figures 4.6, 

4.7 and 4.8. It should be noted that the stress was computed by dividing the measured load by the 

RMBE gross cross-sectional area (190×190 mm2). Also, the strain was calculated by dividing the 

average of the four LVDTs readings by the gauge length (i.e. 955 mm). Table 4.3 shows the 

experimental results of the peak stress (fmax), strain at the peak stress (Ɛmax), strain at 75% of the 

peak stress (Ɛ75), strain at 50% of the peak stress (Ɛ50), and strain ductility (µ) of the RMBE. 

The following paragraphs analyze the stress enhancement in RMBE to evaluate the effect of the 

studied parameters. 
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Figure 4.6 Observed compression stress–strain relationship for vertically reinforced units 

with #3 bars having different confinement ratios 
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Figure 4.8 Observed compression stress–strain relationship for RMBE having same confinement 

ratio, vertically reinforced with #3, and constructed with grout having 15 and 45 MPa ultimate 

strength 
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4.4.1 RMBE stress results 

Figure 4.6 shows the observed compression stress-strain curves of three specimens in four 

RMBE groups: BE15-U-0, BE15-R#3-D4/60, BE15-R#3-D4/45 and BE15-R#3-D4/30. The first 

group presents the compression stress-strain of un-reinforced un-confined RMBE grouted with 

normal strength grout. On the other hand, the other three groups present the stress-strain 

behaviour of RMBE specimens having #3 vertical reinforcement bars, grouted with normal 

strength grout, and having different spaces between transversal hoops (i.e. various confinement 

ratios). It can be observed from Figure 4.6 that the RMBE peak stress increased as the 

confinement ratio increased. The RMBE stress at peak increased by 25%, 29%, 61%, compared 

to BE15-U-0 peak stress, for BE15-R#3-D4/60, BE15-R#3-D4/45, and BE15-R#3-D4/30, 

respectively. As the hoop spacing decreased the lateral confinement imposed by the transverse 

reinforcement increased which postponed the vertical reinforcement bar buckling and thus 

increased the RMBE compressive capacity. However, it should be noted that the contribution of 

the vertical bars to the RMBE compression capacity is approximately 2.5 MPa if strain 

compatibility is assumed between the vertical reinforcement and the masonry. Therefore, the 

presence of vertical reinforcement increased the RMBE capacity by about 24% compared to un-

reinforced boundary element. Subsequently, the RMBE stress at peak increased by 1%, 5%, 

37%, compared to BE15-U-0 plus four #3 reinforcement bars, for BE15-R#3-D4/60, BE15-R#3-

D4/45, and BE15-R#3-D4/30, respectively. 

Moreover, it can be observed from Figure 4.6 that the stress-strain curve of the un-

reinforced specimens, BE15-U-0, have two branches; rising curve up to the peak stress and 

descending post-peak curve. However, the reinforced groups, BE15-R#3-D4/60, BE15-R#3-

D4/45, and BE15-R#3-D4/30, have three branches: rising curve up to the peak stress, followed 

by a sudden drop curve and a descending curve. The sudden drop in the RMBE was mainly 

attributed to the face-shell spalling of the C-shape concrete block which resulted in 40~50% loss 

of the RMBE peak stress. However, the RMBE lost at least 55% of the cross-sectional area after 

spalling of block face shell. Moreover, the vertical bar buckling could have also contributed to 

this sudden drop, especially in RMBE having large hoop spacing.   

Figure 4.7 shows the observed compression stress-strain curves of six RMBE groups: BE15-

R#3-D4/60, BE15-R#4-D4/60, BE15-R#3-D4/45, BE15-R#4-D4/45, BE15-R#3-D4/30, and 

BE15-R#4-D4/30. All groups had similar grout strength. The effect of changing the vertical 
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reinforcement ratio was investigated for three hoop spacing. It can be observed that the RMBE 

peak stress increased by 42%, 51%, 75%, compared to BE15-U-0 peak stress, for BE15-R#4-

D4/60, BE15-R#4-D4/45, and BE15-R#4-D4/30, respectively. However, it should be noted that 

the vertical bars increased the RMBE capacity by approximately 4.5 MPa assuming strain 

compatibility (i.e. 42% enhancement compared to unreinforced boundary element). 

Subsequently, the RMBE stress at peak increased by 0%, 9%, 33%, compared to BE15-U-0 plus 

four #4 reinforcement bars, for BE15-R#4-D4/60, BE15-R#4-D4/45, and BE15-R#4-D4/30, 

respectively. Therefore, increasing the vertical reinforcement bar size from #3 to #4 did not boost 

the enhancement in the stress due to the confinement of the transverse hoops. The same finding 

could be obtained by comparing the RMBE reinforced with #4 to those reinforced with #3 

vertical bars. 

Figure 4.8 shows the observed compression stress-strain curves of three specimens in six 

RMBE groups: BE15-U-0, BE45-U-0, BE15-R#3-D4/60, BE45-R#3-D4/60, BE15-R#4-D4/60, 

and BE45-R#4-D4/60. The first and second groups present the compression stress-strain of un-

reinforced un-confined RMBE grouted with normal and high strength grout, respectively. The 

third and fifth groups show the compression stress-strain of RMBE specimens having #3 vertical 

reinforcement bars and grouted with normal and high strength grout, respectively. Whereas, the 

fourth and sixth groups present the compression stress-strain of RMBE specimens having #4 

vertical reinforcement bars, and grouted with normal and high strength grout, respectively. It can 

be observed from Figure 4.8 that as the grout strength increased, the RMBE peak stress 

increased. As such, the BE45-U-0, BE45-R#3-D4/60, and BE45-R#4-D4/60 RMBE specimens 

exhibited an increase in peak stress by 48%, 27%, 49%, compared to BE15-U-0, BE15-R#3-

D4/60, and BE15-R#4-D4/60, respectively. It should be noted that the RMBE capacity did not 

increase proportionally to the grout strength based on the grout area and this observation was 

clearly reported by Drysdale and Hamid (2005). 

4.4.2 Damage propagation 

The damage propagation of un-reinforced specimens, i.e. BE15-U-0 and BE45-U-0, was 

characterized by surface hair cracks followed by sudden splitting in the RMBE at the onset of the 

peak-load [see Figure 4.9(a)]. On the other hand, the reinforced RMBE damage propagation was 

characterized by the formation of surface hair cracks, these cracks increased in size and length, 



81 

 

followed by spalling of RMBE face shell, yielding and buckling of longitudinal bars and finally 

crushing the grout core [see Figure 4.9 (b,c)].  

a) b)

c)

 

Figure 4.9 RMBE boundary elements damage: a) splitting of un-reinforced specimen, b) face 

shell spalling RMBE at 25% stress degradation, c) buckling of reinforcement bars 

4.4.3 Reinforcement-strain Readings 

Figure 4.10 presents a sample of the recorded strain in the longitudinal bars versus the axial 

strain computed from the four LVDTs that were externally mounted on the RMBE specimens. It 

can be observed that concrete-reinforcement strain compatibility was achieved up to 

approximately 0.2% axial strain, which corresponds to the RMBE peak stress. Beyond the strain 

at the RMBE peak stress, the axial strain computed from the LVDT was not similar to the strain 

in the longitudinal bars. This could be a result of initiation of partial debonding between the 

longitudinal bars and the surrounding grout. Buckling of longitudinal reinforcement was 

observed in RMBE specimens with widely spaced hoops after 50% of peak stress (see Figure 

4.9). On the other hand, the RMBE specimens with closely spaced hoops show longitudinal 

reinforcement bars buckling at higher axial strain values. Hoops rupture was not observed in any 

of the RMBE specimens over the complete loading history. 
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Figure 4.10 Strain in vertical reinforcement bars versus the RMBE axial strain computed from 

the LVDTs 

4.4.4 RMBE axial strain ductility 

Ductility is the ability of a material, a component or a system to sustain plastic deformations 

without an appreciable loss of strength. The RMBE compression strain ductility is defined as the 

ratio between the strain at 50% of the peak stress on the descending curve (Ɛ50) and the strain at 

the peak stress (Ɛmax), as shown in Table 4.3. The normalized stress-strain relationship presented 

in Figure 4.11 shows clearly that the RMBE ductility and the post peak slope enhances by 

decreasing the hoop spacing, increasing the grout strength and increasing the vertical 

reinforcement ratio.  
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Table 4.3 Summary of the experimental results of the RMBEs 

RMBE ID 

Maximum stress (MPa) 

Strain at peak stress,  
 

Strain at 75% of the 

peak stress,  

Strain at 50% of the 

peak stress,  
Strain ductility, 

µ50 

maxf   
Average 

(C.V. %) max   
Average 

(C.V. %) 75  
Average 

(C.V. %) 50  
Average 

(C.V. %) 
50

max




  

BE15-U-0-A 10.88 

 10.55 

(2.77%) 

0.00195 
0.00180 

(7.91%) 

0.0022 
0.00210 

(4.30%) 

0.0037 
0.0030 

(19.05%) 
1.62 

BE15-U-0-B 10.26 0.00171 0.0023 0.0027 

BE15-U-0-C 10.35 0.00200 0.0023 0.0032 

BE15-U-0-D 10.7 0.00174 0.0021 0.0024 

BE45-U-0-A 15.17 15.61 

(2.44%) 

0.00180 0.00175 

(6.10%) 

0.0027 0.00220 

(3.57%) 

0.0030 0.0032 

(6.25%) 
1.81 BE45-U-0-B 15.83 0.00170 0.0028 0.0034 

BE45-U-0-C 15.83 0.00192 0.0029 0.0032 

BE15-R#3-D4-30-A 17.78 16.97 

(6.57%) 

 

0.00195 0.0020 

(6.61%) 

0.0029 0.00280 

(3.57%) 

0.0080 0.0090 

(11.11%) 
4.50 BE15-R#3-D4-30-B 15.7 0.00190 0.0027 0.0100 

BE15-R#3-D4-30-C 17.44 0.00215 0.0028 0.0090 

BE15-R#3-D4-45-A 13.14 13.64 

(3.38%) 

0.00180 0.00179 

(2.01%) 

0.0025 0.00250 

(4.00%) 

0.0060 0.0069 

(11.18%) 
3.82 BE15-R#3-D4-45-B 14.05 0.00182 0.0026 0.0070 

BE15-R#3-D4-45-C 13.73 0.00175 0.0024 0.0075 

BE15-R#3-D4-60-A 13.08 13.2 

(2.12%) 

0.00156 0.00162 

(4.45%) 

0.0022 0.00233 

(6.55%) 

0.0066 0.0061 

(7.51%) 
3.77 BE15-R#3-D4-60-B 13 0.00160 0.0025 0.0057 

BE15-R#3-D4-60-C 13.52 0.00170 0.0023 0.0060 

BE15-R#4-D4-30-A 19.76 18.45 

(6.15%) 

0.00220 0.00218 

(3.50%) 

0.0031 0.00310 

(3.23%) 

0.0130 0.0124 

(9.36%) 
5.65 BE15-R#4-D4-30-B 17.78 0.00210 0.0030 0.0110 

BE15-R#4-D4-30-C 17.81 0.00225 0.0032 0.0130 

BE15-R#4-D4-45-A 15.21 15.92 

(9.84%) 

0.00214 0.00208 

(3.47%) 

0.0030 0.00290 

(3.45%) 

0.0090 0.0096 

(6.30%) 
4.60 BE15-R#4-D4-45-B 17.72 0.00200 0.0029 0.0095 

BE15-R#4-D4-45-C 14.84 0.00210 0.0028 0.0102 

BE15-R#4-D4-60-A 14.95 15.02 

(4.61%) 

0.00200 0.00201 

(4.74%) 

0.0028 0.00272 

(2.81%) 

0.0085 0.0075 

(11.13%) 
3.76 BE15-R#4-D4-60-B 14.37 0.00191 0.0027 0.0070 

BE15-R#4-D4-60-C 15.75 0.00210 0.0026 0.0071 

BE45-R#3-D4-60-A 17.32 16.72 

(3.13%) 

0.00181 0.00181 

(3.04%) 

0.0023 0.00260 

(11.54%) 

0.0076 0.0079 

(13.23%) 
4.33 BE45-R#3-D4-60-B 16.42 0.00176 0.0026 0.0070 

BE45-R#3-D4-60-C 16.41 0.00187 0.0029 0.0090 

BE45-R#4-D4-60-A 21.48 22.31 

(3.81%) 

0.00210 0.00213 

(2.71%) 

0.0032 0.00307 

(4.98%) 

0.0110 0.0095 

(14.03%) 
4.45 BE45-R#4-D4-60-B 22.26 0.00220 0.0031 0.0090 

BE45-R#4-D4-60-C 23.18 0.00210 0.0029 0.0085 
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Figure 4.11 Normalized compression stress-strain curves RMBE 

4.5 Influence of Test Variables on the RMBE Response 

4.5.1 Confinement Ratio of Transverse Reinforcement 

The effect of the amount of transverse confining steel on the compression stress-strain 

behaviour of the RMBE is well observed in the post peak branch as shown in Figure 4.11(a). The 

RMBE specimens with high confinement ratio exhibited more gradual post-peak stress-strain 

curve compared to those with low confinement ratio. It can be seen that the confinement ratio of 

lateral reinforcement had a slight effect on the stress-strain curve in the elastic stage. An increase 

in the RMBE peak stress was observed by decreasing the hoop spacing. As such, the average 

RMBE peak stress increased from 13.2 to 16.9 MPa and from 15.0 to 18.4 MPa when decreasing 

the hoop spacing from 60 to 30 mm for RMBE reinforced with #3 and #4 vertical bars, 
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respectively. Decreasing the hoop spacing, for samples reinforced with #3 and #4 vertical bars, 

from 60 to 30mm resulted in corresponding increase in the RMBE strain 75  by 20 and 14%, 

respectively. Moreover, an increase in the strain 50  by 48 and 65% was observed when 

decreasing the hoop spacing from 60 to 30, for RMBE reinforced with #3 and #4 vertical bars, 

respectively.  

4.5.2 Amount of Longitudinal Reinforcement 

The increase in the longitudinal reinforcement had no effect on the strength of the confined 

core, however it increased the capacity of the RMBE in proportion to the added vertical steel 

area. On the contrary, it enhanced the post-peak strain capacity of the RMBE. Figure 4.11(a) 

presents the three different pairs of RMBE specimens having different vertical reinforcement 

ratio and same hoop spacing and grout strength. From the figure, it can be seen that RMBEs 

having #4 bars as vertical reinforcement showed an increase in the strain capacities by 11% to 

16% and 23% to 38% more than that of the RMBEs having #3 bars at 75% and 50% of peak 

stress, respectively. Comparing BE45-R#4-D4-60 to BE45-R#3-D4-60 [Figure 4.11(b)], it could 

be concluded that the aforementioned enhancement in strain capacities slightly increases with the 

increase in the grout strength.  

4.5.3 Grout Compressive Strength 

Increasing the grout strength, for a given hoop spacing (i.e. 60mm), from 15 to 45 MPa 

resulted in a corresponding increase in the RMBE peak stress by 27 and 49% for samples having 

#3 and #4 vertical bars, respectively. The stress-strain behaviour of RMBE specimens having the 

same confinement ratio and the amount of longitudinal reinforcement ratio but different grout 

strength is presented in Figure 4.11(b). It can be observed from Figure 4.11(b) that as the vertical 

reinforcement ratio increases the grout strength had more noticeable effect on the RMBE stress-

strain response. 

4.6 Correlation between the Test Parameters and Stress-Strain Response 

Figure 4.12 presents the relation between the confinement ratio, vertical reinforcement ratio, 

and grout strength, versus the “confined RMBE peak stress normalized to the unreinforced 

unconfined RMBE peak stress ratio, fmax-c/fmax-un”. Figure 4.12(a) shows that the confinement 
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ratio increases the axial peak stress of the RMBEs reinforced by #3 and #4 in the range of 1.23 to 

1.69 and 1.36 to 1.87 times, respectively, compared to the unreinforced unconfined boundary 

elements. In contrast, the vertical reinforcement ratio introduces an increase in axial peak stress 

of the RMBEs constructed with 15 MPa and 45 MPa strength in the range of 1.24 to 1.49 and 

1.58 to 2.20 times, respectively, compared to the unreinforced unconfined boundary elements as 

shown in Figure 4.12(b). Finally, Figure 4.12(c) shows that increasing the grout strength from 15 

MPa to 45 MPa exhibited an increase in axial peak stress of the RMBEs reinforced by #3 and #4 

in the range of 1.23 to 1.64 and 1.36 to 2.20 times, respectively, compared to the unreinforced 

unconfined RMBEs.  
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Figure 4.12 Correlation between the strength enhancement ratio and the: a) confinement 

ratio b) vertical reinforcement ratio, and c) grout strength 

Figure 4.13 presents the relation between the confinement ratio of lateral reinforcement and 

the strain at peak stress, strain at 75% of peak stress, and strain at 50% of peak stress for the 

RMBEs constructed with 15 MPa grout strength. The effect of confinement reinforcement is 

more pronounced on the post peak behaviour. An increase in the confinement reinforcement 

provided a slight increase in the strain at peak stress of the RMBEs reinforced by #3 and #4 in 

the range of 1 to 1.2 and 1.06 to 1.25 times, respectively, compared to the unreinforced 

unconfined boundary elements as shown in Figure 4.13(a). However, an increase in the strain at 

75% of peak stress was in the range of 1.05 to 1.38 and 1.26 to 1.53 times for the RMBE 
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reinforced by #3 and #4 due to the confinement compared to the unreinforced unconfined 

boundary elements as shown in Figure 4.13(b). Figure 4.13(c) shows that the confinement 

reinforcement increases the strain at 50% of peak stress of the RMBE reinforced by #3 and #4 in 

the range of 1.9 to 3.33 and 2.33 to 4.33 times, respectively, compared to the unreinforced 

unconfined boundary elements. 
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Figure 4.13 Correlation between the confinement ratio for the specimens reinforced vertically by 

#3 and #4, constructed with normal strength grout and the strain at: a) maximum, b) 75%, and, c) 

50% of maximum stress 

Figure 4.14 presents the relation between the vertical reinforcement ratio and the strain at 

peak stress, strain at 75% of peak stress, and strain at 50% of peak stress for the RMBEs 

constructed with 15 MPa and 45 MPa grout strength. The vertical reinforcement ratio provides 

an increase in strain at peak stress of the RMBE built with 15 MPa and 45 MPa strength in the 

range of 1 to 1.16 and 1.01 to 1.26 times, respectively, compared to the unreinforced unconfined 

RMBEs as shown in Figure 4.14(a). Whereas, an increase in strain at 75% of peak stress due to 
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the increase in vertical reinforcement ratio was in the range of 1.05 to 1.34 and 1.05 to 1.45 times 

for the RMBE constructed with 15 MPa and 45 MPa strength compared to the unreinforced 

unconfined boundary elements as shown in Figure 4.14(b). Figure 4.14(c) indicates that the 

strain at 50% peak stress gain increases for the RMBE constructed with 15 MPa and 45 MPa 

strength in the range of 1.66 to 2.83 and 2.18 to 3.44 times, respectively, compared to the 

unreinforced unconfined boundary elements. It can be observed from Figures 4.13 and 4.14 that 

the confinement ratio, vertical reinforcement ratio, and grout strength have a more pronounced 

effect on the post peak behaviour, however, have slightly effect on the ascending curve.  
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Figure 4.14 Correlation between the vertical reinforcement ratio for the specimens constructed 

with normal and high strength grout and the strain at: a) maximum, b) 75%, and, c) 50% of 

maximum stress 
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4.7 Comparisons with Existing Predictive Models 

In this section, three stress-strain predictive models, proposed by Mander et al. (1988), 

Priestley and Elder (1983), and Abo El Ezz et al. (2015), are presented and compared to the 

observed stress-strain response of the tested RMBEs. It should be noted that for the models 

proposed by Mander et al. (1988), and Priestley and Elder (1983), the vertical reinforcement bars 

contribution to the RMBE resistance was considered by assuming elastic-perfect plastic 

response. Therefore, by assuming strain compatibility the reinforcement stress-strain curve was 

superimposed to the confined and unconfined masonry models, then it was compared with the 

experimental data. However, this was not the case for the model proposed by Abo El Ezz et al. 

(2015) where the reinforcement contribution and the effect of confinement is smeared over the 

RMBE cross-section. 

4.7.1 Mander et al. model    

Mander et al. (1988) proposed a stress-strain model for unconfined and confined concrete 

material. The effective lateral confinement pressure is computed and presented by effective 

confinement coefficient, ek . Mander et al. (1988) model is a function of the confined area 

between longitudinal bars, the confined area between hoops, dimensions of the confined core, the 

number of vertical bars, and the volumetric ratio of lateral reinforcement to concrete core. 

Mander et al. (1988) proposed an expression representing both ascending and descending 

branches of the stress-strain curve and which is presented in Eqs. 4.2 to 4.10 as follows: 
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Where; cf  is the longitudinal compressive concrete stress; c  is the longitudinal 

compressive concrete strain; '

ccf is the maximum concrete stress; cc is the strain corresponding to 

the maximum concrete stress; '

0cf is the unconfined concrete peak stress; 0c is the strain 

corresponding to the unconfined concrete peak stress; '

if  is the effective lateral confining 

pressure; s  is the ratio of volume of transverse confining steel to volume of confined concrete 

core; 
yhf  is the yield strength of the transverse reinforcement; ek  is the confinement 

effectiveness coefficient; cc is the ratio of longitudinal reinforcement area to area of core of 

section; 's  is the clear vertical spacing between spiral or hoop bars; cb and cd  are the core 

dimensions to centerlines of perimeter hoop in x and y directions, respectively, where cb  cd ; n  

is the number of longitudinal bars; and
'

iw is the closest clear space between adjacent longitudinal 

bars. 

4.7.2 Priestley and Elder model 

Priestley and Elder (1983) built on the modified Kent–Park model proposed by Scott et al. 

(1982) to investigate the compression stress-strain relationship of the unconfined and confined 

grouted concrete masonry block. The unconfined curve consists of two branches; a parabolic 

rising curve and a linear falling branch and are presented in Eqs. 4.11 to 4.13 as follows; 

 Parabolic rising curve   
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 Falling branch 
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                                                                    Eq. 4.13 

On other hand the confined curve consists of three branches; a parabolic rising curve, a 

linear falling branch, and a final horizontal plateau and are presented in Eqs. 4.14 to 4.17 as 

follows: 

 Parabolic rising curve   
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 Horizontal plateau 

mf is assumed equivalent to 0.2  

Where mf  is the compressive stress of the masonry; '

mf  is the peak stress of unconfined 

masonry; m  is the axial compressive strain of the masonry; 
yhf  is the yield strength of hoop 

reinforcement; mZ  is the slope of the post-peak part of the stress-strain curve; s  is the 

volumetric ratio of the confining steel; ''h  is the lateral dimension of  confined core; and hs  is the 

longitudinal spacing of confining steel. 
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4.7.3 Abo El Ezz et al. model 

Abo El Ezz et al. (2015) proposed a simplified smeared compression stress-strain 

relationship of fully grouted unconfined and confined RMBE built using standard concrete 

blocks. The simplified stress-strain model is based on the Kent and Park (1971) model. It should 

be noted that this model smear the effect of confinement and vertical reinforcement bar 

contribution to the RMBE stress-strain response over the RMBE cross-section. The model 

predictions were computed using Eqs. 4.18 to 4.19 as follows: 
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Where m  is the axial compressive strain of the masonry; max cf   is peak stress for confined 

reinforced boundary element; max c   is the strain at peak stress for confined reinforced boundary 

element; max r   is the average peak stress of the vertically RMBEs; cZ  is the slope of the post-

peak part of the stress-strain curve; and 50c is the strain at 50% of peak stress for the confined 

boundary element. 

4.7.4 Stress-strain model predictions versus the experimental results 

Mander et al. (1988) model was developed based on the experimental data of reinforced 

concrete columns, however, Priestley and Elder (1983) and Abo El Ezz et al. (2015) are 

computed based on the experimental results of masonry members constructed using standard 

blocks. Figure 4.15 shows that the above models overestimate the peak stress the strain at peak. 

Moreover, all the models significantly overestimated the strain corresponding to 75% ( 75 ) and 

50% ( 50 ) of peak stress compared to the experimental results. It should be noted that the stress-

strain model predictions, proposed by Abo El Ezz et al. (2015) were the closest to the 
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experimental observations, although this model does not account for changing the confined zone 

dimensions and the vertical bars effect on the core confinement. Figure 4.15 shows that none of 

the models was capable of predicting the drop in the stress-strain curve due to the face shell 

spalling. As such, these models should be used with caution when predicting the seismic 

response of RMSW with boundary elements.  
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Figure 4.15 Comparison between the observed stress-strain relationship and three predictive models for RMBE: a) BE15-R#3-D4/30, 

b) BE15-R#3-D4/45, c) BE15-R#3-D4/60, d) BE45-R#3-D4/60, e) BE15-R#4-D4/30, f) BE15-R#4-D4/45, g) BE15-R#4-D4/60, and 

h) BE45-R#3-D4/60
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4.8 Conclusions 

This study presents the observed compressive stress-strain response of thirty half-scale C-

shape reinforced masonry boundary elements (RMBEs) simulating the end zones of reinforced 

masonry shear walls. The influence of changing hoop spacing, vertical reinforcement ratio, and 

grout compressive peak stress was investigated by testing ten different RMBEs groups. The aim 

of this study is to provide the essential experimental data that quantifies the effect of these 

parameters on the compressive stress-strain response towards bridging the knowledge gap in this 

area. 

The stress-strain curve of the un-reinforced boundary elements specimens was categorized 

by two zones, a rising curve until the peak stress followed by almost a linear decay up to failure. 

However, the stress-strain curve of the confined RMBE is characterized by three zones: a rising 

curve up to the peak stress, a sudden drop in the stress due to face shell spalling, and gradual 

failing curve up to failure. Enhancement in the RMBE was observed as the hoop spacing 

decreased and the grout strength increased. As the hoop spacing decreased from 60 to 30 mm, 

the RMBE peak stress enhanced by about 25%. On the other hand, the RMBE peak stress 

increased by approximately 38% as the grout strength increased from 15 to 45 MPa. Significant 

enhancement in the RMBE strain capacity was observed especially beyond the 50% of the peak 

stress. The strain at 50% peak stress increased for the RMBE constructed with 15 MPa and 45 

MPa strength by approximately 1.66 to 2.83 and 2.18 to 3.44 times, respectively, compared to 

the unreinforced unconfined specimens. Adding vertical reinforcement to the RMBE enhanced 

the RMBE post peak strain.  

Linear correlations between the hoop spacing, vertical reinforcement ratio, and grout 

strength, versus the RMBE peak stress and strain corresponding to 75% and 50% of the peak 

stress are presented. These correlations are quantified herewith to serve as design aids for 

practical engineers aiming at computing a value for the peak stress and strain enhancement due 

to different design parameters.  

Finally, three stress-strain predictive models were compared to the observed stress-strain 

relationship of the tested RMBEs. All the considered models overestimated the RMBE stress 

enhancement at different confinement levels. Moreover, the presented models overestimated the 

strain enhancement corresponding to different confinement ratios significantly. However, none 
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of the predictive models was able to capture the sudden stress drop following the peak stress due 

to the face shell spalling. This study clearly highlighted the need for a new stress-strain material 

model for reinforced masonry boundary elements. 
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4.10 NOTATION    

fmax  = peak stress 

Ɛmax  = strain at the peak stress 

Ɛ75 = strain at 75% of the peak stress 

Ɛ50  = strain at 50% of the peak stress  

µ  = strain ductility of the RMBE 

fmax-c  = the average peak stress of confined RMBE 

fmax-un  = the average peak stress of unreinforced unconfined RMBE 

Ec  = tangent modulus of elasticity of the concrete  

Esec  = secant modulus of elasticity of the concrete 
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Chapter 5 

Stress-Strain Model for C-Shape Confined Concrete Masonry 

Boundary Elements of RM Shear Walls 

 

5.1 Abstract 

Reinforced masonry (RM) shear walls with boundary elements have been recently presented 

as a more ductile alternative to RM rectangular shear walls. Increasing the wall thickness and 

introducing confining hoops in the wall most stressed zone enhances the overall wall 

performance. Consequently, the evaluation of the complete (i.e. including the post-peak branch) 

compression stress-strain behaviour of the confined and unconfined masonry become an 

essential step for predicting the seismic response of the RM walls. Recently, the authors 

investigated the effect of various volumetric ratios of transverse reinforcement, vertical 

reinforcement ratios, and grout strength on the axial stress-strain behaviour of reinforced 

masonry boundary elements (RMBEs). However, all the specimens had a specific height to 

thickness ratio (i.e., AR=5). This study presents the observed stress-strain relationship of 

seventeen C-shape half-scale fully grouted unreinforced and RMBE specimens tested under 

concentric compression loading up to failure. The effect of changing the aspect ratio (height to 

thickness) for RMBEs having different confinement ratios is presented in this study. This study 

quantifies the effect of these parameters on the RMBEs peak stress, strain corresponding to peak, 

and post-peak behaviour. The results indicate that, as the hoop spacings and/or aspect ratio 

decreases, the peak stress and post-peak strains increase. As such, for samples having 60 mm 

hoops spacing, as the aspect ratio decreased from 5 to 2 the peak stress increased by 28% and 

post-peak strain at 75% and 50% of the peak stress enhanced by 83%, and 28%, respectively. 

Moreover, this study presents a stress-strain empirical model capable of predicting the RMBE 

stress-strain response by computing the confined and unconfined masonry stress-strain 

behaviour. The model is calibrated using the experimental data of thirty-three RMBE specimens, 

tested in this study and reported by the authors in the literature. The model considers the effect of 

different parameters, namely, confinement ratio of lateral reinforcement, vertical reinforcement 

ratio, grout strength, and aspect ratio on the RMBE stress-strain response. This model presents 
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an efficient tool that can be implemented in different numerical packages aiming at a better 

seismic prediction of RM shear walls with boundary elements.  

 KEYWORDS: Aspect ratio, Boundary elements, Concrete block, Confinement, Shear walls, C-

shape, Reinforced masonry, Stress-strain behaviour, stress-strain masonry  model. 

5.2 Introduction 

Understanding the compressive stress-strain behaviour of reinforced masonry boundary 

elements (RMBEs) is essential for predicting the lateral response of reinforced masonry (RM) 

shear walls with boundary elements. Limited studies, to date, focused on the confinement effect 

on the stress-strain response of reinforced masonry assemblages. RMBE is a kind of masonry 

column added towards the wall ends to increase the wall thickness in the wall’s most stressed 

zone, subsequently allowing a reinforcement confinement cage to be added at the wall 

extremities and thus enhance the wall curvature ductility and lateral response (e.g., Shedid et al 

2010, Banting and El-Dakhakhni 2012, and FEMA 2006). Unlike reinforced concrete (RC) 

structural elements, the cover to confined core ratio in masonry assemblage is much higher. 

Moreover, the cover in the reinforced masonry assemblage consists of masonry blocks, mortar 

and grout cover to the hoops. All these discrepancies are questioning the ability of the stress-

strain models that are originally developed to predict the confined RC component response, to 

predict the stress-strain axial response of RMBE.  

Abo El Ezz et al. 2015 investigated the effect of hoops spacing on the axial compressive 

response of RMBEs built using standard concrete stretcher blocks. Unlike stretchers, C-shaped 

blocks allow placing the confinement hoops at any desired spacing. Thus, choosing the hoops 

spacing gives Engineers more control over the confinement level in the wall boundaries. 

Therefore, Obaidat et al. 2017 investigated the effect of changing the confinement ratio 

introduced by transversal hoops on the axial stress-strain behaviour of full-scale RMBEs built 

using C-shaped concrete block masonry. Moreover, Obaidat et al. 2017b investigated the effect 

of changing grout strength, vertical and transversal reinforcement ratio on the axial stress-strain 

behaviour of half-scale RMBEs built using C-shaped block.  

The CSA 2014 and ASTM 2014 material testing standards specify different height to 

thickness ratios, i.e. 5 and 2, respectively, in order to obtain the stress-strain relationship of 

masonry prisms. On the other hand, each standard presents a different correction factors to 
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account for changing the aspect ratio. Therefore, this implies that the sample aspect ratio has a 

direct effect on the resulting compressive stress-strain response. As such, this study investigates 

the effect of changing the aspect ratio (height to thickness) and confinement ratio (i.e. by 

changing the hoop spacing) on the compression stress-strain behaviour of half-scale RMBE. Two 

aspect ratios will be investigated, namely, 2 and 3. Moreover, for each aspect ratio two hoops 

spacing will be utilized, namely, 30 and 60 mm. Also, unreinforced masonry boundary elements 

(BEs) with the same aspect ratios will be tested. Therefore, six groups of RMBEs and masonry 

BEs were tested, each had at least two samples. A total of seventeen RMBE and BE specimens 

were tested under concentric axial loading up to failure in the structural laboratory at Concordia 

University. Furthermore, the experimental results will be compared to two other groups of 

RMBEs and one group of masonry BEs having an aspect ratio of 5 and similar hoops spacing 

tested by Obaidat et al. 2017b. Therefore by investigating the RMBE aspect ratio, this 

experimental and numerical study complements the parameters experimentally tested by Obaidat 

et al. 2017b (i.e. vertical reinforcement ratio, the volumetric ratio of transverse reinforcement, 

and grout strength). 

Although unconfined masonry numerical models are available in the literature (e.g. 

Lourenço 1996 and Hunt and Sherwood 2017), limited research was conducted for establishing 

the complete stress-strain relationship for confined masonry members. Priestley and Elder 1983 

proposed numerical model capable of predicting the compression behaviour of unconfined and 

confined masonry prisms. However, Priestley and Elder 1983 model was conducted using 

standard blocks considering (Priestly and Bridgeman 1974) 3mm confining steel plate. Abo El 

Ezz et al. 2015 proposed a simplified stress-strain model for fully grouted unconfined and 

confined reinforced masonry boundary element built using standard concrete blocks. However, 

this model predicts the compression stress-strain curve of RMBE over the whole cross section 

smearing the transversal and the vertical reinforcement contributions. Obaidat et al. 2017b 

investigated the ability of three existing stress-strain models (Abo El Ezz et al. 2015, Priestley 

and Elder 1983, and Mander et al. 1988) in predicting the compression stress-strain behaviour of 

RMBEs built using C-shaped concrete blocks. It was concluded that these three models were not 

capable of capturing the post-peak response and the drop occurred due to the face shell spalling 

at the RMBE peak stress. Moreover, the available models were insensitive to the changing of 
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aspect ratio and highly overestimated the enhancement in the RMBE peak stress and 

corresponding strain (Obaidat et al. 2017b). 

Based on the experimental data presented in this study and the data reported by Obaidat et 

al. 2017b a stress-strain empirical model is developed. The proposed model was calibrated to 

best fit the experimental results of a total of thirty-three RMBEs using polynomial and linear 

regression techniques. The model used a similar mathematical formulation as proposed by 

Mander et al. 1988. At a given strain value, the corresponding stress of the RMBE was computed 

by adding the stress in the vertical reinforcement bars to the unconfined and confined masonry 

zones, each weighted to its cross-sectional area. Proposing only one equation to generate a 

smooth curve for the confined zone adds to the simplicity of this model. This model aims at 

bridging the existing gap of computing the effect of different design parameters on the 

compressive stress-strain behaviour of RMBEs.  

5.3 Experimental Program 

5.3.1 Test matrix 

Table 5.1 presents the nine test groups considered in this study, where each group consisted of at 

least two samples. A total of seventeen RMBEs having a various aspect (i.e. height to thickness) 

and confinement ratios and nine unreinforced BE (see Figure 5.1) were tested under concentric 

axial compressive loading up to failure. It should be noted that all groups having an aspect ratio 

equal to 5 were tested earlier by Obaidat et al. 2017b. For each group, the specimens were 

labeled with four terms of letters and numbers, e.g. BE-D4/60-AR2-A. The first term, BE, 

represents a boundary element. The second term (i.e. D4/60) is used to describe the transversal 

reinforcement size and spacing in mm. The third term (i.e. AR2) represent the sample’s aspect 

ratio (i.e. height to thickness = 2 in this group). The letters A, B, or C follow the group name to 

identify the sample within each group. It should be noted that the confinement ratio, Cf, is 

calculated according to Eq. 5.1 and presented in Table 5.1. 

( / )f l hC H S           Eq. 5.1 

where; l is the volumetric ratio of the confinement reinforcement (i.e., the volume of 

confinement hoops to the volume of core concrete at spacing, Sh), H is the width of the confined 

core, and S is the spacing between the confinement hoops. 
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Figure 5.1 RMBE specimens during construction 

All samples were grouted with normal strength grout (i.e. 15 MPa). As shown in Table 5.1, 

the first three groups represented unreinforced BEs having aspect ratios of 2, 3 and 5. These 

three groups were tested to compare their stress-strain behaviour with the corresponding 

RMBEs, and thus to quantify the vertical and transversal reinforcement influence on the RMBE 

stress-strain behaviour. All the RMBE reinforced specimens had four vertical reinforcement #3 

bars (71 mm2). The vertical bars were placed in each corner and confined with transverse 

reinforcement (i.e., hoops) of deformed D4 wires (25.8 mm2) having two different hoop’s 

spacing of 60 or 30 mm. Groups 4 and 7 had the same aspect ratio of 2 and were confined with 

D4/60 mm and D4/30 mm hoops, respectively. Similarly, the remaining groups (5 and 8; 6 and 

9) had aspect ratios of 3 and 5 and confined with D4/60 mm and D4/30 mm hoops, respectively. 

Therefore, this test matrix was designed to investigate the effect of different confinement levels 

and aspect ratios on the RMBE’s compressive stress-strain behaviour.  
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5.3.2 Construction of RMBEs 

The construction of the RMBE specimens was performed by experienced masons following 

the Canadian construction practices. Half-scale concrete C-shaped blocks were used in all 

samples. Figure 5.2 (a to e) illustrates the RMBEs construction sequence. First, the rebars were 

cut and bent, then the reinforcement cage for each RMBE specimen was assembled. The cage 

consisted of four #3 (71 mm2) reinforcement bars, and deformed wire (D4) hoops tied at a 

particular spacing (30 or 60 mm). All hoops were anchored with 135º bends extending 55 mm 

into the grout’s core. The reinforcement cage of each RMBE specimen was placed in a 

preassembled formwork to pour the bottom reinforced concrete footing with dimensions of 200 

mm x 200 mm x 250 mm (length x width x height). However, the unreinforced BE specimens 

were placed on solid templates to provide equal elevation, and they did not have a top or a 

bottom footing. It should be noted that the hoops’ size was increased to #4 (129 mm2) with 40 

mm spacing to avoid any local failure in the bottom and top footing. The vertical reinforcement 

bars were continuous along the height of the RMBE specimen. There were no splices from the 

base of the bottom footing to the top footing. High strength concrete was poured in the wooden 

formwork; then the samples were permitted, approximately, one week to cure. Before laying the 

C-shaped concrete blocks, four strain gauges were mounted on the mid height of the vertical 

reinforcing steel bars to track the axial strain on the vertical bars.  A stacked bond pattern was 

utilized for each RMBE specimen. Each course had two C-block units placed face to face. The 

stacked bond pattern represented the layout envisioned for RMSW with boundary elements. All 

RMBE and unreinforced specimens had cross-sectional dimensions of 190 mm x 190 mm 

(length x width). Samples were assembled in four, six, and ten courses high for samples having 

aspect ratios of 2, 3, and 5, respectively. The RMBE specimens were strapped before grouting to 

avoid any cracks in the mortar head joints. Finally, once the masonry process was complete, a 

top footing, similar to the bottom one, was poured and left to cure in a preassembled formwork.   
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(a) (b)

(e)(d)(c)
 

Figure 5.2 Construction sequence of RMBEs 

5.3.3 Material Properties 

RMBE’s bottom and top footings were constructed using high strength concrete to eliminate 

any local failure and to ensure that failure occurs within the test region. Table 5.2 summarizes 

the materials’ compressive strength used for the construction of the RMBEs. The footings’ 

strength was 83.8 MPa with a coefficient of variation (C.V.) of 6.2%. These results were based 

on the testing of twelve concrete cylinders. All RMBE specimens were constructed with C-shape 

half-scale concrete block units. Their nominal dimensions were 25 mm x 190 mm x 92.5 mm x 
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90 mm (thickness x length x width x height). According to the ASTM C140 / C140M [14], 

fourteen coupons of half-scale concrete masonry blocks (100 mm x 50 mm x 25 mm) were tested 

under compressive loading. The average compressive strength, of the 14 tested coupons, was 22 

MPa (C.V. = 13.8%). The C-shaped block units were joined in a stacked bond with an 

approximate thickness of 5 mm mortar joints (i.e., to meet the scaling requirements). Pre-bagged 

type S mortar was used for each specimen tested. From each batch, three 50 mm x 50 mm x 50 

mm cubes were molded and cured. A total of fifteen mortar cubes were tested under 

compression. The average compressive strength of the mortar cubes was 12.3 MPa (C.V. = 

7.15%). Fine grout was used for the construction of all specimens. The pre-mixed fine grout air 

treated in cylinders had an average compressive strength of 15 MPa (C.V. = 8.7%) tested 

according to CSA A179, 2014.  

Standard deformed reinforcement steel bars, sizes #3 and #4, were used for the vertical 

reinforcement and footing transversal reinforcement, respectively. On the other hand, deformed 

wire, D4, was utilized for the hoops. An average tensile yield strength of #3 and #4 was 455 MPa 

and 482 MPa, respectively. A clear yield region did not exist for the steel deformed wire (D4). 

Therefore, the proof yield strength corresponding to a 0.2% strain for D4 tested samples was 600 

MPa.
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Table 5.1: RMBE test specimen details 

Group 

# 
RMBE ID 

Number 

of tested 

specimens 

Grout 

Strength 

(MPa) 

Longitudinal 

Reinforcement 

Transverse 

Reinforcement Confinement 

ratio Cf Number-size 

of Bars 
ρv%   

Bar size 

(spacing mm) 
ρl%   

1 BE-0-AR2 2 15 - - - - - 
2 BE-0-AR3 3 15 - - - - - 

3 BE-0-AR5* 4 15 - - - - - 

4 BE-D4/60-AR2 3 15 4 - #3 0.79 D4 (60) 1.57 0.022 

5 BE-D4/60-AR3 3 15 4 - #3 0.79 D4 (60) 1.57 0.022 

6 BE-D4/60-AR5* 3 15 4 - #3 0.79 D4 (60) 1.57 0.022 

7 BE-D4/30-AR2 3 15 4 - #3 0.79 D4 (30) 3.15 0.062 

8 BE-D4/30-AR3 3 15 4 - #3 0.79 D4 (30) 3.15 0.062 

9 BE-D4/30-AR5* 3 15 4 - #3 0.79 D4 (30) 3.15 0.062 

*Tested by Obaidat et al. [6] 

 

Table 5.2: Materials properties 

Material Notation 
Average compressive 

strength (MPa) 

C.V. 

% 

Concrete cylinder (footings) cf   83.8 6.20 

Masonry concrete block bf  22.0 13.8 

Mortar cubes mcf  12.3 7.15 

Grout cylinders gf  15.0 8.70 

*C.V.: coefficient of variation
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5.3.4 Test Setup and Instrumentation 

All RMBE specimens were tested under compressive concentric loading until failure. The test 

setup is illustrated in (Figure 5.3). The compressive concentric loading was applied by a newly 

upgraded 3000 kN servo controlled actuator operated at a constant displacement rate (i.e., 0.003 

mm/sec). Using a displacement control loading enables the capturing of the post-peak stress-strain 

curve branch. This is essential to quantify the influence of the studied parameters on the behaviour 

of the RMBE’s post-peak behaviour. The termination of the tests occurred when the specimens 

reach approximately 25% of its ultimate load (75% strength degradation).  

Two 50 mm thick rectangular steel plates and a spherical steel head were placed between the 

specimen and the actuator head. To ensure that the specimen’s extreme ends remained parallel to 

one another and that the loads would be distributed uniformly, two layers of high strength plaster 

were added between the specimen’s top and bottom surfaces and the steel plates. Figure 5.3 

displays typical dimensions of the RMBE specimens with different aspect ratios. The total height 

of the tested specimen having four courses (AR=2), six courses (AR=3), and ten courses (AR=5) 

was 880, 1070, and 1455 mm, respectively, with an effective (gauge) length of 380, 570, and 955 

mm, respectively. 

 

Figure 5.3 Schematic of the test set-up, RMBE components, and instrumentations 
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The effective gauge length was measured from the lower edge of the top footing to the upper 

edge of the bottom footing. In all RMBE specimens, four Linear Variable Differential Transducers 

LVDTs were used to measure the axial strain over the tested region. 

5.4 Experimental Results and Discussion 

Figure 5.4 presents the compression stress-strain curves for all RMBE specimens. It should be 

noted that the stress was computed by dividing the reported load by the RMBE’s cross-sectional 

area (190 mm × 190 mm). Also, the strain was calculated by dividing the average of the four 

LVDTs readings by the corresponding effective gauge length. It can be noticed that the 

compressive stress-strain curve of confined RMBEs consists of three branches: rising curve up to 

the peak load, followed by a sudden drop, and gradually descending curve. However, the stress-

strain curve of the unreinforced specimens has two branches: rising curve up to the peak load and 

descending post-peak curve. The sudden drop in the RMBE’s stress was mainly attributed to the 

face-shell spalling of the concrete block, which resulted in a 40~50% loss of the RMBE strength, 

where the RMBE lost at least 55% of the cross-sectional area. Table 5.3 presents the experimental 

results of the peak stress ( maxf ), strain at the peak stress ( max ), strain at 75% of the peak stress 

( 75 ), strain at 50% of the peak stress ( 50 ), and strain ductility ( 50% ) of the RMBE. The strain 

ductility is defined as the ratio between the strain at 50% of the peak stress on the descending 

curve ( 50 ) and the strain at the peak stress ( max ). 

5.4.1 Effect of changing aspect ratio (height to thickness) on the stress-strain response of 

RMBEs 

 The compressive stress-strain curves of three specimens, in three different groups having the 

same aspect ratio 2, 3, and 5, with various confinement ratios of transverse reinforcement ratios, 

can be seen in Figure 5.4. It should be noted that the effect of the aspect ratio on the initial stiffness 

of the RMBE specimen was minimal. Figure 5.4 shows that as the aspect ratio decreases, the peak 

stress increases. However, this was not the case for RMBEs having the highest confinement ratio 

(i.e., 30 mm hoops spacing). As such, as the aspect ratio decreased the confinement effect 

introduced by the specimen’s capping resulted in increasing the RMBE peak stress. However, this 

confinement effect could be minimized in the RMBEs having the highest ratio of transversal 
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reinforcement (i.e. RMBE become well confined). On average, as the aspect ratio decreased from 5 

to 2, the peak stress increased by 20%, 28%, and 2% for unreinforced BEs, RMBEs having 60 and 

30 mm hoops spacing, respectively. 

 

Figure 5.4 Observed compression stress–strain curves for RMBE specimens having different 

height to thickness and confinement ratios 

Figure 5.5 presents the RMBEs stress-strain results each normalized to its maximum stress in 

order to visualize the effect of the different parameters on the RMBEs post-peak response and 

ductility. As shown in Figure 5.5, as the aspect ratio decreases the RMBEs developed a more 

gradual post-peak stress degradation. On average, as the aspect ratio decreased from 5 to 2, the 

strain corresponds to the peak strength increased by 14%, 46%, and 29% for unreinforced BEs, 

RMBEs having 60 and 30 mm hoops spacing, respectively. Moreover, the strain ductility (i.e. ratio 

of the strain at 50% of peak stress to strain at peak stress) increased as the aspect ratio decreased 

from 5 to 2 by 46%, and 69% for unreinforced BEs, RMBEs having 30 mm hoops spacing, 

respectively. However, the last observation was not the consensus of all, where for RMBEs having 
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60 mm hoops spacing as the aspect ratio decreased from 5 to 2 the displacement ductility 

decreased by 12%. 

5.4.2 Effect of confinement ratio on the stress-strain response of RMBEs 

Figure 5.4 shows that, as the confinement ratio of transverse reinforcement increases, the peak 

stress increases. The increase in peak stress is more noticeable in the RMBE specimens having an 

aspect ratio of 5. On average, as the confinement ratio of transverse reinforcement increased from 

0.022 (i.e. 60 mm hoops spacing) to 0.062 (i.e. 30 mm hoops spacing), the peak stress increased by 

2%, 12%, and 29% for RMBEs with AR of 2, 3 and 5, respectively. 

 

Figure 5.5 Normalized compression stress–strain curves of RMBE having different confinement 

ratios 

The RMBEs developed a more gradual post-peak stress degradation as the confinement ratio of 

transverse reinforcement increases (Figure 5.5). On average, as the confinement ratio of transverse 

reinforcement increased from 0.022 to 0.062, the strain corresponds to the peak stress, max
ε , 
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increased by 9%, 8%, and 23% for RMBEs with AR of 2, 3 and 5, respectively. Moreover, the 

strain ductility, µ50%, increased by 130%, 131%, and 19%, as the confinement ratio of transverse 

reinforcement increased from 0.022 to 0.062, for RMBEs with AR of 2, 3 and 5, respectively.  

5.4.3 RMBEs damage propagation 

Figure 5.6 shows the typical failure modes of the unreinforced BE and RMBE specimens with 

various aspect ratios. Prior to the peak strength, both unreinforced BE and RMBE specimens 

showed similar damage characterized by surface hair cracks. However, the unreinforced BEs failed 

in a brittle manner, and sudden splitting occurred at the onset of the peak stress. On the other hand, 

face shell spalling was observed in RMBE following the peak stress. This was followed by vertical 

reinforcement bars buckling outwards at high strains. It should be noted, no fracture in the 

transversal hoops was observed in any of the tested samples. Steel-masonry strain compatibility 

was observed up to the peak-stress as observed by Obaidat et al. 2017b. Subsequently, vertical 

reinforcement bars yielding was observed following the RMBE’s peak stress. Finally, failure 

occurred when the grout between the hoops was crushed, as seen in (Figure 5.6). 

 

Figure 5.6 Observed damage of BE specimens with various aspect ratios: a) unreinforced 

BEs, and b) RMBEs 
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Table 5.3 Experimental results of the RMBEs. 

RMBE ID 

Maximum stress 

(MPa) 

Strain at peak stress Strain at 75% of the 

peak stress, 75  

Strain at 50% of the 

peak stress, 50   

Strain ductility, 

µ50% 

maxf  
Average 

(C.V. %) max  
Average 

(C.V. %) 75  
Average 

(C.V. %) 50  
Average 

(C.V. %) 

50

max




  

BE-0-AR2-A 12.62 12.64 

(0.17%) 

0.00209 0.002045 

(3.11%) 

0.0034 0.0032 

(9.25%) 

0.0047 0.0049 

(4.37%) 
2.37 

BE-0-AR2-B 12.65 0.00200 0.0030 0.0050 

BE-0-AR3-A 12.41 
11.91 

(4.16%) 

0.00180 
0.001757 

(2.30%) 

0.0026 
0.0025 

(3.03%) 

0.0037 
0.0034 

(7.33%) 
1.95 BE-0-AR3-B 11.88 0.00175 0.0025 0.0032 

BE-0-AR3-C 11.42 0.00172 0.0025 0.0034 

BE-0-AR5-A* 10.88 

10.55 

(2.77%) 

0.00195 

0.00180 

(7.91%) 

0.0022 

0.0021 

(4.30%) 

0.0037 

0.0030 

(19.05%) 
1.62 

BE-0-AR5-B* 10.26 0.00171 0.0023 0.0027 

BE-0-AR5-C* 10.35 0.00200 0.0023 0.0032 

BE-0-AR5-D* 10.70 0.00174 0.0021 0.0024 

BE-D4/60-AR2-A 16.39 
16.88 

(3.86%) 

0.00250 
0.002367 

(6.45%) 

0.0039 
0.0042 

(7.65%) 

0.0090 
0.0078 

(12.91%) 
3.31 BE-D4/60-AR2-B 17.62 0.00240 0.0042 0.0072 

BE-D4/60-AR2-C 16.63 0.00220 0.0045 0.0073 

BE-D4/60-AR3-A 13.00 
13.65 

(6.15%) 

0.00210 
0.00210 

(4.76%) 

0.0038 
0.0035 

(8.07%) 

0.0075 
0.0074 

(10.41%) 
3.50 BE-D4/60-AR3-B 13.36 0.00200 0.0032 0.0080 

BE-D4/60-AR3-C 14.60 0.00220 0.0034 0.0065 

BE-D4/60-AR5-A* 13.08 
13.2 

(2.12%) 

0.00156 
0.00162 

(4.45%) 

0.0022 
0.0023 

(6.55%) 

0.0066 
0.0061 

(7.51%) 
3.77 BE-D4/60-AR5-B* 13.00 0.00160 0.0025 0.0057 

BE-D4/60-AR5-C* 13.52 0.00170 0.0023 0.0060 

BE-D4/30-AR2-A 16.45 17.25 

(5.53%) 

 

0.00260 
0.002587 

(6.97%) 

0.0044 
0.0041 

(6.45%) 

0.0220 
0.0197 

(12.80%) 
7.61 BE-D4/30-AR2-B 18.30 0.00240 0.0040 0.0200 

BE-D4/30-AR2-C 16.98 0.00276 0.0039 0.0170 

BE-D4/30-AR3-A 15.28 
15.25 

(3.45%) 

0.00220 
0.002267 

(2.55%) 

0.0035 
0.0034 

(2.94%) 

0.0180 
0.0184 

(8.33%) 
8.09 BE-D4/30-AR3-B 14.70 0.00230 0.0034 0.0200 

BE-D4/30-AR3-C 15.75 0.00230 0.0033 0.0170 

BE-D4/30-AR5-A* 17.78 
16.97 

(6.57%) 

0.00195 
0.0020 

(6.61%) 

0.0029 
0.0028 

(3.57%) 

0.0080 
0.0090 

(11.11%) 
4.50 BE-D4/30-AR5-B* 15.70 0.00190 0.0027 0.0100 

BE-D4/30-AR5-C* 17.44 0.00215 0.0028 0.0090 

*Tested by Obaidat et al. [6]  
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5.5 Empirical Compressive Stress-Strain Relationship for RMBEs 

5.5.1 Model overview  

Based on the experimental data of the current study and the study by Obaidat et al. 2017b an 

empirical stress-strain relationship is proposed for the confined and unconfined masonry zones 

considering different grout strength, aspect ratio, vertical, and transversal reinforcement ratios. As 

shown in Figure 5.7, at a given strain the RMBE total stress is computed by adding the stress of the 

unconfined masonry, confined masonry and the vertical reinforcement each weighted to its cross-

sectional area according to Eq. 5.2. Therefore, this model provides the flexibility of predicting the 

stress-strain relationship for RMBEs built using various reinforcement bar sizes, block, and core 

dimension combinations.  

mu mc s
mu mc s

t t t

A A A
f f f f

A A A
           Eq. 5.2 

where f is the compressive stress, 
muf is the unconfined stress, 

mcf is the confined stress, 
sf is 

the vertical steel reinforcement stress, 
muA is the unconfined zone area, 

mcA is the confined zone 

area, 
sA is the vertical reinforcement steel area, and 

tA is the total cross section area. 

 

Figure 5.7 Stress-strain relationship of RMBE components 
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In this study, a mathematical expression similar to the one proposed by Mander et al. 1988 is 

utilized to produce a smooth continuous curve for the compression stress-strain behaviour of 

RMBE unconfined and confined masonry zones. This expression was calibrated with the 

experimental results of thirty-three RMBEs having a different aspect ratio, grout strength, vertical 

and transversal reinforcement ratios. The specimens’ details are presented in Table 5.4.  The 

following sections introduce the calibration process, the computed model, and the model 

predictions compared to the experimental data. 

5.5.2 Model calibration  

In the first two curves in the legend of Figure 5.8, the contribution of the vertical bars to the 

RMBE’s stress-strain behaviour was subtracted assuming steel-masonry strain compatibility 

(Obaidat et al. 2017b). The load carried by the vertical reinforcement, Ps, was subtracted from the 

total load, Pexp, considering an elastic-perfect plastic response. The elastic modulus and the yield 

stress for the two studied vertical bar sizes (i.e. #3 and #4) were measured experimentally. The 

resulting load (Pexp – Ps) is divided once by the total area of the RMBE, At, and once by only the 

core area, Ac, as shown in Figure 5.8. As discussed earlier, the sudden stress drop was mainly 

attributed to the spalling of the block face shell which represent approximately 55% of RMBE 

specimen cross section. Hence, the applied load was resisted by the whole RMBE cross-section up 

to the peak stress.  

Figure 5.8 shows the technique used to calibrate the proposed stress-strain model to the 

experimental results. It is assumed that both the confined and unconfined masonry models will 

have the same stress up to the ultimate stress that corresponds to mu-max, where the strain in the 

confined hoops is not high enough to confine the core as explained by Yong et al. 1988. Following 

the face shell spalling at strain sp, the load will be totally carried by the confined core. 

Consequently, the transition zone between the strain corresponding to maximum stress,mu-max, and 

the spalling strain, sp, is assumed to have a linear decay in the unconfined masonry model and a 

smooth transition curve for the confined masonry model, as shown in the last two curves in the 

legend of Figure 5.8. This calibration process was conducted for each RMBE and the required 

parameters that will be defined in the following section for the unconfined and confined models 

were computed for different grout strength, aspect ratio, vertical and horizontal reinforcement 

ratios. 
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Figure 5.8 Calibration of the proposed model with the experimental data 

5.5.3 Model formulation  

The complete compressive stress-strain relationship of the confined masonry is computed 

using Eq. 5.3 (see Figure 5.9). 

max
max
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1

mc
mc

mc

mc S

mc

mc

f S

f

S












 
 
 
    
 

                                                                                           Eq. 5.3 

where, mcf  is the confined compressive stress corresponding to a particular strain mc , maxmcf   

is the confined masonry peak stress, maxmc   is the strain corresponding to the confined masonry 

peak stress, and S  is a parameter guiding the degradation slope.  

Computing maxmcf  , maxmc  , and S requires four RMBE’s properties, namely: (1) the 

compressive strength of the corresponding unreinforced unconfined masonry prism, prismf ; (2) the 
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aspect ratio of the RMBE (height to thickness), AR ; (3) the vertical reinforcement ratio, v ; and 

(4) the volumetric ratio of transverse reinforcement (hoops), l . It should be noted that prismf can 

be estimated experimentally or by using available numerical models (e.g. Hunt and Sherwood 

2017). These models are capable of predicting prismf from the characteristics of  masonry prism 

components (i.e. block, grout, mortar, prism pattern, and mortar bedding). Based on the model 

calibration, empirical best-fit equations have been generated for maxmcf  , maxmc  , and S , where two 

sets of empirical equations are proposed for each parameter. As such, the first equation is high 

order polynomial equation with a higher R-squared (coefficient of determination) value. On the 

other hand, the second equation is a simple linear regression relationship with R-squared value 

lower than their counterparts. Therefore, maxmcf  is calculated using Eqs. 5.4 and 5.7, maxmc  , is 

calculated using Eqs. 5.5 and 5.8, and S  is calculated using Eqs. 5.6 and 5.9, for polynomial 

regression and linear regression, respectively.  

 

Figure 5.9 Proposed empirical stress-strain model formulations 
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Polynomial regression: 

 
2 2 3 3 2 2

mc-max 1 2 1 2 1 2 1 2 1 2 1 2f = a+bx +c / x +dx +e / x + fx / x +gx +h / x +ix / x + jx / x   Eq. 5.4 

R2 = 94.3%  

a = 619.011, b = -328.425, c = -2727.636, d = -16.984, e = 1477.570, f = 1797.299, g = 

1.386, h = 1679.370, i = -1827.581, j = -0.1055. 

1 /prismx f AR , 2 lx   

  3 3 4 5

1 1

2 2

mc-max 1 2 2 2 2 2ε = a+bx cx +dx +ex fx gx +hx +ix / 10000                                 Eq. 5.5 

R2 = 92.8% 

a = -3769.319, b = 66.500, c = -15.247, d = 1.185, e = 10003.658, f = -10328.925, g = 

5103.408, h = -1204.992, and i = 108.509. 

1 /prismx f AR , 2 /l vx    

 
2 2 3 3 2 2

1 2 1 2 1 2 1 2 1 2 1 2S = a+bx +cx +dx +ex + fx x +gx +hx +ix x + jx x                   Eq. 5.6 

R2 = 86.3% 

a = 21.158, b = -18.376, c = 2.175, d = 5.788, e = 0.100, f = -1.952, g = -0.498, h = -0.062, i 

= 0.189, j = 0.095 

1 /prismx f AR , 2 /l vx   . 

Linear regression: 

 2 3 4mc-max 1f = ax +bx +cx +dx +e          Eq. 5.7 

R2 = 74.3%  

a = 1.530, b = -0.640, c = 1.775, d = 0.891, e = -5.329 

1 prismx f , 2x AR , 3 lx  , and 4 vx   

  2 3 4mc-max 1ε = ax +bx cx +dx +e / 10000                                  Eq. 5.8 

R2 = 91.5%  

a = 2.336, b = -7.139, c = 10.020, d = 1.691, e = 16.488 

1 prismx f , 2x AR , 3 lx  , and 4 vx   
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  2 3 41S = exp ax +bx cx +dx +e                                   Eq. 5.9 

R2 = 68.0%  

a = -0.014, b = -0.088, c = -0.302, d = 0.323, e = 1.575 

1 prismx f , 2x AR , 3 lx  , and 4 vx   

The complete compressive stress-strain relationship of the unconfined masonry is computed 

using Eqs. 5.10 to 5.12 (see Figure 5.9). 
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 

   for 0<εmu≤ εmu-max    Eq. 5.10 

max
max max

max

mu mu
mu mu mu

sp mu

f f f
 

 


 




 


 for εmu-max <εmu≤ εsp    Eq. 5.11 

0muf       for εmu> εsp     Eq. 5.12 

where, muf  is the unconfined compressive stress corresponding to specific strain mu ; maxmu   is the 

strain at peak stress of unconfined RMBE; and sp  is the strain corresponding to the end of face 

shell spalling. Similar to the confined model, two regression techniques were utilized; polynomial 

regression and linear regression. The maxmcf  , maxmc  , and S are calculated as discussed above. 

maxmu   is calculated by Eqs. 5.13 and 5.15 and sp is calculated by Eqs. 5.14 and 5.16, for 

polynomial regression and linear regression, respectively.  

Polynomial regression: 

 
3 2 3 4 5

2

2

mu-max 1 1 1 2 2 2 2ε =(a+b / x +c / x +d / x +e / x + f / x +g / x +h / x +i / x ) / 10000    Eq. 5.13 

R2 = 77.3% 

a = 1108.230, b = -14.055, c = -229.929, d = 415.095, e = -11954.400, f = 50626.963, g = -

102380.018, h = 98965.561, i = -36608.490. 

1 /prismx f AR , 2 /l vx    
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  1 2

2 2 3 3 2 2

sp 1 2 1 2 1 2 1 2 1 2ε = a+bx +cx +dx +ex + fx x +gx +hx +ix x + jx x / 10000     Eq. 5.14 

R2 = 95.1% 

a = 119.108, b = -36.576, c = -81.598, d = 9.136, e = 33.409, f = 5.676, g = -0.894, h = -

3.752,  i = -2.257, j = 0.908. 

1 /prismx f AR , 2 /l vx    

Linear regression: 

  max 2 3 4mu 1= exp ax +bx cx +dx +e / 10000                                  Eq. 5.15 

R2 = 65.5%  

a = 0.0052, b = -0.102, c = 0.0401, d = 0.298, e = 2.976 

1 prismx f , 2x AR , 3 lx  , and 4 vx   

  2 3 4sp 1= exp ax +bx cx +dx +e / 10000                                  Eq. 5.16 

R2 = 85.8%  

a = 0.026, b = -0.178, c = 0.041, d = 0.052, e = 3.848 

1 prismx f , 2x AR , 3 lx  , and 4 vx   

5.5.4 Model results  

Figures 5.10 to 5.13 show the comparison of the proposed empirical model with the 

experimental results. The model provides overall good results for both the ascending and 

descending branches of the compressive stress-strain curves. The model was able to simulate the 

most relevant characteristics of the RMBE stress-strain response, including the initial stiffness, 

peak load, strain corresponding to peak, stiffness and stress degradation at different strain levels. 

Table 5.5 shows the percentage of difference between the proposed model and the experimental 

data at maxf , max , and 75  using the two regression approaches. A difference range between the 

model predictions using polynomial regression and the experimental results of (-6 to +17%), (-8 to 

+19%), and (-20 to +9%), was computed for maxf , max , and 75 , respectively. Similarly, a 

difference range of (-10 to +21%), (-8 to +19%), and (-18 to +12%) was observed when using 

linear regression. Although this model fits the analyzed experimental data well, further calibration 

against larger set of experimental data, when available, is recommended to generalize the model.
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Figure 5.10 Model predictions versus the experimental results for RMBE built using #3 vertical bars 
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Figure 5.11 Model predictions versus the experimental results for RMBE built using #4 vertical bars 
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Figure 5.12 Model predictions versus the experimental results for RMBE built using 45 MPa grout 
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Figure 5.13 Model predictions versus the experimental results for RMBE built using different aspect ratios 
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Table 5.4: RMBE specimen details used for calibrating an empirical model 

RMBE 

# 
RMBE ID 

Grout 

Strength 

(MPa) 

Longitudinal 

Reinforcement 

Transverse 

Reinforcement 
Aspect 

ratio AR 
Number-

size of 

Bars 

ρv%   
Bar size 

(spacing mm) 
ρl%   

1 

 

 

BE15-R#3-D4/60-A* 15 4 - #3 0.79 D4 (60) 1.57 5.03 

2 BE15-R#3-D4/60-B* 15 4 - #3 0.79 D4 (60) 1.57 5.03 

3 BE15-R#3-D4/60-C* 15 4 - #3 0.79 D4 (60) 1.57 5.03 

4 BE15-R#3-D4/45-A* 15 4 - #3 0.79 D4 (45) 2.1 5.03 

5 BE15-R#3-D4/45-B* 15 4 - #3 0.79 D4 (45) 2.1 5.03 

6 BE15-R#3-D4/45-C* 15 4 - #3 0.79 D4 (45) 2.1 5.03 

7 BE15-R#3-D4/30-A* 15 4 - #3 0.79 D4 (30) 3.15 5.03 

8 BE15-R#3-D4/30-B* 15 4 - #3 0.79 D4 (30) 3.15 5.03 

9 BE15-R#3-D4/30-C* 15 4 - #3 0.79 D4 (30) 3.15 5.03 

10 BE15-R#4-D4/60-A* 15 4 - #4 1.40 D4 (60) 1.57 5.03 

11 BE15-R#4-D4/60-C* 15 4 - #4 1.40 D4 (60) 1.57 5.03 

12 BE15-R#4-D4/45-A* 15 4 - #4 1.40 D4 (45) 2.1 5.03 

13 BE15-R#4-D4/45-B* 15 4 - #4 1.40 D4 (45) 2.1 5.03 

14 BE15-R#4-D4/45-C* 15 4 - #4 1.40 D4 (45) 2.1 5.03 

15 BE15-R#4-D4/30-A* 15 4 - #4 1.40 D4 (30) 3.15 5.03 

16 BE15-R#4-D4/30-B* 15 4 - #4 1.40 D4 (30) 3.15 5.03 

17 BE45-R#3-D4/60-A* 45 4 - #3 0.79 D4 (60) 1.57 5.03 

18 BE45-R#3-D4/60-C* 45 4 - #3 0.79 D4 (60) 1.57 5.03 

19 BE45-R#4-D4/60-A* 45 4 - #4 1.40 D4 (60) 1.57 5.03 

20 BE45-R#4-D4/60-B* 45 4 - #4 1.40 D4 (60) 1.57 5.03 

21 BE45-R#4-D4/60-C* 45 4 - #4 1.40 D4 (60) 1.57 5.03 

22 BE-D4/60-AR2-A 15 4 - #3 0.79 D4 (60) 1.57 2.00 

23 BE-D4/60-AR2-B 15 4 - #3 0.79 D4 (60) 1.57 2.00 

24 BE-D4/60-AR2-C 15 4 - #3 0.79 D4 (60) 1.57 2.00 

25 BE-D4/60-AR3-A 15 4 - #3 0.79 D4 (60) 1.57 3.00 

26 BE-D4/60-AR3-B 15 4 - #3 0.79 D4 (60) 1.57 3.00 

27 BE-D4/60-AR3-C 15 4 - #3 0.79 D4 (60) 1.57 3.00 

28 BE-D4/30-AR2-A 15 4 - #3 0.79 D4 (30) 3.15 2.00 

29 BE-D4/30-AR2-B 15 4 - #3 0.79 D4 (30) 3.15 2.00 

30 BE-D4/30-AR2-C 15 4 - #3 0.79 D4 (30) 3.15 2.00 

31 BE-D4/30-AR3-A 15 4 - #3 0.79 D4 (30) 3.15 3.00 

32 BE-D4/30-AR3-B 15 4 - #3 0.79 D4 (30) 3.15 3.00 

33 BE-D4/30-AR3-C 15 4 - #3 0.79 D4 (30) 3.15 3.00 

*Tested by Obaidat et al. [6]  
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Table 5.5: Percentage of difference between the proposed model and the experimental results 

RMBE 

# 
RMBE ID 

Polynomial regression 

Difference % 

Linear regression 

Difference % 

maxf  max  75  maxf  max  75  

1 

 

 

BE15-R#3-D4/60-A -2.39 -2.50 -8.33 2.19 -8.24 -10.20 

2 BE15-R#3-D4/60-B -2.99 0.00 4.17 1.56 -5.88 2.04 

3 BE15-R#3-D4/60-C 0.90 6.25 -4.17 5.62 0.00 -6.12 

4 BE15-R#3-D4/45-A 4.29 0.00 -7.41 -1.20 5.88 0.00 

5 BE15-R#3-D4/45-B 11.51 1.11 -3.70 5.64 7.06 4.00 

6 BE15-R#3-D4/45-C 8.97 -2.78 -11.11 3.23 2.94 -4.00 

7 BE15-R#3-D4/30-A 11.13 8.33 7.41 20.95 8.33 11.54 

8 BE15-R#3-D4/30-B -1.88 5.56 0.00 6.80 5.56 3.85 

9 BE15-R#3-D4/30-C 9.00 19.44 3.70 18.64 19.44 7.69 

10 BE15-R#4-D4/60-A -2.29 -4.76 -6.67 -7.14 0.00 1.82 

11 BE15-R#4-D4/60-C 2.94 0.00 -13.33 -2.17 5.00 -5.45 

12 BE15-R#4-D4/45-A 0.07 7.00 13.21 -7.26 7.00 5.26 

13 BE15-R#4-D4/45-B 16.58 0.00 9.43 8.05 0.00 1.75 

14 BE15-R#4-D4/45-C -2.37 5.00 5.66 -9.51 5.00 -1.75 

15 BE15-R#4-D4/30-A 10.39 10.00 16.98 12.27 4.76 8.77 

16 BE15-R#4-D4/30-B -0.67 5.00 13.21 1.02 0.00 5.26 

17 BE45-R#3-D4/60-A 6.91 6.47 -17.86 -3.78 6.47 -17.86 

18 BE45-R#3-D4/60-C 1.30 10.00 3.57 -8.83 10.00 3.57 

19 BE45-R#4-D4/60-A -6.20 0.00 3.23 -0.09 0.00 3.23 

20 BE45-R#4-D4/60-B -2.79 4.76 0.00 3.53 4.76 0.00 

21 BE45-R#4-D4/60-C 1.22 0.00 -6.45 7.81 0.00 -6.45 

22 BE-D4/60-AR2-A -0.67 4.17 -13.33 10.74 4.17 -11.36 

23 BE-D4/60-AR2-B 6.79 0.00 -6.67 19.05 0.00 -4.55 

24 BE-D4/60-AR2-C 0.79 -8.33 0.00 12.36 -8.33 2.27 

25 BE-D4/60-AR3-A 4.00 -12.50 2.70 -5.11 5.00 5.56 

26 BE-D4/60-AR3-B 6.88 -16.67 -13.51 -2.48 0.00 -11.11 

27 BE-D4/60-AR3-C 16.80 -8.33 -8.11 6.57 10.00 -5.56 

28 BE-D4/30-AR2-A -2.08 0.00 -9.28 -3.80 4.00 -2.22 

29 BE-D4/30-AR2-B 8.93 -7.69 -17.53 7.02 -4.00 -11.11 

30 BE-D4/30-AR2-C 1.07 6.15 -19.59 -0.70 10.40 -13.33 

31 BE-D4/30-AR3-A 0.53 4.76 9.38 -5.09 0.00 -5.41 

32 BE-D4/30-AR3-B -3.29 9.52 6.25 -8.70 4.55 -8.11 

33 BE-D4/30-AR3-C 3.62 9.52 3.12 -2.17 4.55 -10.81 
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5.5.5 Model Limitations 

This study presents an empirical stress-strain model for RMBEs. The proposed model takes 

into account the effect of different grout strength, aspect ratio, vertical reinforcement ratio and the 

volumetric ratio of transversal reinforcement. Moreover, the model can predict the stress-strain 

response of RMBEs having different vertical reinforcement area and different confined core 

dimensions. Therefore, this model presents an effective tool that can be utilized in various 

numerical analysis packages. However, this model, similar to any empirical model, has limitations 

and still open for further enhancements. Considering the limited available experimental data, this 

model is calibrated with limited data of RMBEs. The considered experimental data consisted of 

half-scale RMBEs built using C-shaped concrete blocks. The model predictions are reliable within 

the range of each calibrated parameter, AR (2–5), fg (15–45 MPa), vρ  (0.79–1.4), and lρ (1.53–

3.11). It should be noted that two regression techniques were implemented in this model. The 

polynomial regression is well suited for samples having similar properties to the calibrated 

RMBEs, however, it could result in out of range predictions for other RMBEs. On the other hand, 

the linear regression equations are applicable for a wider range of RMBEs, however, with a lower 

coefficient of determination. This model presents an essential tool to engineers that can predict the 

compressive stress-strain response of confined and unconfined masonry zones, which will result in 

a better prediction of RM shear walls with boundary elements seismic response. 
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5.6 Conclusions 

This study presents the second phase of a research project conducted at Concordia University 

aiming at investigating the axial stress-strain response of reinforced masonry boundary elements 

(RMBEs). The first phase investigated, experimentally, the effect of changing grout strength, 

vertical and horizontal reinforcement ratio on the stress-strain response of thirty RMBEs and 

unreinforced masonry boundary elements (BEs) (Obaidat et al. [6]). Moreover, the first phase 

tested the capability of existing stress-strain models in predicting the stress-strain response of 

RMBEs where none of the examined models was capable of capturing the overall response of the 

RMBEs. On the other hand, the second phase of this project, which is the focus of the current 

study, investigated the effect of changing the RMBE’s height to thickness ratio (i.e. aspect ratio) 

on the stress-strain behaviour considering different confinement ratios by testing seventeen 

RMBEs and unreinforced BEs. Finally, this study was concluded by presenting a stress-strain 

empirical model calibrated using the experimental data of the two phases. 

The current study investigated the effect of three different aspect (AR) ratios and two 

confinement ratios of transverse reinforcement (i.e. by changing the hoop spacing) on the 

compression stress-strain behaviour of RMBE. The results showed that increasing the confinement 

ratio of transverse reinforcement and decreasing the AR enhanced the RMBE peak stress. On 

average, as the AR decreased from 5 to 2, the peak stress increased by 20%, 28%, and 2% for 

unreinforced BEs, RMBEs having 60 and 30 mm hoops spacing, respectively. On the other hand, 

as the confinement ratio of transverse reinforcement increased from 0.022 (i.e. 60 mm hoops 

spacing) to 0.062 (i.e. 30 mm hoops spacing), the peak stress increased by 2%, 12%, and 29% for 

RMBEs with AR of 2, 3 and 5, respectively. It was also observed that decreasing the aspect ratio 

did not affect the RMBE peak stress in specimens having highest confinement ratio of transverse 

reinforcement (i.e. 30 mm hoops spacing). 

 In general, decreasing the hoop spacing and/or the AR exhibited an increase in the 

corresponding RMBE post-peak strain. The strain ductility, µ50%, increased as the aspect ratio 

decreased from 5 to 2 by 46%, and 69% for unreinforced BEs and RMBEs having 30 mm hoops 

spacing, respectively. Moreover, the strain ductility, µ50%, increased by 130%, 131%, and 19%, as 

the confinement ratio of transverse reinforcement increased from 0.022 to 0.062, for RMBEs with 

aspect ratio of 2, 3 and 5, respectively. 



127 

 

An empirical stress-strain model was proposed for half-scale C-shape RMBE simulating the end 

zones of reinforced masonry shear walls with BEs. The proposed model considered different 

parameters, namely, aspect ratio, the volumetric ratio of transverse reinforcement, the vertical 

reinforcement ratio, and the grout strength. This model was calibrated with the experimental data 

of thirty-three RMBEs. Two regression approaches were implemented to calibrate this model; 

polynomial and simple linear regression. The model results fitted well with the experimental 

stress-strain relationships. The proposed model was capable of capturing the descending part of the 

compressive stress-strain curve including the sudden stress drop after the peak stress due to the 

face shell spalling. A maximum difference varies from -20 to +21% was observed when comparing 

the model predictions with the experimental results at RMBE peak stress ( maxf ), strain at the peak 

stress ( max ) and strain at 75% of the peak stress ( 75 ). Although this model is still open for more 

enhancement considering more experimental results, it presents a simple and effective tool that can 

be used in different numerical analyses. 
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Chapter 6 

Summary, Conclusions, and Recommendations for Future Work  

6.1 Summary 

The purpose of the current research project was to investigate the compression stress-strain 

behaviour of reinforced C-shaped masonry boundary elements (RMBE) considering the effects of 

the following parameters: 

1- Vertical reinforcement ratio, 𝜌𝐿 

2- Volumetric ratio of transverse reinforcement, 𝜌𝑙 

3- Grout strength, 𝑓𝑔 

4- Aspect ratio of boundary elements (height to thickness), h/t. 

In addition to the aforementioned objective, this study presents an empirical analytical 

compression stress-strain model, capable of computing the reinforced C-shaped RMBE axial 

response considering the above parameters.  

This dissertation consists of experimental, numerical, and analytical work. The experimental 

program included a total of 16 full-scale RMBE with square sections of 390 mm x 390 mm (length 

x width) and 47 half-scale RMBE with square sections of 190 mm x 190 mm (length x width). 

Each specimen was tested under a concentric loading up to failure. The experimental test results 

focused on the: stress-strain relationships, ultimate stress, mode of failure and damage propagation, 

axial strains (i.e., the strain corresponding to peak and post-peak behaviour), and ductility. The 

numerical work was performed on the full-scale RMBEs. The nonlinear finite element software 

package, ABAQUS, was employed for the numerical simulation of the compression stress-strain 

behaviour of the tested RMBEs. The FE model was able to capture key RMBE response including; 

ultimate stress, and post peak behavior. Finally, this study concludes by presenting a compressive 

stress-strain analytical model capable of predicting the RMBE overall response by computing the 

stress-strain relationship of the confined and unconfined zones. The model formulations were 

calibrated against thirty-three tested RMBE and consider the effect of: the vertical reinforcement 

ratio, the volumetric ratio of transverse reinforcement, grout strength, and the aspect ratio of a 

RMBE (height to thickness). This model present a simple, yet reliable, tool that can be 

implemented in different analysis packages. 



129 

 

6.2 Conclusions 

To predict the deformation and ductility capacities of a RM wall integrated with boundary 

elements, research of the boundary element is essential. This study presents observed compressive 

stress-strain behaviours for a total of 16 full-scale RMBEs and 47 half-scale RMBEs. They 

simulated the high stress zones of RMSWs. The influence of changing hoop spacing, vertical 

reinforcement ratio, grout compressive strength, and aspect ratio (height to thickness) were 

investigated. This research richens the knowledge in this study area by providing experimental 

evidence of the influences the previously mentioned parameters on the compressive stress-strain 

response. The following points were concluded based on the experimental, numerical, and 

empirical results:  

6.2.1 Conclusions Based on the Experimental Results 

This section presents the conclusions drawn from the experimental results considering each 

investigated parameter. 

Transverse reinforcement ratio 

 As the confinement ratio of transverse reinforcement increases, the strength of the RMBE 

increases. The full-scale C-RMBE’s results showed that the confinement ratios of 0.01, 0.02, 

0.028, and 0.057, increased the peak stress excluding the vertical reinforcement’s 

contribution by 8.1%, 9.2%, 10.8%, and 13.81%, respectively, compared to unconfined 

specimens. On the other hand, in the half-scale RMBE with an aspect ratio, AR of 5, which 

were reinforced with #3 bars, the confinement ratios 0.022, 0.034, and 0.062 increased the 

peak stress, excluding the vertical reinforcement’s contribution by 1%, 4%, and 37%, 

respectively, upon the comparison to unconfined specimens. However, the peak stress 

increased by 1%, 9%, and 33% for the half-scaled RMBEs with an AR of 5 which reinforced 

with #4 bars. On other hand, the strength of the RMBE for samples BE-D4/60-AR2 and BE-

D4/60-AR3 increased by 22.77% and 0.5% compared to BE-D4/60-AR5 strength, 

respectively. Therefore, Based on the previous conclusion, it was derived that the RMBE’s 

peak stress did not increase proportionally to the confinement ratio. The enhancement in the 

RMBE peak stress was only noticeable for specimens that had a 30 mm hoop spacing. 
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 The confinement reinforcement ratio affected the post peak behaviour significantly and 

produced a post-peak stress-strain curve that was less steep. In the full-scale specimens, 

using confinement ratios of 0.01, 0.02, 0.028, and 0.057 increased the strains, at 75% of the 

peak stress, by 29%, 37.5%, 58.4%, and 83% respectively, compared to the unreinforced 

units. However, the strain, at 50% gain, increased by 45%, 100%, 122.5%, and 232%, 

respectively, higher than unreinforced specimens. On other hand, the half-scale specimens 

confined by 0.022, 0.034, and 0.062confinement reinforcement ratios and reinforced with 

#3 bars exhibited an increase in strain, at 75% of peak stress, of  11%, 19%, and 33%, 

respectively, compared to unreinforced specimens. However, the strain, at 50% of peak 

stress, increased by 103, 130, and 200%, respectively, compared to unreinforced specimens. 

The half-scale specimens confined by 0.022, 0.034, and 0.062 confinement reinforcement 

ratios and reinforced with #4 bars, experienced an increase in strain, at 75% of peak stress, 

of 30%, 38%, and 48%, respectively, compared to unreinforced specimens. Moreover, the 

strain at 50% of peak stress increased by 147%, 150%, and 220% when increasing the 

corresponding confinement reinforcement ratios from 0.022 to 0.034 to .062, respectively. 

On other hand, the specimens of BE-D4/60-AR2 and BE-D4/30-AR2 exhibited an increase 

in the strain at 50% of peak stress of 61.65% and 306.19%, respectively, compared to BE-0-

AR2. However, the specimens of BE-D4/60-AR3 and BE-D4/30-AR3 exhibited an increase 

in the strain at 50% of peak stress of 115.74% and 436.44%, respectively compared to BE-

0-AR3.  

Vertical reinforcement ratio 

 The presence of vertical reinforcement enhanced the strength and, therefore, less damage 

was exhibited for such specimens, contrary to those that were unreinforced.  

 After removing the vertical reinforcement contribution to the RMBE strength, the RMBE 

specimens vertically reinforced with #3 bars experienced a strength increase of 1%, 4%, and 

37% with corresponding hoop spacing of 30 mm, 45 mm, and 60 mm. Whereas, the #4 

vertically reinforced specimen revealed a strength increase of 1%, 9%, and 33% for the 

corresponding hoop spacing of 30 mm, 45 mm, and 60 mm. Therefore, the increase in the 

longitudinal reinforcement had no effect on the strength of the confined core, however it 

increased the capacity of the RMBE in proportion to the added vertical steel area. 
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 Decreasing hoops from 60 to 45 to 30mm for RMBE specimens having #4 vertical rebar, 

resulted in a corresponding increase in the RMBE strain, at 75% of peak stress of 9.7%, 

13.8%, and 15.5%, respectively, compared to the RMBE specimens with #3 vertical bars. 

Moreover, the increases in the strain at 50% of peak stress, were 27.5%, 28.2%, and 18.7%, 

respectively, for the RMBE specimens with #4 vertical bars, with decreasing hoops from 60 

to 45 to 30mm, compared to the RMBE specimens with #3 vertical bars. An increase in strain 

capacity of over 25% was revealed for the specimens reinforced with #4 vertical bars, as 

compared to those reinforced with #3 bars.  

 The concrete-reinforcement strain compatibility was achieved up to approximately 0.2% of 

axial strain, which corresponds to the RMBE peak stress. However, following the RMBE 

peak stress, the axial strain, computed from the LVDT, was not similar to the strain in the 

longitudinal bars. The longitudinal steel bars yielded after the peak stress was reached (i.e., 

at the stage of block face shell spalling). Buckling of the longitudinal reinforcement was 

observed in RMBE specimens, with widely spaced hoops, after 50% of peak stress. 

Grout strength 

 As the grout strength increases, the RMBE peak stress increased. The unreinforced 

specimens, confined specimens reinforced, with #3, and confined specimens reinforced with 

#4 that were constructed with high strength grout of 45 MPa exhibited an increase in peak 

stress by 48%, 27%, and 49%, respectively compared to those RMBE specimens constructed 

with normal strength grout of 15 MPa. On another hand, the strain at 75% of peak stress 

increased in the RMBE specimens constructed with grout 45 MPa strength and reinforced 

with #3 and #4 about 13% and 21%, respectively, compared to those specimens constructed 

with grout 15 MPa. However, the RMBE specimens constructed with grout 45 MPa strength 

and reinforced with #3 and #4 exhibited increase in strain at 50% of peak stress about 14% 

and 55%, respectively.   

 Based on the grout area, the RMBE capacity did not increase proportionally to the grout 

strength.  

 The effect of the grout strength was more noticeable on the peak and post-peak behaviour. 
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Aspect ratio 

 As the aspect ratio decreases, the peak stress, strain at peak stress, and post peak strain 

increases, however, the sudden drop following the peak decreases, 

 By comparing the specimens having AR of 5 to those of 2 and 3, an increase in RMBE 

strength of 23%, and 0.5%, respectively was observed. On the other hand, the strain at peak 

stress increased by 34% and 19.5%, respectively.  

 Furthermore, decreasing the height to thickness ratio from AR 5 to 2 and 3, exhibited a strain 

increase, at 75% of peak stress, of 55% and 28%, respectively. However, the strain, at 50% 

of peak stress, increased by 13% and 6%, respectively. 

 Therefore decreasing the aspect ratio from 5 to 3 had less effect on the RMBE overall stress-

strain response. This was not the case for AR 2 which exhibited more gradual post-peak 

stress-strain descending curves compared to the specimens having AR of 5. 

6.2.2 Conclusions based on the Numerical model  

 The compression stress-strain behaviour of the tested C-RMBEs was numerically simulated 

with the nonlinear finite element software package, ABAQUS. The damage plasticity model 

from ABAQUS was applied in this study for simulating the behaviour of grout, mortar, and 

masonry block. The stress-strain relationship proposed by Saenz’s was used to model the 

stress-strain behaviours of the grout and the concrete blocks under uniaxial compression. 

The plastic model from the ABAQUS software was applied to simulate the reinforcement 

stress-strain behaviour. The proposed FEM procedure provided a respectable approximation 

for the compression stress-strain behaviour in the elastic and inelastic ranges. In addition, 

the proposed FEM procedure expressed the influence of the confinement ratio on the 

compression response of the C-RMBEs. 

6.2.3 Conclusions based on the Empirical compressive stress-strain model 

 Based on the experimental data an empirical stress-strain model is proposed for the confined 

and unconfined masonry zones considering different grout strength, aspect ratio, vertical, 

and transversal reinforcement ratios. The model was calibrated against the experimental 

results of thirty-three RMBE. The RMBE stress-strain relationship is computed by adding 
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the unconfined masonry, confined masonry and the vertical reinforcement contribution. 

Consequently, the model provide a flexibility in changing the vertical bar size and the core 

area. Therefore this model can be utilized in different analysis packages. 

 The model was calibrated with RMBE that have varying grout strength (15-45 MPa), hoops 

spacing (30-60 mm), Aspect ratio (2-5), vertical reinforcement ratio (0.8-1.4) and transversal 

reinforcement ratio (1.53-3.057). Therefore, this model cover a wide range of different 

parameters. The proposed model captures the descending part of the compressive stress-

strain curve including the sudden stress drop after the peak stress due to the face shell 

spalling. It should be noted, that this model is an emperical model caliberated over a limited 

number of specimens. Therefore this model is open for more enhancement by considering 

more specimens and more parameters. 

6.3 Recommendations for Future Research 

The investigation of the compression stress-strain behaviour of unconfined and confined 

masonry boundary elements was the main objective of this study. The conclusions of this study 

were limited to the parameters that were being tested. However, in order to further expand the 

knowledge in this field, other parameters may be considered. Therefore, the following is a list of 

some recommendations for future research. 

 Additional experimental work on boundary elements constructed with special masonry blocks 

that have different compressive strengths. This can be done to eliminate the sudden drop in 

strength and enhance the compression behaviour of boundary elements. 

 The results of the masonry boundary elements are limited to square cross-section. 

Consequently, it is recommended to perform experimental tests on boundary elements with 

rectangular cross-sections.  

 Each test was performed under concentric loading, therefore, experimental tests for the 

response of masonry boundary elements subjected to different loads, such as eccentric 

compression and cyclic loads, needs to be investigated.  

 Validation of the proposed analytical model can be completed with additional testing of 

reinforced boundary elements. 
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 The arrangement of vertical reinforcement and the configuration of the hoops can to be 

considered in future research.  

 It is recommended to test full-scale shear walls, with differing configurations of boundary 

elements, to investigate the effect of changing specific parameters in the RMBE on the wall 

response.  

 Extending the experimental and numerical methodology developed in this study to investigate 

the effects of design variables, such as the compressive strength of the constituent materials.  

 Finally, this dissertation presents a wealth of experimental data that can be used to 

calibrate/validate numerical and analytical models. 
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Appendix A 

Experimental Work 

A.1 Construction of C-Shape Reinforced Masonry Boundary Element 

The C-shape reinforced masonry boundary elements (RMBEs) were constructed in the 

structural laboratory of the Concordia University. First, all the vertical reinforcement bars and 

hoops including cutting and bending were prepared. Then, all the masonry block units were cut 

into C-shapes. Followed by preparing the reinforcement cages for all RMBE specimens. All the 

RMBE specimens were constructed in two stages: 1) the footing, and 2) the masonry boundary 

elements. 

A.1.1 Reinforced concrete footing 

All the tested units of RMBEs were constructed on a RC footing. For full-scale RMBE, 

fourteen RC footing with dimensions of 400 mm x 400 mm x 250 mm (length x width x height) 

were constructed with a compressive strength of 35 MPa (see Figures A.1). Moreover, for the 

half-scale RMBE specimens, forty-two reinforced footing concrete with dimensions of 200 mm 

x 200 mm x 250 mm (length x width x height) were constructed with a compressive strength of 

84 MPa. For the full-scale RMBE specimens, the concrete footing was reinforced longitudinally 

with 4-20M and transversally by hoops with 4-10M. However, for the half-scale RMBE 

specimens, the concrete footing was reinforced longitudinally either with 4-#3 or 4-#4 or 

transversally by hoops with 4-#4 (Figure A.2). After assembling the reinforcement cage, each six 

or eight RMBE were placed in a timber form to pour the bottom footing as shown in Figure A.3. 

RC bottom footing was poured prior the construction of RMBE specimens. The concrete was 

mixed at the Concordia University’s structures laboratory at the. After pouring the high strength 

concrete in the lower footing, the RMBE were cured for at least one week (see Figure A.4). 
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Figure A.1 Bottom RC footing formwork for full-scale RMBE 
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Figure A.2 Cross section with reinforcement layout of half-scale RC footing 
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Figure A.3 Bottom RC footing formwork 

 

 

Figure A.4 Casting of RC footing 
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A.1.2 RMBE specimens 

All full-scale and half scale fully grouted RMBE specimens were constructed at the 

structural laboratory of Concordia University. All the unconfined and confined C-RMBEs were 

constructed by professionally certified masons. Each full-scale specimen consists of five block 

courses. Whereas, the half-scale specimens consisted of four, six, and ten block courses placed 

on a concrete footing. Each course of the RMBE was composed of two block units. The blocks 

were joined together in full scale and half scale with 10 mm and 5 mm type-S mortar joints, 

respectively (see Figures A.5 to A.7). The construction of RMBE started off by assembling the 

reinforcement cage for each specimen (Figure A.8). The reinforcement cage consisted of four 

reinforcement bars (20M or #3 or #4), and deformed bars hoops (D4 or 10M, or 15M) at 

different spacings. The hoops size was increased to #4 (129 mm2) in the upper and lower transfer 

footings to avoid failure in the footing. The vertical reinforcement bars were extended 

continuously, over the height of the RMBE specimen, without splices from the base of the 

bottom footing to the top footing. After that, each six RMBE specimens were inserted in a 

wooden formwork to pour the bottom footing (Figure A.9 and A.10). After pouring RC footing, 

the RMBE specimens were stored two weeks for the RC footing to cure (Figure A.11). Figures 

A.12 to A.15 show the reinforcemnt cage for the RMBE specimens.  Then, the strain gauges 

were installed on the vertical reinforcement bars (Figure A.16). Followed by the construction of 

the RMBE specimens process (Figure A.17), the RMBE specimens were strapping before 

grouting to avoid any cracks in mortar head joints. (Figure A.18). The full-scale RMBE 

specimens were grouted with coarse grout and the half scale RMBE specimens with fine grout 

(Figure A.19). Finally, top footing was constructed on the RMBE and poured with high strength 

concrete (Figure A.20). Figures A.28 to A30 show most of Full-scale and half-scale RMBE  

specimens during constructions. 
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Figure A.5 Full-scale RMBE with five courses 

 

Figure A.6 Half scale RMBE with ten courses 
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Figure A.7 Half scale RMBE with six courses 

 

 

Figure A.8 Assemblage sequence of reinforcement steel cage for RMBE specimens 
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Figure A.9 Inserting the RMBE specimens in the timber 

 

Figure A.10 Pouring the RC footing of the RMBE specimens in the timber 
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Figure A.11 Curing of the RC footing of the RMBE specimens 

 

Figure A.12 RMBE specimens with ten courses, vertically reinforced with #3, and confined with 

D4/60, D4/45, and D$/30 
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Figure A.13 RMBE specimens with ten courses, vertically reinforced with #4, and confined with 

D4/60, D4/45, and D$/30 

 

 
Figure A.14 RMBE specimens with six courses, vertically reinforced with #3, and confined with 

D4/60 and D$/30 



150 
 

 

Figure A.15 RMBE specimens with four courses, vertically reinforced with #3, and confined 

with D4/60 and D$/30 

 

 

Figure A.16 Installation of the strain gauges on the vertical reinforcement bars 
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Figure A.17 Building blocks in the RMBE specimens 
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Figure A.18 Strapping of the RMBE specimens 

 

Figure A.19 Grouting of the RMBE specimens 
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Figure A.20 Construction of the top RC footing 

A.2 Material Properties 

A.2.1 Masonry block units 

All RMBE specimens were constructed with C-shape block. The block units were 

manufactured as a whole rectangular unit with a dimension of 390 mm x 190 mm x 90 mm 

(length x width x depth) as shown in Figure A.21. The block units were cut with saw to obtain C-

shape block unit with a dimension of 190 mm x 92.5 mm x 90 mm (length x width x height) as 

shown in Figure A.22 and A.23. A small groove was made in some block units to place the 

embedded cross bars that mount the LVDTs (Figure A.24). 
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Figure A.21 Whole rectangular half-scale concrete masonry block 

 

 

 

Figure A.22 Cut sequence of rectangular concrete masonry block 
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Figure A.23 Half scale C-shaped concrete masonry block unit 

 

 

 

Figure A.24 Grooves in the masonry block units 
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A.2.2 Mortar 

Type S mortar was used to join different courses with an average thickness of 5 mm and 10 

mm in the half-scale and full-scale RMBE specimens, respectively. The mortar moulded into 50 

mm cubes as shown in Figure A.25. 

 

Figure A.25 Moulding of mortar cubes 

A.2.3 Grout 

Coarse aggregate was used in the construction of full-scale RMBE specimens. However, 

fine grout was used in the construction of half-scale RMBE specimens because the fine grout can 

flow between the steel reinforcement cage in half scale block unit to encase the reinforcement 

without segregation. Some of the C-RMBE specimens were grouted and some of them are not 

grouted. Two fine grout strengths, of 45 MPa and 15 MPa, were used in this experimental work. 

The 45 MPa fine grout was mixed in the structural laboratory at Concordia University. Table A.1 

presents the mix proportions used in the 45 MPa grout mix. For the 15 MPa fine grout, pre-

mixed bags of grout were used. Each pre-bag fine grout weighed 30 kg and was mixed in 

structure lab at Concordia University by adding 5.4 liters to each bag. The slump test of the fine 

grout was conducted and the average slump for 45 MPa and 15 MPa were 210 mm and 290 mm, 
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respectively (see Figure A.26). The C-RMBE specimens were strapped to avoid the grout 

blowout since the stacking bond was used which provides a weeker mortar joint. The strapping 

was done using two 2 x 4 wood pieces and two straps one at the top half and the other at the 

bottom half as shown in Figure A.14. 

 

Table A.1 Proportions of 45 MPa fine aggregate 

Constituent 

material 
Cement Sand Water 

Total 

kg/batch 40 kg 104 kg 20 kg 164 kg 

Part by weight 1.00 2.6 0.5 4.1 

 

 

Figure A.26 Slump test for 15 MPa fine grout 

 

A.2.4 Steel reinforcement  

The longitudinal and horizontal reinforcement used in the construction of the half-scale 

RMBE specimens were scaled to represent the rebars used in full-scale RM construction. For 

vertical reinforcement, the deformed steel rebar #3, #4, and 20M with nominal diameters of 

9.525 mm, 12.7 mm, and 19.5 mm, respectively, were used. On other hand, the deformed wire 

and a deformed bar of D4, 10M, and 15M were used for horizontal reinforcement (hoops) with 

nominal diameters of 5.73 mm, 11.3 mm, and 16 mm, respectively. Figure A.27 shows the 

details of D4 hoops which made at the structures laboratory at Concordia University. All the 
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reinforcement rebars of each diameter were ordered from the same batch at the same time. Quasi-

static tension tests were conducted on five 600-mm-long tensile specimens for each diameter to 

determine the yield strength of the steel reinforcement used in the construction of the RMBE. 

 

Figure A.27 Details of a D4 hoop 

 

Figure A.28 Full-scale specimens during construction 
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Figure A.29 Half-scale specimens during construction 

 

Figure A.30 Half-scale specimens during construction 
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Appendix B 

Testing of RMBE Specimens 

B.1 Instrumentation 

The RMBEs were instrumented with Linear Variable Differential Transducers (LVDTs), 

strain gauges, and load cells.  

B.1.1 Axial displacement measurement 

The axial displacement of the RMBE specimens was measured using LVDTs. Four LVDTs 

were attached (screwed) at the centerline of each side of the specimen. These LVDTs gauge 

length went from the lower edge of the top footing to the upper edge of the bottom footing 

(Figure B.1). The LVDTs used to measure relative displacement between the lower edge of the 

top footing to the upper edge of the bottom footing had a stroke of 50 mm and range from +/- 

0.15% to +/- 0.25% of stroke. However, the LVDTs used to measure the axial displacement in 

the middle of the RMBE specimen had a stroke of 25 mm and range from +/- 0.15% to +/- 

0.25% of the stroke.  

B.1.2 Longitudinal strain in vertical reinforcement  

One specimen of each configuration was instrumented with strain gauges. Four strain gauges 

were installed on the vertical reinforcement to measure longitudinal strain. The strain gauges had 

an effective gauge length of 5 mm. Figure B.2 illustrates the locations of the strain gauges on the 

vertical reinforcement bars.   

B.1.3 Load measurement  

A newly upgraded 3000 kN servo controlled actuator was used to test the RMBE under 

constant displacement loading rate throughout the loading history, until failure occurred. The 

corresponding loads were measured with a high precision load cell connected to a control panel 

that attached to the Vishay data acquisition system. The readings of the LVDTs and strain gauge 

results versus the axial load values were recorded to the computer’s hard disk. 



161 
 

LVDTs

G
a
u

g
e 

le
n

g
th

BE15-R#3-D4/30

G
a
u

g
e 

le
n

g
th

#
1

G
a
u

g
e 

le
n

g
th

#
2

G
a
u

g
e 

le
n

g
th

#
1

G
a
u

g
e 

le
n

g
th

#
2

a) b) c)
 

Figure B.1 Linear Variable Differential Transducers (LVDTs) on RMBE specimen with one 

gauge length equal to the height of the specimen 
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Figure B.2 Strain gauges on vertical reinforcement bars of RMBE specimen 
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B.2 Placing of RMBE Specimen 

The test RMBE specimen was positioned in the testing machine using clamps and a forklift 

as shown in Figure B.3. 

 

Figure B.3 Transport and positioning of RMBE specimen 
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Appendix C 

Test Results 

C.1 Damage at the RMBE 

The observed stress-strain relationship and damage pattern of each configuration of the 

RMBE specimens at peak stress, 75% and 50% of peak stress is illustrated in Figure C.1 to 

Figure C.28.  Figure C.29 shows the appearance of all RMBE specimens after testing. 

C.1.1 BE15-R#3-D4/60 configuration 

a) b) c)
 

Figure C.1 BE15-R#3-D4/60 damage pattern; a) at peak stress; b) at 75% of peak stress; and c) 

at 50% of peak stress 
 

 

 

 

 

 



164 
 

0

2

4

6

8

10

12

14

16

0.00% 0.20% 0.40% 0.60% 0.80% 1.00% 1.20% 1.40%

S
tr

es
s 

(M
P

a
)

Strain

BE15-R#3-D4/60-A

BE15-R#3-D4/60-B

BE15-R#3-D4/60-C

 

Figure C.2 Observed stress-strain relationship for the BE15-R#3-D4/60  
 

C.1.2 BE15-R#3-D4/45 configuration 

a) b) c)
 

Figure C.3 BE15-R#3-D4/45 damage pattern; a) at peak stress; b) at 75% of peak stress; and c) 

at 50% of peak stress 
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Figure C.4 Observed stress-strain relationship for the BE15-R#3-D4/45 

 

C.1.3 BE15-R#3-D4/30 configuration 

a) b) c)
 

Figure C.5 BE15-R#3-D4/30 damage pattern; a) at peak stress; b) at 75% of peak stress; and c) 

at 50% of peak stress 
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Figure C.6 Observed stress-strain relationship for the BE15-R#3-D4/30 
 

C.1.4 BE15-R#4-D4/60 configuration 

a) b) c)
 

Figure C.7 BE15-R#4-D4/60 damage pattern; a) at peak stress; b) at 75% of peak stress; and c) 

at 50% of peak stress 
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Figure C.8 Observed stress-strain relationship for the BE15-R#4-D4/60 

 

 

C.1.5 BE15-R#4-D4/45 configuration 

a) b) c)
 

Figure C.9 BE15-R#4-D4/45 damage pattern; a) at peak stress; b) at 75% of peak stress; and c) 

at 50% of peak stress 
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Figure C.10 Observed stress-strain relationship for the BE15-R#4-D4/45 

 

 

C.1.6 BE15-R#4-D4/30 configuration 

a) b) c)
 

Figure C.11 BE15-R#4-D4/30 damage pattern; a) at peak stress; b) at 75% of peak stress; and c) 

at 50% of peak stress 
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Figure C.12 Observed stress-strain relationship for the BE15-R#4-D4/30 

 

C.1.7 BE45-R#3-D4/60 configuration 

a) b) c)
 

Figure C.13 BE45-R#3-D4/60 damage pattern; a) at peak stress; b) at 75% of peak stress; and c) 

at 50% of peak stress 
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Figure C.14 Observed stress-strain relationship for the BE45-R#3-D4/60 

 

 

C.1.8 BE45-R#4-D4/60 configuration 

a) b) c)
 

Figure C.15 BE45-R#4-D4/60 damage pattern; a) at peak stress; b) at 75% of peak stress; and c) 

at 50% of peak stress 
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Figure C.16 Observed stress-strain relationship for the BE45-R#4-D4/60 

 

C.1.9 BE-D4/60-AR2 configuration 

a) b) c)
 

Figure C.17 BE-D4/60-AR2 damage pattern; a) at peak stress; b) at 75% of peak stress; and c) at 

50% of peak stress 
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Figure C.18 Observed stress-strain relationship for the BE-D4/60-AR2 

 

 

C.1.10 BE-D4/30-AR2 configuration 

a) b) c)
 

Figure C.19 BE-D4/30-AR2 damage pattern; a) at peak stress; b) at 75% of peak stress; and c) at 

50% of peak stress 
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Figure C.20 Observed stress-strain relationship for the BE-D4/30-AR2 

 

C.1.11 BE-D4/60-AR3 configuration 

a) b) c)
 

Figure C.21 BE-D4/60-AR3 damage pattern; a) at peak stress; b) at 75% of peak stress; and c) at 

50% of peak stress 
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Figure C.22 Observed stress-strain relationship for the BE-D4/60-AR3 

 

C.1.12 BE-D4/30-AR3 configuration 

a) b) c)

Figure C.23 BE-D4/30-AR3 damage pattern; a) at peak stress; b) at 75% of peak stress; and c) at 

50% of peak stress 
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Figure C.24 Observed stress-strain relationship for the BE-D4/30-AR3 

 

C.1.13 All RMBE specimens after testing 

 

Figure C.25 Appearance of all RMBE specimens after testing
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Figure C.26 Observed stress-stress relationship and the damage propagation of the RMBE specimen at the peak stress 
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Figure C.27 Observed stress-stress relationship and the damage propagation of the RMBE specimen at the 75% of peak stress 
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Figure C.28 Observed stress-stress relationship and the damage propagation of the RMBE specimen at the 50% of peak stress 
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Figure C.29 Observed stress-stress relationship and the damage propagation of the RMBE specimen at the end of the test
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C.2 Linear Regression Relationship 

From the regression analysis presented in Figure 4.12, the observed trend representing the 

line of the value of fmax-c compared to the fmax-un based on the experimental average, 95% of the 

data above it, which is determined by subtracting 1.645 times the standard deviation from the 

experimental average. The trend line is given by the Eqs. C.1 to C.12 and it is a function of the 

following: 

 Confinement ratio  

f max-C / f max-un=1.02+10.33 Cf     (Experimental average , RMBE reinforced by #3)    Eq. C.1   

f max-C / f max-un=1.24+9.04 Cf       (Experimental average , RMBE reinforced by #4)    Eq. C.2 

f max-C / f max-un=1.05+6.66 Cf       (95th percentile, RMBE reinforced by #3)                Eq. C.3 

f max-C / f max-un=1.11+7.97 Cf       (95th percentile, RMBE reinforced by #4)                Eq. C.4   

 Vertical reinforcement ratio  

f max-C / f max-un=1.02+0.29 ρv         (Experimental average , RMBE reinforced by #3)   Eq. C.5   

f max-C / f max-un=0.88+0.88 ρv        (Experimental average , RMBE reinforced by #4)    Eq. C.6   

f max-C / f max-un=1.06+0.18 ρv        (95th percentile, RMBE reinforced by #3)                Eq. C.7 

f max-C / f max-un=0.87+0.80 ρv           (95th percentile, RMBE reinforced by #4)             Eq. C.8  

 Grout strength 

f max-C / f max-un=1.10+0.011 fgr     (Experimental average , RMBE reinforced by #3)    Eq. C.9 

f max-C / f max-un=1.10+0.022 fgr     (Experimental average , RMBE reinforced by #4)  Eq. C.10 

f max-C / f max-un=1.07+0.0092 fgr   (95th percentile, RMBE reinforced by #3)              Eq. C.11 

f max-C / f max-un=1.005+0.021 fgr   (95th percentile, RMBE reinforced by #4)              Eq. C.12 
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The strain at peak stress, strain at 75%, and strain at 50% of the peak stress of the RMBE are 

obtained from equations based on the regression analysis (Figure 4.13 and 4.14) with the 

confinement ratio, and vertical reinforcement ratio and they are given by the Eqs. (32 to 37) as 

follows: 

 Confinement ratio  

Ɛmax = 0.0014+0.01 Cf        (Experimental average, RMBE reinforced by #3)            Eq. C.13 

Ɛmax = 0.0019+0.0048 Cf     (Experimental average, RMBE reinforced by #4)           Eq. C.14 

Ɛmax = 0.0014+0.0067 Cf    (95th percentile, RMBE reinforced by #3)                       Eq. C.15 

Ɛmax = 0.0018+0.0054 Cf    (95th percentile, RMBE reinforced by #4)                       Eq. C.16 

Ɛ75% = 0.0127+0.01 Cf        (Experimental average, RMBE reinforced by #3)            Eq. C.17 

Ɛ75% = 0.0025+0.01 Cf        (Experimental average, RMBE reinforced by #4)            Eq. C.18 

Ɛ75% = 0.0018+0.0146 Cf    (95th percentile, RMBE reinforced by #3)                       Eq. C.19 

Ɛ75% = 0.0024+0.0092 Cf     (95th percentile, RMBE reinforced by #4)                      Eq. C.20 

Ɛ50% = 0.0044+0.081 Cf        (Experimental average, RMBE reinforced by #3)          Eq. C.21 

Ɛ50% = 0.0053+0.13 Cf          (Experimental average, RMBE reinforced by #4)          Eq. C.22 

Ɛ50% = 0.004+0.058 Cf          (95th percentile, RMBE reinforced by #3)                     Eq. C.23 

Ɛ50% = 0.0045+0.11 Cf          (95th percentile, RMBE reinforced by #4)                     Eq. C.24 

 Vertical reinforcement ratio  

Ɛmax = 0.0011+0.0006 ρv (Experimental average, RMBE constructed with 15 MPa)  Eq. C.25 

Ɛmax = 0.0014+0.0005 ρv (Experimental average, RMBE constructed with 45 MPa)  Eq. C.26 

Ɛmax = 0.001+0.0006 ρv (95th percentile, RMBE constructed with 15 MPa strength)  Eq. C.27 

Ɛmax = 0.0013+0.0005 ρv(95th percentile, RMBE constructed with 45 MPa strength) Eq. C.28 
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Ɛ75% = 0.0018+0.0006 ρv   (Experimental average, RMBE constructed with 15 MPa) Eq. C.29 

Ɛ75% = 0.002+0.0008 ρv    (Experimental average, RMBE constructed with 45 MPa) Eq. C.30 

Ɛ75% = 0.0014+0.0008 ρv    (95th percentile, RMBE constructed with 15 MPa)          Eq. C.31 

Ɛ75% = 0.0012+0.0012 ρv    (95th percentile, RMBE constructed with 45 MPa)          Eq. C.32 

Ɛ50% = 0.0042+0.0024 ρv (Experimental average, RMBE constructed with 15 MPa)  Eq. C.33 

Ɛ50% = 0.0057+0.0027 ρv (Experimental average, RMBE constructed with 45 MPa)  Eq. C.34 

Ɛ50% = 0.0043+0.0013 ρv   (95th percentile, RMBE constructed with 15 MPa)           Eq. C.35 

Ɛ50% = 0.0046+0.0019 ρv   (95th percentile, RMBE constructed with 45 MPa)            Eq. C.36 
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Appendix D 

Pilot Test 

D.1 Construction of Pilot Specimens 

Four half-scale pilot specimens of boundary elements were constructed and tested up to 

failure to investigate different aspects prior constructing and testing the half-scale RMBE 

specimens. The pilot test investigated:  

1. The effect of using three different gauge lengths on the axial strain measurements.  

2. Measuring the axial strain using different gauge lengths raised the concern of how to fix 

the potentiometer on the sample. Due to the face shell spalling, fixing the potentiometer 

on the surface of the sample will not capture the post-peak measurements. Therefore, 

measuring the vertical strain in the middle zone of the sample by embedding cross bars 

passing through the core of the boundary element was investigated. 

3. The strain gauges measurements compared to that of the potentiometer,  

4. The effect of reinforcement detailing at top and bottom ends of the specimen (i.e. 

comparing reduced spacing hoops to regular spacing hoops),  

5. The dimensions of the top and bottom footings, and 

6. Using scaled reinforcement cold drawn wires, in the half scale samples, instead of bars, 

used usually in full-scale samples, as transversal hoops.  

Typical dimensions and construction details of these pilot specimens are shown in Figure D.1. 

Based on the pilot test results the construction details of half-scale RMBE specimens were 

refined. All pilot specimens were constructed at the structures laboratory at Concordia 

University. Formwork, C-shape block, and hoops that were used in the construction of these 

specimens are shown in Figure D.2. Figure D.3 shows the sequence of pilot specimen 

construction including steel reinforcement cages for big-footing and boundary element, installing 

of steel reinforcement cages in formwork, building top footing, and building of masonry block 

units. The pilot specimen under testing and the instrumentations is shown in Figure D.4. 
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Figure D.1 Construction details of pilot specimens 

 

Figure D.2 Formwork, half scale C-shape masonry block, and hoop 

 

 

Figure D.3 Sequence of C-RMBE construction 
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Figure D.4 Pilot specimen under testing  

D.2 Pilot Test Results 

Based on the test results the following points are concluded: 

1. The axial strain measurements based on different gauge lengths were identical up to 

the peak strength, however, different responses were observed in the post peak. It was 

observed that as the gauge length increased the calculated strain decreased. However, 

the results were not consistent for all potentiometers as using embedded cross bars 

may have affected the reliability of the results.   

2. Although measuring the displacement at the core of the sample seems more reliable 

compared to surface measurements, some of the embedded cross bars were bent and 

provided an unreliable reading. Only the potentiometers measuring the strain over the 

sample height were operating up to the end of the test. Consequently, the whole gauge 

length was used to measure the axial strain in Phase II and III. In addition, measuring 

the displacement from the core of the sample was reinvestigated in Phase III by 

taking more precautions on placing the bar through the block and the reinforcement 

cage.  

3. Since the axial strain was measured over the whole sample height, therefore constant 

hoops spacing will be used. Moreover, based on the pilot test results, no significant 
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difference between the load-displacement relationships of the samples built detailed 

with hoops having constant spacing over the height versus those having reduced 

spacing at the sample ends.   

4. It was observed that different strain values were recorded, using strain gauges, in the 

four reinforcement vertical bars. This was attributed to small eccentricity in the 

applied load and was avoided in future testing.  

5. The specimens with 390 × 390 mm top and bottom footing provided similar results of 

specimens with 190 × 190 mm top and bottom footing. Therefore, the smaller 

footings were used in Phases II and III. In addition, a confinement special steel plates 

were used to confine the top and bottom footing in order to avoid any cracks or 

damage in the footing during testing. 

6. Although the stress-strain behaviour of cold drawn wires (e.g. D4) is comparable to f 

deformed bars (e.g. 10M), the ductility of cold drawn wires is less than that of the 

deformed bars. However, cold drawn wire did not rupture during the pilot test except 

one hoop at 30% of the peak strength (i.e. 70% strength degradation). Consequently, 

the ductility of the deformed wires did not affect the failure mode of the tested sample 

and thus was used in half-scale samples as transversal hoops.  

Therefore, the pilot test conclusions paved the road for detailing Phases II and III samples 

based on aforementioned observations as will be shown in the following sections.   

D.3 Pilot Mixes of Grout 

Table D.1 Mix proportions of grout based on pilot tests 

 
Mix Proportions 

 
 Constituent Material Water Cement Fine Aggregate (Sand) Plasticizer 

20 Mpa-Original 0.75 kg 1 kg 3.9 kg Not used 

40 Mpa-Original 0.5 kg 1 kg 2.6 kg Not used 

20 MPa Trial Mix # 1 0.79 kg 1 kg 3.86 kg Not used 

40 MPa Trial Mix # 1 0.403 kg 1 kg 1.6 kg Not used 

20 MPa Trial Mix # 2 0.81 kg 1 kg 3.92 kg Not used 

40 MPa Trial Mix # 2 0.425 kg 1 kg 1.87 kg Not used 

20 MPa Trial Mix # 3 0.79 kg 1 kg 4 kg Not used 

40 MPa Trial Mix # 3 0.52 kg 1 kg 2.65 kg Not used 
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Table D.1 (cont.) Mix proportions of grout based on pilot tests 

Trial Mix Sample # Slump (mm) 7-Days Compressive Strength (MPa) 28-Days Compressive Strength (MPa) 

20 MPa - O 

1 

280 

15.51 - 

2 - 16.68 

3 - * 

Average   - - 

C.O.V   - - 

40 MPa - O 

1 

210 

41.23 - 

2 - 54.71 

3 - 54.62 

Average   - 54.67 

C.O.V   - 0.08% 

20 MPa - 1 

1 

280 

15.51 - 

2 - 16.68 

3 - * 

Average   - - 

C.O.V   - - 

40 MPa - 1 

1 

210 

41.23 - 

2 - 54.71 

3 - 54.62 

Average   - 54.67 

C.O.V   - 0.08% 
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Table D.1 (cont.) Mix proportions of grout based on pilot tests 

Trial Mix Sample # Slump (mm) 7-Days Compressive Strength (MPa) 28-Days Compressive Strength (MPa) 

20 MPa - 2 

1 

280 

20.04 - 

2 - 30.48 

3 - 30.72 

Average   - 30.60 

C.O.V   - 0.39% 

40 MPa - 2 

1 

220 

37.03 - 

2 - 47.08 

3 - 48.57 

Average   - 47.83 

C.O.V   - 1.56% 

20 MPa - 3 

1 

280 

14.01 - 

2 - 23.18 

3 - 22.02 

Average   - 22.60 

C.O.V   - 2.57% 

40 MPa - 3 

1 

240 

31.97 - 

2 - 45.3 

3 - 42.47 

Average   - 43.89 

C.O.V   - 3.22% 

 


