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Abstract 
 

What algebra do Calculus students need to know? 

 

Sabrina Giovanniello 

Concordia University, 2017 

 

Students taking a Calculus course for the first time at Concordia University are mature students 

returning to school after an extended period of time away from formal education, or students lacking 

the prerequisites to enter into a science, technology, engineering, or mathematics (STEM) related field. 

Thus, an introductory Calculus course is the gateway for many STEM programs, inhibiting students’ 

academic progression if not passed. Calculus tends to be construed as a very difficult subject. This 

impression may be due to the fact that this course is taught in a condensed form, with limited class time, 

new knowledge (concept, type of problem, technique or method) introduced every week, and little 

practice time. Calculus requires higher order thinking in mathematics, compared to what students have 

previously encountered, as well as many algebraic techniques.  As will be shown in this thesis, algebra 

plays an important role in solving problems that usually make up the final examination in this course.  

Through detailed theoretical analysis of problems in one typical final examination, and solutions 

produced by 63 students, we have identified the prerequisite algebraic knowledge for the course and 

the specific difficulties, misconceptions and false rules experienced and developed by students lacking 

this knowledge. We have also shown how the results of our analyses can be used in the construction of 

a “placement test” for the course – an instrument that could serve the goal of lessening the failure rate 

in the course, and attrition in STEM programs, by avoiding having underprepared students. 
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1 INTRODUCTION 

"When a student first encounters algebra he moves from a world of specific numbers to a world of 

variables and reversible transformations" (Byers & Erlwanger, 1984). The switch from arithmetic 

calculations to algebraic manipulations can be very difficult for some students as it is the first time they 

are introduced to such abstract ideas. Further, they are initially taught to use letters to stand for 

unknowns (MacGregor & Stacey, 1997), and then are expected to eventually understand letters as 

variables, rather than unknowns or placeholders (Küchemann, 1981). We can acknowledge that when 

students are "doing" algebra, they may not be aware of the properties that justify the operations that 

can be performed on an expression to obtain an equivalent expression. This may lead to mistakes such 

as replacing        by      in an expression. Some students can successfully apply different 

algebraic techniques to solve problems, while others seem to form certain misconceptions or 

misunderstandings that persist throughout their studies. What does it mean for a student to be capable 

of performing algebraic manipulations successfully? What algebraic skills and knowledge do they 

possess? Does a student’s high performance in algebra necessarily represent a correct understanding of 

algebra?  

Following a college algebra course, students typically move on to a Calculus I course, where they are 

introduced to limits and derivatives. During my teaching experience of Calculus I for science students 

(MATH 203) in the summer of 2016, I started to think about whether it was important for students to 

“know” algebra in order to succeed in Calculus. The questions posed by students while I was solving a 

problem on the board, or during my office hours led me to the realization that a good number of 

students had difficulties with simple algebraic techniques, such as factoring a quadratic polynomial. I 

would take my time to explain why they could or could not perform certain operations, and would guide 

them to the appropriate properties learnt from past courses. These types of questions surprised me 

quite a bit. Students taking MATH 203 should have previously taken courses in algebra and functions 

(MATH 200 - Fundamental Concepts of Algebra, & MATH 201 - Elementary Functions). In these 

prerequisite courses, students should have learnt about basic properties of operations on real numbers, 

and functions. They should have learnt about factoring polynomials, taking the inverse of a one-to-one 

function, composition of functions, and about different kinds of functions, in particular, the rational, the 

exponential and the logarithmic functions. However, a good portion of the questions I received in this 

course were algebraic in nature, rather than Calculus content related. I thought to myself, “How will 
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these students succeed in this course, as well as in future mathematics courses if they have difficulties 

with algebra? Can they truly succeed?” 

On the one hand, a student may perform very well if given problems similar to ones previously 

encountered. But understanding why one could perform certain operations is a different story. For 

example, I would have students say “Move the constant to the other side” of an equality or inequality, 

and I would redirect their line of thinking to understanding why one could perform a specific operation. 

One does not simply move a term to one side of an equality or inequality, although the result of the 

operation one applies to both sides of the equality or inequality certainly gives the illusion of such 

movement.  A few students confessed that they could not “do” algebra, and that finding the limit of a 

given function, or finding the derivative would be impossible for them to do, yet they seemed to have 

proper conceptual understandings of limits and derivatives. What is a teacher to do? If I did not try to 

address their mistakes by making the mistakes reflect in their grades, they would move on to the next 

course with the same algebraic misconceptions they came in with. Yet is it fair to penalize a student for 

their algebraic mistakes when their conceptual understanding of the content of the Calculus course 

appears to be correct? 

Due to time constraints, I did not have enough time to go over a full algebra course. Therefore I tried my 

best to provide the correct reasoning for students, when asked algebraic questions. What about, 

however, all the students who did not ask me any questions, those that had initial misunderstandings of 

prerequisite material that were never addressed? I believe that these students would unfortunately 

exhibit these same misconceptions throughout the course, as well as towards the end of the semester. 

For this reason, we decided to analyze the final examination questions and students’ solutions to 

determine what algebraic knowledge was necessary to solve them, and to what extent students 

appeared to possess this knowledge. We wanted to identify the algebraic mistakes and misconceptions 

about functions that were obstacles to students’ correct solutions of the questions. Our plan was to 

construct, on this basis, items for a placement test to be administered at the beginning of the Calculus I 

course. The results of the test would be a measure of the students’ preparedness for the particular 

Calculus I course in which the final examination was similar to the one that was used in the course I 

taught.  

There is already a great body of literature regarding different algebraic errors and misconceptions held 

by students (Booth & Koedinger, 2008; Knuth, Alibali, McNeil, Weinberg, & Stephens, 2005; Payne & 
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Squibb, 1990), and how some of these misconceptions can persist over time (Booth, Barbieri, Eyer, & 

Paré-Blagoev, 2014).   

There is also some debate as to whether algebra is necessary for a Calculus course for students who will 

not pursue a degree in mathematics but in other domains, e.g., in science or finance. Reality cannot 

always be modeled by compositions of elementary functions. For example, in finding the limit of a 

function, one can try to find or approximate the limit numerically, rather than using algebraic techniques. 

Also, the formal epsilon-delta definition of limits is not formally taught in this course. This decision of 

excluding the formal definition is consistent among many individuals, as it is believed to fall within the 

field of analysis, and is beyond the understanding of the majority of Calculus students (Thompson, 

Byerley, & Hatfield, 2013). However, even if the formal definition were taught, the majority of testing 

problems currently do not assess one’s knowledge of this definition, rather most solutions to limit 

problems are solved using different algebraic techniques. Selden, Mason, and Selden (1989) reported 

that traditional calculus courses contained very few non-routine problems. The authors created a test 

containing five non-routine items, and administered it to C grade students. Most students were unable 

to do anything at all, thus the authors concluded that even though students pass a Calculus course, 

many are unable to solve non-routine problems. One such item was as follows:  

Find values of   and   so that the line         is tangent to the graph of 

         at the point where     (Selden, Mason, & Selden, 1989). 

Further, a study by Tallman, Carlson, Bressoud, and Pearson (2016) found that out of 150 Calculus I final 

exams, only 14.72% of items required some explanation by the students to demonstrate their 

understanding, while the majority of the exam items required only memory of procedures.  

An interesting study by Hardy (2009), looked at questions in a common final examination of a College-

Calculus course. It was determined that these examinations had not changed much over 6 years. The 

questions tended to be routine in nature, and followed unwritten norms. Reasons proposed by the 

author included that these examinations needed to assess a large number of students, and that the 

content was what the final examination committee determined to be the minimum knowledge expected 

to be learned by students. The author further suggests that students tend to make generalizations that 

are not mathematical in nature, based on their experience with routine problems. In her study, Hardy 

presented students with four non-routine questions about finding limits of functions, and found that 

students attempted these problems with unnecessary algebraic techniques. Three of the four problems 
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could be solved with direct substitution, yet students factored the polynomials because, as one student 

pointed out, "they never gave me a problem that wasn't factorable". Here is one example: find 

      
   

    
. As teachers, we are trying our very best to teach our students the appropriate 

mathematical knowledge, yet based on the routine problems provided in the textbook, and final 

examinations, we are perhaps hindering our students with rote algebraic procedures.  

Another interesting study, by Palmiter (1991), used a computer algebra system to teach integral Calculus 

to a group of students, eliminating the paper and pencil algebraic computations. These students were 

able to complete the course in half the amount of time compared to the traditional sections. They 

performed better on both the conceptual knowledge of the Calculus test, as well as on the 

computational test, in comparison to the traditional sections. Further, these students also performed 

better in subsequent traditional Calculus courses. Having de-emphasized algebraic manipulations, these 

students spent more time gaining conceptual knowledge of Calculus content. The results of this study 

are very intriguing, making me think about our current course outline, content, and assessments. 

Although algebra may not be necessary to learn Calculus, we must acknowledge that the institution in 

which a course is taught largely influences the course content and assessments. And at our university, 

the Calculus I course I taught has traditionally been strongly algebra based.  

We are using the word “algebra” here as if it did not require an explanation. But this is an ambiguous 

term that we will discuss in the next section. In this thesis, we are including functions and their 

properties when referring to algebra.    

This thesis has been organized into the following chapters. Chapter 2 contains the theoretical 

perspective of the Anthropological Theory of the Didactic, which we used to describe our influences in 

analyzing the students’ solutions of the final examination, keeping in mind different mathematical 

praxeologies, and institutional constraints. It also includes our definition of algebra, and what 

constitutes an algebraic activity. Chapter 3 contains our theoretical analysis of the final examination 

questions. Chapter 4 contains a detailed analysis of the students’ solutions to the final examination, 

illustrated by many examples of manifestations of different algebraic difficulties, misconceptions, and 

false rules in the solutions. This chapter concludes with a summary of the identified algebraic difficulties, 

misconceptions, and false rules. In chapter 5 we show examples of a placement test items constructed 

based on the results obtained in chapters 3 and 4. Lastly, in chapter 6 we provide our conclusions and 

recommendations stemming from this research and argue for the usefulness of testing students’ 

preparedness for an introductory Calculus course with a placement test.   
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2 THEORETICAL PERSPECTIVE  

The research reported in this thesis has been conceived from the perspective of the Anthropological 

Theory of the Didactic (Chevallard, 1999), abbreviated “ATD”. From this perspective, the Calculus I 

course and its algebraic prerequisites which are the object of our research are not regarded as abstract 

mathematical content but as an institutional practice, embedded in the broader institutional practices of 

the mathematics department where it is offered and the even broader institutional practices of a large 

comprehensive urban North American university, open to adults returning to study to re-orient their 

careers or finish their interrupted education. It is assumed that the course, as any institutional practice, 

has some tasks to fulfill, that it accomplishes these tasks using a set of routine techniques, and that it 

has developed a justificatory discourse for defending the tasks and the techniques against anybody who 

would want to question their choice or validity. If the task of the Calculus I course is to teach students 

knowledge deemed necessary to study science at the university level, then learning this knowledge is 

also seen as learning a certain institutional practice, characterized, again, by certain types of tasks, 

techniques for solving them and a particular justificatory discourse. In the particular Calculus I course 

that we are studying here, the types of tasks that characterize it as an institutional practice are 

ultimately defined by the sets of final examination problems, very similar from year to year. This is why 

we considered studying the final examination problems in the course as sufficient for sketching a 

portrait of the algebraic needs of the students. 

Please note, that although we have kept in mind the perspective of ATD, we will not be using the 

technical terminology of the theory and its particular formalism in describing the final examination 

problems and students’ ways of solving them. 

In this chapter, we first give some more details about ATD and its assumption of the institutional 

relativism of knowledge, and then discuss, from this perspective, the problems of determining what is 

meant by “algebra”. We conclude with a description of the meaning of algebra as assumed in this thesis. 

2.1 THE ANTHROPOLOGICAL THEORY OF THE DIDACTIC 

The Anthropological Theory of the Didactic (ATD), developed by (Chevallard, 1999) and his collaborators 

(Barbé, Bosch, Espinoza, & Gascón, 2005), has been widely used as a theoretical framework for 

analyzing different aspects of mathematics education (Hardy, 2009; Sierpinska, Bobos, & Pruncut, 2011). 
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All educational activities, such as the preparation, implementation, and the learning of knowledge are 

thought of as institutionalized human practices, and it is assumed that such practices can be analysed 

into types of tasks the institution is called to solve, the often implicit techniques it uses to accomplish 

the tasks, the explicit methodology1 it formulates to justify the techniques and teach them to novices to 

the practice, and the theories it invokes to justify the methodology. A description of a practice in such 

terms is called a “praxeology”. Thus, a praxeology can be thought of as a model or theory of practice in a 

certain institution. For a detailed recent introduction to ATD see Bosch and Gascón (2014).   

Hardy (2009) describes the practice of finding the limits of functions in a college Calculus course by 

several punctual mathematical praxeologies, related to particular types of such functions. One example 

provided was a mathematical task of evaluating the limit of a function of the following form: 

      
          

    
, where                    are polynomials. Further,             ,        , 

and               is a factor in     . An example of this type of limit was provided as follows:  

      
    

     
. Recognizing the indetermination of 

 

 
 when substituting   in  , the common technique 

used by students was to multiply numerator and denominator by the conjugate of the numerator 

      . The numerator has a common factor with the denominator of      .  After simplifying, and 

replacing   by   the limit is found to be 
 

  
. The explicit methodology used is as follows: "If two functions 

  and   agree in all but one value   then                      " (Hardy, 2009). Lastly, the theory 

justifying these steps would normally include a graph supporting the methodology used. The formal 

theory is an epsilon-delta proof however these types of proofs are not normally covered in such courses, 

thus students may not know that they even exist. Note that the techniques used by students may be 

their own way of solving a particular problem (or similar looking problems), without necessarily having a 

correct reasoning to back up each technique. For example, if given a limit including a radical expression 

without an indetermination, students may still apply the technique indicated above. Students see a 

radical expression and immediately think of multiplying by the conjugate. As Hardy (2009) pointed out, 

"...the final examination institution that I have studied has not - not even once in the last 6 years - 

included a problem of finding a limit involving radicals for which the rationalization technique would not 

apply." Hardy (2009) also commented on whether the direct substitution method used by students was 

                                                           
1
 In the French original version of ATD, what we call here “methodology” is called “technologie” in French. In 

papers written in English, “technologie” is often translated into “technology”. In English, the word “technology” 
has a computer science and computer hardware connotation that it does not have in French. This is why we prefer 
to use the word “methodology” as a translation of “technologie”, as better reflecting the intended meaning of the 
word (e.g., “technologie de la production horticole”). 
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their attempt at finding the limit, finding the indetermination, or whether it was simply a first technique 

as part of a larger set of steps used by students. Lastly, another interesting technique used by students 

was to factor regardless of the function at hand, and one such student provided the following reason for 

doing so, "But I was taught, if you can factor, factor" (Hardy, 2009).  

2.2 OPERATIONAL DEFINITION OF ALGEBRA & RELATED INSTITUTIONS 

Although there may be a debate as to whether functions belong to a pre-university level algebra course 

or an “algebra with functions” course, in North America it is called “Pre-calculus”, and in this thesis we 

will define algebra to include functions and their properties.  

We will adopt a definition of the content of a college algebra course proposed by the College Board. The 

College Board is a non-profit US organization which helps students transition into college, self-assess 

their knowledge levels, and prepare for various college examinations. Below is the content of a college 

algebra course as proposed by The College Board: 

1) Algebraic operations: operations with exponents, factoring and expanding 

polynomials, operations with algebraic expressions, absolute value, and properties of 

logarithms;  

2) Equations and inequalities: linear, quadratic, and absolute value equations and 

inequalities, systems of equations and inequalities, and exponential and logarithmic 

equations;  

3) Functions and their properties: definition and interpretation, representations of 

functions (graphical, numerical, symbolic, and verbal), domain and range, algebra of 

functions2, graphs and their properties (intercepts, symmetry, and transformations), 

inverse functions, as well a variety of functions, including linear, polynomial, rational, 

absolute value, power, exponential, logarithmic, and piecewise-defined functions (The 

College Board). 

                                                           
2
 By “algebra of functions” we mean the operations of addition, subtraction, multiplication, division and 

composition of functions and their properties. 
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These topics are fairly consistent with the content in the prerequisite courses for MATH 203 (Differential 

& Integral Calculus I3), which are MATH 200 (Fundamental Concepts of Algebra) and MATH 201 

(Elementary Functions) at Concordia University for the science or engineering stream. These topics are 

also consistent with the content in MATH 206 (Algebra & Functions), a college algebra course for 

candidates to a school of business. 

Thinking about the content in a calculus course, is using the Product Rule of differentiation considered a 

calculus or an algebraic activity? Although we have provided the above definition for algebra, we also 

want to bring to your attention the definition of a mathematical activity as described by Drijvers (2011, 

pp. 8-9): 

A mathematical activity becomes more 'algebraic' to the degree that it has more of the 

following characteristics: 

a) Implicit or explicit generalization taking place. 

b) Patterns of relationships between numbers and/or formulas are investigated. 

c) Problems are solved by applying general or situation-dependent rules. 

d) Logical reasoning is conducted with unknown or as yet unknown quantities. 

e) Mathematical operations are conducted with variables represented with letters. 

Formulas are created as a result. 

f) For numerical operations and relationships, special symbols are used. 

g) Tables and graphs represent formulas and are used to investigate formulas. 

h) Formulas and expressions are compared and transformed. 

i) Formulas and expressions are used to describe situations in which units and quantities 

play a role. 

j) Processes for solving problems contain steps that are based on calculation rules, but 

that do not necessarily have any meaning in the context of the problem. 

                                                           
3
 Note that although MATH 203 is called Differential & Integral Calculus I, the Integral half is only covered in the 

second course (MATH 205 - Differential & Integral Calculus II). 
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Thus according to these characteristics, Drijvers (2011, p. 9) maintains that "Proving the product rule of 

differential calculus involves a combination of calculus and algebra. Using the product rule with known 

functions is an algebraic activity." Keeping these characteristics in mind, much of the routine problems 

found in a Calculus I final examination can be regarded as algebraic activities.  

Students who take MATH 203 (Calculus I) in our university are generally students trying to enter a 

science or engineering undergraduate program, and are lacking prerequisite courses. These students are 

either mature students, having returned to school after an extended period away from formal education, 

or students who were not in a science stream in college (CEGEP4 in Quebec) or in upper secondary 

classes in other Canadian provinces or in other countries. MATH 200 (Fundamental Concepts of Algebra) 

and MATH 201 (Elementary Functions) are courses equivalent to the higher levels of mathematics in 

secondary school, and MATH 203 and MATH 205 (Calculus II) are equivalent to the Science Calculus 

courses offered at CEGEP in Quebec. Therefore students taking these prerequisite mathematics courses 

(PMC) in University have several reasons for feeling frustrated (Sierpinska, Bobos, & Knipping, 2008). 

Sierpinska, Bobos, and Pruncut (2011) prepared and taught three different types of lectures about 

absolute value inequalities to mature students. In each of the lecture types, students' lack of algebraic 

knowledge became apparent in the misconceptions held about absolute value inequalities. Further, in 

learning a specific technique students were more interested in learning the steps, rather than learning 

why each step could be performed.  Even though students taking PMC may have the required 

prerequisites, I believe that one source of their frustrations lies in their poor algebraic knowledge. 

Further, the content in these courses, as well as the typical questions and solutions in assessments are 

heavily influenced by different institutions. 

Sierpinska, et al. (2008) thoroughly summarize the concept of institution as initially discussed by Peters 

(1999). Briefly, a social activity is characterized as an institution when meeting the following four 

criteria: 1) it is a formal or informal structural feature of society; 2) it is stable over time; 3) it is 

constrained by formal norms; and 4) its members share common values and goals. With this definition 

there are a number of institutions, and ultimately institutional constraints involved in the content and 

assessments of MATH 203 (Calculus I). The following institutions related to algebra influenced not only 

the content and assessments in this course, but also our analysis of the student solutions to the final 

                                                           
4
 In the province of Quebec, the post-secondary education system includes two years in CEGEP (an acronym for 

"Collège d'enseignement général et professionnel"). Students who complete a program in CEGEP obtain a Diploma 
of College Studies which is a requirement for admittance into University in Quebec, unless returning as a mature 
student at the age of 21. 
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examination: PMC, MATH 203, summer course, and course textbook. The PMC institution has been a 

formal feature in universities, being extremely stable over many years. These courses tend to be very 

intense, fast paced, and are taken with the common goal of obtaining a high grade, as they are an 

absolute requirement for admittance to a desired undergraduate science or engineering program. 

MATH 203 at Concordia University in and of itself is another institution. The content of this course, and 

typical textbook material have not changed over many years. When this course is taught throughout the 

fall and winter semesters, the final examinations are prepared by a course examiner and are very typical 

in the questions and algebraic solutions required. As I taught the course in the summer, I had a little 

more flexibility as I prepared the midterm and final examinations myself. However, I needed to follow 

the topics covered in the course outline, as well as have the assessments approved by the course 

examiner. Although I had this sense of freedom, I was strongly encouraged by other advisors to follow 

past examinations, choosing typical questions from the textbook, thus putting constraints on the 

questions and solutions I was able to choose from. Lastly, the textbook (Stewart, 2016) is yet another 

institution, containing similar questions, and requiring typical algebraic solutions which have remained 

stable over decades. The mathematical content in this textbook, as well as the explanations, cautions, 

and hints, were taken into account in our analysis of the student solutions to the final examination. 
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3 THEORETICAL ANALYSIS OF THE FINAL EXAMINATION QUESTIONS 

The Science Calculus I August 2016 final exam closely resembles the previous final exams offered at 

Concordia University. As such, it is highly representative with regards to its layout and content. In the 

analysis that will follow, the typical solutions to each problem will be provided, thereby determining 

how students are expected to solve such an exam. The proposed solutions demonstrate how students' 

algebraic skills are inadvertently required to solve Calculus examination problems.  

3.1 PROBLEM 1 – DOMAINS OF FUNCTIONS, COMPOSITION OF FUNCTIONS, INVERSE FUNCTIONS 

In the more formal university mathematics, the definition of function is such that the “domain” of a 

function, its “codomain” and its “rule” are three independent entities that, taken as a system, constitute 

the function. 

Let   and   be non-empty sets. By a function from   to  , written        , we mean a 

relation from   to   [i.e., set of ordered pairs        with        ] with the 

property that every element   in   is the first coordinate of exactly one ordered pair in  .  

(Chartrand, Polimeni, & Zhang, 2013, p. 216). 

 Of course, the system         must be consistent, but a function is not given if all three 

elements of this system are not given. For example, the rule         does not uniquely determine the 

function  . According to this general definition, the systems: 

                                   

                          

                                   

                                    

represent different functions. 

 In pre-calculus and calculus courses, however, the rule of the function is the most important 

element of the system; the rule determines the domain and the codomain.  

A function from a set   to a set   is a rule that assigns a unique element        to 

each element    . (Thomas, 2008, p. 2) 
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In those courses, the sets    and   are subsets of   and the rule has almost always the form of an 

algebraic expression.  The way functions are talked about and named (e.g., “take the function     ”) 

conveys the conception that functions are algebraic expressions, just as they were for 18-19th century 

mathematicians such as Bernoulli, Euler, Lagrange or Cauchy (Sierpinska, 1992, p. 45). The domain of a 

function is understood as the domain of the algebraic expression that defines it5. This is sometimes 

called the “natural domain” of the function: 

When we define a function        with a formula and the domain is not stated 

explicitly or restricted by context, the domain is assumed to be the largest set of real  -

values for which the formula gives real  -values, the so-called natural domain. (Thomas, 

2008, p. 2) 

Such was the understanding of the domain of function assumed implicitly in the first problem of the 

final examination. In Problem 1, the students were required to find the [natural] domains of composite 

functions, given by algebraic expressions. 

 In the sense of natural domain, the domain of a composite function can be described in the 

following manner: 

Given the composition                                  the natural domain of   is the set: 

                           
                  

                           .  

For example, if                 then                              . 

More concretely, if         ,           and      
 

   
,  then                   

 

   
  

  
 

    
   , and      ;          ;         .  According to the above definition of the 

domain of a composite function,             
 

   
           . 

In this example, the same set would be obtained by looking at the natural domain of the final algebraic 

expression for  . In general, however, finding the natural domain of a composition with the above 

definition and calculating the domain of the final algebraic expression do not yield the same set. For 

example, given          and          then           and     . If              

    
 
  , looking solely at the final algebraic expression, one would conclude that     . On the 

other hand, however, according to the above definition of the domain of a composite function, 

                                                           
5
 see, e.g., http://www.cengage.com/resource_uploads/downloads/1439049084_231926.pdf   

http://www.cengage.com/resource_uploads/downloads/1439049084_231926.pdf
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                         which is different from the domain of the final algebraic 

expression for  . Looking at another example, given          and         , then           

and         . If                    , looking solely at the final algebraic expression, one 

would conclude that     . On the other hand, however, according to the above definition of the 

domain of a composite function,                          which is different from the 

domain of the final algebraic expression for  .    

 The functions           and           in Problem 1a were such that the definition of 

the domain of a composite function and the domain of the final algebraic expression for both       and 

     yielded the same sets. So solutions where students found the formulas for the compositions of 

the given functions, and then determined the domains of the algebraic expressions defining them were 

considered correct, and were, in fact, expected.   

In Problem 1b, students were asked to find a formula of the inverse of a given function and the domains 

of the function and its inverse. 

Formally, the notion of the inverse function can be introduced via the concept of inverse relation. Every 

relation has an inverse but the relation which is the inverse of a function is not necessarily a function 

itself. Reasoning about the conditions necessary for the inverse of a functional relation to be a function 

leads to the conclusion that for a function to have an inverse, the function must be bijective (one-to-one 

and onto): 

Theorem…: Let       be a function. Then the inverse relation     is a function from 

  to   if and only if   is bijective. (…) (Chartrand, Polimeni, & Zhang, 2013, p. 229)  

Further, if       is a bijection, then a function       is the inverse of    if         and 

        (ibid., p. 230).  

In Pre-calculus and Calculus I courses, the notion of function, as mentioned, is often identified with an 

algebraic expression which, for the purposes of introducing the notion of inverse, is interpreted as a 

sequence of operations on a variable: the function “does” something with the variable and the inverse 

function “undoes” it. In Thomas’ Calculus, the notion of inverse function is first introduced informally: 

A function that undoes, or inverts, the effect of a function   is called the inverse of  . 

Many common functions, though not all, are paired with an inverse. (Thomas, 2008, p. 

47)  
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Then, after the introduction of the concept of one-to-one functions, an official definition is given: 

Definition:  Inverse function 

Suppose that    is a one-to-one function on a domain   with range  . The inverse 

function     is defined by          if       . The domain of     is   and the 

range of     is  . (Thomas, 2008, p. 48) 

Next, the procedure for “finding inverses” (ibid., p. 48) or “passing from   to     (ibid., p. 50) is given:  

1. Solve the equation        for  . This gives a formula          where   is 

expressed as a function of  .  

2. Interchange    and  , obtaining a formula          where     is expressed in the 

conventional format with   as the independent variable and   as the dependent variable. 

(Thomas, 2008, p. 50) 

Thus, to find the domain of the inverse of a given function, students are expected to find the range of 

the given function, or follow the process above to find the algebraic expression for the inverse and then 

determine the domain of this algebraic expression, although applying the procedure without awareness 

of the conditions of existence of the inverse function could lead to mistakes. For example, applying the 

procedure to a function   given by the formula      would lead to the claim that the inverse function 

is      and that the domain of the inverse function is  , while the range of the given function   is 

     .  

3.1.1 Problem 1a – Domains of composite functions involving linear and square root functions 

The problem was given as follows: 

Let            and          .  Find       and     and determine the 

domains of these composite functions.  

Composition of functions requires a structural (rather than operational) understanding of algebraic 

expressions (Sfard, 1987), and understanding of letters as variables (rather than as unknowns or 

placeholders) (Küchemann, 1981).  

Thus, looking at the function   students should see the square root function and by moving from 

outside to inside, see the structure as such:                       .  
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When looking at      students should first see the polynomial function and by moving from outside to 

inside, see the structure so: 

                       

This way, the structural perception of the composition        could be represented as:  

                                      

and    : 

                                                

To find the domains of these composite functions, it is necessary to know what the symbol of square 

root means – the square root of a real number   is a non-negative real number   such that     , and 

knowing that squares of real numbers are non-negative, conclude that square roots of negative 

numbers do not exist. So the natural domain of the square root function is the set of non-negative real 

numbers. With this understanding, students were expected to find the domain of the function     by 

solving a linear inequality        and the domain of     by solving       . Solving these 

inequalities requires operational knowledge of properties such as  

If       and    , then 
  

 
 

 

 
. 

If       then         , for any  . 

The expected answers for the domains were:              ,        
 

 
     or some equivalent 

expressions of these sets. 

 The above description of knowledge and reasoning involved in solving the Problem 1a uses 

standard mathematical language, such as would be expected to be used by university teachers. Students 

are not very likely to use such language or be aware of the definitions and algebraic properties they are 

using. Based on our experience listening to students’ oral explanations, it is more realistic to expect 

students to think about the problem in the following way, using a kind of “school mathematical jargon”: 

“To calculate    , replace the   in      with the right side of     . (…) Domain of a function is to solve 

for   any condition for the formula of the function to make sense. Values under the square root cannot 

be negative therefore make it   . (…) To solve      , move   to the right side. When you move   

to the right side it becomes   .” (etc.) 
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3.1.2 Problem 1b – Domain of the inverse of a given composite function involving logarithmic and 

exponential functions 

The problem was given as follows: 

Find the domain of the function               , the inverse function    , and the 

domain of    . 

The expected answers were:             ,                , and             or some 

equivalent expressions. 

To find the domain of the function, and the domain of its inverse, it is necessary to know that the 

domain of the natural logarithmic function is        , that its range is  , and that      and    are 

inverse functions, so that         and       . With this understanding, students were expected to 

find the domain of the function   by solving the inequality       , and concluding that    

       . The domain of     was expected to be found either by remembering that the domain of the 

inverse function is equal to the range of the function and that the range of the logarithmic function is  , 

or by finding the formula                 and solving the inequality       . The latter 

approach could lead students to an impasse upon arriving at the inequality       , which some could 

be tempted to further process by writing         , concluding that                  instead at 

arriving at the conclusion that the domain     was  , which is the range of  .   

Solving these inequalities requires operational knowledge of the property  

If     then        . 

Students would usually understand this property in the form of allowable moves in processing an 

inequality rather than in the form of an implication such as above.  This understanding would be enough 

to succeed in a first Calculus course such as the one studied here.  

Given   as a function of  , in order to find the inverse function, one can express   as a function of  , as 

stated in the “inverse” procedure (Thomas, 2008, p. 50). With this understanding, students were 

expected to find the inverse of   by solving for   in terms of   . 

Representing the given function with   instead of     , they would write: 
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Given the function         is well-defined, if     then          , therefore      , one can 

take the exponential function of both sides; in students’ operational knowledge, this move would be 

expressed as “since there is a ln, let’s put    in front of each side”: 

              

Using operational knowledge of the property           would allow them to represent the above as: 

           

Using operational knowledge of the properties of equalities such as: If      then         , and if 

    then    , they would write: 

           

           

Given the function          is well-defined, if     then          , therefore            . In 

students’ operational knowledge this step would be justified by “taking ln of both sides”: 

                 

Using the property       , they could write: 

             

Now they would be expected to interchange    and   (as prescribed by the second step of the “inverse 

function” procedure): 

            

and write: 

                 . 

The interchange of letters is not theoretically necessary; it was expected because it was part of the 

procedure that was taught. But students could as well express the inverse function as        

        . They could also verify the identities:                                 to check if their 

formula for the inverse function was correct, although such theoretical behavior was not expected of 

the students in this course. 
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                                                   . 

3.2 PROBLEM 2 – LIMITS OF THE RATIO OF FUNCTIONS CONTAINING ABSOLUTE VALUE AND SQUARE 

ROOT EXPRESSIONS 

In finding the limit of a function, one can try to approximate the limit numerically, rather than using 

algebraic techniques, however students tend to use such techniques, hinted at by the expression. If the 

function contains a radical, students think of “rationalizing” the numerator or denominator, depending 

on the placement of the expression. If the function contains a binomial in the denominator, students 

proceed to factor the numerator to cancel it out. When encountering an absolute value expression, 

students believe that they need to find both one-sided limits, as routine problems suggest that the limit 

would not exist. Although this is not mathematical knowledge we wish our students to gain when 

finding limits, these types of limit problems tend to be quite algebraic in nature.   

In taking a closer look at the textbook (Stewart, 2016), students are first introduced to limits via the 

problem of finding the tangent to the graph of a function      at a point    . They are instructed to find 

values of a function for values of  , as   get closer and closer to    on either side of it, and slopes of the 

secants passing through            and         . They construct a table of values. This first example 

shows the students that the limit of the slopes of the secant lines is the slope of the tangent line at   . 

As one progresses through the sections of the textbook, an intuitive definition of the limit is provided: 

Suppose      is defined when   is near the number  . (This means that   is defined on 

some open interval that contains  , except possibly at   itself.) Then we write 

              and say “the limit of       as   approaches  , equals  ” if we can 

make the values of      arbitrarily close to   (as close to   as we like) by restricting   to 

be sufficiently close to   (on either side of  ) but not equal to   (Stewart, 2016, p. 83). 

After providing this definition, the examples that follow instruct the students to make a table of values 

to guess the limit, similar to that of the tangent problem. Some pitfalls of this method are demonstrated 

in this section, and the author then promises a perfect method to come: 

…some calculators and computers give the wrong values. In the next section, however, 

we will develop foolproof methods for calculating limits (Stewart, 2016, p. 87). 
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The announcement of a "foolproof" method is very disturbing. After this point in the textbook, limit 

problems are reduced to applying limit laws and algebraic manipulations, and the students may believe 

that this is the best way, as it is the "foolproof" way. I fear that students reading these notes, may 

completely disregard the conceptual understanding of limits, as they only need to know the "foolproof" 

method. As promised by the author, students learn how to calculate limits using different limit laws in 

section 2.3 of the textbook. They are also shown the Direct Substitution Property (DSP): 

If   is a polynomial or a rational function and   is in the domain of  , then 

                 (Stewart, 2016, p. 97). 

Students tend to use this property as their first attempt at finding limits, even if   is not in the domain of 

  (this will be addressed in our analysis of the solutions to problem 2). These “foolproof” methods are 

only foolproof if the students have good algebraic knowledge.  The book then provides some examples 

in which the DSP could not be used, i.e., the function is undefined at    . This is the precise location 

in the section, in which algebraic techniques are required. Students are shown to factor a numerator of 

a rational function in order to cancel a common term from the numerator and denominator, thus 

allowing the limit to be calculated via the DSP. They are told: 

…we need to do some preliminary algebra. We factor the numerator as a difference of 

squares (Stewart, 2016, p. 98). 

Further, students are shown one example containing a square root expression in the numerator of a 

ratio of functions, and are told: 

We cannot apply the Quotient Law immediately, since the limit of the denominator is 0. 

Here the preliminary algebra consists of rationalizing the numerator… (Stewart, 2016, p. 

99). 

Finally, they are provided with the following: 

Theorem:              if and only if                           (Stewart, 

2016, p. 99). 

Following this theorem, a few examples of both one-sided limits are provided, demonstrating the 

necessity to calculate both one-sided limits for absolute value functions.  
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Thus, although the conceptual understanding of limits does not require the use of algebra, a good 

portion of the questions and solutions provided in the textbook necessitate the use of algebraic 

techniques. Therefore, a student who cannot “do” algebra will appear not to understand limits, by the 

nature of the questions asked. 

3.2.1 Problem 2a – Limit of a function containing an indetermination at a point and an absolute value 

expression 

The problem was given as follows: 

Evaluate the limit if it exists, or explain why the limit does not exist (Do not use 

l’Hôpital’s rule):        
     

     
 

The approach introduced in the textbook suggests that the students notice the indetermination at 

    , and therefore realize that the DSP could not be used. Note that some students did attempt the 

DSP at first (some correctly arriving at an indeterminate form, and others incorrectly arriving at some 

incorrect answer, which will be discussed in the next section).  Further, students should recognize that 

the denominator is an absolute value expression, and know that given          ,                 

and                , resulting in 
 

   
  

        
         

  . Applying this property to the given function, 

they were expected to conclude that the left-sided limit of the function is    and the right-sided limit is 

  , and so the the limit at    does not exist.  

Students not knowing or remembering the above property of the expression 
 

   
 could still figure out the 

answer, by reasoning as follows, from the definition of absolute value alone: as   approaches    from 

the left,       and       is negative. Since the absolute value function always produces a positive 

value, this expression requires a negative sign in front of it, in order to remain positive:       . In 

finding the greatest common factor in the numerator (using distributivity:             ), one can 

then cancel out the common term in the numerator and denominator arriving at the limit of    as   

approaches   . Using the limit law of the limit of a constant, we arrive at the left-sided limit of   . The 

right-sided limit is obtained in a similar manner, with a resulting limit of  . Students recalling the 

theorem that              iff                            would conclude that since both 

one-sided limits are not equal, the        
       

     
 does not exist. 



 
 

21 
 

3.2.2 Problem 2b – Limit of a function containing an indetermination at a point and a square root 

expression 

The problem was given as follows: 

Evaluate the limit if it exists, or explain why the limit does not exist (Do not use 

l’Hôpital’s rule):       
         

         

The approach introduced in the textbook suggests that the students notice the indetermination at    . 

Since     is not in the domain of the function, once again the DSP cannot be used. Again, for this 

problem some students attempted the DSP (some correctly arriving at an indeterminate form, and 

others incorrectly arriving at some incorrect answer). 

The expected algebraic solution is as follows: since the Quotient Law could not be applied right away, as 

the limit of the denominator is 0, students were expected to “rationalize” the expression for the 

function, by multiplying numerator and denominator by the conjugate of the numerator.  Stewart 

(2016) does not explain how to rationalize, as students should have learned this procedure in 

prerequisite courses. He does however mention rationalizing the numerator as the preliminary algebra 

required to solve a limit in a specific example (Stewart, 2016, p. 99).  

The following definition came from a textbook used in a prerequisite course. 

Removing radicals in the denominator or the numerator of a fraction is called 

rationalizing the denominator or rationalizing the numerator, respectively. The 

procedure for rationalizing involves multiplying the fraction by 1 in a special way so as to 

obtain a perfect nth power (Ratti & McWaters, 2014, p. 15). 

A theoretical justification for this technique is the following algebraic property:  If      , then  
 

 
 

  

  
 . 

But the problem did not require students to justify the techniques they were using. 

      
         

               
         

          
           

           
  

Students did not need to multiply out the binomials in the numerator, as these were the factors of the 

difference of squares (         ). However, if they did not realize this, they would have used the 

FOIL (First, Outside, Inner, Last) method (Sullivan, 2016, p. 43).  
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Multiplying binomials is applying the distributivity property twice, however it is unclear how many 

students know this (                                    ), since college 

algebra textbooks tend to replace this theoretical justification by a “foolproof” FOIL “method”. 

(Sierpinska & Hardy, 2010) 

Further, students need to know that the square of a square root of an expression is the expression. The 

algebraic knowledge required here is the following:  

For any real number  ,     
 
           (Ratti & McWaters, 2014, p. 12). 

       
         

                     
  

The greatest common factor amongst     ,  , and   is   . Further, the greatest common factor among 

        and        is      . 

        
          

                    
  

Students would then divide numerator and denominator by       , or as they tend to know it as 

"cancel it out". 

        
     

               
  

As     is now in the domain of this function students could replace   by the value it is approaching 

and calculate the limit. 

  
       

               
  

 

  
   

Thus, the expected solution of this limit problem requires a good use of algebraic knowledge.  Whether 

students have a good conceptual understanding of limits is not being assessed.  

3.3 PROBLEM 3 – VERTICAL AND HORIZONTAL ASYMPTOTES 

In order to find a vertical asymptote of a function     , one has to find at what points  , a one-sided 

limit of the function is plus or minus infinity. To find horizontal asymptotes, one must find if the function 

has finite limits when      or      .   

Stewart provides the following intuitive definition of an infinite limit: 
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Let f be a function defined on both sides of  , except possibly at   itself. Then 

             means that the values of      can be made arbitrarily large (as large 

as we please) by taking   sufficiently close to  , but not equal to   (Stewart, 2016, p. 89).  

In this section of the textbook, Stewart provides a numerical approach to help students understand why 

the limit of the following function is infinity using the table method:       
 

     .  Students tended to 

have a little bit of difficulty with infinite limits, as in the example above, they have difficulty 

comprehending why we could divide by zero and obtain infinity.  I had students ask me, "but how can 

this be possible, we are not allowed to divide by zero?" And I had to explain to them that we were 

looking at the behavior of the function as   tended to zero, but we were not concerned with what 

happens at zero, as indicated by the definition. 

Following this intuitive definition, Stewart provided the following definition of vertical asymptotes: 

The vertical line     is called a vertical asymptote of the curve        if at least 

one of the following holds:                  or                 or 

                (Stewart, 2016, p. 90).  

The section ends with the two examples that provide a numerical approach to finding limits. Note that 

both examples had vertical asymptotes at points in which the function was undefined. This poses a 

problem, as students tend to generalize that vertical asymptotes occur at every point in which the 

denominator is equal to zero. In finding the vertical asymptotes of a ratio function, we can look at points 

of indeterminacy to get an idea of potential vertical asymptotes. These points, when     , will either 

be vertical asymptotes or hole singularities. Thus, Stewart only providing two examples in which the 

exclusions of the domain resulted in vertical asymptotes can suggest false generalizations. A good 

number of students did not verify, or mention the infinite limits when finding the vertical asymptotes in 

the final examination. 

Stewart provides a similar table method approach to limits at infinity, as well as the following intuitive 

definition of a limit at infinity: 

Let   be a function defined on some interval      . Then              means that 

the values of      can be made arbitrarily close to   by requiring   to be sufficiently 

large (Stewart, 2016, p. 127). 

Following this intuitive definition, Stewart provided the following definition of horizontal asymptotes: 
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The line     is called a horizontal asymptote of the curve        if either 

             or              . 

Stewart provides a few examples following this definition, and after an example of the limit of a rational 

function at infinity, Stewart provides the following advice: 

...we need to do some preliminary algebra. To evaluate the limit at infinity of any 

rational function, we first divide both the numerator and denominator by the highest 

power of   that occurs in the denominator (Stewart, 2016, p. 130). 

The author provides a procedure, a technique that students tend to memorize. Every time they see   

approaching infinity they follow this procedure. As Sierpinska and Hardy (2010) point out, why aren't the 

authors showing our students how to reason? They bring attention to the "learning by example 

approach", and mention limits at infinity and how various textbook authors provide different techniques, 

and procedures dependent of the examples provided, rather than trying to teach our students how to 

reason. For rational functions, one can look at the leading coefficients of both the numerator and 

denominator and arrive at conclusions based on the highest degree without necessitating the use of 

algebra. Although Stewart provides the technique described above and uses it for some of his examples, 

he does offer some reasoning as well: 

Find       
 

 
 ...Observe that when   is large, 

 

 
 is small...; by taking   large enough, we 

can make 
 

 
 as close to   as we please... (Stewart, 2016, p. 129). 

Although the function provided in Problem 3 was not a rational function, similar reasoning such as the 

one provided by Sierpinska and Hardy (2010) could have been applied.  

Problem 3 was given as follows: 

Find all the horizontal and vertical asymptotes of the function       
       

    
 . 

Students were expected to notice that this function is a ratio containing a radical expression. Although 

this function was not a rational function, similar reasoning as provided by the textbook could be applied 

in order to find the horizontal asymptotes.  In order to find the vertical asymptote, students would look 

at points where      is not defined. This occurs when the expression in the denominator,       , 

that is when   
 

 
.  Students would then need to verify that one of the conditions in the definition holds, 
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such as    
  

 

 

 
       

    
   . Students would then need to conclude that   

 

 
 is a vertical asymptote.  

A proportion of students did not verify any condition, rather stated that the vertical asymptote is   
 

 
 

solely based on the function being undefined at this point. For some students, finding vertical 

asymptotes is merely a procedure, by looking at when the denominator equals zero. An incorrect 

generalization, perhaps obtained by solving routine problems, in which the denominator equaling zero 

always provided vertical asymptotes. Despite having shown an example in class in which an asymptote 

did not occur, and reiterating the definition of vertical asymptotes, students still did not verify any 

conditions. An example of such a limit would be       
    

   
. This function is undefined when     

however,     is not a vertical asymptote, it is a hole singularity represented by a hole in the graph of 

the line      .  Further, some students did verify a condition, found a limit as being infinity, and did 

not conclude that   
 

 
 was the vertical asymptote. As though the limit equaling infinity was the answer 

to finding an asymptote. 

In order to find the horizontal asymptotes, students needed to find whether the limits at infinity were 

equal to a specific value, i.e. the function approaches a finite limit as   tends to positive or negative 

infinity. The horizontal asymptote is the line with equation    . However, it can be expected that 

some students would leave the solution after writing that the limit of the function at plus or minus 

infinity is equal to  . 

The expected solution, as suggested by the worked out examples and instructions in the textbook, is as 

follows. The same procedure as for rational functions is used: dividing numerator and denominator by 

the term in the denominator with the highest degree:  

      
       

    
         

       

 
    

 

        

       

  

    
 

 

        

     
 

  

    
 

 

  
       

     
 

   

 
  

       
       

    
         

       

 
    

 

          
       

  

    
 

 

          
     

 

  

    
 

 

   
       

     
  

   

 
  

Therefore the horizontal asymptotes are   
   

 
 and     

   

 
 . 
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Alternatively, students could have solved the problem as follows: 

      
       

    
         

        
 

   

      
 

 
 

        

         
 

   

       
 

 
 

        

       
 

   

       
 

 
 

     
   

      
 

   

     
 

 
 

 
   

 
  

       
       

    
         

        
 

   

      
 

 
 

         

         
 

   

       
 

 
 

          
       

 

   

      
 

 
 
    

         
      

 

   

     
 

 
 

  
   

 
   

Therefore the horizontal asymptotes are   
   

 
 and   

   

 
 . 

I believe that this second solution offers more insight into using the following algebraic knowledge: 

                   and                    .   

Thus, although one’s conceptual understanding of asymptotes may be correct, the procedures taught in 

the textbook make use of algebraic techniques to finding these limits. Again, in finding both the vertical 

and horizontal asymptotes, one is reduced to simple algebraic procedures. Although this is not the 

intention of the knowledge to be learned, this is what students appear to remember about asymptotes.  

3.4 PROBLEM 4 – DERIVATIVES OF VARIOUS FUNCTIONS 

Derivatives are introduced in the Stewart textbook after limits, as a special type of limit. This limit was 

previously seen with the tangent problem, and with the velocity problem. When trying to find the slope 

of the tangent line to a curve at a point          , one looks at nearby points           and calculates 

the slopes of secant lines    as point   approaches point  . The limiting position of the secant lines    

as   approaches   is the tangent line. The following definition is provided: 

Definition The tangent line to the curve        at the point           is the line 

through P with the slope         
         

   
 provided that the limit exists (Stewart, 

2016, p. 141). 

Equivalently, if we let      , the slope of the tangent line can be given as follows:   

      
           

 
.  When trying to find the instantaneous velocity of an object at a point          , one 

calculates the average velocities between point  , and point              , as the displacement of 
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the object over time. In calculating these averages velocities over shorter and shorter time intervals (as 

we let   approach  ), the instantaneous velocity is given as follows:             
           

 
 

(Stewart, 2016, pp. 142-143).  At this point in the textbook, the author brings together the idea that the 

limits are the same in finding the slope of the tangent line to the graph of a function        at some 

point and in finding the instantaneous velocity of a moving object with the relationship between the 

path covered and time expressed by a function        . He also points out that this type of limit 

      
           

 
 arises whenever one calculates a rate of change. The derivative is then introduced as 

follows: 

Definition The derivative of a function   at a number  , denoted by      , is 

             
           

 
  if the limit exists (Stewart, 2016, p. 144). 

Alternatively, if we let      , an equivalent definition is              
         

   
, which highlights 

the first interpretation of the derivative as the slope of a tangent line to the curve       . Further, 

rates of change are introduced via the difference quotient, whereby the average rate of change of   

with respect to   is given by 
Δ 

Δ 
 

           

     
, and again this can be interpreted as the slope of the 

secant line joining points            , and            . If we would like to consider the instantaneous 

rate of change, we are looking at the limit of the slopes of the secant lines as   approaches  ,  

        

           

     
. This limit is the derivative       . The second interpretation of the derivative is 

provided: 

The derivative       is the instantaneous rate of change of        with respect to   

when     (Stewart, 2016, p. 146). 

Up until this point in the textbook, derivatives are presented as the derivative of a function at a specific 

point  . In the section that follows, the derivative is introduced as a function: 

             
           

 
, and the geometrical interpretations of the derivative of      are provided. 

Given a positive derivative (positive slope of     ) over an interval, the graph of       lies above the  -

axis (      is positive) over that interval. For a negative derivative (negative slope of     ) over an 

interval the graph of       lies beneath the  -axis (      is negative). For derivatives equal to zero, 

horizontal tangent lines drawn to the curve      at some points will be zero(s) of      . Second, third, 

and higher order derivatives are then introduced, and the instantaneous rate of change of velocity with 
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respect to time is provided as the acceleration     , which is the derivative of the velocity function     , 

and the second derivative of the position function     . In the remaining sections on derivatives, 

different differentiation rules are provided such as the Power Rule, the Quotient Rule, the Chain Rule, 

etc.  

Problem 4 entails finding the derivatives of five functions given by their algebraic expressions. According 

to Drijvers (2011, p. 9), finding the derivatives of functions is an algebraic activity. A conceptual 

understanding of derivative is not necessary in this problem. Further, students are told that they do not 

need to simplify the final answer. Therefore students’ algebraic skills related to simplifying algebraic 

expressions are not assessed by this question. The competencies being assessed are whether the 

students know when and how to apply the different rules of differentiation. The algebraic skills engaged 

in solving this problem involve, first of all, a structural view of algebraic expressions (Sfard, 1987), 

analyzing the expression from its outermost form to the innermost details. In question 4a, for example, 

where the function is      
  
 

     

 
, the students need to first recognize a quotient of two functions, 

and apply the rule of differentiation of such quotient. Next, they need to enter into the details of the 

two functions, recognize that the first is a sum of two functions, and the other a monomial, etc. This 

structural point of view is opposed to an operational one which would be enough if students were asked 

to calculate the value of the expression for some concrete value of the variable  . 

Students with great memorization skills, and a good structural view of functions can obtain perfect 

scores on these derivatives, yet can have no conceptual understanding of derivatives. Students 

presented with a constant function will have memorized that the derivative of a constant is zero. When 

presented with a polynomial, one can apply the Sum and Difference Rules, and the derivative of each 

term may require the use of the Constant Multiple Rule, and the Power Rule. Presented with an 

exponential function, a trigonometric function, a product of functions, or a quotient of functions, 

students know to apply the appropriate differentiation rules. Presented with a composition of functions, 

students memorize that they will need to use the Chain Rule. As presented in Stewart: 

The Chain Rule If   is differentiable at   and   is differentiable at     , then the 

composite function       defined by              is differentiable at   and    is 

given by the product                     . In Leibniz notation, if        and 

       are both differentiable functions, then 
  

  
 

  

  
 
  

  
  (Stewart, 2016, p. 198). 
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Leibniz notation is quite elegant. It demonstrates the dependence of rates, and how rates of change 

multiply. In explaining the Chain Rule, it is customary to provide both Leibniz notation as well as prime 

notation. In the examples I provided to students, I explained the usefulness of decomposing the function 

into its elementary functions. One real life example of the Chain Rule that I find brings forward the idea 

of rates multiplying is the following. When landing or taking off in an airplane, one’s ear tends to have a 

popping sensation. The reason for this is that the internal ear pressure system cannot keep up with the 

change of pressure, i.e., the rate of change of pressure with respect to time is too large  
  

  
 . The rate of 

change of pressure with respect to time is quite difficult to measure directly, however the rate of change 

of pressure with respect to altitude  
  

  
  is fairly easily obtained, as is the rate of change of altitude with 

respect to time  
  

  
 . Thus a pilot changing altitude fairly quickly will in turn cause a large change in 

pressure with increasing (or decreasing) altitude. This results in a larger rate of change of pressure with 

respect to time  
  

  
 

  

  
 
  

  
  (Marsden & Weinstein, 1985, p. 116). This example, along with many 

others brings forward the idea that rates of change multiply. I have had students confess that Leibniz 

notation is too confusing. Thus they settle for the prime notation of the Chain Rule, and follow yet 

another procedure to finding the derivative: 

NOTE  In using the Chain Rule we work from the outside to the inside... We differentiate 

the outer function   [at the inner function     ] and then we multiply by the derivative 

of the inner function (Stewart, 2016, p. 199). 

Although I find that this procedure removes the elegance of the Chain Rule, it still requires students to 

recognize the overall structure of the expression. Working from the outermost to the innermost 

structures, one's ability to distinguish between the independent and dependent variables, as well as the 

parameters of an expression will determine which differentiation rules to apply, and in which order.  

Since all the functions in Problem 4 require the use of various differentiation rules and are not provided 

with any context, no slope, no instantaneous velocity, and no instantaneous rate of change 

interpretations are required, this problem is characterized as an algebraic activity. However, even 

though it is not testing any conceptual understanding of derivatives, this problem requires more than 

simple rote memorization.  
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Problem 4 was given as follows: 

Find the derivatives of the following functions. (You don't need to simplify the final 

answer, but you must show how you calculate it): 

Part a)      
  
 

      

 
 

Part b)                         

Part c)          
  

   
       

Part d)                    ) 

Part e)             (use logarithmic differentiation) 

Expected Solutions: 

Part (a) can either be solved by applying the Quotient Rule, or can be simplified prior to taking the 

derivative. In simplifying the expression, an expected solution is as follows:      
  
 

      

 
 

 
 
       

 
   

  

      .  Then by applying the Power Rule  
 

  
            , and knowing the 

derivative of the natural exponential function  
 

  
        , one obtains the following derivative: 

       
 

 
 

  

      . 

Part (b) requires the use of the Chain Rule. In knowing the derivative of the natural exponential function, 

as well as the derivative of the sine function  
 

  
            , one would arrive at the following 

solution:                                                                              .   

Part (c) can also be solved in two ways. One can either take the derivative directly, apply the Chain Rule 

and Quotient Rule to the natural logarithmic term, or one can use logarithmic laws           

           , and      
 

 
                to rearrange the function prior to taking the derivative. 

One must know the derivative of the natural logarithm  
 

  
      

 

 
 , and recognize    as a constant in 

order to obtain the correct derivative of the function:           
  

   
                      

                   and          
 

   
       

 

   
 .  
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Part (d) also requires the use of Chain Rule. Students need to know the derivative of the trigonometric 

functions  
 

  
            , and  

 

  
             , and how to use the power rule:        

                               
 

 
         

 

      .    

Lastly, in Part (e) students were specifically asked to use logarithmic differentiation, which, in the 

textbook, is given as follows:  

Steps in Logarithmic Differentiation 

1. Take natural logarithm of both sides of an equation        and use the Laws of 

Logarithms to simplify. 

2. Differentiate implicitly with respect to  . 

3. Solve the resulting equation for                        . 

In order to use logarithmic differentiation one must know how to differentiate implicitly. Stewart 

describes using implicit differentiation when trying to find the derivative of an implicit function which 

cannot easily be solved for   explicitly as a function of   (or in some cases even impossible to do so by 

hand). The process is described as follows: 

...Instead we use the method of implicit differentiation. This consists of differentiating 

both sides of the equation with respect to   and then solving the resulting equation for 

   (Stewart, 2016, p. 209). 

Stewart also provides a summary to help students determine between which differentiation rules to use 

depending on the exponents and bases provided: 

In general there are four cases for exponents and bases: 

1. 
 

  
       (Constant base, constant exponent) 

2. 
 

  
                        (Variable base, constant exponent) 

3. 
 

  
                        (Constant base, variable exponent) 

4.  
 

  
          , logarithmic differentiation can be used. (Variable base, variable 

exponent) (Stewart, 2016, p. 221). 
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If we had not explicitly asked students to use logarithmic differentiation they could have solved it using 

another method, namely writing             
    

. An expected solution using logarithmic 

differentiation is as follows:   

           

         

            (step 1: taking natural logarithm of both sides) 

            (using the law of logarithm:       
         , where   is any real number)  

  

 
           

    

 
 (step 2: differentiate implicitly with respect to  ; apply the product rule) 

              
    

 
   (step 3: solve for    by multiplying both sides with  ) 

                  
    

 
   (lastly, replace   with        ) 

3.5 PROBLEM 5A – EQUATION OF THE TANGENT LINE 

Throughout the course, a typical problem was that of finding the equation of the tangent to a curve at a 

specific point. Once the interpretation of the derivative was given as the slope of the tangent line (as 

previously discussed in section 3.4 of this thesis), the tangent line problem came up in every single 

section where new differentiation rules were presented.  Although, in order to solve such a problem, 

students need to have a proper interpretation of the derivative as the slope of the tangent line, by the 

end of the semester this type of problem is nothing but routine. Its solution requires algebraic 

processing of expressions and solving equations, treating variables statically as representing hidden, 

unknown or arbitrary numbers rather than dynamically, as co-varying, in a way that is characteristic of 

thinking in Calculus (Thompson & Carlson, 2017). 

Problem 5a was given as follows: 

Verify that the point       belongs to the curve defined by the equation 

               , and find the equation of the tangent line to the curve at this 

point.  
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Even from the start, this problem suggests that the point       needs to belong to the curve, as students 

are asked to verify that it does. If we had provided a problem in which one needed to find the tangent 

lines to a curve passing through a point not on the curve, I wonder how many students would proceed 

to finding the derivative of the function and then find the slope at the given point, even if the point did 

not belong to the curve? One such problem provided in their WebWork assignment was as follows: 

Find the equations to both lines through the point       that are tangent to the parabola 

        . 

However, in having experienced this non-routine problem students may have inquired as to why their 

answer was incorrect. Perhaps they would have learned the lesson and learned to use a different 

approach to finding tangents to curves from points not lying on the curve? However, many students 

were asking about this problem during class, claiming that the WebWork system was wrong.  

In principle, verifying that a given point, given by its coordinates, belongs to a curve given by an 

equation requires understanding the equation as a condition that is “satisfied” by the coordinates of all 

points of the curve and only those.  The notion of “condition” and of a condition being “satisfied” are 

non-trivial logical and algebraic ideas. But students may successfully answer this question by having 

learned to associate the instruction of “verifying if a point belongs to a curve” with plugging in the 

coordinates of the point into the variables in the equation. This activity can hardly be qualified as 

algebraic. It is a numerical activity.  

Expected Solution to Problem 5a: 

In verifying that a point belongs to a curve, students are required to obtain a solution satisfying the 

condition that the left hand side needs to be equal to the right hand side.  

Given the point      , and the equation                : 

                

                      

         (True, the point       belongs to the curve) 

Secondly, in order to find the equation of the tangent line, as previously mentioned students needed to 

interpret the derivative as the slope of a tangent line to the curve at a specific point. In this particular 
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problem, students needed to recognize that the equation is implicit, thus needing to calculate the 

derivative implicitly. Below is the implicit differentiation of the equation with respect to  : 

                

                    

                   

    
     

      
  

This processing of an equation according to rules is an algebraic activity. 

In order to find the slope of the tangent line at the point      , one must evaluate the derivative at that 

point:      
     

        
  

 

 
 , which is a numerical activity. Having found the slope of the tangent line as 

   
 

 
 , one can use the point-slope form in order to find the equation of the tangent line as follows: 

               

     
 

 
        

   
 

 
    

This is also an algebraic activity: recalling a formula, recognizing what the different letters stand for, 

distinguishing between variables and parameters, substituting numerical values for some parameters, 

processing an equation to isolate a variable.  

Thus the equation of the tangent line to the curve, at the point       is    
 

 
   . 

3.6 PROBLEM 5B – RELATED RATES 

Stewart provides the following paragraph in the introduction to the related rates section, followed by 

typical examples in order to demonstrate the procedure: 

In a related rates problem the idea is to compute the rate of change of one quantity in 

terms of the rate of change of another quantity (which may be more easily measured). 

The procedure is to find an equation that relates the two quantities and then use the 

Chain Rule to differentiate both sides with respect to time (Stewart, 2016, p. 245). 
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It must be stressed, however, that all these problems require computing the rate of change of a quantity 

at the moment when the rate of change of the other, related quantity has a given numerical value. This 

turns solving these problems into an algebraic activity. The problems are “about numbers and static 

variables” (Thompson & Carlson, 2017) rather than about co-varying quantities and describing the 

character of this covariance. The quoted authors give examples of problems where covariational 

quantitative reasoning is necessary, e.g., the well-known bottle-filling problem asking to sketch a graph 

of the height of the water as a function of its volume  (Carlson, 1998). The authors report that in 

Carlson’s study, most students who performed highly in Calculus courses based on algebraic-procedural 

approaches such as Stewart’s were unable to construct an appropriate graph.  

In using the Chain Rule we are differentiating both sides of an equation implicitly with respect to time ( ). 

Stewart also offers a step-by-step procedure, to solving the specific type of related rates problems: 

Problem Solving Strategy 

1. Read the problem carefully. 

2. Draw a diagram if possible. 

3. Introduce notation. Assign symbols to all quantities that are functions of time. 

4. Express the given information and the required rate in terms of derivatives. 

5. Write an equation that relates the various quantities of the problem. If necessary, use 

geometry of the situation to eliminate one of the variables by substitution. 

6. Use the Chain Rule to differentiate both sides of the equation with respect to  . 

7. Substitute the given information into the resulting equation and solve for the 

unknown rate (Stewart, 2016, p. 247). 

Students tend to have many difficulties with related rates problems. An analysis of these difficulties 

from the perspective of APOS theory can be found in (Tziritas, 2011).  I assume a number of different 

reasons are at play. First, these problems require one to read multiple sentences and parse out the 

related information, which requires reading comprehension. Second, conceptual algebraic knowledge is 

required: distinctions among the various roles that letters can play: variables, unknown and known 

quantities, functions of other variables, functions of time. Lastly, these problems require students to set 

up equations that relate the quantities, and sometimes use geometry to eliminate one of the variables. 
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Problem 5b was given as follows: 

A particle is moving along a hyperbola     . As it reaches the point      , the y-

coordinate is decreasing at a rate of 3 cm/s. How fast is the x-coordinate of the point 

changing at that instant? 

Expected Solution to Problem 5b: 

The students needed to recognize this as a related rates problem, and to treat   and   as functions of 

time as well as functions of each other. In using the Chain Rule and differentiating implicitly with respect 

to time the following is the expected solution: 

 

  
       

 

  
      

 
  

  
   

  

  
     

Since we want to know how fast the  -coordinate is changing at point      , we solve for 
  

  
. 

  

  
   

 

 

  

  
  

We can now substitute the given quantities: the  -coordinate is decreasing at a rate of 3 cm/s, therefore 

we replace 
  

  
 by   , and since we want to know the rate of change of the  -coordinate at the point 

      we replace   with  , and   with  : 

 
  

  
   

 

 
        

Therefore the  -coordinate is increasing at a rate of 6 cm/s. 

Students tend to make errors in writing out the units of the rate obtained, or forget them altogether. 

Also a common error includes students replacing the given quantities before differentiation despite 

warnings from the author: 

WARNING A common error is to substitute the given numerical information (for 

quantities that vary with time) too early. This should be done only after differentiation 

(Stewart, 2016, p. 247). 
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3.7 PROBLEM 5C – L'HOSPITAL'S RULE 

In evaluating limits of functions as   tends to  , sometimes we arrive at indeterminate forms such as 
 

 
  

or 
 

 
 when attempting the Direct Substitution Property. This occurs when both the function in the 

numerator and the function in the denominator tend to  , or to   (or    . It is unclear whether we will 

obtain an infinite limit, a limit equal to zero, or a limit equal to some finite number. In such cases, a 

method known as l'Hospital's Rule can be used (also known as l'Hôpital's Rule): 

L'Hospital's Rule Suppose   and   are differentiable and         on an open interval I 

that contains   (except possibly at  ). Suppose that 

             and               

or that               and                

(In other words, we have an indetermination form of type 
 

 
 or 

 

 
.) 

 Then 

      
    

    
       

     

     
 if the limit on the right side exists (or is   or   )... 

It is especially important to verify the conditions regarding the limits of   and   before 

using l'Hospital's Rule (Stewart, 2016, p. 306). 

The author also warns that when using l'Hospital's Rule, one differentiates the numerator and 

denominator separately, and not to confuse this with the Quotient Rule. The section in the textbook 

continues with different types of indeterminate forms such as indeterminate products (   ), 

differences (    , and powers (        ). Each can be written differently in order to obtain the 

forms  
 

 
  or  

 

 
  to be able to use l'Hospital's Rule. Limits of the type (   ) can be converted by writing 

the product as a quotient. Limits of the type (     can be converted by finding the common 

denominator between both terms. Limits of the types (        ) can be converted by taking the 

natural logarithm of both sides of the function, or by writing the function as an exponential. In all such 

cases, students are expected to verify the conditions prior to using l'Hospital's Rule. In the previous final 

exams, as well as the one I wrote, students were told when to use the l'Hospital's Rule. Thus, no decision 

needed to be made by the students. If they were told to use l'Hospital's Rule, then they could assume 

that the functions at hand met all the conditions. 
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Problem 5c was given as follows: 

Use the l'Hôpital's rule to evaluate the       
            

        
 

It is expected that students know when and how to use l'Hospital's rule, and when to stop using it. It is 

also expected that they should have a fairly good understanding of indeterminate forms. This problem, 

however, was already in the indeterminate form required to use l'Hospital's Rule, and the students were 

instructed to use the procedure. Thus, another algebraic activity. 

Expected Solution of Problem 5c: 

      
            

        

 
       

           

       

 
       

        

      

 
       

        

      
  

   

 
    

3.8 PROBLEM 6 – THE MEAN VALUE THEOREM 

The problem alludes to the Mean Value Theorem; the theorem guarantees the existence of a solution to 

the part (b) of the problem.  Like the Intermediate Value Theorem, the Extreme Value Theorem, 

Fermat's Theorem, and Rolle's Theorem, the Mean Value Theorem is considered an existence theorem. 

It guarantees the existence of a number   under the following conditions:  given a function       , 

that is continuous on some closed interval      , and differentiable on the open interval      , the 

Mean Value Theorem asserts that there will be at least one point          in the interval      , such 

that the instantaneous rate of change at   will be equal to the average rate of change over      . 

Geometrically the tangent line drawn at the point          will be parallel to the secant line joining 

points          and         . Thus, the slope of the tangent line at that point will be equal to the slope 

of the secant line. Further, "the main significance of the Mean Value Theorem is that it enables us to 

obtain information about a function from the information about its derivative" (Stewart, 2016, p. 290). 

The section on the Mean Value Theorem in the textbook starts off with Rolle's Theorem as follows: 

Rolle's Theorem Let   be a function that satisfies the following three hypotheses: 

1.   is continuous on the closed interval      . 

2.   is differentiable on the open interval      . 

3.           

Then there is a number   in       such that         (Stewart, 2016, p. 287).  
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Rolle's Theorem is followed by two examples, one of which requires proving that an equation has 

exactly one real root, via an argument by contradiction. Stewart also mentions that one of the main uses 

of Rolle's Theorem is to prove the Mean Value Theorem which was stated as follows:  

The Mean Value Theorem Let   be a function that satisfies the following hypotheses: 

1.   is continuous on the closed interval      . 

2.   is differentiable on the open interval      . 

Then there is a number   in       such that       
          

   
  or, equivalently,  

f                      (Stewart, 2016, p. 288).  

Students tend to confuse theorems, and complain that there are a lot of different theorems to 

remember. It is as though they are learning new, disconnected theorems each time. They are unable to 

see the relationships among them. For example, students have a hard time recognizing that Rolle's 

Theorem is a particular case of the Mean Value Theorem, in which            , thus        .  

All this being said, however, this knowledge was necessary for the author of the exam question – it 

guaranteed the existence of a solution – but not for the student solving it. It was possible to solve 

problem 6 correctly without knowledge of the Mean Value Theorem. Only elementary algebraic 

knowledge was needed.  

Problem 6 was given as follows: 

Let               

Part a) Find the slope   of the secant line joining the points            and         . 

Part b) Find all points     (if any) on the interval        such that        . 

Expected Solution to Problem 6a:  

The students needed to recognize a different function notation, namely       in order to plug in    for 

  in the equation as such: 

                                

                           

This alone is a numeric activity. It is enough to understand letters as placeholders (Küchemann, 1981). 
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The points joining the secant line are        and      . Thus, the slope formula gives the following 

slope:    
     

     
  

   

      
   .  

This can be regarded as an algebraic and numeric activity, as students needed to recall the slope formula, 

and substitute the numerical values for         and        .   

Expected Solution to Problem 6b: 

This problem is solvable. Given that the function is a polynomial, it is continuous over  , thus 

continuous over       . It is differentiable over  , thus differentiable over       . Then according to 

the Mean Value Theorem, there exists a number   such that        
         

   
 . 

As mentioned above, however, the problem can be solved without being aware of the Mean Value 

Theorem's existence. One only needs to: 1) know how to differentiate polynomials (applying a general 

formula to a particular case which requires distinguishing variables from parameters but is essentially an 

algebraic activity) to calculate            ; 2) be familiar with the meaning of the functional 

notation of the type “    ” to interpret the given equation         as     –        ; and 3) solve 

this equation for  , using the value for   obtained in part (a). The equation is a quadratic equation, thus 

the common error could be that of missing a solution, but it is a very simple quadratic equation. 

Given               

             

Since    ,  

          

Solving for  : 

       

    
 

 
  

 

  
  

Since both  
 

  
 are in the interval         , then the answer is:    

 

  
 . 

This is also another algebraic activity: finding the derivative of the function at hand, substituting   with 

  (as calculated in part a), and processing the equation to solve for  . In this particular problem, the 
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values obtained for   fell in the interval       , thus students who did not verify whether the calculated 

values for   fell in the interval would have still obtained a correct answer.  

3.9 PROBLEM 7A – DEFINITION OF THE DERIVATIVE 

In section 3.4, we discussed the different interpretations of derivatives, and how derivatives were 

defined as a special type of limit:          
   

           

 
 . When asked to find the derivative using the 

definition of the derivative, students are expected to use this limit. Calculation of the limit involves 

applying the theorem about the limit of a sum of functions, but the use of algebra is definitely required 

in this problem, specifically distributivity (from binomial expansions to factoring, etc.).  

Problem 7a was given as follows: 

Consider the function                  

Use the definition of the derivative to find the formula for      . 

Expected Solution to Problem 7a:  

         
   

           

 
    

   

                           

 
  

    
   

                                           

 
  

    
   

                   

 
    

   
                          

Applying this definition is not rote memorization, since substituting every   term by       in        

requires students to understand the structure of the function. Students tend to make mistakes of all 

sorts, from forgetting the      in the        portion, to multiple errors with distributivity. Although 

applying the definition of derivative may be a Calculus activity, this problem requires much routine 

algebra to be solved correctly. There is no conceptual understanding of derivative that is necessary to 

complete this problem, other than that the derivative of a function is also a function. The algebraic goal 

of this problem is to expand the numerator, and factor an   term, with the goal of "cancelling it out" 

with the   in the denominator. This is done to remove the indeterminacy in the denominator, and to 

apply the Direct Substitution Property to obtain the limit, and ultimately the derivative. Additionally, 

once the students obtain their answer, they could have easily verified if it was correct using the 
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memorized laws of differentiation. If they had done so, those that had made algebraic errors could have 

reviewed their solutions and corrected their mistakes.  

3.10 PROBLEMS 7B AND 7C – LINEAR APPROXIMATIONS AND DIFFERENTIALS 

Linear approximations to functions are useful when accuracy can be slightly overlooked. As example, a 

computer program can save hours or even days by approximating a complicated function near a point 

by a linear function. Other applications can be found in the theory of optics, where the linear 

approximations       , and        are used to design lenses (Stewart, 2016, pp. 251-254). As a 

geometrical approach, Stewart reminds the readers that when zooming in closer and closer to a point on 

a curve of a differentiable function, the graph looks more like that of a tangent line drawn at that point. 

Further, he mentions that given a function, we may be able to calculate     , however we may have 

more difficulty in trying to calculate values near  ; in fact this task may be impossible for some functions. 

A way to get around this issue is to use the values of a linear tangent line drawn at         , provided 

that the values are close to  . Stewart provides the following explanation to linear approximations: 

...we use the tangent line at          as an approximation to the curve        when 

  is near  . An equation of this tangent line is                    and the 

approximation                       is called the linear approximation or 

tangent line approximation of   at  . The linear function whose graph is this tangent 

line, that is,                       is called the linearization of   at   (Stewart, 

2016, p. 252). 

Although it is called the linearization of   at  , it is nothing more than the equation of a tangent line at 

the point         . Thus finding the linearization entails the same procedure and algebraic skills as 

finding the equation of a tangent line to the graph of a function at a point where it is differentiable.  

Differentials are then introduced in the textbook as a different notation and terminology for linear 

approximations. 

If       , where   is a differentiable function, then the differential    is an 

independent variable; that is,    can be given the value of any real number. The 

differential    is then defined in terms of    by the equation           . So    is a 

dependent variable; it depends on the values of   and   ...Let           and 

                be points on the graph of   and let      . The corresponding 
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change in   is                . The slope of the tangent line    is the derivative 

     . Thus the directed distance from   to   is           . Therefore    represents 

the amount that the tangent line rises or falls (the change in the linearization), whereas 

   represents the amount that the curve        rises or falls when   changes by an 

amount    (Stewart, 2016, p. 254). 

Stewart provides an example, in which he compares    to   , and demonstrates how the differential 

   is a good approximation to   , and becomes more accurate when    is smaller. Further,    appears 

to be easier to compute than   .  To find a linear approximation to a curve using differentials, the linear 

approximation can be written as                 , where           . Finally, Stewart ends 

the section with an example using differentials to estimate errors that can occur with approximate 

measurements (Stewart, 2016, pp. 254-256). 

Problem 7b was given as follows: 

Consider the function                 

Write the linearization formula for   at    . 

Expected Solution to Problem 7b:  

              

                    

             

                   

                      

                      

                    

This is a numerical and algebraic activity. Students needed to recall the linearization formula, and that 

we can use a tangent line to approximate the curve when   is near  . There can be confusion in 

distinguishing between the variable and parameters,  ,  ,     , and      . In      and in       

students need to evaluate the functions at  . In     ,   remains unchanged as the independent variable, 

while      and       are substituted by their numerical values. 
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Problem 7c was given as follows: 

Consider the function                 

Find the differential    and evaluate it for the values     and       . 

Expected Solution to Problem 7c:  

           

  

  
        

                

By replacing     and        

                                   

Although differentials entail an understanding of derivatives with the geometrical interpretation of    

and  , and    and   ,  a student could solve this problem by applying a memorized formula. That being 

said, the ability to distinguish between variables from parameters in applying this formula is not a trivial 

matter. The algebraic activity was that of finding the derivative of the function and then knowing the 

differential    is defined in terms of    by           . Further, if they had used Leibniz notation as 

above, multiplying the left and right-hand sides of the equation (in step 2) by    results in the correct 

differential equation           . In substituting the numerical values for   and   , this part is simply 

a numerical activity. Thus once more this problem is an algebraic and a numerical activity. 

3.11 PROBLEM 8A – ABSOLUTE EXTREME VALUES 

In section 4.1 of the Stewart textbook (pp. 275-286), local and absolute extreme values are presented, 

along with Fermat's Theorem, the definition of critical numbers, and the Closed Interval Method. The 

section starts with different examples of optimization problems, in which the author mentions that 

optimization is one of the most important applications of Differential Calculus. Examples provided 

include the shape of a can that minimizes costs, the angle that blood vessels should branch in order to 

reduce the energy expended by the heart, etc. The author also mentions that these problems can easily 

be solved by reducing them to finding the extreme values (maximum and minimum values) of a function. 

The section starts with the definition of absolute extrema: 
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Definition Let   be a number in the domain   of a function  . Then      is the 

absolute maximum value of   on   if           for all   in  . 

absolute minimum value of   on   if           for all   in D (Stewart, 2016, p. 276). 

This definition is provided alongside a graph of a function  , which demonstrates all extreme values, 

both the absolute and local. The definition of local extrema shortly follows: 

Definition The number      is a 

local maximum value of   if           when   is near  . 

local minimum value of   if           when   is near  . 

...if we say that something is true near  , we mean that it is true on some open interval 

containing   (Stewart, 2016, p. 276). 

In the examples that follow, the author graphs extrema of functions, and points out that endpoints 

could only be absolute extreme values (if they satisfy the definition), and not local extrema. After 

providing such examples the author introduces a theorem, which guarantees the existence of extrema.   

The Extreme Value Theorem If   is continuous on a closed interval      , then   attains 

an absolute maximum value      and an absolute minimum value      at some 

numbers   and   in       (Stewart, 2016, p. 278). 

Following this definition are a couple of graphs demonstrating various types of functions and the 

existence of both absolute extrema on a closed interval. Also, the author provides examples in which 

functions do not have absolute extrema if a function fails to be continuous or if continuous but on an 

open interval. In both cases, students have difficulty understanding why at an open endpoint, a function 

cannot have an absolute extreme value. An example given in class was as follows: given a continuous 

increasing function in some open interval      , the point          appears to be an absolute minimum, 

even though      is not defined. I asked the students whether the function can be evaluated at     , 

and they generally responded correctly in agreeing that this cannot be done. I then asked them to 

provide me with a number, say    which is larger than  , and close to   (but not equal to  ), such that 

      can be found.  For whichever number        they provided, I could find a number       such 

that                 . A similar argument is provided for absolute maximum at an open endpoint. 
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Thus, absolute extrema cannot occur at endpoints. Understanding the definitions of absolute and local 

extrema is a calculus-related activity, and ties in with the concept of continuity.  

Following these definitions, the author remarks that at local extreme points, the graph of the function 

that is differentiable at those points has horizontal tangent lines with slopes equal to zero, and provides 

the following theorem: 

Fermat's Theorem If   has a local maximum or minimum at  , and if       exists, then 

        (Stewart, 2016, p. 279). 

This theorem, if recalled incorrectly leads students to believe that whenever        , the function has 

a local maximum or minimum: it is a common logical mistake to interpret an implication as an if and only 

if statement. Thus, they believe the converse of this theorem to be true. Also that if a derivative does 

not exist at a specific point, then no local extrema could be present. The author tries to caution against 

these misconceptions with two examples. One of them is the function         which has a horizontal 

tangent at the point      , thus         however no local extreme value exists at that point. The 

second example was that of the absolute value function          , which has a local minimum at 

     , however is not differentiable at      . The author does mention that we should start looking at 

the points in which         or where       does not exist, for potential extrema. He provides the 

following definition: 

Definition A critical number of a function   is a number   in the domain of   such that 

either         or       does not exist (Stewart, 2016, p. 280). 

The section ends with the Closed Interval Method, which is given as a three-step procedure to finding 

extrema of a continuous function on a closed interval, hence the name. It is used to find local extrema 

that can occur at critical numbers, and absolute extrema which will occur at critical numbers, or at the 

endpoints. Thus this procedure guarantees finding absolute extrema of a continuous function on a 

closed interval. 

The Closed Interval Method To find the absolute maximum or minimum values of a 

continuous function   on a closed interval      : 

1. Find the values of   at the critical numbers of   in      . 

2. Find the values of   at the endpoints of the interval. 
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3. The largest of the values from Steps 1 and 2 is the absolute maximum value; the 

smallest of these values is the absolute minimum value (Stewart, 2016, p. 281). 

Problem 8a was given as follows: 

Find the absolute maximum and minimum values of                        on 

the interval       . 

Expected Solution to Problem 8a:  

Using the Closed Interval Method, one can find the absolute maximum and minimum on the closed 

interval, given that the function is continuous on the interval. Since the function is a polynomial, it is 

continuous everywhere, hence it is continuous on         

                        

                       

In order to find the critical numbers, one can use the distributive property to factor out the common 

term of    , and then factor the quadratic          into             . 

                                                

Setting each factor equal to 0, the critical numbers are     ,    , and    . Note, no other critical 

points are found, as the derivative is defined for all values of  . The Closed Interval Method requires 

testing the critical numbers as well as the endpoints of the closed interval. 

                                    (here is the absolute maximum) 

                                    

                               

                                 (here is the absolute minimum) 

                                

Therefore,         is the absolute maximum point, and         is the absolute minimum point of the 

function on the closed interval       . Evaluating the function at the critical points, and at the 

endpoints is a numerical activity. 
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3.12 PROBLEM 8B – OPTIMIZATION PROBLEM 

Finding optimal solutions to problems dates back to the 17th century. Early historians have perhaps 

slightly misunderstood Fermat's work regarding his method (or methods) for finding maximum and 

minimum values. Nonetheless, his quest for optimal solutions was apparent in his research. Strømholm 

provides a good summary in explaining Fermat's methods, as well as the confusion of the early 

historians (1968). In Fermat's explanation of the foundations of his method(s) to Brûlart and Mersenne, 

he provides an example regarding dividing a segment which would produce the largest rectangle in a 

given area (Strømholm, 1968).  Thus, finding optimal solutions to problems has been around for quite 

some time.  

Optimization problems are introduced in the textbook as problems of maximizing and minimizing certain 

quantities. Thus "maximizing areas, volumes, and profits, and minimizing distances, times, and costs" 

(Stewart, 2016, p. 330). In the preceding sections, the students are taught how to find extreme values of 

a function. In this section they are introduced to a practical application of finding extreme values. Much 

like the related rates problems, students have much difficulty in parsing out the relevant information 

from a word problem, and in setting up the equations relating the knowns and unknowns. Stewart 

provides the following problem-solving steps tailored to Optimization Problems: 

Steps in Solving Optimization Problems 

1. Understand the Problem The first step is to read the problem carefully until it is 

clearly understood. Ask yourself: What is the unknown? What are the given quantities? 

What are the given conditions? 

2. Draw a Diagram In most problems it is useful to draw a diagram and identify the 

given and required quantities on the diagram. 

3. Introduce Notation Assign a symbol to the quantity that is to be maximized or 

minimized (let's call it   for now). Also select symbols                 for other 

unknown quantities and label the diagram with these symbols. It may help to use initials 

as suggestive symbols - for example,   for area,   for height,   for time. 

4. Express   in terms of some other symbols from Step 3. 

5. If   has been expressed as a function of more than one variable in Step 4, use the 

given information to find relationships (in the form of equations) among these variables. 
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Then use these equations to eliminate all but one of the variables in the expression for  . 

Thus   will be expressed as a function of one variable  , say,       . Write the 

domain of this function in the given context.  

6. Use the methods of Sections 4.1 and 4.3 to find the absolute maximum or minimum 

value of  . In particular, if the domain of   is a closed interval, then the Closed Interval 

Method in Section 4.1 can be used (Stewart, 2016, pp. 330-331). 

 

The section continues with a number of examples, demonstrating the steps above. Once a critical point 

is found, the author uses different ways to show that this point is an absolute extreme value. Recall that 

the converse of Fermat's Theorem is false; finding a point in which         does not immediately 

mean that the function will have a local maximum or minimum at that point.  

One example that the author provides is one that includes a closed interval, thus the Closed Interval 

Method is used. Another example demonstrates a variation of the First Derivative Test which is used to 

find local extreme values (presented in the Section 4.3 of the textbook on graphing): 

First Derivative Test for Absolute Extreme Values Suppose that   is a critical number of 

a continuous function   defined on an interval.  

(a) If         for all     and         for all    , then      is the absolute 

maximum value of  . 

(b) If         for all     and         for all    , then      is the absolute 

minimum value of   (Stewart, 2016, p. 333). 

 

Alternatively, one could use the Second Derivative Test along with the Concavity Test with a slight 

variation to find the absolute extrema, provided that the second derivative exists, and is not equal to 

zero. The Second Derivative Test is given as follows:  

The Second Derivative Test Suppose that     is continuous near  . 

(a) If         and         , then   has a local minimum at  . 

(b) If         and         , then   has a local maximum at   (Stewart, 2016, p. 297). 
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The Concavity Test is given as follows: 

Concavity Test 

(a) If          for all   in  , then the graph of   is concave upward on  . 

(b) If          for all   in  , then the graph of   is concave downward on   (Stewart, 

2016, p. 296). 

Notice that if         and         , then   has a local minimum at  . However this local minimum is 

also an absolute minimum if          for all  . The graph of   is concave upward over its entire 

domain, thus   has an absolute minimum at  . Also notice that if         and         , then   has a 

local maximum at  . However this local maximum is also an absolute maximum if          for all  . 

The graph of   is concave downward over its entire domain, thus   has an absolute maximum at  .  

Much like the related rates problems, students have great difficulties in setting up the equations that 

relate the quantities, as well as eliminate some of the variables in order to have the maximizing or 

minimizing function as a function of one variable. Students need to recall different geometric shapes 

and objects, as well as their perimeters, areas, and volumes, which are part of the secondary school 

curriculum. They need to be able to identify the known and unknown quantities, to set up the equations 

relating the quantities, and to differentiate the appropriate equation. Again students are required to 

have some conceptual algebraic knowledge such as being able to distinguish between the various roles 

that letters can play: variables, unknown and known quantities, and functions of other variables. The 

setting up of equations, eliminating some variables, and finding the critical point(s), are all algebraic 

activities. Substituting the critical point value to find the other unknowns is a numerical activity. The 

only activity which could be considered a calculus-related activity, is their conceptual understanding of 

absolute versus local extrema, and their verification that the critical point obtained is an absolute 

extreme value. In all of the optimization problems provided in the section, not one resulted in obtaining 

a critical point which was not the required absolute extreme value. This is somewhat expected as the 

goal of optimization problems is to maximize or minimize a certain quantity. Perhaps an example such as 

maximizing a volume, in which the materials to construct the object are infinite, would be useful. The 

critical point obtained could be that of an absolute minimum, and the graph of the function can be 

concave upwards, increasing without bound. In this scenario, the volume would not be able to be 

maximized, as the volume increases without bound.  Most optimization problems are routine, however, 
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and students know that the critical point obtained will be the absolute extreme value. They know it to 

be so, and as such some do not verify whether it is an absolute extreme value. 

Problem 8b was given as follows: 

A box with a square base and open top must have a volume of 32,000 cm3. Find the 

dimensions of the box that minimize the surface area. 

Expected Solution to Problem 8b:  

This optimization problem requires students to know the formula for the volume of a box with a square 

base, as well as know the formula for the surface area. If students do not carefully read the problem 

they will include the top of the box in the surface area. 

In terms of the Steps provided by the author: 

Step 1:  to understand the problem. 

Step 2:  to draw a diagram (the object being a rectangular box with open top is not drawn here). 

Step 3:  to introduce notation. 

Let   represent the volume,   represent the surface area,   represent the height of the box, and   

represent one side of the base of the box. 

Step 4 and 5:  to express the quantity to be minimized in terms of the other quantities, and to eliminate 

other variables. 

          (surface area to be minimized) 

       and             

Thus the variable to be eliminated will be  , where    
     

   . 

                 
     

        
      

 
  (representing the surface area as a function of   

alone), 

Step 6: was to use the previously learnt methods to find the absolute minimum. Differentiating with 

respect to  : 
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In order to find the critical numbers we let the derivative of the surface area equal to zero. Note that the 

derivative is undefined when    , however     is not part of the domain of     .  

   
      

  
   

   
      

  
 

           

         

     

Using the first derivative test for absolute extreme values, we can confirm that      is the absolute 

minimum. 

Since         for        , the function is decreasing, and         for     , then the 

function is increasing. Therefore      minimizes the surface area. 

Lastly, we substitute the value of   into the following equation to solve for  . 

   
     

   
    

Therefore the box has dimensions 40 cm x 40 cm x 20 cm. 

3.13 PROBLEM 9 – CURVE SKETCHING 

In this problem, students use what they learned about first and second derivatives, and how these 

derivatives affect the shape of the graph of  . The information provided is used to graph the function. 

Section 4.3 of the textbook starts with the following test: 

Increasing/Decreasing Test  

(a) If         on an interval, then   is increasing on that interval. 

(b) If         on an interval, then   is decreasing on that interval (Stewart, 2016, p. 

293).  
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Stewart also offers a method for setting up a table in which the first column includes the intervals which 

were found by finding the critical numbers, and where the function is undefined. The next few columns 

include the factors of the first derivative, the second to last column is the sign of      , and the last 

column describes where   is increasing and decreasing. An example of this table will be shown in the 

solution to this problem. In looking at the constructed table, where one notices a change in the sign of 

      coincides with local maxima and minima, provided that the points are critical numbers. Stewart 

offers the following test to determine local extrema: 

The First Derivative Test Suppose that   is a critical number of a continuous function  . 

(a) If    changes from positive to negative at  , then   has a local maximum at  . 

(b) If    changes from negative to positive at  , then   has a local minimum at  . 

(c) If    is positive to the left and right of  , or negative to the left or right of  , then   has 

no local maximum or minimum at   (Stewart, 2016, p. 294). 

If   is not a critical number, we can be dealing with vertical asymptotes, which are important, however a 

change in sign of       at a vertical asymptote does not indicate a local extreme value. The concavity 

test, as well as the second derivative test have already been presented. Using the second derivative, a 

similar table to the first derivative can be prepared. Lastly, one definition remains: 

Definition A point   on a curve        is called an inflection point if   is continuous 

there and the curve changes from concave upward to concave downward or from 

concave downward to concave upward at   (Stewart, 2016, p. 297). 

Finally, the author provides guidelines for curve sketching, which summarizes all the important 

information required to sketch a curve, from the domain and intercepts, to the use of the second 

derivative to determine intervals of concavity. Note that a paraphrased version of the guidelines are 

presented, as all the tests have already been discussed throughout this thesis: 

Guidelines for Curve Sketching 

A. Domain: the domain of a function will help with sketching, as well as for finding 

critical points. 

B. Intercepts: the   and   intercepts will help with sketching. The author also mentions 

that finding the zeros of a function can sometimes be too difficult, thus it can be omitted. 
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C. Symmetry: if a function is even or odd, this will facilitate the sketch. For even 

functions, the graph is reflected about the  -axis; for odd functions, the graph is rotated 

about the origin by 180 degrees.  

D. Asymptotes: vertical,  horizontal, and/or slant asymptotes will help one determine 

what happens near points where the function is undefined, as well as what happens to 

the graph as   tends to positive and negative infinity. 

E. Intervals of Increase or Decrease: steps include finding the first derivative of the 

function, finding the critical points, and using the Increasing/Decreasing Test. 

F. Local Maximum or Minimum Values: steps include using the First Derivative Test or 

the Second Derivative Test. 

G. Concavity and Points of Inflection: steps include computing the second derivative and 

using the concavity test. Further the points of inflection are determined as per the 

definition. 

H. Sketch the Curve: Use all the information above to sketch the curve (Stewart, 2016, 

pp. 315-316). 

Problem 9 was given as follows: 

Given the function                

Part a) Find the domain of the   and check for symmetry. Find asymptotes of   (if any). 

Part b) Calculate       and use it to determine intervals where the function is increasing, 

intervals where it is decreasing, and the local extrema (if any).  

Part c) Calculate        and use it to determine intervals where the function is concave 

upward, intervals where the function is concave downward, and the inflection points (if 

any). 

Part d) Sketch the graph of the function      using the information obtained above. 

Expected Solution to Problem 9a:  

Since the function is a polynomial, it is defined for all values of  , therefore the domain is all real 

numbers. In order to check for symmetry, one must test if the function is even or odd.  
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            therefore the function is not even 

             therefore the function is not odd 

There are no vertical asymptotes as the function is defined for all values of  . There are also no 

horizontal asymptotes as the limits at infinity increase and decrease without bound. There are no slant 

asymptotes either. 

                     

                     

Finding the domain of a function, checking for symmetry, and finding asymptotes can be all regarded as 

algebraic activities. We have already discussed that domains and functions are part of the definition of 

algebra. Checking for symmetry requires substituting   by   .  Thus, this is not simply numeric, students 

need to be able to view   as a variable and not a placeholder. Finally, in finding the asymptotes, we 

already discussed how finding these limits tends to be quite algebraic in nature. In this problem however, 

since we were dealing with a polynomial of degree 3, no asymptotes are found. 

Expected Solution to Problem 9b: 

               

                      

In order to find the critical numbers, set        . This gives critical numbers at     and    . 

Intervals                     

       - + - Decreasing on        

      + + + Increasing on       

      + - - Decreasing on       

 

Therefore the function is decreasing on intervals        and      , and increasing on      . To find 

local extrema, the First Derivative Test can be used. If       changes from positive to negative at a 

critical number c, then      has a local maximum at c. If       changes from negative to positive at a 
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critical number c, then      has a local minimum at c. Therefore at critical number     we have a 

local minimum, and at     we have a local maximum, where        and       . 

In this part, finding the derivative of a common function is an algebraic task. Using distributivity to find 

the factors of    and       to then find the critical numbers is yet another algebraic task. 

Understanding that the multiplication of the signs of the factors determine the sign of the derivative, 

requires the use of the following arithmetic rules:  

If     and    , then             . 

If     and    , (or vice versa) then             . 

If     and    , then             . 

Creating a table with the columns of the factors of the derivative was not necessary. Alternatively, 

students could instead chose a number in the interval        and evaluate it in       , and do the same 

for the other intervals.  

Expected Solution to Problem 9c:  

              

                   . The possible inflection point can occur when    . 

Intervals                   

       + + Concave up on        

      - - Concave down on       

 

Therefore, the function is concave up on       , and concave down on      . Since there is a change 

in concavity and the function is continuous at    , point       is the inflection point. 

The algebra required in this part is the same as that of part b. 
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Expected Solution to Problem 9d:  

 

 

Being able to sketch the graph of a curve requires the use of previously found information. If at any 

point the students make algebraic errors with the derivatives, with the intervals, or with the signs of the 

factors, they can obtain very different graphs. Plotting points is a skill students learn in secondary school, 

the only difference now is that they include local extrema, critical points and inflection points, which 

they found. Being able to sketch the curve based on the increasing and decreasing intervals, as well as 

concavity requires a little more effort. However, this too is an algebraic task, as graphs and their 

functions are part of the definition provided earlier for algebra. 

3.14 BONUS QUESTION – POINTS OF INFLECTION 

Bonus Question For what values of the constants a and b is       a point of inflection of 

the curve           ? 

Expected Solution to the Bonus Question:  

Given           , substituting   and   by       gives      . 

Taking the first derivative with respect to   of            we obtain             . Taking the 

second derivative we obtain            . 

Setting          , and substituting   with  , we obtain          or        . Using a 

system of equations and solving for the unknowns we obtain: 

2,6

1,4

0,2

1 1 2 3 4
x

1

2

3

4

5

6

y
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Therefore    
 

 
 and   

 

 
 , and    

 

 
    

 

 
  .  

To verify,                           . Setting       we obtain    . 

Intervals                      

       - - - Concave down on        

      - + + Concave up on       

 

Thus, since there is a change in concavity at    , and the function is continuous there,       is the 

point of inflection to the curve    
 

 
    

 

 
  . 

This problem required quite a bit of algebra, from applying formulas and recognizing the structure of 

algebraic expressions in finding the first and second derivatives, to using a system of equations. The 

numerical activities included substituting   with a numerical value. The only Calculus-related activity 

was determining the inflection point; however, this can also be regarded as algebraic as the inflection 

point is found by applying situation dependent rules, namely finding the second derivative, finding a 

change in concavity, verifying that the function is continuous at this point, and concluding that it is an 

inflection point.  
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4 ANALYSIS OF STUDENTS’ SOLUTIONS TO THE FINAL EXAMINATION 

This chapter contains an analysis of students’ solutions to the final examination problems. Incorrect 

solutions were parsed for traces of students’ difficulties, misconceptions, and false rules related to 

algebraic content. Throughout this chapter, these sources of errors will be coded with prefixes D- 

(difficulties), Mis- (misconceptions), and FR- (false rules). Solutions6 to problems 1-3 were analyzed in 

great detail, as the content, and the majority of the errors were algebraic in nature. Problem 4 asked 

students to calculate the derivatives of five functions given by algebraic expressions. From an algebraic 

point of view, therefore, this problem required the ability to (a) correctly decode the structure of the 

algebraic expression of the function, and (b) correctly apply the appropriate differentiation rule to this 

expression. Students’ solutions were analyzed for any manifestations of difficulty with these two 

abilities. In this thesis, our analysis of students’ solutions to parts 4a-4c are presented in detail; solutions 

to parts 4d and 4e are only summarized as errors tend to be of the same nature. Analyzes of students’ 

solutions to problems 5-8 are also briefly summarized by enumerating the algebraic difficulties, 

misconceptions, and false rules, as the nature of the algebraic mistakes was no different from those 

already exhibited in solutions to the previous problems. Problem 9 was not analyzed, as it required 

students to sketch the graph of a function, whereby the tasks required to do so were already assessed in 

previous problems in the final examination (except for the sketch). For example, taking the first 

derivative of a function, finding the critical points, and determining extrema were assessed in other 

problems.  

When the incorrectness of solution could be attributed to the lack of such basic algebraic skills as the 

ability to correctly decode the structure of an algebraic expression, apply a formula, model a situation in 

terms of an equation or being able to discern which variable is a function of which other variable in a 

situation, we spoke of an “algebraic difficulty”.  When the incorrectness of the solution could be 

explained by a false or limited belief about algebraic concepts or processes (e.g., a belief that “inverse 

function” refers to a three-step procedure, or that “ ” always represents a positive number), we spoke 

of “algebraic misconception”. When the student appeared to incorrectly apply a rule or formula as if he 

or she believed in an alternative, faulty procedure, we generalized this faulty procedure as a “algebraic 

false rule”. In the literature, false rules have sometimes referred to as “mal rules” (Payne & Squibb, 

                                                           
6
 Transcripts of complete students' solutions to problems 1-3 are uploaded to: 

[https://drive.google.com/open?id=0B2kYIbyY4SGRbTBIUmY2RTdyTm8] 

https://drive.google.com/open?id=0B2kYIbyY4SGRbTBIUmY2RTdyTm8
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1990)  and identified as being infrequent and unstable. Thus, some of the false rules identified in our 

analysis of the students' solutions to the final examination could appear in only one student solution. 

In sections 4.1 – 4.8, students’ solutions to problems 1-8 are presented, with various level of detail, as 

explained above. Section 4.9 contains a succinct summary of algebraic difficulties, misconceptions, and 

false rules found in students’ solutions. In chapter 5, we show how this information can be used in the 

construction of a Placement Test, to assess a student’s readiness for a Calculus I course that uses final 

examinations of the type analyzed here.  

Our analyses of problems 4-8 also led us to identify a number of false rules related to differentiation. 

They could not be used in a placement test; however, we mention them briefly in the section 4.10 as 

this information could be useful in the construction of an exit test, or perhaps a final examination.   

4.1 STUDENTS’ RESPONSES TO PROBLEM 1 

In this research, we aimed at identifying students’ needs in terms of algebraic skills and knowledge. 

Problem 1 asked students to combine and invert functions and to find domains of functions. We 

expected algebraic mistakes in the substitution of variables when combining functions, in solving the 

equation when calculating the inverse function, and in solving inequalities when determining the 

domains. Some such mistakes appeared, of course, but they were not the main issue in students who 

did not produce correct answers. Their problems could rather be explained by profound conceptual 

difficulties with the notion of domain of a function and with the logarithmic function.   

 

As a reminder, Problem 1 was given as follows: 

a) Let            and          .  Find       and     and determine the 

domains of these composite functions.  

b) Find the domain of the function               , the inverse function    , and the 

domain of    . 

In Table 1 we present the distribution of correct and incorrect answers (not necessarily correct 

reasoning) to this problem. Sixty three students wrote the examination. 
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Table 1. Distribution of correct and incorrect answers to Problem 1. 

n=63 correct incorrect other total 

P1a     

    60 (95%) 3 (5%) 0 63 

    61 (97%) 2 (3%) 0 63 

     45 (71%) 17 (27%) 1 (2%) 63 

     42 (66%) 20 (32%) 1 (2%) 63 

P1b     

   35 (56%) 22 (35%) 6 (9%) 63 

    34 (54%) 23 (37%) 6 (9%) 63 

     27 (43%) 28 (44%) 8 (13%) 63 

 

Remarks: There are slight differences in the percentages between correct domains of     , and     . 

One idea is that since     was a square root function with no other constants outside of the square 

root, some students happened to obtain the correct domain even with an incorrect reasoning.  However, 

with     this incorrect reasoning did not lead them to the appropriate answer (to be discussed in 

examples below).  Also we can see that students had difficulty with the domain of logarithmic functions, 

and finding the inverse function. Also note, that among the 28 incorrect solutions for the domain of the 

inverse, 10 had a correct domain of an incorrect inverse. 

Note that throughout this thesis, students will be referred to as he or she, and this designation is 

random. 

4.1.1 Conceptions of domain 

In our initial analysis of students’ solutions to problem 1, a number of incorrect conceptions of domain 

became apparent. The problem was made of two parts; in part (a), domains of combinations of a square 

root function with a linear function were required. Part (b) asked to specify the domains of 

combinations of logarithmic, exponential and linear functions.  We identified all students’ conceptions 

of domain of function in their solutions to part (a), and then – to part (b).  Then we verified whether 

each student exhibited the same (correct or incorrect) conception of domain of function in both parts of 

the problem.  But we found little or no consistency; most students appeared to use one conception in 

part (a) and another conception in part (b). It was as if they had a conception of the domain of functions 
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with the square root, and a conception of domain of logarithmic-exponential functions but no general 

conception of domain of function. Their knowledge of domain can be said to be “situated”, or 

dependent on context (Lave & Wenger, 1991)7. Situated knowledge is very complex, dependent on 

details, both mathematical and specific of learning mathematics in a particular institution, and it might 

be partly to blame for some students’ apparent incorrect recollection and confusion of properties 

relevant to identifying the domain. Also, obtaining a correct domain does not necessarily imply a correct 

conception of domain. 

The first two compositions (Problem 1a) were the following two square root functions:  

 (1)               ; and  

 (2)                .  

The following statistics relate to correct conceptions of domain concerning functions (1) and (2). Of the 

63 solutions, the correct expected conceptions of [the natural] domain were exhibited in 42 (~67%) 

solutions for both square root functions8, in 1 solution for function (1) only, and in 1 solution for 

function (2) only. A total of 17 (~27%) solutions appeared to be based on incorrect conceptions of 

domain for both functions. Solutions of two students did not belong to any of the above categories (one 

did not attempt the problem; the other’s solutions were incomprehensible). 

In Problem 1b, students were asked to find the domains of the following logarithmic functions:     

  (3)              ; and  

 (4)                .  

The following statistics relate to expected correct conceptions of [the natural] domain concerning 

functions (3) and (4). Of the 63 solutions, the correct conceptions of domain were exhibited in 27 (~43%) 

solutions for both logarithmic functions9, in 11 (~18%) solutions for function (3) only, and in 3 solutions 

for function (4) only. A total of 11 (~18%) solutions were incorrect conceptions of domain for both 

functions. Several solutions either could not be categorized (2 solutions) or there was no attempt at a 

solution (3 solutions).  

                                                           
7
 See also the article and Jean Lave’s talk at http://newlearningonline.com/new-learning/chapter-6/lave-and-

wenger-on-situated-learning .  
8
 The majority found the compositions     and     correctly (this will be discussed further).  

9
 Only 34 (~54%) students found the inverse of   correctly (this will be discussed further).  

http://newlearningonline.com/new-learning/chapter-6/lave-and-wenger-on-situated-learning
http://newlearningonline.com/new-learning/chapter-6/lave-and-wenger-on-situated-learning
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The remaining 6 (~10%) solutions were a combination of a wrong conception of domain, an 

uncategorized domain, and no attempt at finding the domains for functions (3) and (4). 

Six (~10%) students out of the 63 appeared to have an initial proper conceptual understanding of the 

domain for (3) and/or (4), but made algebraic mistakes in their calculations, and/or applied an incorrect 

logarithmic property which will be discussed in a later section. The issue with incorrect logarithmic 

properties also became apparent in finding the inverse. Of the 28 incorrect solutions for the domain of 

(4), 20 solutions were obtained because students identified the domain of the inverse function with the 

domain of the algebraic expression obtained through the “inverse function procedure” and the algebraic 

expression they obtained was incorrect. (The belief that the domain of the inverse function is the 

domain of the algebraic expression for the inverse function is coded as Mis-Dom3). Of these 20 solutions, 

10 (~50%) solutions were correct domains for the incorrect inverses obtained. 

 In the following subsections, we describe and give examples of the correct (expected) and 

incorrect responses to problems about the domains of functions. 

4.1.1.1 Expected Conception of Domain 

All expected responses seemed to be based on the notion of domain of a function as the domain of the 

algebraic expression used in the formula of the function (the natural domain). Although, formally, this is 

a misconception (coded Mis-Dom1), it was assumed that students will use it in solving the problem: 

implicitly the notion of natural domain was intended in the formulation. Here are examples of responses 

that we categorized as representing a “correct” notion of domain.   

Example of finding the domain of function (1) 

Student #29 wrote:  

                       

Domain        

               

        

  

 
 

 

 
 

  
 

 
 

Domain of    :    
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Note: The second and third lines of the solution above suggest that this student uses the correct 

conception of the domain of composite function                          which, applied to 

the given functions, gives                                        . She also 

does this for function (1). 

Example of finding the domain of function (2) 

Student #5 wrote: 

Domain of            

     

            

Note: Although this student obtained the expected answer based on the domain of the algebraic 

expression, which we have classified as "correct", the belief that the domain of a composition of 

functions is the domain of the final algebraic expression of the composite function is, formally, a 

misconception, coded as Mis-Dom2.  

Example of finding the domain of function (3) 

Student #7 wrote: 

       

     

         

       

                        

Note: This student obtained the correct answer, implicitly using Mis-Dom2 (the expected 

misconception). 

Example of finding the domain of function (4) 

Student #11 wrote: 

       always true   

Domain          

 Note: This student’s conception of the domain of the inverse function seems to be the domain of the 

algebraic expression for the inverse function (Mis-Dom3).  
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4.1.1.2 Incorrect Conceptions of Domain  

In the analysis of the final exams, the incorrect conceptions of domain identified could be grouped into 

two main categories, and are coded as Mis-Dom4. Students either applied some condition to the whole 

algebraic expression representing the function, or to some special elements of that expression. 

Misconceptions about the domain of a function, coded as Mis-Dom, are summarized in section 4.9.  

Below are the different conceptions of domain identified. 

4.1.1.2.1 Domain obtained by applying a condition on the whole expression representing the function 

A few students solved the equation       , sometimes correctly, sometimes not, and claimed that 

         where   is a solution of that equation. This method appeared in two solutions to finding 

the domains of the square root functions and in one solution to finding the domains of the logarithmic 

functions. 

Example of finding the domain of function (2) 

Student # 40 wrote: 

    
            

                 

          

         

       

   
 

  
 

domain   
 

  
     

Note: The equation           is implicit between the first and the second lines of the solution. 

Example of finding the domain of function (4) 

The same student # 40 wrote: 

[1]  inverse          

[2]           

[3]       
    

    
 

[4] 
           

   
      

[5]                
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[6]     

[7]  when     then       

[8]  Domain        

Note: In the first line, the student appears to apply the second step of the “inverse function procedure”: 

switches   and  . But he omits the brackets and treats the function as           , which leads to the 

equation in line 2. In line 3, the student appears to interpret the expression      as      , rather than 

       
 , and applies the change of base formula - the new basis is not specified. One would expect the 

student to multiply both sides of the equation in line 3 by      and obtain               . Instead, 

the equation obtained is the one in line 4, with the incomprehensible “log” in the denominator. Maybe, 

the student intended to divide both sides of the equation by     , treating it as a variable but forgot to 

eliminate it on the right side. (The treatment of log as a variable is a misconception about notation 

coded as Mis-Notation2). He does so in line 5.  It is unclear what the sixth line of the solution means, but 

his seventh line seems to be a solution of the equation     where   is as in the fifth line, i.e., 

          ). Since the solution is     , the domain is       . Although it appears from the above 

two solutions, that this student has a consistent conception of domain in Problem 1, his conceptions of 

domain in solutions to functions (1) and (3) are different. This inconsistency in the solutions of domain 

problems for similar and different types of functions is apparent in a number of students. 

 In a couple of other solutions, the domain of a function was obtained by solving the inequality 

       , correctly or incorrectly, and taking the domain to be the interval from the value obtained 

(inclusive) to infinity:          where   is a solution of the inequality.  

Example of finding the domain of function (1) 

Student # 12 wrote: 
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Note: In this case, the final answer was correct but the conception used to obtain it was incorrect. 

Traces of the erroneous conception are in the second line of the solution.  

Example of finding the domain of function (3) 

The same student # 12 wrote: 

              

           

      

           

Note: Traces of the conception are in the second line. In passing from the first to the second line of the 

solution, the student seems to believe that logarithm of the sum is the sum of logarithms. (The 

assumption of linearity is a false algebraic rule coded as FR-Lin-Log). In the second line he writes a strict 

inequality but changes it to weak inequality in line 3. This student appears to have a fairly consistent 

misconception in his or her solutions of domain to all of Problem 1, namely making the whole expression 

greater than or equal to zero.  

4.1.1.2.2 Domain obtained by applying a condition on a part of the expression representing the 

function 

In one solution, a student obtained the domain of a function by equating to zero, not the whole function 

but a special element of the expression representing the function, solving for   (incorrectly) and 

concluding that the value obtained is the domain.  

Example of finding the domain of function (4) 

Student # 48 wrote: 

                 

       

      

          

       

      

Note: The special element the student looks at is     . The student is unaware of the inconsistency of 

the equation in line 3 and continues processing it to isolate  , applying the logarithm to both sides, in 
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line 4 of the solution. Passing to line 5 is based on the correct identity         , but it is unclear what 

belief about logarithms underlies the passage from line 5 to line 6. This student applied the same 

procedure to find the domain of function (3), suggesting a misconception about logarithmic functions. 

This student also demonstrates inconsistencies in conceptions of domain in his solutions for part (a), as 

he has different solutions for both square root functions.  

 In three other solutions, finding the domain of a function also started by equating to 0 a special 

element of the expression representing the function, and solving for   but now excluding the value 

obtained from   to obtain the domain.  

This conception could explain the solution presented by student #42, whose answer to finding the 

domain of function (1) was     
 

 
   

 

 
   . Aside from this answer, no work was shown. The same 

type of solution was provided for function (2). The next example exhibits this conception more clearly.  

Example of finding the domain of function (3) 

Student # 56 wrote: 

              

this function is not defined for        

     

      

                           

Note: The student excluded the solution of the equation        from  , if we interpret the semi-

colon sign in the last line of his solution as representing the union of sets.  Although for function (4), this 

student appears to have a correct solution, and understanding.  

We surmise that underlying this last conception of domain is a generalization of the conception of 

domain of rational functions, where students find where the denominator is undefined, by making it 

equal to zero and then excluding the value obtained from the set of all real numbers. 

 In five other solutions based on taking a condition on a special element of the expression for the 

function, the domain of a function was a solution of a weak inequality: the special element   . There 

were three such solutions for the square root function(s) and two for the logarithmic functions.  
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Example of finding the domain of function (2) 

Student #12 wrote: 

        

      

     

           

Note: Recall that function (2) was                 .  So the special element the student takes 

to calculate the domain is     .  She then solves the weak inequality       . Line 2 of the 

solution is obtained by squaring both sides of the inequality in line 1. If the first line was not there, one 

could think that the student’s conception was correct. The answer ends up being correct.  

Example of finding the domain of function (3) 

Student #30 wrote: 

domain of               

       

     

          

      

Note: The flaw in this solution is that the student solves a weak inequality instead of the strict one. This 

suggests either the above described misconception about the domain of functions in general or a 

misconception about the logarithmic functions. This student appears to have a good conception of 

domain for function (4), exhibiting inconsistencies in his conceptions of the domain of logarithmic 

functions.  

  

 A variation of the previous conception of domain appeared in seven other solutions: based on 

taking a condition on a special element of the expression for the function, the domain of a function was 

a solution of a strict (not weak) inequality: the special element   . All these solutions were about the 

square root function(s).  
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Example of finding the domain of function (1) 

Student # 40 wrote:  

    
         

         

      

therefore     

so domain is        

Note: The “special element” of the expression that the student looks at is not the whole expression 

under the square root (as it would be in a correct reasoning about the natural domain of the function) 

but only a part of it. Another aspect of this solution that suggests a misconception that a strict inequality 

is taken, not a weak one: the misconception is either about the domain of function in general or about 

the square root function. As you may recall (section 4.1.1.2.1), this student applied a condition to the 

whole expression for function (2), thus exhibiting inconsistencies in his or her conceptions of the domain 

of square root functions.  

  

 More frequent, 13 (~21%) solutions had the following conception:  taking a special element of 

the expression, and finding the domain of this special element. This idea could explain six (~10%) 

solutions about the domains of the square root functions and seven (~11%) solutions about the domains 

of the logarithmic functions.  

Example of finding the domain of function (1) 

Student #45 wrote: 

                

         

       

D of                          

Note: This student applied the same procedure for functions (1) and (2): she found the domain of a 

composite function, as being the domain of the input function. 
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Example of finding the domain of function (2) 

Student #25 wrote: 

                   

         

Domain:        

Note: This student obtains the same domain as well for function (1). As such, we hypothesize that this 

student does not take into account the function obtained, but rather remembers the domain of a square 

root function, namely         as being      .  

Example of finding the domain of function (3) 

Student #2 wrote: 

              

Domain of      All   numbers 

Three students did this for (3) or (4), and we hypothesize that they are either taking the domain of the 

function    alone, or have confusion with the range of logarithmic functions. 

Example of finding the domain of function (4) 

Student #16 wrote: 

                

Domain of              

Note: There is no mention of the range of the function   in the student’s solution, so the student 

probably thinks of the domain of the inverse function as the domain of the expression for     (Mis-

Dom3). The formula for the inverse function (line 1) was calculated correctly, but the details of the 

formula seem, however, to play no part in the student’s answer. He or she only notices “ln” (this is the 

“special element”), and writes the domain of the logarithmic function            as the answer. 

Additionally, this student obtains the correct domain for function (3), exhibiting inconsistencies in his 

conception of the domain of logarithmic functions. Four students found the domain as       for (3) or 

(4), and we hypothesize that they remember the domain of a logarithmic function      , or they have a 

confusion with the range of   . 
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 In two solutions about the domains of square root functions and in six of the logarithmic 

functions there appeared a very peculiar conception: the “special element” on which the students 

focused was some particular constant in the expression, and the domain was the set of real numbers 

greater than that constant.   

Example of finding the domain of function (1) 

Student #38 wrote: 

                  

Dom              

Note: In this solution, the special element seems to be the number   . The composition of functions in 

line 1 of the solution is also incorrect, which indicates this student’s difficulties in decoding the structure 

of algebraic expressions, coded as D-Struc, on top of her problems with the notion of domain.   

Example of finding the domain of function (2) 

Student #4 wrote: 

              

Domain:         

Note: Here, the composition of functions is correct but there is clearly a problem with the notion of 

domain. The special element the student focuses on is   .  

Example of finding the domain of function (3) 

Student # 1 wrote: 

       

     

     

       

        of   

Note: The first line could be interpreted as representing one of the previous conceptions (equating a 

special element of the function’s expression to 0), but the last line bears traces of the “focus on a 

constant” misconception.  
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4.1.1.3 Other Conceptions of Domains 

The following responses to the problems about the domains of functions were difficult to interpret and 

could not be placed into any of the previous categories.   

Example of finding the domain of functions (1 & 2) 

After successfully obtaining the compositions of (1) and (2), student #3 wrote down the following: 

domain               

Note: He did not indicate which function this domain referred to. Was it for function (1), (2), or perhaps 

both? For whichever function he intended this domain to be, the student is unaware of the redundancy 

of the second interval being contained in the first interval, that is if we interpret        to be       .  

Example of finding the domain of function (3) 

Student #21 wrote: 

       

     

      

    

              or              

Note: The first two lines suggests a correct expected conception of the domain of the logarithmic 

function as the set of all positive real numbers: so, if                 then the domain of   should 

be the set of solutions of the equation        or       . But things get muddled up starting from 

line 3. From line 2 to 3, it appears that this student miswrote   for  . Line 5 bears evidence that this 

student does not understand interval notation. It appears that he thinks in terms of integers (since 

   , then   must be at least 2), and perhaps means       instead of      , confusing the meaning of 

open and closed brackets. If he understood the brackets conventionally, there would not be the need to 

exclude 1 in the third brackets of the last line. There is also confusion between union of sets and 

conjunction of conditions in the use of the operator   in the last line of the above solution. 

This student has a similar solution for function (4), although does not seem to think in terms of integers 

there. Throughout all of Problem 1, this student incorrectly uses interval notation. 
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Example of finding the domain of functions (3 & 4) 

Student #6 wrote:   Domain for both      and       :       

Note: This student obtains an incorrect formula for the inverse function, but the formulas for the 

functions play no part in the student’s solutions for the domains. Nor does she look for the range of   to 

find the domain of the inverse function. She provides the same domain for both functions (3) and (4), 

seeming unrelated to the functions.  

Example of finding the domain of function (4) 

Student #3 did not complete finding the inverse, but claimed, without justification: 

domain        

Note: Was this student’s notion of direction of the number line from right to left? Recall, this student 

was fairly consistent in his direction, having written one domain for functions (1) and (2) as        

     . However, he exhibits inconsistencies in his conceptions as he uses a different approach for 

function (3). 

Example of finding the domain of function (4) 

After having found the correct inverse, student #53 wrote:  

               

      

            

Does not exist 

               is not invertible 

Note: This student incorrectly subtracted   from both sides in line 2, but appears to have    in line 3. 

He then notices the nonexistence of the number on the right side of the inequality in line 3 and becomes 

confused, then decides to claim that the function does not have an inverse. 

4.1.2 Conceptions of composite functions  

The majority, 60 (95%) of the students could correctly combine two functions. Three students made 

minor errors that could not necessarily be attributed to algebraic errors, although this still remains as a 

possibility. The following are examples of incorrect solutions. 
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Example of finding the composition function (1) 

Student #38 wrote:                     

Note: It appears as though this student did not properly extend the root over the constant    . This may 

very likely be an error due to inattention, although it might demonstrate difficulties with the structure of 

algebraic expressions (D-Struc). This student had the correct composition for function (2).  

Example of finding the composition function (2) 

Student #51 wrote: 

                

          

Note: It is possible that this student incorrectly positioned the second bracket.  It could also be an 

algebraic mistake related to order of operations and brackets. This student had the correct composition 

for function (1).  

Example of finding the composition function (2) 

Student #58 wrote:                     

Note: It appears this student included an additional  , as though he was multiplying   with   , and not 

replacing   by it. It is also possible that this student was writing   "times"     . This student had the 

correct composition for function (1). 

4.1.3 Conceptions of square root functions 

4.1.3.1 Intended Conceptual Understanding of Square Root Functions 

When students manipulate square root functions, we assume that they have an implicit knowledge of 

these functions. As stated previously in our a priori analysis of the final exam, the definition of square 

root functions is the following:       iff     and     . Therefore    .  This definition is simple 

enough, although it contains a lot of information that some students appear to miss. One is that the 

domain of such functions requires the expression under the radical to be non-negative. We have already 

seen incorrect conceptions related to this in our analysis of the domain of functions (1) and (2). 

Interestingly, another incorrect conceptual understanding became apparent which will be discussed in 

the next section. 
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4.1.3.2 Incorrect Conceptual Understanding of Square Root Functions 

Apart from the incorrect conceptual understanding of the domain that has previously been addressed 

concerning functions (1) and (2), two solutions seemed to be based on the belief in the linearity of 

square root functions, i.e. the students believed that the square root of the sum is the sum of the square 

roots (FR-Lin-Sqrt). 

Example of linearity with function (1) 

Student #24 wrote: 

                

       

       

Note: Traces of the conception are in the third line. Also, the student appears to drop the radical over 

the  , as though believing that            (FR-Rad2). This student did not apply linearity to 

function (2). 

Example of linearity with function (2) 

Student #1 wrote: 

                

         

       

Note: Traces of the conception are in the second line. This student also applied linearity to function (1). 

4.1.4 Conceptions of inverse functions 

4.1.4.1 Intended Conceptual Understanding of Inverse Functions 

Formally, the notion of the inverse function can be introduced via the concept of inverse relation. Every 

relation has an inverse but the relation which is the inverse of a function is not necessarily a function 

itself. Reasoning about the conditions necessary for the inverse of a functional relation to be a function 

leads to the conclusion that for a function to have an inverse, the function must be bijective (one-to-one 

and onto): 
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Theorem…: Let       be a function. Then the inverse relation     is a function from 

  to   if and only if   is bijective. (…) (Chartrand, Polimeni, & Zhang, 2013, p. 229)  

Further, if       is a bijection, then a function       is the inverse of    if         and 

        (ibid., p. 230).  

As mentioned in section 3.1, formally, for the inverse      of a functional relation       to be a 

function   must be bijective, so that             and different elements of   are paired with 

different elements of  . In this course, bijectivity is not explicitly covered, however, the textbook used 

for the course does provide the following definition of inverse functions:   

Let   be a one-to-one function with domain A and range B. Then its inverse function     

has domain B and range A and is defined by                 for any   in B. 

(Stewart, 2016, p. 56).  

So even if the function   is not onto, the function              is and the definition guarantees this 

condition.  One-to-oneness is also assumed in the definition.  However, the students-readers of the 

textbook do not seem to be expected to worry about the existence of the inverse function; their task is 

mainly to calculate the formula of the inverse of a function given by the authors, trusting that the 

answer to the task is a formula and not a phrase such as “the inverse does not exist”. The textbook 

provides students with the following step-by-step instructions on how to perform such tasks, strongly 

resembling those of Thomas (2008, p. 50): 

How to find the Inverse Function of a One-to-One Function   

STEP 1: Write       . 

STEP 2: Solve this equation for   in terms of   (if possible).  

STEP 3: To express     as a function of  , interchange   and  . The resulting equation is 

        . (Stewart, 2016, p. 58). 

The possibility of non-existence of the inverse could be hinted at in STEP 2, in the note "if possible" but 

this is ambiguous. For example, if        , then, in step 1, the student would write      and in 

step 2 – he or she could write       or                 . It is possible to solve the equation 

     for  , yet the inverse function does not exist. The solution is not unique, which is a problem but 

the reader is not warned about this. A student may also interpret the phrase “if possible” as “if you can, 
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or are able to”. So if a student is unable to algebraically solve in terms of   this may lead to a 

misconception that the inverse would not exist. (Mis-Dom3, Mis-InvF1)   

In the formal theory, it is stated that if     is a function then                , and           

  for all      and             for all    . In the textbook for the course (Stewart, 2016), these 

conditions are stated under the title of "cancellation equations", prior to the step-by-step instructions 

mentioned above. Stewart's (2016, p. 58) explanation of these equations is similar to that of Thomas' 

(2008, p. 47) explanation of the inverse.  

The first cancellation equation says that if we start with  , apply  , and then apply    , 

we arrive back at  , where we started...Thus     undoes what   does. The second 

equation says that   undoes what     does (Stewart, 2016, p. 58). 

However, in the textbook, these equations are not used to verify if the function, obtained as a result of 

applying the steps, is the inverse of the given function in the example that follows the formulation of the 

steps, although it would be useful. If, in the final examination, the students had verified the following:  

                                                      and           

                                         , this would have perhaps helped some 

students re-evaluate their work and find their errors. However, not one student did this, once they 

found the inverse of function (3).  Students appear to only remember these steps (Mis-InvF1), going on 

to write out the steps in their solutions without knowing much else about inverse functions. The concept 

becomes reduced to a procedure for solving a certain type of task, and students do not feel responsible 

for knowing why this procedure works or even what is the meaning of the result it produces. In terms of 

the ATD framework, even the textbook suggests that students’ knowledge of inverse functions may be 

confined within the boundaries of the “know-how” block of the mathematical praxeology of inverse 

functions; knowledge of the “know-why” block is under the responsibility of the authors of the book and 

instructors of courses using the textbook (Chevallard, 1999).  Moreover, students are expected to know 

how to solve only certain types of tasks, for example, “Find the inverse of the given function”, but not 

necessarily “Does the given function have an inverse? Why yes or why not?” or “Is the given function an 

inverse of the other given function? Justify your answer.” 

The textbook mixes exposition of mathematical theory with instructional advice, in the form of side 

notes and cautions which can be confusing for the learner. For example, the textbook cautions the 

readers with the following:  
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Do not mistake the    in     for an exponent. Thus     does not mean 
 

    
. The 

reciprocal 
 

    
 could, however, be written as          (Stewart, 2016, p. 57). 

 In our oversimplification of content, we may be harming our students with the potential for 

misconceptions, and misunderstandings of procedures. For example, Stewart (2016) provides the steps 

to finding the inverse, followed by one example of a cubic function. As previously mentioned, the 

example does not verify the identities that a function and its inverse must satisfy. Students reading this 

section, and focusing only on the blue box containing the steps can then develop a rote knowledge of 

procedures. Encountering a function that was a little more difficult (i.e. a logarithmic function), some 

students were unable to solve in terms of one variable. If they were unable to follow the steps, but had 

a good understanding of inverse functions, they could have found the domain of the inverse by finding 

the range of the function. But this was not the case for those who couldn't follow the steps at finding 

the inverse. Thus, students could have a misconception that the inverse of a function is a step-by-step 

procedure to follow (Mis-InvF1). The setting of a simple problem in which a procedure is learned, can be 

very detrimental for students who develop a rote knowledge of procedures; as soon as the setting or 

problem differs, students are unable to apply the procedures learned (Star, 2004).  

4.1.4.2 Incorrect Conceptual Understanding of Inverse Functions 

Of the 63 students, 34 (~54%) correctly found the inverse function (4). Another 19 (~30%) appeared to 

have the general step-by-step procedure in mind, although either they did not complete finding the 

inverse, applied some incorrect logarithmic property, or confused the variables resulting in an incorrect 

inverse. These incorrect properties will be discussed in the next section. Four students did not attempt 

finding the inverse. The remaining students either had some incorrect conception (2 students), or an 

uncategorized conception of inverse (4 students). 

4.1.4.2.1 The inverse of a function is obtained by changing the sign of each term 

Example of finding the inverse function (4) 

Student #6 wrote: 

               

                   

Note: This student appears to believe that the inverse of a function is changing the sign of each term 

(Mis-InvF2). 
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4.1.4.2.2 The inverse of a function is obtained by interchanging   and  , moving terms around, and not 

isolating any variable. 

Example of finding the inverse function (4) 

Student #17 wrote: 

                  

  
    

   
 

         
    

   
 

Note: This student applies an incorrect logarithmic property from line 1 to 2 (false rule FR-Log2), and 

then interchanges   and   in line 3. It appears that they might have been following the steps to find the 

inverse, but may have skipped step 2 of the procedure, not solving for  . 

Example of finding the inverse function (4) 

Student #44 wrote: 

[1]                 

[2]  for                  

[3]              

[4]  Step 1 interchange   and   

[5]              

[6]  Now using property of logarithm, we can write        

[7]                  

[8]                   

[9]    
  

    
     

Note: This student is using the steps as described in the textbook not in the exact order, nor doing them 

all. In line 4, step 3 is called STEP 1, and STEP 2 appears to be skipped. He does not isolate a variable, i.e. 

  in this case as he interchanged the variables at the beginning. As you may recall, STEP 2 was to "Solve 

this equation for   in terms of   (if possible)." For this student it would be to solve the equation for   in 

terms of   (if possible). Perhaps he or she was unable to solve for  , therefore left the function as is.  
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4.1.4.2.3 Other Conceptions of Inverse 

The following responses to the problem about the inverse of the function were difficult to interpret and 

could not be categorized.  

Example of finding the inverse function (4) 

Student #1 wrote: 

[1]  inverse of                       

[2]             

[3]              

[4]          

[5]         

[6]    
    

    

Note: The student starts by interchanging the variables in line 3, and progresses to line 4 adequately. At 

line 5, it is unclear what belief about logarithms underlies this line, nor the passage from line 5 to line 6. 

 

Example of finding the inverse function (4) 

Student #24 wrote: 

              

               

       

        

          

Note: This student appears either to have notational confusion between     and    as seen in line 2, or 

believes that the derivative of a logarithm is the logarithm as it happens with exponential functions.  If 

the former is the case then there could be some confusion about inverse functions in passing from line 1 

to line 2. It is unclear what beliefs about logarithms underlie the passage from line 2 to 3. It is also 

unclear what beliefs about exponentials underlie passage from line 4 to line 5. This student doesn’t 

seem to know the difference between taking the powers and multiplying. 
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Example of finding the inverse function (4) 

Student #49 wrote: 

              

                 

     

Note: From line 1 to line 2, it appears that this student views    as a variable and not a function (Mis-

Notation2), namely a variable multiplying       . Also in line 2, it is unclear what beliefs about 

exponentials are present: the student applies the exponential to the right side of the equation, and 

believes that the exponential of the product of two terms is the product of the exponentials. He 

confuses the property of        with        in line 3 (FR-Exp3), although it is unclear how he 

obtained the second term. 

Example of finding the inverse function (4) 

Student #62 wrote: 

              

        
     

        

           

             
    

  
 

Note: In line 2, this student has a notational issue with the conventions of the natural logarithm. This 

student also appears to confuse the inverse procedure with implicit differentiation in line 4. It is unclear 

how her knowledge of procedures could have gotten confused.   

4.1.5 Conceptions of logarithmic functions 

4.1.5.1 Intended Conceptual Understanding of Logarithmic Functions 

When students manipulate logarithmic functions, we assume that they have an implicit knowledge of 

these functions. As stated previously in our a priori analysis of the final exam, the definition of 

logarithmic functions is the following:           iff      and    . This definition contains a lot of 

information that some students appear to miss. One is that the domain of such functions requires the 

expression in the brackets to be positive. We have already seen incorrect conceptions related to this in 
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our analysis of the domain of functions (3) and (4). After a more in depth analysis of these solutions, 

more incorrect conceptual understandings of logarithmic functions became apparent. 

4.1.5.2 Incorrect Conceptual Understanding of Logarithmic Functions 

Apart from the incorrect conceptual understanding of the domain that has previously been addressed 

concerning functions (3) and (4), nine (~14%) students also applied linearity to the logarithmic functions. 

These students believed that the logarithm of sums is the sum of logarithms (FR-Lin-Log). 

4.1.5.2.1 The logarithm of a sum is the sum of logarithms 

Example of using the logarithm of a sum as the sum of logarithms 

Student #2 wrote: 

[1]                

[2]            

[3]             

[4]               

[5]            

[6]            

[7]      
 

 
  

[8]          
 

 
  

Note: This student is following the step-by-step instructions to find the inverse, although applies 

linearity in the passage from line 3 to line 4 (FR-Lin-Log). This student also adds a    to the left side of 

the equation in line 4. This student does correctly apply a logarithmic property in the passage from line 6 

to line 7, although in line 8 incorrectly writes    instead of    . 

4.1.5.2.2 The logarithm of a difference is the quotient of logarithms or the logarithm of quotients 

Four students applied these incorrect logarithmic properties in order to find the inverse: 

Examples of logarithm of a difference as the quotient of logarithms 

Student #13 wrote: 
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Note: Traces of the incorrect property can be seen from the passage of line 1 to line 2 (FR-Log2). 

Student #59 wrote: 

           

           

  
    

   
 

  
 

   
 

        

          

Note: From line 1 to line 2 he applies linearity (FR-Lin-Log). From line 2 to line 3, we can see traces of the 

incorrect property (FR-Log2). The confusion faced by the student is understandable.  He confuses the 

quotient of logarithms with the logarithm of the quotient. 

Example of logarithm of a difference as the logarithm of a quotient 

Student #42 wrote: 

              

        
  

  
 

Note: Traces of the incorrect property can be seen from the passage of line 1 to line 2 (FR-Log4). 

Interestingly, this student keeps the minus sign in front of the  . 

4.1.5.2.3 Exponent and base confusion with logarithms 

Instead of using the definition as             iff       and    , the following student confused 

the base with the exponent as             iff      (FR-Log7). 

Example of exponent and base confusion 

Student #21 wrote: 

              

           



 
 

85 
 

          
     

        

         

              

           

              

                

Note: Traces of the conception are in the fourth line. 

4.1.5.2.4 Adding or dropping ln or e without justification 

Eight (~13%) students either added or dropped a    or an   from one side of the equation without 

justification. Procedural learning could lead to these errors. If math is a random set of rules that are not 

connected for students, they can easily confuse properties. 

Examples of adding of dropping    or   

Student #4 wrote: 

Inverse            

            

             

          

             

Note: This student applies linearity in passing from line 1 to line 2 (FR-Lin-Log). In passing from line 2 to 

line 3, it appears as though the student implicitly adds a ln in front of   and then again applies linearity 

to add them.  

Student #38 wrote: 

Inverse           
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Note: In passing from line 1 to line 2, it appears that the student dropped the   and brought the 

exponent   down. One idea is that perhaps the student has some confusion with         , or that 

     (FR-Exp1). Further, she disregard the    as part of the expression in brackets. 

4.1.5.2.5 Treating ln and e like variables 

Six (~10%) students appeared to treat    or   as though they were variables. 

Examples of treating    or   like variables 

Student #42 wrote: 

                   

     
  

  
 

         

    
  

   
 

Note: An incorrect logarithmic property can be seen from line 1 to 2 (FR-Log4), as mentioned in 

(4.1.5.2.2). The placement of    in line 2 without brackets appears as though it is multiplying the 

quotient. Further evidence of    being treated as a variable is in the passing from line 2 to line 3: the 

denominator    is now multiplying the left-hand side of this equation. Implicitly, after multiplying both 

sides by   , the numerator remains as     , and became      in line 3. Further, the student does not 

realize that      is simply  .  

 

Student #60 wrote: 

[1]              

[2]               

[3]              

[4]          

[5]          

[6]  make    to loose    

[7]             

[8] isolate   

[9]      
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Note: This student drops both   ’s  in passing from line 3 to line 4, then incorrectly applies some 

property passing from line 5 to line 7. Finally, in passing from line 7 to line 9, demonstrates their 

treatment of ln as a variable by dividing the left-hand side of the equation by "ln" (Mis-Notation2). 

4.2 STUDENTS' RESPONSES TO PROBLEM 2 

Problem 2 asked students to evaluate the limits of two functions, both being ratios containing non-

polynomial functions, with the value that   was approaching not included in the domain of the functions.  

One function contained an absolute value expression, and the other contained a radical expression. As 

previously mentioned, in both problems, in spite of the value   that   was approaching not being 

included in the domain, a number of students tried to calculate the limits by calculating the value of the 

function at  , as if applying the Direct Substitution Property. Some realized at that point that the 

function is not defined at   and tried something else. Others made mistakes in their calculations, 

obtained a number and left it as the limit of the function.  Due to the fact that these functions contained 

radical and absolute value functions, which are notorious for being difficult for students, we did expect a 

number of algebraic mistakes. In part (a), students could ignore the absolute value. In part (b), mistakes 

could occur in multiplying the numerator and denominator by the conjugate radical expression. Their 

mistakes could represent an incorrect conception of the absolute value function, ignorance of the 

distributive property leading to the inability to factor, or the inability to multiply binomials, etc.  

As a reminder, Problem 2 was given as follows: 

Evaluate the limit if it exists, or explain why the limit does not exist (Do not use 

l’Hôpital’s rule): 

a)         
     

     
                                 b)       

         

         

In Table 2 we present the distribution of correct and incorrect answers to this problem.  

Table 2. Distribution of correct and incorrect answers to Problem 2. 

n=63 correct incorrect other total 

P2a Limit 44 (70%) 18 (28%) 1 (2%) 63 

P2b Limit 29 (46%) 33 (52%) 1 (2%) 63 
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Remarks: For part (a), not all students calculated both one-sided limits. One reason could be that the 

students had an incorrect conception of absolute value functions, and as such did not attempt to find 

the left-hand limit.  Also note, that a good proportion of students knew to rationalize the function for 

part (b) as a first step, however obtained an incorrect limit as they made various algebraic mistakes 

throughout.  

The common mistakes amongst students will be grouped and described in following sections.   

4.2.1 Application of the Direct Substitution Property (DSP) for parts a and b 

In both parts, the value that   was approaching was not in the domain of the functions, yet four 

students applied DSP both to parts (a) and (b), four students to part (a) only, and two students to part 

(b) only. For the majority of these students this was a first "step", and as they obtained an indeterminate 

form, they proceeded to using other methods. This offers more support to our hypothesis that students 

learn a list of procedures in which they repeat, without fully understanding what they are doing. Their 

first step, regardless of the function provided is to apply the DSP. They were unable to recognize that   

was not in the domain of     . Also, the textbook does not indicate the DSP as a first step to finding 

limits, rather it is to be used to find a limit of a polynomial or a rational function, given that the value 

that   is approaching is in the domain of  , thereby foreshadowing the notion of continuity. Two 

interesting student solutions are provided below. 

Examples of the DSP 

Student #4 wrote for part (b): 

   
   

      

      
    

   

      

       
    

   

      

       
 

    
   

    

   
     

   

   

 
 

 

 
                      

Note: This student was satisfied using the DSP, arriving at an indeterminate form, and concluding that 

the limit did not exist. This student does not recognize that     is not part of the domain of the 

function, thus not allowing him to use the DSP. Perhaps the student believed that indeterminacy of the 

0/0 form implies that the limit does not exist. Although the students were strictly informed not to use 

L'Hospital's Rule for these limits, this remark was a hint of sorts, because when arriving at an 

indeterminate form, L'Hospital's Rule is a systematic method for finding limits of these types of 

functions, provided the numerator and the denominator are continuous and differentiable in 
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appropriate intervals.  Thus, arriving at an indeterminate form does not imply that the limit does not 

exist. 

Student #11 wrote for part (a): 

   
    

     

     
    

    

      

     
    

    

       

      
   

Note: This student does not have an understanding of absolute value functions, nor of the DSP. Further, 

he is unaware that he is dividing by zero in the third step.  

4.2.2 Calculating both one-sided limits for part a 

Forty-three (68%) students recognized that this function contained an absolute value expression, and as 

such calculated both one-sided limits correctly. Our supposition is that they had a good enough 

conceptual understanding of absolute value functions. Only one student provided an explanation using a 

numerical approach. Eleven (~17%) students also included the definition of the absolute value function 

as part of their work.  

Example of including the definition of the absolute value function 

Student #10 wrote: 

       
             

               
   So we have to check both sides 

Note: Most of the 11 students wrote out this definition instead of the elementary function definition, 

without noticing that the first piecewise defined domain needed to be     , as the absolute value 

expression was in the denominator. Nonetheless, these students appeared to have a good notion of 

absolute value functions, as ten of them correctly found both one-sided limits. 

Example of finding the correct limit in part (a) 

Student #5 wrote: 
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 Some students calculated only one limit, of which 9 (~14%) students only calculated what we 

coded as the right-hand limit, and three students only calculated what we coded as the left-hand limit 

despite not having indicated them as such. This suggests that they believed that      , a manifestation 

of FR-Abs. Despite multiple explanations of the definition of the absolute value function, given 

         ,                and                , students seem very confused by the negative 

sign in front of the   (Mis-Notation1). Further, two students calculated both one-sided limits and did not 

provide a conclusion that the limit did not exist as both one-sided limits were not equal. This is either 

them taking for granted that the teacher knows what they are thinking, or that they follow a procedure 

and do not have a good understanding of what they are doing. There were no traces of reasoning based 

on knowledge that       
   

 
 does not exist as the left-sided limit is -1, and the right-sided limit is 1. 

However, we cannot know for certain what the students were thinking. It does appear that most of the 

work followed that of a procedure. As previously mentioned, only one student wrote a paragraph 

explaining his reasoning which resembles that of the table approach in guessing a limit (a numerical 

approach). 

Example of numerical approach in part (a) 

Student #14 wrote: 

The limits are    and   as   approaches   . In 
     

     
 we replace   by a number close to 

  , for instance             and find the limit    as   approaches   . We repeat 

the process with            and find   as the limit since this time the numerator is 

positive while the denominator always is positive. 

Note: This student wrote a similar paragraph for part (b) as well. This explanation demonstrates his 

adequate understanding of absolute value functions. However, he mentions repeating a process for the 

other sided limit, making us wonder if this is yet another procedure learned (the table method). Also it is 

unclear whether this student has difficulty with algebra, and thus avoided it altogether.  

4.2.3 Incorrect rationalization 

As previously mentioned, 56 (~89%) students knew the first step of how to "rationalize", however only 

29 (46%) students obtained the correct limit. The issues that arose were algebraic in nature and will be 

discussed in the following section.  
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Example of finding the correct limit in part (b) 

Student #1 wrote: 

   
   

      

      
    

   

      

       
 
      

      
    

   

        

               
 

    
   

           

               
    

   

      

          
 

    

          
 

  

      
 

  

  
 

One student started to rationalize the numerator correctly, but then crossed off his work and decided to 

multiply the numerator and the denominator by a “conjugate” of the binomial in the denominator: 

Example of incorrect rationalization in part (b) 

Student #32 wrote:         
      

             
                

       

Note: This student appears to remember vaguely that “multiplying by conjugate” was sometimes used in 

problems of finding limits but does not seem to see the purpose of the action, since what he obtains 

does not remove the indeterminacy and does not allow him to calculate the limit. 

 The remaining six (~10%) students did not attempt to rationalize. Student #14 offered a 

numerical method description similar to his answer for part (a). Student #4 was also previously 

mentioned as he applied DSP directly for both parts (a) and (b), and determined that the limit did not 

exist based on the fact that he obtained an indeterminate form. Three students' work were 

incomprehensible, and the remaining student's work is provided below. 

Student #25 wrote: 

      
        

 

          
       

      

             
      

       
       

           

       
 

      
    

        
    

         
  

  
  

Note: The errors in this student's work are apparent starting from the first step. He seems to believe 

that                            In the second step, the student believes that squaring a binomial 

means squaring each term as such:              (as seen in the numerator) (FR-Dist3). As for the 

denominator, the student applies the same reasoning, however also has an incorrect understanding of 

exponential laws. The student also does not square the   in the denominator (FR-Ops5). After this step, 

the student appears to have a good understanding of factoring. In the final step, the student does not 

take the limit of the constant.  
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4.2.4 Problems with associative, commutative, and distributive properties 

Common school mathematical jargon, not only spoken but referred to as in many textbooks, coins the 

term "factoring", instead of engraining in the students that they are using the distributive property 

              .  When "factoring something out", or when "expanding" we are using the 

distributive property. Sierpinska and Hardy (2010) express the concern that the majority of textbooks do 

not emphasize the associative, commutative, and distributive properties. Rather textbooks provide 

mnemonics such as the FOIL method described earlier in this thesis. After a student has applied the FOIL 

method, they can verify their work using the "reverse FOIL technique".  Again, this is simply the 

distributive property. The work by Booth et al. (2014) discusses many algebraic misconceptions (such as 

misconceptions with the negative sign) and the incorrect use of the associative, commutative, and 

distributive properties. In both parts of problem 2, errors with these properties became apparent. The 

main errors across students' solutions were that of the distributive property. Note: the main focus of 

this section is algebraic errors, thus only the relevant parts of the solutions are provided. 

Examples of errors with the distributive property 

Student #61 wrote for part (a):                    

Note: This student knew that he needed to factor the numerator for problem 2a, yet as simple as it was, 

could not do so. It was as though the distributive property he used was                           

(FR-Dist13). If he used the FOIL method, he would have realized that these were not equivalent 

expressions. 

 For part (b), six (~10%) students had difficulty with "factoring", post rationalizing the numerator. 

The common error was that the leading term contained a negative sign in front, and we believe that 

students were unable to factor the polynomial as it was not in the form they were used to:        

 , where    . 

Student #36 wrote:                                

Note: The student does correctly apply the commutative property of addition. However, after 

"factoring" the student did not verify his work. In multiplying the binomials, applying the distributivity 

property twice, the student would have realized that something was incorrect. It was as though the 

distributive property he used was                      (FR-Dist11). 
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 In multiplying binomials for part (b), three students provided the following solution for the 

numerator: 

Student #13 wrote:                           

Note: It is as though they were focusing primarily on the radical and forgot about multiplying the   

terms.  

  In multiplying binomials for part (b), four students did not multiply both terms in the 

denominator by the conjugate, as though they have forgotten the brackets. 

Student #46 wrote:   
      

       
  

      

      
 

       

              
 

Note: The error (failure to apply the distributive law) can be seen in the second step. The student 

multiplies         by      , while leaving the   term alone (FR-Dist2). 

 Lastly, one student provided an interesting version of the distributive property to the 

denominator. 

Student #18 wrote:                        

Note: This student appears to be applying some form of the distributive property to the radical. It is 

possible that he believes the square root to be linear as such             (FR-Lin-Sqrt). However, 

if this were so, he does not know his exponential laws. How would              ? 

4.2.5 Other errors 

Five students incorrectly "cancelled out" a term from the numerator and denominator, apparently 

believing that the algebraic property:  If      , then  
 

 
 

  

  
  applies also to addition: 

   

   
 

 

 
 (FR-

Frac3). 

Student #29 wrote:     
    

          
 

  

         
 

Note: The student "cancels out" an   from the numerator and denominator, despite the numerator 

being a binomial. Also he replaces only one of the   terms by the value it is approaching in this step. 
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 Despite rationalizing correctly, two students did not "factor", rather they suddenly divided all 

terms by the highest degree found in the numerator or denominator, as though they were confusing this 

with the technique for finding limits at infinity (this technique has been discussed earlier in this thesis). 

Student #58 wrote:  

      

                
 

 
   

 
   

 
 

   
 
          

 

Note: This student divides all terms by    which was the term with the highest degree in the 

denominator. 

 Lastly, seven (~11%) students made small arithmetic errors in their calculations such as 

          . Although we determined such errors to be small arithmetic errors, it is possible that 

this is yet another application of a false distributive rule:             (FR-Dist1).  

4.3 STUDENTS' RESPONSES TO PROBLEM 3 

Problem 3 asked students to find all the horizontal and vertical asymptotes of a given function. This 

function was a ratio of two functions, with the square root of a quadratic polynomial in the numerator 

and a polynomial of degree one in the denominator. The problem was formulated as follows: 

Find all the horizontal and vertical asymptotes of the function       
       

    
 . 

As this function contained a radical expression, we did expect a number of algebraic mistakes to occur in 

finding both the vertical and the horizontal asymptotes. In finding potential vertical asymptotes, 

students could incorrectly solve for  , when setting the denominator equal to zero. Further, they could 

state the vertical asymptote solely based on the function being undefined at a point, without verifying a 

one-sided limit. For those that did verify one of the one-sided limits, we expected some algebraic 

mistakes. In finding horizontal asymptotes, mistakes could occur in dividing numerator and denominator 

by the term in the denominator with the highest degree (a procedure used for rational functions can be 

used here as well). Alternatively, students could incorrectly use the distributive laws to factor out the   

term from the numerator. Their mistakes could stem from an incorrect conception of the absolute value 

function (e.g., claiming that        instead of        ) and/or from ignorance of the distributive 

property leading to the inability to factor.  
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In Table 3 we present the distribution of correct and incorrect answers to this problem.  

Table 3. Distribution of correct and incorrect answers to Problem 3. 

n=63 correct incorrect other total 

P3 - Horizontal Asymptotes     

Limit as     33 (52%) 17 (27%) 13 (21%) 63 

Limit as      19 (30%) 17 (27%) 27 (43%) 63 

Asymptotes:     ;      14 (22%) 20 (32%) 29 (46%) 63 

P3 - Vertical Asymptote     

Limits as      2 (3%) 0 61 (97%) 63 

Asymptote:     58 (92%) 4 (6%) 1 (2%) 63 

Remarks: Only 13 (~21%) students correctly found all asymptotes as the lines   
 

 
,   

  

 
, and 

   
  

 
. For vertical asymptotes, most students did not calculate a one-sided limit. One reason could 

be that the students made incorrect generalizations whereby they believed that vertical asymptotes are 

always found by making the denominator of a ratio of functions equal to zero, or that there is always an 

asymptote at a point of indeterminacy.  For horizontal asymptotes, not all students verified both limits 

at infinity. Lastly, a number of students only calculated the limits, without stating the equations of the 

asymptotes. Note: the "other" column includes all students who omitted the respective portion of the 

problem, as well as those whose work was incomprehensible. 

The common mistakes amongst students will be grouped and described in following sections.   

4.3.1 Vertical asymptote - one-sided limits omitted 

The majority, 58 (~92%) of the 63 students correctly identified the vertical asymptote by finding where 

the function was undefined; the point at which the denominator equaled to zero. Only one student 

continued the problem by finding both one-sided limits. Another student wrote out their thoughts, 

demonstrating their understanding of vertical asymptotes.  

Examples of correctly finding the vertical asymptote 

Student #26 wrote: 

The vertical asymptote,   is not defined in   
 

 
, then 
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then the horizontal asymptote are   
 

 
 

Note: Although this student wrote "horizontal asymptote" in his concluding statement, his work for the 

vertical asymptote, as well as work for the horizontal asymptotes prior to this work was correct. We 

believe he incorrectly wrote “horizontal”, but understood the difference based on his work. This student 

verified both one-sided limits, even though one would have sufficed. 

Student #33 wrote: 

Vertical asymptote: if          so      approaches infinity 

          
 

 
   vertical asymptote 

Note: The student manages to find the limit, however did not show a calculation of it. In his explanation, 

he uses imprecise, ambiguous language, which might be a sign of insufficient conceptual distinctions 

between numerical solutions to equations and these equations. When he writes        in the first 

line of his solution, does he mean “if   is a solution of the equation       ”? It would have been 

more precise to say, “If   tends to the solution of the equation        then      approaches 

infinity”. In the second line of his solution, is “  
 

 
” a value of the solution to the equation “      ” 

or is it the equation of a line, i.e., the set of points       such that   
 

 
?  

4.3.2 Vertical asymptote - problems with associative, commutative, and distributive properties 

Four students obtained an incorrect vertical asymptote by having an incorrect understanding of vertical 

asymptotes, as well as making algebraic errors. One of these students attempted to rationalize the 
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numerator. We suppose this was done as his recollection of procedures entails rationalizing every time 

he encounters a radical function. Lastly, one student did not attempt this portion of the problem.  

Examples of errors in finding the vertical asymptote 

Student #6 wrote: 

      
      

    
 
      

      
 

      
        

              
 

Vertical Asymptotes 

    

Note: A number of algebraic errors are apparent in this student's work. In attempting to rationalize the 

numerator, this student changed the sign of the constant within the radical expression. In line 2 of his 

work, his difficulties are seen in the numerator. His knowledge of the rationalization process is flawed, 

as is his understanding of exponents. It is as though he believes that                   (FR-

Rad5).  Further, in the denominator of line 2 he appears to remove the    from the radical expression. 

It is unclear if this is inattention.  Lastly, he obtains a vertical asymptote of     without providing any 

information as to how he obtained it.  

Student #24 wrote: 

Vertical         

        
 
         

           

          Vertical b/c   

Note: This student attempted to find the vertical asymptote by setting the expression in the numerator 

equal to zero, and trying to solve for  . This student has no conceptual understanding of vertical 

asymptotes. Rather, he incorrectly remembered a procedure in which he needed to solve for   after 

making an expression equal to zero. From line 3 to line 4, this student believes that        , as 

though the root does not apply to the coefficient (FR-Rad3). Lastly, since the numerator will never equal 

to zero, this student concludes that there is no vertical asymptote because of the negative expression 

under the radical. 
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Student #15 wrote: 

To find vertical asymptotes, we look where the function could be undefined. We know 

      must be greater or   to   for the function      to be defined as the argument 

under the square root must be   or positive. But    will always be positive,   so will     

and       hence the function      is defined everywhere (no vertical asymptotes). 

Note: This student starts with a correct understanding that a vertical asymptote can occur at points in 

which the function is undefined. However, this student looks solely at the numerator, disregarding the 

indeterminacy in the denominator.  

Student #44 wrote: 

For vertical asymptotes           

     

  
 

 
 

  
 

 
 is the vertical asymptote 

Note: Perhaps this student made an inattention error, however, it is also possible that they believe the 

following:       is equivalent to     
 

 
 (FR-Eq3). The student believes that there is always a vertical 

asymptote at a point of indeterminacy. 

4.3.3 Horizontal asymptotes - limits as the asymptotes 

A total of 19 (~30%) students correctly found both limits at infinity. Further, after obtaining these 

correct limits, only 10 (~16%) identified both horizontal asymptotes as either being the lines      
  

 
, 

or wrote out that the horizontal asymptotes are  
  

 
. It is as though some students believed that the 

horizontal asymptotes are the limits themselves and not lines. Another three students correctly 

identified both horizontal asymptotes without having shown their calculations of both limits at infinity. 

Nineteen (~30%) students did not attempt finding the limit as   tends to negative infinity, as though 

finding the horizontal asymptote as   tends to positive infinity was sufficient. Perhaps they confused the 

two definitions between vertical and horizontal asymptotes. As long as one of the limits at infinity 

produced a limit, then they may have believed that it would be sufficient in finding a horizontal 

asymptote. Six (~10%) students did not attempt finding either of the limits at infinity. 
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Examples of finding the horizontal asymptotes correctly 

Student #15 wrote: 

To find horizontal asymptotes: 

   
   

      

    
    

   

      
 
  

    
 

*       , but here as     we can consider it as positive 

       
   

    
 
  

    
 
 
 

 
   

 
  

  
 
 

 
  

 
 

     has a horizontal asymptote    
  

 
 as it tends to positive infinity. 

The process for the limit at    is similar, but there we can assume   to be negative 

and so                     

     
 

  

    
 

 
 

  
  

 
 

     has a horizontal asymptote     
  

 
 as it tends to negative infinity. 

Note: In the third line of this student's work, we find a common absolute value error. By convention, the 

square root of a number A is a non-negative number B such that     .  Thus, the square root of    is 

   , and not    (FR-Sqrt4). In the fourth line, this student forgets to carry forward the limit symbol, 

however he correctly completes the problem.  

Student #23 wrote: 

     
      

    
  

    

  
  

  

 
 

     
         

       
  

    

   
   

  

 
 

  Horizontal asymptotes are    
  

 
 as     , and   

  

 
 as    . 

Note: This student correctly identifies the horizontal asymptotes; however, he or she appears to treat   

as a number. He does not include the limit symbols in his work, yet his concluding statement appears to 

demonstrate his understanding of limits at infinity.   

Lastly, 32 (~51%) students either made some algebraic error in finding one of the limits at infinity, or had 

an incorrect understanding of horizontal asymptotes. These errors will be discussed below. 
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4.3.4 Horizontal asymptotes - problems with associative, commutative, and distributive properties 

In calculating the limits at infinity, 11 (~17%) students made errors with the associative, commutative, 

and distributive properties. As well, some arithmetic errors were apparent.   

The following student decided to apply the Quotient Rule to the function      in order to calculate the 

limits at infinity. The student incorrectly obtains some of the derivatives, and makes a number of 

algebraic errors.  

Student #49 wrote: 

[1] horizontal Asymptote       
     

 

[2]        
      

    
  

[3]        
 

  
 
        

      
   

[4]         

      
 

  
               

 

  
      

       
  

[5]          

       
 

 
               

       
  

[6]          

        
 

  
 
 

 
  

 

  
           

       
  

[7]          
                

       
  

[8]         
         

    
  

[9]  
           

      
  

[10]  
     

  
  

[11]     
  

 
 horizontal asymptote 

[12]     
    

 cannot exist because function would be undefined 

Note: The student starts by trying to find the limit as   tends to negative infinity. He then applies the 

Quotient Rule in line 4. Line 5 demonstrates that he knows the Quotient Rule, however in line 5 he 

incorrectly obtains the derivative of       . Post differentiating, in line 6, he appears to want to take 

the derivative of  
 

 
 and multiply it by the derivative of   , however this would require the use of the 

Product Rule. Further, in line 6, we can see his lack of knowledge of the commutative law. He decides to 

move the constant multiplying the second term in the numerator to the front of the first term. It is as 
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though he believes that           (FR-Com). In line 7, it appears that implicitly he knows the 

derivative of the constant  
 

 
  is zero as it is nowhere to be found, however, the derivative of    appears. 

From line 7 to line 8, this student cancels the (      term from one of the terms in the numerator and 

from the denominator perhaps believing that the algebraic property:  if      , then  
 

 
 

  

  
  applies 

also to addition: 
    

  
 

   

 
 (FR-Frac1). Lastly, in line 9, the student replaces   with  , however the limit 

to be calculated was as   tends to negative infinity. This is perhaps the student's vague recollection of 

problems of limits at infinity in which some terms go to zero, namely the       
 

    ,  where     is 

a rational number. In line 11, he writes that the horizontal asymptote is    
  

 
, confusing the 

variables   and  . In his 12th line, he mentions that the limit at positive infinity cannot exist, however 

does not provide enough information to help us understand why he believes that the function would be 

undefined. 

  

 Two students attempted to square some part of the function in order to find a limit at infinity., 

demonstrating their difficulties in dealing with the radical expression.  

Student #25 wrote: 

   
   

    
         

       
 

   
   

    
     

      
 

   
   

    

   

   
 
  

   

   
  
  

 

   
   

     
 

 
 

Note: In line 2, this student appears to believe that              (FR-Dist3), and forgets to 

distribute the square to the   (FR-Ops5). In line 3, he then divides all terms by the term with the highest 

degree,   , obtaining a limit of 
 

 
. Throughout, this student leaves      as part of the limit symbol as if 

not recognizing that the limit he was trying to obtain was of the function to the right of     . 
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Student #60 wrote: 

 [1]  H.A. 

 [2]        
      

    
   

       
 

    
  

[3]        
       

 

    
  

[4]         
         

    
      

[5]  Anything divide by   equal   

[6]        

       
 

 

  
 

 

   

[7]       
      

 
  

[8]       

      

 

 
  

[9]        
   

 
  

[10]  H.A. by higher exponent 
 

 
  

Note: "H.A." is the student's acronym for horizontal asymptote. Throughout this solution, the student 

omits equal signs between limits. In line 2, the student appears to forget to add a limit symbol to the 

second step, and appears to square only the numerator, after having removed the radical. Perhaps they 

believe that to remove a square root symbol over a radicand, one must square that expression as such:  

     . This student does not have a good understanding of square root functions. Line 3 includes the 

previous limit with the limit symbol. From line 3 to line 4, the student incorrectly squares the numerator, 

leaving the coefficient in front of    as   instead of   (FR-Ops5). In this step, he decides to divide by the 

term with largest degree of the denominator. This step is done correctly. He includes a statement that 

"Anything divide by   equal  " and moving from line 6 to 7, drops the terms that tend to  . In line 8, he 

decided to divide the numerator by  , although it is unclear why he chose to do so. From line 8 to line 9, 

dividing    by   should produce  , although it is nowhere to be found. In his concluding statement, the 

student claims that the horizontal asymptote is  
 

 
 "by higher exponent", however by his last limit line, 

that limit would equal to infinity and not  
 

 
 , demonstrating his ignorance of limits. The "H.A. by higher 

exponent" statement makes us presume that he is incorrectly recalling the rational function technique 

for finding limits at infinity.  
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 Three students attempted some form of the rationalization procedure. One successfully applied 

the correct procedure, and had good knowledge of the distributive property, whereas the other two 

made a number of errors. 

Example of a correct rationalization procedure 

Student #54 wrote: 

[1]       
      

    
 
      

      
 

[2]       
     

              
 

[3]       
     

                
 

[4]       

   

   
 

  

        

   
       

  

 

[5]       

  
 

  

     

   
 

     
   

   
 

  

        

  
 

  

      

   
 

     
   

   
 

  

 

[6] 
   

       
 

 

   
                                        

 

   
 

[7]  Horizontal asymptote:   
 

   
 and    

 

   
 

Note: From line 1 to 2, the student correctly rationalizes the numerator. In line 3, he correctly applies 

the distributive property. In line 4, he decides to divide all terms by the term with the highest degree. In 

line 5, he correctly inserts the    and    terms into the radical expressions - this is where he starts the 

work for the limit at negative infinity as well. Although there are no signs equating the limits from line to 

line, this student has good algebraic knowledge, and obtains the correct limits.  

Example of a wrong rationalization procedure 

Student #24 wrote: 

[1]  Horizontal   
      

    
 

[2]             

                        
                   

    
 

[3]   
 

    
 
    

    
 

[4]  
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[5]           

[6]        

[7]      

Note: This student does not include any limit symbols throughout his solution. In line 2, his equal sign is 

next to the numerator only, and he appears to only divide the numerator by   . He understands that 
 

   

will tend to zero as   tends to infinity. He appears to only square the radical which leaves him with a 

numerator of  . In the third line, he decides to "rationalize" the denominator, missing the purpose of 

this technique. He correctly applies the distributive property in the fourth line for the numerator, 

however disregards the second binomial in the denominator. In line 5, it appears that he believes that 

the first terms divide, and the second terms divide as such: 
     

   
     (FR-Frac2), demonstrating his 

ignorance of algebraic properties. 

 Four students made arithmetic errors, in which two claimed that a division by zero equaled zero. 

One example is provided below. 

Example of diving by zero 

Student #42 wrote:  

H.A        
      

    
       

       
 
 

    
 

    
   

     
 
   

 
 

   
 
  

 
   

 

 
     

 
 

   
 

 
  

 
   

Note: In line 2, the student factored an    from the numerator, but when removing it from the 

expression with the exponent of  
 

 
 , does not distribute the exponent. This in turn causes him to divide 

the denominator by    as well. In line 4, the student believes that dividing a number by zero will return 

a zero. 
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4.3.5 Horizontal asymptotes - problems with square root functions 

Similar to the misconceptions provided in the student solutions to problem 1, four solutions seemed to 

be based on the belief in the linearity of square root functions, i.e. the students believed that the square 

root of the sum is the sum of the square roots. 

Example of linearity of square root functions 

Student #36 wrote: 

   
   

       
 
 

    
    

   

     
 
 

    
 

  
 
 

  
 
 

 
 

 
 

Note: Prior to this solution, this student rationalized the numerator, however ended up with an 

indeterminate form of the type  
 

 
 . He then decided to proceed with this solution. The linearity belief 

can be seen in the second step (FR-Lin-Sqrt), however this student does not carry the exponent of 
 

 
 to 

the coefficient   (FR-Rad3). In the third step, the student omits the limit symbol, and then, in the fourth 

concludes the solution of an indeterminate form of the type  
 

 
 . It is possible that the student confused 

the sum with the zero product property in which      if either    ,    , or both      .  He 

perhaps believes that      , regardless of the value of   (FR-Zero). 

 For the students who attempted to find the limit as   tends to negative infinity, 10 (~16%) 

students had an incorrect understanding of square root and absolute value functions whereby they did 

not use the definition         .  

Example of a limit at negative infinity 

Student # 10 wrote:  

   
    

      

    
    

    

   
 
  

  
 
 

 
    

 
 

  

 
 

Horizontal asymptote at   
  

 
 

Note: This student appears to divide numerator, and denominator by  , following the procedure for 

finding limits at infinity for rational functions. However he misses the fact that since   tends to negative 

infinity (                  ), when dividing the numerator by   this term inserts itself under 
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the radical by becoming   , however a negative sign must be placed in front of the radical, not to 

confuse it with the principal square root of    (FR-Sqrt3).  

 Another misunderstanding of square root functions appeared in the solutions of three students 

who decided to drop the radical at some point in their solution.  

Student #17 wrote: 

   
   

       
 
 

    
    

   

    
 
  

   

   
 
   

  
  
 

 
 
 
 

 

   
   

    

    
 

 

 
 

Note: This student factors an    term from the numerator, correctly applies the exponent of  
 

 
  to this 

term, however appears to drop this exponent over the other terms. This student also understands that 

      
 

    , where     is a rational number.  

4.3.6 Horizontal asymptotes - rational function technique 

Five students attempted to find the limits based on the coefficients of the terms with the highest 

degree. This technique was mentioned earlier, in reference to rational functions. Even though this 

function was not a rational function, the same reasoning could be applied. Two students used this 

reasoning correctly, without manipulating the function algebraically, whereas the other three were 

unable to obtain the correct answers. 

Example of using the rational function technique correctly  

Student #35 wrote:  

degrees:       
      

    
 

  
  

 
 ,    

  

 
 

Note: This student did not provide much work, although they did write "degrees" and circled the most 

important coefficients to look at  
  

 
 . We can guess that this student implicitly knew the following 

definition         , as they correctly identified both horizontal asymptotes as the lines    
  

 
.  
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Example of using the rational function technique incorrectly 

 Student #8 wrote:  

Horizontal 

the higher exponent is  , denominator and numerator has same exponent  

so H.A. is the division of coefficient with the higher exponent. 

  
 

 
  horizontal asymptote 

Note: This student appears to have a good understanding of the technique, however fails to recognize 

the radical over the numerator, thus obtaining an incorrect asymptote. Further, he only provided one 

asymptote. This omission may be a misunderstanding of horizontal asymptotes and the necessity to 

verify both limits at infinity, or a manifestation of the false rule         (FR-Sqrt3). 

4.3.7 Horizontal asymptotes - other errors 

This section lists a number of errors made by students in finding one of the limits at infinity. Two 

students applied l'Hospital's Rule, and could not produce the correct limit.  

Example of l'Hospital's Rule 

Student #46 wrote:  

      
      

    
 

   
   

      

    
    

   

        
 
    

    
 

    
   

  

       
 

    
   

 

       
 

   

Note: The student applied l'Hospital's Rule correctly, however in the third line, he divides both 

numerator and denominator by  , as if he switches his method by dividing by the highest degree 

(technique used with rational functions). He does not offer enough work to demonstrate how his 

resulting limit is  . Perhaps he views the denominator  
       

 
 as tending to infinity, and not as another 

indeterminate form. He could have tried to apply l'Hospital's Rule again in line 3, as one arrives once 
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more at the indeterminate form of 
 

 
, however this would bring him back to a function similar to      in 

which he would continuously obtain indeterminate forms of the type  
 

 
  after applying l'Hospital's Rule. 

 The other student applied l'Hospital's Rule, however forgot to apply the Chain Rule in the 

second step, resulting in a limit of zero. 

Student #63 wrote: 

   
   

      

    
    

   

 
 
       

 
 

 
    

   

 

       
 

    
   

 

       
   

 

 Two students obtained indeterminate forms for the limit at infinity. One student concluded that 

the indeterminate form of  
 

 
 meant that the function contained no horizontal asymptote. The other 

student's work is shown below. 

Student # 51 wrote: 

   
   

      

    
 

    
   

            
   

 

    
 

    
   

            
   

 
 

  
 
 

 

      

   

    
    

            
    

 

    
 

        

Horizontal asymptote:     

Note: This student obtains an indeterminate form of the type     in line 4, yet believes that it equals 

to zero. He obtains the same value of zero for the limit at negative infinity.  

  

 The following student decided to set the numerator equal to zero, and to solve for  , concluding 

that there was no horizontal asymptote. He has no understanding of limits at infinity, and perhaps is 
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confusing the procedures for finding horizontal and vertical asymptotes. He does however obtain the 

correct vertical asymptote. 

Student #59 wrote: 

        

        

     
 

 
 not defined 

  has not horizontal asymptotes 

 

 Lastly, one student obtained a limit of infinity for the limit of the function as   tends to infinity. 

He did not provide work for this. He concluded that "The function admits no horizontal asymptotes". 

Although this answer is incorrect, he appears to have a good understanding of horizontal asymptotes, as 

a limit of infinity does indicate that a function increases without bound. Although he did not provide 

work for this answer, in his side scribbles he sheds some light in the difficulties he had in finding this 

limit.  

Student #56 wrote: 

              

    
 

     

            
 

                   

Note: In his first line, he appears to rationalize the numerator, however forgets to multiply the 

denominator by       . In his second line, he then multiplies the denominator by       . He also 

believes that multiplying two radicals eliminates the root symbol, however, multiplies the inner 

expressions without applying the distributive property. It is as though he believes           

      (FR-Rad4). In his third line, he only writes the expression for the denominator and does 

correctly apply the distributive property. No other work is shown after this point, however, since it 

appears that the numerator has the term with the highest degree the student may have concluded that 

the limit equaled infinity.  
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4.4 STUDENTS' RESPONSES TO PROBLEM 4 

Problem 4 asked students to find the derivatives of five functions. Since students were told that they do 

not need to simplify their final answers, the question did not test their elementary algebraic skills, but 

mostly their ability to apply differentiation rules to moderately complicated algebraic expressions. This 

application, as mentioned in our a priori analysis of the question (section 3.4), requires the ability to 

recognize the structure of the expression. Thus, in our analysis of the students’ solutions, we tried to 

assess whether students recognized correctly the overall structure of the expression. For problems that 

required the use of the Chain Rule, we attempted to determine whether students knew how many 

derivatives needed to be multiplying each other, as well as whether these derivatives were of the 

correct elementary function. We will not dwell on the correctness of the derivatives that students 

provided for the elementary functions.  The most common difficulties were with applying the 

appropriate differentiation formula (D-App), and difficulties with the structure of the expressions (D-

Struc). 

 

As a reminder, Problem 4 was given as follows: 

Find the derivatives of the following functions. (You don't need to simplify the final 

answer, but you must show how you calculate it): 

Part a)      
  
 

      

 
 

Part b)                         

Part c)          
  

   
       

Part d)                     

Part e)             (use logarithmic differentiation) 
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In Table 4 we present the distribution of correct and incorrect answers to this problem.   

Table 4. Distribution of correct and incorrect answers to Problem 4. 

n=63 correct incorrect other total 

P4 - Derivatives     

Part a 31 (49%) 30 (48%) 2 (3%) 63 

Part b 37 (59%) 24 (38%) 2 (3%) 63 

Part c 37 (59%) 23 (36%) 3 (5%) 63 

Part d 36 (57%) 26 (41%) 1 (2%) 63 

Part e 38 (60%) 24 (38%) 1 (2%) 63 

 

Remarks: the "other" column includes all students who omitted the respective portion of the problem. It 

turns out that differentiation of a quotient of functions was the most difficult task. The common 

mistakes amongst students are grouped per problem, and described in the following sections.   

4.4.1 Problems with part a 

Reminder:      
  
 

     

 
 

This problem can be solved by applying the Quotient Rule directly, or the function’s expression can be 

simplified prior to taking the derivative. For those that simplified first, we expected a number of errors 

as exponents and fractions are known for being difficult for students.  Twenty-two (~35%) students 

chose to simplify prior to finding the derivative; 19 (~30%) did so correctly, two students did so 

incorrectly, while one did not complete the simplification.  

Example of a correct simplification prior to taking the derivative 

Student #5 wrote: 
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Examples of an incorrect simplification prior to taking the derivative 

Student #4 wrote: 

      
  
 

     

 
 

 
 
      

 
 

 
 

 
     

 
  

 
 
   
 
 
       

   
 
     

       
 

 
  

 
    

Note: The error in this student's work can be seen in the second step of the first line. He replaced    by 

 , and it is unclear whether this was inattention, or whether there is some misconception about the 

relationship between   and    (FR-Exp1).  

Student #51 wrote: 

      
  
 

     

 
 

 
  

 
      

 
 

    
 
      

        
 

 
  

 
      

Note: The error in simplification can be found in line 2; it is as if this student believes the following: 

  
 

   
 

  (FR-Rad1), or perhaps   
 

   
 

    . Alternatively, the error could be attributed to 

inattention.  

 For the 34 (~54%) students who chose to use the Quotient Rule directly, 31 (49%) students 

applied the correct formula (including those that obtained the wrong derivative), two did so incorrectly, 

and one student reversed the derivatives of the numerator. Reversing the derivatives of the numerator 

in the Quotient Rule comes up also in other student solutions to problem 4. By reversing the derivatives 

of the numerator we mean the following: given differentiable functions   and  , 
 

  
 
    

    
  

 
     

 

  
             

 

  
      

       
.  This gives        instead of      .  It is possible that students may have 
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confused the Quotient Rule with the Product Rule, given that the order of functions provided by Stewart 

is as follows:  

The Product Rule If   and   are both differentiable, then 

 

  
               

 

  
            

 

  
       (Stewart, 2016, p. 184). 

Although this is the Product Rule provided by Stewart, with the use commutativity I prefer the following 

equivalent rule for calculating the derivative of a product of two functions: the derivative of the first 

function multiplied by the second, plus the first function multiplied by the derivative of the second 

( 
 

  
           

 

  
                  

 

  
      ). I believe that this way offers an easier way to 

help students remember the Quotient Rule, as it is the derivative of the numerator multiplied by the 

denominator minus the numerator multiplied by the derivative of the denominator, all divided by the 

denominator squared.  

Example of a correct use of the Quotient Rule 

Student #12 wrote: 

     
   

 
      

 
 

       

  
 

     
 

                       

                              

             

   
 

 
    

 
             

 

  
 
 
    

 
                       

 
           

  
 

Note: This student appears to be using the variables   and   which are functions of  , whereby   is the 

function in the numerator and   is the function in the denominator, obtaining a Quotient Rule of  

 
 

 
 
 
  

       

  .  
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Example of an incorrect use of the Quotient Rule 

Student #21 wrote: 

      
  
 

     

 
 

    
 

      

   
 

 
  

 
           

    

     

      

 
 

            
 

      

  
 

Note: Although the student writes out his functions and derivatives correctly using   and  , in 

combining these functions, he does not state which formula he is using. In the first term of the last line, 

it appears that he forgot the remaining two terms of the   , as well he appears to be multiplying by    

instead of  . It is as though he was applying (with mistakes) an invented false rule:  
 

 
 
 
 

      

  . We 

are not providing codes for false rules related to differentiation for reasons explained in the introduction 

to this chapter. 

Example of reversing the derivatives in the numerator of the Quotient Rule 

Student #55 wrote: 

     
   

 
      

 
 

     
 

 
 

 
 

    

 
 

      
 

  

 
 
 

 
 

 

  
 
    

 
 

 
 

 
 

 
  

  
 
  

  
 
   

    
 

 
  

         
 
  

       

    
 

Note: This student's error can be seen in line 4, where he reverses the derivatives of the numerator of 

the Quotient Rule, for both quotients of the expression. The remaining part of his solution was correct. 

As well, this student uses the same incorrect Quotient Rule for part (c) of problem 4. 
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 The remaining common errors seen for students who used the Quotient Rule include 12 (~19%) 

students who made distributive mistakes with a negative sign, seven (~11%) who misplaced brackets, or 

did not include them altogether, and others who made derivative errors with the Product Rule applied 

to      , or not applying it, or with the Power Rule applied to   
 

. Misplacing brackets is a symptom of 

not perceiving the structure of the expression correctly (D-Struc). 

Example of a distributive error and a bracket error 

Student #1 wrote: 

  
 

 
  

 

                         
 

            

 
 

                      
 

       
 

    

 
 

                   
 

       
 

    

Note: In the first line, the bracket issue is apparent when multiplying the derivative of the numerator by 

the denominator  . In line 2, the student does not distribute the    to the last term of the expression. 

This studen makes the same distributive error in the third line by not distributing the    to the 3rd term 

of the expression. It is as if he believed in an invented false rule:             (FR-Dist1).  

Example of Product Rule error 

Student #42 wrote: 

       

 
 
 
  

 
                 

 
         

  
 

Note: It is unclear how the derivative of       became            . Perhaps the last   in the 

expression was due to a bracket issue, however it is still unclear how the derivative of       would 

equal         : what is the student’s idea of the Product Rule is not easily guessed here. 

 Lastly, there were three students who, in the expression of the function, replaced division by   

by multiplication by     and used the Product Rule. One student did this correctly, while the other two 

made mistakes with the Product Rule. Two students' work could not be categorized, and finally two 

students did not attempt this problem.  

4.4.2 Problems with part b   

Reminder:                        
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Looking at the outermost structure of the algebraic expression of this function, we notice a sum of two 

functions. Students were expected to apply the property whereby the derivative of a sum of functions is 

the sum of the derivatives. Each of these functions requires the use of the Chain Rule, as each is a 

composite function of three elementary functions. Sixty (~95%) students correctly assessed the 

outermost structure, adding the derivatives. One student applied the Product Rule instead, and two 

students did not attempt this problem.  

Example of incorrect identification of the outermost structure of the function’s expression (D-Struc) 

Student #12 wrote:  

                     

                            

                            

                                             

Note: Although this function was a sum of two functions, this students appeared to use the Product Rule, 

where               . Further, this student did not apply the Chain Rule to the composite 

functions. His derivative of        is        , as though the only important part of the exponent is the 

coefficient in front of the   variable. The student omits the derivative of the sine function, however 

knows that the derivative of an exponential function is that exponential function. His derivative of 

         is          , as though he took the derivative of the sine function, but evaluated it at the 

derivative of the inner function    . This student does not have a good understanding of the Chain Rule, 

and has difficulty with the structure of algebraic expressions of functions and differentiation rules. This 

student seems to implicitly use the following invented false rules: 

              ;                         ;         
 
           

  

 With regards to the use of the Chain Rule, in differentiating each function in the sum, 52 (~83%) 

and 47 (~75%) students correctly multiplied three derivatives. These numbers, however, include 

students who made errors in differentiating the elementary functions. They demonstrated a correct 

understanding of the algebraic structure of the whole function. The number of students who moreover 

correctly calculated the derivatives of the elementary components of the first and second function in 

the sum were 47 (~75%) and 41 (~65%), respectively.   
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Example of a correct use of the Chain Rule 

Student #1 wrote: 

                      

 
 

  
         

 

  
           

                                 

                                 

Note: This student correctly demonstrates his knowledge of the Sum Rule in line 2. In the last line of his 

work, he uses commutativity to reorder his derivative, moving around the coefficients  , although not 

with the same organization. One of the coefficients is in the middle of the exponential and cosine 

function of the first expression, whereas the other is at the front of the second expression. 

Example of an incorrect use of the Chain Rule 

Student #4 wrote: 

                     

                

                    

Note: This student starts the problem by incorrectly “simplifying” the function from line 1 to line 2, by 

making        equal to      . In question 4a, this same student replaced    by  . So it is possible that 

the student believes in the false rule        (FR-Exp2).  In line 3, the student treats the exponent  

      as though it were a coefficient, and multiplies it by   . It is as though the student applied some 

form of the Power Rule whereby he "brings down" the coefficient. If he were truly applying the Power 

Rule, and assuming he treated       as a coefficient, then the derivative of        would have to be 

                 , however his exponential part of the derivative was    alone. For the second 

expression in the third line,       became      . The coefficient of   in front of the expression can be 

assumed to be the derivative of   . This student did not take the derivative of the sine function, and 

further the inner expression became   post differentiating. Perhaps this student's belief about the Chain 

Rule is that once he obtains the derivative of the inner expressions, he multiplies those derivatives by 

the elementary functions, and not the functions at hand.  His knowledge of the structure of functions is 

clearly lacking, and his knowledge of the Chain Rule is flawed. He believes that       ,           
 
 

           , and                     .   
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 Interestingly, four students applied the Product Rule to the second function           , as 

though the sine function was multiplying the exponential function (Mis-Notation2). Also, one of these 

students applied the Product Rule to each composite function of this problem. 

Example of a Product Rule applied to a composite function 

Student #23 wrote:  

                     

                                            

Note: The Product Rule is applied to second expression          , whereby the resulting derivative is 

                  . This student appears to treat the trigonometric functions of     and     as 

though they were variables that can be multiplied with other terms, and not as functions of some 

variables (Mis-Notation2). What is interesting about this is that this student correctly obtains the 

derivative of the first expression, which also contains an exponential and a trigonometric function, 

however perhaps the placement of the functions (the structure) in the second expression confused the 

student. Implicitly, the students appears to apply the false rule                                 . 

 Other errors in solving this problem include students having difficulties with the derivative of the 

exponential and trigonometric functions. These were combined with incorrect uses of the Chain Rule, or 

not applying it altogether, as in the following example. 

Student #6 wrote: 

                     

                      

Note: In the second line, it appears that this student believes that the derivative of a composite function 

is the derivative of each function in their respective position of the structure of the function. For 

example,           
 
       

    , and                     . We have already seen the latter false 

rule at work in student #12’s solution to this part of problem 4. Even if this is the student's belief, in the 

first expression he does not recognize that the innermost expression is   . Further, in the second 

expression, he does appear to see the innermost expression of   , however after differentiating, the 

innermost expression changes from    to  . 
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4.4.3 Problems with part c 

Reminder:          
  

   
       

This problem can be solved by simplifying the function using the logarithmic laws, prior to taking the 

derivative, or by directly applying the Chain Rule. For those that simplified first, we expected a number 

of errors as there tends to be confusion with the logarithmic laws, however 27 (~43%) students who 

simplified first, did so correctly. Only one student did so incorrectly. 

Example of correct simplification 

Student #50 wrote: 

        
  

   
     

                 

              

        
 

   
 

Note: This student correctly applies the logarithmic laws in line 2, knows that        in line 3, and 

lastly that the derivative of    is zero, as it is a constant. 

Example of incorrect simplification  

Student #4 wrote: 

[1]         
  

   
      

[2]     
  

   
         [Implicit rule, false: (*)           

(side work) 

[3]    
  

   
     

[4]    
  

   
        [Rule (*) applied again, to derive [4] from [3] ] 

[5]    
  

   
    [Implicit rule, true: (**) If         then     , applied to [3] ] 

[6]   
 

   
    [Implicit rule, false: (***)      , already used in parts a and b ] 

[7]         

[8]             [Rule (*) applied to [7] to derive [8] ] 

[9]          [Rule (*) applied to the right side of [8]; then rule {**) ] 
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[10]         [Implicit rule, true: (****)        then    ] 

(back to the main body of solution, following [2]) 

[11]  
 

   
      [Results [6] and [10] applied to [2]] 

[12]  
      

   
    [Correct algebraic processing of [11] : addition of ratios] 

[13]  
    

   
     [Correct algebraic processing of [12]: addition of monomials] 

Note: This student appears to believe in two false rules about logarithmic and exponential functions: 

        (FR-Ln1) and      (FR-Exp1). Perhaps he confuses these rules with the differentiation of 

the logarithmic and exponential functions.  

 For students who correctly simplified first, the common errors encountered were with the 

derivatives of the three elementary functions. Three students made an error with the derivative of     , 

and one made an error with        .  

Examples of errors with the derivatives of elementary functions 

Student #8 wrote:  

        
  

   
     

                     

 

  
 

 

   
   

 
 

  
 

 

     
 

Note: In passing from line 1 to 2, this student appears to be processing the expression using a correct 

logarithmic law (    
 

 
               ). However, the student also appears to take the derivative of 

  ,  as though it were the function    and not a constant, and does it with errors. This student's use of 

the Power Rule is flawed. Assuming they believed that   was a variable and not a constant, the 

derivative, using the power rule would be      , and not        . However, the student may have 

been implicitly using the false rule        
 
                  . Note that a number of students made 

errors with the derivative of   , which will be discussed further. From line 2 to line 3, the derivative of 

     was found to be 
 

  . This student appears to have missed applying the Chain Rule – a structural 

mistake (D-Struc). Further, he could have noticed that       , and that the derivative of   would 

have been  . 



 
 

121 
 

Student #47 wrote:  

         
  

   
     

                     

      
 

  
    

 

   
     

      
  

  
 

 

   
 

Note: The error can be seen in line 3. The student appears to apply the Chain Rule, and incorrectly 

multiplies by   instead of  . This could be a mistake of inattention. In his final solution the student does 

not replace  
  

   by 1; but then there was no need to simplify the final expression so this is not necessarily 

a sign of a conceptual problem in the student.  

 For the students who chose to apply the Chain Rule and the Quotient Rule, 27 (~43%) students 

applied the Chain Rule correctly, and four did so incorrectly. For the Quotient Rule, 26 (~41%) students 

did so correctly, and five did so incorrectly. Two students reversed the Quotient Rule as discussed in part 

(a).  

Example of correct use of the Chain Rule & Quotient Rule 

Student #9 wrote: 

        
  

   
     

       
   

  
   

          

      
  

Example of incorrect use of the Chain Rule 

Student #14 wrote: 

[1]           
  

   
      

(side work) 

[2]       
  

   
  

[3]    
  

   
  

[4]       

[5]       
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[6]        

[7]      therefore          

[8]        
  

   
     

[9]    
       

    

[10]    
          

      
  

[11]        

[12]         

(back to main solution) 

[13]          
  

   
  

          

      
   

Note: This student seemed to have a good structural view in identifying all the elementary functions. His 

error occurred in the 8th line, in which he does not use the Chain Rule. He does not take the derivative 

of the outermost function    
  

   
 . However, it could also be that this student believes that the 

derivative of a natural logarithmic function is the natural logarithm (an implicit false rule,            

               ) , confusing the rules of differentiation of     with those of   .  

Example of incorrect use of the Quotient Rule 

Student #3 wrote: 

         
  

   
     

       

        
 
  

   

 

Note: It appears that this student knew the derivative of the outermost function, as he divides by 
  

   
, 

however it appears as though he does not apply the Quotient Rule to the inner function. Rather, he may 

believe that the derivative of a ratio of functions is the derivative of the numerator divided by the 

derivative of the denominator (the implicit false rule  
 

 
 
 
 

  

   ). In the numerator, he recalls the 

derivative of exponential functions as      , and he multiplies by  , as though he is applying the Chain 

Rule to   . 
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 Regardless of which method students used to start this problem, 10 (~16%) students applied 

some rule of differentiation for    treating   as a variable and not a constant. Five students left the 

derivative of    as   , as if treating    like   . The derivative of    is   , therefore the derivative of    

must be   . Four students obtained    , also appearing to treat it as an exponential function. However, 

they appeared to be applying the Chain Rule to multiply the expression by  , even though there is no 

variable in the exponent. Finally one student obtained    as if applying the Power Rule. 

The remaining three of the 63 students did not attempt this problem, and one student's work could not 

be categorized.  

Note: The remaining problems will be analyzed in less detail.   

4.4.4 Problems with part d 

Reminder:                     

Part (d) was a composition of four elementary functions, requiring the use of Chain Rule. Problems 

identifying the structure of this function (D-Struc) were apparent in 13 (~21%) student solutions, and 

was shown in errors with the Chain Rule, applying the Product Rule instead, evaluating a derivative at 

the derivative of an inner function, and treating a trigonometric function as a variable (Mis-Notation2). A 

good portion of the students, 49 (~78%) of 63 multiplied four derivatives. As in the other problems 

requiring the Chain Rule, these numbers include those who made errors with the elementary derivatives, 

but still knew to multiply four derivatives. Other common errors were with the derivative of the 

trigonometric functions, as well as the Power Rule. Lastly, one student did not attempt this problem.  

An example of Mis-Notation2 is the following:                                      

           , whereby the student applies the Product Rule, treating     as a variable. Further, for this 

student            .  

4.4.5 Problems with part e 

Reminder:            (use logarithmic differentiation) 

In this problem, students were specifically asked to use the logarithmic differentiation procedure. Fifty-

seven (~90%) students attempted to use logarithmic differentiation, where 39 (~62%) did so correctly, 

and 18 (~29%) did so incorrectly. Two students attempted to solve this problem by writing       
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, whereas three students attempted some other incorrect method. Lastly, one student did not 

attempt this problem. 

Common errors in the logarithmic differentiation procedure include five students who did not take the 

natural logarithm of both sides of the equation, and 8 (~13%) students did not implicitly derive the left-

hand side, or made errors with this implicit differentiation. Further, 9 (~14%) students made an error 

with, or “did not bring down the      exponent”, thus not properly recalling the logarithmic laws. 

Twelve (~19%) students made an error with, or did not use the Product Rule, and lastly, 12 (~19%) 

students made an error with, or did not replace   with      , thus leaving the derivative with respect to 

 , as a function of   and  . 

In summary, the following false rules appeared to be implicitly used by the students:  

FR-Eq4   
 

 
        

 

 
 

FR-Ln2              

FR-Log5                 

FR-Log6                 

Note: FR-Eq4 is yet another example of the illusion of terms "moving" from one side of an equation to 

another. FR-Ln2 demonstrates treating a logarithmic function as a variable. One student wrote 

                       (FR-Log5), while another wrote                        (FR-Log6), which 

are examples of the false rules about logarithms. 

4.5 STUDENTS' RESPONSES TO PROBLEM 5 

Problem 5 was comprised of three parts. In part (a), students were asked to verify that a point belonged 

to a curve given by an equation, and to find the equation of the tangent line at that point. Part (b) was a 

related rates question in which students were asked to find the rate of change of one variable when the 

rate of change of the other related quantity was provided. Lastly, in part (c), students were asked to 

apply l'Hospital's Rule to evaluate the limit of a function.  For part (a), we did not expect any arithmetic 

errors in plugging in the coordinates of the point into the variables in the equation, as students were 

asked to show that the point belonged to the curve. Thus, their work would reflect equality, satisfying 

the condition of the equation. We did however, expect errors in the implicit differentiation, as the 
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second term in the expression contained a product of   and  . For part (b), we expected errors in the 

implicit differentiation with respect to time. Also, since it was a word problem we expected students to 

miss that the given numerical value was negative, since the rate was decreasing. For part (c), we 

expected errors in the differentiation of     , due to the double negative signs, as well as errors in 

recognizing indeterminate forms, and indeterminacy.  

As a reminder, Problem 5 was given as follows: 

Part a) Verify that the point       belongs to the curve defined by the equation 

               , and find the equation of the tangent line to the curve at this 

point.  

Part b)  A particle is moving along a hyperbola     . As it reaches the point      , the 

y-coordinate is decreasing at a rate of 3 cm/s. How fast is the x-coordinate of the point 

changing at that instant? 

Part c) Use the l'Hôpital's rule to evaluate the       
            

        
 

In Table 5 we present the distribution of correct and incorrect answers to this problem.  

Table 5. Distribution of correct and incorrect answers to Problem 5. 

n=63 correct incorrect other total 

P5     

Part a - Point belonging to curve 54 (86%) 0 9 (14%) 63 

Part a - Equation of tangent line 29 (46%) 23 (37%) 11 (17%) 63 

Part b - Related rates 20 (32%) 34 (54%) 9 (14%) 63 

Part c - L'Hôpital's Rule 39 (62%) 21 (33%) 3 (5%) 63 

 

Remarks: the "other" column includes all students who omitted the respective portion of the problem. 

The common mistakes amongst students are described in the following sections.   

4.5.1 Problems with part a 

Most of the students who obtained an incorrect equation of the tangent line, did so because they had 

an incorrect slope. They either made an error with the implicit differentiation of the function, or they 
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made arithmetic errors in plugging in the coordinate of the point, after differentiating correctly. Ten 

(~16%) students used the standard form       , and 43 (~68%) students used the point-slope form 

             to find the equation of the tangent line.  

The common errors with implicit differentiation included 21 (~33%) students who made some error with 

the middle term, either an incorrect Product Rule, not applying it, not distributing the coefficient of   to 

both terms, or not treating   as a function of  .  Other errors include a non-zero derivative of the 

constant, and arithmetic errors in calculating the slope at the given point 

In summary, the following false rule appeared to be implicitly used by the students: 

FR-Dist2               

 For example, in implicitly differentiating the middle term    , a common solution was a 

variation of the form       , in which the coefficient   was not properly distributed. Further, students 

had difficulties achieving a covariational understanding of functions (D-Covar). For example, in 

differentiating     with respect to  , some students did not take into account that   was a function of  . 

Answers in which   was not a dependent variable were of the form      , whereby some included 

errors with the distributive law. 

4.5.2 Problems with part b 

The students who obtained an incorrect rate of change either did so because they made an error in the 

implicit differentiation with respect to  , did not differentiate with respect to   (D-Covar), or they missed 

that the given quantity was negative. A total of 21 (~33%) students made an error with implicit 

differentiation, while 21 (~33%) students indicated that 
  

  
 equaled   instead of   . Another common 

error was the non-zero derivative of the constant. 

An example of a solution in which covariational thinking of functions was defective is the following: 

 

  
       

  

  
   

  

  
 . 

4.5.3 Problems with part c 

Seventeen (~27%) students obtained the wrong limit because they incorrectly derived the numerator or 

the denominator. Note that no one confused l'Hospital's Rule with the Quotient Rule. Five students did 

not recognize indeterminacy, either claiming that a division by zero was infinity, or that it was zero. 

Lastly, five students made arithmetic errors.  
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Most of the errors occurred with the derivative of     , where answers included:   , the derivative of 

an exponential is the exponential function;     , the derivative of an exponential is the same 

exponential function; and     , where a possible false rule could be             . 

4.6 STUDENTS' RESPONSES TO PROBLEM 6 

Problem 6 was comprised of two parts. In part (a), students were asked to find the slope  , of the 

secant line joining two points. In part (b), students were asked to find all the points     on an interval 

such that        . For part (a), we did not expect many errors in finding the  -coordinates, however 

students must have been able to understand different function notation. Namely, that      in          

requires plugging in   for   in the equation. We also did not expect many errors in finding the slope, as 

students are used to this numerical activity since secondary school. For part (b), the existence of a 

solution to this problem is guaranteed by the Mean Value Theorem, however students could have 

successfully completed this problem procedurally, without even knowing the theorem. We expected 

some errors in differentiating the polynomial, in setting the derivative equal to  , and in solving for   in 

       , as       was a quadratic equation. The equation was a very simple quadratic equation and 

errors in solving such equations were included in false rules. 

As a reminder, Problem 6 was given as follows: 

Let               

Part a) Find the slope   of the secant line joining the points            and         . 

Part b) Find all points     (if any) on the interval        such that        . 

In Table 6 we present the distribution of correct and incorrect answers to this problem.  

Table 6. Distribution of correct and incorrect answers to Problem 6. 

n=63 correct incorrect other total 

P6     

Part a - Slope of secant line 53 (84%) 7 (11%) 3 (5%) 63 

Part b - Mean Value Theorem 42 (67%) 18 (28%) 3 (5%) 63 

 

Remarks: The "other" column includes all students who omitted the respective portion of the problem. 

The common mistakes amongst students are described in the following sections.   
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4.6.1 Problems with part a 

Three students obtained an incorrect slope due to arithmetic errors. Two students incorrectly calculated 

      and/or     , and one student made an error with the slope formula (D-App).  Four students 

incorrectly copied     , thus obtaining incorrect points. Lastly, three students did not attempt this 

portion of the problem. 

The error made with the slope formula was as follows:   
     

     
  

The error above may have been due to inattention, as both  -coordinates were coefficients of  , 

whereby one was positive, and one was negative. 

4.6.2 Problems with part b 

Fifty-nine (~94%) students correctly found      , and one student did not find      . Rather, this 

student calculated the slope again as the slope of the secant line, and obtained       to be  . This 

student did not continue the problem. Four students correctly found       however made it equal to  , 

instead of  . Lastly, three students did not attempt this portion of the problem.  

The main errors that occurred solving for   include five students who made algebraic errors, two 

students who determined   to be only the positive root, and one student who claimed that no such 

points existed, without providing justification. 

In summary, the following false rules appeared to be used implicitly by students:  

FR-Sqrt1            

FR-Sqrt2              

FR-Eq2                 

FR-Eq6           
   

 
 

FR-Dist10                     

Note: FR-Sqrt1 & 2 demonstrate misunderstandings with square root expressions. FR-Eq2 & 6 

demonstrate misunderstandings about the rules required to process equations. FR-Dist10 demonstrates 

an incorrect use of the distributive law. 
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4.7 STUDENTS' RESPONSES TO PROBLEM 7 

Problem 7 was comprised of three parts. In part (a), students were asked to find the derivative of a 

function using the definition of the derivative. In part (b), students were asked to find the linearization 

formula for the function at a point. In part (c), students were asked to find the differential    and to 

evaluate it for specific values of  , and   . For part (a), we expected a number of errors with the 

distributive law, for example in expanding the cubic term. For part (b), it was expected that students 

would make errors recalling the linearization formula, confusing the variable and parameters,  ,  ,     , 

and       (D-App). For part (c), we expected that students would make mistakes in recalling the 

differential equation. We did not expect many errors in the substitution of the numerical values for   

and   .  

As a reminder, Problem 7 was given as follows: 

Consider the function                  

Part a) Use the definition of the derivative to find the formula for      . 

Part b) Write the linearization formula for   at    . 

Part c) Find the differential    and evaluate it for the values     and       . 

In Table 7 we present the distribution of correct and incorrect answers to this problem.  

Table 7. Distribution of correct and incorrect answers to Problem 7. 

n=63 correct incorrect other total 

P7     

Part a - Definition of derivative 44 (70%) 18 (28%) 1 (2%) 63 

Part b - Linearization 41 (65%) 19 (30%) 3 (5%) 63 

Part c - Differential 31 (49%) 20 (32%) 12 (19%) 63 

 

Remarks: The "other" column includes all students who omitted the respective portion of the problem. 

The common mistakes amongst students are described in the following sections.   
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4.7.1 Problems with part a 

Seven (~11%) students either did not include the limit operator, or made some error in recalling the 

definition of the derivative. Three students used the differentiation rules, rather than the definition of 

the derivative. One student's work could not be categorized, and three students did not attempt this 

portion of the problem.  

Twelve (~19%) students made algebraic errors, which were mainly violations of the distributive law. The 

main errors occurred in expanding the cubic term       . 

In summary, the following false rules appeared to be used implicitly by students:   

FR-Dist1               

FR-Dist3                

FR-Dist4              

FR-Dist5                   

FR-Dist6                       (right-hand side properly expanded) 

FR-Dist7                            

FR-Dist8                    

FR-Dist9                   

FR-Frac3   
   

   
 

 

 
 

Note: All the false rules listed above demonstrate errors with the distributive law. An example of FR-

Dist1 was                      . An example of FR-Dist3 was             . 

Further, FR-Frac3 also includes a misunderstanding of the following algebraic property:  If      , then  

 

 
 

  

  
 , whereby the student also applies this property to addition: 

   

   
 

 

 
. 

4.7.2 Problems with parts b and c 

For part (b), 17 (~33%) students provided an incorrect equation for the linearization of the function, 

and/or confused the variable and parameters,  ,  ,     , and      . This demonstrates their inability to 

recognize the linearization of   at  , as the equation of a tangent line at the point          (D-App).  
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Some distributive and arithmetic errors were also apparent. Three students did not attempt this portion 

of the problem.  

For part (c), the majority of the errors that occurred included using a wrong equation for the differential, 

i.e. using      instead of      , using      and evaluating it at    , and      , or not solving for the 

differential   . Students made minor errors with the derivative, and some students’ work could not be 

categorized. Lastly, 12 (~19%) students did not attempt this portion of the problem. 

In summary, the following incorrect linearization equations were provided by students:  

a)                           

b)                     

c)                      

d)                      

e)                        

f)                      

g)                      

h)                   

Note: The incorrect linearization equations above demonstrate the students' confusion with the 

variables and parameters. This difficulty in applying the linearization formula is coded as D-App. This 

also demonstrates an incorrect understanding of the structure of linear equations (D-Struc). 

 

In summary, the following false rules appeared to be implicitly used by students:  

FR-Dist14                      

FR-Eq4   
 

 
          

 

 
 

Note: An example of FR-Dist14 is student #13 who wrote                . FR-Eq4 is the belief 

in terms "moving" from one side of an equation to another.  
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4.8 STUDENTS' RESPONSES TO PROBLEM 8 

Problem 8 was comprised of two different parts. In part (a), students were asked to find the absolute 

extrema of a function on a closed interval. In part (b), students were asked to find the dimensions of a 

box with a minimal surface area.  In part (a), given that the function was continuous and in a closed 

interval, it was expected that students would use the Closed Interval Method to find the absolute 

extrema. We did not expect many algebraic errors in finding the derivative of the polynomial as this is 

quite routine. However, we did expect errors in the students' attempts at finding the critical points, as 

the derivative was a polynomial of degree 3. Also, in using the Closed Interval Method, we expected that 

some students would forget substituting the numerical values of the endpoints in     . As well, we 

expected some minor arithmetic errors in the substitution of the critical points, as well as for the 

endpoints. For part (b), it was expected that students would incorrectly set up the given information, i.e. 

make errors with the equations for volume and surface area (D-Mod). Even though the object was a 

rectangular box, and students have seen this object time and time again in calculus problems, students 

still made errors with the equations. We expected some algebraic errors in finding the critical points, as 

the derivative of the surface area contained a subtraction and a ratio.  Finally, we expected that 

students would not verify if the critical point was the absolute extreme point minimizing the surface 

area. This expectation stems from the fact that in all routine optimization problems, the critical point 

found is always the absolute extreme point sought.   

As a reminder, Problem 8 was given as follows: 

Part a) Find the absolute maximum and minimum values of               

         on the interval       . 

Part b) A box with a square base and open top must have a volume of 32,000 cm3. Find 

the dimensions of the box that minimize the surface area. 

In Table 8 we present the distribution of correct and incorrect answers to this problem.  

Table 8. Distribution of correct and incorrect answers to Problem 8. 

n=63 correct incorrect other total 

P8     

Part a - Closed Interval Method 25 (40%) 34 (54%) 4 (6%) 63 

Part b - Optimization 18 (29%) 36 (57%) 9 (14%) 63 
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Remarks: For part (a), a solution was categorized as "incorrect", if one or both of the absolute extreme 

points were incorrect. For part (b), a solution was categorized as "incorrect", if both dimensions were 

not provided, or one of the two was incorrect. Further, this category includes 20 (~32%) students who 

were unable to complete the optimization problem. The "other" column includes all students who 

omitted the respective portion of the problem. The common mistakes amongst students are described 

in the following sections.   

4.8.1 Problems with part a 

Fifty-seven (~90%) students correctly obtained the derivative of the function. Only two students made 

errors with the Power Rule.  Thirty-seven (~59%) students correctly identified all three critical points, 

while 19 (~30%) students made algebraic errors. The majority of the errors were with the distributive 

law, and forgetting to include     as a critical point. Lastly, three students did not attempt finding the 

critical points. 

In evaluating      at the critical and endpoint points, 7 (~11%) and 9 (~14%) students made arithmetic 

errors, respectively. Three students incorrectly evaluated the points at       instead of     . Further, 9 

(~14%) students did not use the Closed Interval Method as they did not evaluate      at the endpoints. 

In summary, the following false rules appeared to be implicitly used by the students:  

FR-Eq1              

FR-Ops3             

FR-Ops4            

FR-Dist12                             

Note: FR-Eq1 demonstrates the illusion that terms "move" from one side of an equation to another 

without the use of any operations. FR-Dist12 is an error with the distributive law. 

 For the students that correctly "factored", the following are examples in which some students 

omitted some of the solutions for the critical points. 

a)                          

b)                    

c)                                     
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Note: Students' omission of     as a critical point can be seen in (a);  students' omission of the factors 

of the quadratic equation as critical points can be seen in (b); and lastly, in (c), the student only 

appeared to be concerned with a special portion of the equation.   

4.8.2 Problems with part b 

Representing variables with letters and creating formulas is a nontrivial algebraic activity (D-Mod). A 

total of 32 (~51%) students correctly set up both the volume and surface area equations. Even though 

the given object was a rectangular box, 10 (~16%), and 15 (~24%) students made errors with the volume, 

and surface area equations, respectively. For those that set up the volume equation properly, most 

students correctly found the expression for height,   
     

  . Some made errors in substituting this 

expression for   in the surface area equation, while others did not substitute the variable, rather they 

incorrectly differentiated the product with respect to  . Others made minor mistakes with the derivative 

(one reversed the Quotient Rule), thus obtaining an incorrect critical point. Further, of the students that 

successfully found the critical point, six (~10%) students either did not find the numerical value of the 

height of the box, or made errors in solving for the height, which are simple numerical tasks. Lastly, for 

those students that found a critical point (whether correct or not), only 12 (~19%) students verified 

whether the critical point obtained was the absolute minimum.  

In summary, the following are consequences of conceptual difficulties with covariational thinking about 

variables (D-Covar), as well as difficulties in modeling a relationship among variables (D-Mod).  

a)      

b)      

c)       

d)       

e)       

f)        

g)      

h)      

i)            

j)      

k)          

l)        
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m)       

n)         

o)          

p)         

q)      

Note: An incorrect understanding and representation of the volume of a rectangular prism can be seen 

in (a)-(f). Note that (a) can be explained by the student assuming it was a cube and not a rectangular 

prism. An incorrect understanding and representation of the surface area of a rectangular box can be 

seen in (g)-(q).  

The following false rules appeared to be implicitly used by the students: 

FR-Ops1            , ignoring the variable 

FR-Eq5           
 

 
 , ignoring the sign 

FR-Ops2     
 

   
 

 
 , ignoring a constant 

4.9 SUMMARY OF DIFFICULTIES, MISCONCEPTIONS AND FALSE RULES 

4.9.1 Algebraic difficulties 

D-Struc: Difficulty in correctly decoding the structure of an algebraic expression 

D-App: Difficulty in applying a formula to a given situation 

D-Mod: Difficulty in modeling a relationship among variables by an equation 

D-Covar: Difficulty in achieving a covariational understanding of functions: difficulty discerning which 

quantity is a function of which quantity and how  

4.9.2 Algebraic misconceptions 

4.9.2.1 Misconceptions related to the concept of function 

4.9.2.1.1 Misconceptions about the inverse of a function 

Mis-InvF1: The inverse of a function is a step-by-step procedure to follow  
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Mis-InvF2: The inverse of a function is obtained by changing the sign of each term  

4.9.2.1.2 Misconceptions about notation 

Mis-Notation1: A letter without a sign, e.g., “ ” denotes a non-negative number; a letter with a negative 

sign, e.g., “  ” denotes a negative number. 

Mis-Notation2: Abbreviations of names of transcendental functions or numbers such as “ln”, “e”, “sin”, 

“cos”, etc. are processed as variables. 

4.9.2.1.3 Misconceptions about the domain of a function 

Mis-Dom1: The domain of a function equals the domain of its algebraic expression  

Mis-Dom2: The domain of a composition of functions is the domain of the algebraic expression of the 

composite function 

Mis-Dom3: The domain of the inverse function is the domain of the algebraic expression of the inverse 

function 

Mis-Dom4: To find the domain of a function   solve        or        or        , where      is 

the whole algebraic expression for   or some part of it  

4.9.3 False algebraic rules 

4.9.3.1 Assumption of linearity of non-linear functions  

FR-Lin-Log                          

FR-Lin-Sqrt               

4.9.3.2 False rule about the absolute value function 

FR-Abs         and        

4.9.3.3 False rules about the square root function 

FR-Sqrt1             

FR-Sqrt2             

FR-Sqrt3           (possible consequence of FR-abs1) 
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FR-Sqrt4         

4.9.3.4 False rules about logarithms (other than the assumption of linearity) 

FR-Log1                         (variation of FR-Log2 applied to sum)  

FR-Log2           
      

      
 

FR-Log3               
 

 
    (variation of FR-Log4) 

FR-Log4               
 

  
  

FR-Log5                  

FR-Log6                   

FR-Log7                

Note: FR-Log1 & FR-Log3 were not found in the student solutions to the final examination, however 

were apparent during in class and during one-to-one discussions. 

4.9.3.5 False rules about the natural logarithm 

FR-Ln1           

FR-Ln2               (consequence of Mis-Notation2) 

4.9.3.6 False rules about the exponential function 

FR-Exp1       

FR-Exp2            (generalization of FR-Exp1) 

FR-Exp3         

4.9.3.7 False rules about expressions with radicals 

FR-Rad1      
   

 

  

FR-Rad2             

FR-Rad3          
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FR-Rad4                   

FR-Rad5                    

4.9.3.8 False rules related to algebraic operations 

Rules violating the distributive property 

FR-Dist1              

FR-Dist2              

FR-Dist3               

FR-Dist4              

FR-Dist5                  

FR-Dist6                       

FR-Dist7                            

FR-Dist8                    

FR-Dist9                   

FR-Dist10                    

FR-Dist11                       

FR-Dist12                          

FR-Dist13                      

FR-Dist14                      

False commutativity 

FR-Com             

False rule about adding 0  

FR-Zero          
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Other false rules about operations  

FR-Ops1             

FR-Ops2     
 

   
 

 
  

FR-Ops3             

FR-Ops4            

FR-Ops5                (generalization of FR-Rad3, if    ) 

4.9.3.9 False rules about processing equations 

FR-Eq1               (illusion of moving terms to other side) 

FR-Eq2                  

FR-Eq3           
 

 
 

FR-Eq4    
 

 
         

 

 
  

FR-Eq5           
 

 
  

FR-Eq6          
   

 
 

4.9.3.10 False rules about algebraic fractions 

FR-Frac1   
    

  
 

   

 
  

FR-Frac2   
     

   
      

FR-Frac3   
   

   
 

 

 
  

4.10 SOME CONSEQUENCES OF THE DIFFICULTIES, MISCONCEPTIONS AND FALSE RULES FOR 

CALCULATION OF DERIVATIVES 

In general, the false rules about differentiation that students invented could be attributed to the 

difficulties coded in section 4.9 as D-Struc, D-App, D-Mod and D-Covar.  We will give a few (2-3) 

examples of such rules for each of these difficulties, as mentioned in analyses of problems from 4 to 8. 
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More examples can be found in the Supplemental Documentation file, posted on the web 

(https://drive.google.com/open?id=0B2kYIbyY4SGRbERhcWtDXzVMMzQ). 

One consequence of the D-Struc difficulty was the false rule saying that the derivative of a function was 

the derivative of each elementary function in their respective position.  Thus the Power Rule, the 

Product Rule, the Quotient Rule, and the Chain Rule were not correctly applied in some student 

solutions. Here are a few examples: 

           
 
  

             

 
 

 
 
 
 

  

    

Some students’ mistakes appeared to be a consequence of the D-App difficulty. For example,  

 
 

 
 
 
 

       

    

  
 

 
 
 
 

      

   

Other mistakes appeared to be a consequence of D-Mod and D-Covar difficulties. Here are two 

examples: We assume that   is a function of  , and we differentiate with respect to  . Also note that   

is a constant. 

              

        , treating    as one single independent variable 

 

 

 

 

 

 

 

https://drive.google.com/open?id=0B2kYIbyY4SGRbERhcWtDXzVMMzQ
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5 CONSTRUCTION OF A PLACEMENT TEST FOR AN ALGEBRA BASED CALCULUS I 

COURSE 

Students who take a Calculus I course - a pre-university level course – at the university come with highly 

varied background knowledge in mathematics. Some have good algebraic skills, some have barely 

passed the prerequisite algebra courses or passed them a long time ago. As we have seen in chapters 3 

and 4, passing the final examination in the Calculus I course at Concordia University is algebraically quite 

demanding. There exist approaches to Calculus that do not require so much algebra (e.g., the Harvard 

Consortium Calculus) but this is not the case for the MATH 203 Calculus I course at Concordia. Therefore 

to reduce the rate of failure in the course (and unnecessary frustration in students) it would be good to 

offer students a Placement Test to assess whether they have the algebraic skills and knowledge 

necessary to succeed in this particular Calculus I course or rather would benefit from reviewing the pre-

calculus material.   

The analyses presented in chapters 3 and 4 can help in constructing such a test. Students’ difficulties, 

misconceptions and false rules, and their manifestations in solving the final examination problems 

identified in the analyses can serve to structure the test and provide ideas for the choices in multiple 

choice items and for true-or-false questions.  

In this chapter, we present some examples of placement test items constructed based on our analyses 

and data. 

5.1 ITEMS ADDRESSING ALGEBRAIC DIFFICULTIES  

5.1.1 Items addressing difficulties in decoding the structure of algebraic expressions (D-Struc) 

The example below uses the manifestations of the difficulty in finding the formula of a composition of 

functions in students’ solutions to Problem 1a of the final examination, involving composition of a 

square root function with a linear function. A similar test item can be constructed using the data from 

students’ solutions of Problem 1b, involving logarithmic functions.  

Example: TI-D-Struc-Ex1 

Let            and          .  
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The formula for the function      is: 

 A.                  

 B.                  

 C.                   

 D.                   

The formula for the function     is:  

 A.                  

 B.                    

 C.           

 D.                 

5.1.2 Items addressing difficulties related to the application of a formula to a given situation (D-App) 

This difficulty was most apparent in students’ application of differentiation rules, such as the Chain Rule 

or the Product Rule, or the Quotient Rule. In a placement test for a Calculus course we cannot ask 

students to calculate a derivative, because they do not know this concept yet. But we can give them a 

formula and ask them to apply it, without getting into the meaning of the formula.  Here is an example 

of such item.  

Example: TI-D-App-Ex1 

With some functions in mathematics, we can associate a function that we denote by writing the 

letter representing the function with an apostrophe; for example if the name of the function is   

then the associated function’s name is   . Suppose we read this symbol as “f prime”, and name 

the operation of calculating the f prime for a function f, “priming”. There are rules for priming 

different types of functions. For example, if          where   and   are any constant real 

numbers, then             ; and if           then           . There are also more 

general rules for “priming” functions made of other functions. For example, the rule for priming 

the quotient of two functions is as follows: 

 
    

    
 
 
 

                     

     
. 
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Let     
    

   
 
 

 . Use the information given above to decide which, if any, of the expressions 

below are correct responses to the question: Calculate      : 

 A.        
    

   
 
 
 

 

 B.       
    

 
 
           

 
       

   
 

 C.       
    

 
          –  

 
 
       

   
 

 D.        
    

 
          –  

 
 
       

    
 

 E. None of the above 

Another example can be the following, if essay type items are allowed on the test. Such items would 

have to be manually graded. 

Example: TI-D-App-Ex2 

Given           means the same as   , write            in this new notation. 

5.1.3 Items addressing difficulties related to modeling relationships among variables by equations (D-

Mod) 

An example of an item addressing this difficulty could be as follows. 

Example: TI-D-Mod-Ex1 

A tourist agency rents 42-seat buses for transportation of tourists on sightseeing tours. The 

number 42 includes the driver’s seat and the seat for the tour guide. The agency pays $125 per 

bus per tour. If   is the number of tourists that signed up for a sightseeing tour, let      denote 

the price the agency will pay for renting the buses. 

What is the rule for the function     ?  

 A.      
 

  
     

 B.      
  

 
     

 C.                                            
 

  
   

 D.                                            
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Another example, can be taken from Carlson's (1998) test items regarding functions, and could be 

modified as follows. 

Example: TI-D-Mod-Ex2 

Which of the following expresses the diameter of a circle as a function of its area? Let   

represent the diameter, and   represent the area of the circle. 

 A.        B.     
 

 
 

 C.   
 

 
    D.     

 

 
 

 E.      
 

 
  F.    

 

 
 

 G.   
 

 
    H.   

 

 
 

 

 
 

 I.   
 

 
 

 

 
  J.    

 

 
 

 K.  the diameter of a circle is not a function of its area  

5.1.4 Items addressing the difficulty in achieving a covariational understanding of functions (D-Covar) 

An example of an item addressing this difficulty could be as follows. 

Example: TI-D-Covar-Ex1 

Given                

a) What is     ?  

 A.                

 B.               

 C.               

 D.         

 E. The value of the function at 2 cannot be calculated.  

b)   is a function of which variable? 

 A.    

 B.   

 C.   

 D.    
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Errors observed in student solutions to problems with implicit differentiation not only demonstrated 

their inability to apply the appropriate differentiation rules, but also their difficulties in covariational 

understanding of functions. A related rates problem taken from Stewart (2016, p. 245), and modified as 

follows is the next example addressing this difficulty. 

Example: TI-D-Covar-Ex2 

Air is being pumped into a spherical balloon so that its volume increases at a rate of         . 

Let   represent the radius of the sphere,   represent the volume of the sphere, and   represent 

time. Note that the volume of a sphere is given by the following equation   
 

 
   . Which of 

the following statements are true? (Mark all that apply). 

 A.   is a function of    B.   is a function of   

 C.   is a function of   D.   is a function of   

 E.   is a function of   F.   is a function of   

 G.  None of the above are true 

5.2 ITEMS ADDRESSING ALGEBRAIC MISCONCEPTIONS  

5.2.1 Items about the inverse of a function 

The next test item examples address the misconception Mis-InvF1. The inverse of a function is a step-by-

step procedure to follow. 

Example: TI-Mis-InvF1-Ex1 

Given                and                , John and Mary are asked whether the two 

functions are inverses of the each other.  

John starts by renaming   and   in      and then by working to isolate   as such:  

            (John switches   and  ) 

                (John says that since we have a ln we need to put an   in front)  

          (John also says that since we had             we could bring down the     ) 

          (John says to move the    to other side) 

             (John concludes that they are inverses) 
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Mary verifies if                   .  

                                                         

                                                         

Whose solution is correct? 

a) John 

b)  Mary 

c)  Both 

d)  None 

 

The next example asks to assess the validity of a solution of a problem to find the formula of the inverse 

of a given function, if possible. 

Example: TI-Mis-InvF1-Ex2 

Given the function:            

John works on finding the inverse of this function. He follows the procedure from the textbook 

and writes the following solution. Is John’s solution correct? YES/NO 

STEP 1: Write the equation:          

STEP 2: Solve the equation for  : 

         

          

          

STEP 3: Interchange   and   

          

Answer:               

 

The next example addresses, among other erroneous ideas about inverse functions found in student’s 

solutions to Problem 1b, the misconception Mis-InvF2: The inverse of a function is obtained by changing 

the sign of each term. It asks to recognize the algebraic expression of the inverse of a given function. 
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Example: TI-Mis-InvF2-Ex1 

Given the function              . Which, if any, of the following expressions is a correct 

formula for the inverse of this function? 

 A.                     

 B.            

 C.           
    

   
  

 D.                 

 E.             

 F.             

 G.            
  

 
  

 H.           
  

  
  

 I.               

 J.  The function has no inverse. 

5.2.2 Items addressing misconceptions about notation 

We give two examples here, one for each identified misconception related to notation. 

The first example is about the value of a letter variable without a sign being always positive and the 

value of a letter variable with a negative sign being always negative. 

Example: TI-Mis-Notation1-Ex1 

True or false? 

 A. For any number  , the number     is a negative number. 

 B. For any number  , the number   is positive. 

 C. For any number  , the number    is a positive number. 

 D. For any number  , the number    is negative. 

 

The second example addresses Mis-Notation2: Abbreviations of names of transcendental functions or 

numbers such as “ln”, “e”, “sin”, “cos”, etc. are processed as variables. 
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Example: TI-Mis-Notation2-Ex1 

True or false? 

 1.  If          , then 
     

  
   

 2.                          

 3.  If      
    

    
 then              

 4.                      

5.2.3 Items addressing misconceptions about the domain of a function 

We start with an example of an item addressing Mis-Dom1: The domain of a function equals the domain 

of its algebraic expression. 

Example: TI-Mis-Dom1-Ex1 

A tourist agency rents 42-seat buses for transportation of tourists on sightseeing tours. The 

number 42 includes the driver’s seat and the seat for the tour guide. The agency pays $125 per 

bus per tour. If   is the number of tourists that signed up for a sightseeing tour, let      denote 

the price the agency will pay for renting the buses. 

What is the domain of the function     ? 

 A.    B.    

 C.    D.      

 E.      F.      

 G.                            

 H. the function      has no domain 

 

The next examples address misconceptions about the domain of a composition of functions, in 

particular Mis-Dom2: The domain of a composition of functions is the domain of the algebraic 

expression of the composite function, and the analogous Mis-Dom3, about the domain of the inverse 

function. 

Example: TI-Mis-Dom2+3-Ex1 

Let         ,     
   and         ,     
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(a)  The domain of the function     is: 

 A.             B.    
     

 C.       D.      
  

 E.       F.      

 G.       H.      

 I.          J.         

(b)  The domain of the function     is: 

 A.             B.    
     

 C.       D.      
  

 E.       F.      

 G.       H.      

 I.          J.         

(c) The value of the function     at      is: 

 A.     B.        

 C. 25  D.       

 E.        F.       

 G.        

H.  There is no value. The function is not defined at     . 

Example TI-Mis-Dom2-Ex2  

Given         ,           ,           , and          ,  

(a) the domain of the function     is: 

 A.       B.     

 C.      D.     

 E.      F.      

 G.      H.       

 I.               

(b) the domain of the function     is: 

 A.        B.     

 C.      D.     
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 E.      F.     

 G.      H.       

 I.               

 

Below are examples addressing Mis-Dom4: To find the domain of a function   solve        or  

       or        , where      is the whole algebraic expression for   or some part of it. 

Example: TI-Mis-Dom4-Ex1 

Given      
     

    
, four students describe how they found the domain of the function.  

John said, "I made it equal to zero, solved for  , and got    
 

 
, so my domain is      

 

 
  

  
 

 
   ." 

Bob said, "I made      greater than zero and obtained    
 

 
 as my domain". 

Peter said, "Since the expression under the root cannot be negative, I made       , and got 

   
 

 
". 

Mary said, "I checked when the denominator equaled to zero and got    , so the domain is 

   ". 

Jane said, "I did both what Peter did and Mary did, and got   
 

 
         .” 

Whose solution is correct? 

 A.  John 

 B.  Bob 

 C.  Peter 

 D.  Mary 

 E.  Jane 

 F.  All are correct 

 G.  None are correct 
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Example: TI-Mis-Dom4-Ex2 

Which of the following curves is the most likely to be the graph of the function 

                ?  

A) 

 

 

B) 
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C) 

 

 

 

D) 
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5.3 ITEMS ADDRESSING ALGEBRAIC FALSE RULES 

5.3.1 Items addressing false rules about linearity of non-linear functions  

Example: TI-FR-Lin-Ex1 

True or false? 

 1.               ,      (FR-Lin-Sqrt & FR-Rad2) 

  where   is any real number greater or equal to  
 

 
 

 2.                     ,    (FR-Lin-Sqrt) 

  where    is any real number greater or equal to    

 3.                           (FR-Lin-Log) 

5.3.2 Items addressing false rules about logarithms 

Example: TI-FR-Log+Ln-Ex1 

True or false? 

 1.           
    

   
     (FR-Log2) 

 2.              
  

 
      (FR-Log3) 

 3.     
  

 
               

 4.  If           
      then           (FR-Log7) 

5.3.3 Items addressing false rules about the natural logarithmic and exponential functions 

Example: TI-FR-Ln+Exp-Ex1 

Which of these is the correct answer to the question: Solve for   in       . 

 A.             

 B.             (FR-Exp1 or FR-Ln1) 

 C.               (FR-Ln2) 

 D.                 (FR-Ln2) 

 E.    is          

 F.  None of the above 
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5.3.4 Items addressing false rules about expressions with radicals 

Example: TI-FR-Sqrt+Rad-Ex1 

True or false? 

 1.  If      then          (FR-Sqrt1) 

 2.                 (FR-Sqrt3) 

 3.        
 

      
 

       

 4.      
 

       
 

        

 5.                      (FR-Rad4) 

 

5.3.5 Items addressing false rules about algebraic operations 

Example: TI-FR-Dist+Ops-Ex1 

True or false? 

 1.                        (FR-Dist13) 

 2.                   (FR-Dist3) 

 3.                                

 4.    
 

    
 

 
       (FR-Ops2) 

Example: TI-FR-Dist-Ex2 

Which of the following is the correct expansion of       ? (Check all that apply). 

 A.            (FR-Dist3) 

 B.                   (FR-Dist6) 

 C.                  (FR-Dist7) 

 D.                     

 E.                  (combination of several rules) 

 F.                  (combination of several rules) 
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5.3.6 Items addressing false rules about processing equations 

Example: TI-FR-Eq-Ex1 

True or false? 

 1. if        then          (FR-Eq2) 

 2. if  
  

 
     then   

  

        

 3. if        then    
 

  
      (FR-Eq3) 

 4. if 
 

 
     then   

   

 
    (FR-Eq4) 

5.3.7 Items addressing false rules about algebraic fractions 

Example: TI-FR-Frac-Ex1 

True or false? 

 1. 
     

  
 

    

 
      (FR-Fraq1) 

 2. 
     

   
            (FR-Frac2)  

 3. 
     

  
 

   

 
        

 4. 
   

   
 

 

 
       (FR-Frac3) 
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6 CONCLUSIONS AND RECOMMENDATIONS 

An introductory one-variable Calculus course is a prerequisite for many STEM programs. Candidates 

aspiring to enter these programs have not always taken this course in secondary school or in college, or 

they have, but did not do well in it. Our university offers these candidates a condensed, fast paced 

version of the course, where the instructor’s role is not so much to teach as to guide students in learning 

the material on their own; help them prepare to pass the final examination. Many of these candidates, 

having been out of school for a while, have forgotten much of the more elementary mathematics they 

learned before; some never knew it well. Fast pace of the course and weak background knowledge of 

more elementary mathematics are among the reasons that researchers give for the high failure rates in 

this type of course, and for the attrition of students in STEM related programs (Hagman, Johnson, & 

Fosdick, 2017).  

Our research brought about the idea that this course, the way it has been conceived in our institution, 

along with the traditional Stewart textbook, necessitates a large amount of algebraic manipulations to 

solve various problems. In multiple instances, we have quoted the author using algebraic techniques to 

solve problems, while other methods were possible, but not always provided. For example, there is a 

whole chapter that is devoted to finding limits, whereby different limit laws are used, and different 

algebraic techniques are demonstrated, and expected to be used as the correct solutions. An example of 

flawed algebraic knowledge coupled with a belief that Calculus is algebra is provided in the solution of 

the work by student #60, in section 4.3.4. The student appears to “algebraize” the theorem that if 

        then       
 

    
      in the form of the rule "

 

 
  ".  It is this phenomenon that pushed 

some mathematics educators to teach Calculus in a qualitative, and conceptual way, with minimal use of 

algebra. One example is the “Harvard Calculus” approach, which can be seen in the Calculus textbook by 

Gleason and Hughes-Hallet (1998). This approach to Calculus proposes a number of changes to the 

traditional one, such as represented in Stewart’s textbook, including reducing the focus on algebra. As 

an example, in finding limits of functions, the numerical approach with a decimal answer is sufficient for 

these authors (Gleason & Hughes-Hallet, 1998). Further, their belief is that every topic should be 

presented in four ways: verbally, numerically, graphically, and algebraically, and that solutions to 

problems are often given in at least two of these ways. Algebraic techniques are not used unless 

necessary. Stewart tends to use the 4-way approach to represent functions, however does not 

necessarily provide two types of solutions for every topic in the textbook. At Concordia University, we 
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are using the traditional Stewart textbook, thus it is evident that students will be exposed to, and will 

use a lot of algebraic knowledge to succeed in this course. 

Students taking MATH 203 at Concordia University tend to have various algebraic skill levels, as some 

will have marginally passed, while others will have obtained very high grades in the prerequisite algebra, 

and function courses. For example, many students do not know why the following would be true: 

           . Some believe that when a term moves from one side of an equation to another, 

the sign in front of the term must change. Not understanding why this is true, while extending this 

flawed belief to other operations can explain some of the false rules we have identified. When such 

questions arose during class or during office hours, the correct method, or simplified theory behind why 

a property, or law was true was always provided. Understanding the why of something to be true is a 

better way to retain the information than simple memorization. Unfortunately, there were students 

who did not attend classes, and/or those who did not ask questions. Algebraic misconceptions have 

been shown to be quite difficult to unlearn (Booth, Barbieri, Eyer, & Paré-Blagoev, 2014), thus without 

addressing students’ prior algebraic difficulties, misconceptions, and false rules, we anticipated that 

these errors would still be apparent in their solutions to the final examination. This was one of the 

reasons for our analysis of the students’ solutions to the final examination, as well as rich data 

availability. If students possessed these algebraic manifestations at the beginning of the course, and at 

the end, we hoped on being able to capture them with the final examination.  

This idea of “moving” a term from one side to another of equality can be traced back to students’ prior 

experience regarding arithmetic, and early algebra, where they had been used to interpreting the equals 

sign as an instruction to compute (“2 + 3 =  ”, or “2 + 3 = ?”), and to writing the solution of an equation 

always on the right side of the equals sign. A study with elementary school children, using non-

traditional forms such as      , rather than the traditional form      , yielded students with a 

better understanding of mathematical equivalence (McNeil, Fyfe, Petersen, Dunwiddie, & Brletic-Shipley, 

2011). It would be interesting to know, if possible, if students taking MATH 200, MATH 201, and 

MATH203 had prior experience with non-traditional forms of arithmetic expressions? 

The inability to understand mathematical equivalence, among many other skills obtained in early 

experiences with arithmetic and algebra can shape students' algebraic knowledge, resulting in 

difficulties, misconceptions, and false rules such as the ones identified in this thesis. Those algebraic 

difficulties, misconceptions and false rules, as well as examples of their manifestation in students’ 
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solutions to one typical final examination in the Calculus I course for science students are the main 

result of the thesis.   

The category of algebraic difficulties refers to students’ lack of knowledge regarding certain algebraic 

skills, necessary in solving calculus problems in this particular course. Difficulties apparent in the 

students' solutions included: 1) difficulties with the structure of the algebraic expressions of functions 

(D-Struc), which for example affected the students’ ability to discern which differentiation rule to apply 

and how; 2) difficulties in applying a formula to a given situation (D-App), revealed, in particular, in 

students’ errors in applying the differentiation rules; 3) difficulties in modeling relationships among 

variables (D-Mod), affecting students’ ability to solve related rates and optimization problems; and 4) 

difficulties with covariational thinking (D-Covar) with consequences in implicit differentiation.  Thus the 

algebraic difficulties identified have an important impact on one’s ability to perform well in Calculus. 

Algebraic misconceptions refer to false or limited beliefs about algebraic concepts, processes and 

notation. Some of those identified in the research were related to the concept of the domain of a 

function. The misconception that the domain of a function is the maximal set of numbers for which an 

algebraic expression has a numerical value (Mis-Dom1) was, in fact, implicitly conveyed in the course, 

and assumed in the formulation of the final examination where students were asked to find the domains 

of functions given only by their algebraic expressions. There is nothing wrong with the concept of the 

maximal set of numbers for which an algebraic expression has a numerical value. But calling it “the 

domain” and not distinguishing it from the concept of domain introduced when defining the general 

concept of function causes much confusion in the students’ minds as to the meaning of this word in the 

context of the Calculus course. We found a great variety of interpretations of this word in students’ 

solutions. Some students resorted to procedurally applying some condition to the whole expression, or 

to some special element of the algebraic expression. Further, students' errors in solving the problem 

about the domain were also consequences of their misconceptions about elementary functions and 

their properties, such as the natural logarithmic, and square root functions. Other misconceptions 

identified were related to the notions of the inverse of a function, and to algebraic notation. 

Algebraic false rules included errors with some false belief regarding an algebraic procedure, law, or 

property. The most common algebraic false rules identified include errors in logarithmic laws, in 

expressions with radicals, and in the distributive law, to name a few.  
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After examining all the students’ solutions to the final examination, compiling the information, and 

creating a coding scheme, we created sample items for a placement test to determine whether students 

would be ready for a Calculus course such as the one provided at Concordia University. Calculus 

placement tests already exist in the literature, such as the ones by Carlson, Oehrtman, and Engelke 

(2010). We can surely create test items that are inspired by existing instruments, however the items that 

we created include answers that are based on Concordia University students’ difficulties, 

misconceptions, and false rules regarding algebraic expressions, as demonstrated in their solutions. 

Although false rules have been known to be infrequent and unstable, we observed an overlap of our 

false rules with some of the 99 as proposed by Payne & Squibb (1990). Common false rules included 

errors with the distributive law. One idea is that if students are being taught to use for example the 

“FOIL method”, and not that to apply the distributive law, if this method is recalled incorrectly, it can 

produce errors that students are unable to detect or correct. If math is but a random set of steps, based 

on unconnected ideas and procedures, then students can do as they please with an algebraic expression. 

They do not understand why they cannot for example “cancel” a term from a fraction in which the 

common term is included in only one term of a sum.  

This research was done and reported with a practical utility in mind. The way we coded the sources of 

students’ algebraic errors and cross-referenced them in the thesis was intended to facilitate searching 

the text for ideas and examples for the construction of test items.  For example, if one would like to test 

students’ knowledge of functions and domain (perhaps in a final examination of prerequisite courses), 

one needs to search “Mis-Dom” in this thesis to find all instances of misconceptions related to domain.  

Unfortunately, various algebraic difficulties, misconceptions and false rules can be ingrained in students’ 

mind from early on, and are known to be difficult to overcome. It is difficult to determine how early, or 

at what point during formal education a student can form a misconception. Further, we cannot control 

what the elementary and secondary school teachers are saying or doing in the classroom. In Quebec, 

elementary school teachers obtain their teaching license after having completed a bachelor’s degree of 

4 years in an education program. Throughout their program, they are prepared to teach all subjects, 

whereby they are only required to take a small number of one-term courses10, which are solely focused 

on the teaching of mathematics (Sierpinska & Osana, 2012). If elementary school teachers have their 

own algebraic difficulties, misconceptions, and false rules, these can unfortunately be passed on to their 

                                                           
10

 The number of courses in mathematics teaching varies from university to university, but it is always a very small 
percentage of the number of all courses in the program. 
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students. Further, these elementary school teachers are not knowledgeable enough to recognize 

students' difficulties, nor that perhaps what they are saying can lead to misconceptions and false-rules. 

Aspiring high school mathematics teachers in Quebec can obtain their teaching certificate, by 

completing a 60-credit program after having completed an undergraduate degree in mathematics, or by 

completing a 120-credit program in education, in which 36-51 credits are university mathematics 

courses. Further, in Quebec, graduates of undergraduate or graduate mathematics programs cannot 

teach below the CEGEP level, unless they have an education degree; thus we arrive at an impasse. 

Mathematicians cannot teach the young, when these difficulties, misconceptions and false rules start 

their manifestations, nor are the licensed teachers themselves necessarily knowledgeable enough to do 

so. Sierpinska and Osana (2012) have proposed developing a mathematical knowledge base for aspiring 

elementary school teachers, however proposing this knowledge base does not guarantee that it will be 

implemented. 

We can however propose some formation for our teachers at Concordia University, for the MATH 200 

level courses. These teachers can not only be made aware of the false rules identified in this thesis, but 

also be instructed themselves on what to say (and more importantly on what not to say). For example, I 

would strongly recommend that teachers refer to the associative, commutative, and distributive laws 

solely, rather than use the creative acronyms of names created for different methods, such as the "FOIL 

method", or the "reverse FOIL method". Also, we should take the extra time to indicate why a term 

appears to move from one side of an equation to the other. As simple as this idea may seem, it was a 

source of a number of false rules identified, applied to different operations. When discussing functions 

and their domains, it is proposed that we provide the definitions in the formal sense, and then inform 

students that functions in the textbook are referred to by their algebraic expressions, even though an 

expression is not sufficient to determine a function. This would at the very least provide students with a 

distinction between the formal definition of the domain of functions, and the natural domain as is 

implicitly used in the textbook. 

Although we cannot change the contents of the textbook, it is proposed that the solutions offered in 

class lean away from algebraic solutions. We may not be prepared to change our view of Calculus to the 

"Harvard Calculus" approach, not now, maybe not ever, however we can use examples from textbooks 

such as the one by Gleason and Hughes-Hallet (1998) to move away from algebraic-based solutions. For 

example, in finding the limit of a ratio of functions, in which one of the expressions contains a radical 

expression, it is proposed to use reasoning rather than algebra to help students understand the notion 
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of limits, rather than limits being yet another algebraic procedure. As was discussed throughout this 

thesis, routine questions regarding various topics in this course involved many algebraic manipulations.  

Our categorization of algebraic errors has great implications for the teaching and learning of Calculus. In 

its current state, we have shown that students lacking algebraic knowledge consequently make errors in 

all topics of this Calculus course. For example, in this course curve sketching as well as all the steps 

involved are very important, and generally constitute a large proportion of the final exam grade. We can 

all agree that understanding the relationship between functions and their derivatives is at the heart of 

such a problem, however if given a function in which a student cannot find the critical points – not 

because they do not understand what critical points are, nor because they do not know how to go about 

doing so, but rather because they become stuck at the simple algebra required to do so post 

differentiating, such a problem does not accurately assess their knowledge of the content. Questions 

assessing the relationship between a function and its derivative would be more beneficial, such as 

perhaps matching the graphs of functions with their derivatives. Or perhaps one could provide a list of 

possible critical points, whereby the students would need to verify which of the ones provided were 

critical points, in order to proceed with the steps involved in the sketch. This would isolate and test 

one’s understanding of the important material, not blurring the solution with algebraic skills.   

Further, in preparing the final examination, I was strongly encouraged to follow the topics listed in the 

course outline, to structure the layout and content of the final like that of previous final examinations, 

and to choose problems from the textbook. Thus the structure, topics, and problems were highly routine. 

Due to various algebraic skill levels, I tried to choose problems that were not algebraically demanding. 

My reasons for doing so included that I wanted to assess Calculus related knowledge and not have this 

blurred with deficiencies in algebra. For example, the derivative of one of the functions in the final was a 

quadratic polynomial, which contained a quadratic term and a constant. Thus, distributivity was not 

exactly an issue here, rather errors with the square root function became apparent (FR-Sqrt). Factoring 

quadratic polynomials is known to be very difficult for students. If the final examination contained more 

complicated quadratic polynomials, a student lacking the algebraic skill required to use the distributive 

law, would be unable to correctly solve a number of problems, giving them a poor grade or even causing 

them to fail the course. Since the final exam is strongly weighted in the course, deciding to change the 

content of the final exam will need to be done very carefully.  For example, with the current limit 

problems, are we testing their knowledge of limits, or only their knowledge of algebra, as most of the 

problems are solved with algebraic techniques? Questions of the form, “what occurs to the numerator 

when   gets closer and closer to  ?”, and similarly for the denominator, would provide use with insight 
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into the students’ thought processes. Thus, in MATH 203’s current state, using a traditional textbook, 

and keeping the same final examination format, algebraic knowledge is still very important for student 

success in this course, which leaves us with some thoughts about our goals for this course. Should we try 

to delineate algebra and calculus within the problems chosen, so as to only test knowledge of Calculus 

related content, or do we believe that algebra is an important foundation, and necessary for all 

mathematics courses?  

Another idea that intrigues me is if having for example the basic algebra course offered at Concordia 

University (MATH 200 - Fundamental Concepts of Algebra) with algebraic expressions that are solely 

with letters, without numerical coefficients would improve students’ algebraic skills? Would students 

develop less false rules, if they learn that any letter can represent a variable or a coefficient, if they do 

not work with coefficients in the arithmetic sense? For example, problems would be of the form 

          , and students would be asked to solve for any of the possible letters. The reason for 

avoiding numerical coefficients altogether is to try to eliminate misconceptions that students have such 

as variables being placeholders, or that a letter without a sign such as   denotes a non-negative number. 

Further, this research did not study classroom interactions, teacher lesson preparation, etc. However, 

one idea that could avoid Mis-Notation1 is that the phrase "negative  " should be omitted from ones 

vocabulary altogether, when referring to variables. One should say "the opposite of  ", whatever   may 

be. Slips, in which teachers refer to the opposite of   as negative  , could lead to this misconception. 

With regards to the introductory class on elementary functions offered at Concordia University (MATH 

201 - Elementary Functions), if all functions were provided in their formal sense, including their domain, 

along with their graphs (when possible), would the act of finding the domain of an algebraic expression 

be all that important, as this act is an algebraic activity?  

Another interesting topic for discussion is the way in which mathematics courses are compartmentalized 

in North America, as opposed to having yearlong courses in which different mathematical domains are 

integrated. In North America, university mathematics instruction divides mathematics into separate 

subjects, e.g., algebra, functions, calculus, linear algebra, etc. taught as separate courses, and offered in 

a 13-week semester. Having these separate courses, students appear to have difficulties in connecting 

the ideas learnt, as they feel that they learn new disconnected ideas with every new topic. As 

mentioned in an article by Krussel (1998), "... mathematics is a confusing array of disconnected facts, 

rules, and definitions." As example, the linearization formula is an equation of the tangent line at a point, 
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yet students had difficulties in seeing this link, and made errors in recognizing which letters were 

variables, and parameters, besides making errors with the structure of the linear equation.  

Although we have analyzed the algebra involved in a Calculus course and typical final examination, 

determining that students can do poorly if assessments are largely algebraic, we are not advocating to 

further separate the two subjects. Rather we are only stating that algebra is quite important for student 

success in this course, and the need for a good placement test would lessen the failure rate, and student 

frustration. Perhaps the need for a crash course, addressing the algebraic misconceptions and false rules 

is required prior to taking the Calculus course. 

Another thought is whether students who are not continuing in a mathematics related field would 

benefit from taking the traditional based course, or whether the “Harvard Calculus” type of course 

would be sufficient as a prerequisite? Future research warrants studying whether STEM related 

programs, and further STEM related careers truly benefit from all the content taught in the introductory 

Calculus course. As Hagman, Johnson, and Fosdick (2017) pointed out, there is a high attrition in STEM 

related programs, due to characteristics of courses such as the introductory Calculus course described 

here. Although these introductory courses are intended to be a weeding of sorts, perhaps we are 

weeding out students that can excel and be very talented in STEM related careers. Such as someone 

who mistook the arugula plant for a weed, and removed it from my family’s garden, after we had taken 

care of it, and were waiting for it to grow a little more to reap its benefits. 
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