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ABSTRACT

Optimal Measure Transformations and Optimal Trading

Renjie Wang, Ph.D.

Concordia University, 2017

We first associate the bond price with an optimal measure transformation problem

which is closely related to decoupled nonlinear forward-backward stochastic differen-

tial equation (FBSDE).1 The measure which solves the optimal measure transforma-

tion problem is the forward measure. These connections explain why the forward

measure transformation employed in the FBSDE approach of Hyndman (Math. Fi-

nanc. Econ. 2(2):107-128, 2009) is effective. We obtain explicit solutions to FBSDEs

with jumps in affine term structure models and quadratic term structure models,

which extend Hyndman (Math. Financ. Econ. 2(2):107-128, 2009). From the opti-

mal measure transformation problem for defaultable bonds, we derive FBSDEs with

random terminal condition to which we give a partially explicit solution. In the

second part we consider trading against a hedge fund or large trader that must liq-

uidate a large position in a risky asset if the market price of the asset crosses a

certain threshold.2 Liquidation occurs in a disorderly manner and negatively impacts

the market price of the asset. We consider the perspective of small investors whose

trades do not induce market impact and who possess different levels of information

about the liquidation trigger mechanism and the market impact. We classify these

market participants into three types: fully informed, partially informed and unin-

formed investors. We consider the portfolio optimization problems and compare the

optimal trading and wealth processes for the three classes of investors theoretically

and by numerical illustrations. Finally we study the portfolio optimization problems

with risk constraints and make comparison with the results without risk constraints.

1Based on the paper with Cody Hyndman.
2Based on the paper with Caroline Hillairet, Cody Hyndman and Ying Jiao.
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Introduction

The pricing problem for zero-coupon bonds based on an underlying short term interest

rate process r(t) ∈ R+ is a fundamental and important topic in financial mathematics.

Various models for r(t) have been proposed under the risk neutral measure. One-

factor models use the instantaneous spot rate r(t) as the basic state variable, such

as Vasicek [63] and Cox et al. [20]. Multi-factor models in which the short rate

depends on a multidimensional factor process include the models of Longstaff and

Schwartz [55], Hull and White [37], and Duffie and Kan [24]. There are several ways to

characterize the bond price. In an arbitrage free market the bond price can be viewed

as a solution to a partial differential equation called the term structure equation

(see Björk [15, Proposition 21.2]) or, linked through the Feynman-Kac formula, by

using risk neutral valuation (see Björk [15, Proposition 21.3]). Recently alternative

approaches have been studied including the stochastic flow approach (see Elliott and

van der Hoek [29], Hyndman and Zhou [38], and Hyndman [40]), a forward-backward

stochastic differential equation approach (see Hyndman [39, 40] and Hyndman and

Zhou [38]), and an optimal stochastic control approach of Gombani and Runggaldier

[35].

Gombani and Runggaldier [35] associate the pricing problem of default-free bonds

with an optimal stochastic control (OSC) problem by transforming the term structure

equation to an equivalent Hamilton-Jacobi-Bellman equation. Inspired by Gombani

and Runggaldier [35] and the notion of relative entropy we develop an optimal mea-

sure transformation (OMT) problem whose value function is connected with the price

of bonds. We explore the equivalence between the OMT problem and OSC problem.

One advantage of the OMT problem compared to the OSC problem is the straight-
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forward extension to models with jumps or even to models for defaultable bonds.

The OMT problem also provides a financial interpretation of the pricing problem in

terms of maximization of returns subject to an entropy penalty term that quantifies

financial risk.

We show that the optimal measure and the value process of the OMT problem can

be completely characterized by a forward-backward stochastic differential equation

(FBSDE). In addition, the optimal measure transformation has an explicit expression

provided that the related FBSDE admits an explicit solution. From the explicit

representation of the optimal measure transformation we note that the measure which

solves the OMT problem coincides with the martingale measure using bond price as

numéraire or the forward measure. These connections provide some insight into why

the forward measure transformation employed in the FBSDE approach of Hyndman

[40] is effective. Under the framework of affine term structure models (ATSMs) and

QTSMs, Hyndman [40] and Hyndman and Zhou [38] presented explicit solutions for

the related FBSDE.

We extend the OMT problem to include jumps and give explicit solutions of the

related FBSDE with jumps under ATSMs and QTSMs extending the results of Hynd-

man [40] and Hyndman and Zhou [38]. Optimal measure transformation problems for

futures and forward prices are also considered. Finally, we study the OMT problem

for defaultable bonds. Due to the random payoff of defaultable bonds the related FB-

SDE terminal value depends generally on the default time and recovery amount. We

obtain a partially explicit solution for the FBSDE whose solution relies on a Riccati

equation and another simpler BSDE that incorporates the default variables.

In the second part of the thesis we are concerned with the optimal trading problem

against a disorderly liquidation impact under asymmetric information. There is a

large amount of literature on insider trading, asymmetric information, and market

manipulation trading strategies including seminal works by [51, 11, 42, 43, 3]. These

works generally assume that an insider is attempting to influence a price by, or profit

from, the release of, potentially false, information known to the insider. These studies

also generally break market participants into noise traders, standard informational

2



traders, and informed traders. The existence of arbitrage strategies, price equilibrium,

or specific market manipulation strategies are the primary concerns of these early

works. Other papers dealing with insider information which quantify the value of

insider information through the maximization of agents wealth or utility include [61,

28, 7, 8].

More recently liquidity modeling has become an intense area of study. Market

micro-structure and limit order books present one approach to modelling liquidity

based on trading mechanisms. Models that specify the price impact of trades as ex-

ogenously determined and depending on the size of a transactions constitute another

strand of the literature. Both approaches treat problems associated with the fact that

trading large positions impacts market prices. A good overview of liquidity models

can be found in [34]. The modeling of market micro-structure and the optimal liqui-

dation of large positions has also been studied extensively and an overview of these

topics can be found in [1]. To the best of our knowledge, among works dealing with

asymmetric information, only few papers concern the market impact of liquidation

risk. In particular, [9] studies optimal liquidation problems of an insider.

In contrast to the existing literature we are concerned with disorderly, rather than

optimal, liquidation and the point of view of market participants other than the large

trader or hedge fund liquidating the position. In particular, we are interested in the

following question: is it possible for a market participant to profit from the knowledge

that another market participant, with large positions in a stock or derivative, will be

forced to liquidate some or all of its position if the price crosses a certain threshold?

There is ample evidence from financial markets concerning the importance of liquidity

risks. For example, consider a hedge fund with a large position in natural gas futures

contracts, such as Amaranth Advisors LLC in 2006, and macro-economic or weather

events contribute to an unexpected adverse change in the price. In this case the fund

may be forced to unwind its positions in a disorderly fashion, which would have a

further market impact on the price. Other examples include the case of Long Term

Capital Management L.P. (LTCM) in 1998 and numerous firms during the financial

crisis of 2007-2008.
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We assume that liquidation occurs immediately when the market price hits the

liquidation trigger level and has a temporary impact on the asset price, whereby the

market price is depressed away from the fundamental value, and gradually dissipates.

We model the temporary market impact by a function with parameters that control

the impact speed and magnitude. Other market participants may have different

levels of information about the liquidation trigger mechanism and the liquidation

impact. We aim to find the optimal trading strategy that maximizes an investor’s

terminal utility of wealth under different types of information that are accessible

to particular market participants. In the standard information case an uninformed

market participant is not aware of the liquidation trigger mechanism. They believe

and act, erroneously when liquidation occurs, as if the market price is equal to the

fundamental asset price. In the partial information case an insider or informed market

participant knows the level at which the hedge fund will be forced to liquidate the

position but does not have information about the liquidation volume which determines

the price impact. In the full information case the insider has complete information

about the liquidation threshold and the price impact. Certain market participants

may have access to this type of information owing to their position, counter-party

status, technology, or knowledge of the market. The fully informed investor’s perfect

information represents one extreme which may be unobtainable in practice. However,

we shall show numerically in the power-utility case that the optimal strategy for the

partially informed investor is quite close to that of the fully informed investor.

The remainder of the thesis is organized as follows. We review some classical

results in Chapter 1. Chapter 2 presents the results of optimal measure transforma-

tion. Chapter 3 discusses the optimal trading problem and Chapter 4 extends to the

optimal trading problem with risk constraints. Chapter 5 summarizes our results and

discusses some future work and an appendix contains technical results and proofs.

4



Chapter 1

Preliminary Results

In this section we review some preliminary results about bond pricing and optimal

portfolio investment.

1.1 PDE approach to bond pricing

Following Lemke [52] we model the financial market on a filtered probability space

(Ω,F , {Ft, 0 ≤ t ≤ T},P0), where Ft satisfies the usual conditions. The source of

randomness is a standard P0-Brownian motion W P0

t which is adapted to Ft. At this

moment we suppose P0 to be real-world measure. We are mainly concerned with the

pricing problem of a default-free zero-coupon bond with maturity T or T -bond for

short.

1.1.1 One-factor models

We denote by rt the instantaneous rate of interest and the money account process Bt

is thus given by

Bt = exp

(∫ t

0

rsds

)
. (1.1.1)

We denote the T -bond price at time t by P (t, T ). With the no arbitrage argument,

there exists a probability measure P equivalent to P0 such that the discounted bond

price process using the money account as numeraire is a martingale. Hence we have

5



the following bond pricing formula

P (t, T ) = EP[exp(−
∫ T

t

rsds)|Ft], (1.1.2)

where EP stands for the expectation with respect to the measure P. Clearly the bond

price P (t, T ) depends upon the behavior of the short rate of interest over the interval

[t, T ]. Let us model the short rate rt as the solution of an SDE of the form

drt = μ(t, rt)dt+ σ(t, rt)dW
P0

t (1.1.3)

under the real-world measure P0. We assume sufficient conditions on μ, σ to ensure

existence and uniqueness of a strong solution to equation (1.1.3). This issue is dis-

cussed in Appendix A.1, however, we have yet to make any modelling assumptions.

The interest rate model in (1.1.3) is referred to as the one-factor model. The most

prominent one-factor models are those by Vasicek [63], Cox et al. [20] and Hull and

White [37]. Notice that the dynamics of the short rate rt are given under P0 whereas

the pricing formula (1.1.2) involves the martingale measure P. To connect P with

P0 mathematically, we assume that the measure transformation from P0 to P can be

constructed by the Radon-Nikodym derivative

dP

dP0

∣∣∣∣
Ft

= exp

(
−
∫ t

0

λsdW
P0
t − 1

2

∫ t

0

|λs|2ds
)

where λt satisfies

EP0

[exp

(
1

2

∫ t

0

|λs|2ds
)
] < ∞,

which is known as Novikov’s condition. Then by Girsanov’s theorem we know that

W P = W P0

+

∫ t

0

λsds (1.1.4)

is a standard P-Brownian motion.

With the relation given by (1.1.4) we rewrite (1.1.1)

drt = (μ(t, rt)− λtσ(t, rt)) dt+ σ(t, rt)dW
P
t (1.1.5)

under the martingale measure P. One can possibly solve the SDE (1.1.5) and then

evaluate the expectation of the integral in (1.1.2). For example, the Vasicek model is

defined by the dynamics

drt = k[θ − rt]dt+ σdW P
t .

6



The above SDE is linear and can be solved explicitly. Therefore the bond price given

by (1.1.2) can be computed as an explicit expression only depending on k, θ, σ and

rt. However this explicit computation is not always feasible for a general interest rate

model.

An alternative approach is to characterize the bond price by a partial differen-

tial equation (PDE). We may think of the bond price as a smooth function of two

variables: the time t and the interest rate rt and write the bond price as

P (t, T ) = F T (t, rt)

where the superscript T is regarded as a parameter. Then the function F T (·, ·) satisfies
the PDE

∂F T (t, r)

∂t
+ (μ− σλt)

∂F T (t, r)

∂r
+

1

2
σ2∂

2F T (t, r)

∂r2
− rF T (t, r) = 0 (1.1.6)

with the boundary condition F T (T, r) = 1 for any r. This connection is a direct

application of the Feynman-Kac formula.

On the other hand, we apply Itô’s formula to F T (t, rt) to find that

dF T (t, rt) = (
∂F T (t, rt)

∂t
+ μ

∂F T (t, rt)

∂r
+

1

2
σ2∂

2F T (t, rt)

∂r2
)dt+ σ

∂F T (t, rt)

∂r
dW P0

t .

(1.1.7)

By substituting (1.1.6) into (1.1.7) we rewrite (1.1.7) as

dF T (t, rt)

F T (t, rt)
=

(
rt + λt

σ

F T (t, rt)

∂F T (t, rt)

∂t

)
dt+

σ

F T (t, rt)

∂F T (t, rt)

∂t
dW P0

t .

From the above SDE we can identify the drift and volatility of the return on the

T -bond as

mt = rt + λt
σ

F T (t, rt)

∂F T (t, rt)

∂t
, (1.1.8)

st =
σ

F T (t, rt)

∂F T (t, rt)

∂t
. (1.1.9)

By inserting (1.1.9) into (1.1.8) it is easy to find the relation

λt =
mt − rt

st
.
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λt is also referred to as the market price of risk. As pointed out by Björk [15,

Chapter 23], the process λt is determined by the financial market, or in other words,

the corresponding martingale measure P is chosen by the market. Notice that the

term μ − λtσ in the PDE (1.1.6) is exactly the drift term in the dynamics of the

short rate rt in (1.1.1) under the martingale measure P. It means that the bond price

is completely determined by the dynamics of the short rate rt under the martingale

measure. Instead of specifying μ and λ under the objective probability measure, it

is more convenient to directly model the short rate under the martingale measure P,

which is known as martingale modeling. We assume that rt under P has dynamics

given by

dr(t) = μ̃(t, rt)dt+ σ(t, rt)dW
P
t .

Then the PDE (1.1.6) becomes

∂F T (t, r)

∂t
+ μ̃

∂F T (t, r)

∂r
+

1

2
σ2∂

2F T (t, r)

∂r2
− rF T (t, r) = 0,

which is referred to as the term structure equation.

1.1.2 Multifactor models of the short rate

In the previous one-factor model, the short rate dynamics is driven by one single

Brownian motion. Multifactor models extends this model by incorporating more

than one source of randomness to drive the short rate process. An n-dimensional

factor process X is defined by the SDE

dXt = μ(t,Xt)dt+ σ(t,Xt)dW
P
t (1.1.10)

whereW P
t is a d-dimensional P-Brownian motion. μ(·, ·) is a function fromR+×Rn to

Rn and σ(·, ·) is a function from R+ ×Rn to Rn×n. We assume sufficient conditions

on μ, σ to ensure existence and uniqueness of a solution to equation (1.1.3). This

issue is discussed in Appendix A.1, however, we have yet to make any modelling

assumptions.

The short rate rt is modeled as a function of the factor process

rt = r(Xt)

8



for some function r(·) from Rn to R.

Following a similar procedure as in the previous section, we obtain the term struc-

ture equation for the T -bond price

∂

∂t
F T (t, r) + (μ(t, r))′ ∇rF

T (t, r) +
1

2
tr
{
(σ(t, r))′ ∇rrF

T (t, r)σ(t, r)
}− F T (t, r)r = 0

F T (T, r) = 1

with subindices r and t denoting partial derivatives.

With particular specifications on μ(·, ·), σ(·, ·) and r(·), the term structure equa-

tion has explicit solution. In the following two subsections, we introduce two classes

of term structure models: affine term structure models and quadratic term structure

models.

1.1.3 Affine term structure

The so called affine term structure model (see Björk [15, Chapter 24]) is the framework

under which the bond P (t, T ) is exponential affine in the short rate rt, i.e.

P (t, T ) = F T (t, rt) = eA(t,T )−B(t,T )rt (1.1.11)

where A and B are deterministic functions. We next explore heuristically the proper

choice of μ and σ under P for rt so that the affine term structure holds. In the

first place, we consider the one-factor model. Using the bond price P (t, T ) given in

(1.1.11) above, we may easily compute the various partial derivatives of F T (t, r) and

substitute into (1.1.6) to obtain

At(t, T )− (1 +Bt(t, T ))r − μ(t, r)B(t, T ) +
1

2
σ2(t, r)B2(t, T ) = 0, (1.1.12)

where At(t, T ) and Bt(t, T ) denote the derivatives with respect to t. The boundary

condition

P (T, r;T ) = 1

implies

A(T, T ) = 0,

B(T, T ) = 0.
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The idea is to separate A(t, T ) and B(t, T ) into two equations. Assume that μ and σ

have the form

μ(t, r) = α(t)r + β(t),

σ(t, r) =
√
γ(t)r + δ(t).

Then we reorgnize (1.1.12) as

At(t, T )− β(t)B(t, T ) +
1

2
δ(t)B2(t, T )

− (1 +Bt(t, T ) + α(t)B(t, T )− 1

2
γ(t)B2(t, T ))r = 0.

Since the equation holds for any r the coefficient of r must be equal to be zero. Hence

we find the two equations as below

Bt(t, T ) + α(t)B(t, T )− 1

2
γ(t)B2(t, T ) + 1 = 0 (1.1.13)

At(t, T )− β(t)B(t, T ) +
1

2
δ(t)B2(t, T ) = 0. (1.1.14)

We may first solve equation (1.1.13) for B(t, T ) and then insert it into equation

(1.1.14) to find A(t, T ). Based on the discussion above we formulate the following

result.

Proposition 1.1.1. Assume that μ and σ have the form

μ(t, r) = α(t)r + β(t),

σ(t, r) =
√
γ(t)r + δ(t).

Then the model admits an affine term structure of the form in (1.1.12), where A and

B satisfy the system

Bt(t, T ) + α(t)B(t, T )− 1

2
γ(t)B2(t, T ) = −1, (1.1.15)

At(t, T ) = β(t)B(t, T )− 1

2
δ(t)B2(t, T ), (1.1.16)

B(T, T ) = 0, A(T, T ) = 0.

Note that (1.1.15) is a Riccati equation for the determination of B which does

not involve A. Having solved (1.1.16) we may then insert the solution B into (1.1.16)

and simply integrate in order to obtain A.
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In case of multifactor models, we model the short rate rt as a linear function of

the factors, i.e.

rt = (Ut)
′Xt + Pt

where Ut is a d-dimensional vector and Pt is a scalar. Then an similar result to

(1.1.1) could be derived (see Duffie et al. [27], Duffie and Kan [24], Dai and Singleton

[21] ). Tractability is the main advantage of affine term structure models (ATSMs).

However, ATSMs fail to capture some empirically observed nonlinearities as shown

by Dai and Singleton [21].

1.1.4 Quadratic term structure

Under the framework of quadratic term structure models (see Ahn et al. [2]), the

factor process is traditionally modeled by the SDE of the form

dXt = (FtXt +Ht)dt+GtdW
P
t

and the short rate is quadratic function of the factors

rt = (Xt)
′QtXt + (Ut)

′ + Pt,

where Pt is a scalar, Ht, Ut are n-dimensional vectors, and Qt, Ft are n×n symmetric

matrices and Gt is a n×d matrix. Then the bond price has the exponential quadratic

form

P (t, T ) = exp {−A(t, T )− (Xt)
′B(t, T ) + (Xt)

′C(t, T )Xt}
where A(t, T ), B(t, T ), C(t, T ) satisfy the following system of ODEs

∂

∂t
C(t, T ) + 2Ft(t, T )− 2(t, T )Gt(Gt)

′C(t, T ) +Qt = 0

∂

∂t
B(t, T ) + (Ft)

′B(t, T ) + 2C(t, T )Ht − 2(Gt)
′GtC(t, T )B(t, T ) + Ut = 0

∂

∂t
A(t, T ) + (B(t, T ))′Ht − 1

2
(B(t, T ))′Gt(Gt)

′B(t, T ) + tr ((Gt)
′C(t, T )Gt) + Pt = 0

A(T, T ) = 0, B(T, T ) = 0, C(T, T ) = 0.

Compared with ATSMs, QTSMs have more flexibility to characterize the term struc-

ture of bond price. Ahn et al. [2] showed the conditions for QTSMs which guarantee

closed form solutions for the bond price.

11



1.2 FBSDE approach to bond pricing

Under the framework of ATSMs, Hyndman [40] characterized the bond price via a

forward-backward stochastic differential equation (FBSDE). For simplicity of nota-

tions, we consider the one-factor model which is a special case of Hyndman [40]. The

factor process is given by the SDE

dXt = (AXt +B)dt+ (
√

α + βXt)dW
P
t (1.2.1)

and the interest rate is modeled as linear function of the factor

rt = RXt + k

where A,B, α, β, R, k are all scalars.

Define Ht = exp
(
− ∫ t

0
rsds

)
and Vt = E[exp

(
− ∫ T

0
rsds

)
|Ft]. Simple computa-

tion gives us

dHt = −rtHtdt.

As a martingale Vt has the following representation

Vt = V0 +

∫ t

0

JsdW
P
s (1.2.2)

where J is a progressively measurable process.

Recall that the bond price is given by

P (t, T ) = EP[exp

(∫ T

t

rsds

)
|Ft],

and notice that P (t, T ) = Vt

Ht
. Let Yt = P (t, T ) and using Itô’s formula we find that

dYt = rtYtdt+
Jt
Ht

dW P
t . (1.2.3)

Define Zt =
Jt
Ht

and recall rt = RXt + k to rewrite (1.2.3) as

dYt = (RXt + k)Ytdt+ ZtdW
P
t . (1.2.4)

The fact P (T, T ) = 1 implies the boundary condition YT = 1. Combining (1.2.4)

with (1.2.1) we obtain the decoupled FBSDE

dXt = (AXt +B)dt+ (
√

α + βXt)dW
P
t (1.2.5)

dYt = (RXt + k)Ytdt+ ZtdW
P
t . (1.2.6)
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If we use the T -bond as numeraire, the corresponding martingale measure, or the so

called forward measure, Q is defined via the Radon-Nikodym derivative

dQ

dP

∣∣∣∣
FT

= ΛT = {P (0, T )}−1 exp

(
−
∫ T

0

rsds

)
.

Define Λt = E[ΛT |Ft]. We observe the fact that Λt =
Vt

V0
. Recall (1.2.2) to find that

Λt = 1 +

∫ t

0

Zs

Ys

ΛsdW
P
s .

Then from Girsanov theorem the Q-Brownian motion is given by

WQ
t = W P

t −
∫ t

0

Zs

Ys

ds.

Under the forward measure Q the FBSDE (1.2.5)-(1.2.6) is rewritten as

dXt =

{
AXt +B + (

√
α + βXt)

Zt

Yt

}
dt+ (

√
α + βXt)dW

Q
t (1.2.7)

dYt =

{
(RXt + k)Yt +

Z2
t

Yt

}
dt+ ZtdW

Q
t . (1.2.8)

By adapting a technique for linear FBSDEs from Ma and Yong [57], the main result

of Hyndman [40] below can be proven.

Theorem 1.2.1. If the Riccati equation

U̇t + AUt +
1

2
βU2

t − βUt −R = 0, UT = 0

admits a unique solution over the interval [0, T ] then the FBSDE (1.2.7)-(1.2.8) ad-

mits a unique adapted solution (X, Y, Z) with explicit expression given by

dXt = (AXt +B + (α + β)UtXt) dt+ Sdiag(
√

α + βXt)dW
P
t

lnYt = UtXt + pt, and

Zt = Ut(
√
α + βXt)Yt,

where

pt = −
∫ T

t

(
k + αUs − BUs − 1

2
αU2

s

)
ds.
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Hyndman [40] applied the FBSDE approach to ATSMs while Hyndman and Zhou

[38] applied the FBSDE approach to QTSMs and obtained similar results to Theo-

rem 1.2.1. In this thesis, we will extend the results of Hyndman [40] and Hyndman

and Zhou [38] to factor processes with jumps as well as to defaultable bonds. Fur-

ther, by developing the new theory of optimal measure change, we shall give a new

interpretation of the FBSDE approach.

1.3 Optimal portfolio investment

In this section we consider the optimal portfolio investment problem and present

some classical results following Björk [15]. The financial market under consideration

consists of one risky asset St given by

dSt = St(αtdt+ σtdW
P0

t ) (1.3.1)

and one riskless asset Bt given by

dBt = rBtdt.

Denote the relative portfolio weights on the risky asset by πt, then the wealth process

Xt is given by

dXt = Xt{πtαtdt+ (1− πt)rdt+ πtσtdW
P0

t }

Let us consider an investor with initial capital x and a utility function U for

terminal wealth. The utility function is assumed to satisfy the Inada condition:

• U(x) is twice differentiable on (0,∞),

• U ′(x) > 0 and U ′′(x) < 0 for each 0 < x < ∞

• U ′(0) = ∞ and limx→∞ U ′(x) = 0.

The investors’ objective is to maximize the expected utility

V0 = sup
π∈A

EP0

[U(XT )], (1.3.2)
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where A is the set of admissible portfolio strategies.

Instead of solving the optimization problem (1.3.2) directly, we first consider the

following static problem

max
XT∈KT

EP0

[U(XT )] (1.3.3)

where KT represents the set of contingent T -claims which can be replicated by a self-

financing portfolio with initial capital x. In this formulation, our main concern is not

on the optimal portfolio strategy but instead on the terminal wealth XT . Once we

find the optimal wealth X̂T we can compute the corresponding generating portfolio

using martingale representation results.

Denote by P the martingale measure and Lt the likelihood process between P0

and P, i.e.

Lt =
dP

dP0

∣∣∣∣
Ft

.

From the price dynamics (1.3.1) and Girsanov’s theorem it is easily seen that L is

given by

dLt = (σ−1
t (r − αt))dW

P0

t ,

L0 = 1.

Since the discounted wealth process e−rtXt is a P-martingale, the optimization prob-

lem (1.3.3) is subject to the budget constraint

e−rTEP[U(XT )] = x. (1.3.4)

By rewriting the budget constraint (1.3.4) as

e−rTEP0

[XTLT ] = x,

we can solve the optimization problem (1.3.3) with the constraint (1.3.4) using the

method of Lagrange multipliers. We only need to solve the following unconstrained

optimization problem

W0 = sup
XT∈KT

EP0

[U(XT )]− λ(e−rTP[XTLT ]− x)

= sup
XT∈KT

∫
Ω

{
U(XT (ω))− λ[e−rTLT (ω)XT (ω)− x]

}
dP(ω).
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The optimal solution is given by

X̂T = I(λe−rTLT )

where I(·) is the inverse of the derivative of the utility function U , i.e. I(x) = (U ′)−1.

It remains to determine the optimal portfolio strategy which generates X̂T . Define

X̃t = e−rtX̂t and denote by π̂t the optimal strategy. From the Itô formula we have

dX̃t = X̃tπ̂t{(αt − r)dt+ σtdW
P0

t }. (1.3.5)

We rewrite (1.3.5) under the martingale measure P as

dX̃t = X̃tπ̂tσtdW
P
t . (1.3.6)

On the other hand, we have

X̃t = EQ[e−rT X̂T |Ft]. (1.3.7)

By the martingale representation theorem X̃ has dynamics of the form

dX̃t = ξtdW
Q
t , (1.3.8)

for some adapted process ξt. Comparing (1.3.8)-(1.3.6) we determine the optimal

portfolio strategy

π̂t = (X̃tσt)
−1ξt.

We need to point out that the martingale representation theorem is an existence

theorem, that means we only know the existence of ξt in (1.3.7) but do not have closed

form expression. However we are able to find explicit solution for some particular

utility functions. We skip the detailed derivation and present the solutions for the

optimization problem in cases of power utility and logarithmic utility respectively

(refer to Björk [15]).

Proposition 1.3.1. We consider the utility function is of the form

U(x) =
xp

p
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for some non-zero p < 1. Then the optimal strategy is given by

π̂t =
αt − r

(1− p)σ2
t

and the optimal utility is

V0 = erpT
xp

p

(
EP[L−p

T ]
)1−p

.

Proposition 1.3.2. We consider the utility function is of the form

U(x) = log(x)

Then the optimal strategy is given by

π̂t =
αt − r

σ2
t

.

and the optimal utility is

V0 = erpT
xp

p

(
EP[L−p

T ]
)1−p

.

In the second part of this thesis, we will study a new optimal trading problem

which incorporates disorderly market liquidation and different levels of information

accessible to market participants.

17



Chapter 2

Optimal measure transformation

problems

2.1 Default-free bonds

We set up our model on a filtered probability space (Ω,A, {Fs, 0 ≤ s ≤ T},P),
where T is the investment horizon and P is a martingale measure using the money

market account as numéraire. Suppose Xs is an Rn-valued, Fs-adapted factor process

satisfying

dXs = f(s,Xs)ds+ g(s,Xs)dW
P
s (2.1.1)

where W P is an n-dimensional (F ,P)-Brownian motion. Denote the short term in-

terest rate by rs, which can be characterized as a function of factors, rs = r(Xs), for

some function r(·) : Rn → R. The price of default-free zero-coupon bonds at time

t ∈ [0, T ] is then given by

P (t, T ) = EP[e
− ∫ T

t r(Xs)ds|Ft]. (2.1.2)

In the following subsection we associate the bond price with an optimal measure

transformation (OMT) problem.
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2.1.1 The optimal measure transformation problem

Let P(Ω) be the set of probability measures on (Ω,F). The following definitions

generalize the classic definitions of the free energy and the relative entropy given in

Dai Pra et al. [22] to the aggregate or dynamic version that incorporates the presence

of a filtration Fs.

Definition 2.1.1. For P ∈ P(Ω) and ϕ an FT -measurable random variable, the

aggregate free energy of ϕ with respect to P, εt,T (ϕ), is defined by

εt,T (ϕ) = ln(EP[e
ϕ|Ft]), t ∈ [0, T ]. (2.1.3)

Definition 2.1.2. Consider, in addition to P, another Q ∈ P(Ω). Suppose the

Radon-Nikodym derivative of Q with respect to P is

dQ

dP

∣∣∣∣
Fs

= Γs, 0 ≤ s ≤ T. (2.1.4)

Then, for t ∈ [0, T ], the aggregate relative entropy of Q with respect to P is defined as

Ht,T (Q|P) =

⎧⎪⎨
⎪⎩
EQ[ln(

ΓT

Γt
)|Ft] if ln(ΓT

Γs
) ∈ L1(P),

+∞ otherwise.

(2.1.5)

For t ∈ [0, T ] we define a family of probability measures Pt(Ω) ⊆ P(Ω) which are

equivalent to P on Ft as

Pt(Ω) = { Q ∈ P(Ω) | Q 	 P and Q|Ft = P|Ft} (2.1.6)

where Q 	 P means that Q is absolutely continuous with respect to P. Similar to

Dai Pra et al. [22], the following proposition reveals the duality relationship between

the aggregate free energy and the aggregate relative entropy.

Proposition 2.1.1. For t ∈ [0, T ] and any FT -measurable random variable ϕ

−εt,T (ϕ) = inf
Q∈Pt(Ω)

{EQ[−ϕ|Ft] +Ht,T (Q|P)}. (2.1.7)

The infimum is attained at Q� determined by the Radon-Nikodym derivative

dQ�

dP

∣∣∣∣
FT

=
eϕ

EP[eϕ|Ft]
. (2.1.8)
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Proof. As in equation (2.1.4) we suppose

dQ

dP

∣∣∣∣
Fs

= Γs, 0 ≤ s ≤ T.

Using the abstract Bayes’ formula (see Shreve [62, Lemma 5.2.2]) we find

−εt,T (ϕ) = ln(EP[e
ϕ|Ft]) = ln(EQ

[
eϕ

Γt

ΓT

∣∣∣Ft

]
). (2.1.9)

Since for any Q ∈ Pt(Ω), we have

Q|Ft = P|Ft ,

that is

Γt =
dQ

dP

∣∣∣∣
Ft

= 1.

Thus we may simplify equation (2.1.9) as

−εt,T (ϕ) = − ln(EQ

[ eϕ
ΓT

∣∣∣Ft

]
). (2.1.10)

Recall Jensen’s inequality gives that for a convex function f and a random variable

X that

f(E[X|Ft]) ≤ E[f(X)|Ft].

Since − ln(·) is a convex function by Jensen’s inequality we have that

− ln(EQ

[ eϕ
ΓT

∣∣∣Ft

]
) ≤ EQ[−ϕ|Ft] + EQ

[
ln(ΓT )

∣∣∣Ft

]
. (2.1.11)

That is

−εt,T (ϕ) ≤ EQ[−ϕ|Ft] +Ht,T (Q|P).

It is easy to check that the equality holds in equation (2.1.11) if we set

ΓT =
eϕ

EP[eϕ|Ft]
.

which completes the proof.

Remark 2.1.1. Suppose a zero coupon bond P (t, T ) pays $1 at maturity date T .

Then the yield of the bond over the interval [t, T ], denoted by γ, is

γt,T = ln
1

P (t, T )
= − ln

{
EP[e

− ∫ T
t r(Xv)dv|Ft]

}
. (2.1.12)
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If we set ϕ = − ∫ T

t
r(Xv)dv in equation (2.1.7), the left hand side of equation (2.1.7)

is equal to the yield γt,T given by equation (2.1.12). Then, by Proposition 2.1.1, we

can construct the following optimal measure transformation problem.

Problem 2.1.1. On a filtered probability space (Ω,F , {Fs, 0 ≤ s ≤ T},P) suppose

that the factor process (Xs, 0 ≤ s ≤ T ) is given by

dXs = f(s,Xs)dt+ g(s,Xs)dW
P
s .

For t ∈ [0, T ] and any Q ∈ Pt(Ω), the performance criterion Jt,T (Q) is defined as

Jt,T (Q) = EQ

[ ∫ T

t

r(Xv)dv
∣∣∣Ft

]
+Ht,T (Q|P). (2.1.13)

The optimal measure transformation problem for the default-free zero coupon bond is

Vt,T = inf
Q∈Pt(Ω)

Jt,T (Q). (2.1.14)

By Proposition 2.1.1 the solution of the OMT Problem 2.1.1 is given by the optimal

value process

Vt,T = − ln
{
EP[e

− ∫ T
t rvdv|Ft]

}
(2.1.15)

and the optimal measure Q� determined by

dQ�

dP

∣∣∣∣
FT

=
e−

∫ T
t r(Xv)dv

EP[e
− ∫ T

t r(Xv)dv|Ft]
. (2.1.16)

Comparing equations (2.1.2) and (2.1.15) we find the connection between the value

function and the bond price

Vt,T = − lnP (t, T ).

Remark 2.1.2. Note that the optimal measure Q� in equation (2.1.16) is actually

the martingale measure using the bond price as numéraire (refer to Björk [15, Section

26.3]), which is also called the forward measure. The measure Q� in equation (2.1.16)

is slightly different from the forward measure defined in Hyndman [40] as follows

dQT

dP

∣∣∣∣
FT

=
e−

∫ T
0 r(Xv)dv

EP[e
− ∫ T

0 r(Xv)dv]
. (2.1.17)

The measure Q� in equation (2.1.16) corresponds to the numéraire change over [t, T ],

whereas the measure QT in equation (2.1.17) corresponds the numéraire change over

the time period [0, T ].
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We have from Hyndman [40] that equation (2.1.15) can be characterized in terms

of a decoupled FBSDE under P. In the next subsection we explore the connection

between the optimal measure transformation problem and the FBSDE approach of

Hyndman [40].

2.1.2 FBSDE characterization

Following Hyndman [40] we construct a decoupled FBSDE which characterizes the

OMT Problem 2.1.1. The derivation presented here differs from that in Hyndman

[40] since the backward process in our formulation represents the negative logarithm

of the bond price rather than the bond price.

Let Ys = Vs,T for s ∈ [t, T ], then by equation (2.1.15) we have

e−Ys = EP[e
− ∫ T

s r(Xv)dv|Fs]. (2.1.18)

Multiply both sides of equation (2.1.18) by e−
∫ s
0 r(Xv)dv to obtain

e−Ys−
∫ s
0 r(Xv)dv = EP[e

− ∫ T
0 r(Xv)dv|Fs]. (2.1.19)

Define

ηs = EP[e
− ∫ T

0 r(Xv)dv|Fs].

Then, by the martingale representation theorem, there exists an F -predictable (1×n)-

vector process J such that

ηs = η0 +

∫ s

0

JvdW
P
v . (2.1.20)

Since ηs is positive almost surely, we define Zs =
Js
ηs

to rewrite equation (2.1.20) as

ηs = η0 +

∫ s

0

ηvZvdW
P
v .

From equation (2.1.19), we have

Ys = − ln ηs −
∫ s

0

r(Xv)dv.

Then, by Itô’s formula, Ys satisfies the following BSDE

Ys =

∫ T

s

[r(Xv)− 1

2
ZvZ

′
v]dv +

∫ T

s

ZvdW
P
v . (2.1.21)
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Combining the BSDE (2.1.21) and the SDE (2.1.1) we form the decoupled FBSDE

Xs = Xt +

∫ s

t

f(v,Xv)dv +

∫ s

t

g(v,Xv)dW
P
v (2.1.22)

Ys =

∫ T

s

[r(Xv)− 1

2
ZvZ

′
v]dv +

∫ T

s

ZvdW
P
v (2.1.23)

for s ∈ [t, T ]. Clearly we have

Ys = − ln
{
EP[e

− ∫ T
s r(Xv)dv|Fs]

}
,

and from equation (2.1.21) we find that

− ln
{
EP[e

− ∫ T
s r(Xv)dv|Fs]

}−
∫ T

s

r(Xv)dv = −
∫ T

s

1

2
ZvZ

′
vdv +

∫ T

s

ZvdW
P
v . (2.1.24)

Taking the exponential of both sides of equation (2.1.24) gives

e−
∫ T
s r(Xv)dv

EP[e
− ∫ T

s r(Xv)dv|Fs]
= e−

∫ T
s

1
2
ZvZ′

vdv+
∫ T
s ZvdW P

v . (2.1.25)

Simply let s = t in equation (2.1.25) and compare with equation (2.1.16) to find

dQ�

dP

∣∣∣∣
FT

= e−
∫ T
t

1
2
ZvZ′

vdv+
∫ T
t ZvdW P

v . (2.1.26)

The solution of the OMT Problem 2.1.1 is completely characterized by the FBSDE

(2.1.22)-(2.1.23). If the FBSDE (2.1.22)-(2.1.23) admits a solution triple (X, Y, Z),

the value function and the optimal measure for the OMT Problem 2.1.1 are charac-

terized as follows

Vt,T = Yt, (2.1.27)

dQ�

dP

∣∣∣∣
FT

= e−
∫ T
t

1
2
ZvZ′

vdv+
∫ T
t ZvdW P

v . (2.1.28)

We assume that the coefficients f and g satisfy conditions such that the forward

SDE (2.1.22) admits a unique solution. In particular the examples of ATSMs and

QTSMs we shall consider satisfy such conditions. Further, by Kobylanski [50, The-

orem 2.3], the BSDE (2.1.23) with quadratic growth also admits a unique solution.

Therefore, it is not difficult to show that the decoupled FBSDE (2.1.22)-(2.1.23) ad-

mits a unique solution with appropriate assumptions on the coefficients. However, it

is not always possible to obtain an explicit representation of (Y, Z) in terms of X.
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Hyndman [40] considered the FBSDEs which characterizes the bond price, under

the T -forward measure QT , and gave explicit solutions in the framework of ATSMs.

Similar to Hyndman [40] we find that, by Girsanov’s theorem, the processWQ�
defined

as

WQ�

s = W P
s −

∫ s

t

Zvdv, t ≤ s ≤ T

is a Brownian motion under Q�. Then we may rewrite the FBSDE (2.1.22)-(2.1.23)

as a nonlinear coupled FBSDE

Xs = Xt +

∫ s

t

(
f(v,Xv) + g(v,Xv)Z

′
v

)
dv +

∫ s

t

g(v,Xv)dW
Q�

v , (2.1.29)

Ys =

∫ T

s

(
r(Xv) +

1

2
ZvZ

′
v

)
dv +

∫ T

s

ZvdW
Q�

v . (2.1.30)

under Q�, for s ∈ [t, T ].

We calculate the aggregate relative entropy of Q� with respect to P explicitly in

terms of Zs as

Ht,T (Q
�|P) = EQ� [ln(

dQ�

dP
)|Ft]

= EQ� [
(
−
∫ T

t

1

2
ZsZ

′
sds+

∫ T

t

ZsdW
P
s

)
|Ft]

= EQ� [
(∫ T

t

1

2
ZsZ

′
sds+

∫ T

t

ZsdW
Q�

s

)
|Ft]

= EQ� [

∫ T

t

1

2
ZsZ

′
sds|Ft] + EQ� [

∫ T

t

ZsdW
Q�

s |Ft]

= EQ� [

∫ T

t

1

2
ZsZ

′
sds|Ft]. (2.1.31)

Remark 2.1.3. Though they are defined with respect to different measures, it is

equivalent to consider the FBSDEs (2.1.22)-(2.1.23) and (2.1.29)-(2.1.30). The de-

pendence of (Y, Z) on X is invariant under a change of measure. That is, if (Yt, Zt) =

(Φ(Xt),Ψ(Xt)) for some functions Φ and Ψ under the optimal measure Q�, then this

representation also holds under P. In Hyndman [40], it is natural to consider the ana-

logue of the FBSDE (2.1.29)-(2.1.30) under the T -forward measure QT because the

stochastic flow method, which motivated the development of the FBSDE method, and

the exponential form of the discount function naturally lead to the use of the forward

measure.
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Hyndman [40] studied the FBSDE (2.1.29)-(2.1.30) for ATSMs which are charac-

terized by specifying

(i) f(s, x) = Ax+B

(ii) g(s, x) = Sdiag
√
αi + βix

(iii) r(x) = R′x+ k

where A is an (n× n)-matrix of scalars, B, R is an (n× 1)-vector of scalars, for each

i ∈ {1, . . . , n} the αi are scalars, for each i ∈ {1, . . . , n} the βi = (βi1, . . . , βin) are

(1 × n)-vectors, S is a non-singular (n × n)-matrix, k is a scalar. Then the FBSDE

(2.1.29)-(2.1.30) becomes

Xs = Xt +

∫ s

t

(
AXv +B + Sdiag

√
αi + βiXvZ

′
v

)
dv +

∫ s

t

Sdiag
√

αi + βiXvdW
Q�

v ,

(2.1.32)

Ys =

∫ T

s

(R′Xv + k +
1

2
ZvZ

′
v)dv +

∫ T

s

ZvdW
Q�

v . (2.1.33)

From Hyndman [40], we know the solution (Y, Z) to the BSDE (2.1.33) has explicit

representation, in terms of the forward process X, as follows

Ys = −UsXs − ps (2.1.34)

Zs = UsSdiag(
√
αi + βiXs ) (2.1.35)

where Us and ps are both deterministic process determined by a system of Riccati-type

ordinary differential equations.

Remark 2.1.4. Note that Sdiag(
√
αi + βiX ) is the volatility of the factor process X.

From equation (2.1.34) we have that U is the sensitivity of Y with respect to X. This

interpretation can be made more precise by considering the associated flows indexed

by the starting value (t, x) and, similar to Hyndman [40, Corollary 4.2], showing that

∂
∂x
Y t,x
s

∣∣
x=Xt

= −Us. In that sense the aggregate relative entropy defined in (2.1.31)

can be interpreted as the expected aggregate sensitivity of the log bond price to the

factors weighted by volatility.

25



Remark 2.1.5. Suppose a financial agent pays c to buy one unit of the bond at time

t, and receives a payoff of 1 at maturity T . The (logarithmic) rate of return on the

investment over the time period [t, T ] is

γt,T = ln
1

c
.

The excess return over the risk-free rate, γ̃, is given by

γ̃t,T = γt,T −
∫ T

t

r(Xv)dv,

which measures the investment performance. Note that equation (2.1.14) is equivalent

to

ln
P (t, T )

c
= − inf

Q∈Pt(Ω)

{
EQ[−γ̃t,T |Ft] +Ht,T (Q|P)}

= sup
Q∈Pt(Ω)

{
EQ[γ̃t,T |Ft]−Ht,T (Q|P)}. (2.1.36)

The aggregate relative entropy Ht,T (Q|P) in equation (2.1.36) can be interpreted as a

penalty for removing the financial risk (the volatility risk of the factor process which

drives the interest rate). The right-hand side of equation (2.1.36) maximizes the excess

(risk-adjusted) return on the investment, which is equal to the equivalent instantaneous

return given by the left-hand side of equation (2.1.36). Note that when c = P (t, T )

the instantaneous return is equal to zero, which is the equilibrium state.

In the next section we compare the optimal measure transformation problem with

the optimal stochastic control problem proposed by Gombani and Runggaldier [35].

We find that there exists an equivalence relationship between these two approaches.

2.1.3 Equivalence between the OMT problem and the OSC

problem

Gombani and Runggaldier [35] considered the bond pricing problem under the same

general framework as we set up in previous section. To avoid confusion, we denote the

factor process by X̃s in the context of Gombani and Runggaldier [35]. Additionally,
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X̃s is assumed to be Markovian with Xt = x so that the price of default-free bond,

denoted by P (t, T, x), at time t is given by

P (t, T, x) = EP[e
− ∫ T

t rvdv|Ft] = EP[e
− ∫ T

t rvdv|Xt = x].

Assuming P (t, T, x) ∈ C1,2, a sufficient condition for the term structure induced by

P (t, T, x) to be arbitrage-free is that P (t, T, x) satisfies the following partial differen-

tial equation (see Björk [15, Proposition 21.2])⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂

∂t
P (t, T, x) + f ′(t, x)∇xP (t, T, x) +

1

2
tr
(
g′(t, x)∇xxP (t, T, x)g(t, x)

)
− P (t, T, x)r(t, x) = 0

P (T, T, x) = 1.

(2.1.37)

Gombani and Runggaldier [35] transform equation (2.1.37) to an equivalent HJB

equation which corresponds to the following optimal stochastic control (OSC) prob-

lem.

Problem 2.1.2. On a filtered probability space (Ω,F , {Fs, 0 ≤ s ≤ T},P), with a

Markovian process X̃s given by

dX̃s =
[
f(s, X̃s) + g(s, X̃s)u

′
s

]
ds+ g(s, X̃s)dW

P
s . (2.1.38)

Let U be the admissible control set, then for any control u ∈ U and t ∈ [0, T ], consider

a performance criterion J̃t,T (u) of the form

J̃t,T (u) = Et,x
P

[ ∫ T

t

(1
2
uvu

′
v + r(X̃v)

)
dv
]
,

where Et,x
P denotes the conditional expectation given X̃t = x. The optimal control

problem is

Ut,T = inf
u∈U

J̃t,T (u).

Gombani and Runggaldier [35] established a connection between the price of

default-free bonds and the OSC Problem 2.1.2 by showing that

P (t, T, x) = e−Ut,T (x).
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We next explore an equivalence relationship between the OMT problem and the

OSC problem. For any Q ∈ Pt(Ω), the Radon-Nikodym derivative process is of the

following form

dQ

dP

∣∣∣∣
Fs

=

⎧⎪⎨
⎪⎩
1, 0 ≤ s ≤ t.

Λs, t < s ≤ T.

where Λs is an (F ,P)-martingale from t to T . Since Λs is positive almost surely, by

the martingale representation theorem, there exists an F -predictable (1 × n)-vector

process u such that

dQ

dP

∣∣∣∣
Fs

= e−
∫ s
t

1
2
uvu′

vdv+
∫ s
t uvdW P

v , t < s ≤ T (2.1.39)

where u is an F -predictable (1 × n)-vector process. In the remaining part of this

section we denote by Qu the probability measure associated with the density process

in equation (2.1.39). Then, by Girsanov’s theorem, the process WQu
defined as

WQu

s = W P
s −

∫ s

t

u′
vdv, t < s ≤ T

is a Brownian motion under Qu. Then we calculate the relative entropy of Qu with

respect to P explicitly in terms of u as follows

Ht,T (Q
u|P) = EQu [ln(

dQu

dP
)|Ft]

= EQu [
(
−
∫ T

t

1

2
uvu

′
vdv +

∫ T

t

uvdW
P
v

)
|Ft]

= EQu [
(∫ T

t

1

2
uvu

′
vdv +

∫ T

t

ZvdW
Qu

v

)
|Ft]

= EQu [

∫ T

t

1

2
uvu

′
vdv|Ft]. (2.1.40)

Substituting the explicit expression of the relative entropy in equation (2.1.40)

into equation (2.1.13) we restate the OMT Problem 2.1.1 as follows

Problem 2.1.3. On a filtered probability space (Ω,F , {Fs, 0 ≤ s ≤ T},P), suppose
that the factor process (Xs, 0 ≤ s ≤ T ) is given by

dXs = f(s,Xs)ds+ g(s,Xs)dW
P
s . (2.1.41)
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Find the optimal measure Q� ∈ Pt(Ω) such that

Vt,T = Jt,T (Q
�) = inf

Qu∈Pt(Ω)
EQu

[ ∫ T

t

(
r(Xv) +

1

2
uvu

′
v

)
dv
]
. (2.1.42)

In the OSC Problem 2.1.2, the distribution of X̃s is changed by the control process

u. In the OMT Problem 2.1.3, the distribution of Xs is subject to the measure

transformation from P to Qu. Note that X̃s in equation (2.1.38) and Xs in equation

(2.1.41) follow SDEs of the same form under different measures, in other words, the

u controlled process X̃s has the same distribution under P as the process Xs does

under Qu. Hence for each admissible control u in the OSC problem with performance

functional J̃t,T (u), there exists a corresponding measure Qu in the OMT problem with

performance functional Jt,T (Q
u), and J̃t,T (u) = Jt,T (Q

u). So the optimal control u�

also corresponds to the optimal measure transformation Q� = Qu�
. In that sense, the

OSC problem is equivalent to the OMT problem.

Example 2.1.1. Now we compare the OMT problem and the OSC problem under the

framework of QTSMs with specifications

(i) f(s, x) = Ax+B

(ii) g(s, x) = Σ

(iii) r(x) = x′Qx+R′x+ k

where A is an (n×n)-matrix of scalars, B and R are (n×1)-column vectors, Q and Σ

are n× n symmetric positive semidefinite matrices, k is a scalar. The OSC Problem

2.1.2 becomes⎧⎪⎨
⎪⎩
dX̃s =

(
AX̃s +B + Σu′

s

)
ds+ ΣdW P

s ,

Vt,T = inf
u∈U

J̃t,T (u) = inf
u∈U

Et,x[

∫ T

t

(
X̃ ′

vQX̃v +R′X̃v + k +
1

2
uvu

′
v

)
dv].

(2.1.43)

The OSC Problem 2.1.43 is actually a linear-quadratic-Gaussian (LQG) control

problem, whose optimal control u�
s is of feedback form (see Gombani and Runggaldier

[35, Proposition 3.4])

u�
s = u�(s, X̃s) =

(
X ′

s(qs + q′s) + vs

)
Σ, t ≤ s ≤ T (2.1.44)
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with the value function Wt,T (x) given by

Wt,T (x) = x′qtx+ vtx+ pt, (2.1.45)

where qs, vs, ps satisfy the following ODE system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

q̇s + A′qs + qsA− 2qsΣΣ
′qs +Q = 0

v̇s + vsA+ 2B′q′s − 2vsΣΣ
′q′s +R = 0

ṗs + vsB + tr(Σ′qsΣ)− 1
2
vΣΣ′v′s + k = 0

qT = 0, vT = 0, pT = 0.

(2.1.46)

Under the framework of QTSMs the OMT Problem 2.1.1 is specified as⎧⎪⎪⎨
⎪⎪⎩
dXs =

(
AXs +B

)
ds+ ΣdW P

s ,

Vt,T = inf
Q∈Pt(Ω)

EQ[

∫ T

t

(
X ′

vQXv +R′Xv + k
)
dv|Ft] +Ht,T (Q|P).

(2.1.47)

From Section 2.1.2, we know the OMT Problem (2.1.47) is completely characterized

via the related FBSDE

Xs = Xt +

∫ s

t

(AXv +B + ΣZ ′
v) dv +

∫ s

t

ΣdW P
v (2.1.48)

Ys =

∫ T

s

(X ′
vQXv +R′Xv + k − 1

2
Z ′

vZv)dv +

∫ T

s

ZvdW
P
v . (2.1.49)

The value function is given by

Vt,T = Yt, (2.1.50)

and the optimal measure transformation is determined by

dQ�

dP

∣∣∣∣
FT

= e−
∫ T
t

1
2
ZvZ′

vdv+
∫ T
t ZvdW P

v . (2.1.51)

Hyndman and Zhou [38] proved that the FBSDE (2.1.48)-(2.1.49) admits a unique

solution (X, Y, Z), and (Y, Z) has explicit expressions in terms of X

Ys = X ′
sqsXs + vsXs + ps,

Zs =
(
X ′

s(qs + q′s) + vs

)
Σ,

where qs, vs, ps satisfy the same ODE system (2.1.46). Not surprisingly, the Girsanov

kernel Zs for the transition from P to Q� is the same as the optimal control u�, i.e.

Zs = u�
s, and they give the same value function Vt,T = Wt,T .
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In next section we consider the OMT problems for futures and forward prices.

2.2 Futures and forward prices

Suppose the factor process Xs given by equation (2.1.1) drives not only the short rate

but also a risky asset price. We assume that the risky asset price is a function of

factors, Ss = S(s,Xs), for some function S(·, ·) : [0,∞)×Rn → (0,∞). For instance,

S(·, ·) can be specified by

S(s, x) = eA
′
sx+hs ,

which we refer to as an affine price model (APM), or

S(s, x) = ex
′Bsx+A′

sx+hs

which we refer to as a quadratic price model (QPM), where Bs : [0, T ] → Rn×n, As :

[0, T ] → Rn, hs : [0, T ] → R.

We next consider futures and forward contracts on the risky asset S and associate

the futures prices and forward prices with OMT problems.

2.2.1 Futures prices

The futures price of the risky asset S is given by

G(t, T ) = EP[S(T,XT )|Ft], (2.2.1)

at time t for maturity T . Similar to the derivation of the OMT Problem in Section 2.1,

we let ϕ = lnS(T,XT ) and associate the futures price with the following OMT

problem ⎧⎪⎨
⎪⎩
dXs = f(s,Xs)ds+ g(s,Xs)dW

P
s

V G
t,T = inf

Q∈Pt(Ω)

{
EQ[− lnS(T,XT )|Ft] +Ht,T (Q|P)}. (2.2.2)

By Proposition 2.1.1 the solution of the OMT Problem (2.2.2) is given by the

optimal measure QG�
, that is determined by

dQG�

dP

∣∣∣∣
FT

=
S(T,XT )

EP[S(T,XT )|Ft]
, (2.2.3)
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and the optimal value function is given by

V G
t,T = − ln{EP[S(T,XT )|Ft]}. (2.2.4)

Equation (2.2.4) connects the OMT Problem (2.2.2) with the futures price as

V G
t,T = − lnG(t, T )

and this relationship allows us to give the following financial interpretation similar to

Remark 2.1.5 for the bond price.

Remark 2.2.1. Suppose a financial agent enters a long position in a futures contract

on the risky asset S at time t with a futures price c dollars. From time t to settlement

date T the futures contract is marked to market daily where the cash flows are trans-

fered through the margin account and the total transfers are S(T,XT )− c. Since the

marking to market mechanism eliminates the default risk, and also by the assumption

that there is no interest paid on the margin account, the gain from a long position in

the futures contract held from time t and closed at time T can be characterized by the

quantity

γt,T = ln
S(T,XT )

c
.

Then the OMT Problem (2.2.2) is equivalent to

ln
G(t, T )

c
= sup

Q∈Pt(Ω)

{
EQ[γt,T |Ft]−Ht,T (Q|P)}. (2.2.5)

The right-hand side of equation (2.2.5) maximizes the expectation of γt,T under QG∗

with an entropy penalty term for removing the market risk of the futures contract

caused by the volatility risk of underlying risky asset. Note that equation (2.2.5)

attains the equilibrium state where the supremum is equal to zero if the pre-specified

future price c is equal to the fair future price G(t, T ).

Similar to the procedure in Section 2.1, we characterize the OMT Problem 2.2.2

by the FBSDE

Xs = Xt +

∫ s

t

f(v,Xv)dv +

∫ s

t

g(v,Xv)dW
P
v , (2.2.6)

Ys = − ln[S(T,XT )]−
∫ T

s

1

2
ZvZ

′
vdv +

∫ T

t

ZvdW
P
v . (2.2.7)
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If the above FBSDE admits a solution triple (X, Y, Z), then the value function and

the optimal measure to the OMT Problem 2.1.1 have expressions

V G
t,T = Yt,

dQG�

dP

∣∣∣∣
FT

= e−
∫ T
t

1
2
ZvZ′

vdv+
∫ T
t ZvdW P

v .

Hyndman [40] and Hyndman and Zhou [38] studied the the FBSDE (2.2.6)-(2.2.7) in

the framework of ATSMs and QTSMs, respectively, and gave explicit solutions.

We next consider a forward contract on the risky asset.

2.2.2 Forward prices

The forward price of the risky asset S is given by

F (t, T ) =
EP[e

− ∫ T
t r(Xv)dvS(T,XT )|Ft]

P (t, T )
, (2.2.8)

at time t for maturity T . To ensure that the forward price is not simply equal

to the futures price we assume that the interest rate process is stochastic and the

factors influencing the interest rate are not independent of the factors influencing

the underlying asset price. Further, to preclude the case where the numerator of

equation (2.2.8) reduces to the underlying asset price at time t we suppose that the

asset pays a stochastic dividend or convenience yield.

Similar to the derivation of the OMT Problem in Section 2.1 we let

ϕ = (lnS(T,XT )−
∫ T

t

rvdv)

and associate the forward price with the following OMT problem⎧⎪⎪⎨
⎪⎪⎩
dXs = f(s,Xs)ds+ g(s,Xs)dW

P
s

V F
t,T = inf

Q∈Pt(Ω)

{
EQ

[− lnS(T,XT ) +

∫ T

t

rvdv|Ft

]
+Ht,T (Q|P)}. (2.2.9)

By Proposition 2.1.1 the solution to the OMT Problem (2.2.9) is given by the optimal

measure QF �
, that is determined by

dQF �

dP

∣∣∣∣
FT

=
S(T,XT )e

− ∫ T
t rvdv

EP[S(T,XT )e
− ∫ T

t rvdv|Ft]
, (2.2.10)

33



and the optimal value function given by

V F
t,T = − ln

(
EP[e

− ∫ T
t r(Xv)dvS(T,XT )|Ft]

)
. (2.2.11)

Equation (2.2.11) connects the OMT Problem (2.2.9) with the forward price as

V F
t,T = − ln

(
F (t, T )P (t, T )

)
.

Therefore, we have the following financial interpretation of the OMT Problem (2.2.9).

Remark 2.2.2. Suppose a financial agent enters into a forward agreement at time t

on the risky asset S with forward price c dollars. At the settlement date T the agent

pays c dollars and receives the underlying asset worth S(T,XT ). The logarithmic

return over the period [t, T ] is

γt,T = ln
S(T,XT )

c
.

The excess return over the risk-free rate, γ̃t,T , is given by

γ̃t,T = γt,T −
∫ T

t

r(Xv)dv.

Then the OMT Problem (2.2.9) is equivalent to

ln
F (t, T )P (t, T )

c
= sup

Q∈Pt(Ω)

{
EQ[γ̃t,T |Ft]−Ht,T (Q|P)}. (2.2.12)

Similar to the financial interpretation of the OMT Problem for the bond and futures

contract the right hand side of equation (2.2.12) maximizes the excess return γ̃t,T

under QF ∗
with an entropy penalty term for removing the market risk of the value of

the forward commitment due to the volatility risk of the factor process that determines

both the interest rate and underlying asset volatilities. Note that equation (2.2.12)

attains the equilibrium state where the supremum is equal to zero if the pre-specified

forward price c is equal to the present value of the fair future price F (t, T )P (t, T ).

Similar to the procedure in Section 2.1, we characterize the OMT Problem 2.2.2

by the FBSDE

Xs = Xt +

∫ s

t

f(v,Xv)dv +

∫ s

t

g(v,Xv)dW
P
v (2.2.13)

Ys = − ln[S(T,XT )] +

∫ T

s

[r(Xv)− 1

2
ZvZ

′
v]dv +

∫ T

s

ZvdW
P
v (2.2.14)
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If the above FBSDE admits a solution triple (X, Y, Z), then the value function and

the optimal measure to the OMT Problem 2.1.1 have expressions

V F
t,T = Yt,

dQF �

dP

∣∣∣∣
FT

= e−
∫ T
t

1
2
ZvZ′

vdv+
∫ T
t ZvdW P

v .

Hyndman [40] and Hyndman and Zhou [38] also studied the the FBSDE (2.2.13)-

(2.2.14) in the framework of ATSMs and QTSMs, respectively, and gave explicit

solutions.

The OMT approach seems to be more flexible with respect to the dynamics of the

factors process than the OSC approach. In next section we extend the OMT approach

to include jumps in the factors which would be difficult to incorporate using the OSC

approach.

2.3 Models with jumps

In order to model sudden and unexpected jumps of the driving factor process, we add

a jump component to the factor process Xt as follows

dXs = f(s,Xs−)ds+ g(s,Xs−)dW P
s +

∫
Rn

zÑP(ds, dz) (2.3.1)

where ÑP(·, ·) is an Rn-valued compensated random measure (refer to Delong [23,

Section 2.1]) with the compensator

η(ds, dz) = v(dz)λ(Xs−)ds

where v(·) is a measure on Rn and λ(·) is a function to be specified from Rn to R.

Following a similar procedure as in Section 2.1, we associate the bond price with

the following OMT Problem with jumps.⎧⎪⎪⎨
⎪⎪⎩
dXs = f(s,Xs−)ds+ g(s,Xs−)dW P

s +

∫
Rn

zÑP(ds, dz),

Vt,T = inf
Q∈Pt(Ω)

EQ[

∫ T

t

r(Xs)ds|Ft] +Ht,T (Q|P).
(2.3.2)
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Then the OMT Problem (2.3.2) is completely characterized by the following FBSDE

with jumps

Xs = Xt +

∫ s

t

f(v,Xv−)ds+
∫ s

t

g(v,Xv−)dW P
v +

∫ s

t

∫
Rn

zÑP(dv, dz), (2.3.3)

Ys =

∫ T

s

{
r(Xv−)− λ(Xv−)

∫
Rn

eG(v,z)v(dz)− 1

2
ZvZ

′
v

}
dv

+

∫ T

s

ZvdW
P
v +

∫ T

s

∫
Rn

G(v, z)ÑP(dv, dz). (2.3.4)

If the FBSDE (2.3.3)-(2.3.4) admits a solution (X, Y, Z,G), then the value func-

tion and the optimal measure Q� for the OMT Problem (2.3.2) are characterized by

(Y, Z,G) respectively as

Vt,T = Yt, (2.3.5)

dQ�

dP

∣∣∣∣
FT

= exp

{
−
∫ T

t

1

2
ZvZ

′
vdv +

∫ T

t

ZvdW
P
v −

∫ T

t

∫
Rn

λ(Xv−)eG(v,z)v(dz)dv

+

∫ T

t

∫
Rn

G(v, z)ÑP(dv, dz)

}
. (2.3.6)

The aggregate relative entropy of Q� with respect to P is

Ht,T (Q
�|P)

=EQ� [ln(
dQ�

dP
)|Ft]

=EQ� [
(
−
∫ T

t

1

2
ZsZ

′
sds+

∫ T

t

ZsdW
P
s −

∫ T

t

∫
Rn

λ(Xs−)eG(s,z)v(dz)ds

+

∫ T

t

∫
Rn

G(s, z)ÑP(ds, dz)
)
|Ft]

=EQ� [
(∫ T

t

1

2
ZsZ

′
sds+

∫ T

t

∫
Rn

λ(Xs−)(G(s, z)eG(s,z) − eG(s,z))v(dz)ds

+

∫ T

t

ZsdW
Q�

s +

∫ T

t

∫
Rn

G(s, z)ÑQ�

(ds, dz)
)
|Ft]

=EQ� [

∫ T

t

(1
2
ZsZ

′
s + λ(Xs−)

∫
Rn

(G(s, z)eG(s,z) − eG(s,z))v(dz)
)
ds|Ft].

In the following two subsections we give explicit solutions to the FBSDE (2.3.3)-

(2.3.4) under ATSMs and QTSMs, respectively, with jumps.
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2.3.1 ATSMs with jumps

In the framework of ATSMs with jumps, we make the following specifications on the

coefficients of FBSDE (2.3.3)-(2.3.4) as follows

(i) f(s, x) = Ax+B

(ii) g(s, x) = Sdiag
√
αi + βix

(iii) r(x) = R′x+ k

(iv) λ(x) = L′x+ l

where A is an (n × n)-matrix of scalars, B, R and L are (n × 1)-vectors, for each

i ∈ {1, . . . , n} the αi are scalars, for each i ∈ {1, . . . , n} the βi = (βi1, . . . , βin) are

(1× n)-vectors, S is a non-singular (n× n)-matrix, k and l are scalars.

Remark 2.3.1. As in Duffie et al. [26] the intensity process is assumed to be an

affine function of the factors to preserve the affine term structure.

The FBSDE (2.3.3)-(2.3.4) becomes

Xs = Xt +

∫ s

t

(AXv− +B) dv +

∫ s

t

Sdiag
√
αi + βiXv−dW P

v +

∫ s

t

∫
Rn

zÑP(dv, dz),

(2.3.7)

Ys =

∫ T

s

{
R′Xv− + k − (L′Xv− + l)

∫
Rn

eG(v,z)v(dz)− 1

2
ZvZ

′
v

}
dv

+

∫ T

s

ZvdW
P
v +

∫ T

s

∫
Rn

G(v, z)ÑP(dv, dz). (2.3.8)

We will give the explicit solution to FBSDE (2.3.7)-(2.3.8) by applying a similar

technique to Hyndman [40] which extends the approach for linear FBSDEs from Ma

and Yong [57]. In the statement of the following proposition, as in Hyndman [40], we

shall adopt the notation of Björk and Landén [16] to write

Sdiag(αi + βix)S
′ = k0 +

n∑
j=1

kjxj
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for symmetric (n × n) matrices kj, where xj is the jth element of a vector x ∈ D.

Define the (n2 × n) matrix K and, given a (1 × n) row vector y, the n × n2 matrix

β(y) by

K =

⎡
⎢⎢⎢⎢⎢⎢⎣

k1

k2
...

kn

⎤
⎥⎥⎥⎥⎥⎥⎦

and β(y) =

⎡
⎢⎢⎢⎢⎢⎢⎣

y 01×n · · · 01×n

01×n y
...

. . .
...

01×n · · · y

⎤
⎥⎥⎥⎥⎥⎥⎦

respectively.

Theorem 2.3.1. If the Riccati equation

U̇s + UsA+
1

2
UsK

′[β(Us)] +
[ ∫

Rn

eUszv(dz)
]
L′ −R′ = 0, t ∈ [0, T ] (2.3.9)

UT = 0 (2.3.10)

admits a unique bounded solution U(·) over the interval [0, T ], then the FBSDE

(2.3.7)-(2.3.8) admits a unique solution and (Y, Z,G) has explicit expression in terms

of X as follows

Ys = −(UsXs + ps), (2.3.11)

Zs = UsSdiag(
√
αi + βiXs−), and (2.3.12)

G(s, z) = Usz, (2.3.13)

where ps is given by

ps = −
∫ T

s

(
k − l

∫
Rn

eUvzv(dz)− 1

2
Uvk0U

′
v − UvB

)
dv (2.3.14)

Proof. We first prove the decoupled FBSDE (2.3.7)-(2.3.8) admits a unique solution

(X, Y, Z,G). The SDE (2.3.7) admits a unique solution. As Xs is known, we consider

the single BSDE (2.3.8). If we let

Ỹs = e−Ys ,

Z̃s = −Ỹs · Zs,

G̃(z, s) = −Ỹse
G(s, z)
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BSDE (2.3.8) becomes

Ỹs = 1 +

∫ T

s

{(∫
Rn

eG(v,z)v(dz)L′ −R′
)
Xv− −

(∫
Rn

eG(v,z)v(dz)

)
l

+k} Ỹvdv +

∫ T

s

Z̃vdW
P
v +

∫ T

s

∫
Rn

G̃(v, z)ÑP(dv, dz). (2.3.15)

By Delong [23, Theorem 3.1.1], we know that the BSDE (2.3.15) admits a unique

solution (Ỹ , Z̃, G̃). Therefore, the FBSDE (2.3.7)-(2.3.8) admits a unique solution

(X, Y, Z,G).

To prove the explicit expression of (Y, Z,G), we need to show that (Y, Z,G) given

by equations (2.3.11)-(2.3.13) satisfies the BSDE (2.3.8). Apply Itô’s formula to the

function φ(s, x) = −(Usx+ps), where Us is the solution to the Riccati equation (2.3.9)

and ps satisfies equation (2.3.14). Let Ys = φ(s,Xs), where Xs is given by equation

(2.3.7), then we have

YT − Ys

= −
∫ T

s

(
U̇vXv− + Uv(AXv− +B) + k0U

′
v +K ′[β(Uv)]

′Xv−
)
dv

−
∫ T

s

UvSdiag(
√
αi + βiXv)dW

P
v −

∫ T

s

(
k − l

∫
Rn

eUvzv(dz)

− 1

2
Uvk0U

′
v − UvB

)
dv −

∫ T

s

∫
Rn

UvzÑ
P(dv, dz)

= −
∫ T

s

{(
U̇v + UvA+

1

2
UvK

′[β(Uv)] +

(∫
Rn

eUvzv(dz)

)
L′ −R′

)
Xv

+

(
R′Xv− + k +

1

2

(
UvK

′[β(Uv)]
′Xv− + Uvk0U

′
v

))}
dv

+

∫ T

s

([ ∫
Rn

eUvzv(dz)
]
(L′Xv− + l)

)
dv

−
{
UvSdiag(

√
αi + βiXv−)

}
dW P

v −
∫ T

s

∫
Rn

UvzÑ
P(dv, dz) (2.3.16)

Substituting equations (2.3.11)-(2.3.13) into equation (2.3.16) we have

Ys = YT +

∫ T

s

(R′Xv− + k − 1

2
ZvZ

′
v)dv −

∫ T

s

∫
Rn

(L′Xv− + l)eG(v,z)v(dz)dv

+

∫ T

s

ZvdW
P
v +

∫ T

s

∫
Rn

G(s, z)ÑP(ds, dz)
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By the boundary condition of (2.3.10) and (2.3.14) we have

YT = −(UTXT + pT ) = 0.

Therefore,

Ys =

∫ T

s

(R′Xv− + k − 1

2
ZvZ

′
v)dv −

∫ T

s

∫
Rn

(L′Xv− + l)eG(v,z)v(dz)dv

+

∫ T

s

ZvdW
P
v +

∫ T

s

∫
Rn

G(v, z)ÑP(dv, dz)

Hence (Y, Z,G) given by equations (2.3.11)-(2.3.13) satisfy BSDE (2.3.8).

Remark 2.3.2. The complete discussion on the Riccati equation of the form as in

(2.3.9) can be found in Duffie et al. [27, Section 6].

2.3.2 QTSMs with jumps

In the framework of QTSMs with jumps, we make the following specifications

(i) f(s, x) = Ax+B

(ii) g(s, x) = Σ

(iii) r(x) = x′Qx+R′x+ k

(iv) λ(x) = x′L2x+ L′
1x+ l

where A is an (n × n)-matrix of scalars, B, R and L1 are (n × 1)-column vectors,

Q, Σ and L2 are n× n symmetric positive semidefinite matrices, k and l are scalars.

Then the FBSDE (2.3.3)-(2.3.4) becomes

Xs = Xt +

∫ s

t

(
AXv− +B

)
dv +

∫ s

t

ΣdW P
v +

∫ s

t

∫
Rn

zÑP(dv, dz) (2.3.17)

Ys =

∫ T

s

(X ′
v−QXv− +R′Xv− + k − 1

2
ZvZ

′
v)dv +

∫ T

s

ZvdW
P
v −

∫ T

s

∫
Rn

(X ′
v−L2Xv−

+ L′
1Xv− + L0)e

G(v,z)v(dz)dv +

∫ T

s

∫
Rn

G(v, z)ÑP(dv, dz). (2.3.18)

Similar to the result in ATSMs with jumps we obtain the following explicit solution

of the FBSDE (2.3.17)-(2.3.18).
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Theorem 2.3.2. If the Riccati equation

q̇s + qsA+ A′qs +
(q′s + qs)ΣΣ

′(q′s + qs)

2
+
[ ∫

Rn

(ez
′qsz+usz)v(dz)

]
L′
2 −Q = 0n×n,

u̇s + usA+B′(q′s + qs) + usΣΣ
′(q′s + qs) +

[ ∫
Rn

(ez
′qsz+usz)v(dz)

]
L′
1 −R′ = 01×n,

qT = 0, uT = 0

admits unique bounded solutions q(·), u(·) over the interval [0, T ], then the FBSDE

(2.3.17)-(2.3.18) admits a unique solution and (Y, Z,G) has explicit expression in

terms of X as follows

Ys = −(X ′
sqsXs + usXs + ps),

Zs =
(
X ′

t−(qs + q′s) + us

)
Σ, and

G(s, z) = z′qsz + usz,

where ps is given by

ps = −
∫ T

s

(
k − L0

(∫
Rn

(ez
′qvz+uvz)v(dz)

)
− uvB − 1

2
tr
(
(qv + q′v)ΣΣ

′)
−1

2
uvΣΣ

′u′
v

)
dv.

We omit the proof of Theorem 2.3.2 as it is similar to the proof of Theorem 2.3.1.

In the special case where λ(x) ≡ 0, we discuss the solvability of the Riccati equation

in Appendix B.1.

In next section we further discuss the OMT problem associated with defaultable

bond price and give a partially explicit solution for the related FBSDE with random

terminal condition.

2.4 Defaultable bonds

We consider a defaultable zero coupon bond with the promised payoff of $1 at matu-

rity, and denote the price at time t ∈ [0, T ] by D(t, T ). Unlike default-free bonds, the

issuer of defaultable bonds, such as corporate bonds, may default before the maturity

in which case the bondholders will not receive the promised payment in full but a
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recovery payment. There are different recovery schemes if default occurs before the

bond’s maturity according to the timing and the amount of recovery payment (see

Bielecki and Rutkowski [13, Section 1.1.1] and Altman et al. [5]). For instance, if a

fixed fraction of the bond’s face value is paid to the bondholder at maturity T in case

of default, then the bond has the random payoff at maturity

CT = 1{τ>T} + η1{τ≤T}

where τ is the default time. If a fixed fraction of the pre-default market value of the

bond value is paid at time of default, then the equivalent random payoff of the bond

is

CT = 1{τ>T} + ηP (τ−, T )e
∫ T
τ rvdv1{τ≤T}.

The time of default τ is also modelled differently. Under the structural credit risk

models originating with Merton [58] the default of corporate bonds occurs when the

value of the firm reaches a certain lower threshold. Reduced form credit risk models,

such as Duffie and Singleton [25], assume that default is driven by an exogenous

default process.

Since the recovery scheme is not our main concern in this paper, we will in general

represent the equivalent payoff of defaultable bonds with a random payoff CT , and

assume that the price is given by (see Duffie and Singleton [25])

D(t, T ) = EP[e
− ∫ T

t r(Xv)dvCT |Ft], (2.4.1)

where CT is an FT -measurable random variable valued in [0, 1].

In the extreme situation CT = 0 of a complete default, in which the bondholders

receive no recovery payment in the event of default, the bonds become worthless. In

this paper, we exclude the occurrence of complete default by assuming P(CT = 0) = 0.

We will later explain why we have to make this technical assumption. The other

extreme case of default-free bonds is included in our model if we assume P(CT = 1) =

1.

Following the same ideas as in formulation of the OMT Problem for the default-
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free bond in Section 2.1 we let

ϕ =
(− ∫ T

t

r(Xv)dv + lnCT

)
in equation (2.1.7) so that the defaultable bond price D(t, T ) is characterized by the

following OMT problem⎧⎪⎪⎨
⎪⎪⎩
dXs = f(s,Xs)ds+ g(s,Xs)dW

P
s ,

Vt,T = inf
Q∈Pt(Ω)

{
EQ

[ ∫ T

t

r(Xv)dv − lnCT |Ft

]
+Ht,T (Q|P)}. (2.4.2)

By Proposition 2.1.1 the solution to the OMT Problem (2.4.2) is given by the optimal

measure Q� that is determined by

dQ�

dP

∣∣∣∣
FT

=
e−

∫ T
t r(Xv)dvCT

EP[e
− ∫ T

t r(Xv)dvCT |Ft]
(2.4.3)

and the optimal value function given by

Vt,T = − ln
{
EP[e

− ∫ T
t rsdsCT |Ft]

}
. (2.4.4)

Equation (2.4.4) connects the value function and the defaultable bond price through

Vt,T = − lnD(t, T ).

On the other hand, we notice, from equation (2.4.3), that the optimal measure which

solves the OMT Problem (2.4.2) is essentially the martingale measure using default-

able bond price D(t, T ) as numéraire. This is why we require P(CT = 0) = 0 to

guarantee the defaultable bond price to be positive almost surely.

Remark 2.4.1. Suppose a financial agent pays c to buy one unit of the bond at time

t, and receives a payoff of CT at maturity T . The internal logarithmic return on the

investment over the time period [t, T ] is

γt,T = ln
CT

c
.

The excess return over the risk-free rate, γ̃, is given by

γ̃t,T = γt,T −
∫ T

t

r(Xv)dv,
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which measures the investment performance. Note that the OMT Problem (2.4.2) is

equivalent to

ln
D(t, T )

c
= − inf

Q∈Pt(Ω)

{
EQ[−γ̃t,T |Ft] +Ht,T (Q|P)}

= sup
Q∈Pt(Ω)

{
EQ[γ̃t,T |Ft]−Ht,T (Q|P)}. (2.4.5)

The aggregate relative entropy Ht,T (Q|P) in equation (2.4.5) can be interpreted as

penalty for removing financial risk composed of market risk (volatility risk) and credit

risk in the framework of our model. The right-hand side of equation (2.4.5) maximizes

the excess (risk-adjusted) return on the investment, which is equal to the equivalent

instantaneous return given by left-hand side of equation (2.4.5).

Similar to Section 2.1.2 we relate the OMT Problem 2.4.2 to a decoupled FBSDE

with random terminal condition

Xs = Xt +

∫ s

t

f(v,Xv)dv +

∫ s

t

g(v,Xv)dW
P
v , (2.4.6)

Ys = − lnCT +

∫ T

s

[r(Xv)− 1

2
ZvZ

′
v]dv +

∫ T

s

ZvdW
P
v . (2.4.7)

If the above decoupled FBSDE admits a solution triple (X, Y, Z), then the value

function and the optimal measure Q� for the OMT Problem 2.4.2 are characterized

by (Y, Z) respectively as

Vt,T = Yt, (2.4.8)

dQ�

dP

∣∣∣∣
FT

= e−
∫ T
t

1
2
ZsZ′

sds+
∫ T
t ZsdW P

s . (2.4.9)

We will discuss the explicit solution to the FBSDE (2.4.6)-(2.4.7) in the case of

ATSMs and QTSMs respectively. The possibility of default leads to solutions with

an extra component compared to those considered previously
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2.4.1 ATSMs

Under the framework of ATSMs the FBSDE (2.4.6)-(2.4.7) becomes

Xs = Xt +

∫ s

t

(AXv +B) dv +

∫ s

t

Sdiag
√

αi + βiXvdW
P
v (2.4.10)

Ys = − lnCT +

∫ T

s

(R′Xv + k − 1

2
ZvZ

′
v)dv +

∫ T

s

ZvdW
P
v (2.4.11)

The following result can be seen as a generalization of Hyndman [40, Theorem 3.2]

by incorporating a random terminal condition representing the recovery amount in

the case of default.

Theorem 2.4.1. If the Riccati equation

U̇s + UsA+
1

2
UsK

′[β(Us)]−R′ = 0, s ∈ [0, T ] (2.4.12)

UT = 0 (2.4.13)

admits a unique bounded solution U(·) ∈ Rn over the interval [0, T ], then FBSDE

(2.4.10)-(2.4.11) admits a unique solution and the solution (Y, Z) has explicit expres-

sion in terms of X

Ys = −(UsXs + ps), and (2.4.14)

Zs = UsSdiag(
√
αi + βiXs) + zs, (2.4.15)

where (ps, zs) solves the following BSDE

ps = − lnCT −
∫ T

s

(
k − 1

2
Uvk0U

′
v − UvB +

1

2
zvz

′
v

)
dv −

∫ T

s

zvdW
P
v . (2.4.16)

Proof. We first prove the decoupled FBSDE (2.4.10)-(2.4.11) admits a unique solution

(X, Y, Z). Under our assumptions the SDE (2.4.10) admits a unique solution. Given

Xs, we consider the BSDE (2.4.11). If we let

Ỹs = e−Ys ,

Z̃s = −Ỹs · Zs

the BSDE (2.4.11) becomes

Ỹt = CT +

∫ T

t

[
R′Xs + k

]
Ỹsds+

∫ T

t

Z̃sdW
P
s . (2.4.17)
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Clearly the BSDE (2.4.11) admits a unique solution (Ỹ , Z̃) so the FBSDE (2.4.10)-

(2.4.11) admits a unique solution (X, Y, Z). Using the same technique, we can also

prove BSDE (2.4.16) admits a unique solution (p, z).

To prove the explicit representation of (Y, Z), we need to show (Y, Z) given by

equations (2.4.14)-(2.4.15) satisfies the BSDE (2.4.11). Apply Itô’s formula to the

function φ(s, x, p) = −(Usx + p) where Us is the solution to (2.4.12). Let Ys =

φ(s,Xs, ps) where Xs is given by (2.4.10) and ps satisfies (2.4.16). Then we have

dYs = −
(
U̇sXs + Us(AXs +B + k0U

′
s +K ′[β(Us)]

′Xs + Sdiag(
√
αi + βiXs)z

′
s

)
ds

− UsSdiag(
√
αi + βiXs)dW

P
s −

(
k − 1

2
Usk0U

′
s − UsB +

1

2
zsz

′
s

)
ds− zsdW

P
s

= −
{(

U̇s + UsA+
1

2
UsK

′[β(Us)]−R′
)
Xs + (R′Xs + k

+
1

2

(
UsK

′[β(Us)]
′Xs + Usk0U

′
s + 2UsSdiag(

√
αi + βiXs)z

′
s + zsz

′
s

))}
ds

−
{
UsSdiag(

√
αi + βiXs) + zs

}
dW P

s . (2.4.18)

Substituting equations (2.4.12) and (2.4.15) into equation (2.4.18) we have

dYs = −(R′Xs + k − 1

2
ZsZ

′
s)ds− ZsdW

P
s

Thus (Ys, Zs) defined by equations (2.4.14)-(2.4.15) satisfies

Ys = YT +

∫ T

s

(R′Xv + k − 1

2
ZvZ

′
v)dv +

∫ T

s

ZvdW
P
v

By the boundary conditions in equations (2.4.13) and (2.4.16) we have

YT = − lnCT

Therefore,

Ys = − lnCT +

∫ T

s

(R′Xv + k − 1

2
ZvZ

′
v)dv +

∫ T

s

ZvdW
P
v .

Remark 2.4.2. The existence and uniqueness of the solution to the Riccati equation

(2.4.12) is shown in Duffie et al. [27, Section 6] where a class of generalized Riccati

equations has been considered.
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Note that the representation of (Y, Z) of the FBSDE (2.4.14)-(2.4.15) is not com-

pletely explicit, since the term zt is to be determined by the quadratic BSDE (2.4.16).

Fortunately we can convert the quadratic BSDE (2.4.16) into a linear BSDE by letting

p̃t = e−pt ,

z̃t = p̃t · zt

then the BSDE (2.4.16) becomes

p̃t =
1

CT

+

∫ T

t

(k − 1

2
Usk0U

′
s − UsB)p̃sds+

∫ T

t

z̃sdW
P
s . (2.4.19)

In the excluded case that P (CT = 0) > 0 then (2.4.19) would be a BSDE with singular

terminal condition.

With further specification of CT through a specific a default mechanism and recov-

ery scheme the linear BSDE (2.4.19) can either be solved analytically or numerically.

There is an extensive literature focused on the numerical solution schemes for BSDEs

which we shall not discuss. Nevertheless, Theorem 2.4.1 simplifies the procedure to

solve the coupled nonlinear FBSDE (2.4.10)-(2.4.11) to the solution of the Riccati

equation (2.4.12) and the linear BSDE (2.4.19).

2.4.2 QTSMs

In the framework of QTSMs the FBSDE (2.4.6)-(2.4.7) becomes

Xs = Xt +

∫ s

t

(
AXv +B

)
dv +

∫ s

t

ΣdW P
v (2.4.20)

Ys = − lnCT +

∫ T

s

(X ′
vQXv +R′Xv + k − 1

2
Z ′

vZv)dv +

∫ T

s

ZvdW
P
v . (2.4.21)

As in the case of ATSMs we obtain the partially explicit solutions to the FBSDE

(2.4.20)-(2.4.21) stated in the following theorem.

Theorem 2.4.2. If the Riccati equations

q̇s + qsA+ A′qs +
1

2
(q′s + qs)ΣΣ

′(q′s + qs)−Q = 0n×n, s ∈ [0, T ] (2.4.22)

u̇s + usA+B′(q′s + qs) + usΣΣ
′(q′s + qs)−R′ = 01×n, s ∈ [0, T ] (2.4.23)

qT = 0n×n, uT = 01×n (2.4.24)
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admit unique bounded solutions q(·), u(·) over the interval [0, T ], then the FBSDE

(2.4.20)-(2.4.21) admits a unique solution and (Y, Z) has explicit expression in terms

of X as follows

Ys = −(X ′
sqsXs + utXs + ps), (2.4.25)

Zs =
(
X ′

s(qs + q′s) + us

)
Σ + zs, (2.4.26)

where (ps, zs) solves the following BSDE

ps = − lnCT −
∫ T

s

(
k − uvB − 1

2
tr ((qv + q′v)ΣΣ

′)− 1

2
uvΣΣ

′u′
v +

1

2
zvz

′
v

)
dv

−
∫ T

s

zvdW
P
v . (2.4.27)

By the same technique as in the ATSM case we make the change of variables

p̃s = e−ps ,

z̃s = p̃s · zs

so that the BSDE (2.4.27) to obtain the linear BSDE

p̃s =
1

CT

+

∫ T

s

(k − uvB − 1

2
tr
(
(qv + q′v)ΣΣ

′)p̃vdv +
∫ T

s

z̃vdW
P
v . (2.4.28)

The above BSDE is of the same form as BSDE (2.4.19), which can also be solved

either analytically or numerically.

Remark 2.4.3. The decoupled Riccati equations (2.4.22)-(2.4.24) are closely related

to the LQ control problem. The existence and uniqueness of solutions to the Riccati

equations (2.4.22)-(2.4.24) have been discussed in Hyndman and Zhou [38]. We pro-

vide a similar proof in the appendix based on the results of Gombani and Runggaldier

[35].

2.5 Numerical illustration

We consider a one dimensional factor process X satisfying

dXt = (aXt + b)dt+ σ
√
α + βXvdW

P
t .
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The interest rate is given by

r(Xt) = RXt + k.

We suppose the underlying company value V satisfies

Vt = V0 exp{
∫ t

0

(r(Xv)− 1

2
σ2
V )dv + σVW

P
t }.

Default is triggered if the value process V crosses below a certain level κV0, i.e.

τ := inf{t ≥ 0, Vt ≤ κV0}. (2.5.1)

Then the random payoff CT is given by

CT = ξ · 1τ≤T + 1τ>T

where ξ is the recovery rate in case of default.

The price of the defautable bond is given by

D(t, T ) = EP[e
− ∫ T

t (RXv+k)dv · CT |Ft].

The solution to the associated OMT problem is characterized by the FBSDE

Xt = X0 +

∫ t

0

(aXv + b) dv +

∫ t

0

σ
√

α + βXvdW
P
v (2.5.2)

Yt = − lnCT +

∫ T

t

(RXv + k − 1

2
Z2

v )dv +

∫ T

t

ZvdW
P
v . (2.5.3)

We have explicit expression for the solution to FBSDE (2.5.2)-(2.5.3)

Yt = −(UtXt + pt), (2.5.4)

Zt = σUt(
√
α + βXt) + qt, (2.5.5)

where Us satisfies the Riccati equation

U̇t + aUt +
β

2
σ2U2

t −R = 0, t ∈ [0, T ] (2.5.6)

UT = 0, (2.5.7)

and (p, q) solves the BSDE

pt = − lnCT −
∫ T

t

(
k − α

2
σ2U2

v − bUv − 1

2
q2v

)
dv −

∫ T

t

qvdW
P
v . (2.5.8)
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The defaultable bond price can be expressed as

D(t, T ) = exp{−Yt}. (2.5.9)

The aggregate relative entropy of the optimal measure Q� with respect to P is given

by

Ht,T (Q
�|P) = EQ�

[

∫ T

t

1

2
Z2

vdv|Ft].

We introduce the following proposition which gives explicit solution to a special

type of quadratic BSDEs.

Proposition 2.5.1. On a probability space (Ω,F , {Ft, t ≥ 0},P, consider the follow-

ing BSDE

yt = ξ −
∫ T

t

(
1

2
z′szs + gs)ds−

∫ T

t

zsdW
P
s ,

where (yt, zt) ∈ R ×Rn, ξ is real-valued FT -measurable random variable, gt is real-

valued Ft-adapted process satisfying EP[sup0≤t≤T |gt|2] < ∞. Then yt can be expressed

explicitly as

yt = − ln{EP[e
−ξ|Ft]} −

∫ t

0

gsds.

Proof. Make the exponential transformation ỹt = e−yt , by Itô’s formula ỹt satisfies

ỹt = e−ξ +

∫ T

t

gsỹsds+

∫ T

t

ỹszsdW
P
s .

Define the adjoint process

xs = e
∫ s
t gudu, s ≥ t.

Notice that xt = 1, and apply Itô formula to xs · ỹs from t to T , to find

ỹt = xT e
−ξ +

∫ T

t

ỹsxszsdW
P
s

= e
∫ T
t gsds−ξ +

∫ T

t

ỹse
∫ s
t guduzsdW

P
s . (2.5.10)

Take conditional expectation on Ft of both sides of (2.5.10), we obtain

ỹt = EPT [e
∫ T
t gsds−ξ|Ft]

= e
∫ T
t gsdsEP[e

−ξ|Ft].
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Finally we have

yt = − ln ỹt

= − ln{EP[e
−ξ|Ft]} −

∫ t

0

gsds.

Remark 2.5.1. The existence and uniqueness of the solution to general quadratic

BSDEs was proven by Kobylanski [50]. Proposition (2.5.1) is only a special case in

which we can give the explicit solution.

Applying Proposition 2.5.1 to the BSDE (2.5.8), we may express pt explicitly as

pt = − ln{EP[
1

CT

|Ft]} −
∫ t

0

(
k − 1

2
Uvk0U

′
v − UvB

)
dv. (2.5.11)

However, we do not have an explicit expression for the process qt. Alternatively we

can solve BSDE (2.5.8) numerically. Actually we can transform the quadratic BSDE

(2.5.8) into an equivalent linear BSDE by letting

p̃t = e−pt , q̃t = p̃t · qt,

then the BSDE (2.5.8) becomes

p̃t =
1

CT

+

∫ T

t

(k − α

2
σ2U2

s − bUs)p̃sds+

∫ T

t

q̃sdWs. (2.5.12)

We approximate the BSDE (2.5.12) by the following discretized BSDE

p̃tm+1 = p̃tm − (k − α

2
σ2U2

tm − bUtm)p̃tmΔt− q̃tmΔW P
tm , t0 ≤ tm ≤ tM ,

p̃tM =
1

CT

.

The discretized BSDE can be solved using the following recursive scheme (see [33])

q̃tm =
1

Δt
E[ptm+1ΔW P

tm |Ftm ],

p̃tm =
E[p̃tm+1 |Ftm ]

1− (k − α
2
σ2U2

tm − bUtm)Δt
.

We estimate the conditional expectation by the Monte-Carlo regression approach

proposed by [33]. With a time discretization over [0, T ] we use the Euler scheme
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to generate the paths of the forward process Xt in (2.5.2), approximated by Xtm .

We denote by Utm the numerical solution to the Riccati equation (2.5.6). Then the

defautable bond price is estimated as

D(ttm , T ) ≈ exp(UtmXtm + ptm).

The aggregate relative entropy of the optimal measure Q� with respect to P is esti-

mated as

Htm,T (Q
�|P) = EQ�

[
∑

t≤tm≤T

1

2

(
σUtm

(√
α + βXtm + qtm

))2

Δt|Ft].

We now specify the parameters a = −1× 10−2, b = 1× 10−5, σ = 7.4× 10−3, R =

1, k = 0, T = 1, V0 = 20, σV = 0.2, κ = 0.8 and ξ (recovery rate) is a uniform random

variable on [0.4, 0.6].

Figure 2.1 shows one sample path of the realized interest rate process. Figure

2.2 present the case where default occurs before the maturity T as the value process

crosses the default barrier. Figure 2.2 also shows the evolution of the defaultable

bond price. The defaultable bond price has much more fluctuations before the default

time, which is affected not only by the distance between the value process and the

default barrier but also the time to maturity. The defaultable bond price after default

time is almost constant which is determined by the recovery rate. Lastly Figure 2.2

illustrates the the aggregate relative entropy process H(t, T ). Similar to the price

process, the aggregate relative entropy process has much more fluctuations before

default due to uncertainty of default timing. After default, the aggregate relative

entropy decreases to zero almost linearly since the major uncertainty after default

comes from the interest rate process which is negligible compared with default risk.

Figure 2.3 illustrates the case where default does not occur before maturity. The

default bond price fluctuates strongly in the early period of horizon [0, T ] and then

converges to 1 as time approaches maturity without occurrence of default.

In this chapter we considered the pricing problem for default-free bonds from a

new perspective by formulating an optimal measure transformation problem. The

solution of these problems consists of the optimal measure transformation and the
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Figure 2.1: Interest rate process
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Figure 2.2: Realization with default
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Figure 2.3: Realization without default

value process and these are characterized by the solution of a decoupled nonlinear

FBSDE. The explicit solutions to FBSDEs under ATSMs and QTSMs can be found in

Hyndman [40] and Hyndman and Zhou [38]. We provide an equivalence relationship

between the optimal control approach in Gombani and Runggaldier [35] and the

optimal measure transformation approach. We also extend the OMT problem to

include jumps. We give explicit solutions to the related FBSDEs with jumps, which

generalizes Hyndman [40] and Hyndman and Zhou [38]. Finally we form the OMT

problem for defaultable bonds, in which case the related FBSDE generally does not

have completely explicit solution due to the dependence on the general specification

of the default time and recovery amount of the random terminal value of the BSDE.

However, the partially explicit solution still simplifies the problem of solving the

nonlinear FBSDE.

In next chapter, we will study the optimal trading problem for a small investor

trading against the disorderly liquidation of a large position that impacts the mar-

ket price. Further, we assume various market participants have different levels of

information.
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Chapter 3

Portfolio optimization under

asymmetric information and

market impact

3.1 The Market Model

3.1.1 Asset price and liquidation impact

Fix a probability space (Ω,A,P) equipped with a reference filtration F = (Ft)t≥0

satisfying the usual conditions, with (Wt, t ≥ 0) an (F,P)-Brownian motion. Let

T > 0 be a finite horizon time. In our model, we assume that market participants

may invest in a riskless asset and a risky asset. Without loss of generality we suppose

that the interest rate of the riskless asset is zero. We assume that the fundamental

value of the risky asset is modelled by a Black-Scholes diffusion:

dSt = St(μdt+ σdWt), 0 ≤ t ≤ T, (3.1.1)

where μ and σ are supposed to be constants, and σ > 0.

We consider a hedge fund which holds a large long position in the risky asset over

the investment horizon [0, T ]. In normal circumstances, this position could be held

until time T . However, according to risk management policies, exchange rules, or reg-
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ulatory requirements, the long position must be liquidated in certain circumstances.

In this paper, we assume that the liquidation will be triggered when the market price

of the risky asset passes below a pre-determined level. Before liquidation, the market

price, denoted by SM , is equal to the fundamental value S. So the liquidation time τ

is defined as the first passage time of a fixed constant threshold αS0 where α ∈ (0, 1),

by the market price process SM , i.e.,

τ := inf{t ≥ 0, SM
t ≤ αS0} = inf{t ≥ 0, St ≤ αS0} (3.1.2)

with the convention inf ∅ = ∞. We note that τ is an F-stopping time. In the

simplest case the scenario described corresponds to a margin call that cannot be

covered resulting in the liquidation, in full or in part, of the position.

The market price of the risky asset will be influenced by liquidation. Since the

number of shares of the risky asset to be sold is very large in comparison to the

average volume traded in a short time period, immediate liquidation would have a

temporary impact on the market price which would be driven down away from the

fundamental price after liquidation. We denote by SI
t (u) the market price of the risky

asset at time t after the liquidation time τ = u. Suppose that it is given as

SI
t (u) = g(t− u; Θ, K)St, u ≤ t ≤ T. (3.1.3)

where g is an impact function and Θ and K are parameters which will be made

precise later. We note that the mathematical characterization of market impact is a

very complicated problem, and we refer the interested reader to [49] for details. In

this paper, inspired by [53], we characterize the temporary influence of liquidation on

market by the impact function g of the form

g(t; Θ, K) = 1− Kt

Θ
e1−

t
Θ (3.1.4)

where Θ and K are random variables with Θ controlling the speed of the market

impact and K representing the magnitude of the market impact. In particular, we

assume that Θ is a positive random variable and K is a random variable valued in

[0, 1], both of which are independent of F and with joint probability density function

ϕ(·, ·), i.e. P(Θ ∈ dθ,K ∈ dk) = ϕ(θ, k)dθdk.
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Figure 3.1 illustrates the impact function (3.1.4) with K = 0.1 and two different

realized values of Θ. Clearly the shape of the impact function with Θ = 0.05 is

steeper than with Θ = 0.1. We note that for each fixed scenario ω, the function g

attains its minimum value 1−K(ω) at t = Θ(ω). Also, we observe that the function

g first declines from 1 and then rises back and converges to 1, which characterizes

the market impact of liquidation with time evolution. For realized values K = 0.1

and Θ = 0.1 it would take 0.1 year, which is approximately 25 trading days, for the

asset price to reach the minimum value (1 − K) ∗ S0 after liquidation occurs. The

market impact in the first trading day after liquidation is 1 − g( 1
250

; 0.1, 0.1) ≈ 1%.

Therefore, the parameter Θ needs to be small to more accurately reflect the impact

of disorderly liquidation. In Section 3.5 we present some numerical results which use

a rather large Θ that guarantees better accuracy of the numerical results, but these

could be improved by applying other numerical techniques for smaller values of Θ.

Remark 3.1.1. It is natural to consider a jump effect for the price impact of liquida-

tion. In our model, by (3.1.3), the price before and just after liquidation satisfies the

relation SI
t (t) = St. However, we can approximate downward jumps of asset prices

after liquidation by choosing small values of Θ in the smooth function g. Further,

our model allows us to consider the situation that liquidation by the large trader may

have no long-term informational content. The temporary impact on the market price

decays as liquidity providers return to the market and other market participants real-
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ize that there may be no information about the fundamental value of the risky asset

conveyed by the hedge fund’s disorderly liquidation.

A possible extension is to consider a modified impact function with additional

parameters and flexibility. For example, let

g(t; Θ1,Θ2, K1, K2) =

⎧⎪⎨
⎪⎩
1− (K1+K2)t

Θ1
e
1− t

Θ1 0 ≤ t < Θ1,

1−K1 − K2(t+Θ2−Θ1)
Θ2

e
1− t+Θ2−Θ1

Θ2 Θ1 ≤ t.

(3.1.5)

The impact function given by (3.1.5) incorporates both permanent and temporary mar-

ket impacts with K1 and K2 controlling the magnitude of permanent and temporary

market impacts respectively. The parameters Θ1 and Θ2 determine both the deviation

and reversal speed (see Figure 3.2). Moreover, at long-term time scale, the impact

function can come back to a different level other than 1. For simplicity, we will use

the impact function given by (3.1.4) in this paper and suppose the parameters Θ and

K to be random variables.

Considering the market price of the asset to be equal to the fundamental value

before the liquidation time τ and to be the impacted asset price after liquidation, we

have that the market price is given as

SM
t = 1{0≤t<τ∧T}St + 1{τ∧T≤t≤T}SI

t (τ)

where St and SI
t (τ) are given by (3.1.1) and (3.1.3) respectively. Moreover, for any

u ≥ 0, the dynamics of the process SI
t (u) satisfies the SDE

dSI
t (u) = SI

t (u)
(
μI
t (u,Θ, K)dt+ σdWt

)
, u ≤ t ≤ T

where

μI
t (u,Θ, K) =

g′(t− u; Θ, K)

g(t− u; Θ, K)
+ μ.

Remark 3.1.2. The process (SI
t (u), t ≥ u) is adapted with respect to the filtration

F∨σ(Θ, K) which is the initial enlargement of F by the random variables (Θ, K). As

we suppose σ(Θ, K) is independent of F∞, the (F,P)-Brownian motion W is also a

(F ∨ σ(Θ, K),P)-Brownian motion (see e.g. [44, Section 5.9].)
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Thus the market price process of the risky asset, denoted as SM = (SM
t , t ≥ 0),

satisfies the SDE

dSM
t = SM

t

(
μM
t (Θ, K)dt+ σdWt

)
(3.1.6)

where

μM
t (Θ, K) = 1{0≤t<τ∧T}μ+ 1{τ∧T≤t≤T}μI

t (τ,Θ, K). (3.1.7)

We note that the market price admits a regime change at the liquidation time τ , in

particular on the drift term. We give an illustrative example as below.

Example 3.1.1. Suppose that the fundamental value process (3.1.1) is given by the

Black-Scholes model with parameters SM
0 = 80, μ = 0.07, σ = 0.2, α = 0.9,Θ =

0.1, K = 0.1. Figure 3.3 shows that liquidation triggers a downward jump of the drift

term. Afterward the drift term first rises quickly and then declines gradually back to

the original drift term. Correspondingly, Figure 3.4 shows the sample market price

processes of the asset subject to liquidation impact compared with the fundamental

value process.
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Figure 3.3: Drift μ
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Figure 3.4: Asset price SM

3.1.2 The optimal investment problem

Our objective is to consider the optimal investment problem from the perspective

of investors who trade in the market for the risky asset subject to price impact

from disorderly liquidation of the hedge fund’s position. For simplicity we assume
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these agents may trade in the market for the risky asset without transaction costs.

We consider fully informed investors, partially informed investors and uninformed

investors. We suppose that all investors have access to the market price of the risky

asset SM but their knowledge of the liquidation and price impact are different. We

further assume that all the investors know the values of the parameters μ and σ.

Fully informed investors observe the market price and are assumed to have com-

plete knowledge of the mechanism of liquidation and the price impact function. Hence

they know, in mathematical terms, the liquidation trigger level α, the impact func-

tion g, and the values of the random variables Θ and K when liquidation occurs.

Therefore, fully informed investors have complete knowledge of the dynamics of the

market price process, together with the information of the price impact.

Partially informed investors are also able to observe the market price and know

the liquidation trigger level α, therefore, the liquidation time τ is also observable

for them. However, partially informed investors do not have complete information

about the price impact function. We suppose the partially informed investors know

the functional form of the price impact function g. However, we assume the partially

informed investors only know the distributions of Θ and K but not the realized value

that is necessary to have full knowledge of the price impact of liquidation.

Uninformed investors are not aware of the liquidation trigger mechanism. They er-

roneously believe the market price process follows the Black-Scholes dynamics (3.1.1)

without price impact. Therefore, they behave under incorrect assumptions, or a mis-

specification of the market model, which leads them to act like the Merton investor.

Considering such uninformed investors allows us to quantify the value of information

about the liquidation barrier and price impact, compared to a Merton-type investor.

We denote by FS = (FS
t )t≥0 the natural filtration generated by the market price

process SM . Since the market price coincides with the fundamental value process S

before liquidation, the liquidation time τ , which is an F-stopping time, is also an FS-

stopping time. We summarize the knowledge of the various investors in the following

assumption.

Assumption 3.1.1. All investors observe the market price of the risky asset and
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know the values of the parameters μ and σ. In addition certain market participants

possess additional information:

(i) The observable information for fully informed investors is modeled by the

filtration

G(2)
t = FS

t ∨ σ(Θ, K) = Ft ∨ σ(Θ, K),

they further know the liquidation barrier α, as well as the form of the impact

function g.

(ii) The observable information for partially informed investors is modeled by

the filtration

G(1)
t = FS

t ,

they further know the liquidation barrier α, the form of the impact function g,

and the distribution of (Θ, K).

(iii) To compare with the above two types of insiders, we consider uninformed in-

vestors who act as Merton-type investors, erroneously considering Black-Scholes

dynamics with constant μ over the entire period [0, T ]. They have no informa-

tion about the liquidation mechanism. Further, they do not update their knowl-

edge of the drift process after τ .

Remark 3.1.3. The common information to three types investors are represented by

the ”public” filtration FS since the market price of the risky asset is observable to all

investors. Assumption 3.1.1 implies that partially informed investors know the law of

μM
t (Θ, K). This is similar to the weak information case of [12].

The essential differences among these three types of investors lie in their knowledge

on the drift term μM(Θ, K) defined in (3.1.7). Fully informed investors are able

to completely observe the drift term. Partially informed investors partially observe

the drift term, corresponding to the case of partial observations considered by [47].

Partially informed investors may obtain an estimate of the drift term which is adapted

to their observation process using filtering theory. Uninformed investors do not have

any information about the liquidation mechanism and market impact which causes
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them to erroneously specify the drift term as μ. That is, uninformed investors believe

that the market prices follow the Black-Scholes dynamics (3.1.1). If the uninformed

investor treated the drift of (3.1.1) as an unobservable process he could perhaps apply

filtering theory to improve his investment decisions even without knowing anything

about the liquidation mechanism or market impact function. However, in this paper

we shall only consider the case of Assumption 3.1.1, that is of uninformed investors

who estimate the drift at the beginning of the period and do not update it, since from

their own view point no liquidation event happened during the period [0, T ]. The

uninformed investors are mainly considered as a benchmark for comparison with the

Merton model.

We shall study the portfolio optimization problem for three types of investors in

the remainder of this paper under logarithmic and power utility.

3.2 Fully informed investors

Fully informed investors choose their trading strategy to adjust the portfolio of assets

according to their information accessibility. As discussed in Section 3.1 fully informed

investors know the realized values of the random variables Θ and K. The investment

strategy is characterized by a G(2)-predictable process π(2) which represents the pro-

portion of wealth invested in the risky asset. The admissible strategy set A(2) is a

collection of π(2) such that, for any (θ, k) ∈ (0,+∞)× (0, 1),∫ T

0

|π(2)
t μM

t (θ, k)|dt+
∫ T

0

|π(2)
t σ|2dt < ∞. (3.2.1)

The risk aversion of the investors is modeled by classic utility functions U defined on

(0,∞) that are strictly increasing, strictly concave, with continuous derivative U ′(x)

on (0,∞), and satisfying

lim
x→0+

U ′(x) = +∞ lim
x→∞

U ′(x) = 0.

We define the G(2)-martingale measure Q by the likelihood process

Lt :=
dQ

dP

∣∣∣∣
G(2)
t

= exp

{
−
∫ t

0

μM
v (Θ, K)

σ
dWv −

∫ t

0

(
μM
v (Θ, K)

)2
2σ2

dv

}
. (3.2.2)
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As mentioned in Remark 3.1.2, W is a (G(2),P)-Brownian motion. By Girsanov’s

theorem, the process WQ defined as

WQ
t = Wt +

∫ t

0

μM
v (Θ, K)

σ
dv (3.2.3)

is an (G(2),Q)-Brownian motion and the dynamics of the asset price SM under Q

may be written as

dSM
t = SM

t σdWQ
t .

By taking a strategy π2 ∈ A(2), the wealth process with initial endowment X0 ∈
G(2)
0 evolves as

dX
(2)
t = X

(2)
t π

(2)
t (μM

t (Θ, K)dt+ σdWt), 0 ≤ t ≤ T (3.2.4)

that is

X
(2)
t = X0 +

∫ T

0

π(2)
v σSM

v dWQ
v . (3.2.5)

The fully informed investors’ objective is to maximize their expected utility of termi-

nal wealth

V
(2)
0 := sup

π(2)∈A(2)

E

[
U
(
X

(2)
T

)]
(3.2.6)

or

V
(2)
0 (Θ, K) := ess sup

π(2)(Θ,K)∈A(2)

E

[
U
(
X

(2)
T

)
|G(2)

0

]
(3.2.7)

where G(2)
0 = σ(Θ, K). The link between the optimization problems (3.2.6) and (3.2.7)

is given by [8]; if the supremum in (3.2.7) is attained by some strategy in A(2), then

the ω-wise optimum is also a solution to (3.2.6).

As (Θ, K) is independent1 of F, a martingale representation theorem holds for

(G(2),Q)-local martingale, thus we adopt the standard ”martingale approach” (see

[48]) to solve the utility optimization problem (3.2.7). We may consider the following

static optimization problem

sup
X

(2)
T ∈V

E

[
U
(
X

(2)
T

)
|G(2)

0

]
(3.2.8)

1This assumption can be relaxed into a density Jacod hypothesis, using then the result of [6,

Proposition 4.6] for a martingale representation theorem.
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where

V =

{
X

(2)
T

∣∣∣∣X(2)
T = X0 +

∫ T

0

π(2)
v σSM

v dWQ
v , π(2) ∈ A(2)

}
.

The optimization problem (3.2.8) can be solved by using the method of Lagrange

multipliers (see [8, Proposition 4.5]). The optimal terminal wealth X̂
(2)
T is given by

X̂
(2)
T = I(ΛLT ), (3.2.9)

where I = (U ′)−1 and the G(2)
0 -measurable random variable Λ is determined by

EQ
[
I(ΛLT )| G(2)

0

]
= X0. (3.2.10)

In order to find the optimal strategy π̂(2) one should provide the dynamics of the

optimal wealth process

X̂
(2)
t = EQ

[
X̂

(2)
T |G(2)

t

]
. (3.2.11)

Since (X
(2)
t )t∈[0,T ] is a (G(2),Q)-martingale, there exists a G(2)-adapted process J such

that

X̂
(2)
t = EQ[X̂

(2)
T

∣∣∣G(2)
0 ] +

∫ t

0

JvdW
Q
v . (3.2.12)

Substituting (3.2.10) into (3.2.12) we have

X̂
(2)
t = X0 +

∫ t

0

JvdW
Q
v . (3.2.13)

Comparing (3.2.5) with (3.2.13), we obtain the optimal strategy

π̂
(2)
t =

Jt

σX̂
(2)
t

.

Notice that the optimal strategy (π̂
(2)
t )t∈[0,T ] involves the process J which is implicitly

determined by the martingale representation as in (3.2.12). To obtain an explicit

expression for the optimal strategy, we will consider power and logarithmic utilities

in the following subsections.

3.2.1 Power utility

We first consider the power utility

U(x) =
xp

p
, 0 < p < 1.
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Using the fact that I(x) = x1/(p−1) and by (3.2.9)-(3.2.10) we obtain the optimal

terminal wealth

X̂
(2)
T =

X0

E

[
(LT )

p
p−1 |G(2)

0

] (LT )
1

p−1 (3.2.14)

where LT is given by (3.2.2). The following proposition gives then the optimal ex-

pected utility as well as the optimal strategy:

Proposition 3.2.1. For power utility U(x) = xp

p
, 0 < p < 1, the optimal expected

utility is

V
(2)
0 (Θ, K) =

(X0)
p

p

(
E

[
(LT )

p
p−1 |G(2)

0

])1−p

(3.2.15)

and the optimal strategy is given by

π̂
(2)
t = 1{0≤t<τ∧T}π̂

(2,b)
t + 1{τ∧T≤t≤T}π̂

(2,a)
t , t ∈ [0, T ] (3.2.16)

where

π̂
(2,b)
t =

μ

(1− p)σ2
+

ZH
t

σHt

, t ∈ [[0, τ ∧ T [[, (3.2.17)

π̂
(2,a)
t =

μI
t (τ,Θ, K)

(1− p)σ2
, t ∈ [[τ ∧ T, T ]] (3.2.18)

with (H,ZH) satisfying the following linear BSDE

Ht = 1 +

∫ T

t

(
p
(
μM
v (Θ, K)

)2
2(1− p)2σ2

Hv +
pμM

v (Θ, K)

(1− p)σ
ZH

v

)
dv −

∫ T

t

ZH
v dWv. (3.2.19)

Proof. Following [17] we find the explicit expression for the optimal strategy, by

computing the dynamics of the optimal wealth process. Applying the abstract Bayes’

formula to (3.2.11), we obtain

X̂
(2)
t =EQ

[
X̂

(2)
T |G(2)

t

]
=

1

Lt

E

[
X̂

(2)
T LT |G(2)

t

]
. (3.2.20)
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Substituting (3.2.2) and (3.2.14) into (3.2.20) we have

X̂
(2)
t

=
X0

E[(LT )
p

p−1 |G(2)
0 ]Lt

E

[
(LT )

p
p−1 |G(2)

t

]

=
X0

E[(LT )
p

p−1 |G(2)
0 ]Lt

E

[
exp

{∫ T

0

pμM
v (Θ, K)

(1− p)σ
dWv +

∫ T

0

p
(
μM
v (Θ, K)

)2
2(1− p)σ2

dv

}
|G(2)

t

]

=
X0(Lt)

1
p−1

E[(LT )
p

p−1 |G(2)
0 ]

E

[
exp

{∫ T

t

pμM
v (Θ, K)

(1− p)σ
dWv +

∫ T

t

p
(
μM
v (Θ, K)

)2
2(1− p)σ2

dv

}
|G(2)

t

]

Defining

Ht := E[exp

{∫ T

t

pμM
v (Θ, K)

(1− p)σ
dWv +

∫ T

t

p(μM
v (Θ, K))2

2(1− p)σ2
dv

}
|G(2)

t ]

the optimal wealth process writes as

X̂
(2)
t =

X0

H0

(Lt)
1

p−1Ht. (3.2.21)

In order to find the dynamics of (Ht)t∈[0,T ], we first remark that (Mt := HtDt)t∈[0,T ]

is a (G(2),P)-martingale, where

Dt := exp

{∫ t

0

pμM
v (Θ, K)

(1− p)σ
dWv +

∫ t

0

p(μM
v (Θ, K))2

2(1− p)σ2
dv

}
. (3.2.22)

By the martingale representation theorem there exists a G(2)-adapted process ZM

such that

Mt = M0 +

∫ t

0

MvZ
M
v dWv.

From equation (3.2.22)

d(
1

Dt

) = (
1

Dt

)

{(
p2(μM

t (Θ, K))2

2(1− p)2σ2
− p(μM

t (Θ, K))2

2(1− p)σ2

)
dt− pμM

t (Θ, K)

(1− p)σ
dWt

}

which leads to the following dynamics for the process (Ht)t∈[0,T ]

dHt = Ht

{(
p2(μM

t (Θ, K))2

2(1− p)2σ2
− p(μM

t (Θ, K))2

2(1− p)σ2
− pμM

t (Θ, K)

(1− p)σ
ZM

t

)
dt

+

(
ZM

t − pμM
t (Θ, K)

(1− p)σ

)
dWt

}
.

Denoting

ZH
t := HtZ

M
t − pμM

t (Θ, K)

(1− p)σ

66



and using the terminal condition

HT = 1,

then (Ht)t∈[0,T ] satisfies the following BSDE

Ht = 1 +

∫ T

t

(
p(μM

v (Θ, K))2

2(1− p)2σ2
Hv +

pμM
v (Θ, K)

(1− p)σ
ZH

v

)
dv −

∫ T

t

ZH
v dWv. (3.2.23)

Thus the dynamics of the optimal wealth process, using (3.2.21), are

dX̂
(2)
t = X̂

(2)
t

((
μM
t (Θ, K)

)2
(1− p)σ2

+
μM
t (Θ, K)ZH

t

σHt

)
dt+ X̂

(2)
t

(
μM
t (Θ, K)

(1− p)σ
+

ZH
t

Ht

)
dWt.

(3.2.24)

that leads to the optimal strategy (by comparing (3.2.24) with (3.2.4))

π̂
(2)
t =

μM
t (Θ, K)

(1− p)σ2
+

ZH
t

σHt

. (3.2.25)

We decompose the time horizon [0, T ] into two random time intervals [[0, τ ∧ T [[ and

[[τ ∧ T, T ]]. On the random interval [[τ ∧ T, T ]], the fully informed investor observes

the drift term μM thus the BSDE (3.2.23) can be solved explicitly on [[τ ∧ T, T ]]:

Ht = exp

{∫ T

t

p(μI
v(τ,Θ, K))2

2(1− p)2σ2
dv

}
, (3.2.26)

ZH
t = 0. (3.2.27)

Recalling (3.1.7) and using (3.2.26)-(3.2.27) we may decompose the optimal strategy

in (3.2.25) into two parts:

π̂
(2)
t = 1{0≤t<τ∧T}π̂

(2,b)
t + 1{τ∧T≤t≤T}π̂

(2,a)
t (3.2.16)

where

π̂
(2,b)
t =

μ

(1− p)σ2
+

ZH
t

σHt

, t ∈ [[0, τ ∧ T [[, (3.2.17)

π̂
(2,a)
t =

μI
t (τ,Θ, K)

(1− p)σ2
, t ∈ [[τ ∧ T, T ]]. (3.2.18)

The optimal strategy after liquidation in (3.2.18) is essentially a Merton-type

strategy. The part before liquidation in (3.2.17) is the sum of a Merton strategy and
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an extra component2 which is determined by the solution of the BSDE (3.2.19). It is

hard to obtain a closed-form solution for the BSDE (3.2.19), however, we may solve

the BSDE (3.2.19) numerically which will be discussed in Section 3.5.

We next consider the case of logarithmic utility for the fully informed investor.

3.2.2 Logarithmic utility

In this section we consider the logarithmic utility

U(x) = ln(x).

Using the fact that I(x) = 1
x
and by (3.2.9)-(3.2.10) we obtain the optimal terminal

wealth

X̂
(2)
T =

X0

LT

(3.2.28)

where LT is given by (3.2.2). The optimal expected utility is

V
(2)
0 (Θ, K) = ln(X0)− E [ln(LT )] .

Applying the abstract Bayes’ formula to (3.2.11) and using (3.2.28), we obtain

X̂
(2)
t =EQ

[
X̂

(2)
T |G(2)

t

]
=

1

Lt

E

[
X̂

(2)
T LT |G(2)

t

]
=
X0

Lt

whose dynamics is given by (3.2.2) as

dX̂
(2)
t = X̂

(2)
t

((μM
t (Θ, K)

)2
σ2

dt+
μM
t (Θ, K)

σ
dWt

)
= X̂

(2)
t

μM
t (Θ, K)

σ
dWQ

t . (3.2.29)

Comparing (3.2.29) with (3.2.4) we obtain the optimal strategy

π̂
(2)
t =

μM
t (Θ, K)

σ2
.

Recalling (3.1.7) we may decompose the optimal strategy into two parts

π̂
(2)
t = 1{0≤t<τ∧T}π̂

(2,b)
t + 1{τ∧T≤t≤T}π̂

(2,a)
t

2This extra term is called ”hedging demand for parameter risk” by Björk et al. [17].
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where

π̂
(2,b)
t =

μ

σ2
, t ∈ [[0, τ ∧ T [[, (3.2.30)

π̂
(2,a)
t =

μI
t (τ,Θ, K)

σ2
, t ∈ [[τ ∧ T, T ]].

The optimal trading strategy for the fully informed investor is composed of two Mer-

ton strategies before and after-liquidation. Accordingly we decompose the optimal

wealth process X̂
(2)
t as

X̂
(2)
t = 1{0≤t<τ∧T}X̂

(2,b)
t + 1{τ∧T≤t≤T}X̂

(2,a)
t

where X̂(2,b) and X̂(2,a) satisfy the following SDEs

dX̂
(2,b)
t = X̂

(2,b)
t π̂

(2,b)
t (μtdt+ σdWt), t ∈ [[0, τ ∧ T [[, (3.2.31)

dX̂
(2,a)
t = X̂

(2,a)
t π̂

(2,a)
t

{
μI
t (τ,Θ, K)dt+ σdWt

}
, t ∈ [[τ ∧ T, T ]]. (3.2.32)

Then we decompose the expected utility of terminal wealth into two parts depending

on if liquidation occurs before or after time T :

V
(2)
0 (Θ, K) = E[1{τ>T} ln(X̂

(2,b)
T )|G(2)

0 ] + E[1{τ≤T} ln(X̂
(2,a)
T )|G(2)

0 ]. (3.2.33)

The two conditional expectations in (3.2.33) are calculated in Lemma C.1 and C.2

respectively. Combining those lemmas we obtain the following result.

Proposition 3.2.2. The optimal log expected utility for fully informed investors is

V
(2)
0 (Θ, K) ={
N
(
− lnα

σ
+ (μ

σ
− 1

2
σ)T√

T

)
− exp

(
2μ

σ2
− lnα

)
N
(

lnα
σ

+ (μ
σ
− 1

2
σ)T√

T

)}

×
(
ln(X0) +

1

2
(μ− μ2

σ2
)T

)

+

∫ 0

lnα
σ

∫ ∞

y

2μx(x− 2y)√
2πT 3

exp

{
(
μ

σ
− 1

2
σ)x− 1

2
(
μ

σ
− 1

2
σ)2T − 1

2T
(2y − x)2

}
dxdy

− lnα

σ

∫ T

0

1√
2πt3

exp

{
− 1

2t

(
lnα

σ
− (

μ

σ
− 1

2
σ)t

)2
}
h(2)(t,Θ, K)dt

where

h(2)(t; θ, k) := lnX0 +
μ lnα

σ2
+

μ

2
t− μ2

2σ2
t+

∫ T

t

(
μI
v(t, θ, k)

)2
2σ2

dv.
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In the next section we consider the optimization problem for the partially informed

investors.

3.3 Partially informed investors

The portfolio strategy for partially informed investors is supposed to be G(1)-adapted

and denoted by π(1) = (π
(1)
t , 0 ≤ t ≤ T ). The wealth process evolves as

dX
(1)
t = X

(1)
t π

(1)
t (μM

t (Θ, K)dt+ σdWt), 0 ≤ t ≤ T. (3.3.1)

Similar to (3.2.1), the admissible strategy set A(1) is a collection of π(1) such that, for

any (θ, k) ∈ (0,+∞)× (0, 1),∫ T

0

|π(1)
t μM

t (θ, k)|dt+
∫ T

0

|π(1)
t σ|2dt < ∞.

The portfolio optimization problem for partially informed investors is

V
(1)
0 = sup

π(1)∈A(1)

E

[
U
(
X

(1)
T

)]
. (3.3.2)

Note that the optimization problem (3.3.1)-(3.3.2) is the case of partial observations

since the drift term in (3.3.1) is not G(1)-adapted.

Following [47] we first reduce the optimization problem of partial observation to

the case of complete observation. Recall that the probability measure Q is defined as

dQ

dP

∣∣∣∣
G(2)
T

= LT .

with the density process L given by (3.2.2) which is a (G(2),P)-martingale.

We next define the filtered estimate of the drift μM
t (Θ, K), based on the observa-

tion of the market price, by

μ̄M
t = E

[
μM
t (Θ, K)|G(1)

t

]
. (3.3.3)

We define the innovations process W̃ by

dW̃t = dWt +
μM
t (Θ, K)− μ̄M

t

σ
dt, 0 ≤ t ≤ T. (3.3.4)
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By [17, Lemma 4.1] we know W̃ is a standard (G(1),P)-Brownian motion. Then we

may rewrite (3.1.6) as

dSM
t = SM

t

(
μ̄M
t dt+ σdW̃t

)
,

and the wealth process X(1) as

dX
(1)
t = X

(1)
t π

(1)
t (μ̄M

t dt+ σdW̃t), 0 ≤ t ≤ T

with initial wealth x0 ∈]0,+∞[. Now the dynamics of the wealth process X(1) is

within the framework of a full observation model since μ̄M is G(1)-adapted.

Similar to the case of fully informed investors, the optimization problem (3.3.2)

can be solved by the martingale approach.

Proposition 3.3.1. (i)The optimal terminal wealth of a partially informed investors,

with utility function U and I = (U ′)−1 is given by

X̂
(1)
T = I(λL̄T ).

The Lagrange multiplier λ is determined by the budget constraint

EQ̃
[
I(λL̄T )

]
= x0

and L̄T is the density of the risk neutral probability measure Q̃ for the filtration G(1)

defined by

L̄t =
dQ̃

dP

∣∣∣∣∣
G(1)
t

= exp

{
−
∫ t

0

μ̄M
v

σ
dW̃v −

∫ t

0

(
μ̄M
v

)2
2σ2

dv

}
(3.3.5)

with μ̄M
t = E

[
μM
t (Θ, K)|G(1)

t

]
and the innovation process W̃ given by (3.3.4) is a

(G(1),P)-Brownian motion.

(ii) The filtered drift estimate μ̄M can be computed as

μ̄M
t =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

μ, t ∈ [[0, τ ∧ T [[

∫∞
0

∫ 1
0

⎧⎨
⎩μM

t (θ,k) exp

⎧⎨
⎩
∫ t
0

μM
v (θ,k)

σ
dWQ

v −∫ t
0

(μMv (θ,k))
2

2σ2 dv

⎫⎬
⎭

⎫⎬
⎭ϕ(θ,k)dθdk

∫∞
0

∫ 1
0

⎧⎨
⎩exp

⎧⎨
⎩
∫ t
0

μMv (θ,k)
σ

dWQ
v −∫ t

0

(μMv (θ,k))
2

2σ2 dv

⎫⎬
⎭

⎫⎬
⎭ϕ(θ,k)dθdk

, t ∈ [[τ ∧ T, T ]].
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Proof. (i) We define the process L̄t = E[Lt|G(1)
t ] and begin by proving that it equals

the right-hand side of (3.3.5). By rewriting Lt in (3.2.2) as

Lt = exp

{
−
∫ t

0

μM
v (Θ, K)

σ
dWQ

v +

∫ t

0

(
μM
v (Θ, K)

)2
2σ2

dv

}
,

and noting that the process 1/Lt satisfies the equation

1

Lt

= 1 +

∫ t

0

μM
v (Θ, K)

σ

1

Lv

dWQ
v , (3.3.6)

we have by taking the conditional expectation of (3.3.6) that

EQ
[ 1
Lt

|G(1)
t

]
= 1 + EQ

[ ∫ t

0

μM
v (Θ, K)

σ

1

Lv

dWQ
v |G(1)

t

]
. (3.3.7)

By [54, Theorem 5.14], we have

EQ[

∫ t

0

μM
v (Θ, K)

σ

1

Lv

dWQ
v |G(1)

t ] =

∫ t

0

EQ[
μM
v (Θ, K)

σ

1

Lv

|G(1)
t ]dWQ

v . (3.3.8)

Using the Bayes formula [44, Proposition 1.7.1.5] and (3.2.2), we have respectively

EQ[
1

Lt

|G(1)
t ] =

1

E[Lt|G(1)
t ]

(3.3.9)

and∫ t

0

EQ[
μM
v (Θ, K)

σ

1

Lv

|G(1)
t ]dWQ

v =

∫ t

0

E[μM
v (Θ, K)|G(1)

t ]

σ

1

E[Lt|G(1)
t ]

dWQ
v . (3.3.10)

Substituting (3.3.9) and (3.3.10) into (3.3.7) and (3.3.8) we obtain

1

E[Lt|G(1)
t ]

= 1 +

∫ t

0

E[μM
v (Θ, K)|G(1)

t ]

σ

1

E[Lt|G(1)
t ]

dWQ
v

which implies

L̄t = exp
{
−
∫ t

0

μ̄M
v

σ
dWQ

v +

∫ t

0

(
μ̄M
v

)2
2σ2

dv
}
. (3.3.11)

Combining (3.2.3) and (3.3.4) we have

dWQ
t = dW̃t +

μ̄M
t

σ
dt. (3.3.12)

Substituting (3.3.12) into (3.3.11) we find

L̄t = exp

{
−
∫ t

0

μ̄M
v

σ
dW̃v −

∫ t

0

(
μ̄M
v

)2
2σ2

dv

}
, (3.3.13)
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which is a (G(1),P)-martingale, and we define the risk neutral probability measure Q̃

by

dQ̃

dP

∣∣∣∣∣
G(1)
t

= L̄t.

By the fact that W̃ is a (G(1),P)-Brownian motion and the Girsanov’s theorem, the

process W Q̃ defined as

W Q̃
t = W̃t +

∫ t

0

μ̄M
v

σ
dv, 0 ≤ t ≤ T

is a (G(1), Q̃)-Brownian motion.

Following the same procedure as in Section 3.2 we find the optimal terminal wealth

X̂
(1)
T given by

X̂
(1)
T = I(λL̄T ),

where I = (U ′)−1 and the Lagrange multiplier λ is determined by

E
[
I(λL̄T )L̄T

]
= x0.

(ii) Recall that

1

Lt

=
dP

dQ

∣∣∣∣
G(2)
t

= exp

{∫ t

0

μM
v (Θ, K)

σ
dWQ

v −
∫ t

0

(
μM
v (Θ, K)

)2
2σ2

dv

}

is (G(2),Q)-martingale. By Bayes’ formula, we have

μ̄M
t =E

[
μM
t (Θ, K)|G(1)

t

]

=
EQ

[
μM
t (Θ, K)LT |G(1)

t

]
EQ[Lt|G(1)

t ]

=
EQ

[
EQ

[
μM
t (Θ, K)LT |G(2)

t

] ∣∣∣G(1)
t

]
EQ[Lt|G(1)

t ]

=
EQ

[
μM
t (Θ, K)Lt|G(1)

t

]
EQ[Lt|G(1)

t ]

=

EQ

[
μM
t (Θ, K) exp

{∫ t

0
μM
v (Θ,K)

σ
dWQ

v − ∫ t

0

(μM
v (Θ,K))

2

2σ2 dv

}
|G(1)

t

]

EQ[exp
{∫ t

0
μM
v (Θ,K)

σ
dWQ

v − ∫ t

0
(μM

v (Θ,K))2

2σ2 dv
}
|G(1)

t ]
.
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Since the measure Q coincides with P on G(2)
0 = σ(Θ, K), the distribution of (Θ, K)

under Q is identical to the one under P. Recall that the Brownian motion WQ is

independent of σ(Θ, K) we have

μ̄M
t =

∫∞
0

∫ 1

0

{
μM
t (θ, k) exp

{∫ t

0
μM
v (θ,k)
σ

dWQ
v − ∫ t

0

(μM
v (θ,k))

2

2σ2 dv

}}
ϕ(θ, k)dθdk

∫∞
0

∫ 1

0

{
exp

{∫ t

0
μM
v (θ,k)
σ

dWQ
v − ∫ t

0
(μM

v (θ,k))2

2σ2 dv
}}

ϕ(θ, k)dθdk
.

(3.3.14)

For t < τ ∧ T we have μ̄M
t = μ due to the fact that μM

t = μ.

Remark 3.3.1. Note that μ̄M
t is an unbiased estimator of μM

t .

Following [31] there exits a martingale representation theorem with respect to the

(G(1), Q̃)-Brownian motion W Q̃. Similar to the case of fully informed investors, the

optimal strategy π(1) relies on the martingale representation theorem. For a general

utility function, the optimal strategy π(1) does not have explicit expression. In the

next subsections, we will consider power and logarithmic utilities.

3.3.1 Power utility

We first consider the power utility

U(x) =
xp

p
, 0 < p < 1.

The optimal terminal wealth at T is given by

X̂
(1)
T =

x0

E

[(
L̄T

) p
p−1

] (L̄T

) 1
p−1

where L̄T is given by equation (3.3.5). The optimal expected utility is

V
(1)
0 =

(x0)
p

p

(
E

[(
L̄T

) p
p−1

])1−p

. (3.3.15)

Similar to the case of fully informed investors, we may decompose the optimal

strategy π̂(1) into two parts:

π̂
(1)
t = 1{0≤t<τ∧T}π̂

(1,b)
t + 1{τ∧T≤t≤T}π̂

(1,a)
t .
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Following a similar procedure as in Section 3.2.1 we obtain

π̂
(1,b)
t =

μ

(1− p)σ2
+

ZH̄
t

σH̄t

, t ∈ [[0, τ ∧ T [[,

π̂
(1,a)
t =

μ̄I
t

(1− p)σ2
, t ∈ [[τ ∧ T, T ]],

where (H̄, ZH̄) satisfies the linear BSDE

H̄t = 1 +

∫ T

t

(
p
(
μ̄M
v

)2
2(1− p)2σ2

H̄v +
pμ̄M

v

(1− p)σ
ZH̄

v

)
dv −

∫ T

t

ZH̄
v dW̃v. (3.3.16)

We will discuss the numerical solution of BSDE (3.3.16) in Section 3.5.

3.3.2 Log utility

In this section we consider the logarithmic utility

U(x) = ln(x).

The optimal terminal wealth at T is given by

X̂
(1)
T =

x0

L̄T

.

The optimal expected utility is

V
(1)
0 = ln(x0)− E

[
ln(L̄T )

]
.

The optimal investment process π̂(1) is given by

π̂
(1)
t = 1{0≤t<τ∧T}π̂

(1,b)
t + 1{τ∧T≤t≤T}π̂

(1,a)
t

where

π̂
(1,b)
t =

μ

σ2
, t ∈ [[0, τ ∧ T [[, (3.3.17)

π̂
(1,a)
t =

μ̄I
t

σ2
, t ∈ [[τ ∧ T, T ]].

We decompose the optimal wealth process into before and after liquidation parts as

X̂
(1)
t = 1{0≤t<τ∧T}X̂

(1,b)
t + 1{τ∧T≤t≤T}X̂

(1,a)
t
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where X̂
(1,b)
t and X̂

(1,a)
t satisfy the following SDEs

dX̂
(1,b)
t = X̂

(1,b)
t π̂(1,b)(μdt+ σdWt), t ∈ [[0, τ ∧ T [[,

dX̂
(1,a)
t = X̂

(1,a)
t π̂

(1,a)
t

{
μ̄a
t dt+ σdW̃t

}
, t ∈ [[τ ∧ T, T ]].

Then we decompose the expected utility of terminal wealth V
(1)
0 into two parts de-

pending on if liquidation occurs before or after time T :

V
(1)
0 = E

[
1{T<τ} ln

(
X̂

(1,b)
T

)]
+ E

[
1{T≥τ} ln

(
X̂

(1,a)
T

)]
. (3.3.18)

Comparing (3.2.30) and (3.3.17), we know partially informed investors holds the same

optimal strategy as the fully informed investor before liquidation. The optimal ter-

minal wealth for partially and fully informed investors are identical if no liquidation

occurs before T , that is

E

[
1{T<τ} ln

(
X̂

(1,b)
T

)]
= E

[
1{T<τ} ln

(
X̂

(2,b)
T

)]
.

Thus the first expectation in (3.3.18) has been calculated in Lemma C.1 and the

other expectation is calculated in Lemma C.3. Combining those lemmas we obtain

the following result.

Proposition 3.3.2. The optimal log expected utility for the fully informed investor

is

V
(1)
0 ={
N
(
− lnα

σ
+ (μ

σ
− 1

2
σ)T√

T

)
− exp

(
2μ

σ2
− lnα

)
N
(

lnα
σ

+ (μ
σ
− 1

2
σ)T√

T

)}

×
(
ln(x0) +

1

2
(μ− μ2

σ2
)T

)

+

∫ 0

lnα
σ

∫ ∞

y

2μx(x− 2y)√
2πT 3

exp

{
(
μ

σ
− 1

2
σ)x− 1

2
(
μ

σ
− 1

2
σ)2T − 1

2T
(2y − x)2

}
dxdy

− lnα

σ

∫ T

0

1√
2πt3

exp

{
− 1

2t

(
lnα

σ
− (

μ

σ
− 1

2
σ)t

)2
}
h(1)(t)dt

where

h(1)(t) := ln x0 +
μ lnα

σ2
+

μ

2
t− μ2

2σ2
t+

∫ T

t

(
μ̄M
v

)2
2σ2

dv.

We will consider the optimization problem for the uninformed investors.

76



3.4 Uninformed investors

The uninformed investors erroneously believe the market price of the asset follows a

Black-Scholes dynamics with constant μ. That is, uninformed investors act as Merton

investors. To compare with the fully informed and partially informed investors, we

shall consider both the power utility and logarithmic utility in the following sections.

3.4.1 Power Utility

We first consider the power utility, i.e.

U(x) =
xp

p
, 0 < p < 1.

The uninformed investors adopt the Merton strategy

π̂(0) =
μ

(1− p)σ2
. (3.4.1)

However, the market price process of the asset is given by (3.1.6). Therefore, cor-

responding to the sub-optimal strategy given by (3.4.1), the wealth process X̂
(0)
t is

written as

X̂
(0)
t = 1{0≤t<τ∧T}X̂

(0,b)
t + 1{τ∧T≤t≤T}X̂

(0,a)
t

where X̂b
t and X̂

(0,a)
t are given by

dX̂
(0,b)
t = X̂

(0,b)
t π̂(0) (μdt+ σdWt) , t ∈ [[0, τ ∧ T [[,

dX̂
(0,a)
t = X̂

(0,a)
t π̂(0)

(
μI
t (τ,Θ, K)dt+ σdWt

)
, t ∈ [[τ ∧ T, T ]].

We next compute the expected utility of final wealth E[U(X̂0
T )] using the invest-

ment strategy given by (3.4.1). We decompose E[U(X̂0
T )] into two parts depending

on whether or not liquidation occurs before time T

E

[
U
(
X̂0

T

)]
= E

[
1{τ>T}U

(
X̂

(0,b)
T

)]
+ E

[
1{τ≤T}U

(
X̂

(0,a)
T

)]
. (3.4.2)

The two expectations in (3.4.2) are computed in Lemma C.4 and C.5 respectively.
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Proposition 3.4.1. The expected power utility of an uninformed investor who follows

the suboptimal strategy (3.4.1) is

E

[
U
(
X̂0

T

)]
=

xp
0

p
exp

(
pμ2T

2(1− p)σ2

)
×
{
N
(− lnα

σ
+ ( μ

(1−p)σ
− σ

2
)T

√
T

)

− exp

(
2μ lnα

(1− p)σ2
− lnα

)
N
(

lnα
σ

+ ( μ
(1−p)σ

− σ
2
)T

√
T

)}

− lnα

σ

∫ 1

0

∫ ∞

0

∫ T

0

1√
2πt3

exp

{
− 1

2t

(
lnα

σ
− (

μ

σ
− 1

2
σ)t

)2
}
l(0)(t, θ, k)ϕ(θ)dtdθdk

where

l(0)(t, θ, k) =
xp
0

p
exp

{
μ lnα

(1− p)σ2
+

1

2

μ

(1− p)
t− 1

2

μ2

(1− p)2σ2
t

+

∫ T

t

(
pμμI

v(t, θ, k)

(1− p)σ2

)
dv

}
.

We next consider the same problem for the uniformed investor under logarithmic

utility.

3.4.2 Logarithmic Utility

In case of logarithmic utility, uninformed investors adopt the Merton strategy

π̂(0) =
μ

σ2
. (3.4.3)

We denote by X̂
(0)
t the wealth process for uninformed investors as holding the sub-

optimal strategy π̂
(0)
t given by (3.4.3). Similar to the case of power utility we calculate

the expectation E[U(X̂
(0)
T )] using the decomposition

E[ln(X̂
(0)
T )] = E[1{τ>T} ln(X̂

(0,b)
T )] + E[1{τ≤T} ln(X̂

(0,a)
T )]. (3.4.4)

Comparing (3.2.30) and (3.4.3), we know uninformed investors hold the same optimal

strategy as the fully informed investors before liquidation. The terminal wealth for

uninformed and fully informed investors are identical if no liquidation occurs before

T , that is

E

[
1{T<τ} ln

(
X̂

(0,b)
T

)]
= E

[
1{T<τ} ln

(
X̂

(2,b)
T

)]
.
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Thus the first expectation in (3.4.4) has been calculated in Lemma C.1 and the other

expectation is calculated in Lemma C.6.

Proposition 3.4.2. The expected log utility of an uniformed investor who follows the

suboptimal investment strategy (3.4.3) is

E[ln(X̂
(0)
T )] ={

N
(
− lnα

σ
+ (μ

σ
− 1

2
σ)T√

T

)
− exp

(
2μ

σ2
− lnα

)
N
(

lnα
σ

+ (μ
σ
− 1

2
σ)T√

T

)}

×
(
ln(x0) +

1

2
(μ− μ2

σ2
)T

)

+

∫ 0

lnα
σ

∫ ∞

y

2μx(x− 2y)√
2πT 3

exp

{
(
μ

σ
− 1

2
σ)x− 1

2
(
μ

σ
− 1

2
σ)2T − 1

2T
(2y − x)2

}
dxdy

− lnα

σ

∫ 1

0

∫ ∞

0

∫ T

0

1√
2πt3

exp

{
−
(
lnα
σ

− (μ
σ
− 1

2
σ)t
)2

2t

}
h(0)(t, θ, k)ϕ(θ, k)dtdθdk

where

h(0)(t, θ, k) := ln x0 +
μ lnα

σ2
+

μ

2
t− μ2

2σ2
t+

∫ T

t

(
2μμI

v(t, θ, k)− μ2

2σ2

)
dv

We next present some numerical results.

3.5 Numerical results

In this section we illustrate numerical results of the optimization problem for the

three types of investors. We set the parameters μ = 0.07, σ = 0.2 and the initial

value S0 = 80. We let the investment horizon T = 1. The liquidation trigger level is

chosen as α = 0.9. The stochastic processes are discretized using an Euler scheme with

M = 250 steps and time intervals of length Δt = 1
250

. The number of simulations is

N = 105. We suppose the distribution of (Θ, K) is uniform on [0.05, 0.15]×[0.02, 0.08].

The initial wealth is assumed to be x0 = 80. The power utility function is specified

as U(x) = 2x
1
2 .
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3.5.1 Filtered estimate of the drift

The time horizon [0, 1] is discretized equally as 0 = t0 < t1 < · · · < tM = 1. For

0 ≤ m ≤ M we denote by μM
tm(Θ, K) the discretized approximation of μM(Θ, K) at

time tm. For 0 ≤ m ≤ M − 1, we denote by ΔWm the increment of the Brownian

motion over the time interval [tm, tm+1]. The approximation of the increment of the

(G(2),Q)-Brownian motion is

ΔWQ
m = ΔWm +

μM
tm(Θ, K)

σ
Δt.

We approximate the filtered drift estimate in (3.3.14) at time tm by

μ̂M
tm =

∫∞
0

∫ 1

0

{
μM
tm(θ, k)G(θ, k; Θ, K)

}
ϕ(θ, k)dθdk∫∞

0

∫ 1

0
{G(θ, k; Θ, K)}ϕ(θ, k)dθdk (3.5.1)

where G(θ, k; Θ, K) is defined as

G(θ, k; Θ, K) =

exp

{ ∑
0≤i≤m−1

(
μM
ti
(θ, k)

σ
(ΔWi +

μM
ti
(Θ, K)

σ
Δt)−

(
μM
ti
(θ, k)

)2
2σ2

Δt

)}
.

We use Monte-Carlo method to estimate the integral in (3.5.1). Suppose the

number of simulation is N . For 1 ≤ n ≤ N , we denote by (θn, kn) the realized value

of the random variable (Θ, K) in the nth simulation. We estimate μ̂M
tm in (3.5.1) by

the sample mean

μ̃M
tm =

∑
1≤n≤N

{
μM
tm(θ

n, kn)G(θn, kn; Θ, K)
}

∑
1≤n≤N

{G(θn, kn; Θ, K)} .

Remark 3.5.1. The accuracy of numerical estimation μ̃M
tm can be improved by using

robust filtering or non-parametric filtering.

In Figure 3.5 we illustrate a sample filter estimate μ̃M compared with the drift term

μM(Θ, K) in a specific scenario where the realized value of the liquidation random

variables are (Θ, K) = (0.1, 0.05). From Figure 3.5 we note that the filtered estimate

of the drift is very close to the realized drift. This result suggests that knowing the

functional form of the market impact is more relevant than the actual realization of

(Θ, K).
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Figure 3.5: Filter estimate of the drift compared with the realized drift

3.5.2 Optimal strategy for power utility

In this section we illustrate the optimal strategies for fully and partially informed

investors in case of power utility by solving the related BSDE numerically. We skip

the discussion of log utility since the optimal strategies are simply the ”myopic”

Merton strategy. In case of fully informed investors, we approximate the BSDE

(3.2.23) by the following discretized BSDE

H̃tm+1 =H̃tm −
(
p(μM

tm(θ̃, k̃))
2

2(1− p)2σ2
H̃tm +

pμM
tm(θ̃, k̃)

(1− p)σ
Z̃H

tm

)
Δt+ Z̃H

tmΔWtm , t0 ≤ tm < tM

(3.5.2)

H̃tM =1. (3.5.3)

The BSDE (3.5.2)-(3.5.3) can be solved using the following recursive scheme (see

[33])

Z̃H
tm =

1

Δt
E[H̃tm+1ΔWtm |G(2)

tm ], (3.5.4)

H̃tm =
E[H̃tm+1 |G(2)

tm ] +
pμM

tm
(θ̃,k̃)

(1−p)σ
Z̃H

tmΔt

1− p(μM
tm

(θ̃,k̃))2

2(1−p)2σ2 Δt
. (3.5.5)

We estimate the conditional expectation in (3.5.4) and (3.5.5) by the Monte-Carlo

regression approach proposed by [33]. Note that the market price process SM
t is

not Markovian with respect to (G(2),P). We define the running minimum process
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S̃M
t = inf{SM

v |0 ≤ v ≤ t} and note that the pair (SM
t , S̃M

t ) is Markovian with respect

to (G(2),P). Hence we may choose the regression basis functions: 1, x, x2, y, y2 and xy.

By the regression method of [33] the conditional expectations in (3.5.4) and (3.5.5)

can be estimated by

c1 + c2(S
M
t − αS0) + c3(S

M
t − αS0)

2 + c4(S̃
M
t − αS0) + c5(S̃

M
t − αS0)

2

+ c6(S̃
M
t − αS0)(S̃

M
t − αS0)

for some coefficients ci, 1 ≤ i ≤ 6.

We approximate the optimal strategy for fully informed investor π̂(2) by π̃(2,b) as

follows

π̃
(2)
tm =

μ

(1− p)σ2
+

Z̃H
tm

σH̃tm

, 0 ≤ tm ≤ tM .

Following a similar procedure we may solve the related BSDE for partially informed

investors and obtain the approximate optimal strategy.

Figure 3.6 illustrates the approximated optimal strategies for fully and partially

investors respectively corresponding to one sample path of the risky asset price where

liquidation occurs well before the terminal time T . In particular for the path of the

asset price in Figure 3.6 liquidation occurs at time t = 0.1540. Before liquidation the

two strategies are indistinguishable due to the scale. We plot the optimal strategies

before liquidation in Figure 3.7 and note that there is some tracking error before liqui-

dation. This difference may be due to the fact that the before liquidation strategy of

both investors contains a component which depends on the solution of a BSDE, which

is accomplished backward in time, and in particular depends recursively on the fil-

tered drift estimate for the partially informed investor. Hence, owing to tracking error

typical to filtering problems some errors may be propogated to the before liquidation

strategy through the numerical solution procedure for the associated BSDE. Table

3.1 presents the approximated optimal strategies for fully and partially investors at

times before liquidation corresponding to Figure 3.7. The negligible difference is due

to the common information accessible to fully and partially informed investors before

liquidation.

Figure 3.8 illustrates the approximated optimal strategies for fully and partially
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Figure 3.6: Approximated optimal strategy for fully and partially informed investors

over [0, T ]

tm 0.1200 0.1240 0.1280 0.1320 0.1360 0.1400 0.1440 0.1480 0.1520

SM
tm 79.0600 79.0766 77.9106 76.2818 74.0479 73.5371 73.4940 73.9593 72.4905

π
(1)
tm -0.1127 -0.3614 -0.0063 -0.5712 -0.2756 -0.1780 0.0699 -0.1559 0.1043

π
(2)
tm -0.0898 -0.3399 -0.0224 -0.7831 -0.6907 -0.6265 -0.3766 -0.5502 -0.3760

Table 3.1: Approximated optimal strategies before liquidation

investors respectively corresponding to a realized path of the asset price that does not

induce liquidation. In particular, the optimal trading strategies of the fully informed

and partially informed investors appear almost identical. We also observe a general

tendancy for the optimal strategies to decrease the position in the stock as its price

moves toward the liquidation barrier and increase the position in the stock as the

price moves away from the liquidation barrier. However, as the time to the end of

the investment horizon shortens and the probability of liquidation appears less likely

the overall trend to increase the position in the stock, toward the level of the Merton

strategy, dominates.
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Figure 3.7: Approximated optimal strategy for fully and partially informed investors

before liquidation

3.5.3 Optimal expected utility

In this subsection we implement the Monte-Carlo method to find the optimal expected

power and log utilities. In case of uninformed investors, since the ”optimal” strategy

is simply the Merton strategy, we may approximate the wealth process X(0) directly

using the Euler scheme. For 0 ≤ m ≤ M and 1 ≤ n ≤ N , we denote by X
(0),n
tm

the realized wealth for uninformed investors at time tm in the nth simulation. The

expected utility E[U(X(0))] is approximated by the sample mean

V̄ (0) =
1

N

∑
1≤n≤N

U(X
(0),n
tM

).

The standard error of the sample mean is

SE(0) =

√
1

(N − 1)N

∑
1≤n≤N

(
U(X

(0),n
tM

)− V̄ (0)
)2

.

The relative standard error of the sample mean is

RSE(0) = (SE(0))/(|V̄ (0)|).
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Figure 3.8: Approximated optimal strategy for fully and partially informed investors

without liquidation

The 95% confidence interval estimate of the sample mean is

[V̄ (0) − 1.96 ∗ SE(0), V̄ (0) + 1.96 ∗ SE(0)].

This simulation scheme also applies to the log utility for fully and partially informed

investors.

However, in case of the power utility for fully and partially informed investors we

cannot approximate the wealth process directly since the optimal strategies are not

explicitly determined. Although we can first approximate the optimal strategies by

solving the related BSDE, this would increase the size of simulation error. Instead

we simulate the likelihood process L in (3.2.2) and L̄ in (3.3.13) since the optimal

expected power utilities are functionals of LT and L̄T given by (3.2.15) and (3.3.15)

respectively. For instance, in case of power utility for fully informed investors, we

denote the discretized realization of Lt in nth simulation by Ln
tm for 0 ≤ m ≤ M and
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1 ≤ n ≤ N . The expectation E[(LT )
p

p−1 ] is estimated by the sample mean

ξ̄ =
1

N

∑
1≤n≤N

(Ln
tM
)

p
p−1 .

The standard error of the sample mean is

SE(2) =

√
1

(N − 1)N

∑
1≤n≤N

(
(Ln

tM
)

p
p−1 − ξ̄

)2

.

The relative standard error of the sample mean is

RSE(2) = (SE(2))/(|ξ̄|).

The 95% confidence interval estimate of the sample mean is

[ξ̄ − 1.96 ∗ SE(2), ξ̄ + 1.96 ∗ SE(2)].

By (3.2.15) the optimal expected utility for fully informed investors is estimated by

V̄ (2) =
xp
0

p
(ξ̄)1−p.

The 95% confidence interval estimate of optimal expected utility is

[
xp
0

p

(
ξ̄ − 1.96 ∗ SE(2)

)1−p
,
xp
0

p

(
ξ̄ + 1.96 ∗ SE(2)

)1−p
].

A similar scheme can be applied to the case of power utility for partially informed

investors.

We present the numerical results on the optimal expected utilities for the three

types of investors in the Table 3.2 and Table 3.3 for power and log utilities respectively.

As should be expected there exists certain gaps among the optimal expected utilities of

different types of investors. We may interpret those gaps as the value of information

asymmetry. The results are more pronounced in the case of power utility than in

the case of logarithmic utility. Nevertheless, in both cases there are statistically

significant differences in optimal expected wealth given that the confidence intervals

do not overlap. In the power utility case the optimal strategy of the partially informed

investor is very close to that of the fully informed investor. However, the inability to

fully capture the potential gains from trading against liquidation, owning to the need
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Expected utilities

Numerical evaluation

Sample mean
Relative 95% estimated

standard error confidence interval

Fully informed 48.9602 0.0883 [44.5223, 53.0279]

Partially informed 31.3099 0.0172 [30.7767, 31.8342]

Uninformed 18.9228 0.0012 [18.8796, 18.9661]

Table 3.2: Numerical evaluation of optimal power utilities for three types of investors

Expected utilities

Numerical evaluation

Sample Mean
Relative 95% estimated

standard error confidence interval

Fully informed 4.8282 0.0073 [4.8219, 4.8346]

Partially informed 4.7579 0.0080 [4.7520, 4.7638]

Uninformed 4.3665 0.0005 [4.3621, 4.3709]

Table 3.3: Numerical evaluation of optimal log utilities for three types of investors
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to estimate the drift and the tracking error, leads to a significantly lower optimal

expected utility.

In this chapter, we characterize the market impact of liquidation by a function

of certain form. We consider the portfolio optimization problem for three types of

investors with different levels of information about the liquidation trigger mechanism

and the market impact. In case of logarithmic utility, we find the closed-form opti-

mal strategy for all three types of investors. In the case of power utility it is not as

straightforward to find the closed-form optimal strategy for the partially informed in-

vestors, therefore we use numerical solutions of the BSDEs characterizing the optimal

strategies. Finally, we present some numerical results using Monte-Carlo simulation

method.

These results indicate that there is significant value, in terms of optimal expected

utility, of increased information about the liquidation trigger and market impact

in order to trade optimally against an investor who may need to liquidate a large

position in a disorderly fashion. The fully and partially informed investors may take

advantage of additional information to gain larger portfolio utility than uninformed

investors. Fully and partially informed investors tend to short large positions after

they observe the occurrence of liquidation since they expect a market price decrease

under the temporary market impact. However, fully and partially informed investors

also take on very high risk since large short positions might incur large losses in

extreme scenarios. In order to maintain and control the risk, we consider the portfolio

optimization problem under risk constraints for fully and partially informed investors

in next chapter.
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Chapter 4

Portfolio optimization with risk

constraints

As discussed in the previous chapter, fully and partially informed investors tend to

short large positions after they observe the occurrence of liquidation. In order to

reduce the risk of large short positions we consider optimal trading problems with

risk constraints for fully and partially informed investors in this chapter.

4.1 Risk measures

The uncertainty of the terminal value of a wealth process is characterized by a random

variable X on a probability space (Ω,F). We denote by X a set of random variables

on (Ω,F). Then a quantitative measure of risk is given by a mapping ρ from X to R.

We first review the definitions for different types of risk measures such as monetary,

convex and coherent risk measures (see Föllmer and Schied [30], Artzner et al. [10]).

Definition 4.1.1. A mapping ρ(·) : X → R is called a monetary risk measure if ρ(0)

is finite and if ρ(·) satisfies the following properties for all X, Y ∈ X .

• Monotonicity: ρ(X) ≤ ρ(Y ) for X ≤ Y .

• Translation invariance: ρ(X +m) = ρ(X)−m for m ∈ R.
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The interpretation for monotonicity is clear in that the risk of a position increases

as the position size increases. The translation invariance property is also called cash

invariance. The constant m is interpreted as a capital requirement that makes the

position X acceptable from the point view of a supervising agency.

Definition 4.1.2. A monetary risk measure ρ is called a convex risk measure if it

satisfies

• Convexity: ρ(λX + (1− λ)Y ) ≤ λρ(X) + (1− λ)ρ(Y ), for any λ ∈ [0, 1].

The convexity property shows that a convex risk can benefit from the diversifi-

cation of positions, i.e., the risk of a diversified position λX + (1− λ)ρ(Y ) is less or

equal to the weighted average of the individual risks.

Definition 4.1.3. A convex measure of risk ρ is called a coherent risk measure if it

satisfies

• Positive homogeneity: ρ(λX) = λρ(X) for λ > 0.

In the following sections we will focus on convex measures. Föllmer and Schied

[30, Theorem 5] provides a representation for convex measures of risk.

Proposition 4.1.1. Let X be the set of random variables on (Ω,F). Then ρ(·) :

X → R is a convex measure of risk if and only if there exists a penalty function

α : Q → (−∞,∞) such that

ρ(X) = sup
Q∈Q

{E[−X]− α(Q)} (4.1.1)

where Q is the set of probability measures on (Ω,F). In a particular case, we can set

α(·) as the relative entropy.

Remark 4.1.1. Financial interpretation: X is a random payoff or return, the convex

risk measure ρ(X) can be interpreted as the minimal amount of required capital against

the financial risk (market risk or credit risk).

We next introduce a particular convex risk measure, which is called utility-based

shortfall risk.
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Definition 4.1.4. (Loss function). A function L : (−∞, 0) → R is called loss func-

tion, if it is strictly increasing, strictly convex, continuously differentiable and satisfies

limx→0 L
′(x) > −∞ and limx→−∞ L′(x) = 0.

We may define a utility-based shortfall risk measure as follows (refer to Föllmer

and Schied [30]).

Definition 4.1.5. (Utility-based shortfall risk) A risk measure ρ is called utility-based

shortfall risk, if there exists a loss function L defined according to Definition 4.1.4,

such that ρ can be written in the form

ρ(X) = inf{m ∈ R : E[L(−X −m)] ≤ ε}.

By taking an exponential loss function, L(x) = exp(γx), we can construct a typical

utility-based risk measure which is called the entropic risk measure, defined as

eγ(X) =
1

γ

(
lnE[e−γX ])

)
(4.1.2)

where λ > 0 is the parameter of risk aversion. Dai Pra et al. [22] shows that the

entropic risk measure has the following dual representation

eγ(X) = sup
Q∈Ω(P)

{EQ[−X]−H(Q|P)} (4.1.3)

where Ω(P) is the set of probability measures absolutely continuous with respect to

P and H(Q|P) is the relative entropy.

4.2 Optimization problem with risk constraints

In this section we consider the optimal trading problems with risk constraint for both

fully and partially informed investors. Recall from previous section that the market

price process of the risky asset SM satisfies the SDE

dSM
t = SM

t

(
μM
t (Θ, K)dt+ σdWt

)
(4.2.1)

where

μM
t (Θ, K) = 1{0≤t<τ∧T}μ+ 1{τ∧T≤t≤T}μI

t (τ,Θ, K). (4.2.2)
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Both fully and partially informed investors may invest in the risky asset and a riskless

asset. Without loss of generality we suppose that the interest rate of the riskless

asset is zero. As assumed in Section 3.1.2 the information accessible to fully and

partially informed investors is characterized by two different filtrations G(2)
t and G(1)

t

respectively.

4.2.1 Fully informed investors

Similarly to Section 3.2 we denote the admissible strategy set by A(2). By taking a

strategy π2 ∈ A(2), the wealth process with initial endowment X0 ∈ G(2)
0 evolves as

dX
(2)
t = X

(2)
t π

(2)
t (μM

t (Θ, K)dt+ σdWt), 0 ≤ t ≤ T. (4.2.3)

Given the terminal wealth for fully informed investor isX
(2)
T , we define the conditional

entropic risk of the terminal wealth for fully informed investors

eγ(X
(2)
T ) =

1

γ

(
lnE[e−γX

(2)
T |G(2)

0 ])
)
. (4.2.4)

We consider the following optimal trading problem

V
(2)
0 (Θ, K) := ess sup

π(2)∈A(2)

E

[
U
(
X

(2)
T

)
|G(2)

0

]
(4.2.5)

subject to the risk constraint

eγ(X
(2)
T ) ≤ ε(2) (4.2.6)

where G(2)
0 = σ(Θ, K). The risk constraint ε(2) plays as a role to restrain the risk level

of the terminal wealth.

We next find the proper bounds for ε(2) that guarantee the problem (4.2.5)-(4.2.6)

has a solution. We first define the upper bound as

ε(2)max := eλ(X̂
(2)
T ). (4.2.7)

where X̂
(2)
T is the optimal terminal wealth for problem (3.2.7). Notice that X̂

(2)
T is

still optimal for the problem (4.2.5)-(4.2.6) if ε ≥ εmax. In this case, the portfolio

optimization with and without the risk constraint have the same optimal solution,

where the risk constraint is unbinding.
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We next define the lower bound as

ε
(2)
min := ess inf

π(2)∈A(2)
{eλ(X(2)

T )}. (4.2.8)

Recall the definition of eλ(·) in (4.1.2) and we can rewrite (4.2.8) as

ε
(2)
min = ess inf

π(2)∈A(2)
{1
γ
(lnE[e−γX

(2)
T |G(2)

0 ])}. (4.2.9)

1− eγε
(2)
min = ess sup

π(2)∈A(2)

{(E[1− e−γX
(2)
T |G(2)

0 ])}. (4.2.10)

To compute eγε
(2)
min is equivalent to consider the following portfolio optimization

problem

ess sup
π(2)∈A(2)

{U(X
(2)
T )} (4.2.11)

where U(·) is defined as the exponential utility function, i.e.

U(x) = 1− e−γx. (4.2.12)

Then it is easy to find

I(x) = (U ′)−1(x) = −1

γ
ln(

x

γ
).

From (3.2.9)-(3.2.10) we know the optimal terminal wealth X̂
(2)
T is given by

X̂
(2)
T = −1

γ
ln(

ΛLT

γ
), (4.2.13)

where LT is defined in (3.2.2) and the G(2)
0 -measurable random variable Λ is deter-

mined by

EQ
[
I(ΛLT )| G(2)

0

]
= X0. (4.2.14)

Using (4.2.10) we compute

ε
(2)
min =

1

γ
lnE[

ΛLT

γ
|G(2)

0 ]. (4.2.15)

Clearly if ε < ε
(2)
min the portfolio optimization problem with risk constraint (4.2.5)-

(4.2.6) has no solution. From now on, we assume ε
(2)
min < ε < εmax.
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To solve the problem (4.2.5)-(4.2.6) , we first write the risk constraint (4.2.6) as

1

γ
(lnE[e−γX

(2)
T |G(2)

0 ]) ≤ ε(2), (4.2.16)

which is equivalent to

E[e−γX
(2)
T |G(2)

0 ] ≤ eγε
(2)

. (4.2.17)

We use the method of Lagrange multipliers. We only need to solve the following

unconstrained optimization problem:

ess sup
X

(2)
T

{
E[U(X

(2)
T )|G(2)

0 ]− y1

(
E[X

(2)
T |G(2)

0 ]−X0

)
− y2

(
E[e−γX

(2)
T |G(2)

0 ]− eγε
(2)
)}

=ess sup
X

(2)
T

{
E[U(X

(2)
T )− y1X

(2)
T − y2e

−γX
(2)
T + y1X0 + y2e

γε(2) |G(2)
0 ]
}
.

Using similar technique to [8, Proposition 4.5] we define

Ũ(x; y2) := U(x)− y2e
−γx. (4.2.18)

We find the optimal terminal wealth X̂
(2)
T is given by

X̂
(2)
T = Ĩ(ŷ1LT ; ŷ2) (4.2.19)

where Ĩ(x; y2) is the inverse function

Ĩ(x; ŷ2) := (Ũ ′)−1(x; ŷ2).

and ŷ1, ŷ2 satisfies

E[LT Ĩ(ŷ1LT ; ŷ2)|G(2)
0 ] = X0, (4.2.20)

E[exp(−γĨ(ŷ1LT ; ŷ2))|G(2)
0 ] = eγε

(2)

. (4.2.21)

In order to find the optimal strategy π̂(2) we combine the terminal condition

(4.2.19) with the dynamics of the wealth process (4.2.3) to form the following BSDE

X
(2)
t = Ĩ(ŷ1LT ; ŷ2)−

∫ T

t

μM
v (Θ, K)

σ
Zvdv −

∫ T

t

ZvdWv. (4.2.22)

Then the optimal strategy is given by

π̃
(2)
t =

Zt

X
(2)
t σ

.

It is hard to find explicit solutions for the equation system (4.2.20)-(4.2.21) and

the BSDE (4.2.22). We will discuss numerical solutions in Section 4.2.3.
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4.2.2 Partially informed investors

The portfolio strategy for partially informed investors is supposed to be G(1)-adapted

and denoted by π(1). The wealth process evolves as

dX
(1)
t = X

(1)
t π

(1)
t (μM

t (Θ, K)dt+ σdWt), 0 ≤ t ≤ T. (4.2.23)

The set of the admissible strategies set is denoted by A(1).

Recalling the filtered drift term μ̄M
t in (3.3.3) and the innovations process W̃ in

(3.3.4), We may write the wealth process X(1) as

dX
(1)
t = X

(1)
t π

(1)
t (μ̄M

t dt+ σdW̃t), 0 ≤ t ≤ T

with initial wealth x0 ∈]0,+∞[. Now the dynamics of the wealth process X(1) is

within the framework of a full observation model since μ̄M is G(1)-adapted.

Given the terminal wealth for partially informed investor is X
(1)
T , we define the

entropic risk of the terminal wealth for partially informed investors

eγ(X
(1)
T ) =

1

γ

(
lnE[e−γX

(1)
T ])

)
. (4.2.24)

Add the constraint to Problem 3.3.2 to form the following optimization problem

sup
π(1)∈A(1)

E

[
U
(
X

(1)
T

)]
(4.2.25)

subject to the risk constraint

eγ(X
(1)
T ) ≤ ε(1). (4.2.26)

Similar to the case of fully informed investors we may determine the upper bound

ε
(1)
max and the lower bound ε

(1)
min for the risk constraint ε(1). The upper bound is defined

as

ε(1)max := eλ(X̂
(1)
T ).

where X̂
(1)
T is the optimal terminal wealth for problem (3.3.2). The lower bound is

defined as

ε
(1)
min =

1

γ
lnE[

λL̄T

γ
].
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where L̄ is defined in (3.3.5) and λ is determined by

E
[
L̄T I(λL̄T )

]
= x0.

To guarantee the existence of a solution the problem (4.2.25)-(4.2.26), we choose

ε
(1)
min < ε(1) < ε

(1)
max.

Following a similar procedure for fully informed investor, we find the optimal

terminal wealth for partially informed investor X̂
(1)
T given by

X̂
(1)
T = Ĩ(ŷ1L̄T ; ŷ2), (4.2.27)

where L̄t is defined in (3.3.5) and ŷ1, ŷ2 are determined by

E[L̄T Ĩ(ŷ1L̄T ; ŷ2)] = x0, (4.2.28)

E[exp(−γĨ(ŷ1L̄T ; ŷ2))] = eγε
(1)

. (4.2.29)

The optimal strategy π̂(2) is given by

π̃
(2)
t =

Zt

X
(1)
t σ

,

where (X
(1)
t , Zt) satisfies the following BSDE

X
(1)
t = Ĩ(ŷ1L̄T ; ŷ2)−

∫ T

t

μ̄M
v

σ
Zvdv −

∫ T

t

ZvdWv. (4.2.30)

We will discuss the numerical solutions for the equation system (4.2.28)-(4.2.29)

and the BSDE (4.2.30) in Section 4.2.3.

4.2.3 Numerical Results

In this section we illustrate numerical results. We compute the optimal utility and

optimal trading strategy numerically for both fully and partially informed investors.

In order to compare with the results of optimal trading problems without risk con-

straints, we use the same assumptions for model parameters as in Section 3.5. We set

the parameters μ = 0.07, σ = 0.2 and the initial value S0 = 80. We let the investment

horizon T = 1. The liquidation trigger level is chosen as α = 0.9. The stochastic
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processes are discretized using an Euler scheme with M = 250 steps and time inter-

vals of length Δt = 1
250

. The number of simulations is N = 105. We suppose the

distribution of (Θ, K) is uniform on [0.05, 0.15] × [0.02, 0.08]. The initial wealth is

assumed to be x0 = 80. We assume the risk aversion parameter γ = 1. We consider

the power utility function U(x) = 2x
1
2 .

We first consider the case for fully informed investors. Before we compute the

optimal utility we need first determine the lower and upper bound for the risk con-

straint Recall from (3.2.14) that the optimal terminal wealth for the fully informed

investor without risk constraint is given by

X̂
(2)
T =

X0

E

[
(LT )

p
p−1 |G(2)

0

] (LT )
1

p−1 (4.2.31)

Substituting (4.2.31) into (4.2.7) we have

ε(2)max =
1

γ
ln

⎛
⎝E

⎡
⎣exp

⎧⎨
⎩ −γX0 (LT )

1
p−1

E

[
(LT )

p
p−1 |G(2)

0

]
⎫⎬
⎭ |G(2)

0

⎤
⎦)
⎞
⎠ . (4.2.32)

We use Monte-Carlo methods based on N realizations of LT to approximate the

expectation involved in (4.2.31). Recall that the process Lt is given by

Lt = exp

{
−
∫ t

0

μM
v (Θ, K)

σ
dWv −

∫ t

0

(
μM
v (Θ, K)

)2
2σ2

dv

}
.

L0 = 1.

With a time discretization over [0, T ] we use the Euler scheme with M time-steps to

generate N realizations of LT . We estimate the upper bound as ε
(2)
max = 79.843.

Recall from (4.2.15) that the lower bound ε
(2)
min is given by

ε
(2)
min =

1

γ
lnE[

ΛLT

γ
|G(2)

0 ]. (4.2.33)

Similarly we use Monte-Carlo methods based on N realizations of LT to approximate

the expectation in (4.2.33). We estimate the lower bound as ε
(2)
min = 17.951.

We now choose a particular risk constraint ε
(2)
min = 50. To compute the optimal

utility, we need to solve the equation system (4.2.20)-(4.2.21). Taking the left hand
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sides of (4.2.20)-(4.2.21) we define the budget function

F (y1, y2) = E[LT Ĩ(y1LT ; y2)|G(2)
0 ] (4.2.34)

and the risk function

G(y1, y2) = E[exp(−γĨ(y1LT ; y2))|G(2)
0 ]. (4.2.35)

We use Monte-Carlo methods based on N realizations of LT to approximate the

expectations that define the functions F (y1, y2) and G(y1, y2). Recall that the process

Lt is given by

Lt = exp

{
−
∫ t

0

μM
v (Θ, K)

σ
dWv −

∫ t

0

(
μM
v (Θ, K)

)2
2σ2

dv

}
.

L0 = 1.

With a time discretization over [0, T ] we use the Euler scheme with M time-steps to

generate N realizations of LT .

We need to solve the equation system

F (y1, y2) = X0 (4.2.36)

G(y1, y2) = eγε
(2)

. (4.2.37)

Gabih et al. [32] studied the property of the functions F (y1, y2) and G(y1, y2). Particu-

larly the properties of their partial derivatives guarantee the uniqueness and existence

of of the solutions ŷ1 and ŷ2. However, usually the equation system cannot be solved

analytically. We need to apply iterative numerical solution procedures. Since the

budget and risk functions F and G also involve expectations, we use a Monte Carlo

based Newton method. We denote by y
(k)
1 and y

(k)
2 the approximation of the solu-

tions in the kth iteration. We design the numerical scheme which is a nested Newton

method as follows:

1. Let y
(0)
2 = 0 and substitute it into (4.2.36) to find F (y1, 0) = X0 which can be

solved for y
(0)
1 . Set the initial guess of the iteration as y

(0)
1 and y

(0)
2 .
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2. Substitute the approximation of the kth iteration y
(k)
1 into (4.2.36) to form the

equation:

F (y
(k)
1 , y

(k)
2 ) = X0 (4.2.38)

Use Newton method to solve (4.2.38) for y
(k)
2 .

3. Given the approximation of the kth iteration y
(k)
1 and y

(k)
2 , we may construct

the the approximation of the k + 1th iteration by using (4.2.37).

4. Repeat step 2 and 3 until a sufficiently accurate value is reached.

Using the algorithm above we solve the equation system (4.2.36)-(4.2.37) numer-

ically for ŷ1 = 1.348 and ŷ2 = 1.651. Recall from (4.2.19) that the optimal terminal

wealth is given by

X̂
(2)
T = Ĩ(ŷ1LT ; ŷ2)

The optimal expected utility is computed as

Ṽ
(2)
0 = E[

1

2

(
X̂

(2)
T

)2

].

Using Monte-Carlo methods based on N realizations of LT we approximate

Ṽ
(2)
0 ≈ 41.07.

We next find the optimal strategy by solving the BSDE (4.2.22) numerically. we

approximate the BSDE (4.2.22) by the following discretized BSDE

X
(2)
tm+1

=Xtm +

(
μM
tm(Θ, K)

σ
Ztm

)
Δt+ ZtmΔWtm , t0 ≤ tm < tM (4.2.39)

X
(2)
tM

=Ĩ(ŷ1LT ; ŷ2). (4.2.40)

The BSDE (4.2.39)-(4.2.40) can be solved using the following recursive scheme

(see [33])

Ztm =
1

Δt
E[X

(2)
tm+1

ΔWtm |G(2)
tm ], (4.2.41)

X
(2)
tm =E[X

(2)
tm+1

|G(2)
tm ]−

(
μM
tm(Θ, K)

σ
Ztm

)
Δt. (4.2.42)
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We estimate the conditional expectation in (4.2.41) and (4.2.42) by the Monte-Carlo

regression approach proposed by [33]. Note that the market price process SM
t is

not Markovian with respect to (G(2),P). We define the running minimum process

S̃M
t = inf{SM

v |0 ≤ v ≤ t} and note that the pair (SM
t , S̃M

t ) is Markovian with respect

to (G(2),P). Hence we may choose the regression basis functions: 1, x, x2, y, y2 and xy.

By the regression method of [33] the conditional expectations in (3.5.4) and (3.5.5)

can be estimated by

c1 + c2(S
M
t − αS0) + c3(S

M
t − αS0)

2 + c4(S̃
M
t − αS0) + c5(S̃

M
t − αS0)

2

+ c6(S̃
M
t − αS0)(S̃

M
t − αS0)

for some coefficients ci, 1 ≤ i ≤ 6.

We approximate the optimal strategy for fully informed investor π̃(2) as follows

π̃
(2)
tm =

Ztm

σX
(2)
tm

, 0 ≤ tm ≤ tM .

Following a similar procedure we may estimate the upper bound as ε
(1)
max = 77.631

and the lower bound as ε
(1)
min = 18.175 for partially informed investors. Then we choose

the same risk constraint ε(1) = 50. Using Monte-Carlo simulation we approximate

the optimal utility with risk constraint as Ṽ
(1)
0 ≈ 25.77. By solving the related

BSDE (4.2.30) numerically we obtain the approximate optimal strategy for partially

informed investors.

We illustrate the optimal strategy under risk constraint for both fully and partially

informed investors in Figure 4.1, where the corresponding sample path of the risky

asset price is same as the one in Figure 3.6 . In particular for the path of the asset

price in Figure 4.1 liquidation occurs at time t = 0.1540. To make the difference

between optimal strategies for these two types of investors more observable, we also

present the difference process π̃(1) − π̃(2) in Figure 4.1. Notice that the relatively

significant difference occurs after the liquidation time, which means that different

levels of information on the liquidation mechanism imposes the main impact on the

optimal strategies. Since Figure 4.1 and Figure 3.6 rely on the same path of risky

asset price, we may observe the impact of risk constraint on the optimal strategies.
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Figure 4.1: Optimal strategy

The optimal strategies under risk constraints take less extreme short positions than

that without risk constraint for both fully and partially informed investors. This

implies that imposing risk constraints on the portfolio produces essentially the same

effect as imposing short selling constraints. Thus the risk constraint may serve as an

alternative measure to short selling constraint, which can be imposed by the regulator

on financial institutions to manage portfolio risk.

In Table 4.1 we compute the optimal utilities for both fully and partially informed

investors by varying the risk constraint. The risk constraint becomes tighter as ε(2)

and ε(1) decrease, and the corresponding optimal utilities become smaller as shown

in Figure 4.2. In a special case where the risk constraints ε(2) and ε(1) are equal to

80 which exceeds the upper bounds, the optimal utilities coincide with those without

risk constraints shown in Table 3.2. As we discussed before, this is the case where is

the risk constraint is unbinding.

In this chapter, we imposed risk constraints on the optimal trading problem for
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Risk constraint ε(2) or ε(1)
Optimal utility

Fully informed Partially informed

20 14.25 12.10

30 28.13 18.79

40 35.87 23.14

50 41.07 25.77

60 45.34 28.51

70 47.03 30.15

80 48.96 31.31

Table 4.1: Optimal utilities under risk constraints
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Figure 4.2: Optimal utilities under risk constraints
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fully and partially informed investors. We showed that the optimal strategies are

less risky than those without risk constraints. There is still an advantage to having

additional information about the liquidation trigger and market impact functions.

Figure 4.2 shows the utility difference between fully and partially informed investors

for variant values of risk constraints. The gap becomes smaller as the risk constraint

decreases which means the advantage of additional information is reduced for stricter

risk constraints.

103



Chapter 5

Conclusions and future work

In summary this thesis consists of two projects: the optimal measure transforma-

tion problem and the optimal trading problem under asymmetric information. We

next summarize our main contributions for both projects and present some possible

directions for our future research.

5.1 The OMT problem

We summarize our contributions to the first project as below.

• We developed a new approach for pricing of bonds, futures and forwards based

on the solution of an optimal measure transformation (OMT) problem.

• The solution for the OMT problem is characterized by a related FBSDE. We

studied the explicit solutions for FBSDEs derived from the OMT problems

which extend Hyndman [40] and Hyndman and Zhou [38].

• An equivenlence relationship has been discovered between the optimal stochastic

control (OSC) approach in Gombani and Runggaldier [35] and our optimal

measure transformation approach. As an advantage over the OSC approach,

we extended to models with jumps or even to models for defaultable bonds.

• The OMT problem also provides a financial interpretation of the pricing problem
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in terms of maximization of returns subject to an entropy penalty term that

quantifies financial risk.

In the following subsections we will discuss the future research for the OMT project

and show some related methodology.

5.1.1 Zero-recovery defaultable bonds

Let us recall that the price of defautable bonds is given by

D(t, T ) = EP[e
− ∫ T

t r(Xs)ds · CT |Ft], (5.1.1)

where CT represents the random terminal payoff of the defautable bond. We find that

the optimal measure turns out to be the martingale measure using the defautable bond

as numéraire. The optimal measure is given by

dQ�
|Ft

dP|Ft

=
e−

∫ T
t r(Xs)ds · CT

EP[e
− ∫ T

t r(Xs)ds · CT |Ft]
, (5.1.2)

where CT is the random terminal payoff. To avoid the denominator in 5.1.2 to be

zero, we excluded the possibility of complete default by assuming that P(CT = 0) = 0.

Let us review the standard credit risk models for defaultable bonds following

Jeanblanc et al. [44]. Default time is modeled by a random viable τ . The random

payoff of the defautable bond is 1{τ>T}. The survival distribution function is defined

as

Gt = P(τ > t)

and the hazard function Γt is defined by Γt = − ln(Gt). Suppose Gt admits a deriva-

tive g, then we compute the derivative of Γ as

γt =
−gt
Gt

= lim
h→0

1

hP(τ > t)
P(t < τ ≤ t+ h) = P(τ ∈ dt|τ > t)dt

Note that γt is the conditional density of the default time τ . Then from Jeanblanc

et al. [44], the defaultable bond price is given by

D(t, T ) = exp

(
−
∫ T

t

(rs + γs)ds

)
.
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Inspired by the above result, we consider a toy model. The complete default time,

τ c, is assumed to be the first jump time of a Cox process Nt with intensity λt. The

process λt is assumed to be independent of the factor process Xt. The actual payoff

of the defaultable bond, CT , is given by

CT = C̃T1{τc>T} = C̃T1{NT=0} (5.1.3)

where C̃ is a positive random variable that represents the terminal payoff in cases

other than complete default. Let Fλ
t be the natural filtration generated by λt and

define F̃t = Ft ∨ Fλ
t . Then we rewrite the defautable bond price as

D(t, T ) = EP[e
− ∫ T

t r(Xs)ds · CT |F̃t]. (5.1.4)

Recall that the Cox process has the following property

P(NT = 0|Fλ
t ) = e−

∫ T
t λsds1{Nt=0} (5.1.5)

We compute

D(t, T ) =EP[e
− ∫ T

t r(Xs)ds · CT |F̃t],

=EP[EP[e
− ∫ T

t r(Xs)ds · C̃T1{NT=0}|FT ∨ Fλ
t ]|F̃t],

=EP[e
− ∫ T

t r(Xs)ds · C̃TEP[1{NT=0}|FT ∨ Fλ
t ]|F̃t],

=1{τ>t}EP[e
− ∫ T

t (r(Xs)+λs)ds · C̃T |F̃t] (5.1.6)

Define r̃t = r(Xt) + λt and we rewrite (5.1.6) as

D(t, T ) = EP[e
− ∫ T

t r̃sds · C̃T |F̃t], (5.1.7)

where r̃t is the complete default risk adjusted interest rate and C̃T is almost surely

positive. Thus we can incorporate this special model with complete default into

our model without complete default. In the future, we aim to incorporate complete

default under a more general framework.

5.1.2 Application to other derivatives

Finally we may consider the pricing problem of other derivatives from the perspective

of OMT problems. Besides the zero coupon bonds, we have already discussed the
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pricing problem of futures and forward contract. We may try to apply the OMT

approach to other interest rate derivatives such as swaps, forward rate agreement and

swaptions.

5.1.3 Wishart process

Richter [60] considered a class of quadratic FBSDEs and gave explicit solutions relying

on a system of generalized Riccati equations. The author then applied the results to

the problem of maximizing expected utility. This inspires us to explore the connection

between our OMT problem with the utility maximization problem.

On the other hand, Richter [60] characterized the forward process Xt by Wishart

processes. Recall that the Wishart process Xt, which was first studied in Bru [18], is

a d× d-matrix valued process satisfying

dXt = (b+HXt +XtH
′)dt+

√
XtdWtΣ + Σ′(dWt)

′√Xt, (5.1.8)

where b,H,Σ are d × d matrices and Wt is a d × d-matrix Brownian motion. We

may extend our short interest model to consider the Wishart process as the factors

process.

5.2 The optimal trading problem

We summarize our contributions to the second project as below.

• We consider a optimal trading problem from a new perspective of small investors

trading against a large investor.

• We consider the portfolio optimization problem for three types of investors with

different level of information about the liquidation trigger mechanism and the

market impact.

• We compute optimal utilities for all three types of investors. The utility differ-

ences quantify the values of different levels of information.
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• In case of logarithmic utility, we find the closed-form optimal strategies for all

three types of investors. In the case of power utility, the optimal strategy is

essentially a Merton type strategy corrected by an extra component which is

determined by a FBSDE.

• The risky trading strategies taken by fully and partially informed investors can

be restrained by imposing risk constraints on the optimal trading problem for

fully and partially informed investors.

• We presented some numerical results using Monte-Carlo simulation method.

In the following subsections we will discuss the future research for the optimal

trading project and present related methodology possibly applicable.

5.2.1 More general market impact modeling

In our current model liquidation is triggered once the asset price hits the threshold

α. The market impact starts to take effect after the liquidation triggered time τ with

varying impact magnitude depending on the length of time after τ , which is modeled

by the function g(t;K,Θ) of the form

g(t;K,Θ) = 1− Kt

Θ
e1−

t
Θ (5.2.1)

Notice that the impact function in (5.2.1) only characterizes the negative market

impact incurred by liquidation of large long position. It would be more flexible if we

also incorporate the positive market impact resulted from the covering a large short

position. We may define a positive impact function as below

h(t;K ′,Θ′) = −1 +
K ′t
Θ′ e

1− t
Θ′ . (5.2.2)

Combine (5.2.1) and (5.2.2) to compose the general impact function

g̃(t;K,K ′,Θ,Θ′) = 1{p=1}g(t;K,Θ) + 1{p=−1}h(t;K ′,Θ′) (5.2.3)

where p is a state indicator variable with p = 1 standing for long position liquidation

and p = −1 standing for short position liquidation.
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The choice of the smooth function g(t;K,Θ), rather than a instant jump to model

the liquidation impact, was a compromise to avoid technical problems. However it is

worth looking at the limit situation of the impact function as the realized value of

Θ approaches zero. When the realized value of Θ is rather small, the shape of the

impact function g(t;K,Θ) is very steep and hence is a good enough approximation

of an instant jump. Besides theoretical analysis of the limit situation, we need to pay

attention to the numerical implementation since rather small values of Θ cause big-

ger approximation errors. Note that the impact function g(t;K,Θ) defined in (3.1.4)

decreases very quickly after zero when Θ is very small. Rather small values of Θ

not only generate bigger discretization error for the numerical integration where the

integrand involves the function g(t;K,Θ), but also results in larger variance for the

Monte Carlo simulation. One direct solution is to increase the number of discretiza-

tion points for numerical integration and the number of Monte-Carlo simulations.

However, both methods would cost much running time for rather small Θ to guaran-

tee a certain level of accuracy. Actually we can refine the partition especially over the

interval closer to zero instead of the whole range of Θ. This discretization technique

would promote the accuracy with less cost of running time. On the other hand, we

may apply some proper variance reduction technique for Monte-Carlo simulation to

improve the implementation efficiency for rather small Θ.

We are mainly concerned with the optimal trading problem from the perspective

of market participants whose transactions do not have market impact on the asset

price. However from Figure (3.6) we can observe that the optimal strategy for fully

informed investors involves short selling of rather large volume, so it is more realistic

to incorporate a standard market impact which depends on the volume of transaction.

We may refer to Almgren and Chriss [4] for standard market impact model. On the

other hand, in real-life markets there exists short selling constraints and transaction

fees which would prevent the fully informed investors shorting sell as much as they

want. In the future we may study the optimization problem with strategy constraints

and transition fees.
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5.2.2 Occupation time

We next consider an alternative model in which the liquidation impact is modeled as

an instant jump. Following Jiao and Pham [45], Hillairet and Jiao [36] we suppose

the asset admits a jump at the liquidation time, i.e.

Sτ = Sτ−(1− γτ )

where γ < 1 represents the proportional jump at liquidation. Liquidation is triggered

if the asset price St crosses down the barrier α and stays below longer than a certain

amount of time β. Mathematically, default time τ is defined as

τ = inf{t ≥ 0|Λt ≥ β}, (5.2.4)

where Λt is the occupation time of St staying below α over time period [0, t]

Λt =

∫ t

0

1Su<αdu. (5.2.5)

We distinguish three types of investors as below:

• Fully informed investors: both β and α are known values.

• Partially informed investors: α is known, β is a random variable.

• Unknown investors: both β and α are unknown random variables.

Jiao and Pham [45] consider a similar optimization problem for the uninformed in-

vestors using the theory of progressive enlargement of filtration. Hillairet and Jiao

[36] studied a similar optimization problem for the fully informed investors using the

theory of initial enlargement of filtration. We review the following so called density

hypothesis for the liquidation time τ which plays a key role.

For any t ∈ [0, T ], the conditional distribution of τ given Ft admits a density with

respect to Lebesgue measure, i.e.

P(τ ∈ dθ|Ft) = αt(θ)dθ.
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where αt(θ) is positive. In our framework if we suppose P(α ∈ dx|Ft) = ϕt(x)dx, we

can compute the conditional density of τ

P[τ ∈ dθ|Ft] = 1{Sθ<α}ϕt(Λθ)dθ. (5.2.6)

Since 1{Sθ<α}ϕt(Λθ) is not always positive, the density hypothesis is not satisfied in

our model. Therefore, further research on enlargement of filtrations when the density

hypothesis is not satisfied, or a new approach, would be required to resolve this

technical hurdle.
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Appendix

A Solvability of SDEs and BSDEs

This appendix reviews fundamental results on existence and uniqueness of solutions to

stochastic differential equations (SDEs) and backward stochastic differential equations

(BSDEs). The numerical solution approach for BSDEs is also covered.

A.1 Existence and uniqueness of strong solutions of SDEs

On a filtered probability space (Ω,A, {Ft}t≥0,P) we consider a stochastic differential

equation (SDE)

dXt = μ(t,Xt)dt+ σ(t,Xt)dWt, 0 ≤ t ≤ T, X0 = ξ (A.1)

where ξ is an F0-measurable random variable andW is a Rm valued Brownian motion

w.r.t (Ft,P). Let T > 0 and μ(·, ·) : [0, T ] ×Rn → Rn, σ(·, ·) : [0, T ] ×Rn → Rn×m

be measurable functions.

Let us first review the definitions of existence and uniqueness of a strong solution

of the SDE (A.1) (see Karatzas and Shreve [46]).

Definition A.1. A strong solution of the SDE (A.1) on the given probability space

(Ω,F,P) and with respect to the fixed Brownian motion W and initial condition ξ, is

a process X = {Xt; 0 ≤ t < ∞} with continuous sample paths and with the following

properties:

(i) X is adapted to the filtration {Ft}t≥0,
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(ii) P(X0 = ξ) = 1,

(iii) P(
∫ t

0
{|μi(s,Xs)|+σ2

ij(s,Xs)}ds < ∞) = 1 holds for every 1 ≤ i ≤ n, 1 ≤ j ≤ m

and 0 ≤ t < ∞, and

(iv) the integral version of (A.1)

Xt = X0 +

∫ t

0

μ(s,Xs)ds+

∫ t

0

σ(s,Xs)dWs, 0 ≤ t ≤ T,

holds almost surely.

Definition A.2. Suppose X and X̃ are two strong solutions of (A.1) relative to W

with initial condition ξ, then the strong uniqueness holds if

P(Xt = X̃t; 0 ≤ t < ∞) = 1.

Itô [41] first proposed the Lipschitz conditions that guarantee the existence and

uniqueness of a solution to the SDE (A.1), which is shown in the following theorem.

Theorem A.1. Suppose that the coefficients μ(t, x), σ(t, x) satisfy the global Lipschitz

and linear growth conditions

||μ(t, x)− μ(t, y)||+ ||σ(t, x)− σ(t, y)|| ≤ K||x− y||, x, y ∈ Rn, t ∈ [0, T ], (A.2)

||μ(t, x)||2 + ||σ(t, x)||2 ≤ K2(1 + ||x||2), x ∈ Rn, t ∈ [0, T ]. (A.3)

Let ξ be an Rn-valued random vector, independent of the m-dimensional Brownian

motion W , and with finite second moment:

E[||ξ||2] < ∞.

Then there exists a continuous, adapted process X which is a strong solution of (A.1)

relative to W , with initial condition ξ.

In the one-dimensional case, Yamada and Watanabe [64] proposed the Yamada-

Watanabe condition which relaxes the Lipschitz condition.
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Proposition A.1. Suppose the coefficients of the one-dimensional equation

dXt = μ(t,Xt)dt+ σ(t,Xt)dWt, 0 ≤ t ≤ T, X0 = ξ (A.4)

satisfies the conditions

|μ(t, x)− μ(t, y)| ≤ K|x− y|,
|σ(t, x)− σ(t, y)| ≤ h(|x− y|),

for every 0 ≤ t < ∞ and x ∈ R, y ∈ R, where K is a positive constant and

h : [0,∞) → [0,∞) is a strictly increasing function with h(0) = 0 and∫
(0,ε)

h−2(v)dv = ∞, ∀ε > 0.

Then strong uniqueness holds for the equation (A.4).

The Yamada-Watanabe condition can be used to show the strong uniqueness of

solutions of a SDE with certain non-Lipschitz coefficients. For example, we may

apply Proposition A.1 to the Cox-Ingersoll-Ross (CIR) model, which describes the

stochastic evolution of interest rate rt by the SDE

drt = α(μ− rt)dt+ σ
√
rtdWt, t ≥ 0, (A.5)

with r0 > 0, where α, μ with αμ ≥ 0 and σ denote real constants. Notice that the

volatility coefficient of (A.5) is Hölder continuous, i.e.,

|σ(t, x)− σ(t, y)| ≤ C
√
|x− y|, ∀ 0 ≤ t < ∞ and x, y ∈ R,

where C is a positive constant. Thus the SDE (A.5) satisfies the Yamada-Watanabe

condition, which implies that the strong uniqueness of the solution of (A.5) holds.

In affine term structure models (ATSMs) the interest rate is driven by a multi-

dimensional affine diffusion process

dXt = (AXt + B̃)dt+ Sdiag
(√

αi + βiXt

)
dWt (A.6)

where W is an n-dimensional Brownian motion, A is an (n× n)-matrix of scalars, B̃

is an (n× 1)-vector of scalars, for each each i ∈ {1, . . . , n} the αi are scalars, for each
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i ∈ {1, . . . , n} the βi = (βi1, . . . , βin) are 1 × n-vectors taking values in Rn, and S is

a non-singular n× n-matrix. Regarding the strong uniqueness of solutions of (A.6),

Duffie and Kan [24] proved the following proposition by using Proposition A.1.

Proposition A.2. Suppose the following conditions:

(A-I) for all x such that αi + βix = 0, βi(Ax+ B̃) > βiSS
′β′

i/2,

(A-II) for all j, if (βiS)j �= 0, then αi + βix = αj + βjx

are satisfied then there exits a unique strong solution Xt to the SDE (A.6) that takes

values in D which is the open domain implied by nonnegative volatilities, i.e.,

D = {x ∈ Rn : αi + βix > 0, i ∈ {1, . . . , n}} .

A.2 Existence and uniqueness of solutions of BSDEs

Backward stochastic differential equations (BSDEs) were introduced by Bismut [14]

and Pardoux and Peng [59]. Let (Ω,A, {Ft}t≥0,P) be a filtered probability space sat-

isfying the usual conditions. Let W be an n-dimensional standard Brownian motion,

and assume F is the filtration generated by W . BSDEs are of the following form

−dYt = f(t, Yt, Zt)dt− ZtdWt, YT = ξ (A.7)

or equivalently

Yt = ξ +

∫ T

t

f(s, Ys, Zs)ds−
∫ T

t

ZsdWs (A.8)

where Yt ∈ Rd, ξ is FT -measurable, and f is P ⊗ Bd ⊗ Bd×n-measurable. P is the

predictable σ-algebra, and Bd is the Borel σ-algebra on Rd. The function f is called

the generator of the BSDE. A solution is a pair (Y, Z) such that Y is continuous and

adapted, and Z is predictable and satisfies
∫ T

0
|Zs|2ds < ∞. We denote by L2

T (R
d) the

space of FT -measurable random variable ξ and by H2
T (R

d) the space of predictable

processes Y .

Pardoux and Peng [59] proved the following theorem on the existence and unique-

ness of solutions to the BSDE (A.7).
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Theorem A.2. Suppose that ξ ∈ L2
T (R

d), f(·, 0, 0) ∈ H2
T (R

d), and f is uniformly

Lipschitz; i.e., there exists C > 0 such that dP⊗ dt a.s.

|f(ω, t, y1, z1)− f(ω, t, y2, z2)| ≤ C(|y1 − y2|+ |z1 − z2|) ∀(y1, z1), ∀(y2, z2).

Then there exists a unique pair (Y, Z) which solves the BSDE (A.7).

The classical result on the existence of a solution to a quadratic BSDE driven by

a Brownian motion is due to Kobylanski [50]. We show a simple quadratic BSDE as

an example below:

Yt = ξ +

∫ T

t

1

2
|Zs|2ds−

∫ T

t

ZsdWs.

Since the generator is of quadratic growth in Z, which does not satisfy the Lipschitz

condition. In order to find conditions for existence and uniqueness of solutions of

quadratic BSDEs Kobylanski [50] defined three types of conditions.

(i) The coefficient f is said to satisfy condition (H1) with α0, β0, b, c if for all

(t, y, z) ∈ R+ ×R×Rd,

f(t, y, z) = a0(t, y, z)y + f0(t, y, z),

with

β0 ≤ a0(t, y, z) ≤ α0, a.s.

|f0(t, y, z) ≤ b+ c(|y|)|z|2, a.s.
(H1)

(ii) The coefficient f is said to satisfy condition (H2) on [−M,M ] with l, k and C

if for all t ∈ (0,∞), y ∈ [−M,M ], z ∈ Rd,

|f(t, y, z)| ≤ l(t) + C|z|2, a.s.

|∂f
∂z

(t, y, z)| ≤ k(t) + C|z| a.s.
(H2)

(iii) the coefficient f is said to satisfy condition (H3) with cε and ε if for all t ∈
(0,∞), y ∈ R, z ∈ R,

∂f

∂y
(t, y, z) ≤ lε(t) + ε|z|2 a.s. (H3)
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Theorem A.3. If the generator f of (A.7) satisfies (H1) with α0, β0, b ∈ R and

c : (0,∞) → (0,∞) be a continuous increasing function, then the BSDE (A.7) has

at least one solution. If for all ε,M > 0 there exists l, lε, C ∈ R such that f satisfies

condition (H2) on [−M,M ] with l, k, C and satisfies condition (H3) on [−M,M ] with

lε and ε, then the BSDE (A.7) has a unique solution.

Before we review the results on solutions of BSDEs with jumps we need introduce

a random measure (refer to Delong [23, Chapter 2]).

Definition A.3. A function N defined on Ω× [0, T ]×R is called a random measure

if

(i) for any ω ∈ Ω, N(ω, ·) is a σ-finite measure on B([0, T ])⊗ B(R),

(ii) for any A ∈ B([0, T ])⊗ B(R), N(·, A) is a random variable on (Ω,F,P).

Next we introduce a predictable compensator of a random measure.

Definition A.4. For a random measure N we define

EN(A) = E

[∫
[0,T ]×R

1A(ω, t, z)N(ω, dt, dz)

]
, A ∈ F⊗ B([0, T ])⊗ B(R). (A.9)

If there exists an F-predictable random measure v such that

(i) Ev is a σ-finite measure on P ⊗ B(R),

(ii) the measures EN and Ev are identical on P ⊗ B(R),

then we say that the random measure N has a compensator v.

Given the compensator v of a random measure N , we can define the compensated

random measure

Ñ(ω, dt, dz) = N(ω, dt, dz)− v(ω, dt, dz).

Random measures are usually related to jumps of discontinuous processes. We

assume the random measure N is an integer-valued random measure with the com-

pensator

v(dt, dz) = Q(t, dz)η(t)dt,
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where η : Ω × [0, T ] → [0,∞) is a predictable process, and Q is a kernel from

(Ω× [0, T ],P) into (R,B(R)) satisfying∫ T

0

∫
R

z2Q(t, dz)η(t)dt < ∞.

Delong [23] investigated BSDEs driven by a Brownian motion and a compensated

random measure

Yt = ξ +

∫ T

t

f(s, Ys−, Xs, Us(·))ds−
∫ T

t

ZsdWs −
∫ T

t

∫
R

Us(z)Ñ(ds, dz). (A.10)

The following theorem presents the existence and uniqueness of solutions for BSDEs

with jumps (see Delong [23]).

Theorem A.4. Assume the terminal value ξ and the generator f satisfy the following

conditions:

(i) the terminal value ξ ∈ L2(R),

(ii) the generator f : Ω× [0, T ]×R×R×L2
Q(R) → R is predictable and Lipschitz

continuous in the sense that

|f(ω, t, y, z, u)− f(ω, t, y′, z′, u′)|2

≤ K

(
|y − y′|2 + |z − z′|2 +

∫
R

|u(x)− u′(x)|2Q(t, dx)η(t)

)
,

(iii) E[
∫ T

0
|f(t, 0, 0, 0)|2dt] < ∞.

Then the BSDE (A.10) has a unique solution.

A.3 Numerical methods for BSDEs

BSDEs usually do not have closed form solutions in which cases numerical solution

methods can be applied. We review the regression based on Monte-Carlo approach

proposed by Gobet et al. [33]. Consider a BSDE

−dYt = f(t, Yt, Zt)dt− ZtdWt, YT = ξ. (A.11)

125



can be discretized using the algorithm. Given a partition π : 0 = t0 < · · · < tn = T

of the interval [0, T ], we write the Euler discretization of the BSDE (A.11) as

Y π
ti
− Y π

ti−1
= −f(ti−1, Y

π
ti−1

, Zπ
ti−1

) + Zπ
ti−1

· (Wti −Wti−1
) (A.12)

together with the terminal condition Y π
tn = g(Wtn). A backward induction scheme is

obtained by taking conditional expectations as follows:

• Y π
tn = g(Wtn),

• Zπ
ti−1

= (ti − ti−1)
−1E[Y π

ti
(Wti −Wti−1

)|Fti−1
],

• Y π
ti−1

= E[Y π
ti
|Fti−1

] + f(ti−1, Y
π
ti−1

, Zπ
ti−1

)(ti − ti−1)

for all i = 1, · · · , n. Then the conditional expectations involved in the above scheme

reduce to the regression of Y π
ti

and Y π
ti
(Wti − Wti−1

) on the random variable Wti−1
.

For instance one can use the classical kernel regression estimation (see Carriere [19])

or the basis projection method studied by Longstaff and Schwartz [56].

B Optimal measure transformation

This appendix provides technical proofs for the optimal measure transformation part.

B.1 Riccati equations

We prove the existence and uniqueness of solutions to the Riccati equations based on

Gombani and Runggaldier [35, Theorem B.1].

Proposition B.1. The following decoupled Riccati equations admit a pair of unique

explicit solutions.

q̇s + qsA+ A′qs +
1

2
(q′s + qs)ΣΣ

′(q′s + qs)−Q = 0n×n, s ∈ [0, T ] (B.1)

u̇s + usA+B′(q′s + qs) + usΣΣ
′(q′s + qs)−R′ = 01×n, s ∈ [0, T ] (B.2)

qT = 0n×n, uT = 01×n. (B.3)
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Proof. We first prove equation (B.1) admits a unique explicit solution. By taking the

transpose of both sides of equation (B.1) we find

q̇′s + A′q′s + q′sA+
1

2
(q′s + qs)ΣΣ

′(q′s + qs)−Q = 0n×n, (B.4)

Adding equation (B.4) to equation (B.1) gives

(q̇s + q̇′s) + A′(qs + q′s) + (qs + q′s)A+ (q′s + qs)ΣΣ
′(q′s + qs)− 2Q = 0n×n, (B.5)

and subtracting equation (B.4) from equation (B.1) to find

(q̇s − q̇′s) + A′(qs − q′s) + (qs − q′s)A = 0. (B.6)

Define

Us =
q′s + qs

2
, Vs =

qs − q′s
2

,

and by the terminal condition (B.3) we have

UT = 0n×n, VT = 0.

Hence Us and Vs satisfy the following equations

U̇s + A′Us + UsA+ UsΣΣ
′Us −Q = 0n×n, (B.7)

V̇s + A′Vs + VsA = 0n×n, (B.8)

UT = 0n×n, VT = 0n×n. (B.9)

By Gombani and Runggaldier [35, Theorem B.1] there exists a pair of unique (Us, Vs)

satisfying equations (B.7)-(B.9). Moreover, we actually have Vs = 0n×n which means

qs = q′s, so qs is symmetric, and qs = Us.

After we obtain the solution qs, equation (B.2) is simplified as an ODE for us,

which can be solved explicitly as in Gombani and Runggaldier [35, Corollary B.3].

B.2 Solutions of quadratic FBSDEs

We provide proof for Theorem 2.4.2.
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Proof. The solvability of FBSDE (2.4.20)-(2.4.21) is guaranteed by Kobylanski [50].

Apply Itô’s formula to the function f(t, x) = −(x′qtx+utx+pt), qt and ut are solutions

to (2.4.22)-(2.4.23) and pt satisfies (2.4.27). Let Yt = f(t,Xt), then we have

dYt = −
{
X ′

tq̇tXt + u̇tXt +
(
k − utB − 1

2
tr(qt + q′t)ΣΣ

′ − 1

2
utΣΣ

′u′
t +

1

2
ztz

′
t

)
+
(
X ′

tA
′ +B′ +X ′(qt + q′t)ΣΣ

′ + utΣΣ
′ + ztΣ

′)qtXt

+X ′
tqt
(
AXt +B + ΣΣ′(qt + q′t)Xt + ΣΣ′u′

t + Σz′t
)

+ ut

[
AXt +B + ΣΣ′(qt + q′t)Xt + ΣΣ′u′

t + Σz′t
]
+

1

2
tr(qt + q′t)ΣΣ

′
}
dt

− {
X ′

t(qt + q′t)Σ + utΣ + zt
}
dW P

t

= −
{[

X ′
tq̇tXt +X ′

t(qtA+ A′qt)Xt +
1

2
X ′

t(q
′
t + qt)ΣΣ

′(q′t + qt)Xt −X ′
tQXt

]
+
[
u̇tXt + utAXt +B′(q′t + qt)Xt + utΣΣ

′(q′t + qt)Xt −R′Xt

]
+
[
(X ′

tQXt +R′Xt + k) + (
1

2
X ′

t(q
′
t + qt)ΣΣ

′(q′t + qt)Xt

+X ′
t(qt + q′t)ΣΣ

′u′
t +X ′

t(qt + q′t)Σz
′
t +

1

2
utΣΣ

′u′
t + utΣz

′
t +

1

2
ztz

′
t)
]}

dt

− {
X ′

t(qt + q′t)Σ + utΣ + zt
}
dW P

t (B.10)

Substituting (2.4.22)-(2.4.23) and (2.4.26) into (B.10) we have

dYt = −(X ′
tQXt +R′Xt + k − 1

2
ZtZ

′
t)dt− ZtdW

P
t

Thus (Yt, Zt) defined by (2.4.25)-(2.4.26) satisfies

Yt = YT +

∫ T

t

(X ′
sQXs +R′Xs + k − 1

2
ZsZ

′
s)ds+

∫ T

t

ZsdW
P
s

By the boundary conditions of (2.4.24) and we have

Yt = − lnCT +

∫ T

t

(X ′
sQXs +R′Xs + k +

1

2
ZsZ

′
s)ds+

∫ T

t

ZsdW
P
s .

C Optimal trading problem

This appendix provides technical proofs for the optimal trading project.
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C.1 Explicit expression of optimal utilities

We prove several lemmas which are used for our main results Propositions 3.2.2, 3.3.2,

3.4.1 and 3.4.2.

Lemma C.1.

E[1{τ>T} ln(X̂
(2,b)
T )|G(2)

0 ] =

(
ln(X0) +

1

2
(μ− μ2

σ2
)T

)

×
{
N
(
− lnα

σ
+ (μ

σ
− 1

2
σ)T√

T

)
− exp

(
2μ lnα

σ2
− lnα

)
N
(

lnα
σ

+ (μ
σ
− 1

2
σ)T√

T

)}

+

∫ 0

lnα
σ

∫ ∞

y

2μx(x− 2y)

σ
√
2πT 3

exp

{
(
μ

σ
− 1

2
σ)x− 1

2
(
μ

σ
− 1

2
σ)2T − 1

2T
(2y − x)2

}
dxdy

where

N (x) =
1√
2π

∫ x

−∞
e

u2

2 du

is the cumulative distribution function of a standard normal random variable.

Proof. By (3.1.1) we have

St = S0 exp

{
σ

(
(
μ

σ
− 1

2
σ)t+Wt

)}
. (C.1)

Define

Bt = (
μ

σ
− 1

2
σ)t+Wt

and

B̃t = inf{Bv|0 ≤ v ≤ t}.

Recalling the definition of τ in (3.1.2) we find

1{τ>T} = 1{B̃T> lnα
σ

}. (C.2)

Let κ = μ
σ
− 1

2
σ. From [44] we know

P(BT ∈ dx, B̃T ∈ dy)

= 1{x>y}1{y<0}
2(x− 2y)√

2πT 3
exp{κx− 1

2
κ2T − 1

2T
(2y − x)2}dxdy. (C.3)
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and

P(τ > T )

= N
(
− lnα

σ
+ (μ

σ
− 1

2
σ)T√

T

)
− exp

(
2μ ln(α)

σ2
− ln(α)

)
N
(

lnα
σ

+ (μ
σ
− 1

2
σ)T√

T

)
.

(C.4)

On the other hand, by (3.2.31) we know

X̂
(2,b)
T = X0 exp

{(
π̂(2,b)μ− 1

2
(π̂(2,b)σ)2

)
T + π̂(2,b)σWT

}

= X0 exp

{
μ

σ

(
(
μ

σ
− 1

2
σ)T +WT

)
+

1

2
μ(1− μ

σ2
)T

}

= X0 exp

{
μ

σ
BT +

1

2
μ(1− μ

σ2
)T

}
. (C.5)

Using (C.2) and (C.5) we compute

E

[
1{τ>T} ln

(
X̂

(2,b)
T

)
|G(2)

0

]
=E

[
1{τ>T}

{
ln(X0) +

μ

σ
BT +

1

2
μ(1− μ

σ2
)T

}
|G(2)

0

]

=P(τ > T )

{
ln(X0) +

1

2
(μ− μ2

σ2
)T

}
+ E

[
1{B̂T> lnα

σ
}
μ

σ
BT

]
(C.6)

since (Θ, K) is independent of F and X0 is G(2)
0 -measurable. Finally we apply (C.3)

and (C.4) to (C.6) to obtain the result.

Lemma C.2.

E[1T≥τ ln(X̂
(2,a)
T )|G(2)

0 ]

=− lnα

σ

∫ T

0

1√
2πt3

exp

{
− 1

2t

(
lnα

σ
− (

μ

σ
− 1

2
σ)t

)2
}
h(2)(t,Θ, K)dt

where

h(2)(t, θ, k) := lnX0 +
μ lnα

σ2
+

μ

2
t− μ2

2σ2
t+

∫ T

t

(
μI
v(t, θ, k)

)2
2σ2

dv. (C.7)

Proof. Let t = τ in (C.1) we have

Sτ = S0 exp{(μ− 1

2
σ2)τ + σWτ}.
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Using the fact Sτ = αS0 we find

Wτ =
1

σ

{
lnα− (μ− 1

2
σ2)τ

}
. (C.8)

By (3.2.31) and (C.8) we compute

X̂(2,b)
τ = X0 exp

{
(π̂(2,b) − 1

2
(π̂(2,b))2σ2)τ + π̂bσWτ

}

= X0 exp

{
μ2

2σ2
t+

μ

σ
Wτ

}

= X0 exp

{
μ lnα

σ2
+

μ

2
τ − μ2

2σ2
τ

}
. (C.9)

Solving (3.2.32) we obtain

X̂
(2,a)
T

=X̂(2,b)
τ exp{

∫ T

τ

(π̂2,a
v (Θ, K)μI

v(τ,Θ, K)− 1

2
(π̂2,a

v (Θ, K))2σ2)dv

+

∫ T

τ

π̂2,a
v (Θ, K)σdWv}

=X̂(2,b)
τ exp{

∫ T

τ

(μI
v(τ,Θ, K))2

2σ2
dv +

∫ T

τ

μI
v(τ,Θ, K)

σ
dWv}. (C.10)

Using (C.9) and (C.10) we compute

E

[
1T≥τ ln

(
X̂

(2,a)
T

)
|G(2)

0

]

=E

[
1T≥τ

(
ln
(
X̂(2,b)

τ

)
+

∫ T

τ

(
μI
v(τ,Θ, K)

)2
2σ2

dv +

∫ T

τ

μI
v(τ,Θ, K)

σ
dWv

)
|G(2)

0

]

=E

[
E

[
1T≥τ

(
ln(X̂(2,b)

τ ) +

∫ T

τ

(
μI
v(τ,Θ, K)

)2
2σ2

dv

+

∫ T

τ

μI
v(τ,Θ, K)

σ
dWv

)
|σ(τ),G(2)

0

]
|G(2)

0

]

=E

[
1T≥τ

(
lnX0 +

μ lnα

σ2
+

μ

2
τ − μ2

2σ2
τ +

∫ T

τ

(
μI
v(t,Θ, K)

)2
2σ2

dv

)
|G(2)

0

]
.

Recall that (Θ, K) is independent to F and that from [44, Sect. 3.3.1] that the density

of τ is

P(τ ∈ dt) = − lnα

σ

1√
2πt3

exp

{
− 1

2t

(
lnα

σ
− (

μ

σ
− 1

2
σ)t

)2
}
dt. (C.11)
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Using (C.11), and the definition of the function h(2)(t, θ, k) in (C.7), we obtain the

result.

Lemma C.3.

E[1T≥τ ln(X̂
1,a
T )] = − lnα

σ

∫ T

0

1√
2πt3

exp

{
− 1

2t

(
lnα

σ
− (

μ

σ
− 1

2
σ)t

)2
}
h(1)(t)dt

where

h(1)(t) := ln x0 +
μ lnα

σ2
+

μ

2
t− μ2

2σ2
t+

∫ T

t

(
μ̄M
v

)2
2σ2

dv. (C.12)

Proof. Similar to the proof of Lemma C.2, we find the terminal wealth X̂
(1,a)
T if

liquidation occurs before T

X̂
(1,a)
T = x0 exp

{
μ lnα

σ2
+

μ

2
τ − μ2

2σ2
τ +

∫ T

τ

(μ̄M
v )2

2σ2
dv +

∫ T

τ

μ̄M
v

σ
dW̃v

}
.

We compute

E

[
1T≥τ ln

(
X̂

(1,a)
T

)]
=E

[
1T≥τ

{
ln x0 +

μ lnα

σ2
+

μ

2
τ − μ2

2σ2
τ +

∫ T

τ

(μ̄M
v )2

2σ2
dv +

∫ T

τ

μ̄M
v

σ
dW̃v

}]

=E

[
E

[
1T≥τ

{
ln x0 +

μ lnα

σ2
+

μ

2
τ − μ2

2σ2
τ +

∫ T

τ

(μ̄M
v )2

2σ2
dv +

∫ T

τ

μ̄M
v

σ
dW̃v

}∣∣∣∣ σ(τ)
]]

=E

[
1T≥τ

{
ln x0 +

μ lnα

σ2
+

μ

2
τ − μ2

2σ2
τ +

∫ T

τ

(μ̄M
v )2

2σ2
dv

}]

Using the density of τ given in (C.11) and the definition of the function h(1)(t) in

(C.12), we obtain the result.

Lemma C.4.

1

p
E[1{τ>T}(X̂

(0,b)
T )p] =

xp
0

p
exp

(
pμ2T

2(1− p)σ2

)
×
{
N
(− lnα

σ
+ ( μ

(1−p)σ
− σ

2
)T

√
T

)

− exp

(
2μ lnα

(1− p)σ2
− lnα

)
N
(

lnα
σ

+ ( μ
(1−p)σ

− σ
2
)T

√
T

)}
.
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Proof. The proof is basically the same as that of Lemma C.1 except using the power

utility function instead of log utility function. We compute

1

p
E[1{τ>T}(X̂

(0,b)
T )p]

=
xp
0

p
exp

(
pμ2T

2(1− p)σ2

)
×
∫ 0

lnα
σ

∫ ∞

y

2(x− 2y)√
2πT 3

× exp

{
(

μ

(1− p)σ
− σ

2
)x− 1

2
(

μ

(1− p)σ
− σ

2
)2T − 1

2T
(2y − x)2

}
dxdy. (C.13)

Define

Ct = (
μ

(1− p)σ
− σ

2
)t+Wt

and

C̃t = inf{Cs|0 ≤ s ≤ t}.

Note that the integral in (C.13) is equal to P(C̃T > lnα
σ
). By [44, Sect. 3.2.2] we know

P(C̃T >
lnα

σ
)

=N
(− lnα

σ
+ ( μ

(1−p)σ
− σ

2
)T

√
T

)
− exp

(
2μ lnα

(1− p)σ2
− lnα

)
N
(

lnα
σ

+ ( μ
(1−p)σ

− σ
2
)T

√
T

)
.

(C.14)

Substituting (C.14) into (C.13) we obtain the result.

Lemma C.5.

1

p
E[1T≥τ (X̂

(0,a)
T )p] = − lnα

σ

×
∫ 1

0

∫ ∞

0

∫ T

0

1√
2πt3

exp

{
− 1

2t

(
lnα

σ
− (

μ

σ
− 1

2
σ)t

)2
}
l(0)(t, θ, k)ϕ(θ, k)dtdθdk

where

l(0)(t, θ, k) =

xp
0

p
exp

{
μ lnα

(1− p)σ2
+

1

2

μ

(1− p)
t− 1

2

μ2

(1− p)2σ2
t+

∫ T

t

(
pμμI

v(t, θ, k)

(1− p)σ2

)
dv

}
.

(C.15)
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Proof. Similar to the proof of Lemma C.2 we find the wealth value at liquidation time

τ as follows

X̂(0,b)
τ = x0 exp

{
μ lnα

(1− p)σ2
+

1

2

μ

(1− p)
τ − 1

2

μ2

(1− p)2σ2
τ

}
.

Then the terminal wealth X̂
(0,a)
T if liquidation occurs before T is

X̂
(0,a)
T = X̂(0,b)

τ exp

{∫ T

τ

(
μμI

v(τ,Θ, K)

(1− p)σ2
− μ2

2(1− p)2σ2

)
dv +

∫ T

τ

μ

(1− p)σ
dWv

}
.

We compute

E[1T≥τU(X̂
(0,a)
T )]

=
1

p
E

[
1{T≥τ}(X̂b

τ )
p exp

{∫ T

τ

(
pμμI

v(τ,Θ, K)

(1− p)σ2
− pμ2

2(1− p)2σ2

)
dv

+

∫ T

τ

pμ

(1− p)σ
dWv

}]

=
1

p
E

[
E

[
1{T≥τ}(X̂b

τ )
p exp

{∫ T

τ

(
pμμI

v(τ,Θ, K)

(1− p)σ2
− pμ2

2(1− p)2σ2

)
dv

+

∫ T

τ

pμ

(1− p)σ
dWv

}
|σ(τ)

]]

=
1

p
E

[
1{T≥τ}(X̂b

τ )
p exp

{∫ T

τ

(
pμμI

v(τ,Θ, K)

(1− p)σ2
− pμ2

2(1− p)σ2

)
dv

}]
Using the density of τ given in (C.11) and the definition of the function l(0)(t, θ, k) in

(C.15), we obtain the result.

Lemma C.6.

E[1T≥τ ln(X̂
(0,a)
T )] = − lnα

σ∫ ∞

0

∫ ∞

0

∫ T

0

1√
2πt3

exp

{
− 1

2t

(
lnα

σ
− (

μ

σ
− 1

2
σ)t

)2
}
h(0)(t, θ, k)ϕ(θ, k)dtdθdk

where

h(0)(t, θ, k) := ln x0 +
μ lnα

σ2
+

μ

2
t− μ2

2σ2
t+

∫ T

t

(
2μμI

v(t, θ, k)− μ2

2σ2

)
dv. (C.16)

Proof. Similar to the proof of Lemma C.2, we find the terminal wealth X̂
(0,a)
T if

liquidation occurs before T

X̂
(0,a)
T =

x0 exp

{
μ lnα

σ2
+

μ

2
τ − μ2

2σ2
τ +

∫ T

τ

(
μμI

v(τ,Θ, K)

σ2
− μ2

2σ2

)
dt+

∫ T

τ

μ

σ
dWt

}
.
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We compute

E

[
1T≥τ ln(X̂

(0,a)
T )

]
=E

[
1T≥τ

{
ln x0 +

μ lnα

σ2
+

μ

2
τ − μ2

2σ2
τ +

∫ T

τ

(
μμI

v(τ,Θ, K)

σ2
− μ2

2σ2

)
dt

+

∫ T

τ

μ

σ
dWt

}]

=E

[
E

[
1T≥τ

{
ln x0 +

μ lnα

σ2
+

μ

2
τ − μ2

2σ2
τ +

∫ T

τ

(
μμI

v(τ,Θ, K)

σ2
− μ2

2σ2

)
dt

+

∫ T

τ

μ

σ
dWt

}
|σ(τ)

]]

=E

[
1T≥τ

{
ln x0 +

μ lnα

σ2
+

μ

2
τ − μ2

2σ2
τ +

∫ T

τ

(
μμI

v(τ,Θ, K)

σ2
− μ2

2σ2

)
dt

}]

Using the density of τ given in (C.11) and the definition of the function h(0)(t, θ) in

(C.16), we obtain the result.
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