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Abstract

Multi-Objective Optimization of Solar Thermal Combisystems

Anthony Rey, Ph.D.

Concordia University, 2017

Solar thermal combisystems can significantly reduce primary energy consumption for residential

buildings and therefore cut down greenhouse gas emissions; however, the overall performance of such

systems depends on their design (i.e., configuration and sizing of their components) and operating

conditions. Designing solar thermal combisystems can be improved by using optimization methods.

Therefore, this doctoral thesis introduces a multi-objective optimization framework for optimizing

the configuration and equipment sizing of solar thermal combisystems. A micro-time variant multi-

objective particle swarm optimization (micro-TVMOPSO) algorithm is developed for handling

engineering optimization problems, such as the multi-objective optimization of solar combisystems,

where evaluating objective functions is time-consuming. The proposed framework uses a generic

solar combisystem model coupled with the micro-TVMOPSO algorithm to find a set of optimized

combisystem designs. Applied to two case studies, the multi-objective optimization framework

was able to find designs reducing the life cycle cost, life cycle energy use, and life cycle exergy

destroyed of solar thermal combisystems. The proposed multi-objective optimization framework

can therefore be used to get the most out of solar thermal combisystems given specific economic

and environmental conditions.
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to Drs. Sébastien Dutour, Richard Fournier, and Arnaud Lepadelec, from Paul Sabatier University,

whose passion has inspired me. I would not have considered a research career if it were not for

you. I cannot thank Kaitlin Manning enough for her incommensurable help regarding my English

skills. I am sure that I would not have been able to carry out this doctoral program at Concordia

University and write this thesis in William Shakespeare’s language without her.

I will never forget all the wonderful people I have met here. Living on the other side of the

Atlantic ocean had its ups and downs, but their friendliness made me feel at home. I almost enjoyed

extreme winters thanks to Bora and our ice-skating trips as well as our gathering at his place with

David and Chris. I had fun playing games with you, Drogheda, even if it meant losing most of

the time. Thank you for showing me that veganism is not only about eating grass. Thanks to all

the brunches I had with my friends and ex-roommates Valérie, Marie-André, Kayla, and Louis. I
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Chapter 1

Introduction

This chapter provides an overview of the context in which this research has been conducted, and

then presents the motivations that drove it. Afterwards, the outlines of this doctoral thesis are

reported.

1.1 Background

Since the 1970s energy crisis, people have become more and more concerned about energy and

its utilization. As human beings, we use energy every day for heating water, illuminating streets,

transporting people, and so on. As a consequence, energy resource management is one of the biggest

challenges for humanity. Energy demand is constantly growing as the world population increases.

Since energy supply does not increase at the same rate as the energy demand, a supply-demand

problem arises. In addition, our current energy infrastructures depend heavily on fossil fuels, which

are consumed faster than they are produced. Fossil fuels are not sustainable energy sources, so

they tend to disappear. Finally, burning fossil fuels produces greenhouse gases (GHGs), which are

responsible for climate change. Consequently, we must look for alternative energy sources.

1.2 Motivations

As reported in (OECD/IEA, 2013), the buildings sector accounts for one-third of total final energy

consumption, and that energy demand in buildings set to rise 50% by 2050. The buildings sector

has therefore a significant impact on the environment. Global warming has led to a worldwide

consciousness regarding the importance of renewable energy. For instance, the International Energy
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Agency (IEA) is an autonomous organization which was establish in November 1974, within the

framework of the Organisation for Economic Co-operation and Development (OECD), in response

to the 1973 oil crisis. Renewable energy is defined by (IRENA, 2016) as “all forms of energy

produced from renewable sources in a sustainable manner”. Despite their beneficial effects, all

of them cannot be integrated easily into buildings. Solar energy appears to be one of the most

suitable sources for buildings. Nonetheless, solar energy technologies have faced difficulties in

imposing themselves as the first choice in the buildings sector. A solar energy review (Timilsina et

al., 2012) concluded that the main barrier to the deployment of solar thermal energy technologies

is their cost, which remains less affordable than that of any conventional technologies for power

generation. This explains why the solar energy growth observed over the past decade is primarily

driven by policy support. The same observation was made in (Landry & Gagnon, 2015).

As pointed out in (Nyboer & Lutes, 2011), the most common use of solar energy in Canada

is the direct heating of air and water. Figures reported in (Mauthner & Weiss, 2013) indicate

that such a tendency is global. In 2012, the estimated total capacity of solar thermal collectors

in operation worldwide was 268.1 GWth, whereas that of solar photovoltaic panels was equal to

102.2 GW. Moreover, between 2000 and 2011, the average growth rate worldwide of the market

development of glazed water collectors was around 20%. Consequently, technologies related to solar

thermal collectors have a significant potential to save energy, and therefore reduce the buildings

sector primary energy consumption. Solar energy, through solar thermal collectors, is a promising

alternative to the use of fossil fuels in buildings.

An increasing interest in solar water heating (SWH) systems to reduce fossil fuel consump-

tion and greenhouse gas emissions of residential building has already emerged (Hang et al., 2012).

However, as mentioned in (Bornatico et al., 2012), priority should be given to solar thermal com-

bisystems whose purpose is twofold, that is, providing heat for both domestic hot water (DHW)

and space heating (SH) needs. Solar combisystems are relatively complex (Hadorn et al., 2002)

and their performance depends on many factors, such as, orientation and tilt angle of solar thermal

collectors, DHW usage profiles, weather conditions, and so on. Therefore, optimization techniques

can be an efficient way to get the most out of solar thermal combisystems.

Optimization refers to finding the optimum feasible solution to a given problem without violating

a set of constraints (Coello Coello, 2006). Optimization problems can be defined as single-objective,
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if there is only one objective to be optimized, or as multi-objective, if more than one objective are

involved. Real-world optimization problems having only one objective function are rather the ex-

ception than the rule for example, time against money or industrial development against wildlife

preservation are multi-objective optimization problems. Most problems usually imply conflicting

objectives (Fesanghary et al., 2012). Multi-objective optimization (MOO) problems require a dif-

ferent approach than the one used for single-objective, since the concept of optimality changes.

A solution can be better according to one objective, but worse according to the others. MOO

problems do not have a unique solution, but rather a set of trade-off optimal solutions, known as

Pareto solutions. The concept of Pareto optimality lies in the fact that a Pareto solution cannot

be improved according to an objective without being degraded according to another. For instance,

reducing the insulation of a house to save money increases energy consumption. As mentioned

in (Nguyen et al., 2014), the use of optimization methods in the buildings sector has significantly

increased since 2005. Nevertheless, no multi-objective optimization method has been proposed or

applied to completely design solar thermal combisystems.

Designing a solar thermal combisystem implies selecting a configuration, and then sizing all

its components. Due to time and financial limitations, building performance simulation (BPS)

programs can be preferred to physical experiments. Predicting the performance of a building plays

a key role in reducing the buildings sector energy consumption, since 80-90% of a building’s life-

cycle operational energy demand is due to its operation (Ramesh et al., 2010). As a result, using

multi-objective optimization methods to design solar thermal combisystems could be a way of

reducing the buildings sector primary energy consumption and greenhouse gas emissions.

1.3 Thesis overview

This section gives an overview of the outlines of this doctoral thesis, which covers two main topics:

(i) solar thermal combisystems and (ii) multi-objective optimization methods. Chapter 2 reviews

previous research studies conducted in these two areas and introduces the research objectives based

on a critical analysis of the literature review.

A preliminary study on multi-objective optimization methods for optimizing solar combisys-

tems is conducted in Chapter 3. For comparison purposes, both a classical and a non-classical
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optimization method is used to optimize a residential solar thermal combisystem, approached as a

multi-objective optimization problem.

Chapter 4 presents a research methodology for optimizing solar thermal combisystems, which

is composed of two main sections: (i) the development of a multi-objective optimization framework

for optimizing solar combisystems, and (ii) the multi-objective optimization of the design of solar

combisystems.

A generic model for solar thermal combisystems is presented in Chapter 5 in order to take

into account the effect of the solar combisystem configurations and their sizing on the overall

performance of solar thermal combisystems.

Chapter 6 introduces the multi-objective optimization framework developed in this doctoral

thesis to optimize solar thermal combisystems. This framework goes from the selection of decision

variables and their constraints up to objective and penalty functions.

A micro multi-objective optimization algorithm and a way of coupling it with the generic solar

combisystem model are included in Chapter 7.

Two case studies are reported in Chapters 8 and 9. The first case study concentrates on a

simulation-based residential solar thermal combisystem in Montreal, Quebec, Canada. The second

focuses on an actual solar thermal combisystem installed in Massachusetts, USA.

Finally, Chapter 10 concludes this thesis by summarizing all conclusions that have been drawn

and by presenting all contributions and potential future work.
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Chapter 2

Literature review

This chapter reports previous research studies that have been conducted in areas of interest re-

lated to this doctoral thesis. This literature review is mainly related to two topics: (i) solar

thermal combisystems, and (ii) multi-objective optimization methods. Research studies on solar

thermal combisystems and their optimization are first presented. Special attention is then paid to

multi-objective optimization methods in general. Finally, a summary identifies areas where further

research could be valuable.

2.1 Solar thermal combisystems

The most common use of solar energy is the direct heating of air and water. For this reason, a

special interest has been given to solar water heating systems. Such systems use solar energy for

domestic hot water purposes. Solar thermal combisystems are designed to supply thermal energy

for both domestic hot water and space heating needs. An additional heat distribution system

increases complexity compared to solar water heating systems (Hadorn et al., 2002). New solar

combisystems have extended the initial definition to space cooling needs; however, such systems

– known as solar combi plus systems – are beyond the scope of this research, and therefore they

will not be studied herein. In order to improve solar combisystems as a whole, all components and

their interactions need to be enhanced.

2.1.1 Design of solar combisystems

Designing a solar thermal combisystem implies selecting a configuration and sizing all its compo-

nents, which both have an impact on the overall performance of solar combisystems. Established in
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1977, the Solar Heating and Cooling (SHC) Programme was one of the first IEA projects. Aiming

to advance and promote the use of solar energy in buildings, the SHC Programme has allowed the

creation of many projects, also known as Tasks. Task 26 was an exhaustive project conducted by a

group of 35 experts and 16 solar industries from nine European countries and the United States of

America, from 1998 to 2002, so as to analyze and optimize solar combisystems (Suter et al., 2000).

This collaborative work led to 21 different solar generic combisystem configurations (Weiss, 2003).

From 2001 to 2003, the European Alterner Programme Project studied more than 200 solar

combisystems installed in seven European countries. Since then, many independent studies have

been related to solar combisystems, but no similar projects have focused on solar combisystem

designs.

A review of research studies related to solar thermal combisystems, from 2004 to present, is

therefore conducted herein to identify research areas that have not been explored yet. A distinction

is made between simulation-based and experimental-based research studies. Solar combisystem

configurations from manufacturers are also presented to have practical insights.

Simulation-based studies

Due to time and financial limitations, building performance simulation programs are preferred to

physical experiments. Since simulations enable more flexibility than experiments, many simulation-

based research studies were conducted.

One thermal storage tank

The environmental benefits of using a DHW or a solar combisystem instead of a conventional

system was assessed in (Kalogirou, 2004a). For the specific configuration and sizing selected, 40%

savings in greenhouse gas emissions was achieved for the solar thermal combisystem leading to an

environmental payback varying from 0.9 to 9.5 years depending on the fuel and particular pollutant

considered.

The effect of solar collector area and storage tank volume on a specific solar combisystem

configuration was studied in (Lund, 2005) using TRNSYS (Klein et al., 2017), a BPS software.

Increasing the thermal storage tank size to overcome overheating in summer was not found to be

economically justified.
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Two combined solar and pellet combisystem configurations based on Task 26 were compared in

(Fiedler et al., 2006) using TRNSYS. Emphasis was put on the auxiliary heating system, either an

integrated pellet burner or an external pellet boiler. For the former, storage tank losses should be

addressed carefully while flue gas losses were the main heat losses for the latter.

The influence of different thermal storage tanks on the performance of solar combisystems was

investigated in (Andersen & Furbo, 2007) using TRNSYS. Higher solar fractions, increased by

5-10%, were achieved with a stratifying device in the solar collector loop.

A simplified procedure for sizing solar thermal combisystem was presented in (Raffenel et al.,

2009) and compared with TRNSYS. Although it cannot provide an optimal sizing, it can be used as a

first step for energy feasibility. To characterize and compare the performance of solar combisystems,

the fractional solar consumption (FSC) was developed in (Letz et al., 2009). This research study

showed that the design of solar thermal combisystems has an impact on their thermal performance.

An economic analysis for a given solar combisystem was performed in (Ataei et al., 2009). The

solar collector surface area was varied to find an optimal value, which led to a payback period of

5.4 years and 86 years, depending on the natural gas price considered (i.e., subsidized or not).

The influence of thermal storage volume dimensions on the solar combisystem performance was

investigated in (Lundh et al., 2010) using TRNSYS. Well-insulated storage tanks were found to

be insensitive to their geometry. External auxiliary volumes yielded lower energy savings than an

external auxiliary heater using the thermal storage tank as a thermal buffer.

The impact of bikini and tank-in-tank stores on the thermal performance of solar combisystem

was assessed in (Yazdanshenas & Furbo, 2010). Low flow bikini tanks were found to be promising

for low energy buildings, while tank-in-tank stores were more suitable for houses with medium or

high energy demands.

The economic and environmental impact of the auxiliary heat source (as, electricity, biomass,

and coal) for a solar combisystem was investigated in (Yan & Li, 2012). Biomass was found to be

the more favorable according to both criteria for northern China.

The effect of different charge and discharge strategies for the storage tank on the thermal

performance of solar combisystems was studied in (Glembin & Rockendorf, 2012) using TRNSYS.

The simulations revealed that installing three-way valves in both solar collector and heating loops

to improve thermal stratification was not worthwhile.
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A solar combisystem, using a 100 kW pellet boiler as an auxiliary heater, installed in a 4-story

apartment building in Latvia was analyzed in (Z̆andeckis et al., 2013). Emphasis was put on the

boiler’s efficiency, which was increased by adjusting its operational parameters based on the results

of laboratory tests.

A hybrid model predictive controller for the auxiliary heating of a solar thermal combisystem,

developed in TRNSYS, was presented in (Pichler et al., 2014). Equipped with one thermal storage

tank using a stratifying device and two external heat exchangers (EHXs), on the solar flat collector

and DHW loops, a reduction of auxiliary energy demand up to 40% was achieved.

Nine different sized solar combisystems were simulated in (Martinopoulos & Tsalikis, 2014),

which revealed that solar combisystems present a viable solution towards net zero energy building

(NZEB) in Greece. The solar combisystem configuration was composed of one thermal storage

tank with two internal heat exchangers (IHXs), on the solar flat-plate collector and SH loops. The

minimum solar contribution among all the four climatic zones studied was 45% of the total heating

loads, which led to a payback period of 4.5 years and a reduction of CO2 around 50 tons.

The performance of a pellet and solar combisystem at four different temperature ranges for

space heating was studied in (Z̆andeckis et al., 2016) using TRNSYS. Results showed that reducing

the SH temperature increases solar gains and diminishes CO emissions.

The potential of a direct solar integration into the space heating circuit for solar thermal com-

bisystems, instead of a storage tank to store thermal energy, was investigated in (Glembin et al.,

2016) using TRNSYS. In such a configuration, flat-plate collectors can be connected only to the

tank or to both tank and indoor heating distribution system. Three different configurations were

studied based on a prototype installed in Germany. For a solar fraction of approximately 50%, di-

rect integration was able to reduce the thermal storage volume by three compared to a conventional

solar combisystem.

Two thermal storage tanks

A residential solar thermal combisystem, based on the configuration no. 14 of Task 26, was studied

in (Leckner & Zmeureanu, 2011) using TRNSYS. The shortest financial payback was higher than

the life expectancy of the house; however, an energy payback time varying between 7.5 and 9.5

years, depending on the number of flat-plate collectors, was achieved.
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A preliminary study for solar combisystem potential in the four main climates regions of Canada

was investigated in (Asaee et al., 2014). For each climate, varying the normalized tank volume

(volume/baseline volume) showed a maximum annual solar fraction value. Solar fraction was

found to decrease if the storage tank volume exceeds available solar energy. Savings within 70-

80% highlighted the benefits of solar combisystems.

A techno-economic feasibility of retrofitting solar combisystems to houses in Canada was per-

formed in (Asaee et al., 2016). Results showed that approximately 40% of houses in the Canadian

housing stock are eligible for solar combisystem retrofit, which would reduce the annual energy

consumption and GHG emissions by about 19%, if all houses were retrofitted.

Seasonal thermal storage

A solar thermal combisystem equipped with a seasonal storage tank was studied in (Hugo et al.,

2010). Results showed that the initial embodied energy was recovered within six years, no matter

the type of solar collectors being used; however, the financial payback period was between 26 and

55 years, depending on the type of solar collectors, lack of substantial financial incentives, and low

electricity price.

A commercial developing prospect of solar heating combisystems with seasonal heat storage for

district heating in China was conducted in (Ruicheng & Jingjingm, 2015). Such systems were found

to be more suitable in the north-west of China where larger uncultivated lands and solar resources

are available.

A life cycle analysis of a low-energy single-family house in Ireland, equipped with a solar com-

bisystem, was presented in (Colclough & McGrath, 2015). The solar combisystem has one 300 L

DHW tank and one seasonal thermal storage tank. Among the different configurations tested, the

use of both solar thermal collectors and photovoltaic panels was the most attractive option with

an energy savings of 28,763 MJ and a payback period of approximately 8.4 years.

Recent research activities

Different configurations have been tested over the past twenty years to improve the overall perfor-

mance of solar thermal combisystems. Recent research activities have focused on: (i) solar thermal

combisystems with a more efficient storage (Mette et al., 2013); (ii) solar thermal combisystems
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equipped with a heat pump (Deng et al., 2013; Poppi, Bales, Haller, & Heinz, 2016; Poppi, Bales,

Heinz, et al., 2016; Schimpf & Span, 2015; ur Rehman et al., 2016), (iii) solar combi-plus systems for

cooling needs (Bahria et al., 2016); and (iv) solar thermal combisystems using photovoltaic/thermal

(PV/T) hybrid solar collectors to produce electricity (Hazami et al., 2017).

The performance of a solar thermal combisystem using thermochemical energy storage (where

heat is stored in a reversible chemical reaction instead of a temperature difference) was studied

in (Mette et al., 2013) using TRNSYS for a building located in Germany. Emphasis was put

on a regeneration process for the thermochemical energy storage to increase the solar thermal

combisystem’s efficiency (an increase of 6.1% of the fractional energy saving was achieved).

A solar combisystem equipped with a carbon dioxide heat pump was developed in (Deng et al.,

2013) using TRNSYS. An average coefficient of performance (COP) value of 2.38 and a solar faction

of 69% for the entire heating season was achieved for Shanghai after a parametric optimization.

An economic feasibility of a solar thermal combisystem coupled with a heat-pump organic

Rankine cycle system was conducted in (Schimpf & Span, 2015). Their results indicated that the

organic Rankine cycle operation reduces the net electricity demand from the grid while mitigating

the potentially harmful stagnation of the solar collector loops in a cost-effective way.

An air source and solar thermal heat pump combisystem was developed in (Poppi, Bales, Haller,

& Heinz, 2016; Poppi, Bales, Heinz, et al., 2016) using TRNSYS for Carcassonne and Zurich.

Heat pumps losses were shown to be an important factor to take into account. Results also show

that variations in electricity price affects the additional investment limit far more than the other

economic parameters.

A parametric study of a solar combi-plus system was conducted for different houses and climates

of Algeria using TRNSYS in (Bahria et al., 2016). A solar fraction greater than 45% was achieved

with optimal parameters.

An energetic, exergetic, and economic analysis of a solar thermal combisystem equipped with

PV/T hybrid solar collectors was conducted in (Hazami et al., 2017) using TRNSYS. Under the

Tunisian climate, a payback period of 10.2 years was found with an annual energy saved of 7,618.3

kWh/year.
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Experimental-based studies

Building performance simulations rely on mathematical models, which must be verified and vali-

dated to be used. The validation process assures models’ accuracy by way of a comparison with

experimental data. Models are thus similar to but simpler than systems they represent (Maria,

1997).

One thermal storage tank

An energy analysis of an experimental solar thermal combisystem was performed in (Kaçan & Ulgen,

2012). Experiments were conducted to verify and increase the solar combisystem’s performance,

which led to an annual FSC value of approximately 83%. An energetic and exergetic analysis of

a solar combisystem was performed in (Kaçan & Ulgen, 2014), based on an experimental setup

built in Turkey. Tank volume was found to be one of the most important parameters to save

energy effectively and avoid excessive energy production. Depending on the climatic conditions,

system components, system efficiencies and energy demand, 10% to 100% of the energy demand was

covered by the solar combisystem. The effect of the exergetic efficiency of some solar combisystem

components on the overall system exergetic efficiency was assessed in (Kaçan, 2015) by using a

combination of response surface method and central composite design. A net exergetic efficiency

of 11.95% was achieved for the entire solar combisystem by finding the optimum values for each

component.

Seasonal thermal storage

An analysis of the solar thermal market in Latvia was conducted in (Z̆andeckis et al., 2011), followed

by a data analysis of a solar combisystem implemented in a multi-family building. Reducing the

use of natural gas by installing solar combisystems should ensure a more stable price for DHW

and SH needs. An optimization was mentioned in order to enhance the performance of the solar

combisystem since data showed that it was not working in the most efficient way.

Experimental data from a solar thermal combisystem, installed in Ireland, were used to calibrate

a TRNSYS model in (Clarke et al., 2014). Afterwards, a parametric analysis was performed which

showed that increasing the collector area from 10.6 m2 to 20.0 m2 could increase the total solar
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fraction from 47% to 67%, decreasing fossil-fuel-derived energy demand by up to 30%.

Manufacturers’ solar combisystem configurations

The characteristics of several solar thermal combisystem configurations were presented at a confer-

ence held by Affordable Comfort, Inc. (Home Performance Coalition, 2012). Out of five configura-

tions, two were similar to those used in (Ng Cheng Hin & Zmeureanu, 2014) and (Martinopoulos &

Tsalikis, 2014). The use of two thermal storage tanks or external heat exchangers are not common

practice. Two configurations used an internal boiler.

A collaboration with Viessmann (S. Royce, personal communication, March 2014) and Stiebel

Eltron (E. Wilson, personal communication, April 2014), which are two of the leading international

manufacturers of solar water heating technology, showed that one or two thermal storage tanks are

viable. Each of the configurations proposed by the manufacturers use the hot water within the

thermal storage tank for DHW purposes. Space heating is mainly ensured by an immersed heat

exchanger; however, Viessmann proposes two configurations where no heat exchanger or an external

one can be used on the SH loop side. The solar configuration proposed by Stiebel Eltron has no

equivalent among the 21 generic solar thermal combisystems considered by Task 26, except the

generic solar combisystem no. 14 that shares however similar characteristics. The main difference

between the two configurations is the solar collector loop, which is equipped with an internal

(Stielbel Eltron) or an external heat exchanger (no. 14). The Viessmann group proposes four

different solar combisystem configurations. The Viessmann configuration no. 1 is similar to the

generic solar combisystem no. 4 of Task 26; however, the former uses one dual-coil storage tank,

whereas the latter employs three immersed heat exchangers. The generic solar combisystem no. 9

is the most analogous to the Viessmann solar combisystem no. 2. Nonetheless, the DHW storage

tank in the generic solar combisystem no. 9 is built in the space heating storage tank (i.e., a

tank-in-tank). The Viessmann solar combisystem no. 3 and no. 4 have no equivalent among the

solar combisystems reported in Task 26.

2.1.2 Optimization of solar combisystems

An optimization of a simulation-based solar combisystem was performed in (Bornatico et al., 2012)

using MATLAB (MATLAB, 2017). Three objective functions (solar fraction, energy use, and cost
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of the installation) were agglomerated into one global objective function, then a single-objective

optimization algorithm was used to optimize the sizing of the given combisystem configuration.

The fluid mass flow rate in the solar collector and storage loops of a solar thermal combisystem

was optimized in (Kusyy & Vajen, 2012) using TRNSYS and GenOpt (Wetter, 2011), an optimiza-

tion software. An improvement of only 0.3 percent points for the thermal fractional savings was

achieved by reducing the fluid mass flow rate from 30 L/(h·m2
coll) to 10 L/(h·m2

coll).

A hybrid particle swarm optimization/Hooke and Jeeves (PSO/HJ) algorithm was used in (Ng

Cheng Hin & Zmeureanu, 2014) to minimize the life cycle cost, life cycle energy use, and life cycle

exergy destroyed of a solar thermal combisystem in an energy efficient house in Montreal, Canada.

The result show that the life cycle cost, life cycle energy use, and life cycle exergy destroyed were

reduced by 19%, 34%, and 33%, respectively.

2.2 Multi-objective optimization

Any optimization problem formulation has at least three components: (i) one or several objective

functions, (ii) a set of decision variables, and (iii) a set of constraints for the objective functions and

decision variables. Multi-objective optimization (MOO) problems intend to determine the optimum

feasible sets of values of decision variables, which minimize or maximize at best objective functions

while respecting all constraints. MOO problems can be formally formulated as follows:

min
x∈D

(
or max

x∈D

)
F (x) (2.1)

where x is the decision vector (composed of decision variables); F (x) and D are the function vector

and decision search space defined as:

F (x) = [f1(x), f2(x), . . . , fM (x)] (2.2)

X = {x ⊂ Rn | lj ≤ xj ≤ uj , j ∈ {1, . . . , n}} (2.3)

with −∞ ≤ lj < uj ≤ ∞ for all j ∈ {1, ..., n}; M is the number of objective functions; n is the

number of decision variables; lj and uj are the lower and upper limits of the j-th decision variable,

respectively.
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Determining an optimal solar combisystem design implies finding a set of values of the decision

variables x∗ ∈ D that optimizes the function vector F (x), while satisfying all the constraints.

As explained by the duality optimization principle (Ravindran et al., 2006), any maximization

optimization problems can be turned into minimization ones by multiplying their objective functions

by (−1). Without loss of generality, it is assumed that all future objective functions must be

minimized. Such optimization problems do not have a unique optimal solution, but rather a set of

trade-off optimal solutions, known as Pareto solutions.

Most of the multi-objective optimization problems involve conflicting objective functions (R. Yang

& Wang, 2012), where it is impossible to make the most of each objective function with the same

decision vector x. Therefore, multi-objective optimizations aim at finding solutions where any im-

provement of an objective function can be made without degrading the others. This concept is

known as Pareto optimality. For any multi-objective optimization problem defined by Equation

2.1, a decision vector x1 in the decision search space D is said to be Pareto optimal if, and only if,

for all x2 ∈ D,

1. fm (x1) ≤ fm (x2) for all m ∈ {1, . . . ,M}; and

2. fm (x1) < fm (x2) for at least one m ∈ {1, . . . ,M}.

If x1 is Pareto optimal, then x1 can be written x∗1 and is said to dominate any x2, which is

expressed as x∗1 ≺ x2. A set of Pareto optimal solutions, or simply Pareto solutions, is referred to

as Pareto front. The Pareto front associated with a multi-objective optimization problem is the set

P ∗ such that P ∗ ∈ D and for all x∗1 ∈ P ∗, there is no x∗2 ∈ P ∗ such that x∗2 ≺ x∗1.

2.2.1 Main issues of multi-objective optimizations

Any multi-objective optimization aims at finding the optimum feasible non-dominated solutions

according to all the objective functions involved (i.e., the Pareto front). Since objective functions are

evaluated by external BPS programs for solar thermal combisystems, additional issues arise in the

optimization search. These issues are then added to common existing multi-objective optimization

challenges.
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Intercommunication

Communication between BPS programs and multi-objective optimizers is not without difficulties.

Communication involves an information source, which sends a message to a receiver. The objective

of such a process is to exchange information, and therefore receivers must understand messages.

Coupling a building performance simulation software with an optimizer requires that they are both

information source and receiver. As mentioned in (Wetter, 2004), objective functions evaluated

by most of the BPS programs – that have been developed so far – have discontinuities (e.g.,

discontinuities due to iterative solvers which cannot find an accurate approximate solution). Since

optimization optimizers depend on the properties of objective functions, optimization methods need

to take this problem of discontinuities into account.

Multi-dimensional optimizations

Decision variables can be seen as the degree of freedom of the problem to be optimized. The

more decision variables are used, the more difficult multi-objective optimization problems become

(Mahdavi et al., 2015). The curse of dimensionality, also known as Bellman’s curse of dimensionality,

refers to difficulties that occur when the size of an optimization problem increases. For instance,

if the design of a solar combisystem is defined by nine decision variables, each able to take on 10

different values, one billion possibilities must be considered to know all the Pareto solutions. Even

though constraints make some possibilities unfeasible, a considerable amount of time is required to

test all decision vectors.

Selection of optimizers

Selecting a suitable optimizer is a key step in multi-objective optimization problems. The No Free

Lunch theorem for search and optimization, introduced in (Wolpert & Macready, 1997), states that

“all optimization algorithms are equivalent when their performance is averaged across all possible

problems”. In other words, there exists no optimization algorithm able to outperform all others

in all multi-objective optimization problems. Accordingly, optimization algorithms are problem-

dependent. For this reason, the challenge is to select the most suitable optimization algorithm for

a given multi-objective optimization problem.
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2.2.2 Multi-objective optimization methods

As mentioned in Section 2.2.1, the performance of an optimizer strongly depends on the optimiza-

tion problem it is applied to. As a result, this section introduces different optimization methods

in order to define the most suitable for the multi-objective optimization of solar combisystems.

As mentioned in (Nguyen et al., 2014), optimization algorithms can be classified as: determinis-

tic or stochastic, derivative-based or derivative-free, bio-inspired or non-bio-inspired, and so on.

Since building performance simulation programs can entail discontinuities in objective functions,

derivative-based algorithms are not suitable for optimizing solar thermal combisystems and are

not considered herein. Among derivative-free algorithms, two methods have been mainly used for

solving multi-objective optimization problems (Machairas et al., 2014): (i) classical, and (ii) non-

classical methods. The term non-classical is used as opposed to classical, which is taken from (Deb,

2001).

Classical methods

An overview of the main classical methods used for multi-objective optimization problems are pre-

sented herein. The idea behind all of the following methods is to turn multi-objective optimization

problems into single objective ones.

Weighted Sum Method

The weighted sum method (WSM) is one of the most widely used method for multi-objective

optimizations (Kim & de Weck, 2006; Marler & Arora, 2010). The WSM consists of aggregating

all objective functions of a MOO problem into only one global objective function, in which each

objective function is assigned a weight as follows (Deb, 2001):

z(x) =

M∑
m=1

wm · fm(x) (2.4)

where z(x) is the global objective function; wm is the weight assigned to the m-th objective function

fm(x).

The WSM gives importance to one or more criteria by increasing their respective weights com-

pared to the others. Nevertheless, this method has five main disadvantages: (i) one optimization
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run leads to only one Pareto solution; (ii) time-consuming for approximating a Pareto front; (iii)

the combination of weights are difficult to select; (iv) different weight vectors do not necessarily

lead to different Pareto points; (v) some Pareto solutions in non-convex search domains cannot be

found.

ϵ-constraint method

The ϵ-constraint method focuses on one of the selected objectives, while the rest of them are set as

constraints. Proposed in (Haimes et al., 1971), the optimization problem is formulated as:

min
x ∈ D

fl(x)

subject to

fm(x) ≤ ϵm, ∀m ̸= l

(2.5)

Unlike the WSM, the ϵ-constraint method can find Pareto solutions in non-convex regions;

however, the Pareto solutions strongly depend on the selection of the ϵ-vector which requires infor-

mation about the selected objectives. Thus, the ϵ-constraint method belongs to a priori methods,

that is to say methods implying previous knowledge about the selected objective functions. One

optimization run still leads to only one Pareto solution. Therefore, like the WSM, the ϵ-constraint

method is time-consuming for approximating a Pareto front.

Non-classical methods

Non-classical methods, as opposed to classical ones, use multi-objective optimization algorithms

which can directly deal with MOO problems. Two main families of non-classical methods are intro-

duced herein because of their current popularity and effectiveness (Britto & Pozzo, 2014; Pasandideh

et al., 2013; Y. Zhang et al., 2011): (i) evolutionary algorithm, and (ii) swarm intelligence.

Evolutionary algorithms

Evolutionary algorithm (EA) is a generic term used to designate any population-based metaheuris-

tic optimization algorithms, of which the search process consists in imitating natural selection.

Evolutionary algorithms are hence inspired by evolution. At each generation, the best individuals
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(i.e., candidate solutions) are selected, based on their fitness, and go through operators such as

reproduction, recombination, and mutation to engender the next generation. Over the generations,

the population evolves and becomes more suitable for the given optimization problem.

As mentioned in (Evins, 2013; Nguyen et al., 2014; Roy et al., 2008), the most popular evo-

lutionary algorithms are genetic algorithms (GAs), whose concept was first introduced by John

Holland at the University of Michigan in the 1970s (Luke, 2015). The working principle of genetic

algorithms is shown in Figure 2.1.
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Figure 2.1: Flowchart of the GA process

GAs start with an initial population of individuals, which can be initialized through three

different mechanisms: (i) random, (ii) seeded, or (iii) mixed selections. The first uses a pseudo

random number generator to create the initial population, whereas the second assigns a user-

defined candidate solution to each individual. The last is a mix of the first two mechanisms.

Once the initial population is created, the individuals are evaluated to know their fitness. One or

more termination criteria are implemented to ensure conditions under which the algorithm stops

execution. For example, a user-defined percentage of the individuals converging to the same solution

or a maximum number of generations can be set as termination criteria. If these conditions are
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not met, the best individuals (i.e., solutions having the fittest fitness) are selected for reproduction.

These individuals undergo recombination and mutation operators to generate offspring. These new

individuals, often called children, replace those from the initial population having the fittest fitness.

This procedure continues until one of the termination criteria is met.

Genetic algorithms are single objective optimizers, and therefore they cannot directly handle

MOO problems. To overcome the disadvantages of the classical methods, multi-objective evolu-

tionary algorithms (MOEAs) have been developed. Based on (Goldberg, 1989), a multi-objective

version of genetic algorithms, named nondominated sorting genetic algorithm (NSGA), was in-

troduced in (Srinivas & Deb, 1994). Since then, this multi-objective genetic algorithm has been

improved in (Deb et al., 2002), which is referred to as NSGA-II, and applied to buildings-related

problems (Chantrelle et al., 2011; Magnier & Haghighat, 2010; Wang et al., 2005). It has thus

become one of the most commonly used approaches for MOO problems (Ghiasi et al., 2011; Roy et

al., 2008). A more recent version, named NSGA-III, was proposed in (Deb & Jain, 2014) in order

to handle many-objective optimization problems. Many-objective optimization problems (i.e., four

up to 15 objectives) is one of the most recent research activities, which has led to GrEA (S. Yang

et al., 2013), KnEA (X. Zhang et al., 2015), or EFR-RR (Yuan et al., 2016). Each of them has

proved their effectiveness and competitiveness compared with other MOO algorithms on benchmark

problems with six or more objectives. Since four objective functions are considered in this thesis

for optimizing solar thermal combisystems, such MOO algorithms are not taken into account.

Swarm intelligence

As mentioned in (Luke, 2015), swarm intelligence algorithms are somewhat similar to EAs; however,

they differ in their philosophy, since they are modeled after swarming behaviors in animals. Swarm

intelligence algorithms do not use any selection mechanism. All particles at the end of the search

process are the same as the ones in the initial population, they only moved through the search

space. Although more and more swarm intelligence algorithms come into beings, such as artificial

bee colony, bat algorithm, or even wolf search, particle swarm optimization (PSO), remains the

most widely used swam intelligence algorithm (Fister et al., 2013; Peyvanddi et al., 2011; Shakerian

et al., 2011).
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Particle swarm optimization

Particle swarm optimization is a population-based stochastic optimization algorithm presented in

(Kennedy & Eberhart, 1995). PSO solves single-objective problems by mimicking the collective

behavior of certain animal species searching for food, such as flocks of birds or schools of fish.

Each candidate solution is called a particle, which is characterized by its position and velocity.

The former corresponds to a vector of decision variables, while the later represents the speed and

direction at witch a particle is moving from one location to another. At each iteration, also called

generation, each particle’s velocity is updated based on its own memory and that of the entire

swarm. The particle’s position is then tweaked to find a better location that is, a decision vector

leading to a decrease of the selected objective function’s value. Each particle memorizes its position

having the lowest objective function value, which is stored in P best. The lowest objective function

value of the whole swarm is stored in Gbest. Therefore, each particle flies through the search space

by using its best experience and that of the entire swarm, as depicted in Figure 2.2. The update

pattern of each particle is given by (Shi & Eberhart, 1998):

vji (t+ 1) = w(t) · vji (t) + ϕ1(t) · c1(t) ·
[
P best
i (t)− xji (t)

]
+ ϕ2(t) · c2(t) ·

[
Gbest(t)− xji (t)

]
(2.6)

xji (t+ 1) = xji (t) + vji (t+ 1) (2.7)

where vji is the velocity of the i-th particle for the j-th decision variable; w is the inertia weight;

ϕ1 and ϕ2 are positive random numbers between zero and one; c1 and c2 are the cognitive and

social coefficients, respectively; P best
i is the best position of the i-th particle; Gbest is the global best

position (i.e., the best position found by the entire swarm); xji is the position of the i-th particle

for the j-ith dimension; t is the generation index.
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Figure 2.2: Representation of the PSO pattern

As reported in (Deb, 2001), multi-objective optimization algorithms usually derive from a single-

objective version. PSO has proved to be effective at solving single objective optimization problems

in several studies (Bornatico et al., 2012; Coelho et al., 2005; Hasni et al., 2011; Wetter & Wright,

2004). Unlike GA, PSO does not have many user-defined parameters to be tuned and its concept

is easy to implement. As a result, special attention is paid to multi-objective particle swarm

optimization (MOPSO), which is the multi-objective version of PSO.

Multi-objective particle swarm optimization

A proposal extending the PSO algorithm to solve multi-objective optimization problems was pre-

sented in 2002 (Coello Coello & Lechuga, 2002). The authors called this proposal MOPSO, which

stands for multi-objective particle swarm optimization. At that time, using the PSO concept for

MOO problems was innovative, as only two other proposals were related to this possibility (Moore

& Chapman, 1999; Ray et al., 2001). Since MOO problems do not have a unique optimal solution,

but rather a set of Pareto solutions, three main issues arose in extending PSO (Reyes-Sierra &

Coello Coello, 2006):

1. How to select particles (to be used as leaders) in order to guide the optimization search?

2. How to retain a well spread set of non-dominated solutions?

3. How to maintain diversity in the swarm to avoid converging to local minimums?
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Although MOPSO was first introduced in (Coello Coello & Lechuga, 2002), an improved version

published by the same authors in (Coello Coello et al., 2004) is often considered in the specialized

literature as the original MOPSO. Therefore, the next paragraphs focus on how this improved

version answered the three aforementioned questions.

Leader selection

The strength of MOPSO lies in its external archive, named repository. Non-dominated solutions

found during the optimization search are stored in the repository. To ensure diversity, an adaptive

grid taken from (Knowles & Corne, 2000) divides the repository into hypercubes, based on the

value of each objective function found so far. The repository can be viewed as a matrix, where

each hypercube is associated with a row and column number. Each Pareto solution is stored using

these hypercubes. The hypercubes having more than one particle are assigned a fitness equal to the

ratio of a fixed number, e.g., equal to 10 in (Coello Coello et al., 2004), to the number of particles

that it contains. The fitness assigned to a hypercube is thus inversely proportional to the number

of particles that are within the hypercube. For example, if a hypercube contains 20 particles, its

fitness is equal to 0.5 (i.e., 10 divided by 20). The global best solution Gbest, which serves as a

leader, is then chosen by using the roulette-wheel selection based on the calculated fitness values

of all hypercubes. Therefore, the non-dominated solutions located in the less crowded regions of

the repository have a higher probability to be selected to guide the swarm.

Retaining non-dominated solutions

The size of the repository, which is a user-defined parameter, is limited. As a result, some solutions

must be removed when the repository reaches its maximum capacity. Since the repository contains

only non-dominated solutions, the roulette-wheel selection based on the calculated fitness values of

the hypercubes is used to maintain the size of the repository. Non-dominated solutions located in

the less crowded hypercubes are more like to remain in the repository to obtain a well spread set of

solutions. So, the non-dominated solutions located in the more crowded regions of the repository

are more likely to be removed.
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Maintaining diversity

MOPSO uses a mutation operator to increase its exploration, and therefore maintains diversity.

The mutation operator acts on both the particles and the range of each decision variable. At

the beginning, it acts on all the particles and covers the full range of each design variable. As

the number of generations increases, fewer and fewer particles are mutated and the range of each

decision variable being mutated is narrowed using a non-linear function. The mutation operator

aims at exploring remote regions of the search space and ensure that the full range of each decision

variable is explored, so as to prevent premature convergence. The working principle of the MOPSO

algorithm presented in (Coello Coello et al., 2004) can be illustrated as shown in Figure 2.3.
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Figure 2.3: Flowchart of the MOPSO process
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Other MOPSO versions

Since (Coello Coello et al., 2004), many other versions of the multi-objective particle swarm op-

timization algorithm have been proposed. The inertia weight and acceleration coefficients were

decrease linearly though generations in (Tripathi et al., 2007). The leader selection was modified

in (J. Yang et al., 2009) using the Sigma method to have a better trade-off between convergence

and diversity. A comparison of some improving strategies for MOPSO was conducted in (Moslemi

& Zandieh, 2011). A multi-swarm cooperative MOPSO was proposed in (Y. Zhang et al., 2011) to

local multiple optima, and therefore increase diversity. To avoid premature convergence, a MOPSO

using Gaussian distribution sequences to generate random numbers was presented in (Zeng & Sun,

2014). An adaptive MOPSO using parallel cell coordinate system was developed in (Hu & Yen,

2015) to overcome the main issues of the previous MOPSO versions.

Most of the research studies on MOPSO or other MOO algorithms focused only large population

size. Little emphasis has been placed on micro-MOO algorithms, which use a small population

of solution candidates. Such algorithms are suitable for optimization problems where evaluating

objective functions is time-consuming, which is the case of many engineering applications such

as aeronautical or building engineering problems (Fuentes Cabrera & Coello Coello, 2010). A

micro-genetic algorithm for multi-objective optimization, named micro-GA, was proposed in (Coello

Coello & Pulido, 2001), and then improved in (Pulido & Coello Coello, 2003). Another micro-MOO

algorithm, called micro-MOPSO, was presented in (Fuentes Cabrera & Coello Coello, 2010), which

was a micro version of the MOPSO algorithm. To the best knowledge of the author, none of them

has been used in building engineering and no further research has been conducted on micro-MOO

algorithms.

2.3 Summary of previous research studies

This literature review highlighted trends in both the solar combisystem and multi-objective opti-

mization fields. Even if seven out of the 21 generic solar combisystem configurations considered by

Task 26 implied more than one storage tank, most of the research studies involved only one. Using

two storage tanks (i.e., one dedicated to DHW preparation and the other to space heating needs)

appears more common nowadays based on recent studies (Asaee et al., 2014, 2016; Ng Cheng Hin
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& Zmeureanu, 2014) as well as the Stiebel Eltron and Viessmann configurations. No conclusion can

be drawn about using one or two thermal storage tanks based on (Home Performance Coalition,

2012). Most research studies used hot water within storage tanks for space heating needs (Ataei et

al., 2009; Lund, 2005; Lundh et al., 2010). DHW preparation is therefore mainly done through an

immersed heat exchanger. Nonetheless, some studies (Leckner & Zmeureanu, 2011; Raffenel et al.,

2009) as well as the solar combisystem configurations proposed by Viessmann or Stiebel Eltron do

not use a heat exchanger in the DHW loop (i.e., hot water within thermal storage tanks is dedi-

cated to DHW needs), neither four out of five SCS configurations presented in (Home Performance

Coalition, 2012). The most suitable type and operating mode of auxiliary heaters are difficult

to determine. Based on the previous research studies as well as manufacturers configurations, an

external water heater using a thermal storage tanks as a buffer seems to be preferred to an internal

one (i.e., integrated within thermal storage tanks), based on the previous research studies as well

as manufacturers configurations.

Solar combisystem designs have been analyzed over the past 20 years, but only a few studies

focused on the impact of their possible configurations. Thus, most research studies focused on sizing

a preselected solar combisystem configuration. Information collected from the literature review and

manufacturers unveiled that many choices are available to select a solar combisystem configuration.

However, to the best knowledge of the author, no studies have focused on the way of selecting a

solar combisystem configuration. The emphasis was put on thermal storage tanks due to their

key role in solar thermal combisystems; however, the use of stratifying devices or external heat

exchangers also varies from one study to another.

The literature review showed that most of the solar thermal combisystem studies were simulation-

based. TRNSYS was found to be the most widely used BPS software for solar combisystems. One

of the main reasons of such a success around the world is its capability to solve complex problems

by coupling subroutines that model subsystem components (Beckman et al., 1994). As a result,

TRNSYS is selected in this thesis for evaluating the overall performance of solar thermal com-

bisystems. BPS models reply on mathematical models, which must be validated by comparing

with experimental data before drawing any conclusion. However, no model validation procedures

were conducted in the previous experimental-based research studies. No uncertainty analyses were

conducted. This literature review revealed a lack of methodology for studying solar combisystems
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from data collection to simulation.

On the optimization side, no multi-objective optimizations of solar combisystems have been

conducted to provide a set of Pareto solutions. The previous optimization research studies were

performed using single-objective optimization algorithms. Many multi-objective optimization algo-

rithms have however been developed in the specialized literature. Nevertheless, little emphasis was

put on MOO algorithms using a small population size, referred to as micro-MOO algorithms. Such

optimization algorithms are however of special interest in engineering where evaluating objective

functions with an external program (such as TRNSYS) can be time-consuming.

In conclusion, this literature review unveiled research areas for improvement, either in solar

combisystem or in optimization fields. Solar combisystems have been analyzed over the past 20

years, but only a few studies focused on their configurations. In the past, designing a solar combisys-

tem was done by preselected a combisystem configuration, and then sizing its main components.

No guideline is available to select the configuration of solar combisystems. Optimization methods

were applied to enhance the performance of solar thermal combisystems; however, each objective

was studied separately without taking into consideration that they are conflicting. Even though

optimization methods become more and more popular, no multi-objective optimization frameworks

have been proposed and used for solar thermal combisystems. As a result, the next section presents

the main objectives of this thesis to overcome some of the aforementioned problems.

2.4 Objectives of this thesis

Designing a solar combisystem requires selecting a configuration, and then sizing all its components;

however, previous research studies focused mainly on sizing solar combisystems. Attention has not

been paid on the impact of configurations on the overall performance of solar thermal combisystems.

This literature review also revealed that few studies used optimization to enhance the whole

performance of solar thermal combisystems. No multi-objective optimizations has been conducted

to provide a set of optimized solar combisystem designs. Solar thermal combisystems were treated

as single-objective optimization problems instead of multi-objective optimization ones.

Although different multi-objective optimization methods were developed, little emphasis has

been placed on micro multi-objective optimization algorithms, which can be useful in building
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engineering when evaluating objective functions is time-consuming.

Finally, no multi-objective optimization framework has been developed to solve problems where

objective functions are evaluated by an external software. Consequently, the main research objec-

tives of this thesis are to:

1. Develop a multi-objective optimization framework for optimizing solar combisystems;

2. Improve a micro multi-objective optimization algorithm to solve problems involving time-

consuming objective function evaluations;

3. Apply the developments of items 1 to 2 to optimize the configuration and sizing of solar

combisystems of two case studies;

4. Develop a methodology for optimizing solar combisystems: from data collection to optimiza-

tion (through Case study no. 2).
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Chapter 3

Preliminary study: comparison of multi-

objective optimization methods1

The main advantages of non-classical optimization methods over classical ones are illustrated in

this chapter with the equipment sizing of a residential solar thermal combisystem, which is treated

as a two-objective optimization problem. The optimization problem is first defined, followed by an

optimization with the classical and non-classical optimization method. A hybrid of the non-classical

method is then introduced, which highlights a need of a multi-objective optimization framework,

using an efficient micro multi-objective optimization algorithm, for optimizing solar combisystems.

3.1 Solar combisystem optimization problem

This preliminary study aims at reducing the life cycle cost (LCC) and life cycle energy (LCE) of a

residential solar combisystem, whose model was developed in (Leckner, 2008) using the TRNSYS

environment. Each of these objective functions was optimized, one at a time, in (Ng Cheng Hin

& Zmeureanu, 2014) using a hybrid PSO/HJ algorithm. This previous research study approached

the optimization of the residential solar combisystem as a single-objective problem, which led to

only one solution per objective.

Multi-objective optimizations offer the advantage, over single-objective ones, of providing infor-

mation to decision makers for better compromised decisions. Solar combisystems should therefore

be approached as MOO problems where both the selection of a configuration and its sizing are

1This chapter is mainly based on the paper “Rey, A., & Zmeureanu, R. (2016). Multi-objective optimization of a
residential solar thermal combisystem. Solar Energy, 139, 622-632. doi: https://doi.org/10.1016/j.solener.2016
.10.008”
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considered. For the sake of simplicity, the configuration of the residential solar combisystem is not

taken into account in this preliminary study.

Figure 3.1 shows the scheme of the solar thermal combisystem used in this preliminary study.

This residential solar combisystem, developed in (Leckner, 2008), will serve as an initial design

solution in Chapter 8, where the multi-objective optimization framework proposed in this thesis

is used for the selection of a configuration and its equipment sizing. More information about the

residential solar combisystem is provided in Section 8.1, which enables emphasis to be placed on

multi-objective optimization methods in this chapter.

Figure 3.1: Scheme of the solar combisystem modeled in (Leckner, 2008)

Both the LCC and LCE objective functions are taken from (Ng Cheng Hin & Zmeureanu, 2014).

The LCC objective function, expressed in present-value dollars, comprises three components: (i)

the initial cost of all components, (ii) their replacement cost, and (iii) the operating cost during

the entire life cycle, which is set to 40 years. The LCE objective function takes into account: (i)

the embodied energy of different parts of the solar thermal combisystem, and (ii) the amount of

electricity used for operation during the entire life cycle.

Each of these two objective functions depends on decision variables. Table 3.1 reports the eight

decision variables of the residential solar combisystem selected for the optimization, along with

their acceptable range of variation, which are taken from (Ng Cheng Hin & Zmeureanu, 2014).
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Table 3.1: List of the main TRNSYS types used for the generic solar combisystem model

Decision variable Acceptable range

Number of collectors [-] 1-22
Solar collector slop [degree] 0-90
Heat-transfer fluid mass flow rate per collector area [kg/(h·m2

coll)] 10-115
DHW tank volume [L] 100-1,000
Radiant floor tank volume [L] 300-30,000
DHW heater auxiliary power [kW] 0.5-5
Radiant floor tank heater auxiliary power at high location [kW] 0.5-10
Radiant floor tank heater auxiliary power at low location [kW] 0.5-15

A penalty function is added to each objective function if the total number of hours under the

heating set point, calculated for each thermal zone of the house, is greater than a maximum limit of

550 hours. Such an penalty function ensures acceptable comfortable indoor air temperature. More

information about the optimization problem can be found in (Rey & Zmeureanu, 2016).

MOO problems can be optimized using classical or non-classical optimization methods. So far,

the former has been preferred over the latter despite some disadvantages mentioned in Section 2.2.2.

Benefits of using non-classical optimization methods for optimizing solar combisystems are shown

here by comparing: (i) the weighted sum method (WSM) using a hybrid PSO/HJ algorithm, and

(ii) the multi-objective optimization particle swarm optimization (MOPSO) algorithm.

3.2 Weighted sum method using a PSO/HJ algorithm

The two-objective optimization problem presented in Section 3.1 is first approached with the

weighted sum method, whose general formulation is given in Equation 2.4. The weighted sum

method (WSM) is one of the most widely used classical optimization methods, which turns the

two-objective optimization problem into a single-objective one by using weights associated with

each objective function. Each objective function is normalized so that all objectives have the same

impact on the optimization. The normalized global objective function z is therefore expressed as

follows:

z(x) = w1 ·
LCC(x)− LCCU

LCCN − LCCU
+ w2 ·

LCE(x)− LCEU

LCEN − LCEU
(3.1)

where x is the decision vector (composed of decision variables); w1 and w2, with w2 = 1− w1, are

the weights given by decision makers; LCCU and LCCN are the Utopia and Nadir points of the
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LCC objective function [k$], respectively; LCEU and LCEN are the Utopia and Nadir points of the

LCE objective function [MWh], respectively.

The Utopia and Nadir points correspond to the lower and upper bounds of the true Pareto

front, in the case of minimization problems. Since the true Pareto front cannot be known without

testing all the possible decision vectors, both the Utopia and Nadir points can be approximated

only.

As mentioned in Section 2.2.2, one optimization run leads to only one Pareto solution. The

weights w1 and w2 are varied from 0 to 1, with a step of 0.1, so several final values of z are obtained

in order to approximate the true Pareto front. The weighted sum method requires an optimization

algorithm. The hybrid PSO/HJ algorithm, available in GenOpt (Wetter, 2011), is used to solve

this two-objective optimization problem. PSO/HJ already proved to be effective in several building

engineering studies (Hasan et al., 2008; Ng Cheng Hin & Zmeureanu, 2014; Wetter & Wright, 2004)

and offers a good trade-off between computing time and accuracy.

PSO is a population-based stochastic optimization algorithm from the swarm intelligence family

whose update pattern is given in Equations 2.6 and 2.7. The Hooke and Jeeves algorithm (Hooke

& Jeeves, 1961) is a deterministic algorithm that operates by changing iteratively the value of one

variable at a time, examining the objective function value calculated at each iteration, and com-

paring that value to the minimum objective function value obtained so far; this is the exploratory

move. When no decrease of the objective function is obtained, then the step size of each decision

variable is reduced, and the process is repeated; this is the pattern move.

As shown in figure 3.2, HJ starts with the optimum solution found by PSO in order to enhance

the local exploitation of the hybrid PSO/HJ algorithm. The spikes of the LCC objective function,

after the PSO ending, during the HJ portion of the optimization, are due to the penalty function.

When the algorithm searches for decreasing the LCC and LCE objective functions, the values of

the decision variables are modified; some design solutions cannot satisfy space heating demand,

which triggered the penalty function to avoid such design solutions.
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Figure 3.2: Evolution of the LCC value during the optimization using PSO/HJ

A population of six particles for PSO is selected since a computer with six cores is used for

the optimization. Six TRNSYS simulations can therefore be launched in parallel, one for each

particle. The number of particles should be a multiple of the number of cores, if not the computer

performance is not fully utilized. For instance, let Nparticles and Ncores denote the number of

particles and number of cores, respectively. The number of series per generation (i.e., the number

of series to complete one generation), abbreviated Nseries, is defined as:

Nseries =

⌈
Nparticles

Ncores

⌉
(3.2)

where ⌈x⌉ is the ceiling function, which returns the smallest integer greater than or equal to x.

For example, let Case no. 1 have a population size of six particles and Case no. 2 have a

population of seven. All the simulations for each generation in the first case are completed in one

single series. However, in the second case, two series of simulations are needed for each generation;

the first series will run at full capacity of cores (i.e., with six particles), while the second series will

run for only one particle. As a result, the computing time for each generation in Case no. 2 is

twice as much as that in Case no. 1.

Before performing a multi-objective optimization of the residential solar combisystem with

the WSM using PSO/HJ, the Nadir and Utopia values of each objective function have to be

determined to compute z, as shown in Equation 3.1. The minimum value of LCC is obtained
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when w1 = 1 (w2 = 0), and the minimum value of LCE is obtained when w1 = 0 (w2 = 1). A

pre-optimization run is performed for each case (i.e., w1 = 1 and w1 = 0) to estimate the Nadir

and Utopia values, which are listed in Table 3.2.

Table 3.2: Nadir and Utopia points of the LCC and LCE objective functions

Nadir point Utopia point

Life Cycle Cost [k$] 200 20
Life Cycle Energy [MWh] 375 120

For each combination of w1 and w2 (e.g., w1 = 0.2 and w2 = 0.8), PSO uses six particles during

25 generations, and for each particle one TRNSYS simulation is needed; hence, 150 TRNSYS

simulations are performed to obtain the solution for each combination of w1 and w2. The HJ

portion stops when no improvement of the global objective function can be achieved, so the number

of TRNSYS simulations performed by the HJ algorithm varies from one optimization run to another.

As reported in Table 3.3, the total number of TRNSYS simulations to approximate the Pareto front

is 3,704.

Table 3.3: Results of the 11 optimization runs performed with the WSM using PSO/HJ

w1 w2 Number of TRNSYS
simulations performed

LCC final value [k$] LCE final value [MWh]

PSO HJ Total After PSO After HJ After PSO After HJ

0 1 1 150 155 305 24 21 316 307
0.1 0.9 150 113 263 25 23 259 228
0.2 0.8 150 135 285 36 32 170 159
0.3 0.7 150 144 294 33 32 172 158
0.4 0.6 150 131 281 53 37 149 130
0.5 0.5 150 109 259 39 38 174 127
0.6 0.4 150 263 413 80 37 171 132
0.7 0.3 150 230 380 121 41 157 123
0.8 0.2 150 240 390 112 45 179 127
0.9 0.1 150 267 417 117 41 172 123
1 0 150 267 417 117 41 172 123

Number of simulations 1,650 2,054 3,704 - - - -

The average computing time for one optimization run is around 86 hours using 6-core Intel

Xeon @ 2.40 GHz. More than 946 hours, or 39 days, were therefore necessary to approximate the

true Pareto front. For instance, for the case of w1 = 0.2 and w2 = 0.8 (in bold), 150 TRNSYS
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simulations are required for the PSO portion and 135 simulations for the HJ portion, for a total of

285 simulations. At the end of PSO portion, the LCC and LCE objective functions are equal to

36 k$ and 170 MWh, respectively, which change further to 32 k$ and 159 MWh at the end of HJ

portion.

Although the WSM provides an approximation of the true Pareto front, as shown in Figure

3.3, this preliminary study shows that this method can be time consuming. If more non-dominated

solutions are desired, the number of simulations would further increase. Less time-consuming

multi-objective optimization algorithms are needed for such MOO problems.

3.3 Multi-objective particle swarm optimization algorithm

MOPSO needs only one optimization run to approximate the true Pareto front. Six particles and

150 generations are selected, which results in 900 TRNSYS simulations that lasted for 85 hours,

or 3.5 days, compared with 3,704 TRNSYS simulations required by the WSM using PSO/HJ.

Figure 3.3 presents the 18 non-dominated solutions found by MOPSO compared with the 11 non-

dominated solutions found by the WSM. Most of the MOPSO solutions are dominated by those

found by the WSM. This can be explained by a weak local search of MOPSO, while the WSM

using PSO/HJ benefits from the local search of the HJ portion.
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Figure 3.3: LCE vs. LCC from the WSM using PSO/HJ and MOPSO
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As depicted in Figure 3.4, MOPSO converged quickly towards its final Pareto front (around the

75-th generation), then faced difficulties in finding new non-dominated solutions.
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Figure 3.4: Evolution of the approximated true Pareto front with MOPSO

MOPSO outperforms the WSM using PSO/HJ in terms of computing time, but faces difficulties

in approximating the true Pareto front. The weak local search of MOPSO can be overcome by using

a hybrid MOPSO/HJ.

3.4 Hybrid MOPSO/HJ algorithm

Unlike population-based algorithms, HJ uses only one candidate solution at a time to evaluate one

objective function. As a result, MOPSO/HJ requires several optimization runs of the HJ algorithm,

each one being initialized by a different solution found by MOPSO. As mentioned in Section 2.2.2,

MOPSO’s repository is divided into hypercubes having a fitness value, inversely proportional to the

number of particles that are within each hypercube. Diversity is then ensured using the roulette-

wheel selection based on the calculated fitness values. This roulette-wheel selection is used for the

selection of each non-dominated solution that will serve as an initial solution for the HJ portion

of the hybrid MOPSO/HJ algorithm. Since HJ is a deterministic algorithm, the initialization of

two HJ optimization runs with the same non-dominated solution from MOPSO’s repository will

lead to the same final non-dominated solution. Each selected non-dominated solution is therefore
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temporarily removed from MOPSO’s repository to avoid duplicate optimization search. Six HJ

runs are launched in parallel using the six central processing units of the computer being used in

order to speed up the optimization search.

As shown in figure 3.5, the hybridization of MOPSO with HJ improves the local search of

the MOPSO algorithm. However, such an improvement comes with a higher computing time of

149 hours, compared with 85 hours for MOPSO. Both methods, the WSM using PSO/HJ and

MOPSO/HJ, give close approximations of the Pareto front; however, MOPSO/HJ is more than

six times faster than the WSM using PSO/HJ. In total, MOPSO/HJ performed 1,438 TRNSYS

optimizations whereas the WSM required 3,704 to approximate their respective Pareto front. As a

result, the WSM was found efficient, but time-consuming. As an alternative, MOPSO was faster,

but was not able to approximate properly the true Pareto front. The hybrid MOPSO/HJ is a

trade-off between the WSM and MOPSO. MOPSO/HJ was slower than MOPSO, but better at

approximating the true Pareto front.
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Figure 3.5: LCE vs. LCC from the WSM using PSO/HJ and MOPSO/HJ

This preliminary study shows that classical optimization methods, represented by the WSM,

are not well-suited for multi-objective optimizations of solar thermal combisystems. Such MOO

problems, where evaluating objective functions is time-consuming, should be optimized with non-

classical methods. Non-classical methods, such as MOPSO andMOPSO/HJ, are less time-consuming
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and do not require any previous knowledge about the selected objective functions. Although

MOPSO/HJ has a better local search than MOPSO, an hybridization of MOPSO with HJ is not

the most efficient way of optimizing MOO problems. A micro-MOO algorithm, which uses a small

population of particles, will be an asset in the proposed multi-objective optimization framework.
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Chapter 4

Method and applications

This chapter introduces the research method in order to provide a broad perspective of the de-

velopment of this doctoral thesis. Searching for the optimum feasible solar combisystem designs

requires: (i) a generic solar combisystem model, (ii) a multi-objective optimization framework, and

(iii) a multi-objective optimization algorithm. Although each part is developed separately, they

form together a coherent package. Afterwards, this package is applied to two different residential

solar thermal combisystems located in Montreal, Quebec, Canada, and in Massachusetts, USA.

4.1 Generic solar combisystem model

A generic solar combisystem model is created to take into consideration different solar combisystem

configurations. The TRNSYS environment is selected due to its capability to simulate complex

thermal energy systems by coupling subroutines that model subsystem components. In addition,

TRNSYS is found to be one of the most used BPS software from the literature review. Solar

combisystem configurations are modeled one at a time within the same TRNSYS file to create

a generic solar combisystem model at the end. The connection between each solar combisystem

configuration is accomplished through TRNSYS equation blocks, which enable users to define their

own mathematical equations. The selection of one configuration over another is achieved with

Boolean variables inside these equation blocks. The value of these Boolean variables (for selecting

equipment or technologies) as well as that of design variables (for sizing equipment) can then be

selected by a multi-objective optimization algorithm to find the optimum feasible solar combisystem

designs in terms of cost, energy use, and exergy destroyed.
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4.2 Multi-objective optimization framework

A multi-objective optimization framework is developed to find the optimum feasible solar combisys-

tem designs in terms of cost, energy use, and exergy destroyed. The life cycle analysis is found to

be the most efficient way of comparing solutions, that is, solar combisystem designs. Three types of

decision variables are used: (i) Boolean, (ii) discrete, and (iii) continuous. Discrete and continuous

variables are design variables used for equipment sizing. Optimization constraints are added to

ensure meaningfulness. The life cycle cost (LCC), life cycle energy use (LCE), and life cycle exergy

destroyed (LCX) using the technical and physical boundary are the four objective functions used

to compare solar combisystem designs. Two penalty functions are added to each objective function

to ensure acceptable comfortable indoor air temperature.

4.3 Multi-objective optimization algorithm

Once the generic solar combisystem model and multi-objective optimization framework are de-

veloped, a multi-objective optimization algorithm is required to find the optimum feasible solar

combisystem designs. As mentioned in the literature review, classical methods turn multi-objective

optimization problems into single objective ones while non-classical methods can directly handle

them. Non-classical methods are therefore more suitable for multi-objective optimization prob-

lems, as illustrated in Chapter 3. Based on the literature review, MOPSO was found to be a

good compromise between effectiveness and simplicity. Like most of the non-classical methods,

MOPSO has a large population size and requires a large number of objective function evaluations.

However, building performance simulations can be time-consuming, which leads to high computa-

tional time in the search of optimum solutions. Algorithms with a small population size, known

as micro-MOO algorithms, are therefore needed. The micro-MOPSO algorithm is improved in this

doctoral thesis to overcome issues that have been mentioned but not solved. This new version,

called micro-TVMOPSO, is compared to eight MOO algorithms on 24 benchmark problems to test

its performance. The generic solar combisystem model, multi-objective optimization framework,

and micro-TVMOPSO form together a package used to find optimum feasible solar combisystem

designs for two case studies.
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4.4 Applications to case studies

The multi-objective optimization package developed is then applied to two different residential solar

thermal combisystems: one located in Montreal, Quebec, Canada, and the other in Massachusetts,

USA. Each solar combisystem gives an initial design solution for the multi-objective optimization

framework. The first case study is a simulation-based residential solar thermal combisystem initially

modeled in (Leckner, 2008) using TNRSYS. The second case study is an actual solar thermal

combisystem installed in Massachusetts, USA. Access to data collection for this experimental solar

combisystem is the result of a collaboration with one of the leading international manufacturers of

solar water heating technologies. Since no research studies have been published on model validation

or uncertainty analysis of existing solar thermal combisystems, a methodology for validating solar

thermal combisystem is proposed in Case study no. 2.
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Chapter 5

Generic model for solar combisystems

A generic model for solar thermal combisystems is proposed in this chapter to take into consideration

different configurations.

5.1 Description of the generic model

This section presents the different solar combisystem configurations covered in this doctoral thesis.

Solar thermal combisystems can be divided into three sub-systems: (i) energy generation, (ii) energy

storage, and (iii) energy distribution.

5.1.1 Energy generation

Solar thermal combisystems usually harvest solar energy through solar thermal collectors and trans-

ferred it as heat to be stored in one or several thermal storage tanks. Harvesting can be done by

flat-plate collectors (FPCs) or evacuated tube collectors (ETCs), and therefore both are part of the

generic solar combisystem model. Solar thermal collectors can be roof or wall-mounted. In some

cases, solar combisystems can have both. Such combinations are taken into account in the generic

model by using the tilt angle of solar collectors as a decision variable. Solar combisystems usu-

ally require additional energy to meet domestic hot water (DHW) and space heating (SH) needs.

Electricity or natural gas are used as additional energy sources. Two cases are considered: (i)

electrical resistances within one or several thermal storage tanks, and (ii) external water heaters.

External water heaters can use electricity or natural gas to ensure that the DHW and SH supply

temperatures are not below fixed set-point values.
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5.1.2 Energy storage

Storage generation can be achieved through one or several thermal storage tanks. Although the use

of one thermal storage is common practice, solar combisystems equipped with two thermal storage

tanks were found in (Leckner & Zmeureanu, 2011; Ng Cheng Hin & Zmeureanu, 2014; Suter et

al., 2000) as well as in manufacturers layout drawings (S. Royce, personal communication, March

2014; E. Wilson, personal communication, April 2014). Since domestic hot water and space heating

needs are different in terms of supply temperature, the use of one thermal storage tank to DHW and

another one to SH can allow a better thermal stratification within each tank. One and two thermal

storage tanks (i.e., one dedicated to DHW and the other to SH) are taken into consideration in the

generic solar combisystem model. More than two thermal storage tanks could be used, but such a

configuration is not included herein.

Direct solar combisystems (i.e., the water within the thermal storage tank used as a heat-

transfer fluid) are rather the exception than the rule, due to freezing temperatures in winter in cold

climates. Heat is thus transferred to one or two thermal storage tanks through heat exchangers

using an antifreeze heat-transfer fluid. Heat exchangers can be either internal or external. While

the former is prevalent, the latter is used to increase thermal stratification within thermal storage

tanks (Glembin & Rockendorf, 2012; Hugo et al., 2010; Pichler et al., 2014; Suter et al., 2000).

Thermal stratification can also be enhanced using stratifying devices, also known as stratifiers, so

they are included in the generic solar combisystem model. When a solar combisystem configuration

has two thermal storage tanks, both will have on the solar collector loop either an internal heat

exchanger or an external one along with stratifiers.

5.1.3 Energy distribution

When only one thermal storage tank is selected, an immersed heat exchanger is usually used for SH

needs while the hot water within the tank is used for DHW preparation. When two thermal storage

tanks are selected, one is dedicated to DHW and the other to SH. No internal heat exchanger is

therefore required since the hot water within each tank is directly used. Instead of increasing the

thermal storage tank size to reduce overheating, the thermal capacity of radiant floors could be

used to store energy as heat. The concrete floor slab thickness is therefore set as a decision variable
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in the optimization process. Solar energy harvested could be directly sent to the radiant floor for

SH needs, but such a configuration is not included herein.

5.2 Modeling of the generic solar combisystem

This section provides a description of the numerical modeling of the generic solar combisystem.

TRNSYS was selected due to its capability to solve complex problems by coupling subroutines

that model subsystem components (Beckman et al., 1994) and the fact that it has been used in

numerous studies for more than 30 years (Cao et al., 2014; Jordan & Vajen, 2000; Lin et al., 1997;

Raffenel et al., 2009; Shariah & Shalabi, 1997). TRNSYS components, also referred to as types,

are subroutines able to simulate physical phenomena as well as thermal energy systems. Each type

requires one or several inputs and parameters to be able to supply one or several outputs. The

main components used in the generic solar combisystem model are presented herein.

5.2.1 Solar combisystem configurations

The generic solar combisystem model takes into consideration the different configurations presented

in Section 5.1, which requires the use of decision variables representing logical decisions (e.g.,

whether an equipment is selected or not). Such decision variables are Boolean variables that allows

making choices. More details about these decision variables are given in Section 6.2, since they are

part of the multi-objective optimization framework.

Choices can be made in the TRNSYS environment using an equation block. TRNSYS equation

blocks allow users to define their own mathematical equations, which can be functions of outputs

of TRNSYS types or constant numerical values. For instance, Type 1b (flat-plate collector) and

Type 71 (evacuated-tube collector) are both used in TRNSYS. Both are connected with Type 15-

2b (weather data) and have the same inlet temperature; however, the final outlet temperature of

the array of solar thermal collectors depends on the selection between flat-plate or evacuated tube

collectors, which can be illustrated as follows:

Tout,coll = B1
1 · Tout,FPC +B2

1 · Tout,ETC (5.1)

where Tout,coll is the temperature of the heat-transfer fluid leaving the array of solar thermal col-

lectors [◦C]; B1
1 and B2

1 are Boolean variables (equal to 0 or 1) associated with the flat-plate or
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evacuated tube collectors [-], respectively; Tout,FPC and Tout,ETC are the temperatures of the heat-

transfer fluid leaving the arrays of flat-plate and evacuated tube collectors [◦C], respectively. When

B1
1 = 1 (and B2

1 = 0), only the outlet temperature from Type 1b, which corresponds to an array

of flat-plate collectors, is operational.

5.2.2 Component models

The generic model is composed of different TRNSYS components interconnected in a logical way to

represent different solar thermal combisystem configurations. The key components of this generic

model are presented in this section to better understand how they work.

Solar thermal collectors (Types 1b and 71)

Solar thermal collectors can be divided into two categories (Kalogirou, 2004b): (i) non-concentrating,

and (ii) concentrating solar collectors. The former has the same area for intercepting and for absorb-

ing solar radiation, whereas the latter uses reflective surfaces (e.g., mirrors or lenses) to concentrate

solar radiation onto the absorber area. The concentrating systems reach therefore higher tempera-

tures, which implies a lower efficiency. The higher the difference between the ambient and working

fluid temperatures is, the lower the solar collector efficiency becomes. In view of the Canadian

weather conditions, concentrating systems are not suitable. Accordingly, they are not taken into

consideration in this doctoral thesis. The non-concentrating solar collectors can be classed into two

categories:

1. Flat-plate collectors;

2. Evacuated tube collectors.

Evacuated tube collectors are more energetically efficient than flat-plate collectors; however,

they were not cost-effective enough to be worth using some years ago. Both types are studied

herein to know whether or not evacuated tube collectors are more suitable today.
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Flat-plate collectors (Type 1b)

Type 1b uses the Cooper and Dunkle assumption applied to the Hottel-Whillier equation to estimate

the thermal efficiency of a flat-plate solar collector as (Duffie & Beckman, 2006):

ηcoll = a0 − a1 ·
∆T

Gtot,coll
− a2 ·

∆T 2

Gtot,coll
(5.2)

in which

∆T = Tin,coll − Tamb

where ηcoll is the flat-plate solar collector thermal efficiency [-]; a0 is the optical efficiency [-];

a1 is the first order heat loss coefficient [W/(m2·◦C)]; a2 is the second order heat loss coefficient

[W/(m2·◦C2)]; Gtot,coll is the total solar irradiance incident on the solar collector [W/m2]; Tin,coll

and Tamb are the inlet flat-plate collector and ambient temperatures [◦C], respectively.

The general definition of the thermal efficiency of flat-plate collectors is expressed as follows

(Duffie & Beckman, 2006):

ηcoll = 100 ·
Q̇harvested,coll

Q̇received,coll

= 100 ·
ṁcoll · cp,coll · (Tout,coll − Tin,coll)

Acoll ·Gtot,coll
(5.3)

where Q̇harvested,coll is the rate of heat harvested by the solar collector [W]; Q̇received,coll is the rate

of solar energy received by the solar collector [W]; ṁcoll is the heat-transfer fluid mass flow rate

[kg/s]; cp,coll is the specific heat capacity at constant pressure of the heat-transfer fluid [J/(kg·◦C)];

Tout,coll is the outlet solar collector temperature [◦C]; Acoll is the solar collector area [m2].

The thermal efficiency of flat-plate solar collectors can therefore be determined from Equation

5.2, which can then be used in Equation 5.3 to estimate the rate of harvested solar energy and outlet

flat-plate collector temperature. Different corrections are also applied to account for operation at

flow rates other than the value at test conditions, identical collectors mounted in series, and non-

normal solar incidence by using an incidence angle modifier (IAM).

Evacuated tube collectors (Type 71)

Type 71 uses the same subroutine as the one used in the TRNSYS Type 71 (i.e., for flat-plate

collectors), but the user-defined parameters a0, a1, and a2 are different since heat loss by convection

are reduced in ETCs. Type 71 also requires biaxial IAM data from an external file.
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External heat exchanger (Type 5e)

Type 5e models external steady-state cross-flow heat exchangers with unmixed fluids, where their

overall heat transfer coefficient is given as an input. The overall heat transfer coefficient of such

heat exchangers can be estimated using the correlation used in (Heimrath & Haller, 2007; Hugo et

al., 2010):

UHX = 3.6 · (88.561 ·Atot,coll + 328.19) (5.4)

where UHX is the overall heat transfer coefficient of the heat exchanger [W/◦C]; Atot,coll is the total

area of the solar collector array [m2].

Thermal storage tanks (Type 534)

Some TRNSYS subroutines (i.e., components) have been developed by Thermal Energy Systems

Specialists (TESS), which is an engineering consulting company (TESS, 2014). The TESS Type

534 models a vertically cylindrical thermal storage tank with immersed heat exchangers. This

component can also represent a storage tank with no heat exchanger if desired. Either with or

without heat exchangers, Type 534 is a multi-node approach; it means that the storage tank is

divided into constant volume sections, called nodes.

Each node is assumed to be fully mixed and at a uniform temperature. Thus, the temperature

of a node can be predicted by performing an energy balance on each storage section, accounting

for thermal losses to the surroundings and energy flows between adjacent nodes as shown in Figure

5.1. The energy balance of any node i (where auxiliary electric and gas heaters are not taken into

account) is expressed as:

mfluid,i · cp,fluid ·
dTi

dt
=

(λ+∆λ) ·Across,i

∆Di+1→i
· (Ti+1 − Ti) +

(λ+∆λ) ·Across,i

∆Di−1→i
· (Ti−1 − Ti)

+ Utank,i · (Tenv − Ti) + ṁdown · cp,fluid · Ti−1

+ ṁup · cp,fluid · Ti − ṁdown · cp,fluid · Ti + ṁup · cp,fluid · Ti+1

+ ṁ1,in · cp,fluid · T1,in − ṁ1,out · cp,fluid · T1,out

+ ṁ2,in · cp,fluid · T2,in − ṁ2,out · cp,fluid · T2,out

(5.5)

where mfluid,i is the mass of the fluid within the i-th node [kg]; cp,fluid is the specific heat capacity

46



at constant pressure of the fluid within the i-th node [J/(kg·◦C)]; ∆Di+1→i and ∆Di−1→i are the

center-to-center distance between the i-th node and the node below and above it [m], respectively;

λ and ∆λ are the fluid thermal conductivity and the de-stratification conductivity [W/(m·◦C)],

respectively; Across,i is the cross-sectional area of i-th node [m2], respectively; Utank,i is the tank

heat loss coefficient of i-th node [W/◦C]; ṁup and ṁdown are the fluid mass flow rates up and down

the i-th node [kg/s], respectively; ṁ1,in, ṁ1,out, ṁ2,in and ṁ2,out are the mass flow rates of the

entering and exiting fluids 1 and 2 [kg/s], respectively; Ti+1, Ti, Ti−1, T1,in, T2,in, and Tenv are the

temperatures located below, at and above node i, the temperature of the entering fluid 1 and the

entering fluid 2, and the temperature of the environment [◦C], respectively;

ṁ1,in · cp,fluid · T1,in

ṁ2,in · cp,fluid · T2,in

ṁ1,out · cp,fluid · T1,out

Utank,i · (Tenv − Ti)

ṁ2,out · cp,fluid · T2,out

ṁdown · cp,fluid · Ti−1

or

ṁup · cp,fluid · Ti

(λ+∆λ) ·Across,i

∆Di−1→i
· (Ti+1 − Ti)

ṁup · cp,fluid · Ti+1

or

ṁdown · cp,fluid · Ti

(λ+∆λ) ·Across,i

∆Di+1→i
· (Ti+1 − Ti)

Node i

Figure 5.1: Energy flows of the i-th node of Type 534

Type 531 can contain multiple immersed heat exchangers, inlets and outlets, as well as external

heating elements. It also has different options, which gives the ability to model stratifying devices.

Two options are used: (i) fixed inlet and outlet, and (ii) temperature seeking inlets with fixed out-

lets. The position of inlets and outlets is user-defined in the former, while the latter automatically

directs the entering water into the closest temperature layer to simulate the effect of stratifying

devices.
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Multi-zone building (Type 56a)

Type 56a simulates a multi-zone building, based on an energy balance model. Each thermal zone

uses one air node representing the thermal capacity of the entire air volume of the zone as well as

that of other closely connected objects, such as furniture. The net heat gain for the i-th air node

is defined as (Klein et al., 2017):

Q̇net,i = Q̇surface,i + Q̇infiltration,i + Q̇ventilation,i + Q̇g,c,i + Q̇cplg,i (5.6)

where Q̇surface,i is the convective gain from surfaces [W]; Q̇infiltration,i is the infiltration gains [W];

Q̇ventilation is the ventilation gains [W]; Q̇g,c,i is the internal convective gains [W]; Q̇cplg,i is the

internal convective gains due to air flow from adjacent zones [W].

Type 56a allows users to insert active layer in any floor to model an embedded-tube radiant

heating floor, where the supply water temperature is an input of the multi-zone building model.

An active layer contains fluid filled pipes, which are characterized by the pipe spacing, pipe outside

diameter, pipe wall thickness, and pipe wall conductivity. TRNSYS uses a thermal resistance

network to calculate the heat transfer between the fluid in the tube and the active layer and

requires the following criteria to be met (Klein et al., 2017):

Dabove

Dspacing
≥ 0.3 (5.7)

λbelow

Dbelow
< 1.212 W/(m2·◦C) (5.8)

where Dabove and Dbelow are the thickness of the slab above the tubes and that of the layer directly

below the slab [m], respectively; Dspacing is the tube spacing [m]; λbelow is the thermal conductivity

of the layer directly below the slab [W/(m·◦C)].

The slab thickness above the embedded-tubes is used as a decision variable in Chapter 8 to

increase thermal storage. As mentioned in (Brideau et al., 2016), Type 56a cannot simulate thin

slab embedded-tube radiant floor. The lower boundary of the decision variable associated with the

slab thickness will therefore ensure a minimum slab thickness that prevents simulating a thin slab.
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Main types

The main TRNSYS types used to develop the generic solar thermal combisystem model are reported

in Table 5.1. More details about each type are provided in (Klein et al., 2017).

Table 5.1: List of the main TRNSYS types used for the generic solar combisystem model

Description Type

Weather data reading and processing – TMY2 15-2b
Flat-plate collector 1b
Evacuated tube collector 71
Flow diverter 11f
Mixing valve (TESS library) 649
Pumps variable speed (TESS library) 742
Differential controller with hysteresis 2b
3-stage room thermostat with heating set back and temperature deadband 8b
External cross flow heat exchanger 5e
Vertical cylindrical tank (TESS library) 534
Heating and cooling season scheduler (TESS Library) 515
Hourly forcing function scheduler weekdays and weekends (TESS Library) 516
Hourly forcing function scheduler identical days (TESS Library) 517
Basement conduction heat losses (TESS Library) 701a
Multi-zone building 56a
Input value recall 93
Auxiliary heater 659
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Chapter 6

Multi-objective optimization framework

This chapter presents the multi-objective optimization framework for optimizing the configuration

and sizing of solar thermal combisystems. The proposed framework includes: (i) decision variables,

(ii) optimization constraints, and (iii) objective functions.

6.1 Mixed integer nonlinear programming model

The multi-objective optimization framework for solar thermal combisystems aims at being used

in optimization searches to find the most suitable design (i.e., configuration and sizing), from a

set of equipment, given particular space heating and domestic hot water loads and external condi-

tions. Mixed integer nonlinear programming (MINLP) refers to optimization problems consisting

of nonlinear objective functions in which some decision variables are discrete variables, while others

are allowed to be continuous. Discrete variables can represent physical variables as well as logical

decisions, such as selecting or not an equipment. Such logical decisions are made using Boolean

decision variables. Choosing a configuration for a solar thermal combisystem and then sizing its

components implies both discrete and continuous variables. A MINLP model for the optimum

design of solar thermal combisystems is presented in this section.

6.1.1 Description of the optimization model

An optimization model for solar thermal combisystems is presented in this section using mixed

integer nonlinear programming. The proposed approach presented in this doctoral thesis is limited

to a set of feasible solar combisystem configurations, which were discussed in Section 5.1. This

optimization model could be also expanded to many other solar or non-solar systems. The generic
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optimization configuration can be illustrated by nodes representing equipment or technologies for

energy generation, storage, and distribution, as well as by arcs symbolizing mass and energy flows

between them, as shown in Figure 6.1.

Node

no. 1

Node

no. 2

Node

no. 3

Node

no. 4

Node

no. 5

Node

no. 6

Node

no. 7

Generation

Storage

Distribution

Figure 6.1: Network flow diagram of the optimization model for solar thermal combisystems

Node no. 1 corresponds to one array of flat-plate or evacuated tube collectors. Node no. 2

corresponds to two distinct arrays of flat-plate or evacuated tube collectors, each one having its

own tilt angle (to take into account the case of both roof-mounted and wall-mounted solar thermal

collectors). Solar thermal collectors in nodes no. 1 and no. 2 are facing south, which means an

azimuth angle of zero. Node no. 3 is dedicated to auxiliary energy supplied from immersed electrical

resistances or water heaters using either electricity or natural gas. Node no. 4 is used to select one

thermal storage tank equipped with an internal or an external heat exchanger on the solar loop

side, where the latter comes with a stratifying device installed inside the storage tank. Node no. 5

allows for two thermal storage tanks with either an internal or an external heat exchanger on the

solar loop side to be chosen. One tank is dedicated to DHW and the other to SH. Finally, node no.

6 corresponds to the demand for DHW that is satisfied by the solar combisystem, and node no. 7

corresponds to the radiant floor heating system that covers the SH needs.
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6.1.2 Description of the nodes and arcs

The mathematical formulation contains: (i) decision variables associated with each node and arc,

(ii) optimization constraints applied to the decision variables, and (iii) objective functions. Con-

straints associated with the control strategy are presented for each case study in their respective

chapter.

Any connection between two nodes i and j is controlled by a Boolean decision variable Bi,j .

Setting Bi,j equal to one means that the arc connecting the nodes i and j is operational. The final

solar combisystem configuration depends on the arcs; for instance, if the arcs connecting the node

no. 5 to the other nodes are not operational (i.e., only the node no. 4 is selected), the solar thermal

combisystem has only one thermal storage tank. Nodes have also Boolean decision variables to

select an equipment or a technology over another. These Boolean decision variables are denoted by

Bk
i , where i represents a node and k represents its available technology. For example, the node no.

1 (i.e., i = 1) can have either flat-plate (k = 1, B1
1 = 1) or evacuated tube collectors (k = 2, B2

1 = 1),

with the constraint B1
1 +B2

1 = 1, as illustrated in Figure 6.2 .

Node no. 1

B1,4
B1,5

FPCs ETCs

B1
1 B2

1

Figure 6.2: Detailed representation of node no. 1

The Boolean variables B1,4 and B1,5 are associated with the arcs connecting node no. 1 to

nodes no. 4 and no. 5, respectively. If the solar combisystem has only one thermal storage tank,

B1,4 is equal to 1 and B1,5 is equal to zero, hence the constraint B1,4 +B1,5 = 1.
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6.2 Decision variables

Decision variables are altered in the design space during optimization searches to minimize the

value of each objective function. As mentioned in (Bravo & Flocker, 2012), engineering problems

usually imply discrete variables instead of continuous ones (e.g., standard dimensions of a specific

equipment). The proposed MINLP model is therefore composed of continuous and discrete decision

variables which are listed in Table 6.1. The range of values for some decision variables is taken

from (Ng Chen Hin, 2013). For instance, the number of solar collectors is limited by the available

area on the south facing roof of the house presented in Case study no. 1 (see Chapter 8). The

upper limit of the tank volume is determined based on the height in the basement of the house –

assuming a linear correlation between tank height and volume. Since solar thermal collectors can

be roof-mounted or wall-mounted, the tilt angle can take values between 0 and 90 degrees.
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Table 6.1: List of the selected decision variables

Decision variable Type Range Step size Unit

Arc

B1,4 Boolean 0/1 1 -
B1,5 Boolean 0/1 1 -
B2,4 Boolean 0/1 1 -
B2,5 Boolean 0/1 1 -
B3,4 Boolean 0/1 1 -
B3,5 Boolean 0/1 1 -
B4,6 Boolean 0/1 1 -
B4,7 Boolean 0/1 1 -
B5,6 Boolean 0/1 1 -
B5,7 Boolean 0/1 1 -

Node

B1
1 Boolean 0/1 1 -

B2
1 Boolean 0/1 1 -

B1
2 Boolean 0/1 1 -

B2
2 Boolean 0/1 1 -

B1
3 Boolean 0/1 1 -

B2
3 Boolean 0/1 1 -

B3
3 Boolean 0/1 1 -

B1
4 Boolean 0/1 1 -

B2
4 Boolean 0/1 1 -

B1
5 Boolean 0/1 1 -

B2
5 Boolean 0/1 1 -

Number of flat-plate collectors Discrete 1-22 1 -
Number of evacuated-tube collectors Discrete 1-22 1 -
Tilt angle of array A1 Discrete 0-90 5 degree
Tilt angle of array A2 Discrete 0-90 5 degree
Flow rate per collector area Continuous 10-115 - kg/(h·m2

coll)
Volume of tank no. 1 (DHW or both) Discrete 100-30,000 100 L
Volume of tank no. 2 (SH) Discrete 100-30,000 100 L
Tank no. 1 auxiliary power at high location Discrete 0.5-15 0.5 kW
Tank no. 1 auxiliary power at low location Discrete 0.5-15 0.5 kW
Tank no. 2 auxiliary power at high location Discrete 0.5-15 0.5 kW
Tank no. 2 auxiliary power at low location Discrete 0.5-15 0.5 kW
DHW heater auxiliary power Discrete 0.5-15 0.5 kW
SH heater auxiliary power Discrete 0.5-15 0.5 kW
Floor slab thickness Discrete 0.06-0.26 0.01 m

B1
1 and B2

1 decide whether one array of FPCs or one array of ETCs is selected. B1
2 and B2

2

decide whether the two arrays of solar collectors, each having its own tilt angle, are composed of

FPCs or ETCs. B1
3 , B

2
3 , and B3

3 are Boolean decision variables deciding whether the solar thermal

combisystem is equipped with electric resistances (k = 1), electrical water heaters (k = 2), or
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natural gas water heaters (k = 3). B1
4 and B2

4 decide whether the thermal storage tank is equipped

with an immersed heat exchanger on the solar loop side (k = 1) or with an external one along with

the use of a stratifying device (k = 2). B1
5 and B2

5 decide whether the two thermal storage tanks

are equipped with an internal heat exchanger on the solar loop side (k = 1) or with an external

one along with the use of a stratifying device (k = 2).

6.3 Optimization constraints

Optimization constraints ensure meaningfulness. Any decision vector found by a multi-objective

optimization algorithm must provide a feasible solar combisystem design. Thus, this section focuses

on optimization constraints applied to the decision variables. In order to generate a feasible solar

combisystem configuration, the Boolean decision variables are subject to constraints as follows:

6.3.1 Energy generation and storage

The relationship between the energy generation and energy storage is defined as follows:

B1,4 +B1,5 +B2,4 +B2,5 +B3,4 +B3,5 ≤ 2 (6.1)

with

B1,4 +B1,5 +B2,4 +B2,5 = 1 (6.2)

B1,4 +B1,5 ≤ 1 (6.3)

B2,4 +B2,5 ≤ 1 (6.4)

B3,4 +B3,5 ≤ 1 (6.5)

Thermal storage tanks are connected to the solar thermal collectors and auxiliary heaters.

Since the solar combisystem configuration should involve either one or two arrays of solar thermal

collectors, the arcs associated with nodes no. 1 and no. 2 cannot be operational at the same time, as

shown in Equation 6.2. Auxiliary heaters might or might not be involved in the solar combisystem

configuration, as reported by the last inequality.
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6.3.2 Energy storage and distribution

Domestic hot water and space heating are always supplied by either one or two thermal storage

tanks, according to the definition of solar thermal combisystems. The arcs associated nodes no. 4

with nodes no. 6 and no. 7 cannot be operational at the same time as those associated node no. 5

with nodes no. 6 and no. 7, as reported in Equations no. 6.6 and 6.8.

B4,6 +B5,6 = 1 (6.6)

B4,7 +B5,7 = 1 (6.7)

B4,6 +B5,6 +B4,7 +B5,7 = 1 (6.8)

6.3.3 Technologies

Equations 6.9 and 6.10 decide whether flat-plate or evacuated tube collectors are selected. The

Boolean decision variables related to node no. 3 select either electrical resistances (B1
3) or water

heaters using electricity (B2
3) or natural gas (B3

3). The selection is governed by the following two

inequalities, where the last one prevents both electrical and natural gas water heaters to be selected

at the same time.

B1
1 +B2

1 = 1 (6.9)

B1
2 +B2

2 = 1 (6.10)

B1
3 +B2

3 +B3
3 ≤ 1 (6.11)

with

B2
3 +B3

3 = 1 (6.12)

Equations 6.13 and 6.14 decide whether thermal storage tanks are equipped with immersed heat

exchangers or external ones along with the use of stratifying devices.

B1
4 +B2

4 = 1 (6.13)

B1
5 +B2

5 = 1 (6.14)

6.4 Objective functions

Objective functions aims at evaluating the performance of solar combisystems. Three objective

functions are selected (whose last one is divided into two parts):
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1. Life cycle cost (LCC);

2. Life cycle energy use (LCE);

3. Life cycle exergy destroyed (LCX).

Additional penalty functions are added to each of the three aforementioned objective functions

to ensure that the selected solar combisystem design is able to ensure the thermal comfort of

occupants.

6.4.1 Life cycle cost analysis

A life cycle cost analysis accounts for present and future costs of an energy-conservation project

over its life cycle. Design alternatives can therefore be compared by using their respective LCC

value, which must be computed with the same assumptions. All costs are expressed in Canadian

dollar, before taxes.

For case study no. 1, the Quebec sales tax is set as 9.975%, which is compounded on top of the

5% for the goods and services tax (Revenu Québec, 2016). For case study no. 2, the Massachusetts

sales tax is 6.25% (Department of Revenue, 2016).

The service period for each case study, which is the expected life of the house before major

renovations, is set at 40 years. As mentioned in (Islam et al., 2015), the assumption related to the

building lifespan varies significantly between life cycle cost analysis studies, ranging from 40 to 100

years, with a median value of 50 years. For example, a service period of 30 years was selected in

(Tokarik & Richman, 2016), 50 years in (Stephan & Stephan, 2016), and 60 years in (Schwartz et

al., 2016). A period of 40 years is therefore a reasonable assumption.

Cost categories

The life cycle cost objective function of solar combisystems should take into consideration the

different costs associated with acquiring, operating, maintaining, and disposing such system. Since

costs occurring at different points in time cannot be directly added, because they do not have the

same values, all costs must be converted to their present-value before being summed. To better

estimate the costs, a distinction is required between:

1. Initial investment costs;
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2. Operating costs;

3. Replacement costs.

Initial costs correspond to all costs that occur before the solar combisystem is put into service;

all costs occurring after that moment are referred to future costs (e.g., operating and replacement

costs). Operating costs are costs taking place every year in the service period, whereas replacement

costs occur one or more times but irregularly, for instance the thermal storage tanks are expected

to be changed after 15 years of operation.

Interest and inflation rates

Earning money from money, and therefore increasing its amount over time is known as the time

value of money (Fuller et al., 1995). The value or cost of money is a function of the interest and

inflation rates. The present worth (PW), also known as present value, of an amount of cash has a

lower value than its future worth (FW). Analyzing the present worth of a solar combisystem allows

determining whether or not such an investment is cost-effective.

Interest and discount rates

The present worth PW of an interest-earning amount of money after n years is given by:

PW =
FW

(1 + dr)N
(6.15)

where dr is the real discount rate [-], which is assumed to be constant over the N years.

Estimating the present worth of a future sum of money, as described by Equation 6.15, is

known as discounting. As mentioned in (Fuller & Petersen, 1996), the real discount rate is a

special type of interest rate used in discounted cash flow analysis. Discount rates are separated

into two categories: (i) nominal, or (ii) real. The nominal discount rate dn includes the inflation,

whereas the real discount dr rate does not. Thus, one can be estimated from the other as follows:

1 + dr =
1 + dn
1 + I

(6.16)

where dr and dn are the real and nominal discount rates [-], respectively; I is the inflation rate [-].
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Inflation rate

Inflation is an increase in the price of goods or services over time without changing their intrinsic

value. While inflation reduces the purchasing power, deflation increases it. Since goods or services

may inflate at different rates, inflation must be taken into account in any life cycle cost analysis.

Inflation is what makes a distinction between current and constant dollars. Current dollars, which

account for inflation, represent the amount of dollars required to purchase goods or services at a

specific time. Constant dollars refer to dollars of constant purchasing power. As explained in (Fuller

& Petersen, 1996), a life cycle cost analysis can be performed using constant or current dollars;

however, the use of constant dollars is usually preferred. Future costs and savings are estimated in

constant dollars, then discounted with an real discount rate (i.e., exclusive of inflation).

LCC objective function

The maintenance and repair costs associated with solar thermal combisystems are not taken into

account. Costs related to insurances and subsidies are also neglected. Thus, the LCC objective

function given in (Fuller & Petersen, 1996), expressed in present-value dollars, can be simplified as

follows:

LCC = PWinv + PWrep + PWop (6.17)

where PWinv, PWrep, and PWop are the initial investment, replacement, and operating costs [$],

respectively.

Initial investment costs

The initial investment costs do not need to be discounted, since they are already in present-value

dollars. The initial investment costs are calculated as:

PWinv = PWinv,coll + PWinv,gly + PWinv,ctr + PWinv,pipe

+ PWinv,pump + PWinv,aux + PWinv,tank + PWinv,slab

(6.18)

where PWinv,coll, PWinv,gly, PWinv,ctrl, PWinv,pipe, PWinv,pump, PWinv,aux, PWinv,tank, and PWinv,slab,

are the initial investment costs associated with the solar thermal collectors, glycol-water mixture,
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controller, piping, pumps, auxiliary heaters, tanks, and additional concrete slab [$], respectively.

All the components are defined as follows:

PWinv,coll = (B1,4 +B1,5) ·
[
B1

1 · Ccoll,1,1 +B2
1 · Ccoll,1,2

]
+ (B2,4 +B2,5) ·

[
B1

2 · Ccoll,2,1 +B2
2 · Ccoll,2,2

] (6.19)

PWinv,gly = (B1,4 +B1,5) ·
[
B1

1 · Cgly,1,1 +B2
1 · Cgly,1,2

]
+ (B1,4 +B1,5) ·

[
B1

2 · Cgly,2,1 +B2
2 · Cgly,2,2

] (6.20)

PWinv,ctrl = Cctrl (6.21)

PWinv,pipe = (B1,4 +B1,5) ·
[
B1

1 · Cpipe,1,1 +B2
1 · Cpipe,1,2

]
+ (B1,4 +B1,5) ·

[
B1

2 · Cpipe,2,1 +B2
2 · Cpipe,2,2

] (6.22)

PWinv,pump = Cpump,1 ·
[
(B1,4 +B1,5) ·

(
B1

1 +B2
1

)
+ 2 (B2,4 +B2,5) ·

(
B1

2 +B2
2

)]
= Cpump,2 ·

[
(B1,4 +B2,4) ·B2

4 + (B1,5 +B2,5) ·B2
5

] (6.23)

PWinv,aux = (B3,4 +B3,5) ·
[
B1

3 · Caux,1 +B2
3 · Caux,2 +B3

3 · Caux,3

]
(6.24)

PWinv,tank =
(
B1

4 + 2B1
5

)
· Ctank,1 +

(
B2

4 + 2B2
5

)
· Ctank,2 (6.25)

PWinv,slab = Cslab (6.26)

in which Ccoll,1,1 and Ccoll,2,1 are the costs of solar flat-plate collectors [$]; Ccoll,1,2 and Ccoll,2,2 are

the costs of solar evacuated tube collectors [$]; Cgly,1,1, Cgly,1,2, Cgly,2,1, and Cgly,2,2 are the costs

associated with the quantity of glycol-water mixture needed for node no. 1 technologies no. 1 and

no. 2 and for node no. 2 technologies no. 1 and no. 2 [$], respectively; Cctrl is the cost of a

controller [$]; Cpipe,2 and Cpipe,2 are the costs of the piping for one or two arrays of solar thermal

collectors, respectively [$]; Cpump,2 and Cpump,2 are the costs of pumps on the solar side and on the

tank side, respectively [$]; Caux,1 is the cost of an immersed electrical heating element [$]; Caux,2

and Caux,3 are the costs of external water heaters using electricity or natural gas, respectively [$];

Ctank,1 and Ctank,2 are the costs of thermal storage tanks without or with stratifying devices [$],

respectively; Cslab is the cost of the additional concrete to increase the slab thickness over 0.06 m

[$].

Table 6.2 shows the selected initial costs associated with the flat-pate and evacuated-tube

collectors, highlighted in light gray, among other costs. Models 100F SV18 / SH1B and 2000T

SPE (28 tubes) are selected, since they are the closest to the average values. Model SOL27 S is
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however used in Case study no. 2 instead of 100F SV18 / SH1B, since the existing solar combisystem

is equipped with such solar collectors.

Table 6.2: Solar thermal collector costs

Model Area Price Price Reference

Flat-plate collector [m2] [$] [$/m2]

100F SV1B / SH1B 2.51 890 355 (S. Royce, personal communication, March 2014)
200F SV2C / SH 2C 2.51 1,014 404 (S. Royce, personal communication, March 2014)
SOL27 S 2.54 624 246 (E. Wilson, personal communication, April 2014)
G32-P 2.98 1,099 369 (Thermo Dynamics Ltd., 2016)
S-32A P 2.97 1,099 370 (Thermo Dynamics Ltd., 2016)
TitanPower ALH26 2.35 910 387 (Silicon Solar, 2016)
TitanPower ALH32 2.90 897 310 (Silicon Solar, 2016)

Average - - 349 -

Evacuated-tube collector[m2] [$] [$/m2]

200T SPE (9 tubes) 1.63 1,499 920 (S. Royce, personal communication, March 2014)
200T SPE (28 tubes) 3.26 2,943 903 (S. Royce, personal communication, March 2014)
200T SP2A (12 tubes) 1.51 1,518 1,005 (S. Royce, personal communication, March 2014)
200T SP2A (24 tubes) 3.03 3,035 1,002 (S. Royce, personal communication, March 2014)
VHP30 (30 tubes) 5.24 3,113 594 (Silicon Solar, 2016)

Average - - 885 -

The glycol-water mixture initial cost is calculated using the relationship between the number

of solar thermal collectors and the glycol-water mixture volume required developed in (Leckner,

2008) and the glycol-mixture price per liter from (E. Wilson, personal communication, April 2014).

The initial cost of the differential controller is taken from (RSMeans, 2014). As the initial cost

of a pump depends on its capacity, a linear correlation between the flow rate and initial cost is

used based on data from (RSMeans, 2014). The initial cost associated with the piping, including

insulation and fittings, is the same as the one used in (Leckner, 2008). Although the initial piping

cost does not have a significant impact on the LCC objective function, a 10% increase is used to

take into consideration the additional piping due to two arrays of solar collectors. The initial cost of

a storage tank without a stratifier depends on its volume, the number of internal heat exchangers,

and the power input of each heating element (i.e., immersed electrical resistance). The initial cost

of a storage tank is a function of its volume and its number of heat exchangers, which was derived

from a linear fit of several tank prices for volumes going from 85 liters up to 8,000 liters (RSMeans,

2014; Silicon Solar, 2016; Thermo Dynamics Ltd., 2016). The additional cost due to the power
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input of each heating element is derived from a linear fit of several prices from (The Home Depot,

2016). A linear correlation between the flow rate and initial cost associated with the external heat

exchanger required for a stratifying device is developed based on data from (RSMeans, 2014). The

initial cost associated with the external heat exchanger is directly included in the thermal storage

tank initial cost using stratifying device. An additional 5% of the heat exchanger cost is added to

the thermal storage tank initial cost to take into account the stratifying device. The initial costs of

the electrical and natural gas water heaters are a function of the power input, which was derived

from several water heater prices (RSMeans, 2014). The initial cost of the additional concrete for

the slab floor is calculated based on the concrete price per cubic meter from (RSMeans, 2016).

The initial cost of each solar combisystem component and its expected life span, taken from

(Leckner, 2008), are reported in Table 6.3.
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Replacement costs

The replacement costs must be discounted using Equation 6.15 to be in present-value dollars, so as

to take into consideration the time value of money. The replacement costs are calculated as:

PWrep = PWrep,coll + PWrep,gly + PWrep,ctrl

+ PWrep,pump + PWrep,aux + PWrep,tank

(6.27)

where PWrep,coll, PWrep,gly, PWrep,ctrl, PWrep,pump, PWrep,aux, and PWrep,tank are the replacement

costs associated with the solar thermal collectors, glycol, controllers, pumps, auxiliary heaters, and

tanks [$], respectively, and are defined as:

PWrep,coll = PWinv,coll ·
(

1 + I

1 + dn

)25

(6.28)

PWrep,gly =

13∑
t=1

PWinv,gly ·
(

1 + I

1 + dn

)3·t
(6.29)

PWrep,ctrl =

2∑
t=1

PWinv,ctrl ·
(

1 + I

1 + dn

)15·t
(6.30)

PWrep,pump =
3∑

t=1

PWinv,pump ·
(

1 + I

1 + dn

)10·t
(6.31)

PWrep,aux =
13∑
t=1

PWinv,aux ·
(

1 + I

1 + dn

)3·t
(6.32)

PWrep,tank =
2∑

t=1

PWinv,tank ·
(

1 + I

1 + dn

)15·t
(6.33)

Operating costs

The operating costs correspond to the energy used by the pumps and auxiliary water heaters. Unlike

the replacement costs, the operating costs are annually recurring costs, which can be calculated as

follows (Fuller & Petersen, 1996):

PWop = A0 ·
N∑
t=1

(
1 + er
1 + dr

)t

= A0 ·
1 + er
dr − er

·

[
1−

(
1 + er
1 + dr

)N
]

(6.34)

where A0 is the annual energy cost during the first year of the study period [$]; dr is the real

discount rate [-]; er is the constant real escalation rate (i.e., exclusive of inflation) [-]; N is the

number of years [-].
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Few commodities, such as energy sources, have prices that change at a rate higher or lower than

that of general inflation. A real escalation rate, which is assumed to be constant, is used to take

into account the rate difference between energy sources and general inflation. The annual energy

cost during the first year of the study period is calculated as the total electricity and natural gas

used by the solar combisystem times their respective price. As a result, the operating costs are

computed as follows:

PWop = A0,elec ·
1 + er,elec
dr − er,elec

·

[
1−

(
1 + er,elec
1 + dr

)N
]
+A0,gas ·

1 + er,gas
dr − er,gas

·

[
1−

(
1 + er,gas
1 + dr

)N
]

(6.35)

Assumptions

For case study no. 1, the electricity and natural gas prices are the 2015 estimations for a residential

home in Montreal having a monthly consumption of 1,000 kWh. Their prices are equal to 0.0719

$/kWh (Hydro Québec, 2016) and 0.0289 $/kWh (Gaz Métro, 2016), respectively. An inflation

rate of 2% is used to take into account the inflation-control target adopted by the Bank and the

Government of Canada (Bank of Canada, 2016). The real escalation rates for electricity and natural

gas in Quebec are set equal to -0.35% and -3.20% (Hydro Québec, 2016), respectively. Both are

average values based on the evolution of their respective price between 2006 and 2016, that is, a

period of 10 years. The real escalation rate of electricity is close to zero, which means that the

electricity price increases almost at the same rate as the general inflation. The real escalation rate

of natural gas is negative because of a significant decrease of its price since 2008 whereas the general

inflation has continued increasing. The real discount rate is set to 5%, based on (Government of

Canada, 2016).

For case study no. 2, the electricity price is 0.3003 $/kWh, which is an average of the price

in 2014 for different cities in Massachusetts (U.S. Energy Information Administration, 2016). The

natural gas price for the state of Massachusetts is taken equal to 0.0535 $/kWh from (U.S. Energy

Information Administration, 2016), based on the year 2015. The inflation rate is equal to 1.95%

(United States Department of Labor, 2016). The real escalation rates for electricity and natural

gas in Massachusetts, which are averaged over the same period of 10 years, are fixed to 2.57% and

-3.87% (U.S. Energy Information Administration, 2016), respectively. The real discount rate is
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taken from (Lavappa & Kneifel, 2015) equal to 3%.

6.4.2 Life cycle energy analysis

Life cycle energy analysis is defined for the buildings sector in (Cabeza et al., 2014) as an approach

that takes into account all energy inputs of a system over its entire life cycle. Thus, LCEA includes

the energy use related to: (i) manufacturing, (ii) operating, and (iii) demolition. The manufac-

turing phase involves the construction, transportation, and installation of each solar combisystem

component. The operating phase covers the amount of energy required to make the solar thermal

combisystem operate, while the demolition phase includes the destruction and transportation of

the solar combisystem. These three phases imply two types of energy uses:

1. Embodied energy;

2. Operating energy.

Embodied energy

Any energy used during the manufacturing and demolition phases is referred to as embodied energy.

Either material manufacturing, including resource extraction, or transportation is included in em-

bodied energy. As a result, the embodied energy associated with a solar combisystem is difficult to

estimate. As mentioned in (Ng Cheng Hin & Zmeureanu, 2014), manufacturing and transportation

methods, as well as material types and quantities, are hard to obtain with high accuracy. Average

values of previous research studies are therefore used herein to assess the embodied energy of each

solar combisystem component. When no information can be retrieved from the literature, an es-

timation of the embodied energy is made based on the quantity of the materials used to fabricate

the solar combisystem components. The demolition phase is disregarded from the life cycle energy

analysis, since no information is available from the literature.

Solar thermal collectors

The embodied energy of solar thermal collectors is determined based on previous research studies,

which are listed in Table 6.4. Since different flat-plate collectors were used in different countries,

the embodied energy of solar thermal collectors is averaged. Only one research study reported the
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embodied energy of evacuated solar collectors.

Table 6.4: Embodied energy of flat-plate and evacuated collectors

Area [m2] Embodied energy [kWh/m2] Country Reference

Flat-plate collectors

2.00 500 India (Gürzenich & Mathur, 1998)
6.15 517 Germany (Gürzenich & Mathur, 1998)
5.76 472 Germany (Gürzenich & Mathur, 1998)
5.00 356 Germany (Stricher et al., 2004)
5.00 480 Germany (Stricher et al., 2004)
1.90 518 Cyprus (Kalogirou, 2004a)
2.13 458 Italy (Ardente et al., 2005)
1.35 548 Cyprus (Kalogirou, 2009)

Average 481

Evacuated tube collectors

5.00 439 Germany (Gürzenich & Mathur, 1998)

Average 439

As a result, the average embodied energy of flat-plate and evacuated solar collectors are calcu-

lated as follows:

EEFPC = 481 ·AFPC ·NFPC (6.36)

EEETC = 439 ·AETC ·NETC (6.37)

where EEFPC and EEETC are the embodied energies of flat-plate and evacuated tube collectors

[kWh], respectively; AFPC and AETC are the surface areas of flat-plate and evacuated tube collectors

[m2], respectively; NFPC and NETC are the number of flat-plate and evacuated solar collectors [-],

respectively.

Glycol-water mixture

The embodied energy value for the glycol-water mixture of 21.5 kWh/kg is taken from (Ardente

et al., 2005). Using the same relationship between the number of solar thermal collectors and

the glycol-water mixture volume developed in (Leckner, 2008), the embodied energy value for the

glycol-water mixture is:

EEgly = 409.15 + 42.78 · (NFPC ·AFPC +NETC ·AETC) (6.38)
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Pipes

The embodied energy of the pipes connecting the solar collectors to thermal storage tanks is equal

to 27 kWh/m (Leckner, 2008). The embodied energy of the pipes, assumed to be composed of 25

m of piping between the solar collectors and thermal storage tanks for one array and 27.5 m for

two arrays (that is, a 10% increase), to which was added 0.5 m per collector (Leckner, 2008), is

calculated as:

EEpipe,one,array = 675 + 13.5 · (NFPC +NETC) (6.39)

EEpipe,two,arrays = 742 + 13.5 · (NFPC +NETC) (6.40)

where EEpipe is the embodied energy of the pipes connecting solar collectors to thermal storage

tanks [kWh].

Thermal storage tanks

The embodied energy of thermal storage tanks was taken from (Ng Chen Hin, 2013), where a

correlation for embodied energy versus tank volume was developed. As stated, different materials or

manufacturing techniques can be used for thermal storage tanks depending on their size. Therefore,

the correlation provides a way of evaluating, on average, the effects of different tank sizes. The

embodied energy of thermal storage tanks is computed as follows (Ng Chen Hin, 2013):

EEtank = 31.08 · Vtank
0.61 (6.41)

where EEtank is the embodied energy of thermal storage tanks [kWh].

Concrete slab

The embodied energy value for the additional concrete to increase the slab thickness over 0.06 m is

taken from (Harvey, 2006), where a compressive strength of 20 MPa is selected [427.78 kWh/m3]:

EEslab = 427.78 ·Aslab ·Dabove (6.42)

Others

The embodied energy associated with the controller, the pumps, and the external auxiliary heater

are not taken into consideration, because there is no sufficient information and in product specifi-
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cations for these components to be estimated properly.

Replacement

The embodied energy of the generic solar thermal combisystem takes into account the embodied

energy of the initial installation as well as that of the replacement of equipment. The expected

service life of each component is the same as the one used in Table 6.3. The embodied energy

is assumed not to change, so the replacement embodied energy of each equipment is equal to its

initial embodied energy multiplied by the number of times it must be replaced over the 40 year life

of the house.

Operating energy

Solar thermal combisystems require energy to operate and maintain the temperature set point

conditions for thermal comfort. The amount of auxiliary energy used (i.e., any additional energy

except solar energy) by solar thermal combisystems through pumps or auxiliary water heaters is

referred to as operating energy. The operating energy, expressed in kWh, is thus calculated as

follows:

OE = 40 · (E0,pump + E0,aux,elec + E0,aux,gas) (6.43)

where E0,pump is the annual energy consumption of the electric pumps during the first year of the

study period [kWh]; E0,aux,elec and E0,aux,gas are the annual energy consumptions of the auxiliary

water heaters powered by electricity or natural gas during the first year of the study period [kWh],

respectively.

The factor 40 comes from the service period, which is set as 40 years (see Section 6.4.1).

Life cycle energy objective function

The life cycle energy use (LCE) by the generic solar combisystem comprises the initial and replace-

ment embodied energies as well as the operating energy. As a result, the LCE objective function

for the generic solar thermal combisystem is calculated as follows:

LCE = EEini + EErep +OE (6.44)
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where EEini, EErep, and OE are the initial embodied energy, replacement embodied energy, and

operating energy [kWh], respectively.

6.4.3 Life cycle exergy analysis

Exergy, also known as availability, is defined as the maximum theoretical work obtainable as a sys-

tem is brought into equilibrium with its environment (Moran & Shapiro, 2004). Exergy is therefore

a thermodynamic property of the system-environment combination (Çengel & Boles, 2006), which

is useful for revealing whether or not and by how much systems can be made more energy efficient.

As a result, exergy analysis in addition to or in place of energy analysis provides more indication

of where system inefficiencies occur (Dincer, 2002). For instance, electricity generated from burn-

ing fossil fuels at very high temperatures represents a poor process for space heating applications,

where the environment being heated is close to ambient conditions (Hepbasli, 2012).

Exergy evaluation

The exergy content of energy sources may be defined as the energy content of the sources multiplied

by a quality factor (Dincer & Rosen, 2006), where thermal energy has the lowest quality factor. The

exergy consumption during a process is proportional to the entropy created due to irreversibilities

associated with the process. Irreversibility, equivalent to the exergy destroyed, can be viewed as

the wasted work potential. The rate of exergy of a control volume is expressed as (Çengel & Boles,

2006):

dX

dt
= Ẋ = ṁ · [(h− h0)− T0 · (s− s0)] + ĖKE + ĖPE (6.45)

where ṁ is the mass flow rate entering the system [kg/s]; h and h0 are the total specific enthalpies of

the system and reference environment [kJ/kg], respectively; T0 is the temperature of the reference

environment [K]; s and s0 are the total specific entropies of the system and reference environ-

ment [kJ/(kg·K)], respectively; ĖKE and ĖPE are the rates of kinetic and potential energy [kW],

respectively.

Kinetic and potential energies are forms of mechanical energy, and therefore they can be con-

verted to useful work entirely. On the contrary, only a portion of heat transfer at a temperature

higher than that of the environment can be converted into useful work. This portion is calculated
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using a quality factor (or exergy factor) equal to the efficiency of a Carnot engine. As a result, the

rate of exergy associated with heat transfer is defined as follows (Çengel & Boles, 2006):

Ẋheat =

(
1− T0

T

)
· Q̇ (6.46)

where T is the hot source temperature [K]; Q̇ is the heat transfer rate [kW].

Exergy balance of solar combisystems

The rate form of the exergy balance of the residential solar combisystem can be expressed as follows

(Suzuki, 1988):

Ẋd = Ẋin − Ẋout − Ẋs − ẊL (6.47)

where Ẋd, Ẋin, Ẋout, Ẋs, and ẊL are the rates of exergy destroyed, exergy flow into the system,

exergy flow out from the system, exergy stored in the system, and exergy leaked from the system

[kW], respectively.

Technical and physical boundaries

As mentioned in (Toŕıo et al., 2009), two different approaches have been used for calculating exergy

losses in solar thermal systems: (i) technical boundary, and (ii) physical boundary.

The difference between the former and the latter consists on whether the conversion of solar

radiation into heat should be taken into consideration or not. A more thorough discussion about

these two boundaries for exergy analysis can be found in (Toŕıo & Schmidt, 2010). Since the techni-

cal boundary takes into account the conversion of high quality solar radiation into low temperature

heat, the greatest exergy losses occur in solar thermal collectors. As a result, systems making a

direct use of solar radiation are penalized compared to indirect-solar systems, because exergy losses

related to solar radiation are ignored. Consequently, both boundaries are used in this doctoral

thesis to evaluate the exergy performance of solar thermal combisystems.

Solar thermal collectors

The rate of exergy flowing into a solar thermal collector is made of two components:

1. The rate of exergy associated with the heat-transfer fluid entering;
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2. The rate of exergy gained from solar radiation.

The rate of exergy associated with the heat-transfer fluid entering is calculated using Equation

6.48, assuming that the kinetic and potential energies can be neglected and that the heat-transfer

fluid is incompressible, as follows (Çengel & Boles, 2006):

Ẋin,coll = ṁin,coll · cp,coll ·
[
Tin,coll − T0 − T0 · ln

(
Tin,coll

T0

)]
(6.48)

where ṁin,coll is the mass flow rate of the heat-transfer fluid entering the solar collectors [kg/s];

cp,coll is the specific heat of the heat-transfer fluid [kJ/(kg·K)]; Tin,coll is the temperature of the

heat-transfer fluid entering the solar collector [K].

The rate of exergy gained from solar radiation depends on the boundary being used. When

the technical boundary is considered, three approaches are usually used for assessing the exergy of

solar radiation. The first one, developed in (Patela, 1964), is defined as follows:

Ẋsolar = Acoll ·Gtot,coll ·
[
1 +

1

3
·
(

T0

Tsun

)
− 4

3
· ln
(

T0

Tsun

)]
(6.49)

The second one, developed in (Jetler, 1981), is formulated as follows:

Ẋsolar = Acoll ·Gtot,coll ·
[
1 +

T0

Tsun

]
(6.50)

where Acoll is the solar collector area [m2]; Gtot,coll is the total solar irradiance incident on the solar

collector [kW/m2]; Tsun is the sun temperature, which is taken equal to 6,000K.

As observed in (Agudelo & Cortés, 2010), the first expression is the most commonly used formula

to assess exergy from solar radiation; thus, it is used in this study when the technical boundary is

taken into consideration. Besides, as mentioned in (Chow et al., 2009), the results from these three

equations do not have more than a 2% difference.

When the physical boundary is considered, the exergy gained from solar radiation is determined

using the collector absorber plate temperature as heat source. As a result, the rate of exergy gained

from solar radiation is expressed as follows (Ng Cheng Hin & Zmeureanu, 2014):

Ẋplate = ṁin,coll · cp,coll ·
[
Tplate − T0 − T0 · ln

(
Tplate

T0

)]
(6.51)

where Tplate is the collector absorber plate temperature defined as follows:

Tplate =
Tout,coll − Tin,coll

ηcoll
+ Tin,coll (6.52)
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The rate of exergy associated with the heat-transfer fluid leaving the collector is similar to

Equation 6.48, but involves the temperature of the heat-transfer fluid leaving the solar collector as

follows:

Ẋout,coll = ṁout,coll · cp,coll ·
[
Tout,coll − T0 − T0 · ln

(
Tout,coll

T0

)]
(6.53)

Assuming that the exergy stored in and leaked from the solar thermal collector are negligi-

ble compared to the other terms (Suzuki, 1988), the exergy destroyed in solar collectors can be

calculated using the technical or physical boundary as follows:

Xd,coll,tech = ∆t · Ẋd,coll,tech = ∆t ·
(
Ẋsolar + Ẋin,coll − Ẋout,coll

)
(6.54)

Xd,coll,phys = ∆t · Ẋd,coll,phys = ∆t ·
(
Ẋplate − Ẋout,coll

)
(6.55)

where ∆t is the simulation time step [h], which is equal to ten minutes (i.e., 10/60 hours).

External heat exchangers

The rate of exergy following in and out of an external heat exchanger is similar to that of a solar

collector, which is expressed as follows:

Ẋin,hx,hot = ṁin,hx,hot · cp,hx,hot ·
[
Tin,hx,hot − T0 − T0 · ln

(
Tin,hx,hot

T0

)]
(6.56)

Ẋout,hx,hot = ṁout,hx,hot · cp,hx,hot ·
[
Tout,hx,hot − T0 − T0 · ln

(
Tout,hx,hot

T0

)]
(6.57)

Ẋin,hx,cold = ṁin,hx,cold · cp,hx,cold ·
[
Tin,hx,cold − T0 − T0 · ln

(
Tin,hx,cold

T0

)]
(6.58)

Ẋout,hx,cold = ṁout,hx,cold · cp,hx,cold ·
[
Tout,hx,cold − T0 − T0 · ln

(
Tout,hx,cold

T0

)]
(6.59)

where ṁin,hx and ṁout,hx are the mass flow rates of the fluid flowing in and flowing out of the external

heat exchanger [kg/s], respectively; cp,hx is the specific heat capacity at constant pressure of the

fluid going through the external heat exchanger [kJ/(kg·K)]; Tin,hx and Tout,hx are the temperatures

of the fluid entering and leaving the external heat exchanger [K], respectively.

Therefore, the exergy destroyed in external heat exchangers is calculated as follows:

Xd,hx = ∆t ·
(
Ẋin,hx,hot − Ẋout,hx,hot + Ẋin,hx,cold − Ẋout,hx,cold

)
(6.60)
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Pumps

Since exergy is the useful work potential, the rate of exergy transfer by electric work is equal to the

rate of electric work itself. In order to take into account the inefficiencies of electricity production

and transmission, a primary electricity conversion factor is added. Thus, the exergy destroyed by

a pump is calculated as follows:

Xd,pump = ∆t · Ẇpump (6.61)

where Ẇpump is the rate of electricity supplied to the pump [kW]. The increase of the physical

exergy of the pumped fluid to increase the pressure and temperature of the fluid is neglected in

this study.

Auxiliary heaters

The exergy balance of an external auxiliary heater is composed of the exergy of the fluid flowing

into the auxiliary heater, exergy of the fluid flowing out from the auxiliary heater, and exergy

gained by electricity or by natural gas. As mentioned in (Dincer & Rosen, 2006), exergy gained

can be simplified as exergy = energy× exergy/energy ratio. The exergy/energy ratio τ is equal to

1.00 for electricity and 0.94 for natural gas. The exergy destroyed by an external auxiliary heater

is therefore calculated as follows:

Xd,aux = Eaux · τ +Xin,aux −Xout,aux (6.62)

in which

Xin,aux = ∆t · ṁout,aux · cp,water,aux ·
[
Tout,aux − T0 − T0 · ln

(
Tout,aux

T0

)]
(6.63)

Xout,aux = ∆t · ṁout,aux · cp,water,aux ·
[
Tout,aux − T0 − T0 · ln

(
Tout,aux

T0

)]
(6.64)

Thermal storage tanks

Unlike solar thermal collectors, the exergy stored in Xs,tank and leaked from the thermal storage

tank XL,tank must be taken into consideration. A thermal storage tank can be equipped with inlets,

outlets, electrical resistances, and immersed heat exchangers, and therefore its exergy destroyed is

expressed as follows:
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Xd,tank = ∆t ·
∑
i

(
Ẋin,tank,i − Ẋout,tank,i

)
+∆t ·

∑
j

(
Ẋin,hx,j − Ẋout,hx,j

)

+∆t ·

(∑
k

Ẇelec,k − ẊL,tank

)
+Xs,tank

(6.65)

where Ẋin,tank,i and Ẋout,tank,i are the exergy rate flowing in and out of the storage tank through

the i-th inlet and outlet [kW], respectively; Ẋin,hx,j and Ẋout,hx,j are the exergy rate flowing in and

out of the storage tank through the j-th heat exchanger [kW], respectively; Ẇelec,k is the rate of

electricity supplied to the k-th electrical resistance [kW]; ẊL,tank is the rate of exergy leaked from

the storage tank through its walls [kW]; Xs,tank is the exergy stored in the storage thermal tank

[kWh].

Equation 6.65 varies depending on the kind of thermal storage tank being used. For instance,

if a storage tank does not have any internal heat exchanger, the second term is removed. The

different terms involved are calculated as follows:

Ẋin,tank,i = ṁin,tank,i · cp,tank,i ·
[
Tin,tank,i − T0 − T0 · ln

(
Tin,tank,i

T0

)]
(6.66)

Ẋout,tank,i = ṁout,tank,i · cp,tank,i ·
[
Tout,tank,i − T0 − T0 · ln

(
Tout,tank,i

T0

)]
(6.67)

Ẋin,hx,j = ṁin,hx,j · cp,hx,j ·
[
Tin,hx,j − T0 − T0 · ln

(
Tin,hx,j

T0

)]
(6.68)

Ẋout,hx,j = ṁout,hx,j · cp,hx,j ·
[
Tout,hx,j − T0 − T0 · ln

(
Tout,hx,j

T0

)]
(6.69)

ẊL,tank = UL,tank ·Atank · (Tavg,tank − Troom) ·
(
1− T0

Tavg,tank

)
(6.70)

Xs,tank = Xtank(t)−Xtank(t− 1) (6.71)

in which UL,tank is the overall tank heat loss coefficient per unit area [kW/(K· m2)]; Atank is the

surface area of the storage tank [m2]; Tavg,tank is the average temperature of the water inside the

storage tank [K]; Troom is the air node temperature of the room where the storage tank is situated

[K]; Xtank(t) and Xtank(t− 1) are the amounts of exergy stored in the storage tank water at time

t and t− 1 [kWh], respectively, which are calculated as follows:
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Xtank =

(
1 kWh

3, 600 kJ

)
·mtank · cp,tank ·

[
Tavg,tank − T0 − T0 · ln

(
Tavg,tank

T0

)]
(6.72)

where
(

1 kWh
3,600 kJ

)
is the unity conversion ratio, equal to one and unitless, to convert kJ in kWh.

Life cycle exergy destroyed objective functions

The life cycle exergy destroyed (LCX) by the generic solar combisystem corresponds to the exergy

destroyed by each of its components. As a result, the LCX objective function for the generic solar

thermal combisystem using the technical or physical boundary is calculated as follows:

LCXtech = Xd,comb,tech = Xd,coll,tech +Xd,pump +Xd,hx +Xd,aux +Xd,tank (6.73)

LCXphys = Xd,comb,phys = Xd,coll,phys +Xd,pump +Xd,hx +Xd,aux +Xd,tank (6.74)

6.4.4 Penalty function

Comfortable indoor air temperature can be ensured through one or more penalty functions instead

of using another objective function. Penalty functions, penalizing unwanted or infeasible solutions,

provide an easy way of handling constrained optimization problems. For instance, the optimization

process presented (Djurica et al., 2007) made certain that thermal comfort was respected by using

the percentage of people dissatisfied (PPD) index as a constraint. Thermal comfort can be assessed

with the predicted mean vote (PMV) or PPD indexes, based on Fanger’s model (Fanger, 1970).

Penalty functions based on the supply space heating and domestic hot water temperatures were

inserted in (Ghiaus & Jabbour, 2012) to ensure a thermal comfort threshold for a multi-source

solar system. Thermal comfort was also set as a constraint in (Ng Cheng Hin & Zmeureanu, 2014),

where a high amount was added to the value of each objective function as soon as the number of

hours under the heating set point was above 550.

Since solar thermal combisystems provide both domestic hot water and space heating, two

penalty functions, based on (Ng Cheng Hin & Zmeureanu, 2014), are added to each of the four

aforementioned objective functions. To prevent Legionnaires disease, the lower DHW temperature

is set at 55◦C. If this condition is not met, the penalty function defined in Equation 6.75 is triggered.

For space heating, the penalty function defined in Equation 6.76 is triggered when the number of

hours under set point (HUSP) exceeds 550. As the house is divided into three zones, the limit of
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550 corresponds to 183 hours per zone, which is 4.5% of the heating season time (from October

17th to May 1st). An arbitrary high penalty value is given to ensure that such solutions are not

selected:

PENDHW = 500, 000 · lt (55, TDHW) (6.75)

PENSH = 500, 000 · lt (550,HUSP) (6.76)

where lt (criterion, variable) is equal to one if criterion is less than variable and equal to zero

otherwise.

These two penalty functions are applied to Case study no. 1 only, which is presented in Chapter

8. Since Case study no. 2 is based on measurements, design solutions are considered only if the

DHW and SH needs are satisfied.
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Chapter 7

Micro multi-objective optimization al-

gorithm1

Real-world optimization problems having only one objective function are rather the exception than

the rule. Multi-objective optimization problems usually involve conflicting objectives, and therefore

are more difficult to solve. Among the different MOO algorithms that have been developed, little

emphasis has been placed on micro-MOO algorithms, which use a small population of solution

candidates. Such algorithms are suitable for optimization problems where evaluating objective

functions is time-consuming, which is the case of many engineering applications (Fuentes Cabrera

& Coello Coello, 2010).

A micro-genetic algorithm for multi-objective optimization, named micro-GA, was proposed

in (Coello Coello & Pulido, 2001), and then improved in (Pulido & Coello Coello, 2003). Both

belong to the evolutionary algorithm family, which means that their optimization search consists in

imitating natural selection. Another micro-MOO algorithm, called micro-MOPSO, was presented

in (Fuentes Cabrera & Coello Coello, 2010), which was a micro version of the multi-objective

particle swarm optimization (MOPSO) algorithm. To the best knowledge of the author, none of

them have been used in building engineering and no further research has been conducted on micro-

MOO algorithms. A micro-time variant multi-objective optimization (micro-TVMOPSO), which is

a revised version of micro-MOPSO, is therefore proposed herein and will be used for the following

two case studies.

1This chapter is mainly based on the paper “Rey, A., & Zmeureanu, R. (2017). Micro-Time Variant Multi-
Objective Particle Swarm Optimization (micro-TVMOPSO) of a solar thermal combisystem [in press]. Swarm and
Evolutionary Computation. doi: https://doi.org/10.1016/j.swevo.2017.04.005”
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7.1 Micro-MOPSO algorithm

Proposed in (Fuentes Cabrera & Coello Coello, 2010), micro-MOPSO uses five candidate solutions

and two external repositories. Non-dominated solutions found during the optimization search

are stored in the first external repository, named auxiliary archive. A second repository, called

final archive, is used to store the final non-dominated solutions that are given at the end of the

optimization search. The non-dominated solutions within the final archive are sorted based on their

crowding distance (Deb et al., 2002).

The final archive is also used to select the leader of the swarm. A subset of the final archive,

composed of the non-dominated solutions having the highest crowding distance value, is selected

and one solution is randomly chosen as the decision vector Gbest. This mechanism favors the

particles in the less populated areas in order to increase diversity. Once the leader is chosen,

its closest neighbors, based on the Euclidean distance, are selected from the auxiliary archive to

generate the swarm. Since the final archive contains only non-dominated solutions, it is pruned

using the crowding distance mechanism when its maximum capacity is reached. If the maximum

capacity of the auxiliary archive is exceeded, only the solutions that belong to the first five non-

dominated fronts are kept. If there are still too many solutions belonging to the first five fronts, the

crowding distance mechanism is used to filter out solutions. Due to its small number of particles,

micro-MOPSO preserves diversity by using a re-initialization process (Fuentes Cabrera & Coello

Coello, 2007) and a mutation operator (Michalewicz, 1996).

Micro-MOPSO outperformed NSGA-II in (Fuentes Cabrera & Coello Coello, 2010), but faced

difficulties in approximating the true Pareto front of the ZDT4 benchmark problem (Zitzler et al.,

2000). Besides, micro-MOPSO was compared to NSGA-II only. As reported in (Hu & Yen, 2015),

the crowding distance operator used in micro-MOPSO tends to select the extreme non-dominated

solutions forming the Pareto front which may lead to premature convergence.

7.2 Proposed micro-TVMOPSO algorithm

Three hypotheses are made in order to enhance micro-MOPSO’s performance: (i) its lack of velocity

constraint mechanism reduces its efficiency at searching for new non-dominated solutions, (ii) the
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use of the crowding distance operator leads to premature convergence, and (iii) its main coefficients

do not favor global exploration and local exploitation. Three modifications of micro-MOPSO are

therefore proposed and presented in this section, which leads to the proposed micro-TVMOPSO

algorithm.

As observed in (Durillo et al., 2009), MOPSO-based algorithms faced difficulties in approxi-

mating multi-frontal problems such as ZDT4 due to a lack of velocity limit. High velocities can

position particles beyond the upper or lower bounds of the decision variables, known as “swarm ex-

plosion”, which leads to undesired solutions. As a result, micro-TVMOPSO starts by incorporating

the velocity constraint mechanism presented in (Nebro et al., 2009).

7.2.1 Velocity constraint mechanism

In order to prevent micro-TVMOPSO from the aforementioned problem, a constriction coefficient

χ(t) multiplies Equation 2.6 (Clerc & Kennedy, 2002):

χ(t) =

⎧⎨⎩1, if φ(t) ≤ 4

2
/[

2− φ(t)−
√
φ(t)2 − 4 · φ(t)

]
, if φ(t) > 4

(7.1)

where

φ(t) = c1(t) + c2(t) (7.2)

Instead of maintaining both c1 and c2 equal to 1.8, as in micro-MOPSO, each coefficient were

varied randomly between 1.5 and 2.5 in (Nebro et al., 2009) to avoid χ(t) to be always equal to

one. The constriction coefficient reduces, but it does not eliminate, the probability of the particles

to go beyond the upper or lower bounds of the decision variables.

Before updating the position of each particle using Equation 2.7, the velocity associated with the

j-th decision variable of the i-th particle is bounded by the following velocity constriction (Nebro

et al., 2009):

vji (t+ 1) =

⎧⎪⎪⎨⎪⎪⎩
∆j, if vji (t+ 1) > ∆j

−∆j, if vji (t+ 1) ≤ −∆j

vji (t+ 1), otherwise

(7.3)

where

∆j =
uj − lj

2
(7.4)
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in which uj and lj are the upper and lower boundaries of the j-th decision variable.

In addition to the constriction coefficient, this velocity constriction enables to reduce further-

more the probability of a particle to go beyond its bounds. After the velocity has been constrained

and used in Equation 2.7, micro-TVMOPSO verifies whether or not the value of each decision

variable is out of the search space. A decision variable exceeding its upper or lower bounds takes

the value of that bound and its corresponding velocity is multiplied by 0.01 (Nebro et al., 2009) in

order to reduce its momentum.

7.2.2 Leader and neighborhood selection

Proposed in (Hu & Yen, 2015) to overcome the issue associated with the crowding distance mecha-

nism, the parallel cell coordinate system (PCCS) is used in micro-TVMOPSO as a leader selection

and as an archive pruning mechanism.

Parallel cell coordinate system

The m-th objective of the k-th non-dominated solution in the archive, written fk,m, is associated

with an integer label number Lk,m using Equation 7.5 (Hu & Yen, 2015). Thus, PCCS divides the

archive into a 2-dimensional grid withK×M cells, whereK andM are the archive size (i.e., number

of non-dominated solutions changing over generations) and number of objectives, respectively.

Lk,m =

⌈
K ·

fk,m − fmin
m

fmax
m − fmin

m

⌉
(7.5)

where ⌈x⌉ is the ceiling function, which returns the smallest integer greater than or equal to x;

fmin
m and fmax

m are the minimum and maximum values of the m–th objective among all the K

non-dominated solutions. The integer label number Lk,m ∈ {1, 2, . . . ,K} is set to one if fk,m is

equal to fmin
m . Parallel cell coordinate system provides a way to compare non-dominated solutions.

The integer label number Lk,m provides a way of finding the non-dominated solutions in the 2-D

grid created by the parallel cell coordinate system, which can then be compared using the concept

of density.
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Density

Instead of using the crowding distance operator, the concept of density is used in micro-TVMOPO

to avoid premature convergence. The density of a particle xk in the archive is calculated as follows

(Hu & Yen, 2015):

Density (xk) =
K∑
l=1
k ̸=l

1

PCD (xk, xl)
(7.6)

where PCD is the parallel cell distance, calculated between xk and the rest of the non-dominated

solutions in the archive, is the sum of the differences of cell coordinates over all objectives M in the

PCCS. The PCD of two non-dominated solutions xk and xl, PCD (xk, xl), is computed as follows

(Hu & Yen, 2015):

PCD (xk, xl) =

⎧⎪⎨⎪⎩
0.5, if ∀m,Lk,m = Ll,m

M∑
m=1

|Lk,m − Ll,m|, otherwise
(7.7)

Thus, if the non-dominated solutions xk and xl share the same cells for all M objectives in the

PCCS, the parallel cell distance is equal to 0.5 – value chosen in (Hu & Yen, 2015) to avoid division

by zero. Since the density of a particle xk is calculated using the PCD, its value is affected by

all its neighbors. The solution with minimum density in the archive is located in the less crowded

regions, and therefore might be worth exploring to maintain diversity.

Final archive mechanisms

The best position of each particle, that is P best, is updated as in micro-MOPSO. The auxiliary

archive mechanisms of micro-MOPSO remain also unchanged in micro-TVMOPSO; however, the

proposed micro-TVMOPSO uses the density operator to prune the non-dominated solutions in the

final repository. The leader of the swarm, that is Gbest, is also selected using the density operator

(instead of the crowding distance). The use of the density, which relies on PCCS, instead of the

crowding distance should make micro-TVMOPSO more robust in maintaining diversity.
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7.2.3 Time-variant parameters

Both micro-MOPSO and micro-TVMOPSO algorithms use the PSO updates given by Equations 2.6

and 2.7. However, instead of using a random inertia weight w, and two constant coefficients c1 and

c2, whose values were originally set equal to 1.8, micro-TVMOPSO uses time-variant parameters.

The velocity constraint mechanism presented in (Nebro et al., 2009), which includes the constriction

coefficient χ, requires both c1 and c2 to vary randomly in the range [1.5, 2.5]. However, as observed

in (Clerc & Kennedy, 2002), global exploration is emphasized using larger values for w and c1,

and smaller ones for c2. On the contrary, local exploitation is emphasized using smaller values for

w and c1, and larger ones for c2. As a result, micro-TVMOPSO is made adaptive by allowing

the range of these two parameters as well as that of the inertia weight w to change over time as

shown in Equations 7.8a to 7.9c. The range of w and c1 decreases over generations while that of

c2 increases in order to enhance global exploration at the beginning of the optimization search and

local exploitation at the end.

w(t) = rand(0, wup(t)) (7.8a)

c1(t) = rand(c1,up(t)− 1, c1,up(t)) (7.8b)

c2(t) = rand(c2,up(t)− 1, c2,up(t)) (7.8c)

in which

wup(t) = wini −∆w · t

tmax
(7.9a)

c1,up(t) = c1,ini −∆c1 ·
t

tmax
(7.9b)

c2,up(t) = c2,ini +∆c2 ·
t

tmax
(7.9c)

where t and tmax are the generation index and maximum number of generations, respectively; ∆w,

∆c1, and ∆c2 are constant increments of w, c1, and c2, respectively, whose values are calculated

as the absolute difference between the initial (wini = 1.0, c1,ini = 2.5, c2,ini = 2.5) and final values

(wfin = 0.6, c1,fin = 1.5, c2,fin = 3.5) of wup, c1,up, and c2,up.

The initial and final values of wup, c1,up, and c2,up are the parameter settings of micro-TVMOPSO

which differ from micro-MOPSO. In micro-MOPSO, c1 was a random number between [0, 1], and

c1 was equal to c2, which were both set to 1.8. For the proposed micro-TVMOPSO, all the flight
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control parameters are random numbers; however, their respective upper boundary varies as the

optimization progresses (see Equations 7.9a to 7.9c) to enhance global exploration and local ex-

ploitation.

7.3 Experiments and results

The proposed micro-TVMOPSO is applied in this section along with eight other MOO algorithms,

including micro-MOPSO, to 24 benchmark problems, and their performance is compared by using

two performance metrics.

7.3.1 Algorithms for comparison

Eight MOO algorithms are used for comparison with the micro-TVMOPSO algorithm: (i) Non-

dominated Sorting Genetic Algorithm-II (NSGA-II); (ii) Strength Pareto Evolutionary Algorithm

2 (SPEA-2), (iii) Pareto Archived Evolution Strategy (PAES), (iv) Archive-based Hybrid Scatter

Search (AbYSS); (v) Multiobjective Evolutionary Algorithm based on Decomposition and Differ-

ential Evolution (MOEA/D-DE), (vi) Non-dominated Sorting Genetic Algorithm-III (NSGA-III),

(vii) Multi-Objective Particle Swarm Optimization (MOPSO), and (viii) micro-Multi-Objective

Particle Swarm Optimization (micro-MOPSO).

NSGA-II (Deb et al., 2002) is one of the most popular genetic algorithms, as mentioned in (Ben

Yahia et al., 2015; Ghiasi et al., 2011). Using operators such as selection, crossover, and mutation to

generate children from a parent population, NSGA-II sorts its children and parents based on their

rank and crowding distance to always maintain its final population at a predefined number. SPEA-

2 (Zitzler et al., 2001) is an archive-based multi-objective evolutionary algorithm, which maintains

the size of its archive using a clustering technique. New candidate solutions are found by using

binary tournament selection and polynomial mutation. PAES (Knowles & Corne, 2000) is also

an archive-based multi-objective evolutionary algorithm, using an adaptive grid (i.e., the objective

function space is divided into hypercubes) to maintain diversity. As mentioned in (Fuentes Cabrera

& Coello Coello, 2010), PAES can be viewed as a form of micro-GA. AbYSS (Nebro et al., 2008) is

an archive-based hybrid scatter search, which is based on scatter search templates. MOEA/D-DE

(H. Li & Zhang, 2009) is an improved version of the MOEA/D algorithm (Q. Zhang & Li, 2007),
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which decomposes MOO problems into a number of single objective optimization sub-problems;

the objective of each problem is an aggregation of all the objectives. MOEA/D-DE uses differential

evolution operator and polynomial mutation. As mentioned in (Zhou et al., 2011), MOEA/Ds are

recent MOO algorithms which have proved to be effective in different application areas. MOPSO

(Coello Coello et al., 2004) is the first multi-objective version of PSO. NSGA-III (Deb & Jain,

2014) is an extension of NSGA-II, which maintains diversity by supplying and updating a number

of well-spread reference-points. Unlike the previous six optimization algorithms, MOPSO is based

on swarm intelligence. Derived from MOPSO, micro-MOPSO (Fuentes Cabrera & Coello Coello,

2010) is a micro-algorithm using the PSO update pattern and two external repositories.

7.3.2 Benchmark problems

The performance of the selected MOO algorithms is assessed using the same seven benchmark

problems used in (Fuentes Cabrera & Coello Coello, 2010): bi-objective benchmark problems from

the ZDT test suites (Zitzler et al., 2000), KUR (Kursawe, 1996) and VNT3 test problems (Viennet

et al., 1996). The analytical formulation of some benchmark problems is reported in Table 7.1. Ten

benchmark problems from the Congress on Evolutionary Computation 2009 Competition (Q. Zhang

et al., 2009) and seven benchmark problems from the DTLZ suites (Deb et al., 2001) were also used

in (Rey & Zmeureanu, 2017). The number of variables used for each benchmark problem is equal

to the number used in the reference papers, for instance 30 variables with the ZDT1 benchmark

problem.
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Table 7.1: Benchmark problems and analytical formulation of their Pareto front

Name Variable and range Objective functions

ZDT1 n = 30 f1(x) = x1

x1, . . . , xn ∈ [0,1] f2(x) = g(x) ·
[
1−

√
f1(x)
g(x)

]
ZDT2 n = 30 f1(x) = x1

x1, . . . , xn ∈ [0,1] f2(x) = g(x) ·
[
1−

(
f1(x)
g(x)

)2]
ZDT3 n = 30 f1(x) = x1

x1, . . . , xn ∈ [0,1] f2(x) = g(x)·
[
1−

√
f1(x)
g(x) − f1(x)

g(x) · sin(10 · π · x1)
]

ZDT4 n = 10 f1(x) = x1

x1 ∈ [0,1] f2(x) = g(x) ·
[
1−

√
x1
g(x)

]
x2, . . . , xn ∈ [-5,5]

ZDT6 n = 10 f1(x) = 1− e−4·x1 · sin6(6 · π · x1)
x1, . . . , xn ∈ [0,1] f2(x) = 1−

(
f1(x)
g(x)

)2

where

g(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 + 9 ·
n∑

j=2
xj/(n− 1), for ZDT1, ZDT2, or ZDT3

1 + 10 · (n− 1) +
n∑

j=2

[
xj

2 − 10 · cos(4 · π · xj)
]
, for ZDT4

1 + 9

[
n∑

j=2
xj/(n− 1)

]1/4
, for ZDT6

7.3.3 Performance metrics

As mentioned in (Reyes-Sierra & Coello Coello, 2006), multi-objective optimization algorithms

should provide: (i) convergence, (ii) spread, and (iii) uniformity. A MOO algorithm should min-

imize the distance between the non-dominated solutions and the true Pareto front (convergence),

maximize the spread along the Pareto front (spread), and maximize the number of evenly spaced

non-dominated solutions found (uniformity).

Two performance metrics are used to assess the three aforementioned criteria: (i) inverted

generational distance (IGD) (Van Veldhuizen & Lamont, 1998) and (ii) hypervolume (HV) (Zitzler

& Thiele, 1999). Both have been widely used in (Akay, 2013; Hu & Yen, 2015; Zhan et al., 2009).

As reported in (M. Li et al., 2014), HV and IGD involve all the three aspects that performance

metrics should cover. In addition, HV and IGD show high consistencies in evaluation compared to
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other metrics (Jiang et al., 2014). A short description of those metrics is presented herein.

Inverted generational distance

IGD is a modification of the generational distance, which evaluates the Euclidean distance between

each non-dominated solution in the objective space, found by the optimization algorithm, and all

solutions from the true Pareto front, and uses the smallest distance found in the summation over

all non-dominated solutions; whereas IGD calculates how far each solution of the true Pareto front

is from the non-dominated solutions found:

IGD =

√
|P ∗|∑
k=1

d(x∗k, xclosest)
2

|P ∗|
(7.10)

where d(x∗k, xclosest) is the Euclidean distance, in the objective space, between the k-th solution of

the true Pareto front and the closest non-dominated solution found by the MOO algorithm; |P ∗|

is the cardinality of the true Pareto front, that is, the number of solutions from the true Pareto

front. The smaller IGD, the closest the final non-dominated solutions are to the true Pareto front.

Hypervolume

HV assesses the volume covered by the non-dominated solutions in the objective space, which

quantifies and encapsulates both convergence and diversity:

HV = volume

(
K⋃
k=1

Vk

)
(7.11)

where Vk is the k-th hypercube constructed with the k-th solution in the objective space found

by the algorithm and an arbitrary selected worst solution used as reference in the objective space

(called sometimes the reference set); K is the number of non-dominated solutions found by the

optimization algorithm. The closer are the non-dominated solutions found to the true Pareto front

or the more evenly distributed, the larger is the value of HV. Unlike the IGD metric, a larger value

of HV is desirable.
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7.3.4 Results and discussion

For the sake of comparison with the micro-MOPSO algorithm proposed in (Fuentes Cabrera &

Coello Coello, 2010), the total number of function evaluations is set equal to 3,000 for all the

selected MOO algorithms. The maximum number of generations performed by each MOO algorithm

is derived by considering the 3,000 function evaluations and their corresponding population size.

The population size and other control parameter settings of each MOO algorithm are taken from

their respective reference.

Since the selected MOO algorithms use stochastic methods, the performance of each algorithm is

calculated from 120 independent optimization runs of each benchmark problem. All algorithms are

launched using Java on an Intel Core i7-3770 CPU @ 3.40 GHz with 8 GB of RAM. The following

six algorithms, NSGA-II, SPEA-2, PAES, AbySS, MOEA/D-DE, and NSGA-III are taken from

jMetal 5.0 (Durillo & Nebro, 2011), which is an object-oriented Java-based framework for multi-

objective optimization. The other three algorithms, MOPSO, micro-MOPSO, and the proposed

micro-TVMOPSO, were implemented using the jMetal framework as a starting point. Both IGD

and HV are taken directly from jMetal 5.0. Some results from (Rey & Zmeureanu, 2017) are

presented in order to give confidence regarding the use of micro-TVMOPSO in the multi-objective

optimization framework.

Many MOO algorithms face difficulties in approximating the true Pareto front of multi-frontal

problems such that ZDT4, especially for small numbers of generations. Figure 7.1 shows the best

results achieved for ZDT4 by NSGA-III, MOPSO, micro-MOPSO, and micro-TVMOPSO based on

120 independent optimization runs. The best approximation of the true Pareto front of ZDT4, that

is, the optimization run leading to the smallest value of the IGD metric, is used for comparison.

The proposed micro-TVMOPSO algorithm provides better results than the other MOO algorithms.
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Figure 7.1: Graphical comparison of the Pareto fronts found for ZDT4

As shown in Figure 7.2, micro-TVMOPSO was efficient at approximating the true Pareto front

of other benchmark problems. All these benchmark problems have different properties such as:

convex (ZDT1, ZDT4), concave (ZDT2, ZDT6, DTLZ2, DTLZ3, DTLZ4, DTLZ5, and DTLZ6),

linear (DTLZ1), mixed (VNT3), discontinuous (ZDT2, DTLZ7), and complicated (UF1-UF10).
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Figure 7.2: Micro-TVMOPSO results found on four benchmark problems

Tables 7.2 shows the HV metric of the each MOO algorithm applied to the selected benchmark

problems, for which larger values indicate better convergence and spread. The median M(HV) and

interquartile range (IQR) are used as an indication of central tendency and a measure of statistical

dispersion. For each problem, the best results are highlighted in boldface, while a dash symbol “-”

is used when the HV value is equal to zero.

Based on the results, micro-TVMOPSO is found to be efficient for a small number of function

evaluations. The proposed micro-TVMOPSO algorithm is therefore used as an optimizer in the

multi-objective optimization framework. Since micro-TVMOPSO aims at optimizing a generic solar

thermal combisystem modeled in TRNSYS, it must be able to communicate with this external

building performance simulation software.
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7.4 Coupling of the generic model and optimization algorithm

Any multi-objective optimization problem involving implicit objective functions, which are evalu-

ated by an external software through a procedure or subroutine, requires the selected multi-objective

optimization algorithm to communicate with the external software. Communication involves an

information source, which sends a message to a receiver. The goal of such a process is to exchange

information, and therefore receivers must understand messages. In this case, micro-TVMOPSO

and TRNSYS are both information source and receiver. As a result, micro-TVMPSO was coupled

with TRNSYS as shown in Figure 7.3.

TRNExe
TRNSYS environment

Write outputs

.TXT file

Read outputs

micro-TVMOPSO
Java environment

Write inputs

.DCK file

Execute .DCK file

Call TRNExe

Parameters Results

Start Stop

Figure 7.3: Flowchart of the intercommunication between micro-TVMOPSO and TRNSYS

The Java-based program – including the micro-TVMOPSO algorithm – starts by writing the

values of the selected design variables in the TRNSYS deck file, which is a text file that contains all

inputs for the TRNSYS simulation engine. Afterwards, micro-TVMOPSO calls TRNExe to launch

TRNSYS simulations. In the TRNSYS environment, an output type writes the value of each ob-

jective function in a text file. After the TRNSYS simulation are completed, the micro-TVMOPSO

extracts the value of each objective function. This process continues until the termination criterion

is met, that is to say the maximum number of micro-TVMOPSO generations is reached. Since
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the coupling process involves text files, micro-TVMOPSO could be coupled with other building

performance simulation programs, such as EnergyPlus or Dymola. As long as the external software

reads its inputs from text files and writes its outputs to text files, micro-TVMOPSO could be used.

Since Java is an object-oriented programming, the capability of reading from and writing to text

files is not specific to micro-TVMOPSO. In other words, any other multi-objective optimization

algorithm developed in the same way as micro-TVMOPSO could communicate with an external

software. Finally, Java is platform independent, so this process could work on any platform.
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Chapter 8

Case study no. 1: Montreal, Quebec,

Canada1

This chapter concentrates on the simulation-based residential solar thermal combisystem devel-

oped in (Leckner, 2008). This solar thermal combisystem was part of a net-zero energy house

(NZEH), which was an energy efficient modified version of a typical 1994 Quebec house construc-

tion. Since the NZEH was achieved using photovoltaic panels, which are not considered in this

doctoral thesis, the term is replaced by energy efficient house (EEH). The main details of the EEH

and its solar thermal combisystem are first provided. An analysis of the solar thermal combisys-

tem is then performed to provide some insights regarding its general behavior. Subsequently, a

multi-objective optimization of the solar thermal combisystem is executed using the framework

and micro-TVMOPSO algorithm developed in Chapters 6 and 7.

8.1 Overview of the EEH and its solar combisystem

This section presents the main physical properties of the energy efficient house and solar ther-

mal combisystem developed in (Leckner, 2008). The objective is to present the base case before

performing a multi-objective optimization to find what could be improved.

1This chapter is mainly based on the paper “Rey, A., & Zmeureanu, R. (2017). Multi-objective optimization
framework for the selection of configuration and equipment sizing of solar thermal combisystems. Manuscript sub-
mitted for publication.”
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8.1.1 Energy efficient house model

The EEH is an energy efficient modified version of a typical 1994 Quebec house construction,

developed in (Leckner, 2008). The EEH was originally equipped with photovoltaic panels to supply

the additional energy demands for the house; however, photovoltaic panels are not considered in

this thesis as they are beyond its scope. The EEH is a two story wood framed detached house with

a total heated area of 208.4 m2 and a natural infiltration of 1.22 air change per hour at 50 Pa. The

house is divided into five zones in the TNRSYS environment: the unheated garage, three heated

spaces, and unheated attic. The EEH’s walls and windows comply with the minimum requirements

of the R-2000 building standard in terms of thermal resistance (Leckner, 2008).

The EEH, whose artificial lighting is provided by compact fluorescent lamps, is modeled for a

family of two parents and three children. The appliances used in the EEH are taken from EnerGuide

and Energy Star listings, where 100% of the energy is converted into convected heat gains (Leckner,

2008). The hourly schedule for domestic hot water use is based on (Perlman & Mills, 1985), which

corresponds to an overall consumption of 236 liters per day. As the EEH was assumed to be

equipped with efficient low-flow mixtures and aerators, the hot water flow rate was reduced by

30% (Leckner, 2008). A thermostatic mixing valve was also installed on the DHW tank to enable

the water within the tank to be at a temperature higher than 55◦C, which corresponds to a lower

limit to prevent Legionnaires’ disease. The water going out of the thermal storage tank is therefore

mixed with cold city water by the thermostatic mixing valve to ensure a constant temperature of

49◦C. Finally, the EEH had a drain water heat recovery system to preheat the incoming cold city

water using the wasted heat from the warm drain water (Leckner, 2008).

8.1.2 Solar combisystem model

Figure 8.1 shows the scheme of the solar thermal combisystem used in this first case study. This

residential solar combisystem was developed in (Leckner, 2008) using TRNSYS. The solar com-

bisystem configuration has two thermal storage tanks, one is dedicated to the DHW preparation,

while the other is dedicated to the SH needs. Both the radiant floor and domestic hot water tanks

are charged by solar energy through the flat-plate solar collectors array, and by electricity through

their respective electrical heating elements.
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Figure 8.1: Scheme of the solar combisystem modeled in (Leckner, 2008)

Control strategies

As shown in figure 8.1, the 60% glycol-water mixture leaving the array of solar thermal collectors

goes through a flow diverter (Type 11f), which is controlled by a differential controller (Type 2b)

and a TRNSYS equation block to give priority to the RF tank. Solar energy harvested by the

solar collectors as heat will be transferred to the RF tank if the following three conditions are

met (Leckner, 2008): (i) it is the heating season (i.e., from October 17th to May 1st), (ii) the

temperature of the glycol-water mixture is higher than that of the water in the tank surrounding

the exiting section of the heat exchanger, and (iii) the temperature of the water in the top layer of

the tank is less than to 55◦C. If one of these conditions is violated, a second differential controller

comes into play to determine whether the glycol-water mixture should be directed to the DHW

tank. Two conditions must be met: (i) the temperature of the glycol-water mixture is higher than

that of the water in the tank surrounding the exiting section of the heat exchanger, and (ii) the

temperature of the water in the top layer of the tank is less than to 85◦C. If none of these five

conditions are met, no pump circulates the glycol-water mixture.

The immersed electrical heating elements are controlled using a 3-stage room thermostat and

temperature deadband (Type 8b) as well as a TRNSYS equation block. To ensure thermal comfort,
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the auxiliary heating elements in the upper and lower parts of the RF tank are turned on when

the temperature on the top floor of the house drops below 21◦C and 18◦C, respectively, with a

deadband of 0.5◦C. These two temperature setpoints are set back by 3◦C at night (i.e., from 11 pm

to 7 am) to reduce energy use. The electrical heating element within the DHW tank is activated

when the temperature of the water in the top layer drops below 55◦C.

Simulation results from the EEH with base case solar combisystem

The initial solar combisystem shown in Figure 8.1 has two 300-L vertical thermal storage tanks.

Both radiant floor (RF) and DHW tanks are charged by solar energy through four flat-plate solar

collectors in parallel, each having an area of 2.51 m2, and by electricity through their respective

electric heating elements. The south-facing flat-plate collectors are roof-mounted with a tilt angle

of 45◦. The DHW tank has one heating element of 1 kW while the RF tank is equipped with

two heating elements of 2 kW and 4 kW from top to bottom location. A one-year simulation of

the energy efficiency house equipped with the base case thermal combisystem was performed in

TRNSYS using a time step of 10 minutes and yielded a total electricity requirement for one year of

11,255 kWh, which corresponds to 54 kWh/m2. With 15.8 kWh/m2, that is 29.2%, space heating

accounts for the most important energy end-use, whereas domestic hot water corresponds to only

2.7% with 310.8 kWh per year.

8.2 Optimization results and discussion

The multi-objective optimization aims at finding non-dominated design solutions for the solar com-

bisystem configuration and equipment sizing based on the four objective functions (LCC, LCE,

LCXtechnical, and LCXphysical). The initial solar combisystem design was used as one of the candi-

date solutions of the first generation of micro-TVMOPSO. Due to the time-consuming nature of

one single TRNSYS simulation (around 25 minutes), a maximum number of 100 generations was

selected; the micro-TVMOPSO algorithm used five particles, which results in 500 TRNSYS simula-

tions (five particles times 100 generations). For 500 TRNSYS simulations, micro-TVMOPSO lasted

approximately 39 hours (i.e., one day and 14 hours). A total of 15 non-dominated solutions were

found. For example, Figure 8.2 shows the nine non-dominated solutions out of the 15 solutions,
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when only LCC and LCE objective functions are taken into consideration.
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Figure 8.2: LCE vs. LCC approximation of the Pareto front using micro-TVMOPSO for Case
study no. 1

As shown in Figure 8.3, three different solar combisystem configurations were found, each one

with different equipment sizing. As shown in Table 8.1, configuration A, with solutions 1A, 2A, and

3A, corresponds to the non-dominated solutions having the lowest LCC values. This configuration

uses flat-plate collectors (B1
1 = 1) and one relatively small thermal storage tank without stratifying

devices (B1
4 = 1).
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Figure 8.3: Configurations of the Pareto solutions found by micro-TVMOPSO for LCE vs. LCC
for Case study no. 1

Both configurations B and C have two thermal storage tanks without stratifying devices; the

configuration B is equipped with flat-plate collectors (B1
1 = 1) whereas configuration C is equipped

with evacuated tube collectors (B2
1 = 1). Two thermal storage tanks enable a better thermal

stratification, which reduces the LCE value. Non-dominated solutions having the configuration C,

with solutions 6C, 7C, and 8C, are represented at the lower right corner since they lead to the lowest

LCE values, but also higher LCC ones. Low LCE values can be achieved by increasing the number

of solar collectors; however, a trade-off exists between the energy savings and embodied energy.

ETCs are more energetically efficient, but more expensive than FPCs. The former is preferred

to reduce the LCE objective function, while the latter is more suitable for decreasing the LCC

objective function. An increase of the concrete heating floor slab thickness enables storing more

thermal energy, which saves energy and reduces temperature swings inside the house, but increases

the initial cost.

The characteristics of five out of the eight non-dominated solutions are listed in Table 8.1.

Micro-TVMOPSO found a non-dominated solution (no. 1) that reduced the LCC value by 29%

compared with the initial design solution (no. 4), but increased the LCE value by 72%. To the

other extreme, solution no. 8 reduced the LCE value by 27%, and increased the LCC value by 36%.

Compared to the initial design solution (solution no. 4), higher solar collector inclinations were
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found for both LCC and LCE objective functions, which generate higher water temperatures during

the heating season. An increase of the number of solar collectors and thickness of the concrete floor

slab from 0.06 m (solution no. 1) to 0.20 m (solution no. 8) resulted in a significant increase of

LCC from $17,840 to $42,930, while the LCE decreased from 277.46 MWh to 149.96 MWh. Storage

tank volumes can remain unchanged with an increase of slab thickness (e.g., solutions no. 4 and

no. 6). All the non-dominated solutions used internal electrical resistances (B1
3 = 1) rather than

external water heaters. External water heaters might therefore not be suitable under such financial

and environment conditions.
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Table 8.1: Decision variable values of some non-dominated solutions found by micro-TVMOPSO
for LCE vs. LCC for Case study no. 1

Decision variable
Solution

No. 1 No. 3 No. 4 No. 6 No. 8

Configuration A A B C C

B1,4 1 1 0 0 0
B1,5 0 0 1 1 1
B2,4 0 0 0 0 0
B2,5 0 0 0 0 0
B3,4 1 1 0 0 0
B3,5 0 0 1 1 1
B4,6 1 1 0 0 0
B4,7 1 1 0 0 0
B5,6 0 0 1 1 1
B5,7 0 0 1 1 1

B1
1 1 1 1 0 0

B2
1 0 0 0 1 1

B1
2 0 0 0 0 0

B2
2 0 0 0 0 0

B1
3 1 1 1 1 1

B2
3 0 0 0 0 0

B3
3 0 0 0 0 0

B1
4 1 1 0 0 0

B2
4 0 0 0 0 0

B1
5 0 0 1 1 1

B2
5 0 0 0 0 0

Number of flat-plate collectors [-] 1 3 4 – –
Number of evacuated-tube collectors [-] – – – 7 7
Tilt angle of array A1 [◦] 60 65 45 75 70
Tilt angle of array A2 [◦] – – – – –
Flow rate per collector area [kg/(h·m2

coll)] 115.0 80.0 45.0 39.6 9.9
Volume of tank no. 1 (DHW or both) [L] 500 500 300 300 300
Volume of tank no. 2 (SH) [L] – – 300 300 1,100
Tank no. 1 auxiliary power at high location [kW] 8.5 3 1 7.5 5.5
Tank no. 1 auxiliary power at low location [kW] 6.5 14 0 5.5 5.5
Tank no. 2 auxiliary power at high location [kW] – – 2 1 1
Tank no. 2 auxiliary power at low location [kW] – – 4 14.5 14.5
DHW heater auxiliary power [kW] – – – – –
SH heater auxiliary power [kW] – – – – –
Floor slab thickness [m] 0.06 0.06 0.06 0.20 0.20

Objective function

Life cycle cost [k$] 17.84 18.25 24.97 38.47 42.93
Life cycle energy use [MWh] 277.46 215.08 204.42 160.51 149.96
Life cycle exergy destroyed (technical boundary) [MWh] 361.49 481.62 547.07 770.59 778.20
Life cycle exergy destroyed (physical boundary) [MWh] 262.09 204.71 164.41 124.67 120.35
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Figure 8.4 shows six non-dominated solutions when only the LCXtechnical and LCXphysical ob-

jective functions are taken into consideration, while Table 8.2 shows some of their characteristics.
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Figure 8.4: LCXphysical vs. LCXtechnical approximation of the Pareto front using micro-TVMOPSO
for Case study no. 1

Compared to the initial design solution (solution no. 2), micro-TVMOPSO was able to find

more exergy-effective solutions using both boundaries. Only configurations B and C were found

to minimize the exergy destruction. While the minimum LCXtechnical was obtained by using one

single FPC, the minimum LCXphysical was achieved with seven ETCs. As already observed in (Ng

Cheng Hin & Zmeureanu, 2014), the LCC and LCXtechnical objective functions present similarities,

so do the LCE and LCXphysical. Compared to the initial design solution, the micro-TVMOPSO

algorithm was able to reduce the LCXtechnical and LCXphysical by 45.1% and 28.3%, respectively.
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Table 8.2: Decision variable values of some non-dominated solutions found by micro-TVMOPSO
for LCXphysical vs. LCXtechnical for Case study no. 1

Decision variable
Solution

No. 1 No. 2 No. 3 No. 6

Configuration B B C C

Number of flat-plate collectors [-] 1 4 – –
Number of evacuated-tube collectors [-] – - 7 7
Tilt angle of array A1 [◦] 60 45 80 65
Tilt angle of array A2 [◦] – – – –
Flow rate per collector area [kg/(h·m2

coll)] 20.0 45.0 40.1 39.6
Volume of tank no. 1 (DHW or both) [L] 300 300 300 300
Volume of tank no. 2 (SH) [L] 100 300 300 1,100
Tank no. 1 auxiliary power at high location [kW] 0.5 1 5.5 7.5
Tank no. 1 auxiliary power at low location [kW] 0.5 0 5.5 5.5
Tank no. 2 auxiliary power at high location [kW] 3 2 1 1
Tank no. 2 auxiliary power at low location [kW] 0.5 4 14.5 14.5
DHW heater auxiliary power [kW] – – – –
SH heater auxiliary power [kW] – – – –
Floor slab thickness [m] 0.06 0.06 0.26 0.20

Objective function

Life cycle cost [k$] 19.32 24.97 43.11 42.98
Life cycle energy use [MWh] 238.33 204.42 146.18 150.50
Life cycle exergy destroyed (technical boundary) [MWh] 300.34 547.07 755.50 784.49
Life cycle exergy destroyed (physical boundary) [MWh] 199.67 164.41 127.07 114.59

The multi-objective optimization framework was able to reduce, compared to the initial design

solution, the life cycle cost by 28.6%, the life cycle energy use by 26.6%, the life cycle exergy

destroyed by 45.1% for technical boundary and by 28.3% for the physical boundary, respectively.

The solar fraction, which is part of all the needs covered by solar energy, is also included in Table 7.3

for comparison purposes. The LCC and LCXtechnical optimal combisystem designs, which tend to

reduce the number of solar collectors, have smaller solar fraction values of 0.21 and 0.26, compared

to the LCE and LCXphysical optimal combisystem designs whose solar fraction values are equal to

0.72 and 0.74, respectively.

The different configurations and equipment sizing found by the multi-objective optimization

framework are not necessarily the best feasible designs, since there is no guarantee of finding the

Pareto front for such a search space (without testing all the decision vectors). Nevertheless, the

multi-objective optimization framework was able to find a reduction of each objective compared

to the initial design solution (i.e., base case solar combisystem). One storage tank with a small
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number of flat-plate collectors was found to be the best way of reducing the LCC value. Using

two thermal storage tanks enhances thermal stratification and reduces the LCE, LCXtechnical and

LCXphysical. No configuration used external auxiliary heaters, since their initial cost is not offset by

future energy savings. Natural gas is not a viable option for such an energy efficient house located in

a province where the cost of electricity is low. Different designs could be however found for different

climatic and financial conditions. For countries where the price of electricity is more expensive, a

larger number of solar thermal collectors could be found as well as larger thermal storage tanks to

store more solar energy. Evacuated-tube collectors could even be a viable alternative to flat-plate

collectors.
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Chapter 9

Case study no. 2: Massachusetts, USA

This chapter focuses on a solar thermal combisystem installed in Massachusetts, USA. One of

the leading international manufacturers of solar water heating technologies has given accessed

to data collection from this solar combisystem, which has been monitored since January 2014.

Measurements are used to validate the solar combisystem model. Afterwards, a multi-objective

optimization is performed using the framework developed in Chapter 6.

9.1 Overview of the residential solar combisystem

As shown in Figure 9.1, the solar thermal combisystem is composed of two distinct arrays of three

solar thermal collectors each, giving a total of six solar thermal collectors. Both arrays of solar

thermal collectors (i.e., arrays A1 and A2) are south-facing, but have two distinct tilt angles equal

to 90◦ and 65◦ above the horizontal, respectively. Solar energy is harvested by a heat-transfer fluid,

which is a 40% glycol-water mixture, going through the solar thermal collectors.

105



Figure 9.1: Scheme of the monitored solar combisystem installed in Massachusetts, USA

One storage tank, which allows solar energy to be stored, is used for the domestic hot water

and space heating needs. Additional energy is provided, when required, by an electric boiler for the

radiant floor and by an electric water heater for the domestic hot water. Temperature sensors and

flow meters have been installed at the location indicated in Figure 9.1 and record measurements

every minute. Average values are calculated to provide other data resolutions: five-minute interval,

hourly, and daily. Hourly values are used, unless otherwise stated. Table 9.1 lists all the available

sensors. All the mass flow rates are provided in L/min but were converted to kg/s, unless otherwise

stated.
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Table 9.1: List of the sensors monitoring the solar thermal combisystem

Sensor Measured physical quantity Unit

S0 Outdoor air temperature (available only since March 2015) ◦C
S1 Outlet temperature of A2 array ◦C
S2 Temperature of the lower part of the storage tank ◦C
S3 Temperature of the water leaving the tank and going to the radiant floor ◦C
S4 Temperature of the upper part of the storage tank ◦C
S5 Average temperature from both arrays of solar collectors ◦C
S6 Outlet temperature of A1 array ◦C
S7 Supply temperature for the radiant floor ◦C
S8 Supply domestic hot water temperature ◦C
S9 Temperature leaving the electrical water heater ◦C
S10 Temperature of the city water ◦C
S11 Temperature of the hot water leaving the thermal storage tank ◦C
S12 Return temperature to the solar thermal collectors ◦C
S13 Return temperature from the radiant floor ◦C
F1 Mass flow rate of the heat-transfer fluid of the solar collector loop L/min
F2 Mass flow rate of the cold city water L/min
F3 Mass flow rate of the water going through the radiant floor L/min

The solar thermal combisystem is installed in a house of approximately 110 m2, inhabited by

a family; however, no detailed information about the house nor about the energy-related people’s

behavior is available. As the outside air temperature and solar radiation were not measured on site

during the validating period, they were obtained for the year 2014 from (Weather Analytics, 2016)

and for the year 2016 from (IES, 2017).

9.2 Energy performance indices

Two energy performance indices were selected to assess the energy performance of the solar thermal

combisystem:

1. Thermal efficiency of the solar collectors;

2. Thermal energy stored in the storage tank.

As shown in Figure 9.1, the residential solar thermal combisystem has two different flat-plate

collector arrays in parallel, A1 and A2, which have two distinct tilt angles equal to 90◦ and 65◦,

respectively. Therefore, the thermal efficiency given in Equation 5.3 is estimated as:
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ηcoll = 100 ·
ṁcoll,F1 · cp,coll · (TS5 − TS12)

AA1 ·Gtot,A1 +AA2 ·Gtot,A2
(9.1)

where ṁcoll,F1 is the total heat-transfer fluid mass flow rate [kg/s]; TS5 and TS12 are the outlet and

inlet temperatures of the flat-plate collector arrays [◦C], respectively; AA1 and AA2 are the gross

areas of the solar collector arrays A1 and A2 [m2], respectively; Gtot,A1 and Gtot,A2 are the total

solar irradiances incident on the solar collector arrays A1 and A2 [W/m2], respectively.

Since the thermal storage tank is not equipped with any electric heater, its thermal energy

stored, denoted by Qstored, can be calculated as:

Qstored = Qsupply − (QDHW,tank +QSH,tank) (9.2)

in which each component can be calculated as follows:

Qsupply = ∆t · ṁcoll,F1 · cp,coll · (TS5 − TS12) (9.3)

QDHW,tank = ∆t · ṁDHW,F2 · cp,water · (TS11 − TS10) (9.4)

QSH,tank = ∆t · ṁSH,F3 · cp,water · (TS3 − TS13) (9.5)

where Qsupply is the solar energy supplied as heat to the thermal storage tank [J]; QDHW,tank and

QSH,tank are the amounts of energy supplied by the storage tank for domestic hot water and space

heating purposes [J], respectively; ∆t is the time step between two measurements [s]; ṁDHW,F2

and ṁSH,F3 are the water mass flow rate for DHW and SH needs [kg/s], respectively; cp,water is the

specific heat capacity of water at constant pressure [J/(kg·◦C)]; TS11 and TS10 are the temperatures

of the water leaving and entering the thermal storage tank [◦C], respectively; TS3 and TS13 are

the temperatures of the water leaving and entering the internal heat exchanger within the thermal

storage tank for spacing heating [◦C], respectively.

The domestic hot water and space heating energy needs QDHW,aux and QSH,aux, which take into

account additional auxiliary energy use, are expressed as:

QDHW,aux = ∆t · ṁDHW,F2 · cp,water · (TS9 − TS10) (9.6)

QSH,aux = ∆t · ṁSH,F3 · cp,water · (TS7 − TS13) (9.7)

where TS9 and TS7 are the temperatures of the water leaving the electric water heater and electric

boiler [◦C], respectively.
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9.3 Data analysis of the monitored solar combisystem

Data collection gives the opportunity of gathering information that can provide valuable insights;

however, the misuse of data can lead to false conclusions. Anything being measured has an inherent

noise or randomness which introduces uncertainty. As mentioned in (Reddy, 2011), measurements

made in the field are more subject to errors than the ones made under the controlled conditions

of a laboratory setting. Uncertainty arises from any measurement, so the uncertainty analysis

is necessary. Data analysis including outlier detection is therefore conducted to extract useful

information from the monitored solar thermal combisystem, followed by the uncertainty analysis.

9.3.1 Outlier detection and missing data

As defined in (Hawkins, 1980), “an outlier is an observation which deviates so much from the

other observations as to arouse suspicious that is was generated by a different mechanism”. Outlier

detection consists in identifying data points which differ significantly from the remaining data. One

of the most common methods to cope with outliers disregards data points lying outside the mean

of the data set plus or minus its standard deviation times a coefficient, which is usually equal to

two or three.

Nevertheless, as mentioned in (Leys et al., 2013), three problems come up from using such a

method: (i) the distribution is assumed to be normal (including outliers), (ii) both the mean and

standard deviation are strongly influenced by outliers, and (iii) it is highly unlikely to detect outliers

in small sample (Cousineau & Chartier, 2010). As a result, the median absolute deviation (MAD)

was proposed as an alternative in (Leys et al., 2013). The median of a set of values, denoted by M,

gives an indication of central tendency while being less sensitive to outliers. The MAD is defined

as follows (Huber, 1981):

MAD(x) = b ·M(|xi −M(x) |) (9.8)

where xi is the i-th occurrence of a batch of observations denoted by x; M(·) is the median operator;

b is a constant, whose value has as an impact on the outlier detection. The higher it is, the more

conservative the outlier detection becomes.

A value of 2.5 was suggested in (Leys et al., 2013). Following this recommendation, the median
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absolute deviation of the thermal efficiency of the flat-plate collectors, as shown in Equation 9.9,

is used to detect outliers from the data gathered between January 1st and December 31st, 2014.

Prior to screening the measurements for outliers, missing data should be handled. As mentioned

in (Reddy, 2011), several approaches can be applied to deal with missing data. The simplest and

most obvious is to use observations with complete data only. Such an approach does not cause

the analysis to become biased if the missing data fraction is not substantial. As shown in Figure

9.2, three periods of missing data for the year 2014 (pointed out by the missing data labels) are

determined using the average temperature leaving the two distinct arrays of flat-plate collectors,

which is monitored by the sensor S5: (i) March 8th to March 11th, (ii) September 15th from 1:00

am to 2:00 am, and (iii) November 27th from 3:00 pm to 5:00 pm.
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Figure 9.2: Heat-transfer fluid temperature measured by the sensor S5 from January 1st to Decem-
ber 31st, 2014

These three periods are not taken into consideration in the data analysis. After handling missing

data, data points associated with a thermal efficiency value greater than 100%, which is physically

impossible, were discarded as obvious outliers. An outlier detection using the MAD of the thermal

efficiency of the flat-plate collectors is then performed as:
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ηcoll,i is

{
an outlier, if ηcoll,i > MAD (ηcoll,i) = 2.5 ·M(|ηcoll,i −M(ηcoll) |)
not an outlier, otherwise

(9.9)

where ηcoll,i is the i-th occurrence of the batch of thermal efficiency values, which is calculated with

Equation 9.1.

The hourly measurements required to calculate ηcoll are first divided into two categories: the

heating season (i.e., from October 15th to May 10th) and non-heating season (i.e., from May 11th

to October 14th). This separation allows taking into account that the solar thermal combisystem

does not operate similarly during each of the two seasons. Each category is then subdivided into

24 bins to group the measurements per hour. For example, all the measurements between 3:00 pm

and 4:00 pm during the heating season are stored in the same bin. Breaking the data based on the

hour of the day better represents the daily pattern of solar availability and energy use in the house.

Figure 9.4b presents the measurements from Figure 9.4a, where the outliers detected by the MAD

of the thermal efficiency on a scale of 0% to 100% were removed.
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(a) Thermal efficiency of the flat-plate collectors including outliers
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(b) Thermal efficiency of the flat-plate collectors without outliers

Figure 9.3: Effect of the outliers removal using the MAD of the thermal efficiency of the flat-plate
collectors from January 1st to December 31st, 2014

Solar radiation and outside air temperature were obtained for the year 2014 from (Weather

Analytics, 2016), as they were not measured on site during the studying period. Weather Analytics

uses the Climate Forecast System Reanalysis (CFSR) data set, which estimates the outside air

temperature and solar radiation based on a full atmospheric model using observational data and

past model verifications. This might be one of the reasons for the presence of outliers.

Figure 9.4 depicts the relative frequency of the thermal efficiency of the flat-plate collectors

from October 15th to May 10th (i.e., heating season), and from May 11th to October 14th (i.e.,

non-heating season). In the heating season, the thermal efficiency varies from 0% to 52%, with the

median and average at around 21%. In the non-heating season, the thermal efficiency varies from

0% to 76%, with the median and average around 20% and 22%, respectively.
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(a) Relative frequency of the thermal efficiency of the flat-plate collectors
for the heating season
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(b) Relative frequency of the thermal efficiency of the flat-plate collectors
for the non-heating season

Figure 9.4: Relative frequency of the thermal efficiency of the flat-plate collectors from January 1st
to December 31st, 2014

Based on Figure 9.2, the sensor S5 monitoring the average heat-transfer fluid temperature

leaving the flat-plate collectors is assumed to be close to the thermal storage tank, inside the house,
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since no negative temperature values are observed in winter. As a result, the thermal efficiency of the

flat-plate collectors, calculated using Equation 9.1, includes the pipe thermal losses. For instance,

in (Ayompe & Duffy, 2013), a solar water heating system was installed in Dublin, Ireland, using

solar thermal collectors on a flat roof. The solar thermal collector and system efficiencies were equal

to 45.6% and 37.8%, respectively. Significant pipe heat losses were found whereas the solar heating

system was installed in Dublin, whose climate was referred to as temperate. Flat-plate collectors

were investigated in (Thundil et al., 2012), where thermal efficiencies close to 25% were found. An

average thermal efficiency of 22%, as calculated in this thesis, is therefore not out of the normal

range for such a residential solar thermal combisystem.

9.3.2 Uncertainty analysis

Uncertainty arises from any measurement, so the uncertainty analysis is necessary to clarify the

range of expected energy performance indices. Errors in measurements can be separated into two

parts: (i) bias errors, and (ii) random errors.

Overall uncertainty

Bias errors, also called systematic errors, are fixed values. They are provided by manufacturers at a

specified confidence level. Random errors are non-repeatable inaccuracies, which can be estimated

by repeating a measurement. Any measurement of a variable x can be defined as follows:

x = xbest ± Ux (9.10)

where xbest is the best estimate of the variable x (i.e., the measured value); Ux is the overall

uncertainty in the measurement.

The overall uncertainty in a measured variable x at a specified confidence level, denoted by Ux,

combines the random and bias uncertainty estimates, and can be expressed as (Reddy, 2011):

Ux =

√
Bx

2 +

(
t · sx√

n

)2

(9.11)

where Bx is the uncertainty in the bias or fixed component at the specified confidence level; sx is

the standard deviation estimates for the random component; n is the sample size; t is the t-value

at the specified confidence level for the appropriate degrees of freedom.
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Propagation of errors

Assuming a variable y depending on n measured variables such that:

y = f (x1, . . . , xn) (9.12)

The uncertainty in y is calculated using the general formula for error propagation as follows

(Reddy, 2011):

Uy =

√(
∂y

∂x1
· Ux1

)2

+ . . .+

(
∂y

∂xn
· Uxn

)2

(9.13)

where Uxi is the overall uncertainty in the i-th measured variable x, calculated using Equation 9.11.

Equation 9.13 is applied to the energy performance indices so as to estimate their respective

overall uncertainty. The overall uncertainty in ηcoll is determined as follows:

Uηcoll =

[(
∂ηcoll

∂ṁcoll,F1
· Uṁcoll,F1

)2

+

(
∂ηcoll
∂cp,coll

· Ucp,coll

)2

+

(
∂ηcoll
∂TS5

· UTS5

)2

+

(
∂ηcoll
∂TS12

· UTS12

)2

+

(
∂ηcoll

∂AA1 · UAA1

)2

+

(
∂ηcoll

∂AA2 · UAA2

)2

+

(
∂ηcoll

∂Gtot,A1
· UGtot,A1

)2

+

(
∂ηcoll

∂Gtot,A2
· UGtot,A2

)2
]1/2 (9.14)

As mentioned in Section 9.1, the weather conditions under which the residential solar combisys-

tem operates are not measured on site, so the uncertainties related to the measurements of Gtot,A1

and Gtot,A2 are unknown. The uncertainty in the specific heat of the 40% glycol-water heat-transfer

fluid is neglected. Assuming that the uncertainty in the areas of the solar collector arrays can be

neglected, the overall uncertainty in the thermal efficiency of the flat-plate collectors is calculated

as follows:

Uηcoll =

[(
∂ηcoll

∂ṁcoll,F1
· Uṁcoll,F1

)2

+

(
∂ηcoll
∂TS5

· UTS5

)2

+

(
∂ηcoll
∂TS12

· UTS12

)2
]1/2

(9.15)

The overall uncertainty in the calculation of the thermal energy stored in the storage tank is

given as follows:

UQstored
=
√
U2
Qsupply

+ U2
QDHW,tank

+ U2
QSH,tank

(9.16)

where:
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UQsupply
=

[(
∂Qsupply

∂ṁcoll,F1
· Uṁcoll,F1

)2

+

(
∂Qsupply

∂cp,coll
· Ucp,coll

)2

+

(
∂Qsupply

∂TS5
· UTS5

)2

+

(
∂Qsupply

∂TS12
· UTS12

)2
]1/2 (9.17)

UQDHW,tank
=

[(
∂QDHW,tank

∂ṁDHW,F2
· UṁDHW,F2

)2

+

(
∂Qsupply

∂cp,water
· Ucp,water

)2

+

(
∂QDHW,tank

∂TS11
· UTS11

)2

+

(
∂QDHW,tank

∂TS10
· UTS10

)2
]1/2 (9.18)

UQSH,tank
=

[(
∂QSH,tank

∂ṁSH,F3
· UṁSH,F3

)2

+

(
∂Qsupply

∂cp,water
· Ucp,water

)2

+

(
∂QSH,tank

∂TS13
· UTS13

)2

+

(
∂QSH,tank

∂TS3
· UTS3

)2
]1/2 (9.19)

More details about the calculations are given in Appendix A.

Uncertainty calculations

Table 9.2 lists the features of each sensor used to monitor the residential solar thermal combisystem,

where the bias error is given at a specified confidence level of 95%.

Table 9.2: Features of the sensors used to monitor the solar thermal combisystem

Sensor Value Unit

RESOL PT1000 Temperature sensor (RESOL, 2015b)

Measurement precision ± 0.3 + 0.005 ·|T | ◦C
Range of measurement [-30.0, +150.0] ◦C

RESOL V40-15 flowmeter (RESOL, 2015a)

Measurement precision ± 5% kg/s
Range of measurement [0.008, 0.83] kg/s

MINOL Minomess 130 flowmeter (Minol, 2015)

Measurement precision ± 5% kg/s
Range of measurement [0.017, 1.39] kg/s

Random errors are unpredictable differences from one measurement to the next one due to

unknown effects. They can be estimated through statistical analysis by repeating the same mea-

surement as many times as possible. The monitoring data of the solar thermal combisystem depend
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on external conditions that are difficult to control, such as the outside temperature. Accordingly,

small samples of 31 measurements with the shortest time interval available (i.e., one minute between

two measurements) are selected. It is assumed that environmental conditions do not significantly

vary during each selected time period. The standard deviation of each sample sx is calculated as

follows:

sx =
1

n− 1
·

n∑
i=1

(xi − x)2 (9.20)

where n is the sample size; xi is the i-th measurement; x is the arithmetic mean.

The average random error of each physical variable is estimated from November 17th to Novem-

ber 22nd, 2014, that is, 278 samples of 31 measurements. This time frame is chosen because both

the domestic hot water and radiant floor were used by the people living in the house. Table 9.3

reports the average random error in the measurements over the 278 samples.

Table 9.3: Random errors in the measurements from November 17th to November 22nd, 2014

Sensor Random error Unit

RESOL PT1000 temperature sensor

S1 ± 0.3 ◦C
S2 ± 0.1 ◦C
S3 ± 0.2 ◦C
S4 ± 0.2 ◦C
S5 ± 0.2 ◦C
S6 ± 0.3 ◦C
S7 ± 0.3 ◦C
S8 ± 0.2 ◦C
S9 ± 0.3 ◦C
S10 ± 0.6 ◦C
S11 ± 0.2 ◦C
S12 ± 0.1 ◦C
S13 ± 0.3 ◦C

RESOL V40-15 flowmeter

F1 (Solar loop) ± 0.0004 kg/s

MINOL Minomesss 130 flowmeter

F2 (DHW loop) ± 0.0004 kg/s
F3 (SH loop) ± 0.0004 kg/s

Since the measurements can be either higher or lower than the arithmetic mean, the t-value

is the critical value for a two-tailed confidence level. For a degree of freedom equal to 30 and a

specified confidence level of 95% (i.e., α equal to 0.05), the t-value is equal to 2.042 (Reddy, 2011).
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The overall uncertainty in the thermal efficiency of the flat-plate collectors and that in the

thermal energy stored in the storage tank, which are calculated using Equations 9.15 to 9.19, can

now be determined. Both overall uncertainties as well as the overall uncertainty in each physical

variable are used in the next section to clarify the range of expected values in order to gain confidence

in the model validation.

9.4 Model validation

The model of the residential solar thermal combisystem is developed in the TRNSYS 16 simulation

environment using some of the components presented in Chapter 5. TRNSYS allows linking system

components together to simulate the thermal performance of complex energy systems. As men-

tioned in (Coakley et al., 2014), one of the primary advantage of forward models over inverse ones

is their ability to predict system behavior given previously unobserved conditions. Nevertheless,

significant differences can occur between the thermal performance of a system and its BPS model.

Validation procedures aim at assessing the discrepancies between model outputs and measured

data to determine whether or not models provide accurate and reliable results. A model can be

considered validated when one or several acceptance criteria are fulfilled. There is however a lack

of validation standard for solar thermal combisystems.

9.4.1 Lack of explicit standards

Acceptance criteria for calibration of buildings, and by extension for validation, are given in

(ASHRAE, 2002) and (EVO, 2012). Both use the normalized mean bias error (NMBE) and coef-

ficient of variation of the root mean square error (CVRMSE) defined by Equations 9.21 and 9.22.

However, as reported in Table 9.4, (ASHRAE, 2002) and (EVO, 2012) do not recommend the same

values. Although acceptance criteria for the calibration of the whole building energy use exist,

there are no standards for the calibration (or validation) of solar thermal combisystems.
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Table 9.4: Acceptance criteria for the calibration of the whole building energy use

Standard/Guideline
Maximum monthly values Maximum hourly values
NMBE CVRMSE NMBE CVRMSE

ASHRAE Guideline (ASHRAE, 2002) 5 15 10 30
IPMVP (EVO, 2012) 20 – 5 20

For instance, due to a lack of standards, variations between predicted and measured values for a

solar water heating system were quantified in (Ayompe et al., 2011) using percentage mean absolute

error (PMAE) and percentage mean error (PME). Another solar water heating system model was

validated in (Abdalla, 2013) using the PMAE for solar fraction, where a value of 10% was found.

9.4.2 Validation procedure

In order to validate the BPS model of this residential solar thermal combisystem, four metrics are

used: (i) normalized mean bias error (NMBE), (ii) coefficient of variation of the root mean squared

error (CVRMSE), (iii) percentage mean error (PME), and (iv) percentage mean absolute error

(PMAE).

The normalized mean bias error (NMBE) is defined as (ASHRAE, 2002):

NMBE =

n∑
i=1

(yi − ŷi)

(n− p) · y
(9.21)

where yi is the i-th variable observation; ŷi is the i-th simulation-predicted value of the observed

variable; n is the number of variable observations; p is the degree of freedom; yi is the arithmetic

mean of the variable observations.

The coefficient of variation of the root mean square error (CVRMSE) is a normalized measure

of dispersion, which is defined as follows (ASHRAE, 2002):

CVRMSE = 100 · RMSE

y
(9.22)

where RMSE is the root-mean-square error calculated as (ASHRAE, 2002):

RMSE =

√ n∑
i=1

(yi − ŷi)
2

(n− p)
(9.23)

The percentage mean absolute error (PMAE) and percentage mean error (PME) are defined as

follows (Ayompe et al., 2011):
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PMAE =
100

n
·

n∑
i=1

|ŷi − yi|
yi

(9.24)

PME =
100

n
·

n∑
i=1

ŷi − yi
yi

(9.25)

Although there are no standards for the validation of solar thermal combisystem models, the

order of magnitude given for the first two metrics (i.e., Equations 9.21 and 9.22) in (ASHRAE,

2002) and (EVO, 2012) are taken as relative references for the validation. Each metric is applied

to the two energy performance indicators as well as some of the monitored temperatures, as shown

in Table 9.5.

Table 9.5: Statistical indices of the difference between predictions and measurements of the solar
combisystem for the year 2014

Sensor/indicators NMBE [%] CVRMSE [%] PMAE [%] PME [%]

Sensor

S1 -0.7 11.4 5.4 2.7
S2 8.7 24.3 20.7 -1.6
S3 0.3 2.4 0.3 -0.2
S4 9.1 25.1 21.7 -2.4
S5 -0.8 13.5 5.0 1.5
S6 2.4 12.6 8.4 2.4
S7 -0.7 4.2 0.8 0.8
S9 6.2 25.0 23.7 1.7
S11 -4.0 20.5 18.2 9.0
S12 -2.1 14.3 6.0 3.8

Performance indicator

ηcoll 7.3 29.3 25.0 18.7
Qstored 7.6 35.5 21.4 5.5

Figures 9.5a and 9.5b display the measured and simulated temperatures of the heat-transfer

fluid leaving the two solar thermal collector arrays A1 and A2 from November 17 to November

23, 2014. The uncertainty in the temperatures measured by the sensors S1 and S6 (i.e., the outlet

temperatures of the arrays A2 and A1, respectively) are reported to show the level of confidence

in the measurements. The values obtained using the BPS model follow the same trend as the

measurements (i.e., the simulated temperatures fit well the measurements), which gives confidence

regarding the model validation.
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(a) Heat-transfer fluid temperature TS1 of the array A2
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(b) Heat-transfer fluid temperature TS6 of the array A1

Figure 9.5: Comparison of the measured and simulated temperatures leaving both A1 and A2 from
November 17th to November 23rd, 2014

The temperatures of the heat-transfer fluid entering and leaving both arrays (i.e., S12 and S5)

are shown in Figure 9.6. The simulated temperatures fit relatively well the measurements; however,

Figure 9.6b shows some discrepancies from November 17 to November 23 due to an overestimation

of the temperatures leaving both the array A1 and A2.
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(a) Heat-transfer fluid temperature TS12 of the array A2
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(b) Heat-transfer fluid temperature TS5 leaving the arrays A1 and A2

Figure 9.6: Comparison of the measured and simulated temperatures leaving both A1 and A2 from
November 17th to November 23rd, 2014

Figure 9.7 presents the temperatures associated with the thermal storage tank. Even though

a slight delay can be observed between the simulated and measured temperatures, the simulated

temperature of the sensors S2 and S4 follow relatively well the measurements.
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(a) Water temperature TS2 of the lower part of the thermal storage tank

No
v 1

7

No
v 1

8

No
v 1

9

No
v 2

0

No
v 2

1

No
v 2

2

No
v 2

3

No
v 2

4

Time [h]

10

20

30

40

50

60

70

80

T
e
m
p
e
ra
tu
re
 [

◦ C
]

TS4 simulated

TS4 measured

(b) Water temperature TS4 of the upper part of the thermal storage tank

Figure 9.7: Comparison of the measured and simulated water temperatures associated with the
thermal storage tank from November 17th to November 23rd, 2014

Figure 9.8 displays the water temperatures from the thermal storage tank for DHW and SH

purposes which are recorded using sensors S11 and S3, respectively. The simulated temperatures

fit the measurements well.
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(b) Water temperature TS3 leaving the thermal storage tank for space heating purposes

Figure 9.8: Comparison of the measured and simulated water temperatures from the thermal
storage tank for DHW and SH purposes from November 17th to November 23rd, 2014

Figure 9.9 shows the thermal energy stored calculated with the measured and simulated data us-

ing Equation 9.2. Compared to Figures 9.5 to 9.8, larger discrepancies occur between the measured

and simulated values. While the overall uncertainty in the calculated thermal energy harvested

by the solar collectors is relatively small, the overall uncertainty in the calculated thermal energy
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stored in the storage tank is larger due to the propagation of errors.
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Figure 9.9: Comparison of the measured and simulated thermal energy stored in the thermal storage
tank from November 17th to November 23rd, 2014

As shown in Table 9.5 or in Figures 9.5 to 9.8, the simulated temperatures and thermal energy

stored fit relatively well the measurements, which gives confidence about the model validation.

Before optimizing this residential solar thermal combisystem using the multi-objective opti-

mization framework developed, a tend data analysis is performed to better understand the thermal

behavior of the solar combisystem.

9.5 Trend data analysis

A summary of the main characteristics of the data is provided in this section to gain additional

insights. Some descriptive statistics are given to better understand the solar thermal combisystems

behavior. The minimum, maximum, average, standard deviation (sx), median, and median absolute

deviation (MAD) of the temperatures and flow rates recorded during the year 2016 are reported

in Table 9.6. The year 2016 is preferred over the year 2014 for three reasons: (i) more recent data,

(ii) outdoor air temperature measured on site, (iii) no missing data for calculating the domestic

hot water and space heating energy needs QDHW,aux and QSH,aux using Equations 9.6 and 9.7. The
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last reason is of paramount importance for the multi-objective optimization of the residential solar

combisystem.

Table 9.6 provides some insights about the solar thermal combisystems behavior. For example,

the water temperature of the upper part of the thermal storage tank, recorded by sensor S4, is higher

than that of the lower part, measured by sensor S2, on average (52.1◦C vs. 50.0◦C, respectively).

A thermal stratification due to a change in water’s density with temperature can therefore be

observed. The DHW temperature after the electric water heater, measured with sensor S9, is on

average 45.0◦C. The temperature TS6, which corresponds to the array A2 having a tilt angle of 65◦,

reaches higher values than the temperature TS1, which corresponds to the array A1 having a tilt

angle of 90◦.

Table 9.6: Random errors and overall uncertainties in the measurements from November 17th to
November 22nd, 2014

Sensor Min Max Average ±sx Median ± MAD

Temperature [◦C]

S1 16.6 83.8 55.2 ± 12.2 55.0 ± 08.1
S2 10.6 75.5 50.0 ± 19.5 49.1 ± 18.6
S3 22.5 53.6 29.4 ± 05.2 27.6 ± 01.6
S4 20.4 76.6 52.1 ± 18.7 56.0 ± 17.4
S5 13.6 80.7 53.5 ± 15.6 55.1 ± 10.8
S6 23.9 96.8 61.0 ± 13.7 62.6 ± 08.8
S7 22.8 42.5 29.3 ± 03.1 28.2 ± 00.8
S8 19.5 34.1 26.6 ± 02.9 26.4 ± 02.2
S9 38.9 50.0 45.0 ± 01.7 45.0 ± 01.3
S10 07.4 23.6 15.0 ± 04.3 13.9 ± 03.6
S11 23.0 71.0 49.6 ± 14.3 54.0 ± 10.2
S12 14.2 74.4 38.2 ± 13.3 34.8 ± 07.8
S13 21.6 36.8 26.6 ± 02.1 26.0 ± 01.0

Mass flow rate [kg/s]

F1 (Solar loop) 0.0015 0.3019 0.0938 ± 0.0799 0.0697 ± 0.0503
F2 (DHW loop) 0.0003 0.0335 0.0094 ± 0.0065 0.0076 ± 0.0038
F3 (SH loop) 0.0199 0.1113 0.0612 ± 0.0072 0.0612 ± 0.0029

As shown in Figures 9.10a and 9.10b, the water temperature of the upper and lower parts of the

thermal storage tank experienced large variations through the year 2016. However, the interquartile

range shows that the thermal storage tank was mainly discharged during the heating season, due

to space heating in winter.
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Some temperatures such as the ones recorded by the sensors S7 or S8 do not significantly

change during the year (independently of the season considered), because both are controlled by

an auxiliary heating device upstream.
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(a) Box-plots representing the measured temperatures during the heating season
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(b) Box-plots representing the measured temperatures during the non-heating season

Figure 9.10: Box-plots representing the temperatures measured by each available sensor for the
year 2016

Figures 9.11 to 9.13 display the daily average evolution of some recorded temperatures for two

periods of one week (one during the heating season and another during the non-heating season).

The first period is from July 17th to July 23rd, 2016, while the second is from February 17th to

127



February 23rd, 2016.

Figure 9.11a shows that TS5, the temperature of the heat-transfer fluid entering the storage

tanks heat exchanger on the solar loop side, is significantly higher than TS1 and TS6 (i.e., the

temperatures of the heat-transfer fluid leaving the arrays A1 and A2, respectively) at night. This

supports the fact that the temperature sensor S5 is inside the house, close to the storage tank.

When the solar thermal combisystem operates, TS5 is often lower than TS1 or TS6, which is due to

pipe thermal losses. On average, during the heating season, TS1 is higher than TS6. A tilt angle of

90◦ enables harvesting more solar energy than one of 65◦. The opposite can be observed during the

non-heating season, as shown in Figure 9.11b, where significantly higher temperatures are reached

on average by TS6 compared to TS1.
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(a) Daily average solar loop temperatures from February 17th to February 23rd,
2016
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(b) Daily average solar loop temperatures from July 17th to July 23rd, 2016

Figure 9.11: Daily average solar loop temperatures based on the year 2016

As shown in Figure 9.12, TS2 and TS4 (i.e., the water temperatures of the lower and upper

parts of the thermal storage tank, respectively) follow on average the evolution of the solar loop

temperatures with a small delay (e.g., TS2 and TS4 reach a peak one hour after the one reached by

TS5). The DHW temperature after the electric water heater, measured with sensor S9, is relatively

constant (independently of the season considered). The largest temperature difference between TS2

and TS4 occurs in the morning around 08:00 am, which is due to a consumption of DHW. Lower

temperature variations are observed in Figure 9.12b where the thermal storage tank is almost fully

charged.
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(a) Daily average DHW loop temperatures from February 17th to February 23rd,
2016
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(b) Daily average DHW loop temperatures from July 17th to July 23rd, 2016

Figure 9.12: Daily average DHW temperatures based on the year 2016

Figures 9.13b and 9.13b depict the SH temperatures during the heating and non-heating seasons.

During the heating season, all the SH temperatures TS7, TS3, and TS13 are close to one another. The

supply temperature for the radiant floor TS7, which is measured after the auxiliary water heater,
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is slightly higher than the others in the morning. Additional auxiliary energy is therefore required

during this period. As shown in Figure 9.13b, during the non-heating season, TS3 and TS13 reach

high temperatures compared to TS7. Sensors S3 and S13 are probably next to the thermal storage

tank, whereas S7 is closer to the radiant heating floor.
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(a) Daily average SH loop temperatures from February 17th to February 23rd,
2016
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(b) Daily average SH loop temperatures from July 17th to July 23rd, 2016

Figure 9.13: Daily average SH temperatures based on the year 2016

Figure 9.14 shows the monthly production of thermal energy by the six flat-plate collectors as

well as the monthly energy used for DHW and SH purposes for the year 2016, calculated using

Equations 9.3 as well as Equations 9.6 and 9.7.

Different trends can be seen: (i) the production of heat increases in summer with a peak during

June and July, (ii) the DHW energy used oscillates around a value of 200 kWh with a decrease in

summer due to higher cold city water temperatures, and (iii) the SH energy used decreases from

winter to summer (where no thermal energy is used). From September 25th to the end of the year

2016, the flow meter installed on the solar collector loop was not working for unknown reasons. As

a result, no data was available on the production of thermal energy.

132



Figure 9.14: Monthly thermal energy production as well as DHW and SH energy used for the year
2016

The monthly amounts of additional auxiliary energy provided for DHW and SH purposes are

shown in Figure 9.15. Over the entire year, 555.7 kWh and 1,287.5 kWh are consumed for DHW

and SH needs. Nevertheless, no additional auxiliary energy is required from June to September.
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Figure 9.15: Monthly auxiliary energy provided for DHW and SH purposes during the year 2016
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Since March 2015, the outdoor air temperature is measured on site; however, solar radiation

is not. Both the outdoor air temperature and solar radiation were therefore obtained for the year

2016 from (IES, 2017). A comparison between both the outdoor air temperature measured on site

and from the weather file is presented in Figures 9.16 and 9.17.

Figure 9.16 presents a graphical comparison, which shows that both data sources have the same

trend. Freezing-temperatures (below zero degree) are prevalent in winter, which makes the use of

an anti-freeze heat-transfer fluid necessary.
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Figure 9.16: Evolution of the outdoor air temperature measured on site and that from the weather
file for the year 2016

A more quantitative comparison is provided in Figure 9.17, where the use of the root mean

square error, defined in Equation 9.23, between the outdoor air temperature measured on-site and

that from the weather file results in values from 2.0◦C to 3.1◦C .
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Figure 9.17: RMSE between the outdoor air temperature measured on site and that from the
weather for the year 2016

Figure 9.18 represents the relative frequency of the DHW temperature after the electric water

heater for the year 2016, that is, sensor S9. The distribution follows a normal distribution with

an average temperature of 45.0◦C and a standard deviation of 1.7◦C, which is illustrated with the

dashed line. The set point temperature can therefore be considered to be 45.0◦C.
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Figure 9.18: Relative frequency of the DHW temperature for the year 2016

135



The water temperature measured by sensor S7 follows also a normal distribution with an average

temperature of 29.3◦C and a standard deviation of 3.1◦C. The set point temperature for space

heating is set to 29.3◦C. The DHW and SH energy used for the year 2016, calculated using Equations

9.6 and 9.7, is computed with the measured and aforementioned set point temperature values. Each

set point temperature model well the control strategy of the solar thermal combisystem, which can

be illustrated in Figure 9.19.
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Figure 9.19: Comparison of the DHW and SH needs computed with the measured and set point
temperature values

9.6 Optimization results and discussion

The optimization framework presented in Chapter 6 is now applied to this solar thermal combisys-

tem. The generic solar combisystem model, developed in TRNSYS, was slightly modified compared

to Case study no. 1. Since this case study is based on measurements, a data reader (Type 9c) reads

from a text file the measurements of the existing solar thermal combisystem, which are then used

as inputs by several TRNSYS types. Physical variables read by the data reader are listed in Table

9.7. The multi-zone building (Type 56a) is no longer required because the calculation of the DHW

and SH needs (normally performed by TRNSYS with Type 56a) is replaced by an equation block

computing the DHW and SH loads based on the measurements. As a result, the decision variable
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associated with the floor slab thickness is removed from the optimization model. Case study no.

2 also uses different financial criteria than Case study no. 1, which were summarized in Section

6.4.1.

Table 9.7: List of the physical variables provided by the data reader (Type 9c)

Physical variable Unit

Temperature of the city water ◦C
Temperature leaving the electrical water heater for DHW purposes ◦C
Temperature of the water leaving the tank and going to the radiant floor ◦C
Return temperature from the radiant floor ◦C
Supply temperature for the radiant floor ◦C
Mass flow rate of the city water kg/s
Mass flow rate of the water going through the radiant floor kg/s
Mass flow rate of the water going through the radiant floor kg/s

The micro-TVMOPSO algorithm presented in Chapter 7 is used along with the multi-objective

optimization framework from Chapter 6 to find the best feasible solar combisystem designs through

a multi-objective optimization. The initial solar combisystem design was used as one of the can-

didate solutions of the first generation of micro-TVMOPSO. Due to the time-consuming nature of

one single TRNSYS simulation (around 40 minutes), a maximum number of 100 generation was

selected; the micro-TVMOPSO algorithm used five particles, which results in 500 TRNSYS sim-

ulations (five particles times 100 generations). For 500 TRNSYS simulations, micro-TVMOPSO

lasted approximately 79 hours (i.e., three days and seven hours). A total of 32 non-dominated

solutions were found.

For instance, Figure 9.22 shows the four non-dominated solutions out of the 32 solutions, when

only two objective functions are taken into consideration: LCC and LCE. Micro-TVMOPSO found

non-dominated solutions that are more cost-effective and energy-effective than the initial design

solution (solution no. 3). Compared to the initial design solution, micro-TVMOPSO found non-

dominated solutions whose LCC and LCE values were decreased by to 8.3% and 25.8%, respectively.
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Figure 9.20: LCE vs. LCC approximation of the true Pareto front using micro-TVMOPSO for
Case study no. 2

Two configurations were found, each one with different equipment sizing, as illustrated in Figure

9.21. The main difference between the initial design solution is the number of arrays of solar

collectors. Each configuration found by micro-TVMOPSO is equipped with only one array. As

reported in Table 9.8, configuration A, with solutions 1A, 2A, and 4A, use flat-plate collectors

(B1
1 = 1) and one thermal storage tank without stratifying devices (B1

4 = 1). The solutions mainly

differ by the number of flat-plate-collectors and auxiliary power units. Solutions 1A and 4A have

higher numbers of flat-plate collectors and a lager thermal storage tank, compared to solution 2A,

which enable them to harvest more solar energy as heat and therefore reduce additional auxiliary

energy needs. Solution 2A has an lower initial cost (fewer flat-plate collectors and a smaller thermal

storage tank), but relies more on auxiliary electric energy.
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Figure 9.21: Configurations of the Pareto solutions found by micro-TVMOPSO for LCE vs. LCC
and initial configuration for Case study no. 2

Both configurations A and B have one thermal storage tank without stratifying devices; the

configuration A is equipped with flat-plate collectors (B1
1 = 1) whereas configuration B is equipped

with evacuated tube collectors (B1
1 = 0). No non-dominated solution equipped with two thermal

storage tanks were found. As shown with solution no. 5, evacuated tube collectors can harvest

more solar energy, but come with a significant extra cost (an increase in LCC of 132.7% between

solutions no. 4 and No. 5 for a decrease in LCE of only 4.9%).

The characteristics of the four non-dominated solutions, out of the 32 non-dominated solutions

found, are reported in Table 9.8. Compared to the initial design solution, one array of flat-plate

collectors with a tilt angle of 65◦ and one of evacuated tube collectors with a tilt angle of 75◦ were

found to be more suitable for each objective function than two arrays of flat-plate collectors with

different tilt angles (65◦ and 90◦).
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Table 9.8: Decision variable values of the non-dominated solutions found by micro-TVMOPSO for
LCE vs. LCC for Case study no. 2

Decision variable
Solution

No. 1 No. 2 No. 4 No. 5

Configuration A A A B

B1,4 1 1 1 1
B1,5 0 0 0 0
B2,4 0 0 0 0
B2,5 0 0 0 0
B3,4 1 1 1 1
B3,5 0 0 0 0
B4,6 1 1 1 1
B4,7 1 1 1 1
B5,6 0 0 0 0
B5,7 0 0 0 0

B1
1 1 1 1 0

B2
1 0 0 0 1

B1
2 0 0 0 0

B2
2 0 0 0 0

B1
3 0 0 0 0

B2
3 1 1 1 1

B3
3 0 0 0 0

B1
4 1 1 1 1

B2
4 0 0 0 0

B1
5 0 0 0 0

B2
5 0 0 0 0

Number of flat-plate collectors [-] 11 4 8 –
Number of evacuated-tube collectors [-] – – – 13
Tilt angle of array A1 [◦] 75 75 75 65
Tilt angle of array A2 [◦] – – – –
Flow rate per collector area [kg/(h·m2

coll)] 16.4 10.0 12.7 10.0
Volume of tank no. 1 (DHW or both) [L] 1,200 300 1,100 1,000
Volume of tank no. 2 (SH) [L] – – – –
Tank no. 1 auxiliary power at high location [kW] – – – –
Tank no. 1 auxiliary power at low location [kW] – – – –
Tank no. 2 auxiliary power at high location [kW] – – – –
Tank no. 2 auxiliary power at low location [kW] – – – –
DHW heater auxiliary power [kW] 8 1.5 2 1.5
SH heater auxiliary power [kW] 0.5 7.5 7.5 6.5

Objective function

Life cycle cost [k$] 28.92 29.73 32.62 75.92
Life cycle energy use [MWh] 67.51 66.31 65.52 62.30
Life cycle exergy destroyed (technical boundary) [MWh] 338.95 449.31 636.23 762.97
Life cycle exergy destroyed (physical boundary) [MWh] 181.27 227.53 336.40 323.22
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An increase of the number of solar collectors does not necessarily lead to a large decrease of the

LCE value since the total energy used throughout the year is relatively small. Solutions no. 1 and

no. 2 are close to each other in the objective space (in terms of LCC and LCE), but do not have

similar sizing. Solution no. 1 has 11 flat-plate collectors and a large thermal storage tank of 1,200

L, whereas solution no. 2 has 4 flat-plate collectors and a small storage tank of 300 L. Solution

no. 2 has a smaller investment cost and a smaller amount of embodied energy than solution no.

1; however, solution no. 2 relies more on auxiliary energy. All the non-dominated solutions used

external electric heaters (B2
3 = 1), as the initial design solution.

Figure 9.22 shows 16 non-dominated solutions found by micro-TVMOPSO for another combi-

nation of two objective functions: LCE and LCXtechnical. Micro-TVMOPSO found non-dominated

solutions that are more energy-effective and exergy-effective than the initial design solution (so-

lution no. 15). Compared to the initial design solution, micro-TVMOPSO was able to find non-

dominated solutions whose LCE and LCXtechnical values were decreased by to 64.3% and 25.8%,

respectively. Since the LCC and LCXtechnical objective functions present similarities, decreasing

the LCE objective function increases the LCXtechnical.
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Figure 9.22: LCXtechnical vs. LCE approximation of the true Pareto front using micro-TVMOPSO
for Case study no. 2
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Compared to the initial design solution, the micro-TVMOPSO algorithm was able to reduce the

LCC and LCE by 8.3% and 25.8%, respectively, as well as LCXtechnical and LCXphysical by 64.3%

and 40.1%, respectively. The multi-objective optimization framework was able to find a reduction of

each objective compared to the initial design solution (i.e., base case solar combisystem). Different

designs could be however found for different climatic and economic conditions.
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Chapter 10

Conclusion

A summary of the main conclusions and contributions of this research is presented in this chapter,

followed by a list of potential opportunities for future work.

10.1 Summary

This thesis explored the following research areas: (i) design of solar thermal combisystems; (ii) use

of multi-objective optimization methods; (ii) micro multi-objective optimization algorithms; and

(v) validation of solar combisystem models.

A preliminary study was fist conducted on multi-objective optimization method. Non-classical

methods were found more suitable for optimizing solar thermal combisystems. A generic model

for solar combisystems was constructed, which enables the selection of one solar combisystem con-

figuration among several options as well as its sizing. A multi-objective optimization framework

was developed for optimizing solar combisystems, based on mixed integer nonlinear programming

models. A micro objective optimization algorithm, named micro-TVMOPSO, was created to over-

come time constraint associated with building performance simulations. An application of the

multi-objective optimization framework to two case studies led to decreasing objective functions

up to 45.1% for Case study no. 1 and up to 64.3% for Case study no. 2. A lack of validation

standards for solar thermal combisystems was detected and a methodology from data collection to

optimization was presented in Case study no. 2.

Solar combisystem designs depend highly on specific climatic and economic conditions. Two

arrays of solar thermal collectors with different tilt angles instead of one array did not come out as

a valuable option. Evacuated-tube collectors were found in both cases more efficient at harvesting
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solar energy, but not cost-effective enough for be an alternative solution to the initial design. The

number of solar thermal collectors plays a key role in the overall performance of solar thermal

combisystems. The maximum number of solar collectors, which was set equal to 22, was never

attained. Larger numbers of solar collectors do not necessarily lead to better solutions because a

trade-off exist between investment and savings (in terms of cost or energy). Compared to solar water

heating systems, where angles of inclination should be equal to the latitude, higher inclinations

are preferable for solar thermal combisystems because more heat is required in winter for space

heating. The mass flow rate of the heat-transfer fluid does not have a significant impact on the

overall performance.

One or two thermal storage tanks are viable options. Two thermal storage tanks increase energy

savings due to a better stratification, but come with a higher investment which must be pay off

over the life cycle to be worthwhile. No solutions used thermal stratifying devices, which can be

unsuitable for such climatic and economic conditions or were not found during the optimization

search. Electric resistances were used in Case study no. 1 whereas electric water heaters were

preferred in Case study no. 2.

Multi-objective optimizations of solar thermal combisystems offer the advantage, over single-

objective ones, of providing information for better compromised decisions. Optimizing both the

selection of a configuration and its sizing provides a flexibility which can lead to alternative solutions

increasing the overall performance of the solar combisystem being studied. The multi-objective

optimization framework developed in this thesis, with the micro-TVMOPSO algorithm, can be

applied to other engineering systems to enhance their performance.

10.2 Contributions

Solar thermal combisystems present a promising alternative to the use of fossil fuels in buildings,

which can reduce greenhouse gas emissions and provide a more sustainable means of handling a

growing energy management problem. Their apparent benefits should not prevent research studies

from being conducted in order to enhance their overall performance. This research concentrated

on developing a generic way of getting the most out of solar thermal combisystems through opti-

mization. The main contributions of this thesis are:
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1. A multi-objective optimization framework for optimizing solar thermal combisystems. De-

signing a solar combisystem requires selecting an appropriate configuration, and then sizing

its components. A flexible generic model, whose concept could be extended to other building

research areas, was first developed. A mixed integer nonlinear programming model was then

created in co-operation with the generic model for optimizing both the selection of configu-

ration and equipment sizing of solar combisystems.

2. A micro multi-objective optimization algorithm for time-consuming optimization problems.

Many engineering problems suffer from time constraint for various reasons. One of them is

the substantial computing time of building performance simulation programs. The challenge

of making optimization accessible for as many engineering problems as possible was addressed

with micro-TVMOPSO.

3. Application of the multi-objective optimization framework with micro-TVMOPSO to two

case studies. Solar combisystem designs depend on financial and environmental conditions,

so an application can result in design guidelines for a specific region.

4. A methodology for optimizing solar combisystems: from data collection to optimization.

Outlier detection, uncertainty analysis, and model validation are different steps that should

be considered before optimizing solar thermal combisystems.

10.3 Future work

During this research on the multi-objective optimization of solar combisystems, different topics

where potential opportunities for future work could be valuable were identified and are listed

herein:

1. A limited number of solar combisystem configurations were considered for the sake of sim-

plicity; however, as shown in the literature review, recent research studies paid attention to

solar combisystems equipped with a heat pump or more efficient storage (using phase change

materials or thermochemical reactions), solar combi-plus systems for cooling needs, or solar

combisystems using PV/T hybrid solar collectors to produce electricity. New technologies or

configurations could be studied by slightly modifying the multi-objective optimization frame-

work. Other renewable energy sources, such as geothermal energy, could also be considered.
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2. Special attention has been paid to decomposition-based multi-objective evolutionary algo-

rithms to tackle many-objective optimization problems. A set of reference points is supplied

during the optimization search. Each point can be viewed as a position vector starting from

the origin. These reference points or vectors are then used for decomposing the optimization

problem into subproblems, which are optimized simultaneously. Such an approach enables

maintaining a high diversity since non-dominated solutions are compared based on well-spread

reference points. Micro multi-objective optimization algorithms, due to their small popula-

tion size, face difficulties in preserving diversity. Using a decomposition-based approach for

micro multi-objective optimization algorithms could make them more robust.

3. Stopping an optimization process is not an easy task. Most optimization algorithms use a

fixed number of generations. Defining a stopping criterion for multi-objective optimization

algorithms has become an important research area. An adaptive version of entropy (from

information theory) was proposed in (Hu & Yen, 2015) as a measure of the optimization

status. This entropy function could be coupled with a steady-state detection mechanism

to at least detect when there is no sense in proceeding with the optimization search. A

steady-state detection mechanism assesses whether or not a criterion, here entropy, varies

compared to previous data points. A steady-state means that entropy, which is a measure

of the optimization status, does not change. A trigger function can then be used to stop the

optimization search and save time – when a maximum value of the entropy function is found.

4. The generic solar combisystem model involves different configurations inside the same TRN-

SYS file. Model complexity results in time-consuming simulations. Simulation and opti-

mization parts were kept as separate as possible in this thesis to maintain flexibility. For a

small number of configurations, which would be preselected, the generic solar combisystem

model could be divided into different TRNSYS files, one for each configuration. One decision

variable will then be allocated to the choice of the TRNSYS file. This approach, which does

not allow as much flexibility, could save some computing time and make the multi-objective

optimization more affordable.
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Poppi, S., Bales, C., Heinz, A., Hengel, F., Chèze, D., Mojic, I., & Cialani, C. (2016). Analysis of

system improvements in solar thermal and air source heat pump combisystems. Applied Energy ,

173 , 606-623.

Pulido, G. T., & Coello Coello, C. A. (2003). The Micro Genetic Algorithm 2: Towards On-

Line Adaptation in Evolutionary Multiobjective Optimization. In International Conference on

Evolutionary Multi-Criterion Optimization (p. 252-266). Berlin Heidelberg: Springer.

Raffenel, Y., Fabrizio, E., Virgone, J., Blanco, E., & Filippi, M. (2009). Integrated solar heating

systems: from initial sizing procedure to dynamic simulation. Solar Energy , 83 , 657-663.

Ramesh, T., Prakash, R., & Shukla, K. K. (2010). Life cycle energy analysis of buildings: An

overview. Energy and Buildings, 42 , 1592-1600.

Ravindran, A., Reklaitis, G. V., & Ragsdell, K. M. (2006). Engineering OptimizationP: Methods

and Applications. New York, US: John Wiley & Sons.

Ray, T., Tai, K., & Seow, K. C. (2001). MULTIOBJECTIVE DESIGN OPTIMIZATION BY AN

EVOLUTIONARY ALGORITHM. Engineering Optimization, 33 (4), 399-424.

Reddy, T. A. (2011). Applied Data Analysis and Modeling for Energy Engineers and Scientists.

New York, USA: Springer.

160



RESOL. (2015a). RESOL R⃝ - V40 Flowmeter. Retrieved on September 24, 2015, from http://

www.resol.de/index/produktdetail/kategorie/4/id/57/sprache/en

RESOL. (2015b). RESOL R⃝ - WMZ Calorimeter. Retrieved on September 24, 2015, from http://

www.resol.de/index/produktdetail/kategorie/2/id/41/sprache/en
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Appendix A

Details of the uncertainty calculation

The overall uncertainty in the thermal efficiency of the flat-plate collectors was calculated in Section

9.3.2 as follows:

Uηcoll =

[(
∂ηcoll

∂ṁcoll,F1
· Uṁcoll,F1

)2

+

(
∂ηcoll
∂TS5

· UTS5

)2

+

(
∂ηcoll
∂TS12

· UTS12

)2
]1/2

(A.1)

in which:

∂ηcoll
∂ṁcoll,F1

=
cp,coll · (TS5 − TS12)

AA1 ·Gtot,A1 +AA2 ·Gtot,A2
(A.2a)

∂ηcoll
∂TS5

=
ṁcoll,F1 · cp,coll

AA1 ·Gtot,A1 +AA2 ·Gtot,A2
(A.2b)

∂ηcoll
∂TS12

=
−ṁcoll,F1 · cp,coll

AA1 ·Gtot,A1 +AA2 ·Gtot,A2
(A.2c)

The overall uncertainty in the calculation of the thermal energy stored in the storage tank was

formulated in Section 9.3.2 as follows:

UQstored
=
√
U2
Qsupply

+ U2
QDHW,tank

+ U2
QSH,tank

(A.3)

where:

UQsupply
=

[(
∂Qsupply

∂ṁcoll,F1
· Uṁcoll,F1

)2

+

(
∂Qsupply

∂cp,coll
· Ucp,coll

)2

+

(
∂Qsupply

∂TS5
· UTS5

)2

+

(
∂Qsupply

∂TS12
· UTS12

)2
]1/2 (A.4)
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UQDHW,tank
=

[(
∂QDHW,tank

∂ṁDHW,F2
· UṁDHW,F2

)2

+

(
∂Qsupply

∂cp,water
· Ucp,water

)2

+

(
∂QDHW,tank

∂TS11
· UTS11

)2

+

(
∂QDHW,tank

∂TS10
· UTS10

)2
]1/2 (A.5)

UQSH,tank
=

[(
∂QSH,tank

∂ṁSH,F3
· UṁSH,F3

)2

+

(
∂Qsupply

∂cp,water
· Ucp,water

)2

+

(
∂QSH,tank

∂TS13
· UTS13

)2

+

(
∂QSH,tank

∂TS3
· UTS3

)2
]1/2 (A.6)

in which:

∂Qsupply

∂ṁcoll,F1
= cp,coll · (TS5 − TS12) (A.7a)

∂Qsupply

∂cp,coll
= ṁcoll,F1 · (TS5 − TS12) (A.7b)

∂Qsupply

∂TS5
= ṁcoll,F1 · cp,coll (A.7c)

∂Qsupply

∂TS12
= −ṁcoll,F1 · cp,coll (A.7d)

∂QDHW,tank

∂ṁDHW,F2
= cp,water · (TS11 − TS10) (A.8a)

∂QDHW,tank

∂cp,water
= ṁDHW,F2 · (TS11 − TS10) (A.8b)

∂QDHW,tank

∂TS11
= ṁDHW,F2 · cp,water (A.8c)

∂QDHW,tank

∂TS10
= −ṁDHW,F2 · cp,water (A.8d)
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∂QSH,tank

∂ṁSH,F3
= cp,water · (TS13 − TS3) (A.9a)

∂QSH,tank

∂cp,water
= ṁSH,F3 · (TS13 − TS3) (A.9b)

∂QSH,tank

∂TS13
= ṁSH,F3 · cp,water (A.9c)

∂QSH,tank

∂TS3
= −ṁSH,F3 · cp,water (A.9d)
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