
TOWARDS EASY AND EFFICIENT PROCESSING OF
ULTRA-HIGH RESOLUTION BRAIN IMAGES

Valerie Hayot-Sasson

A thesis
in

The Department
of

Software Engineering and Computer Science

Presented in Partial Fulfillment of the Requirements
For the Degree of Master of Computer Science

Concordia University
Montréal, Québec, Canada

September 2017
© Valerie Hayot-Sasson, 2017

Concordia University
School of Graduate Studies

This is to certify that the thesis prepared

By: Valerie Hayot-Sasson
Entitled: Towards easy and efficient processing of ultra-high resolution

brain images

and submitted in partial fulfillment of the requirements for the degree of

Master of Computer Science

complies with the regulations of this University and meets the accepted standards with respect to
originality and quality.

Signed by the final examining commitee:

Chair
Dr. Tse-Hsun Chen

Examiner
Dr. Marta Kersten-Oertel

Examiner
Dr. Thomas Fevens

Supervisor
Dr. Tristan Glatard

Approved
Chair of Department or Graduate Program Director

20
Amir Asif, Dean
Faculty of Engineering and Computer Science

Abstract

Towards easy and efficient processing of ultra-high resolution brain images

Valerie Hayot-Sasson

Ultra-high resolution 3D brain imaging is of great importance to the field of neuroscience as it
provides a deep insight into brain anatomy and function. Such images may range between a few 100
gigabytes to terabytes in size and do not typically fit into computer memory. Lack of accessibility
to the processing of these images is a threat to open science. This thesis aims to design a web
system that will handle the storage and processing of ultra-high resolution neuroimaging data.

The system architecture uses technologies such as Hadoop Distributed File System and Apache
Spark. For the seamless integration neuroimaging pipelines into our system, we adopted NIfTI as
our distributed data format and require that all neuroimaging pipelines be described in common
formats such as Boutiques or BIDS.

The large images are split into chunks, and also, recreated from the chunks. The effects of
2D slices and 3D blocks are investigated. Different algorithms to minimize number of seeks were
designed and implemented. Results indicate that clustered reading of blocks achieves a significant
reduction in processing time, and partitioning data into slices is most effective.

The scalability of processing large images with Spark using a simple non-containerized and
containerized pipeline was investigated. It was found that processing time of both algorithms scale
well. As data may need to be written to and read from disk for containerized pipeline processing, the
speedup provided by Spark’s in-memory computing was also investigated. In-memory computing
was found to provide significant speedup, however, this speedup may be less significant in more
compute-intensive pipelines.

iii

Acknowledgments

I would like to thank my supervisor Dr. Tristan Glatard for his support throughout the thesis. This
thesis would not have been possible without the guidance of such a exceptional supervisor.

I would also like to thank my wonderful friends Anna, Lili, Madeleine, Alex, Danna and Lara,
for sending me endless messages of encouragement throughout the process, as well as my family,
for always being there for me.

iv

Contents

List of Figures vii

List of Tables viii

1 Introduction 1
1.1 Background . 1
1.2 Goals and Contributions . 2

2 Tools used and related works 3
2.1 Introduction . 3
2.2 Big Data Infrastructure . 3

2.2.1 Hadoop Distributed File System . 4
2.2.2 Apache Spark . 5
2.2.3 Container images . 7
2.2.4 Containerized data-processing pipelines 7

2.3 Image Formats and I/O libraries for large images 8
2.3.1 NIfTI . 9
2.3.2 MINC 2.0 . 9
2.3.3 NiBabel . 10

2.4 Existing systems for large imaging data . 11
2.4.1 NeuroData Web Services . 11
2.4.2 CBRAIN . 11
2.4.3 Processing of large neuro-imaging data sets with Apache Spark 11

3 A system to process ultra-high resolution 3D brain images 13
3.1 Introduction . 13
3.2 System Architecture . 13

v

3.3 File types . 14
3.4 Partitioning and merging of data . 15
3.5 Running pipelines . 16
3.6 Describing pipelines . 17

4 Splitting and merging 18
4.1 Introduction . 18
4.2 Disk model . 19
4.3 Notations . 19
4.4 Algorithms . 20

4.4.1 Slabs vs blocks . 20
4.4.2 Buffered slabs . 21
4.4.3 Buffered blocks: Cluster reads . 22

4.5 Implementation . 25
4.6 Experiments . 25

4.6.1 Data . 25
4.6.2 Hardware . 26
4.6.3 Execution conditions . 26

4.7 Results . 26
4.7.1 Conclusion . 28

5 Pipelining framework 30
5.1 Introduction . 30

5.1.1 Describing neuroimaging pipelines in Spark 30
5.1.2 Hardware . 31
5.1.3 Data . 31

5.2 Effects of parallelization on neuroimaging pipelines 31
5.2.1 Histogram computation . 31
5.2.2 Containerized pipeline . 33

5.3 In-memory computing . 34
5.3.1 Conclusion . 35

6 Conclusion 36

Bibliography 40

vi

List of Figures

1 System architecture diagram . 15
2 Example of an image index file . 16
3 Split and merge notations . 20
4 Buffer used in cluster reads . 20
5 Memory-load configurations in cluster reads . 23
6 Configurations that increase number of seeks per memory-load 23
7 Number of seeks for all algorithms . 27
8 Breakdown of total merge times . 28
9 Average histogram computation times . 32
10 Containerized binarization pipeline processing times 34
11 Comparison of total processing times between Spark’s in-memory computing and

intermediary I/O . 35

vii

List of Tables

1 Algorithm configurations by memory values. 26

viii

Chapter 1

Introduction

The demand for systems that can support the processing of large images has increased in many
scientific fields with the advancement of technologies that enable high resolution imaging. Such
images range from a few hundred gigabytes to terabytes in size. As a result of their size, the images
may not fit into memory and will likely result in lengthy processing times, therefore, access to
hardware that can support these images is imperative. In addition, adequate knowledge of how
to process such large volumes of data is necessary in order to be able to process images in a
reasonable amount of time. The lack of accessibility to the processing of the such images threatens
open-science by restricting analysis capabilities to a few. This thesis will focus on designing a web
system to easily and efficiently process ultra-high resolution 3D brain images.

1.1 Background

High-resolution brain imaging technologies have emerged in recent years to improve understanding
of the brain [1][2]. This thesis will examine the processing of BigBrain as a use case for the
processing of high-resolution 3D brain images. BigBrain is an ultra-high resolution 3D human
brain model, and is freely available online at various resolutions [3]. At its highest-resolution,
20µm isotropic voxels, the total size of the BigBrain image is 1TB. An updated version of BigBrain
at a resolution of 1x1x20µm is planned to be released shortly, which would increase the data volume
to 100TB. Other examples of medical imaging modalities which generate high-resolution images
include electron microscopic (EM) imaging [4] and micro-computed tomography (microCT) [5].

1

1.2 Goals and Contributions

There is a need for a system that enables users to efficiently process large high-resolution and ultra-
high resolution brain images. The system must be easy to use, ensure that memory consumption
is controlled and processing time remains tractable. The existence of such a system would benefit
open-science by making the processing and storing of large high-resolution brain images accessible
to everyone.

The goal of this thesis is to contribute to the development of such a system by:

• Designing the overall architecture of the system, and

• Implementing the backend of the system

To effectively process such large images, a parallelization framework and distributed file system
is needed. We have selected Apache Spark [6] as our system’s parallelization framework and the
Hadoop Distributed File System (HDFS) [7] for file storage. The image data needs to be split into
smaller chunks for parallel processing and may eventually be merged back for processing by other
pipelines or reduced for output delivery. The splitting and merging scheme, as well as the algorithm
selected can have great impacts on processing times. The contribution that this thesis has made
towards the parallelization framework include:

• Finding effective algorithms to split and merge 3D imaging data given arbitrary splitting
schemes.

• Designing and implementing a pipelining framework to process such high-resolution images,
based on existing tools.

Our system will contribute to Open Science by making the processing of high-resolution
imaging accessible to everyone. The code used to implement the system will also be publicly
available through a GitHub repository.

The thesis will be broken into four chapters. Chapter 2 will examine the tools to be used in our
system in addition to related works. Chapter 3 will focus on the system’s design and architecture.
Chapter 4 will present new split and merge algorithms for high-resolution 3D images. Lastly,
Chapter 5 will present the pipelining framework through various use cases.

2

Chapter 2

Tools used and related works

2.1 Introduction

In order to be able to design a system that is capable of processing larges images, a parallelization
framework and distributed filesystem were selected. To support the processing of the images
through existing neuroimaging pipelines, the pipelines were executed within a container – an
operating system (OS) virtualization environment containing all necessary libraries. Since we are
supporting the integration of existing neuroimaging pipelines into our system, the distributed file
format will consist of popular neuroimaging file formats. To determine the most suitable file type
for our system to initially support, we investigated different neuroimaging file types and associated
libraries that support reading and writing of such file types.

This chapter will review the various pre-existing elements we will be incorporating into our
system as well as investigate similar systems. Section 2.2 will look at the infrastructure of the
system. Section 2.3 will discuss different neuroimaging file formats and the existing libraries that
can read and write these formats. Lastly, Section 2.4 will review similar systems that have been
implemented.

2.2 Big Data Infrastructure

To parallelize the processing of the ultra-high resolution images, it is necessary to use a distributed
file system to reduce data transfer time and have an efficient parallelization framework. We propose
the use the of the Hadoop Distributed File System (HDFS) as our system’s distributed file system,
and Apache Spark as our parallelization framework. Both of these technologies have been designed
to work with large amounts of data and have been applied successfully to similar contexts in other

3

domains such as satellite imagery [8].

2.2.1 Hadoop Distributed File System

Background

The Hadoop Distributed File System (HDFS) is a distributed file system designed to support
applications running large datasets, typically supporting file sizes that range from gigabytes to
terabytes [7]. The system prioritizes high-throughput of data over low latency, and its write-once-
read-many data-access model enables such high-throughput data access. HDFS is a fault-tolerant
system that uses data-replication to maintain performance during failures. In order to accommodate
data-locality, HDFS provides interfaces for applications to move closer to where the data is located.

Architecture

The architecture in HDFS is that of master-slave. There is one master, the NameNode, located in
a dedicated machine, and one to many slaves, the DataNodes, typically each located in a separate
node in a cluster. The role of the NameNode is to manage the filesystem namespaces and regulate
user access to files. It can execute typical file system operations such as opening and closing a file
as well as renaming files and directories.

As HDFS typically handles large files, these files need to be partitioned into blocks and
distributed to the DataNodes. The NameNode is responsible for splitting these files into, for
instance, 128MB, and mapping them to the DataNodes. In addition, the NameNode makes all
decisions related to replication of blocks.

DataNodes, on the other hand, manage the storage of the nodes in which they run on. They store
their data within their local filesystem and have no knowledge of HDFS files. The operations that
a DataNode can perform include: block creation, deletion, and replication of the data as instructed
by the NameNode. In order to broadcast its proper functioning to the NameNode, the DataNode
periodically sends the NameNode a heartbeat signal. The DataNode also sends a BlockReport back
to the NameNode to advise it of the blocks stored within the DataNode.

Fault-Tolerance through Replication

To ensure the system remains fault-tolerant, data from the blocks must be replicated across the
nodes. By default, the replication factor of the blocks in HDFS is 3, however, a different replication
factor can be specified during file creation and be modified at a later time. Since HDFS may run on
cluster computers containing many racks, it is important that inter-rack communication is limited

4

as it is slower than intra-rack communication. However, it is also important to place replicas across
different racks, as racks may fail. In the case of the default replication factor, this is achieved by
replicating the data across two different DataNodes located on the same local rack and replicating
the data once on a DataNode located on a remote rack.

2.2.2 Apache Spark

In addition to having a scalable, distributed filesystem, the proposed system also requires a par-
allelization framework that can run on large-data and is compatible with the filesystem (HDFS).
Apache Spark (Spark) is such a parallelization framework [6]. Spark is designed for the handling
of large-scale data intensive applications. It is written in Scala for the Java Virtual Machine (JVM),
however, there are other, albeit less comprehensive, implementations for programming languages
such as Python. Spark is much faster in processing in comparison to its predecessor, Hadoop
MapReduce, as data is kept in memory during acyclic data flows and does not need to be reread
from disk. In order to execute Spark, users implement a high-level control flow within a driver
application using Spark’s abstractions. For scheduling Spark tasks, Spark offers its own standalone
scheduler, and is also compatible for use with Yet Another Resource Negotiator (YARN) [9] and
Apache Mesos [10].

Themain parallel programming abstraction in Spark is the Resilient Distributed Dataset (RDD).
The RDD is a read-only collection of objects partitioned across various machines. Spark is able to
ensure fault-tolerance through RDDs as they can be rebuilt if a partition is lost. Acyclic data flow
computations are facilitated by RDDs as users can cache them in memory and reuse them in other
MapReduce-like parallel operations. RDDs can be constructed in four ways: 1) from an existing
file located in a shared filesystem (ex. HDFS), 2) by parallelizing a Scala collection (ex. array) in
the driver program, 3) by applying a transformation to an already existing RDD using map or filter
transformation, 4) or by changing the persistence of a currently existing RDD through caching or
by writing the RDD to file.

Other abstractions in Spark include the parallel transformations and actions that can be executed
on the RDDs. An example of a common transformation is map. map takes each element in the
RDD, applies a function to it, and returns a transformed version of the original RDD. Frequently
used actions include: reduce, collect, foreach. reduce applies an associative function to
combine the dataset elements and produce a result at the driver program. collect will simply
send all elements to the driver program. foreach will pass each dataset element to a user-defined
function. Since Spark uses lazy-evaluation, transformations will only be evaluated after a call to
an action.

5

Spark also contains shared variables, such as broadcast variables and accumulators. Shared
variables are variables which are used by multiple nodes and are not limited to the scope in which
they were created. Broadcast variables allow large read-only files to be copied only once to each
worker node rather than copying it at each function execution. Accumulators, however, are variables
which can only be added to by worker nodes using an associative operation and are only readable
by the driver.

Although other parallelization frameworks do exist, Spark is ideal in our context. Features of
Spark that make it desirable to our system, in addition to data-locality and in-memory computing,
include ease of use and compatibility with commodity hardware. These features are important to
have in an open-science context as it permits those who are not programmers by trade to easily
create parallelizable pipelines, and allows them to execute it on affordable hardware.

Listing 2.1 shows an example of how to code with PySpark - the Python implementation of
Spark.

Listing 2.1: Example of a PySpark pipeline to count number of voxels in an image

Example of a PySpark pipeline

Count number of voxels in NIfTI-1 image

import numpy as np

from pyspark import SparkContext, SparkConf

initialize the Spark context

conf = SparkConf().setAppName("example app")

sc = SparkContext(conf=conf)

create RDD from binary files in folder

imgRDD = sc.binaryFiles("folder/example")

extract number of elements in image

and return new RDD where all element keys are 1 and values

represent the number of voxels in image

note: x represents image key-value pair.

x[1] contains image binary data

dataRDD = imgRDD.map(lambda x: (1, np.fromstring(x[1][352:]).size)

6

print number of voxels in image to screen

reduceByKey function combines all elements of the same key by

summing their counts

print dataRDD.reduceByKey(lambda x,y : (x + y)).collect()

2.2.3 Container images

Existing neuroimaging pipelines, such as, the FreeSurfer Software Suite (FreeSurfer) [11], FMRIB
Software Library (FSL) [12] and Statistical Parametric Mapping (SPM) [13], represent decades
of effort by the community. For this reason, we want these pipelines to be accessible to the
system. Such neuroimaging pipelines are complex and may have many dependencies that need to
be accessed by our system. To address this, we will use container images.

Container images are executable packages that contain complete OS distributions except the
kernel. They are lighter than Virtual Machines (VM) as containers perform virtualization at
the operating system (OS) level, unlike a VM’s hardware-level virtualization which comes with
performance penalties [14]. Containers allow for user-defined development stacks as they provide
a portable platform for the user’s custom libraries, build environments, and sometimes entire
operating systems to run on.

Many container technologies exist, such as OpenVz [14], BSD jails [15], LXC [16], and
Docker [17]. Docker is currently the most popular container technology. While Docker is very
good at meeting the industry’s need for containers, it fails to meet the security requirements required
in scientific high-performance computing (HPC) environments. Within a Docker container, users
can gain elevated privileges in the underlying system, as all container users are root users. This is a
problem in HPC environments as typical users are restricted users and should not gain root access.

To address the security flaw imposed by Docker containers in HPC environments, Singularity
containers were created [18]. Singularity containers provide all the functionality of a Docker
container, but have the added restriction of maintaining the underlying system’s user privileges
within the container, and cannot be granted elevated privileges. As such, Singularity containers
can be created by the users in a local environmentwhere the users have root privileges. A Singularity
container should not require root privileges for execution.

2.2.4 Containerized data-processing pipelines

The user-defined pipelines, stored within Docker containers, will be executed by the system. To
facilitate the execution of these user-defined apps within the system, we require that the application

7

meet the requirements of a BIDS (Brain Imaging Dataset Standard) App [19] or that it be made
into a Boutiques App [20] through the incorporation of a Boutiques tool descriptor.

In order to meet the requirements of a BIDS App, the user-defined neuroimaging pipeline,
stored within a Docker container that can be accessed through DockerHub, must contain a wrapper
that is formatted to accept a certain type and number of command-line arguments and run execute
on BIDS conformant datasets. As it is very likely that the pipeline will be executed in an HPC
environment, and therefore deployed using Singularity, the pipelines within the containers must
not require any form of elevated security in order to execute. As well, environment variables will
need to be specified within the Dockerfile rather than within the container’s root config files and
the application cannot write outside of /tmp, the user’s home directory, or the specified output
directory.

The required command-line arguments for a BIDS app include: input_dataset, output
_folder and analysis_level. input_dataset represents the path to a read-only BIDS
dataset, output_folder is the path to the folder where the output will be stored, whereas,
analysis_level represents that stage of analysis to be performed. Additionally, the analysis
_levelmay also be limited to a subset of participants within the dataset. In this case, the argument
participant_label may also be included.

A Boutiques app is similar to that of a BIDS app in that it facilitates integration and execution
of processing pipelines into systems using lightweight Docker containers. However, unlike a BIDS
app which must conform to a strict command-line interface, a Boutiques app is not limited to
specific arguments. A Boutiques tool descriptor, written in JSON, may define any command-line
arguments required by the application. Thus, a Boutiques app is capable of being created from
an existing application without any modification to the command-line arguments of the original
application.

2.3 Image Formats and I/O libraries for large images

Our system intends to be compatible with commonly-used neuroimaging pipelines. Such pipelines
have been instrumented to work with specific neuroimaging file formats, and would need to be
altered to be able to support a new distributed file format. There are several files file formats for
neuroimaging including NIfTI-1 [21], MINC 2.0 [22] and DICOM [23]. NIfTI-1and MINC 2.0 are
the most ubiquitous file format in neuroscience. DICOM, however, is a popular file format in the
industrial neuroscience sector. As we want to allow for easy integration of neuroimaging pipelines
into the system, we will focus on adapting our system to allow for the distributed processing of

8

well-supported and widely accessible file formats: MINC 2.0 and NIFTI.

2.3.1 NIfTI

NIfTI-1 was designed as an extension of the popular ANALYZETM 7.5 file format [21]. The
NIfTI-1 header re-purposed unused fields from the ANALYZETM 7.5 file format to fields which
are desirable to functional magnetic resonance imaging (f-MRI) analysis. The NIfTI file format
remains compatible with non-NIfTI aware ANALYZETM 7.5 software.

Similarly to the ANALYZETM 7.5 file format, the NIfTI-1 image consists of two components:
header (.hdr) and image data (.img). These components can also be merged into a single .nii
file. The .hdr or header component is, like the data, stored in binary and a maximum of 348 bytes
in size. To differentiate the NIfTI file format from the ANALYZETM 7.5 file format, the last 4
bytes of the header are dedicated to the NIfTI-1 magic number. Should the NIfTI-1 magic number
be missing from the header, a NIfTI-aware software will treat the image as an ANALYZETM 7.5
image. The NIfTI format also accepts an extension to the header, which is located immediately
after the 348 byte header and its size is denoted by the voxel offset property of the header.

Data representation in NIfTI is in column-major order. In other words, for an image of
dimensions (i, j, k), i is the fastest changing dimension, followed by dimension j, followed by
dimension k. The maximum size of the data is limited by the dimension information provided in
the header. This dimensions listed in the header can be a maximum of 16-bits signed integer in size
(i.e. a maximum of 32767 in size per dimension). To overcome the image dimension limitation,
the NIfTI-2 file format was created. It is an extension to the NIfTI-1 file format that has a 540 byte
header instead of a 352 byte header. This larger header permits the image dimensions to go up to a
maximum of a 64-bit integer.

2.3.2 MINC 2.0

An alternative to the simple NIfTI format, in which data is stored in a linear fashion, is the MINC
2.0 format [22]. Unlike its predecessor (MINC), MINC 2.0 utilises the HDF5 to render its contents
fully extensible and hierarchical. The incorporation of the HDF5 library also provides the added
feature of internal compression. Like NIfTI-2, MINC 2.0 supports 64-bit data. MINC 2.0 also
supports high-dimensionality and irregularly-shaped dimensions.

Data within the MINC 2.0 file format is hierarchical, consisting of groups encapsulating sub-
groups, similar to that of a file system. The root group of the image is minc 2.0. In it is stored
the metadata in addition to the following subgroups: image, info and dimensions. Image data

9

is stored within the image subgroup, and details on image orientation, coordinates, size, etc,. is
stored within the dimensions subgroup. Since it is hierarchical in nature, it is possible to store
multiple resolutions of an image within a single file. Different resolutions are to be stored within a
subgroup of the image group.

Unlike NIfTI, data representation within the MINC 2.0 file format is in row-major. In other
words, for given dimensions (i, j, k), dimension k increases most rapidly, followed by j, which is
followed by i.

Image data in MINC 2.0 may be partitioned into limited-sized "chunks". This permits lossless
compression of the chunks and allows for true random-access in compressed volumes. This is a
desirable feature for our system as we want to be able to decompress chunks of an image at a time-
which is not guaranteed with image formats such as NIfTI. Although, NIfTI can be extended to
support random-access reading of compressed data, it is not currently possible to achieve random-
access writing of data [24].

2.3.3 NiBabel

NiBabel is a popular Python library used for the reading andwriting of various neurological imaging
file formats, including NIfTI-1, NIfTI-2 and MINC 2.0 [25].

A NiBabel object consists of three parts: an image header, an a 4x4 affine matrix mapping voxel
coordinates to Right, Anterior, Superior positive (RAS+) world coordinate space, and image data.
In order for a NiBabel object to be created, it simply requires an array containing image data and
the affine matrix.

Should an image be loaded from disk, the image array will not necessarily be loaded into
memory immediately. The image, referred to a as a proxy image, will contain a dataobj property
that can fetch the data from the disk. To access array data, the get_data() object needs to be
called. For the instance in which only a subset of the data is required, or the entirety of the data
does not fit into memory, array proxy slicing can be used. This is a useful feature, particularly for
our system, where the images are too large to fit in their entirety into memory. With array proxy
slicing, we can select as much data that can fit into memory for processing, at a time

10

2.4 Existing systems for large imaging data

2.4.1 NeuroData Web Services

The NeuroData Web Services (NDstore), formerly know as The Open Connectome Data Cluster,
is a scalable database cluster designed for spatial analysis and visualization of high-throughput
neuroimaging data [26]. The database cluster allows for the distributed storage of image data
and their annotations, but does not permit the user to apply a custom pipeline to the image data
stored within the database. Image data uploaded to the cluster is converted to the database cluster’s
custom database structure. Image data is partitioned into cuboids assigned with an index using a
Morton-order space-filling curve [27] to ensure that cuboids are ordered in a way such that the data
remains contiguous. Annotation data is also stored in cuboids. A copy of the image data is stored
into 2D tile stacks for web-visualization.

2.4.2 CBRAIN

The Canadian Brain Imaging Reasearch platform (CBRAIN) is a web-based collaborative research
platform designed for distributed storing, processing and visualization of large-scale neuroimaging
data [28]. The CBRAIN platform consists of three layers: 1) the access layer, 2) the service layer
and 3) the infrastructure layer. The access layer, from which to access CBRAIN, is accessible by
users through a standard web-browser or, for applications, through a RESTful API [29]. For the
access layer to communicate with the backend, the service layer is utilized. The service layer also
contains a metadata database that stores information such as details on users and permissions and
resources. Processing and storing of data is the responsibility of the infrastructure layer, which is
composed of network data repositories and computer resources.

CBRAIN is particularly well-suited for the handling of large neuroimaging datasets in contrast
to that of ultra-high resolution images. This is due to the fact that there is no built-in support for
the partitioning and merging of image data, and would therefore leave the task at the discretion of
the user.

2.4.3 Processing of large neuro-imaging data sets with Apache Spark

The effectiveness of Spark on large neuroimaging datasets has been investigated. This contrasts
our current research, which is on large images. In [30], for example, the authors examined graph
analysis algorithms of large fMRI datasets using Spark with GPU accelation. Spark, in combination

11

with GPU acceleration was found to greatly reduce processing time of large neuroimaging datasets.
Due to Spark’s ease-of-use, it was found that the development time was also decreased.

12

Chapter 3

A system to process ultra-high resolution 3D
brain images

3.1 Introduction

Our goal was to create a web system that will facilitate the processing of ultra-high resolution
brain images. Making it a web system is important to (1) foster the sharing of pipelines, activities,
and derived datasets (2) improve the ease of use. Current web systems such as CBRAIN and
NDstore are not well-suited for this. CBRAIN is a web-sharing neuroimaging platform, however
it is designed to handle large datasets of images, and not larges images themselves. Should one
attempt to process a large image on CBRAIN, it would be treated as a single-element dataset, which
in turn would negatively affect performance. NDstore, on the other hand, is a web-platform for the
storing of neuroimages for web visualization. As such, it does not foster the sharing of pipelines,
activities or derived datasets.

3.2 System Architecture

Our system will be broken into three parts: 1) A web interface, 2) a server backend and 3) an
Apache Spark Cluster (see Figure 1). The web interface will use two components to achieve the
desired outcome. As the large image will need to be broken down into more manageable chunks in
order to work in a parallel environment, we will need to split the image. Different splitting schemes
include 2D slices, 3D blocks with or without overlap and of different sizes, slices with different
orientations and splits broken down into regions of interest. As different splitting schemes may
be favoured by different image processing algorithms or neuroimaging pipelines, it is important

13

to give users the ability to select and parametrize splitting and merging scheme to accomplish the
task, which the web interface will enable. Should it be known by the system that some schemes
be more efficient with respect to time required for splitting and merging, the web interface will
recommend those schemes to the user.

The second component of the web interface will permit the user to select, upload or design
analysis pipelines. These analysis pipelines will, in essence, be Spark transformations that call
upon the neuroimaging pipelines to process the splits. Our system will provide the user with some
built-in pipelines, but should the user like to upload or design their own, they will be capable of
doing so via the web interface. The user will also have the ability to append their Boutiques tool
descriptor should they have chosen to upload a Boutiques Application as their analysis pipeline.
The tool descriptor will permit the Apache Spark Cluster to locate the Boutiques App and give it
instructions on how to execute the application.

The system backend will be responsible for two functions: 1) splitting and merging the image,
and 2) keeping track of the location of files on HDFS. After the user has selected their preferences
via the web interface, this information will be sent to the server backend. The server will split
and/or merge the image(s) based on their user’s preference, and the splits will be loaded onto HDFS.
Since we want to preserve data locality in order to ensure that processing is efficient, we will need
to keep track of which nodes contain the images such that Spark computations are performed where
the data is located. This is achieved with the help of a legend containing all split HDFS URIs.

The Apache Spark Cluster is responsible for the execution of the pipelines. The splits on HDFS
will be distributed across the nodes of this cluster. The user-provided pipelines will be scheduled
by the YARN scheduler to execute closest to the nodes containing the data to ensure data locality.
The pipelines can produce either a reduced output to be saved to file or updated images. In the
instance that updated images are generated, a new or updated legend with updated URIs pointing
to the new locations on HDFS will be created. This is especially important if pipelines cannot
perform all computations in-memory and must write to disk during execution.

3.3 File types

Existing neuroimaging pipelines represent decades of work by the community. To create a custom
file format specific to processing on Spark clusters, as done in [26], would result in severely limiting
the types of operations that can be performed on the data. It would alsomean imposing our standards
on the neuroimaging community should they want to use their pipelines in our systems. To avoid
this issue, we designed our system to work with file types that are compatible with these pipelines.

14

Apache Spark Cluster

 HDFS

Input
image
(split)

Output
Image
(split)

Web Interface

Container
Repository

3: Annotated references to
Docker containers

(ex. Boutiques descriptors)

Server Backend

Splits and merges
data

Tracks location and
provenance of files

on HDFS

1: Select split and merge
strategies

2: Upload, select or design
analysis pipelines

Input
Image

Output
ImageUser

Executes pipelines

Figure 1: System architecture diagram

That is, the large image will be broken down into splits that are readable by these pipelines such
that the image can be processed by the pipelines in parallel. Ideally, our system will be compatible
with all frequently used image formats. For now, we will focus on making our system compatible
with these three popular image formats: NIfTI-1, NIfTI-2 and MINC 2.0.

As NIfTI-1 is a popular image format in which many neuroimaging pipelines have been de-
veloped to be compatible with, we have selected this file format to do our initial development.
In addition, unlike MINC 2.0, NIfTI-1 data is stored in a contiguous column-order fashion in a
.nii or .img file. This makes a NIfTI-1 image simple to manipulate. As there are only minor
differences between NIfTI-1, ANALYZETM 7.5, and NIfTI-2, the algorithms and implementations
developed should apply to all three of these file types. The algorithms developed should also apply
to the MINC 2.0 file format, however algorithm implementation may vary slightly as a result of the
file organization difference. To help abstract the main file type differences, we will be using the
NiBabel library.

3.4 Partitioning and merging of data

The NIfTI-1 file format is not inherently compatible with distributed environments. To achieve
parallelization of a large image and maintain NIfTI readability by NIfTI-aware software, it is

15

necessary to split the large image into more manageable NIfTI-1 images which can be distributed
across the various nodes of the system. Depending on the algorithm used to process the image, it
may also be necessary to merge the image back together.

Neuroimaging files may be split into or merged from various schemes such as 2D slices and
3D blocks. As a result of the image size, splitting and merging cannot be achieved in memory.
Therefore, splitting and merging must be done chunks at a time. Chunks can represent contiguous
data, as in the case of 2D slices or 3D slab, or discontiguous data, as in the case of 3D blocks. In
the case of naive splitting and merging (loading one chunk into memory at a time), 2D slices and
3D slabs are expected to be more efficient than 3D blocks. This is due to the fact that seeking must
be performed after every discontiguous chunk. As blocks are inherently discontiguous chunks of
data, this can lead to frequent seeking which can severely limit performance. Algorithms to reduce
seek number will be examined in Chapter 4.

During the creation of the splits, an index text file (Figure 2) is generated containing all the
HDFS URIs of the splits. These splits will all be stored into the same folder HDFS for later access
by the Spark transformations. To merge the splits, the index will be used to locate all the splits and
merge them sequentially.

Figure 2: Example of an image index file

3.5 Running pipelines

Pipeline execution will be achieved through the use of Spark transformations and their respective
lambda (anonymous) functions. There are two options for loading the splits into Spark and
generating an RDD: 1) through reading of the legend file to locate the splits and load them into
NiBabel, and 2) providing Spark with the folder name containing all the splits. The first method,
using Spark’s function sc.textFiles() is useful if the splits are not all located in the same folder,
however, data locality would not be preserved without some manipulation to the Spark library. This
is because YARNwill schedule the Spark transformations to execute where the legend file’s chunks

16

are, which may not necessarily be on the same nodes as the image splits. However, this will only
be an issue when the splits are loaded into memory as Spark performs in-memory computations.
Nevertheless, split loading may occur more than once in a pipeline. The second option will utilize
Spark’s sc.binaryFiles() function to load the images directly from a folder. Data locality is
ensured as YARN and Spark are both aware that the RDD needs to be generated from the files in the
folder, unlike with the legend. In addition, Spark will load the entire file in memory per compute
node, and not just a chunk, which is important as we want to ensure that the image is readable
by neuroimaging pipelines. The RDD returned by this method will be in the format of key-value
pairs, in which the key is the filename and the value is the image data that can simply be loaded into
NiBabel. We will be loading the images into memory using Spark’s sc.binaryFiles() function.
As Spark’s transformations implement lazy loading, the entire image will not have to fit in memory
to generate an RDD, it is only necessary for splits to fit in memory. Should the pipelines require that
the image is saved to disk prior to the execution of another transformation, sc.binaryFiles()
can be used again or NiBabel’s nib.load() function can be called and data can be extracted prior
to ending the transformation and starting the new one such that the new image will be returned as
a value.

Executing neuroimaging pipelines can be accomplished through the use of Spark’s map (or
other) transformations. The lambda function called by the transformation can call for the execution
of a container containing the desired neuroimaging pipelines to execute on the nodes’ data. Should
an updated split be saved to disk, NiBabel’s nib.save() function can be called within a Spark
transformation.

3.6 Describing pipelines

Users will have the option to use our system’s built-in pipelines or submit their own. Spark pipelines
can be encapsulated within a container and referenced to by a descriptor such as Boutiques, or
can be provided to our system separately from the container and make calls to functions within
transformations that execute the pipelines. For now, we will investigate the latter. To accomplish
this, our system requires a URL pointing to a Docker or Singularity container located in a container
repository that our cluster can download from. In addition, we will need instructions on how to
execute the container.

17

Chapter 4

Splitting and merging

Note : The following sections of this Chapter contain excerpts from a paper in preparation for
IEEE Big Data 2017, in which my contributions were (1) the identification of the blocks vs slices
issue, (2) the design of all the algorithms reported in this chapter, (3) the implementation of these
algorithms, (4) their extensive benchmarking on two disks.

4.1 Introduction

The process of splitting and merging ultra-high resolution images may significantly impact the
performance of our system. However, it also is necessary to split and merge the image in order
to parallelize pipeline processing. Therefore, the goal is to find the most efficient algorithms for
splitting and merging a large image given for a given split scheme, and to also determine the best
performing split schema given the algorithm. Although there are many splitting schemes, we will
limit our focus to 3D slabs and 3D blocks.

Intuitively, splitting and merging of slices is expected to be more efficient than blocks as
a consequence of the number of seeks required to perform the operation. 3D slabs represent
contiguous chunks of data within the NIfTI image, therefore, seek time is limited to file access. In
contrast, 3D blocks represent discontiguous chunks of image data, where the number of seeks is a
function of the number of file accesses and number of discontiguous chunks. Processing time may
also be affected by seek distance. It is known that hard disk drives (HDDs) exhibit variable seek
time, whereas solid state drives (SSD) exhibit constant seek time. Therefore, it is hypothesized that
the number of seeks will have a subdued effect on seek time in SSDs in comparison to HDDs. To
attempt to reduce the seek time incurred by the splitting and merging blocks, we also examined four
different merging strategies: (1) naive reading of blocks, (2) naive reading of slabs, (3) clustered

18

reading of blocks (multiple blocks read and written at once), and (4) buffered reading of slabs
(multiple slabs read and written at once). By loading multiple splits into memory at a time, we
effectively augment the amount of contiguous data that can be written at a time, thus reducing the
overall number of seeks.

Split and merge relate to the same dual problem in our context. We focus here on merging for
the sake of concision. Splitting algorithms can be derived from merging ones by swapping reads
and writes. Our goal then is to merge a set of n chunks into a single reconstructed 3D image with
R voxels of size b. For simplicity, we assume that all chunks are of identical size, that they do not
overlap, and that slices are squares and blocks are cubes.

4.2 Disk model

A disk is characterized by its read and write rates, its access time and its seek time. For common
file sizes, seek time is negligible compared to read or write time as typical seek times range from
about 0.1 ms for Solid-State Drives (SSD) to 10 ms for Hard-Disk Drives (HDD). However, as we
will shown later, naive algorithms might seek up to 107 times to merge a high-resolution image,
which renders total seek time comparable to read and write times. In addition, extensive seeking
also has an effect on read and write rates, as these are typically increasing with the duration of
uninterrupted reads or writes.

In our analysis, we do not distinguish between access time and seek time. We also assume that
seeks require a constant amount of time, regardless of the position seeked to. That is, we focus
on the average seek time. In practice, large variations would be expected depending on the seek
distance, but modeling such variations would inevitably lead to models specific to the hardware,
file system or operating system, which we intentionally avoid here. Likewise, in contemporary
systems, read and write times are greatly impacted by caches operating at several levels, which we
do not model here. Thus, our goal is to find algorithms that minimize the number of seek and file
access operations, which we denote “number of seeks” in the remainder.

4.3 Notations

We adopt the following notations (see Figure 3):

• R = D3: number of voxels in the reconstructed image.

• b: number of bytes per voxel (in B).

19

• n: number of chunks (blocks or slices).

• m: amount of available memory (in B).

• m′: amount of used memory (in B), m′ ≤ m.

We also have the following relations:

• Number of slices, rows, columns in a block: 3
√

R
n = d.

• Number of blocks in a block row: 3√n.

Figure 3: Notations. A block row is
shown in red. A block slice is shown in
blue.

Figure 4: Buffer used in cluster reads
(d=4). White portions in the buffer are
not allocated.

4.4 Algorithms

4.4.1 Slabs vs blocks

Algorithms 1 and 2 show the naive merging methods for slabs and blocks. These algorithms
actually have very different complexities even though blocks and slabs have identical sizes. Since
slabs are stored contiguously in the reconstructed image, the number of seeks in Algorithm 1 is
only 2n as n seeks are required to read the slabs and n seeks are required to write them:

Nslabs = 2n (1)

However, Algorithm 2 has to do extra seeks for each row in each slice of each block:

Nblocks = n + nd2

20

or, using R and n as main variables:

Nblocks = n + n

(
3

√
R
n

)2

(2)

In practice, this difference could lead to a tremendous slowdown, as we will show later.

Algorithm 1 Naive merging from slabs
for each slab do
read slab
write slab in reconstructed image

end for

Algorithm 2 Naive merging from blocks
for each block do
read block
write block in reconstructed image

end for

4.4.2 Buffered slabs

Algorithm 1 is a particular case of memory buffering where the amount of available memory
equals the maximum size of a chunk. More buffering can be achieved when the amount of available
memory increases, as shown in Algorithm 3. This algorithm writes in the reconstructed image

Algorithm 3 Buffered merging from slabs
1: sorted_slabs = sort slabs by increasing k values
2: initialize buffer
3: for i = 0 ; i <n ; i+=1 do
4: slice = sorted_slabs[i]
5: if sizeof(buffer)+sizeof(slab) ≥ m then
6: write buffer in reconstructed image
7: clear buffer
8: end if
9: read slab and append it to buffer
10: end for

21

using a single seek per memory load. Therefore:

Nbuff_slab = n +
⌈
bR
m

⌉
(3)

Buffered slabs are straightforward to implement, however, their extension to block merging is not
easy. The remainder of this Section presents our attempts for such a generalization.

4.4.3 Buffered blocks: Cluster reads

Cluster reads are the more direct extension of buffered slabs to blocks: they load multiple blocks
in memory, concatenate them in a buffer and write the buffer in the reconstructed image. Seeking
is reduced compared to naive block merging since contiguous parts of the buffer will be written
without seeking. A given block is accessed only once.

The buffer might be a slightly complex data structure, for instance an associative array or
a Python dictionary, capable of storing multiple disjoint sequences of contiguous bytes without
having to allocate memory for the bytes between such sequences. Figure 4 illustrates how the buffer
would fill up for the two first blocks in a reconstructed image, assuming that blocks are of size
4x4x4.

The number of seeks performed by cluster reads depends on how blocks loaded in memory
arrange in the reconstructed image. In the best case, complete contiguous slices of the reconstructed
image can be assembled in memory and written in a single seek. In the worst case, the memory
load only partially covers rows in the reconstructed image: O(d2) seeks are then required during
writing, one for every partial row in every partial slice. In the intermediary case, rows are complete
but some slices can only be partially reconstructed: O(d) seeks are then required.

Our cluster reads algorithm focuses on the three memory load configurations represented in
Figure 5, that is, the amount of memory m′ used by the algorithm is rounded down to the closest
number of complete blocks (case 1), of complete block rows (case 2) or of complete block slabs
(case 3). This is in general reasonable since adding an incomplete row to a set of complete ones
multiplies the number of required seeks by d, as illustrated in Figure 6-Left. In some cases though,
rounding m down to m′ might increase the number of required memory loads to a point that
the overall number of seeks also increases. Such cases are, however, slightly unusual and their
complete description requires extensive calculations involving modulo arithmetic, which we felt
were unwieldy to report here.

Our algorithm also avoids configurations where the memory load overlaps multiple block slices
in case 2 or multiple block rows in case 1, as such overlaps multiply the number of required seeks
(see Figure 6-Right).

22

Figure 5: Memory-load configurations in cluster reads, leading to different number of seeks. Red
blocks need seeking before each of their rows (d2 seeks). Blue blocks need seeking before each
of their slices (d seeks in total). Green blocks need only a single seek. Grey, dashed, transparent
blocks represent the contiguous memory loads and are added for the sake of visualization.

Figure 6: Configurations that increase the number of seeks per memory-load and are thus deliber-
ately avoided by cluster reads. Left: configuration with incomplete block rows (multiplies number
of seeks by d). Right: configuration with block rows that overlap multiple block slices (multiplies
number of seeks by 2).

23

Cluster reads are described in Algorithm 4. Function switch (line 3) selects one of the three
cases based on the amount of available memory and the number of blocks. It returns m’ and case,
the identifier of the selected case. Function check_overlap (line 7) determines whether two
blocks overlap multiple block slices (case 2) or multiple block rows (case 1). For case 3 it always
returns false. Function sizeof (line 8) returns the actual memory used by its argument, including
only its allocated segments in the case that the argument is a buffer.

Algorithm 4 Buffered merging of blocks with cluster reads
1: sorted_blocks = sort blocks by increasing (k,j,i)
2: initialize buffer
3: (m’,case)=switch(m,n,R,b)
4: old_block = sorted_blocks[0]
5: for i = 0 ; i<n ; i+=1 do
6: block = sorted_blocks[i]
7: overlap = check_overlap(block,old_block,case)
8: if sizeof(buffer)+sizeof(block) ≥ m’ or overlap=true then
9: write buffer in reconstructed image
10: clear buffer
11: overlap = false
12: end if
13: read block and insert it in buffer
14: end for

The amount of memory used m′ is set as follows in each of the 3 cases:

m′1 =
Rb
n

⌊mn
Rb

⌋
; m′2 =

Rb
3√n2

⌊
m 3√n2

Rb

⌋
; m′3 =

Rb
3√n

⌊
m 3√n
Rb

⌋
The number of seeks performed by cluster reads in each of the three cases is:

N i
CR = n + xibi, i ∈ n1, 3o,

where xi is the number of memory loads required to reconstruct the image and bi is the number of
seeks required to write the memory load. The first n seeks in the equation are required to read all
the blocks at once. According to Figure 5, we have:

b1 = d2 =
3

√
R
n

2

; b2 = d = 3

√
R
n

; b3 = 1

24

The numbers of memory loads required to reconstruct the image are:

x1 =

⌈
Rb

3√n2m′1

⌉
3√n

2; x2 =

⌈
Rb

3√nm′2

⌉
3√n; x3 =

⌈
Rb
m′3

⌉
Because our algorithm avoids overlapping configurations, x1 is proportional to the total number of
block rows in the image (3√n2) and x2 is proportional to the total number of block slabs (3√n).

Finally, the total number of seeks performed by cluster reads to reconstruct the image is:

NCR =

n +

⌈
Rb

3√n2m′1

⌉
3√R

2 if m < Rb
3√n2

n +
⌈

Rb
3√nm′2

⌉
3√R if Rb

3√n2 ≤ m < Rb
3√n

n +
⌈

Rb
m′3

⌉
if Rb

3√n
≤ m < Rb

(4)

It should be noted that NCR is not a continuous function of m, due to the differences among bi

values.

4.5 Implementation

The above algorithms are implemented in Python using Nibabel [25] for image I/O and NumPy for
array manipulations.

The data buffer used in Cluster reads is implemented as a Python dictionary where the keys are
offsets in the reconstructed image and the values are NumPy arrays containing the data starting at
this offset. When the memory load is complete, dictionary entries are written sequentially to the
reconstructed image. In naive blocks and cluster reads, some seeking might be required between
writes. We implemented a defragmentation procedure for the dictionary that merges contiguous
dictionary entries in a single one, but we abandoned it as it proved more time-consuming than
going through all the initial entries, due to the overhead of resizing NumPy arrays to merge entries.

4.6 Experiments

4.6.1 Data

We used the 3850x3025x3500 Big Brain image split in 125 non-overlapping chunks of size
770x605x700 with 2 bytes per voxel (total size, uncompressed is 75.92 GB). We used the blocks of
the 2015 Big Brain release with 40-micrometer isotropic resolution available at ftp://bigbrain.
loris.ca/BigBrainRelease.2015/3D_Blocks/40um. We converted them to NIfTI-1 using

25

ftp://bigbrain.loris.ca/BigBrainRelease.2015/3D_Blocks/40um
ftp://bigbrain.loris.ca/BigBrainRelease.2015/3D_Blocks/40um

3 GB 6 GB 9 GB 12 GB 16 GB
Cluster reads 1 2 2 2 3

Table 1: Algorithm configurations by memory values.

NiBabel and left them uncompressed. We generated NiFTI slabs of size 3850x3025x28 from the
reconstructed image, using our naive split algorithm.

4.6.2 Hardware

We used a Dell Precision Tower 3620 workstation with CentOS Linux release 7.3.1611, 32 GB of
RAM and two disks. (1) a Hard disk drive (HDD): HGST Travelstar 7K1000, 7200 rpm, 931GiB
(1TB), firmware version JB0OA3W0; (2) a Solid-state drive (SSD): SanDisk X400 2.5, 238GiB
(256GB), firmware version X4130012. Both drives used 512-byte logical sectors, 4096-byte
physical sectors, SATA >3.1 (6.0 Gb/s) and were accessed through the XFS file system v4.5.0. We
used iotop (http://guichaz.free.fr/iotop) to monitor I/Os on the workstation and make
sure that no other process was compromising our measures.

4.6.3 Execution conditions

Table 1 shows the configuration of Cluster reads for each memory value, according to Equation 4.
For instance, Cluster reads are in case 1 for 3GB.We also did 0GBofmemory forBuffered slices and
Cluster reads, which triggered naive slice and block merging. We did 5 repetitions for each memory
value. Memory values were shuffled in each repetition, to correct for potential biases coming from
ordering, such as caching effects. To improve reproducibility, we dropped the kernel page, dentry
and inode caches before each run (echo 3 | sudo tee /proc/sys/vm/drop_caches). We
measured the cumulative read, write and seek time in each run, as well as the overhead time defined
as the total time minus the sum of all other times.

4.7 Results

Seeks

The number of seeks is reported in Figure 7, for all algorithms and the corresponding models
(Equations 1 to 4). Note the logarithmic y scale. Error bars are not reported as numbers of seeks
were constant across all repetitions. The average relative model errors are 12.7% (Naive blocks),

26

http://guichaz.free.fr/iotop

0% (Naive slabs), 3.3% (Clustered reads) and 0.9% (Buffered slabs), explained by the fact that the
model assumes cubic blocks while we used non-cubic ones in the experiment. Overall, the model
is validated as it correctly explains the observations.

 1

 10

 100

 1000

 10000

 100000

 1x106

 1x107

 1x108

0.6 3 6 9 12 16

N
um

be
r o

f s
ee

ks

Memory (GB)

Naive blocks
Naive slabs

Cluster reads
Buffered slabs

Figure 7: Number of seeks for all algorithms. y scale is logarithmic. Each algorithm is represented
with a different color. Dark color is experimental value; bright color is model.

As expected, the difference between naive blocks and naive slabs is tremendous, in the order of
50 million seeks. For 3 GB, the number of seeks in Cluster reads is 5 orders of magnitude higher
than naive slices. This huge difference comes from the fact that at 3 GB, Cluster reads are in case
1. For 6 GB, 9 GB and 12 GB, Cluster reads are in case 2 and Buffered slabs reduces. At 16 GB,
the algorithms perform the same (Figure 8).

Cluster reads provide important speed ups compared to naive blocks, both on HDD and on
SSD. On SSD, they are up to 5.1 times faster than naive blocks at 16 GB, and 3.1 on average. On
HDD, they are up to 9.7 times faster than naive blocks at 16 GB, and on average 6.8 times faster.
Surprisingly, they perform substantially faster than naive blocks even at 3 GB, while in case 1.
This may be explained by the fact that the seeks required to write incomplete block rows to the
reconstructed image are shorter than the ones for naive blocks.

27

Merge time breakdown

Figure 8 show how the total merge time breaks down to read, write, seek and overhead time for our
algorithms. Naive blocks and naive slabs are shown as references. The huge difference between
naive blocks and naive slabs is coming from both the seek time and the write time, which suggests
that seeking degrades the write rate in addition to introducing extra delays. Cluster reads reduce
the seek time and thus the read time substantially. The same behaviour is observed on HDD and
on SSD, although the effect of seeking is slightly lower on SSD, as expected. Read times are
consistently and substantially lower than write times. This may be a result of reading data using
Python’s NumPy package, which is more efficient than using native Python - as is the case with our
writes.

 0

 2000

 4000

 6000

 8000

 10000

 12000

naive-blocks 3 6 9 12 16 naive-slabs

M
er

gi
ng

 ti
m

e
(s

)

Memory (GB)

Overhead
Read
Write
Seek

 0

 2000

 4000

 6000

 8000

 10000

 12000

naive-blocks 3 6 9 12 16 naive-slabs

M
er

gi
ng

 ti
m

e
(s

)

Memory (GB)

Overhead
Read
Write
Seek

(a) Buffered slabs

 0

 2000

 4000

 6000

 8000

 10000

 12000

naive-blocks 3 6 9 12 16 naive-slabs

M
er

gi
ng

 ti
m

e
(s

)

Memory (GB)

Overhead
Read
Write
Seek

 0

 2000

 4000

 6000

 8000

 10000

 12000

naive-blocks 3 6 9 12 16 naive-slabs

M
er

gi
ng

 ti
m

e
(s

)

Memory (GB)

Overhead
Read
Write
Seek

(b) Cluster reads

Figure 8: Breakdown of total merge times. Left column: HDD. Right column: SSD.

4.7.1 Conclusion

We have designed and implemented algorithms for the efficient splitting and merging of ultra-high
resolution 3D brain images. It is recommended that the image be partitioned into 3D slabs as
it offers a significant performance advantage. Should it be necessary to partition the image into

28

3D blocks, clustered reading of the blocks is suggested as reading several blocks into memory at
once will increase performance. If entire block slabs can be read into memory, clustered reads can
nearly mimic the performance of buffered slabs. Implementation of the algorithms can be found at
https://github.com/big-data-lab-team/sam

As we will process the images on a computing cluster using HDFS, parallel split-and-merge
algorithms are required, since the various blocks of a large image would be uploaded to different
disks concurrently. In the same vein, “re-spliting” algorithms would have to be devised in case a
split image needs to be split in a different geometry. Cluster reads could be used as a starting point
for such algorithms.

In terms of file formats, our results demonstrate that simple imaging formats may be split and
merged without performance loss compared to more complex formats that try to preserve spatial
locality on disk, for instance MINC 2.0 or the format based on space-filling curves mentioned
in [26]. This is of major interest in the current open-science context since simpler formats favour
data-sharing and interoperability. Moreover, our algorithms could potentially be adapted to any
split geometry, even though we demonstrated them on slices and blocks only, while file formats
inevitably assume a particular geometry. For instance, the format in [26] is not designed to naively
split slices. However, we aimed to extract all the blocks, whereas, [26] aimed to extract a single
block from a large image. Furthermore, we have not considered on-the-fly data compression yet,
which is a unique feature of MINC 2.0.

29

https://github.com/big-data-lab-team/sam

Chapter 5

Pipelining framework

5.1 Introduction

Our pipelining framework needs to guarantee efficient execution of neuroimaging pipelines. Lever-
aging the features provided by Spark and HDFS in terms of parallelization, data-locality and
in-memory computing, we can achieve high performance. Through HDFS, the splits will be di-
vided throughout the nodes and replicated in case of node failure. YARN will schedule Spark
computations to occur closest to the data node to preserve data locality. Spark will load the data lo-
cated at that node to the node’s memory to eliminate input andoutput (I/O) time that would occur as
a consequence of reading to and from disk at every map and reduce phase for every transformation.

In this Chapter we describe and benchmark the first use of Apache Spark for high-resolution 3D
neuroimaging. The various use cases will examine the effects of parallelization of a neuroimaging
pipeline with and without a Docker container, as well as the effect that in-memory computing has
on total processing time.

5.1.1 Describing neuroimaging pipelines in Spark

For neuroimaging pipelines to process the splits in parallel, they will be executed on the split image
data within a Spark transformation. In order to generate an RDD of NIfTI images, the directory
containing the images is read using Spark’s sc.binaryFiles. The RDD created from reading the
directory is a collection of key-value pairs, where the key represents the image filename, and the
value is the binary representation of the image. Once the RDD of NIfTI images is generated, image
data can be manipulated directly within lambda functions with the help of NiBabel. As containers
have no ability to access the node’s in-memory data directly, a directory containing the splits will
have to be mounted onto the container. This can be accomplished by writing RDD data in a lambda

30

function to the local filesystem or by writing to a volatile temporary filesystem, if available, such
as Linux’s tmpfs. The container will then be able to process the pipeline and save results to the
mounted directory, which can then be loaded back into Spark using NiBabel, for further processing.

5.1.2 Hardware

All tests were performed on Amazon EC2 m4.16xlarge Centos 7 instance with 64 virtual Intel(R)
Xeon(R) CPUs E5-2686 v4 @ 2.30GHz and 256GB RAM.

5.1.3 Data

As with the previous chapter, the image selected to perform such tests was the 40µm resolution
BigBrain image. The BigBrain was split prior to these tests into 770x605x700 non-overlapping
compressed NIfTI blocks.

5.2 Effects of parallelization on neuroimaging pipelines

5.2.1 Histogram computation

As a first use case, we analyzed the effects of parallelization on a simple histogram computation.
For this, we looked at how varying the number of pipeline executors would affect processing time.

Algorithm 5 shows how the pipeline was implemented. Once images were loading into a Spark
RDD as described in 5.1.1, the image data was separated from the header contents to generate
a histogram. This was achieved by reading the binary data stored in the RDD into NiBabel and
extracting data using NiBabel’s img.get_data function inside the lambda function of a Spark
flatMap transformation – a transformation which allows each input item to be mapped to 0 or
more output items. The lambda function returned the filename as key, and a NumPy array of image
data as value. To generate the histogram, it is necessary to obtain the minimum and maximum
voxel value of the image. To achieve this, a flatMap transformation is used and the lambda
function called by the transform will return the minimum and maximum for each respective image.
These results are then collected onto one node, and the min and max of the image is obtained by
sequentially iterating through the list of split minima and maxima. A flatMap transformation can
then be applied again on the RDD containing the image data to generate an RDD containing the
5-bin histogram of the splits with given minimum and maximum. To finalize the generation of
the histogram, a reduceByKey transform is called on the recently generated RDD to collect all

31

split histogram frequencies belonging to the same bin into the same compute node to sum their
frequencies together. The RDD data was then collected into one node and printed to screen.

Algorithm 5 Spark pipeline for histogram computation
1: min, max = None
2: binRDD = load directory of binary files in Spark
3: nibRDD = binRDD.map(load image array)
4: minmax = nibRDD.flatMap(get min and max).collect()
5: for element in minmax do
6: if element less than min then
7: min = element
8: end if
9: if element greater than max then
10: max = element
11: end if
12: end for
13: histogram = nibRDD.flatMap(create histogram).reduceByKey().collect()

 0

 1000

 2000

 3000

 4000

 5000

1 2 4 6 8 10

E
xe

cu
tio

n
tim

e
(s

)

Number of executors

Figure 9: Average histogram computation times over 1, 2, 4, 6, 8 and 10 executors. 5 repetitions
were performed for each executor amount.

We benchmarked our implementation using 1, 2, 4, 6, 8 and 10 executors, respectively. The
number of cores per executor was 1, and the amount of memory allocated to an executor instance

32

was 10 GB. For all executions, the histogram returned contained 5 bins.
The resulting data, as seen in Figure 9 suggests that the neuroimaging pipelines, such as the

above, scales well to an increased number of executors. The algorithm runs almost 7 times faster
with 10 executors than with only one. However, there is a limit to the amount of speedup that can
be provided by executing pipelines in parallel. This can be observed through the speedup reduction
as the number of executors decrease. Such behaviour can be explained by the non-parallelizable
steps, such as collect actions, which limit the amount of parallelization.

5.2.2 Containerized pipeline

The neuroimaging pipelines used to process the images need to be containerized. As a second use
case, we examined the effects of parallelization on a containerized pipeline. A script making a call
to the FSL binarization command was built into a Docker container.

The Spark algorithm (Algorithm 6) was similar to that of the histogram algorithm above,
however the minimum and maximum did not need to be obtained and the data was not reduced at
the end as we wanted to return the binarized splits.

Algorithm 6 Map transformation’s lambda function for containerized pipeline execution
1: Input:(filename, binary image, output folder, threshold)
2: Output:(filename, binarized_image)
3: image = load binarized binary image into NiBabel
4: nibabel.save(image, current working directory)
5: mount directory into container and execute pipeline
6: binarized_image = read image from disk

To share the image splits within the container, the RDD data of each node was written to the
node’s respective home directory. This directory was then mounted in the container in order for the
pipeline to binarize the splits within the container. The updated images were then saved onto the
shared directory, and uploaded onto HDFS for potential future processing by other pipelines.

Figure 10 show that parallelization of containerized pipelines scales just as well as non-
containerized pipelines in spite of the overhead of using containers. These results suggest that
parallelization will significantly reduce processing of containerized pipelines. Since speedup ta-
pers down as parallelization increases due to non-parallelizable steps limiting speedup and the fact
that many neuroimaging pipeline steps will likely not be parallelizable, and speedup will be limited.
Nevertheless, the initial speedup from partitioning the large image into smaller constituents and
processing those in parallel is still expected to be significant.

33

 0

 1000

 2000

 3000

 4000

 5000

1 2 4 6 8 10

E
xe

cu
tio

n
tim

e
(s

)

Number of executors

Figure 10: Containerized binarization pipeline processing times at 1, 2, 4, 6, 8 and 10 executors.
5 repetitions were performed for each executor amount. Container download time is omitted from
diagram as containers were pre-fetched

5.3 In-memory computing

Spark utilizes in-memory computing to eliminate the I/O time resulting from reading and writing
data to file at each transformation. As neuroimaging pipelines may require the data be written
and read from disk to execute, such as in the above containerization example, it is important to
determine how great of a performance advantage in-memory computing has on performance. To
examine this, we developed a script that would binarize the image split 2, 4, 6 or 8 times in memory
and write the images to disk to be uploaded onto HDFS, and another script that read the file from
disk prior to each binarization step and wrote to file after each binarization step.

The algorithm for in-memory computing was similar to Algorithm 5. More specifically, once
the RDD of images was created, the image data was extracted in the form of a NumPy array through
a map lambda function, and the binarization computation was performed, using numpy on the data
alone. Once binarization steps were completed, the numpy array could be converted back to a
NumPy image using NiBabel as saved to disk or to HDFS.

The algorithm for intermediary IO was similar to that of 6 in that the images were saved to,
and read from disk at every pipeline step. This was the only difference between the in-memory
computing algorithm and the intermediary I/O.

Figure 11 shows that in-memory computations keep processing time at a minumum, whereas
intermediary reads and writes to disk increase processing time up to a factor of 6.3 when there are

34

 0

 1000

 2000

 3000

 4000

 5000

2 4 6 8

E
xe

cu
tio

n
tim

e
(s

)

Number of pipeline steps

in-memory computations
intermediary I/O

Figure 11: Comparison of total processing times between Spark’s in-memory computing and
intermediary I/O at 2, 4, 6 and 8 pipeline steps. 10 executors were utilized in all experiments

8 pipeline steps. Even with only two pipeline steps, in-memory computing offers a factor of 2.4
speedup. This would suggest that avoiding writes to disk is preferable, and if reads and writes to the
filesystem are necessary, using volatile storage can improve performance. However, in the case of
large neuroimaging pipelines, the effect of I/O on performance on pipeline execution performance
is expected to be negligible compared to pipeline execution processing time.

5.3.1 Conclusion

The implemented use cases demonstrate the tremendous value of parallel procressing of neuroimag-
ing pipelines that Spark can bring to processing time. Neuroimaging pipelines scale very well to
an increase in parallelization, though parallelization may be limited by non-parallelizable steps. To
keep processing time to a minimum, in-memory computing is ideal, however, this may not be an
option in the case of containers. Furthermore, in the case of large neuroimaging pipelines, this
performance advantage may pale in comparison.

As splits may vary in location, extending Spark to generate an RDD of NIfTI images from an
index file while preserving data-locality may be desirable over loading an entire folder.

Implementations of the use-case pipelines are available at: https://github.com/

big-data-lab-team/sim.

35

https://github.com/big-data-lab-team/sim
https://github.com/big-data-lab-team/sim

Chapter 6

Conclusion

We have designed a system that is capable of supporting the storing and processing of 3D ultra-high
resolution images in an easy and efficient manner. Algorithms to significantly reduce processing
time up to an average factor of 3 on SSD and 6.8 on HDD during the splitting andmerging of images
were designed, implemented, and tested. Different use cases were implemented and analyzed in
order to establish the effectiveness of parallelized processing on 3D ultra-high resolution imagery. It
was found that neuroimaging pipelines scale well to increased parallelization, even when pipelines
rely on containers, and that in-memory computing provides important speed-ups.

Users are the given utmost authority on how images should be processed and are not limited
to system-specific data formats or pipelines. Full implementation of such a system will be of great
benefit to open-science as it will provide end users access to infrastructure capable of handling
images of such a high resolution while abstracting the complexities of the system.

In the future, the following components will need to be studied and implemented to complete
the system for use: An Apache Spark cluster will need to be selected to perform the computations,
the user interface of the site will need to be implemented, a web visualization interface for viewing
the images will need to be integrated to our system, testing of Spark I/O to tmpfs will need to be
performed and compared to in-memory computing, efficient algorithms for more complex splitting
and merging schemes will need to be designed and implemented, extensions to Spark will need to
be made to preserve data locality for images read into Spark using an index of HDFS URIs. Finally,
the system will be deployed and validated with real use cases.

36

Bibliography

[1] “Focus on big data,” Nat Neurosci, vol. 17, no. 11, pp. 1429–1429, 11 2014, editorial.
[Online]. Available: http://dx.doi.org/10.1038/nn.3856

[2] J. D. Van Horn and A. W. Toga, “Human neuroimaging as a “big data” science,”
Brain Imaging and Behavior, vol. 8, no. 2, pp. 323–331, 6 2014. [Online]. Available:
https://doi.org/10.1007/s11682-013-9255-y

[3] K. Amunts, C. Lepage, L. Borgeat, H. Mohlberg, T. Dickscheid, M.-É. Rousseau,
S. Bludau, P.-L. Bazin, L. B. Lewis, A.-M. Oros-Peusquens, N. J. Shah, T. Lippert,
K. Zilles, and A. C. Evans, “Bigbrain: An ultrahigh-resolution 3d human brain
model,” Science, vol. 340, no. 6139, pp. 1472–1475, 2013. [Online]. Available:
http://science.sciencemag.org/content/340/6139/1472

[4] D. D. Bock, W.-C. A. Lee, A. M. Kerlin, M. L. Andermann, G. Hood, A. W. Wetzel,
S. Yurgenson, E. R. Soucy, H. S. Kim, and R. C. Reid, “Network anatomy and in vivo
physiology of visual cortical neurons,” Nature, vol. 471, no. 7337, p. 177, 2011.

[5] M. Langer, A. Pacureanu, H. Suhonen, Q. Grimal, P. Cloetens, and F. Peyrin, “X-ray phase
nanotomography resolves the 3d human bone ultrastructure,” PloS one, vol. 7, no. 8, p.
e35691, 2012.

[6] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica, “Spark: Cluster
computing with working sets.” HotCloud, vol. 10, no. 10-10, p. 95, 2010.

[7] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop distributed file system,” in
2010 IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST), 5 2010, pp.
1–10.

[8] R. Palamuttam, R. M. Mogrovejo, C. Mattmann, B. Wilson, K. Whitehall, R. Verma,
L. McGibbney, and P. Ramirez, “Scispark: Applying in-memory distributed computing to

37

http://dx.doi.org/10.1038/nn.3856
https://doi.org/10.1007/s11682-013-9255-y
http://science.sciencemag.org/content/340/6139/1472

weather event detection and tracking,” in Big Data (Big Data), 2015 IEEE International
Conference on. IEEE, 2015, pp. 2020–2026.

[9] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar, R. Evans, T. Graves,
J. Lowe, H. Shah, S. Seth, B. Saha, C. Curino, O. O’Malley, S. Radia, B. Reed, and
E. Baldeschwieler, “Apache hadoop yarn: Yet another resource negotiator,” in Proceedings
of the 4th Annual Symposium on Cloud Computing, ser. SOCC ’13. New York, NY, USA:
ACM, 2013, pp. 5:1–5:16. [Online]. Available: http://doi.acm.org/10.1145/2523616.2523633

[10] A. S. Foundation, “Apache mesos,” [Online; accessed 4-August-2017]. [Online]. Available:
http://mesos.apache.org/

[11] B. Fischl, “FreeSurfer,” Neuroimage, vol. 62, no. 2, pp. 774–81, 8 2012. [Online]. Available:
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3685476/

[12] M. Jenkinson, C. F. Beckmann, T. E. Behrens, M. W. Woolrich, and S. M. Smith, “Fsl,”
Neuroimage, vol. 62, no. 2, pp. 782–790, 2012.

[13] K. J. Friston, “Statistical parametric mapping.” 1994.

[14] K. Kolyshkin, “Virtualization in linux,”White paper, OpenVZ, vol. 3, p. 39, 2006.

[15] P.-H. Kamp and R. N. Watson, “Jails: Confining the omnipotent root,” in Proceedings of the
2nd International SANE Conference, vol. 43, 2000, p. 116.

[16] C. Ltd, “Linux containers,” [Online; accessed 4-August-2017]. [Online]. Available:
https://linuxcontainers.org/

[17] D. Inc., “Docker - build, ship, and run any app, anywhere,” 2017, [Online; accessed
4-August-2017]. [Online]. Available: https://www.docker.com/

[18] G. M. Kurtzer, V. Sochat, and M. W. Bauer, “Singularity: Scientific containers for mobility
of compute,” PloS one, vol. 12, no. 5, p. e0177459, 2017.

[19] K. J. Gorgolewski, F. Alfaro-Almagro, T. Auer, P. Bellec, M. Capotă, M. M. Chakravarty,
N. W. Churchill, A. L. Cohen, R. C. Craddock, G. A. Devenyi et al., “Bids apps: Improving
ease of use, accessibility, and reproducibility of neuroimaging data analysis methods,” PLoS
computational biology, vol. 13, no. 3, p. e1005209, 2017.

38

http://doi.acm.org/10.1145/2523616.2523633
http://mesos.apache.org/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3685476/
https://linuxcontainers.org/
https://www.docker.com/

[20] T. Glatard, R. F. Da Silva, N. Boujelben, R. Adalat, N. Beck, P. Rioux, M.-E. Rousseau,
E. Deelman, and A. Evans, “Boutiques: an application-sharing system based on linux con-
tainers,” Neuroinformatics, 2015.

[21] R. W. Cox, J. Ashburner, H. Breman, K. Fissell, C. Haselgrove, C. J. Holmes, J. L. Lancaster,
D. E. Rex, S. M. Smith, J. B. Woodward et al., “A (sort of) new image data format standard:
Nifti-1,” Neuroimage, vol. 22, p. e1440, 2004.

[22] R. D. Vincent, P. Neelin, N. Khalili-Mahani, A. L. Janke, V. S. Fonov, S. M.
Robbins, L. Baghdadi, J. Lerch, J. G. Sled, R. Adalat, D. MacDonald, A. P. Zijdenbos,
D. L. Collins, and A. C. Evans, “Minc 2.0: A flexible format for multi-modal
images,” Frontiers in Neuroinformatics, vol. 10, p. 35, 2016. [Online]. Available:
http://journal.frontiersin.org/article/10.3389/fninf.2016.00035

[23] NEMA, “Digital imaging and communications in medicine (dicom),” Brochure, 2017.
[Online]. Available: http://dicom.nema.org/dicom/geninfo/Brochure.pdf

[24] Z. Rajna, A. Keskinarkaus, V. Kiviniemi, and T. SeppÃďnen, “Speeding up the file access of
large compressed nifti neuroimaging data,” in 2015 37th Annual International Conference of
the IEEE Engineering in Medicine and Biology Society (EMBC), 8 2015, pp. 654–657.

[25] M. Brett, M. Hanke, B. Cipollini, M.-A. CÃťtÃľ, C. Markiewicz, S. Gerhard, E. Larson,
G. R. Lee, Y. Halchenko, E. Kastman, cindeem, F. C. Morency, moloney, J. Millman,
A. Rokem, jaeilepp, A. Gramfort, J. J. van den Bosch, K. Subramaniam, N. Nichols, embaker,
bpinsard, chaselgrove, N. N. Oosterhof, S. St-Jean, B. Amirbekian, I. Nimmo-Smith,
S. Ghosh, G. Varoquaux, and E. Garyfallidis, “nibabel: 2.1.0,” 8 2016. [Online]. Available:
https://doi.org/10.5281/zenodo.60808

[26] R. Burns, K. Lillaney, D. R. Berger, L. Grosenick, K. Deisseroth, R. C. Reid, W. G. Roncal,
P. Manavalan, D. D. Bock, N. Kasthuri et al., “The open connectome project data cluster:
scalable analysis and vision for high-throughput neuroscience,” in Proceedings of the 25th
International Conference on Scientific and Statistical Database Management. ACM, 2013,
p. 27.

[27] G.M.Morton, A computer oriented geodetic data base and a new technique in file sequencing.
International Business Machines Company New York, 1966.

39

http://journal.frontiersin.org/article/10.3389/fninf.2016.00035
http://dicom.nema.org/dicom/geninfo/Brochure.pdf
https://doi.org/10.5281/zenodo.60808

[28] T. Sherif, P. Rioux, M.-E. Rousseau, N. Kassis, N. Beck, R. Adalat, S. Das, T. Glatard,
and A. C. Evans, “Cbrain: a web-based, distributed computing platform for collaborative
neuroimaging research,” Frontiers in neuroinformatics, vol. 8, 2014.

[29] R. Thomas, “Fielding. chapter 5: Representational state transfer (rest),” Architectural Styles
and the Design of Network-based Software Architectures (Ph. D.), 2000.

[30] R. N. Boubela, K. Kalcher, W. Huf, C. Našel, and E. Moser, “Big data approaches for the
analysis of large-scale fmri data using apache spark and gpu processing: a demonstration on
resting-state fmri data from the human connectome project,” Frontiers in neuroscience, vol. 9,
2015.

40

	List of Figures
	List of Tables
	Introduction
	Background
	Goals and Contributions

	Tools used and related works
	Introduction
	Big Data Infrastructure
	Hadoop Distributed File System
	Apache Spark
	Container images
	Containerized data-processing pipelines

	Image Formats and I/O libraries for large images
	NIfTI
	MINC 2.0
	NiBabel

	Existing systems for large imaging data
	NeuroData Web Services
	CBRAIN
	Processing of large neuro-imaging data sets with Apache Spark

	A system to process ultra-high resolution 3D brain images
	Introduction
	System Architecture
	File types
	Partitioning and merging of data
	Running pipelines
	Describing pipelines

	Splitting and merging
	Introduction
	Disk model
	Notations
	Algorithms
	Slabs vs blocks
	Buffered slabs
	Buffered blocks: Cluster reads

	Implementation
	Experiments
	Data
	Hardware
	Execution conditions

	Results
	Conclusion

	Pipelining framework
	Introduction
	Describing neuroimaging pipelines in Spark
	Hardware
	Data

	Effects of parallelization on neuroimaging pipelines
	Histogram computation
	Containerized pipeline

	In-memory computing
	Conclusion

	Conclusion
	Bibliography

