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ABSTRACT

On some refinements of the embedding of critical Sobolev spaces into BMO, and

a study of stability for parabolic equations with time delay

Almaz Butaev, PhD

Concordia University, 2017

Van Schaftinen [77] showed that the inequalities of Bourgain and Brezis [11], [12] give rise

to new function spaces that refine the classical embedding W 1,n(Rn) ⊂ BMO(Rn). It was

suggested by Van Schaftingen [77] that similar results should hold in the setting of bounded

domains Ω ⊂ Rn for bmor(Ω) and bmoz(Ω) classes.

The first part of this thesis contains the proofs of these conjectures as well as the devel-

opment of a non-homogeneous theory of Van Schaftingen spaces on Rn. Based on the results

in the non-homogeneous setting, we are able to show that the refined embeddings can also

be established for bmo spaces on Riemannian manifolds with bounded geometry, introduced

by Taylor [68].

The stability of parabolic equations with time delay plays an important role in the study

of non-linear reaction-diffusion equations with time delay. While the stability regions for

such equations without convection on bounded time intervals were described by Travis and

Webb [70], the problem remained unaddressed for the equations with convection. The need

to determine exact regions of stability for such equations appeared in the context of the work

of Mei and Wang on the Nicholson equation with delay [50].

In the second part of this thesis, we study the parabolic equations with and without

convection on R. It has been shown that the presence of convection terms can change the

regions of stability. The implications for the stability problems for non-linear equations are

also discussed.
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Notation List

• BMO, the space of functions of bounded mean oscillation

• bmo, the non-homogeneous space of functions of bounded mean oscillation

• VMO, the space of functions of vanishing mean oscillation

• vmo, the non-homogeneous space of functions of vanishing mean oscillation

• W s,p, Sobolev space

• Bs,p
q , Besov space

• F s,p
q , Triebel-Lizorkin space

• div, divergence operator

• H1, Hardy space

• L1
k, Lebesgue integrable differentiable forms of order k

• Υ1
k, differentiable forms of order k which are Lebesgue integrable with their exterior

derivatives

• ⊗, tensor product

• ∧, wedge product

• ≈, equality up to a constant factor
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Chapter 1

Introduction

1.1 The John-Nirenberg space BMO(Rn)

Let f be a locally integrable function on Rn. Given a cube Q ⊂ Rn (henceforth by a cube

we will understand a cube with sides parallel to the axes), we denote the average of f over

Q by fQ, i.e.

fQ =
1

|Q|

∫
Q

f(x)dx,

where |Q| is the Lebesgue measure of Q.

In 1961 John and Nirenberg introduced the space of functions of bounded mean oscillation

(BMO).

Definition 1.1.1. We say that f ∈ BMO(Rn) if

‖f‖BMO := sup
Q

1

|Q|

∫
Q

|f(x)− fQ|dx <∞.

Note that ‖ · ‖BMO is a norm on the quotient space of functions modulo constants.

Functions of bounded mean oscillations turned out to be the right substitute for L∞

functions in a number of questions in analysis. Let us consider three examples that illustrate

that.

Example 1.1.2. Let T be a convolution operator bounded on L2(Rn) such that its kernel

K satisfies the following cancellation condition: there exists A > 0 such that∫
|x|>2|y|

|K(x− y)−K(x)|dx ≤ A, for all y 6= 0.
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Then for any p ∈ (1,∞) there exists Cp > 0 so that

‖Tf‖Lp ≤ Cp‖f‖Lp , for any f ∈ L2 ∩ Lp.

In other words T can be extended to a bounded linear operator on Lp, for any p ∈ (1,∞)

(for the proof see e.g. [65], Chapter II).

The result does not hold for f ∈ L∞(Rn). However, as was shown by Peetre [55], T can

be extended to a continuous linear operator on BMO(Rn).

Example 1.1.3. Let Ks be the Riesz potential of order s ∈ (0, n), i.e. the distribution with

Fourier transform

K̂s(ξ) = |ξ|−s,

and Is be the convolution operator with kernel Ks. Then for any p, q such that 1 < p < q <∞

and 1/q = 1/p− s/n, there exists Cp,q such that

‖Isf‖Lq ≤ Cp,q‖f‖p, ∀f ∈ Lp.

The inequality fails for the limiting case p = 1, q =∞ and s = n. However, substituting the

L∞ norm by the one of BMO, we have

‖Inf‖BMO ≤ C‖f‖L1 , ∀f ∈ L1

(see [64], Section 6.3 in Chapter IV).

Example 1.1.4. Let W 1,p(Rn) be the Sobolev space of functions f ∈ Lp such that ∇f ∈ Lp.

The embedding theorem of Gagliardo-Nirenberg-Sobolev (see e.g. [65], Chapter V) asserts

that for any p ∈ [1, n) there exists Cp such that

‖f‖Lnp/(n−p) ≤ Cp‖f‖W 1,p , ∀f ∈ W 1,p.

The inequality fails for p = n, so we do not have the embedding W 1,n into L∞. However, it

follows from the Poincare inequality that for some constant C

‖f‖BMO ≤ C‖f‖W 1,n , ∀f ∈ W 1,n

(see e.g. [27], Section 5.8).

2



1.2 Refinements of the embedding W 1,n ⊂ BMO

In the last example we showed that a good substitute for L∞ in the Sobolev embedding

theorem is BMO. The question of how optimal this embedding is and whether it can be

improved, has been an active research topic. It was proven by John and Nirenberg [39] that

if f ∈ BMO(Rn), then for each C > 0,

eC|f | ∈ L1
loc(Rn).

This fact is precise in the sense that there exists f ∈ BMO(Rn) such that for any ε > 0 and

C > 0,

eC|f |
1+ε

/∈ L1
loc(Rn).

However, Pokhozhaev [57], Trudinger [74] and Yudovich [82] independently showed that for

any f ∈ W 1,n(Rn), we have

eC|f |
n/n−1 ∈ L1

loc(Rn), for any C > 0,

which says that the embedding W 1,n ⊂ BMO is not optimal on the scale of Orlicz spaces.

Later Brezis and Wainger [15] generalized the Pokhozhaev-Trudinger-Yudovich result to

a larger class of functions. Namely, they showed that if f and ∇f both belong to the Lorentz

space Ln,q, 1 < q <∞ (see e.g. [7] for the definition of Lorentz spaces), then for any C > 0

and q′ = q
q−1

eC|f |
q′ ∈ L1

loc(Rn).

More detailed exposition of the progress in this direction can be found in [56].

1.3 New inequalities for critical Sobolev spaces

The starting point of the research described in this work was the following estimate of

Bourgain, Brezis and Mironescu [13], Proposition 4:

Theorem 1.3.1. Let Γ be a closed rectifiable curve in Rn with unit tangent vector τ and let

u ∈ C∞0 (Rn). Then ∣∣∣∣∫
Γ

u(x)τ(x)dx

∣∣∣∣ ≤ Cn|Γ|‖∇u‖Ln ,

3



where Cn depends on the dimension only.

We note that
∫

Γ
u(x)τ(x)dx is an element of Rn in the above theorem as well as in the next

one. The proof of Theorem 1.3.1 was given using Littlewood-Paley theory; an elementary

proof based only on the Morrey-Sobolev embedding theorem was found by Van Schaftingen

[76].

A more general form of this result was given in [11]

Theorem 1.3.2. For every u ∈ C∞0 (Rn) and F ∈ L1(Rn;Rn) such that divF = 0,∣∣∣∣∫
Rn
u(x)F (x)dx

∣∣∣∣ ≤ Cn‖∇u‖Ln‖F‖L1 .

Bourgain and Brezis showed that Theorem 1.3.2 follows from Theorem 1.3.1 and Smirnov’s

theorem on the integral representation of divergence-free vector fields [63]. A direct and ele-

mentary proof of Theorem 1.3.2 was soon given by Van Schaftingen [75]. It has been shown

in [78] that ‖∇u‖Ln can be relaxed to ‖u‖Ḟ sp,q , where Ḟ s
p,q is the homogeneous Triebel-Lizorkin

space with p > 1, s = n/p and q > 0.

1.4 Van Schaftingen’s classes

1.4.1 Divergence-free case

It was noted in [8] and [77] that ‖∇u‖Ln in Theorem 1.3.2 cannot be replaced by ‖u‖BMO.

In order to understand the relationship between Theorem 1.3.2 and the classical embed-

ding Ẇ 1,n ⊂ BMO (here Ẇ 1,n is the homogeneous Sobolev space), Van Schaftingen in [77]

considered the class of distributions

Dn−1(Rn) = {u ∈ D′(Rn) : ‖u‖Dn−1 <∞},

where

‖u‖Dn−1 := sup{|u(φi)| : Φ = (φ1, . . . , φn) ∈ D(Rn;Rn), div Φ = 0, ‖Φ‖L1 ≤ 1}.

It was shown that for 1 < p <∞, Ẇ n/p,p ⊂ Dn−1 ⊂ BMO, where both inclusions are proper,

thus establishing a new refinement of the classic embedding W 1,n ⊂ BMO.
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The definition of Dn−1 was motivated by Theorem 1.3.2 and it is natural to ask what is

the relation between Dn−1 and Theorem 1.3.1. Using Smirnov’s theorem, Van Schaftingen

showed the following result

Theorem 1.4.1 ([77]). Let u ∈ Dn−1 be a continuous function. Then

‖u‖Dn−1 = sup
Γ

1

|Γ|

∣∣∣∣∫
Γ

u(x)τ(x)dx

∣∣∣∣ ,
where the supremum is taken over all closed C1 smooth curves Γ with unit tangent vectors

τ .

1.4.2 General case

It is natural to consider a different scenario, replacing the divergence operator ∇ · Φ in the

above by the curl, ∇ × Φ, or more generally exterior differentiation d. Van Schaftingen

defined a scale of spaces Dk using the k-differential forms

Φ(x) =
∑

1≤i1<···<ik≤n

φi1,...ik(x)dxi1 ∧ · · · ∧ dxik

and introduced the following

Definition 1.4.2. For 1 ≤ k ≤ n, Dk is defined as

Dk(Rn) = {u ∈ D′(Rn) : ‖u‖Dk <∞},

where

‖u‖Dk := sup{|u(φi1,...,ik)| : Φ ∈ D(Rn; Λk(Rn)), dΦ = 0, ‖Φ‖L1 ≤ 1}.

It was shown in [77] that the Dk classes lie strictly between the critical Sobolev spaces

and BMO. Namely, the following proper inclusions are continuous

Ẇ 1,n ⊂ Dn−1 ⊂ · · · ⊂ D1 ⊂ BMO.

The analogue of Theorem 1.4.1 for D1 functions is the following

Theorem 1.4.3 ([77]). Let u ∈ D1 be continuous. Then

‖u‖D1 = sup
Σ

1

|Σ|

∣∣∣∣∫
Σ

u(y)ν(y)dσ(y)

∣∣∣∣ ,
where the supremum is taken over all closed smooth connected n− 1 dimensional surfaces Σ

with unit normal vectors ν.

5



1.5 Applications to linear elliptic PDEs

Let us consider the system of equations in Rn, n ≥ 2

∆U = F, (1.5.1)

where F ∈ Lp(Rn;Rn). For p ∈ (1,∞), the regularity of the solution U comes from the

Calderon-Zygmund theory and the Sobolev embedding theorem. For example, if 1 < p <

n/2, the Calderon-Zygmund theory tells us that

‖D2U‖p ≤ C‖F‖p

and by the Sobolev embedding theorem, one has

‖DU‖p′ ≤ Cp‖F‖p,

and

‖U‖p′′ ≤ C ′p‖F‖p,

where 1/p′ = 1/p− 1/n and 1/p′′ = 1/p− 2/n.

None of these estimates holds for p = 1. However, using Theorem 1.3.2, Bourgain and

Brezis showed that it is possible to obtain the regularity of U with F ∈ L1 under the

restriction: divF = 0. More precisely, they proved

Theorem 1.5.1 ([11]). If U is a solution of (1.5.1), where F ∈ L1 and divF = 0, then for

some constant C > 0,

max(‖DU‖Ln/(n−1)(Rn), ‖U‖Ln/(n−2)(Rn)) ≤ C‖F‖1, for n ≥ 3

and

max(‖DU‖Ln(Rn), ‖U‖L∞(Rn)) ≤ C‖F‖L1(Rn), for n = 2.

1.6 Results and structure of Part 1

The structure of the rest of this part is as follows. In Chapter 2 we recall the basic notions

used in this work: distributions, differential forms and currents. We also review the basic

theory of Hardy spaces on Rn and bounded Lipschitz domains in Rn.

6



In Chapter 3 we develop the non-homogeneous theory on Rn. In Section 3.1 we define

the class of special differential forms similar to the Sobolev space W 1,1. In Section 3.2 we

use these forms in order to define a new type of function spaces dk(Rn), which are the non-

homogeneous analogs of Van Schaftingen’s classes Dk(Rn). In the same section we show that

dk(Rn) form a monotone family of spaces (Lemma 3.2.4) and prove the following result

Theorem (3.2.6). d1(Rn) is continuously embedded into the space bmo(Rn) and ∃C > 0 so

that for any u ∈ dk(Rn), 1 ≤ k ≤ n

‖u‖bmo ≤ C‖u‖dk .

In Section 3.3.1 we define an even finer scale of function spaces vk and show the chain of

continuous embeddings

W 1,n(Rn) ⊂ vn−1(Rn) ⊂ · · · ⊂ v1(Rn) ⊂ vmo(Rn).

In Section 3.3.2, we prove that the space vn−1(Rn) can be characterized by the following

theorem.

Theorem (3.3.7). Let u ∈ C(Rn). Then u ∈ vn−1(Rn) if and only if

sup
∂γ=∅

1

|γ|

∣∣∣∣∫
γ

u(t)τ(t)dt

∣∣∣∣+ sup
|γ|≥1

1

|γ|

∣∣∣∣∫
γ

u(t)τ(t)dt

∣∣∣∣ <∞,
where the suprema are taken over smooth curves γ with finite lengths |γ|, boundaries ∂γ and

unit tangent vectors τ .

In Section 3.4 we prove that dk classes are invariant under the tensor multiplication by

smooth function (Theorem 3.4.1). Using this result we give explicit examples of dk functions

in Section 3.5. In Section 3.6 we give an application of our dk spaces for one elliptic system

by proving the following fact

Theorem (3.6.1). Let F ∈ L1(R2) and divF ∈ L1(R2). Then the system (I − ∆)U = F

admits a unique solution U such that

‖U‖∞ + ‖∇U‖2 ≤ C(‖F‖1 + ‖divF‖1).

7



In Sections 3.7-3.8 we define dk spaces on bounded Lipschitz domains Ω: dk(Ω) and

dkz(Ω). The main result of Section 3.8 is the following theorem, which gives an affirmative

answer to the question posed by Van Schaftingen

Theorem (3.8.11). Any u ∈ d1(Ω) is a bmor(Ω) function as there exists C > 0 such that

‖u‖bmor(Ω) ≤ C‖u‖d1(Ω) ∀u ∈ d1(Ω).

In Chapter 4, we recall some basics of Riemannian manifolds and define the notion of

bounded geometry. Further, building on our own results of Chapter 3 we prove the refined

embeddings between critical Sobolev space and bmo on Riemannian manifolds with bounded

geometry.

Theorem (4.4.2). Let M be the Riemannian manifold with bounded geometry. Then the

following continuous embeddings are true

W 1,n(M) ⊂ dn−1(M) ⊂ · · · ⊂ d1(M) ⊂ bmo(M).

8



Chapter 2

Preliminaries

2.1 Distributions

Let Ω be an open subset of Rn. By multi-index α we denote an n-tuple of non-negative

integers, α = (α1, α2, . . . , αn). By |α| we will understand the sum of the components,

α1 + · · · + αn. By the partial derivative ∂αx we will understand the mixed derivative with

respect to the variable x ∈ Rn,

∂αx =
∂|α|

∂α1
x1 . . . ∂αnxn

.

We use the Schwartz notation

D(Ω) = {f ∈ C∞(Ω)| supp f ⊂ Ω is compact}

and say that {fn} ⊂ D(Ω) converges to f ∈ D(Ω) if there exists a compact K ⊂ Ω such that

supp fn ⊂ K for all n and for any fixed multi-index α

lim
n→∞

sup
x∈Ω
|∂αfn(x)− ∂αf(x)| = 0.

The space of continuous linear functionals on D(Ω) is denoted by D′(Ω) and is called the

space of distributions.

For the class of test functions

E(Ω) = {f ∈ C∞(Ω)},
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we say that {fn} ⊂ E(Ω) converges to f ∈ E(Ω) if for any fixed multi-index α and any fixed

compact K ⊂ Ω

lim
n→∞

sup
x∈K
|∂αfn(x)− ∂αf(x)| = 0.

The space of continuous linear functionals on E(Ω), denoted by E ′(Ω) coincides with the

space of compactly supported distributions (see e.g. Theorem 2.3.1 in [37]).

Finally, we will say that f : Rn → R is a Schwartz function and write f ∈ S(Rn) if

f ∈ C∞(Rn) and sup
x∈Rn

(1 + |x|)N |∂αf(x)| < ∞, for any N > 0 and any multi-index α. The

topology on S(Rn) is defined as follows: we say that fn → f in S(Rn), if for any fixed α and

N > 0

lim
n→∞

sup
x∈Rn

(1 + |x|)N |∂αfn(x)− ∂αf(x)| = 0.

The space of continuous linear functionals on S(Rn) is denoted by S ′(Rn) and is called the

space of tempered distributions.

2.2 Differential forms

Let k ≥ 1. We denote the class of k-asymmetric tensors on Rn by Λk(Rn). In other words,

each element T ∈ Λk(Rn) is a real-valued k-linear form on Rn such that for any vectors

v1, . . . , vk (vi ∈ Rn) and any permutation σ ∈ Sk

T (vσ(1), . . . , vσ(n)) = sgn(σ)T (v1, . . . , vn).

Note that Λ1 coincides with the space of linear functionals on Rn.

For T ∈ Λk(Rn) and P ∈ Λl(Rn), the wedge product of P and Q is an asymmetric tensor

defined by

T ∧ P (v1, . . . , vk+l) =
∑
σ∈Sk,l

sgn(σ)T (vσ(1), . . . , vσ(k))P (vσ(k+1), . . . , vσ(k+l))

where S(k, l) is the set of permutations σ such that σ(1) < · · · < σ(k) and σ(k + 1) < · · · <

σ(k + l). The basic algebraic properties of the wedge products and alternating tensors can

be found e.g. in [42]. In particular, it is well known that any T ∈ Λk(Rn) can be written as

T =
∑

1≤i1<i2<···<ik≤n

Ti1,...,ikdx
i1 ∧ · · · ∧ dxik ,

10



where Ti1,...,ik are scalars and {dxj}nj=1 is the standard dual basis in Rn, i.e. for any a =

(a1, . . . , an) ∈ Rn, dxj(a) = aj.

In order to alleviate the notation, we will adopt the following convention: let I =

(i1, . . . , ik) be a set of k indices 1 ≤ i1 < i2 · · · < ik ≤ n; then we put by definition

|I| = k and dxI = dxi1 ∧ · · · ∧ dxik .

Definition 2.2.1. Let O ⊂ Rn be an open set and 1 ≤ k ≤ n. A differential k-form ω is a

map assigning to each y ∈ O a k-asymmetric tensor

y 7→
∑
|I|=k

ωI(y)dxI ,

where each ωI is a smooth function on O. The space of differential k-forms will be denoted

by Ek(O).

Moreover, we put E0(O) = C∞(O).

Definition 2.2.2. Let O ⊂ Rn be an open set. The exterior derivative d : Ek(O) 7→ Ek+1(O)

is defined for k = 0 by

dω(y) =
n∑
i=1

∂iω(y)dxi

and for 1 ≤ k < n by

dω(y) = d
∑
|I|=k

ωI(y)dxI =
∑
I

n∑
j=1

∂jωI(y)dxj ∧ dxI .

We put dω = 0 for any ω ∈ En(O).

Definition 2.2.3. The Hodge operator ? : Ek(O) 7→ En−k(O) is defined by

?ω = ?
∑
|I|=k

ωI(y)dxI =
∑
|I|=k

ωI(y)dxI
c

,

where Ic = (j1, . . . , jn−k), 1 ≤ j1 < j2 < . . . jn−k ≤ n and js 6= il for any s ∈ [1, n − k] and

l ∈ [1, k].

Definition 2.2.4. The co-differential operator δ : Ek(O) 7→ Ek−1(O) is defined as the fol-

lowing composition of d and ?:

δω = (−1)nk+n+1 ? d(?ω)
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2.3 Currents

Let Ω ⊂ Rn be open. We consider the space of k-differential forms with D(Ω) components

and denote it by Dk(Ω). In other words

Dk(Ω) = {Ψ(y) =
∑
|I|=k

ψI(y)dxI : ψI ∈ D(Ω)}.

The convergence in this space is understood in the component-wise sense: {Ψj =
∑
|I|=k ψ

j
Idx

I}∞j=1

converges to Ψ =
∑
|I|=k ψIdx

I in Dk(Ω), if each ψjI → ψI , as j →∞ in D(Ω).

Definition 2.3.1. The space of continuous linear functionals on Dk(Ω) is called the space

of currents of degree k and denoted by Dk(Ω).

It is not difficult to show (see e.g. Proposition 3.2.1 in [24]) that any current Φ ∈ Dk(Ω)

can be written as

Φ =
∑
|I|=k

φIdx
I ,

where φI are 0-currents, i.e. distributions in D′(Ω). The action of Φ ∈ Dk on Ψ ∈ Dk

becomes

Φ(Ψ) =
∑
I

φI(ψI).

For any Φ ∈ Dk, we define its exterior derivative dΦ as an element in Dk+1 defined by

dΦ(Ψ) = −Φ(δΨ),

where δ is the exterior co-derivative.

We also denote the boundary of a current Φ ∈ Dk(Ω) by ∂Φ ∈ Dk−1(Ω), defined by

∂Φ(Ψ) = Φ(dΨ), for any Ψ ∈ Dk−1(Rn).

Similarly, we can introduce a component-wise topology on Ek(Ω).

Definition 2.3.2. The space of continuous linear functionals on Ek(Ω) is called the space

of compactly supported currents of degree k and denoted by Ek(Ω).
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2.4 Hardy spaces on Rn

2.4.1 Definitions

In this section, we recall the definition and basic properties of the local Hardy space h1(Rn)

introduced by Goldberg [30].

Let us fix φ ∈ S(Rn) such that
∫
φ 6= 0. For f ∈ L1(Rn), we define the local maximal

function mφf(x) by

mφf(x) = sup
0<t<1

|φt ∗ f(x)|.

Definition 2.4.1. We say that f belongs to the local Hardy space h1(Rn) if mφf ∈ L1(Rn)

and we put

‖f‖h1 := ‖mφf‖L1 .

It is useful to compare h1 with the classic real Hardy space H1(Rn), which can be defined

using the global maximal function Mφ,

Mφf(x) := sup
t>0
|φt ∗ f(x)|, f ∈ L1(Rn).

Definition 2.4.2. We say that f belongs to the Hardy space H1(Rn) if Mφf ∈ L1(Rn), and

we put

‖f‖H1 := ‖Mφf‖L1 .

It follows from the definitions of the maximal functions that mφf(x) ≤ Mφf(x) for any

f ∈ L1 and x ∈ Rn. Therefore H1 ⊂ h1. One of the reasons why it is often more convenient

to deal with a larger space h1 instead of H1 is that S(Rn) ⊂ h1(Rn), while any f ∈ H1(Rn)

has to satisfy
∫
Rn f = 0. It is important to note that f ∈ h1(Rn) and

∫
Rn
f = 0 do not imply

that f ∈ H1(Rn) (see Theorem 3 in [30]). However, the following is true

Lemma 2.4.3. If f ∈ h1(Rn),
∫
Rn
f(x)dx = 0 and supp f ⊂ B, where B is a bounded subset

of Rn, then there exists CB > 0 such that

‖f‖H1 ≤ CB‖f‖h1 .
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Proof. We will follow the argument of Goldberg (see the proof of Theorem 3 in [30]). Without

loss of generality we can assume that B is a ball containing the origin, say B = B(0, R) for

some R > 0. We need to show that

‖Mφf(x)‖L1 ≤ C‖f‖h1 .

Since f ∈ h1(Rn), and ‖mφf‖L1 = ‖f‖h1 by definition, it remains to estimate supt≥1 |φt ∗ f |.

On the one hand, for any x ∈ Rn,

sup
t≥1
|φt ∗ f(x)| ≤ ‖φt‖L∞‖f‖L1 ≤ ‖φ‖L∞‖f‖h1 .

Therefore, if we put B̃ = B(0, 2R)∫
B̃

sup
t≥1
|φt ∗ f(x)|dx ≤ CφR

n‖f‖h1 . (2.4.1)

On the other hand, due to the cancellation∫
f(x)dx = 0,

one has

|φt ∗ f(x)| =
∣∣∣∣∫
B

[φt(x− y)− φt(x)]f(y)dy

∣∣∣∣ ≤
≤ CR sup

y∈B
|∇φt(x− y)| · ‖f‖L1 ≤ CRt−n−1 sup

y∈B

∣∣∣∣∇φ(x− yt
)∣∣∣∣ · ‖f‖h1 .

Due to the smoothness and rapid decay of φ, there exists K > 0 such that |∇φ(y)| ≤

K|y|−n−1. Hence, for x ∈ Rn \ B̃

|φt ∗ f(x)| ≤ CR‖f‖h1 sup
|y|≤R

|x− y|−n−1 ≤ CR‖f‖h1(|x| − R)−n−1

Therefore ∫
Rn\B̃

sup
t≥1
|φt ∗ f(x)|dx ≤ C‖f‖h1R

∫
|x|≥2R

dx

(|x| − R)n+1
≤ C ′‖f‖h1 . (2.4.2)

Estimates (2.4.1-2.4.2) yield the lemma.
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2.4.2 Density of D(Rn) in h1(Rn)

It was shown by Goldberg ([30], p. 35) that S(Rn) is dense in h1(Rn). Later, we will need

to use a slightly stronger fact

Lemma 2.4.4. The space D(Rn) is dense in h1(Rn).

Proof. We employ the fact that h1(Rn) is a space of the Triebel-Lizorkin category: h1(Rn) =

F 0,1
2 (Rn) (see e.g. [71] for the definition of F s,p

q spaces). By the embedding theorem ([71], p.

47), there is a continuous embedding

W 1,1(Rn) ⊂ F 0,1
2 (Rn) = h1(Rn).

Since S is dense in h1 and any Schwartz function can be approximated by D functions in

the W 1,1 norm, the result follows.

2.4.3 Dual space of h1(Rn)

Definition 2.4.5 ([30]). We say that f ∈ L1
loc(Rn) belongs to bmo(Rn) if

‖f‖bmo := sup
l(Q)≤1

1

|Q|

∫
Q

|f(x)− fQ|dx+ sup
l(Q)≥1

1

|Q|

∫
Q

|f(x)|dx <∞,

where fQ = 1
|Q|

∫
Q
f(y)dy and Q are cubes with sides parallel to the axes, of side-length l(Q).

Notice that 1
|Q|

∫
Q
|f(x)− fQ|dx ≤ 2

|Q|

∫
Q
|f(x)|dx and therefore bmo(Rn) is a subspace of

John-Nirenberg space BMO(Rn). Moreover, if ‖f‖bmo = 0 then f = 0 a.e. on Rn, unlike in

BMO(Rn), where constant functions are identified with f ≡ 0.

Later we will need the following theorem of Goldberg:

Theorem 2.4.6 ([30]). The space bmo(Rn) is isomorphic to the space of continuous linear

functionals on h1(Rn).

2.4.4 Pseudo-differential operators on h1

In order to formulate another useful result of Goldberg, we recall the definition of a pseudo-

differential operator.
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Definition 2.4.7. We say that σ(x, ξ) ∈ C∞(Rn×Rn) is a symbol of order m ∈ Z and write

σ ∈ Sm if for any pair of multi-indices α and β there exists Cα,β such that

|∂βx∂αξ σ(x, ξ)| ≤ Cα,β(1 + |ξ|)m−|α| for all x, ξ.

Definition 2.4.8. We say that a linear map P (x,D) : S(Rn) 7→ C∞(Rn) is a pseudo-

differential operator of order m and write P (x,D) ∈ OPSm, if P acts on u ∈ S(Rn) as

follows:

P (x,D)u(x) =

∫
Rn

∫
Rn
e2πi(x−y)ξσ(x, ξ)u(y)dydξ =

=

∫
Rn
e2πixξσ(x, ξ)û(ξ)dξ,

for some σ ∈ Sm.

It follows from the definition that differential operators are pseudo-differential operators

with σ(x, ξ) = p(ξ) for some polynomial p. Here is an example of a pseudo-differential

operator of a negative order:

Example 2.4.9. Let m > 0 and Gm be the Bessel potential of order m, defined by

Gmf(x) =

∫
(1 + |ξ|2)−m/2f̂(ξ)e2πixξdξ.

Then by the Leibniz rule

∂αξ (1 + |ξ|2)−m/2 =
∑

0≤|β|≤|α|

Cα,β,mξ
β(1 + |ξ|2)−(m+|α|+|β|)/2,

which implies that Gm ∈ OPS−m(Rn).

It is known (see e.g. 3.3 in [69]) that for P ∈ OPSm and Q ∈ OPSk, the product

PQ ∈ OPSm+k. This gives another example:

Example 2.4.10. Let Gm be the Bessel potential and P (D) =
∑
|α|=k cα∂

α, then P (D)Gm ∈

OPSk−m.

Theorem 2.4.11 ([30]). If T ∈ OPS0, then there exists a constant C > 0 such that

‖Tf‖h1 ≤ C‖f‖h1 for any f ∈ S(Rn).

Therefore, any T ∈ OPS0 can be extended to a continuous linear operator on h1(Rn).
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2.4.5 Atomic decomposition

Definition 2.4.12. An H1(Rn) atom is a Lebesgue measurable function a, supported on a

cube Q, such that

‖a‖L2(Q) ≤ |Q|−1/2

and ∫
Q

a(x)dx = 0.

Definition 2.4.13. [19] An h1(Rn) atom is a Lebesgue measurable function a, supported

on a cube Q such that

‖a‖L2(Q) ≤ |Q|−1/2

and ∣∣∣∣∫
Q

a(x)dx

∣∣∣∣ ≤ |Q|1/n
Remark 2.4.14. The original definition of h1(Rn) atoms introduced by Goldberg required a

stronger moment condition
∫
Q
a(x)dx = 0 for |Q| ≤ 1. However, it can be shown (see e.g

[21]) that any h1 atom in the above sense is an h1(Rn) function.

Theorem 2.4.15 ([28]). Let f ∈ L1(Rn). Then f ∈ H1(Rn) if and only if there exist

sequences of H1(Rn) atoms {ak} and real numbers {λk} ⊂ R such that
∑
|λk| <∞ and∑

k

λkak → f in S ′(Rn).

Furthermore,

‖f‖H1 ≈ inf{
∑
k

|λk| : f =
∑
k

λkak},

where the infimum is taken over all atomic decompositions of f .

Theorem 2.4.16 ([21], [30]). Let f ∈ L1(Rn). Then f ∈ h1(Rn) if and only if there exist a

sequence of h1(Rn) atoms {ak} and real numbers {λk} ⊂ R such that
∑
|λk| <∞ and∑

k

λkak → f, in S ′(Rn).

Furthermore,

‖f‖h1 ≈ inf{
∑
k

|λk| : f =
∑
k

λkak},

where the infimum is taken over all atomic decompositions of f .
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2.5 Hardy spaces on domains

2.5.1 Definitions

Definition 2.5.1. [20], [52]

Let Ω ⊂ Rn be a bounded Lipschitz domain. The space h1
r(Ω) consists of elements of

L1(Ω) which are the restrictions to Ω of elements of h1(Rn), i.e.

h1
r(Ω) = {f ∈ L1(Ω) : ∃F ∈ h1(Rn) : F = f on Ω}.

We can consider this as a quotient space equipped with the quotient norm

‖f‖h1
r(Ω) := inf{‖F‖h1(Rn) : F = f on Ω}.

Definition 2.5.2. [19] The space h1
z(Ω) is defined to be the subspace of h1(Rn) consisting

of those elements which are supported on Ω.

Definition 2.5.3. [20] The space H1
z (Ω) is defined to be the subspace of H1(Rn) consisting

of those elements which are supported on Ω.

It follows directly from the introduced definitions that as sets of functions in L1(Ω)

H1
z (Ω) ⊂ h1

z(Ω) ⊂ h1
r(Ω).

Both of these embeddings are strict: any f ∈ D(Ω), such that
∫
f 6= 0 belongs to h1

z(Ω) \

H1
z (Ω); the existence of f ∈ h1

r(Ω) \ h1
z(Ω) is shown in [19], Proposition 6.4.

2.5.2 Atomic decomposition

Local versions of atoms are defined as follows

Definition 2.5.4. An H1(Rn) atom supported in an open set Ω ⊂ Rn is called an H1
z (Ω)

atom. An h1(Rn) atom supported in an open set Ω ⊂ Rn is called an h1
z(Ω) atom.

Theorem 2.5.5 (Theorem 3.3 in [20]). Let Ω be a bounded Lipschitz domain and f ∈ L1(Ω).

Then f ∈ H1
z (Ω) if and only if there exist a sequence of H1

z (Ω) atoms {ak} and real numbers

{λk} ⊂ R such that
∑
|λk| <∞ and∑

k

λkak → f in D′(Ω).
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Furthermore,

‖f‖H1 ≈ inf{
∑
k

|λk| : f =
∑
k

λkak},

where the infimum is taken over all atomic decompositions of f .

A similar decomposition holds for h1
z(Ω) functions

Theorem 2.5.6 (Theorem 3.2 in [20]). Let Ω be a bounded Lipschitz domain and f ∈ L1(Ω).

Then f ∈ h1
z(Ω) if and only if there exist a sequence of h1

z(Ω) atoms {ak} and real numbers

{λk} ⊂ R such that
∑
|λk| <∞ and∑

k

λkak → f, in D′(Ω).

Furthermore,

‖f‖h1 ≈ inf{
∑
k

|λk| : f =
∑
k

λkak},

where the infimum is taken over all atomic decompositions of f .

2.5.3 Density of D(Ω)

The following lemma is an analogue of Lemma 2.4.4. It is a special case of the result

established by Triebel for smooth ∂Ω (see e.g. [73], p. 46) and in a more general setting,

including Lipschitz domains, obtained in [17].

Lemma 2.5.7. [17] Let Ω be a bounded Lipschitz domain. Then the space D(Ω) is dense in

h1
r(Ω).

Since, h1
z(Ω) ⊂ h1

r(Ω) as a subset, the lemma implies that any f ∈ h1
z(Ω) can be approxi-

mated by a D(Ω) function in the h1
r(Ω) norm. Later we will use the fact that D(Ω) is dense

in f ∈ h1
z(Ω) in the stronger h1-norm.

Lemma 2.5.8. Let Ω be a domain of Rn. Then the set of D(Ω) functions is dense in h1
z(Ω).

Proof. Given ε > 0 and f ∈ h1
z(Ω), we need to find f̃ ∈ D(Ω) such that ‖f − f̃‖h1 ≤ ε.

By Theorem 2.5.6,

f =
∞∑
j=1

λjaj,
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where {λj} ∈ l1, aj are supported in closed cubes Qj ⊂ Ω,

‖aj‖atom := |Qj|1/2‖aj‖L2(Qj) ≤ 1,∣∣∣∣∣
∫
Qj

aj(x)dx

∣∣∣∣∣ ≤ |Qj|1/n

and for some C > 0 depending only on the dimension n

‖aj‖h1(Rn) ≤ C. (2.5.1)

Therefore, choosing N ≥ 1 large enough and putting g ∈ h1
z(Ω) as

g =
N∑
j=1

λjaj,

we can ensure that

‖f − g‖h1 ≤ C
∞∑

j=N+1

|λj| < ε/2. (2.5.2)

In order to approximate g, we will use the method of convolutions. Let δ ∈ (0, 1) and φ be

a smooth non-negative function supported in the unit ball centred at the origin such that

‖φ‖L1 = 1. As usual, we put φδ(x) = δ−nφ(x/δ) and define

gδ = g ∗ φδ =
N∑
j=1

λjaj ∗ φδ =:
N∑
j=1

λja
δ
j .

We can always assume that δ is small so that supp aδj ⊂ Qδ
j ⊂ Ω, where Qδ

j is a cube with

the same center as Qj and |Qδ
j | ≤ 2|Qj|, for 1 ≤ j ≤ N . Then gδ ∈ D(Ω),∣∣∣∣∫ aδj(x)dx

∣∣∣∣ ≤ ∫ ∣∣∣∣∫ aj(x− y)dx

∣∣∣∣ |φδ(y)|dy ≤ |Qj|1/n ≤ |Qδ
j |1/n,

and

‖aj − aδj‖L2(Qδj )
≤ ‖aj‖L2 + ‖aδj‖L2 ≤ 2‖aj‖L2 ≤

≤ 2|Qj|−1/2 ≤ 2
√

2|Qδ
j |−1/2.

In other words aj − aδj are h1
z(Ω) atoms supported in Qδ

j . Hence, with C > 0 as in (2.5.1)

‖g − gδ‖h1 ≤
N∑
j=1

|λ|‖aj − aδj‖h1 ≤ C
N∑
j=1

|λj|‖aj − aδj‖atom ≤
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≤ C
√

2 max
1≤j≤N

|Qj|1/2
N∑
j=1

|λj|‖aj − aδj‖L2 ≤ C ′‖f‖h1 max
1≤j≤N

‖aj − aj ∗ φδ‖L2 .

Since, ‖h− h ∗ φδ‖L2 → 0 for any h ∈ L2, we can choose δ > 0 small enough to have

‖aj − aj ∗ φδ‖L2 ≤ ε/(2C ′‖f‖h1), j = 1, . . . , N

and therefore have

‖g − gδ‖h1 ≤ ε/2. (2.5.3)

Putting f̃ = gδ ∈ D(Ω) and using (2.5.2) and (2.5.3), we obtain the desired

‖f − f̃‖h1 ≤ ‖f − g‖h1 + ‖g − f̃‖h1 < ε.

2.5.4 Dual spaces

Definition 2.5.9. The space bmoz(Ω) is defined to be a subspace of bmo(Rn) consisting of

those elements which are supported on Ω̄, i.e.

bmoz(Ω) = {g ∈ bmo(Rn) : g = 0 on Rn \ Ω̄}

with

‖g‖bmoz(Ω) = ‖g‖bmo(Rn).

Definition 2.5.10. [19]

Let Ω be a bounded Lipschitz domain. A function g ∈ L1
loc(Ω) is said to belong to

bmor(Ω) if

‖g‖bmor(Ω) = sup
|Q|≤1

1

|Q|

∫
Q

|g(x)− gQ|dx+ sup
|Q|>1

1

|Q|

∫
Q

|g(x)|dx <∞,

where suprema are taken over all cubes Q ⊂ Ω. The space of such functions equipped with

norm ‖ · ‖bmor(Ω) is called bmor(Ω).

Theorem 2.5.11 ([18], [52]). The space bmoz(Ω) is isomorphic to the dual of h1
r(Ω).

Theorem 2.5.12 ([18], [40]). The space bmor(Ω) is isomorphic to the dual of h1
z(Ω).
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Chapter 3

dk spaces and continuous embeddings

into bmo spaces

3.1 Differential k-forms of Sobolev type on Rn

In this section we are interested in the currents associated with L1(Rn) functions.

Definition 3.1.1. For 1 ≤ k ≤ n, we define L1
k(Rn) as subspace of Dk(Rn) consisting of

elements Φ =
∑
|I|=k

φIdx
I such that all components φI are L1(Rn) functions. This space is

equipped with the norm

‖Φ‖L1
k

=
∑
|I|=k

‖φI‖L1(Rn).

An analogue of the W 1,1 Sobolev space for differential forms is defined as follows

Definition 3.1.2. Let 1 ≤ k ≤ n − 1. We say that Φ ∈ Dk(Rn) belongs to Υ1
k(Rn) if

Φ ∈ L1
k(Rn) and dΦ ∈ L1

k+1(Rn). We equip Υ1
k(Rn) with the norm

‖Φ‖Υ1
k

= ‖Φ‖L1
k

+ ‖dΦ‖L1
k+1
.

Proposition 3.1.3. The class of compactly supported Υ1
k differential forms is dense in Υ1

k.

Proof. Given ε > 0, we need to show that there exists a compactly supported Φ̃ ∈ Υ1
k(Rn)

such that

‖Φ− Φ̃‖Υ1
k
≤ ε. (3.1.1)
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Let us first of all notice that L1
k differential forms can be ∧-multiplied by smooth dif-

ferential forms: if k, l ≥ 0 such that k + l ≤ n, Φ =
∑
|I|=k φIdx

I ∈ L1
k(Rn) and Ψ =∑

|J |=l ψJdx
J ∈ Dl(Rn), then for some constant Ck,l

‖Φ ∧Ψ‖L1
k+l
≤ Ck,l‖Φ‖L1

k
max
J
‖ψJ‖L∞(Rn). (3.1.2)

Let us choose a smooth function η supported in |x| < 2 such that η(x) = 1, for |x| ≤ 1 and

0 ≤ η(x) ≤ 1 for any x. Put, for r > 0,

Φ̃r(y) =
∑
|I|=k

φI(y)η(y/r)dxI .

Then ‖Φ− Φ̃r‖Υ1
k

= ‖Φ− Φ̃r‖L1
k

+ ‖d(Φ− Φ̃r)‖L1
k+1

.

Since all φI are L1(Rn) functions, there exists R1 > 0 such that∑
|I|=k

‖φI(y)‖L1(|y|>R) < ε/3.

Choosing r > R1. we have

‖Φ− Φ̃r‖L1
k

=
∑
|I|=k

‖φI(y)(1− η(y/r))‖L1(Rn) < ε/3. (3.1.3)

Let us denote the components of dΦ by ωJ ; then by the product rule one has

dΦ̃r =
∑
|J |=k+1

ωJ(y)η(y/r)dxJ +
(−1)k

r

∑
|I|=k

φI(y)dxI ∧
n∑
j=1

∂jη(y/r)dxj

and

‖dΦ− dΦ̃r‖L1
k+1
≤
∑
|J |=k

‖ωJ(y)(1− η(y/r))‖L1(Rn)+

+r−1‖Φ ∧ (
n∑
j=1

∂jη(y/r)dxj)‖L1
k+1
.

Again, since ωJ ∈ L1(Rn), we can find a large enough R2 ≥ R1 such that∑
|J |=k

‖ωJ(y)‖L1(|y|>R2) < ε/3.

Hence, recalling (3.1.2) and choosing r large enough we can ensure that

‖dΦ− dΦ̃r‖L1
k+1
≤ 2ε/3. (3.1.4)

Now (3.1.3) and (3.1.4) imply (3.1.1).
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Proposition 3.1.4. The space of Dk(Rn) differential forms is dense in Υ1
k(Rn).

Proof. Due to the previous result, it is enough to show that for any compactly supported

Φ̃ ∈ Υ1
k(Rn) and ε > 0, there exists Ψ ∈ Dk(Rn) such that

‖Φ̃−Ψ‖Υ1
k
≤ ε.

Let η be as in the proof above and normalized in L1-norm. Then we put ηr(x) = r−nη(x/r)

and

Ψr(y) = Φ̃ ∗ ηr(y) :=
∑
|I|=k

φ̃I ∗ ηr(y)dxI .

Since the functions φ̃I are compactly supported, so are φ̃I ∗ ηr. Moreover, φ̃I ∗ ηr are smooth

and ∂α(φ̃I ∗ ηr) = φ̃I ∗ ∂αηr, so φ̃I ∗ ηr ∈ D(Rn). It is well known (see e.g. Chapter I in [66])

that ‖φ̃I ∗ ηr − φ̃I‖L1 → 0, as r → 0. Thus Ψr → Φ in L1
k(Rn).

Moreover, the definitions of d and ? show that for any F ∈ Dk+1(Rn), d(F ∗ηr) = d(F )∗ηr
and ?(F ∗ ηr) = ?(F ) ∗ ηr. Hence δ(F ∗ ηr) = δ(F ) ∗ ηr and

dΨr(F ) = −Ψr(δF ) = −Φ̃(δ(F ) ∗ ηr) = −Φ̃(δ(F ∗ ηr)) = d(Φ̃) ∗ ηr(F ).

Therefore, dΨr = d(Φ̃) ∗ ηr → dΨ in L1
k+1 as r → 0 and, for sufficiently small r > 0,

‖Φ̃−Ψr‖Υ1
k
≤ ε.

3.2 dk spaces on Rn

In [75], Van Schaftingen showed that a slightly more general version of Theorem 1.3.2 is true

Theorem 3.2.1. For some constant C > 0, the inequality∣∣∣∣∫ u(x)Fi(x)dx

∣∣∣∣ ≤ C‖u‖W 1,n(
n∑
i=1

‖Fi‖L1 + ‖divF‖L1)

holds for all u ∈ W 1,n and F = (F1, . . . , Fn) : Rn → Rn, where Fi ∈ D(Rn).

This result suggests the introduction of non-homogeneous versions of the Van Schaftingen

classes Dk, as follows.
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Definition 3.2.2. Let 1 ≤ k ≤ n. We say that u ∈ D′(Rn) belongs to dk(Rn) if

sup
‖Φ‖

Υk(Rn)
≤1

max
|I|=k
|u(φI)| <∞, (3.2.1)

where the suprema are taken over all Φ =
∑
|I|=k φIdx

I ∈ Dk(Rn). We will denote this

supremum by ‖u‖dk .

Remark 3.2.3. Proposition 3.1.3 suggests that the domain of u ∈ dk(Rn) can be extended to

include all components of Υ1
k(Rn) forms. Let u ∈ D′(Ω) and ũ be a linear map from Dk(Ω)

to
(
R(nk), ‖ · ‖max

)
, associated to u by

ũ

∑
|I|=k

φIdx
I

 = (u(φI)).

Then u ∈ D′(Rn) belongs to dk(Rn), if and only if ũ can be extended to a bounded linear

map from Υ1
k(Rn) to

(
n
k

)
dimensional Euclidean space equipped with the max norm.

Note that Υ1
n(Rn) = L1(Rn), so dn(Rn) is isomorphic to L∞(Rn).

Lemma 3.2.4. Let 1 ≤ k < l ≤ n and u ∈ dl(Rn). Then u ∈ dk(Rn) and ‖u‖dk(Rn) ≤

‖u‖dl(Rn). In other words, the following embeddings are continuous

dn(Rn) ⊂ dn−1(Rn) ⊂ · · · ⊂ d1(Rn)

Proof. It is enough to consider the case k = l − 1, because the general case will follow from

it by induction. Let 1 ≤ l ≤ n, u ∈ dl(Rn) and

Φ(x) =
∑
|I|=l−1

φI(x)dxI ∈ Dl−1(Rn).

We need to show for any component φI ,

|u(φI)| ≤ ‖u‖dl‖Φ‖Υ1
l−1
.

Fix any such I. Since |I| = l − 1 < n, there exists j ∈ [1, n] such that dxI ∧ dxj 6= 0. Put

Φ̃(x) = Φ(x) ∧ dxj. Then Φ̃ ∈ Dl and ‖Φ̃‖Υ1
l
≤ ‖Φ‖Υ1

l−1
. Moreover, by construction, one of

the components of Φ̃ equals to ±φIdxI ∧ dxj. Since u ∈ dl(Rn), we have

|u(φI)| ≤ ‖u‖dl‖Φ̃‖Υ1
l
≤ ‖u‖dl‖Φ‖Υ1

l−1
.
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In terms of dk spaces, Theorem 3.2.1 can be formulated as follows.

Theorem 3.2.5. W 1,n(Rn) is continuously embedded into dn−1(Rn) and ∃C > 0 so that for

any u ∈ W 1,n

‖u‖dn−1 ≤ C‖u‖W 1,n .

Our main result in this section is the following

Theorem 3.2.6. d1(Rn) is continuously embedded into the space bmo(Rn) and ∃C > 0 so

that for any u ∈ dk(Rn), 1 ≤ k ≤ n

‖u‖bmo ≤ C‖u‖dk .

Remark 3.2.7. This result is a non-homogeneous analogue of the main theorem in [77]. We

adapt the proof of that theorem to the non-homogeneous setting.

Proof. By Lemma 3.2.4, it is enough to prove the case k = 1. The argument is based on the

fact that bmo(Rn) is the dual space of h1(Rn). We claim that given f ∈ D(Rn), there exist

n differential forms {Φj}nj=1 ⊂ Υ1
1(Rn) such that for some C independent of f ,

‖Φj‖Υ1
1
≤ C‖f‖h1 , (3.2.2)

f =
n∑
i=1

φii, (3.2.3)

where

Φj =
n∑
i=1

φjidx
i.

Assuming the claim the proof is easy. Let u ∈ d1(Rn). For arbitrary f ∈ D(Rn), let Φj be

such that (3.2.2) and (3.2.3) are true. Then by the Remark 3.2.3 we can apply u to φii to

have

|u(f)| ≤
n∑
i=1

|u(φii)| ≤
n∑
i=1

‖u‖d1‖Φi‖Υ1
1
≤ Cn‖u‖d1‖f‖h1 . (3.2.4)

By the density of D in h1 and the duality bmo = (h1)′, we conclude that u ∈ bmo(Rn).

In order to prove the claim, let f ∈ D be arbitrary and consider the equation

(I −∆)v = f in Rn.
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Then v = J (f), where J is a convolution operator whose kernel is the Bessel potential of

order 2, G2 (see Example 2.4.9). For j ∈ [1, n], let

Φj =
n∑
i=1

(
J
n
− ∂i∂jJ

)
(f)dxi.

Since f ∈ D ⊂ S, all components of Φj are S functions and

dΦj =
∑

1≤i<k≤n

(
∂iJ − ∂kJ

n

)
(f) dxi ∧ dxk.

By Examples 2.4.9 and 2.4.10,

J
n
− ∂i∂jJ ∈ OPS−2(Rn) +OPS0(Rn) ⊂ OPS0(Rn)

and (
∂iJ − ∂kJ

n

)
∈ OPS−1(Rn) ⊂ OPS0(Rn).

Recalling Theorem 2.4.11, we see that the components of Φj and dΦj are h1 functions and

for some C independent of f ,

‖Φj‖L1
1

+ ‖dΦj‖L1
2
≤ C‖f‖h1 ,

which proves (3.2.2). Finally, {Φj} satisfy (3.2.3) for

n∑
i=1

(
J
n
− ∂i∂iJ

)
f = J (f)−∆J (f) = (I −∆)J (f) = f.

Corollary 3.2.8. For 1 ≤ k ≤ n, the space dk(Rn) equipped with the norm ‖ · ‖dk is a

Banach space.

Proof. Let {um}∞m=0 be a Cauchy sequence in dk. The above theorem shows that um is

a Cauchy sequence in bmo(Rn). Since bmo is a complete Banach space, there exists u ∈

bmo(Rn), such that um → u in ‖ · ‖bmo. Moreover, for any Φ =
∑
|I|=k φIdx

I ∈ Dk(Rn) and

j ≥ 0, using duality of bmo and h1 and the fact that each φI ∈ D ⊂ h1,∣∣∣∣∫ (uj − u)φI

∣∣∣∣ = lim
m→∞

∣∣∣∣∫ (uj − um)φI

∣∣∣∣ ≤
≤ lim

m→∞
‖uj − um‖dk‖Φ‖Υ1

k
,

which shows that u ∈ dk(Rn), and ‖uj − u‖dk → 0, as j →∞.
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Summing up the results of this section, we can now say that for 1 ≤ k ≤ n,

W 1,n(Rn) ⊂ dn−1(Rn) ⊂ · · · ⊂ d1(Rn) ⊂ bmo(Rn).

3.3 vk classes on Rn

3.3.1 Definition and embeddings

Definition 3.3.1. Let 1 ≤ k ≤ n. We define the class vk(Rn) as the closure of C0(Rn)

functions in the norm ‖ · ‖dk . Here

C0(Rn) = {u :∈ C(Rn) : lim
|x|→∞

u(x) = 0}.

First of all we notice that by Proposition 3.2.4, vk(Rn) form a monotone family of spaces

vn(Rn) ⊂ vn−1(Rn) ⊂ · · · ⊂ v1(Rn).

The appropriate subspace that will contain all vk functions was studied by Dafni [22] and

Bourdaud [10].

Definition 3.3.2. [22] vmo(Rn) is the subspace of bmo(Rn) functions satisfying

lim
δ→0

sup
l(Q)≤δ

1

|Q|

∫
Q

|f(x)− fQ|dx = 0 (3.3.1)

and

lim
R→∞

sup
l(Q)>1,Q∩B(0,R)=∅

1

|Q|

∫
Q

|f(x)|dx = 0. (3.3.2)

Theorem 3.3.3 ([22]). vmo(Rn) is the closure of C0(Rn) in bmo(Rn).

An immediate consequence of this result and Theorem 3.2.6 is

Theorem 3.3.4. For 1 ≤ k ≤ n, the space vk(Rn) is embedded into vmo(Rn).

Corollary 3.3.5. v1(Rn) does not contain dn(Rn) as a subspace. In particular, vk(Rn) are

proper subspaces of dk(Rn) for k = 1, . . . , n.
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Proof. Recall that dn(Rn) coincides with L∞(Rn). If L∞ was a subspace of v1(Rn), then by

the last theorem we would have L∞ ⊂ vmo(Rn). However, choosing f as a characteristic

function of the quadrant {x = (x1, . . . , xn) ∈ Rn : xi > 0}, we have an example of an L∞

function that does not satisfy (3.3.1). So L∞ 6⊂ vmo(Rn).

Finally, we recall that D(Rn) is dense in W 1,p(Rn) for any p ∈ [1,∞). Therefore by Van

Schaftingen’s Theorem 3.2.1, we have W 1,n ⊂ vn−1(Rn).

All in all, we conclude that the following embeddings hold

W 1,n(Rn) ⊂ vn−1(Rn) ⊂ · · · ⊂ v1(Rn) ⊂ vmo(Rn).

3.3.2 Intrinsic definition of the space vn−1

Definition 3.3.6. For u ∈ dn−1(Rn) ∩ C(Rn), we will use the following notation

‖u‖∗ = sup
∂γ=∅

1

|γ|

∣∣∣∣∫
γ

u(t)τ(t)dt

∣∣∣∣+ sup
|γ|≥1

1

|γ|

∣∣∣∣∫
γ

u(t)τ(t)dt

∣∣∣∣ ,
where the suprema are taken over smooth curves γ with finite lengths |γ|, boundaries ∂γ

and unit tangent vectors τ .

Our goal is to prove the following result which plays the role of Theorem 1.4.1 in the

non-homogeneous setting.

Theorem 3.3.7. There are constants c1, c2 > 0 such that for every u ∈ dn−1(Rn) ∩ C(Rn),

c1‖u‖∗ ≤ ‖u‖dn−1 ≤ c2‖u‖∗.

The proof is based on the following three lemmas

Lemma 3.3.8. There exists C > 0 such that for any γ with ∂γ = ∅ or |γ| ≥ 1,

1

|γ|

∣∣∣∣∫
γ

u(y)τ(y)dy

∣∣∣∣ ≤ C‖u‖dn−1 .

Proof. The proof is based on the argument of Bourgain and Brezis [11].

Let η ≥ 0 be a smooth radial function on Rn, compactly supported in |x| ≤ 1, such that

‖η‖L1 = 1. As usual we put ηε(x) = ε−nη(x/ε). Let us define the (n− 1)-form

Φε(x) =
n∑
j=1

(∫
γ

ηε(t− x)τj(t)dt

)
dxIj , x ∈ Rn,

29



where Ij = (i1, . . . , in−1), ik 6= j.

The reason to introduce this differential form is the following equality∣∣∣∣∫
γ

u(t)τ(t)dt

∣∣∣∣ = lim
ε→0

∣∣∣∣∫
γ

τ(t)

∫
Rn
u(x)ηε(x− t)dxdt

∣∣∣∣ =

= lim
ε→0

∣∣∣∣∫ u(x)φεIdx

∣∣∣∣ ,
where φεI are components of Φε. By the Remark 3.2.3, we need to estimate ‖Φε‖Υ1

n−1
. It is

clear that ‖Φε‖L1
n−1
≤ n‖ηε‖L1 |γ| = n|γ|. Moreover,

dΦε(x) = −
(∫

γ

∇ηε(y − x) · τ(y)dy

)
dx1 ∧ · · · ∧ dxn =

= [ηε(a− x)− ηε(b− x)]dx1 ∧ · · · ∧ dxn.

Therefore ‖dΦε‖L1
n

is 0 if γ is closed or ≤ 2 if γ is not closed. Finally,

1

|γ|

∣∣∣∣∫
γ

u(s)τ(s)ds

∣∣∣∣ ≤ 1

|γ|
lim sup
ε→0

∣∣∣∣∫ u(x)φεIdx

∣∣∣∣ ≤ ‖u‖dk(2 + n),

because, for non-closed γ, |γ| ≥ 1. So we proved the lemma with C = n+ 2.

In order to prove the converse estimate, Bourgain and Brezis evoked the decomposition

theorem of Smirnov.

Theorem 3.3.9 ([63]). For any compactly supported Φ ∈ L1
n−1(Rn), with dΦ = 0, there

exists a sequence of positive numbers {µmj } and closed smooth curves {γmj } such that for all

m ≥ 1,
∞∑
j=1

|µmj ||γmj | ≤ ‖Φ‖L1
n−1

and for every u ∈ C(Rn) and 1 ≤ i ≤ n

∞∑
j=1

µmj

∫
γmj

u(s)τi(s)ds→
∫
u(x)φi(x)dx, as m→∞,

where φi are the components of Φ.

In our case dΦ ∈ L1
n−1(Rn) does not necessarily vanish and we need a more general

version of Smirnov’s theorem, which we formulate in the following form
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Theorem 3.3.10 (Theorem C in [63]). Let Φ ∈ Υ1
n−1(Rn). Then there exist P ∈ Υ1

n−1(Rn)

and Q ∈ Υ1
n−1(Rn) such that

• ‖Φ‖L1
n−1

= ‖P‖L1
n−1

+ ‖Q‖L1
n−1

,

• dP = 0 and we can apply the previous theorem to P

• dQ = dΦ.

Moreover, there exist {λlj} and smooth curves γ̃lj (not necessarily closed) such that for all

l ≥ 1
∞∑
j=1

|λlj||γ̃lj| ≤ ‖Q‖L1
n−1
,

∞∑
j=1

|λlj| ≤ ‖dQ‖L1
n

and for 1 ≤ i ≤ n

∞∑
j=1

λlj

∫
γ̃lj

u(s)τi(s)ds→
∫
u(x)qi(x)dx, as l →∞.

where qi are the components of Q.

Let us introduce an auxiliary norm for u ∈ C(Rn):

‖u‖∗∗ = sup
∂γ=∅

1

|γ|

∣∣∣∣∫
γ

u(s)τ(s)ds

∣∣∣∣+ sup
|γ|<1

∣∣∣∣∫
γ

u(s)τ(s)ds

∣∣∣∣
+ sup
|γ|≥1

1

|γ|

∣∣∣∣∫
γ

u(s)τ(s)ds

∣∣∣∣ .
Lemma 3.3.11. For any u ∈ dn−1(Rn) ∩ C(Rn),

‖u‖dn−1(Rn) ≤ 2‖u‖∗∗.

Proof. By the definition of dn−1(Rn), there exists

Φ =
n∑
i=1

φidx
1 ∧ . . . d̂xi ∧ . . . dxn ∈ Dn−1(Rn)

such that

‖Φ‖L1
n−1

+ ‖dΦ‖L1 ≤ 1
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and

‖u‖dn−1 ≤ 2 max
I
|u(φI)|. (3.3.3)

Let us apply Theorem 3.3.10 to Φ. Then Φ can be decomposed into the sum of P and

Q such that dΦ = dQ, ‖Φ‖L1
n−1

= ‖P‖L1
n−1

+ ‖Q‖L1
n−1

and Q is a weak limit of the linear

combination of the curves γ̃lj in the sense that

∞∑
j=1

λ̃lj

∫
γ̃lj

u(s)τi(s)ds→
∫
u(x)qi(x)dx, as l →∞,

where
∞∑
j=1

|λ̃lj|(1 + |γ̃lj|) ≤ ‖Q‖L1
n−1

+ ‖dQ‖L1 ≤ 1, for all l ≥ 1.

Moreover, applying Theorem 3.3.9 to P , we get a sequence of closed curves γlj and numbers

λlj such that
∞∑
j=1

λlj

∫
γlj

u(s)τi(s)ds→
∫
u(x)pi(x)dx, as l →∞

and
∞∑
j=1

|λlj||γlj| ≤ ‖P‖L1
n−1
≤ 1 for all l ≥ 1.

All in all,∫
u(x)φi(x)dx = lim

l→∞

∞∑
j=1

λlj

∫
γlj

u(s)τi(s)ds+
∞∑
j=1

λ̃lj

∫
γ̃lj

u(s)τi(s)ds

and ∣∣∣∣∫ u(x)φi(x)dx

∣∣∣∣ ≤ sup
l,j

∣∣∣∣∣ 1

|γlj|

∫
γlj

u(s)τi(s)ds

∣∣∣∣∣+ (3.3.4)

+ sup
l,|γ̃lj |<1

∣∣∣∣∣
∫
γ̃lj

u(s)τi(s)ds

∣∣∣∣∣+ sup
l,|γ̃lj |≥1

∣∣∣∣∣ 1

|γ̃lj|

∫
γ̃lj

u(s)τi(s)ds

∣∣∣∣∣ ≤ ‖u‖∗∗.
The result follows from (3.3.3) and (3.3.4).

Lemma 3.3.12. For any u ∈ C(Rn)

‖u‖∗ ≤ ‖u‖∗∗ ≤ 4‖u‖∗.
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Proof. The first inequality follows from the definitions of the norms. In order to see the

second one, we need to show that

sup
|γ|<1

∣∣∣∣∫
γ

u(s)τ(s)ds

∣∣∣∣ ≤ sup
∂γ=∅

3

|γ|

∣∣∣∣∫
γ

u(s)τ(s)ds

∣∣∣∣+ sup
|γ|≥1

3

|γ|

∣∣∣∣∫
γ

u(s)τ(s)ds

∣∣∣∣ .
Let us consider any γ with |γ| < 1 and ∂γ = {a, b}. We can always find γ′ such that

1 < |γ′| < 2 and γ′′ := γ + γ′ is a closed curve.

Then ∣∣∣∣∫
γ

u(s)τ(s)ds

∣∣∣∣ ≤ ∣∣∣∣∫
γ′′
u(s)τ(s)ds

∣∣∣∣+

∣∣∣∣∫
γ′
u(s)τ(s)ds

∣∣∣∣
≤
∣∣∣∣ 3

|γ′′|

∫
γ′′
u(s)τ(s)ds

∣∣∣∣+

∣∣∣∣ 3

|γ′|

∫
γ′
u(s)τ(s)ds

∣∣∣∣

3.4 Tensor product of dk functions

Let u ∈ C(Rn) and v ∈ C(Rm), then we can define the tensor product of u and v as an

element of C(Rn+m) such that

u⊗ v(x, y) = u(x)v(y) for all x ∈ Rn, y ∈ Rm.

This notion can extended to the case u ∈ D′(Rn) and v ∈ D′(Rm) (see e.g. Theorem 5.1.1

in [37]) as follows: there exists a unique w ∈ D′(Rn+m) such that

w(φ1 ⊗ φ2) = u(φ1)v(φ2),

for any φ1 ∈ D(Rn) and φ2 ∈ D(Rm) and

w(φ) = u(v(φ(x, y))) = v(u(φ(x, y))).

Notice that if u ∈ dn(Rn) = L∞(Rn) and v ∈ dm(Rm) = L∞(Rm), then u⊗v ∈ dn+m(Rn+m) =

L∞(Rn+m). This can be partially extended to u ∈ dk, k < n as follows

Theorem 3.4.1. Let v(y) = Πm
j=1vj(yj), where vj ∈ D(R) and u ∈ D′(Rn).

• If u ∈ dk(Rn), then u⊗ v ∈ dk(Rn+m) and there exists C > 0 such that

‖u⊗ v‖dk(Rn+m) ≤ C‖v‖C1(Rm)‖u‖dk(Rn).
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• If u⊗ v ∈ dk(Rn+m) and v 6= 0, then u ∈ dk(Rn) and there exists Cv > 0 such that

‖u‖dk(Rn) ≤ Cv‖u⊗ v‖dk(Rn+m).

We will prove two lemmas below, from which the theorem will immediately follow by

induction in m. Before doing this, let us note a useful corollary of Theorem 3.4.1.

Corollary 3.4.2. The embeddings dn(Rn) ⊂ dn−1(Rn) ⊂ · · · ⊂ d1(Rn) are proper.

Proof. It is well known (see e.g. 5.6.1 in [27]) that there exists u ∈ W 1,n \ L∞(Rn), n ≥ 2.

Thus by Theorem 3.2.5, u ∈ dn−1 \dn and the embedding dn(Rn) ⊂ dn−1(Rn) is proper. This

is all we need when n = 2.

For n ≥ 3, we can argue by induction on n. Suppose the embeddings

dn−1(Rn−1) ⊂ dn−2(Rn−1) ⊂ · · · ⊂ d1(Rn−1)

are all proper. In order to find w ∈ dk(Rn) \ dk+1(Rn), 2 ≤ k ≤ n − 2, consider u ∈

dk(Rn−1) \ dk+1(Rn−1) and put w(x, y) = u(x) ⊗ 1(y) = u(x). Then by the first part of

Theorem 3.4.1, w(x, y) ∈ dk(Rn). On the other hand the second part of Theorem 3.4.1 asserts

that if w(x, y) ∈ dk+1(Rn) then we would have u ∈ dk+1(Rn−1), which would contradict to

the choice of u. So w ∈ dk(Rn) \ dk+1(Rn).

Lemma 3.4.3. Let v ∈ L∞(R) be fixed and ‖v‖L∞ > 0. If u ⊗ v ∈ dk(Rn+1) for some

u ∈ D′(Rn) , then u ∈ dk(Rn) and

‖u‖dk(Rn) ≤ Cv‖u⊗ v‖dk(Rn+1),

for some Cv > 0 independent of u.

Proof. Given Φ ∈ Dk(Rn) such that

Φ(x) =
∑
|I|=k

φI(x)dxI ,

we need to show that for some Cv

|u(φI)| ≤ Cv‖u⊗ v‖dk(Rn+1)‖Φ‖Υ1
k(Rn).
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We can always find θ ∈ D(R) such that |
∫
R v(y)θ(y)dy| > 1

2
‖v‖L∞ > 0. Consider Φ̃(x, y) ∈

Dk(Rn+1) defined by

Φ̃(x, y) = Φ(x)θ(y) =
∑
|I|=k

φI(x)θ(y)dxI .

Then dΦ̃(x, y) = dΦ(x)θ(y) + Φ(x) ∧ θ′(y)dy and

‖Φ̃‖Υk(Rn+1) ≤ C‖θ‖W 1,1‖Φ‖Υk(Rn).

Therefore, for any component φI

|u(φI)| =
|(u⊗ v)(φI(x)θ(y))|

|v(θ)|
<

2

‖v‖L∞
|(u⊗ v)(φI(x)θ(y))|

≤ 2

‖v‖L∞
‖u⊗ v‖dk(Rn+1)‖Φ̃‖Υ1

k(Rn+1)

≤
(
C‖θ‖W 1,1

‖v‖L∞

)
‖u⊗ v‖dk(Rn+1)‖Φ‖Υ1

k(Rn).

Finally, putting Cv =
C‖θ‖W1,1

‖v‖L∞
, we complete the proof.

The proof of the converse fact is more technical. It is convenient first to adopt some

notations that will simplify the argument.

Let Φ(x) =
∑
|I|=k φI(x)dxI ∈ Dk(Rn+1). For x ∈ Rn+1, we denote by y ∈ R its

last coordinate and by x̃ ∈ Rn the first n coordinates. We divide the set of indices I in the

decomposition of Φ into two groups. Let R be the set of I = (i1, . . . , ik) in the decomposition

of Φ with ik = n+ 1, and L be the rest. Then

Φ =
∑
I∈L

φI(x̃, y)dx̃I +
∑

I=(Ĩ,n+1)∈R

φI(x̃, y)dx̃Ĩ ∧ dy. (3.4.1)

We will denote these sums by ΦL and ΦR, respectively. Finally, we introduce the integration

over the last coordinate as
∫
Ry Φ(x̃, y) ∈ Dk−1(Rn) such that∫

Ry
Φ(x̃, y) =

∫
Ry

ΦR(x̃, y) :=
∑

(Ĩ,n+1)∈R

(∫
R
φI(x̃, y)dy

)
dx̃Ĩ

(if Φ = ΦL, we agree that
∫
Ry Φ(x̃, y) = 0). Note that by the Fubini theorem,∥∥∥∥∥
∫
Ry

Φ(x̃, y)

∥∥∥∥∥
L1
k−1(Rn)

≤ ‖Φ‖L1
k(Rn+1).
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Lemma 3.4.4. Let u ∈ dk(Rn) and v ∈ D(R). Then u⊗ v ∈ dk(Rn+1) and

‖u⊗ v‖dk(Rn+1) ≤ C‖v‖C1(R)‖u‖dk(Rn),

where C > 0 is independent of u, v.

Proof. We need to consider an arbitrary

Φ =
∑
|I|=k

φIdx
I ∈ Dk(Rn+1)

and show that for some C > 0∣∣∣∣u(∫
R
v(y)φI(x̃, y)dy

)∣∣∣∣ ≤ C‖v‖C1‖u‖dk‖Φ‖Υ1
k(Rn). (3.4.2)

Let Φ be decomposed as in (3.4.1)

Φ = ΦL + ΦR :=
∑
I∈L

φI(x̃, y)dx̃I +
∑

I=(Ĩ,n+1)∈R

φI(x̃, y)dx̃Ĩ ∧ dy.

We claim that the differential forms

Φ1(x̃) =
∑
I∈L

(∫
R
v(y)φI(x̃, y)dy

)
dx̃I

Φ2(x̃) =
∑

I=(Ĩ,n+1)∈R

(∫
R
v(y)φI(x̃, y)dy

)
dx̃Ĩ

satisfy the estimates

‖Φ1‖Υ1
k(Rn) ≤ C‖v‖L∞‖Φ‖Υ1

k(Rn+1) (3.4.3)

and

‖Φ2‖Υ1
k−1(Rn) ≤ C‖v‖C1‖Φ‖Υ1

k(Rn+1). (3.4.4)

Notice that (3.4.3) and the definition of dk(Rn) imply (3.4.2) for I ∈ L. For I ∈ R, (3.4.2)

follows from (3.4.4), Lemma 3.2.4 and the definition of dk(Rn). So it is enough to establish

(3.4.3) and (3.4.4).

Clearly, ∥∥∥∥∫
R
v(y)φI(x̃, y)dy

∥∥∥∥
L1(Rn)

≤ ‖v‖L∞‖φI‖L1(Rn+1).

So both ‖Φ1‖L1
k

and ‖Φ2‖L1
k−1

are controlled by ‖v‖C1‖Φ‖L1
k(Rn+1).
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In order to estimate ‖dΦ1‖L1
k+1

and ‖dΦ2‖L1
k
, we make use of our notation.

First of all we note that by our choice of Φ1

Φ1(x̃) =

∫
Ry

ΦL(x̃, y) ∧ v(y)dy.

Moreover, from the definitions of the exterior derivative and
∫
Ry , one has

dΦ1(x̃) = d

∫
Ry

ΦL ∧ v(y)dy =

∫
Ry
d[ΦL ∧ v(y)dy], (3.4.5)

where the first d is the differentiation with respect to x̃ and the last one is with respect to

x̃ and y. Since ΦR ∧ v(y)dy = 0, we have

d[Φ ∧ v(y)dy] = d[ΦL ∧ v(y)dy]

and therefore ∫
Ry
d[ΦL ∧ v(y)dy] =

∫
Ry
d[Φ ∧ v(y)dy]. (3.4.6)

Noticing that v(y)dy is a closed 1-form we combine (3.4.5) and (3.4.6) to obtain

dΦ1(x̃) =

∫
Ry
dΦ ∧ v(y)dy.

Applying Fubini’s theorem we have

‖dΦ1‖L1
k+1

=

∥∥∥∥∥
∫
Ry
dΦ ∧ v(y)dy

∥∥∥∥∥
L1
k+1(Rn)

≤

≤ ‖dΦ ∧ v(y)dy‖L1
k+2(Rn+1) ≤ ‖v‖L∞‖dΦ‖L1

k+1(Rn+1)

(the last inequality is justified by (3.1.2)). This proves (3.4.3).

Further, notice that

Φ2(x̃) =

∫
Ry
v(y)ΦR(x̃, y)

and ∫
Ry
d[v(y)ΦL(x̃, y)] = 0,

because for each I ∈ L,
∫
Ry dx̃

I = 0 and
∫
R ∂y(v(y)φI(x̃, y))dy = 0. Hence

dΦ2(x̃) = d

∫
Ry
v(y)ΦR(x̃, y) =

∫
Ry
d[v(y)ΦR(x̃, y)] =

∫
Ry
d[v(y)Φ(x̃, y)].
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Therefore, by Fubini’s theorem and (3.1.2) we obtain

‖dΦ2‖L1
k
≤

∥∥∥∥∥
∫
Ry
d[v(y)Φ(x̃, y)]

∥∥∥∥∥
L1
k

≤

∥∥∥∥∥
∫
Ry
v′(y)dy ∧ Φ(x̃, y)]

∥∥∥∥∥
L1
k

+

∥∥∥∥∥
∫
Ry
v(y)dΦ(x̃, y)]

∥∥∥∥∥
L1
k

≤ ‖v‖C1‖Φ‖Υ1
k(Rn+1),

which proves (3.4.4).

3.5 Examples of dk(Rn) functions

In this section, we want to show that there are more functions in dk(Rn) besides those in

W 1,n(Rn).

3.5.1 Triebel-Lizorkin and Besov functions

We recall that Sobolev space W s,p(Rn), 1 < p <∞ is a special case of more general classes

of functions

W s,p(Rn) = F s,p
p (Rn) = Bs,p

p (Rn),

here F s,p
q , s ∈ R, 0 < p, q < ∞ is the space of Triebel-Lizorkin and Bs,p

q (Rn), s ∈ R,

0 < p, q ≤ ∞, is the Besov space (see e.g. [32] or [72] for definitions).

It was shown in [78] (see Proposition 2.1 there), that F̊ s,p
q ⊂ Dn−1 for all sp = n,

1 < p < ∞, 0 < q < ∞ (here F̊ s,p
q is a homogeneous Triebel-Lizorkin space). Recalling the

embedding theorems (see e.g. Ex 6.5.2 in [32])

B̊s,p
min(p,q) ⊂ F̊ s,p

q ⊂ B̊s,p
max(p,q),

one can obtain the embedding Bs,p
q ⊂ Dn−1 for 0 < q < ∞. The case q = ∞ remains open

(see Open problem 1 in [79]).

One can notice that the proof of Proposition 2.1 in [78] is exactly the same as the proof

of Theorem 1.5 in [76]. In fact it can be extended to the non-homogeneous setting as
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Theorem 3.5.1. Let 1 < p < ∞, 1 < q < ∞. Then there exists constants C1 and C2 such

that

‖u‖dn−1 ≤ C1‖u‖Fn/p,pq

and

‖u‖dn−1 ≤ C2‖u‖Bn/p,pq
.

3.5.2 Locally Lipschitz functions

The following proposition provides a simple sufficient condition to ensure that u ∈ dn−1(Rn).

Proposition 3.5.2. Let u ∈ W 1,1
loc (Rn \ {0}). If |x|(u(x) + ∇u(x)) ∈ L∞(Rn), then u ∈

dn−1(Rn) and

‖u‖dn−1 ≤ C‖|x|(|u|+ |∇u|)‖L∞ .

Proof. The proof follows from integration by parts as in the proof of Proposition 4.3 in [77].

We need to show that for any Φ =
n∑
j=1

φj(x)dx1 ∧ . . . d̂x
j
∧ . . . dxn ∈ Dn−1(Rn), we have

∣∣∣∣∫ u(x)φj(x)dx

∣∣∣∣ ≤ C‖|x|(u(x) +∇u(x))‖L∞‖Φ‖Υ1
n−1
.

Note that ∫
xj(
∑
i

φi∂iu)dx = −
∫
φjudx−

∫
xju · (

∑
i

∂iφi)dx.

So ∣∣∣∣∫ u(x)φj(x)dx

∣∣∣∣ ≤ n‖|x|∇u‖L∞‖Φ‖L1
n−1

+ ‖|x|u‖L∞‖dΦ‖L1
n
.

The proposition allows us to give an example of u ∈ dn−1 which is not covered by the

previous classes of functions, the Bessel potential Gn.

Remark 3.5.3. A typical example of u ∈ Dn−1 \W 1,n in [77] is the function u(x) = log |x|.

However, this function does not belong to bmo(Rn) and therefore is not in any dk, 1 ≤ k ≤ n

as

sup
|Q|>1

1

|Q|

∫
Q

| log |y||dy =∞.
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Example 3.5.4. Let Gn(x) be the Bessel potential of order n, i.e. the function whose

Fourier transforms is given by Ĝn(ξ) = (1 + |ξ|2)−n/2.

The fact that Gn satisfies the conditions of the last proposition follows from the fact that

Gn is a continuously differentiable function on Rn \ {0} and the asymptotic formulas for the

Bessel potentials (see e.g. [3], pp. 415-417):

Gn(x) ∼ C1 log |x|, as x→ 0,

Gn(x) ∼ C2|x|−1/2e−|x|, as x→∞.

Moreover,
∂

∂xi
Gn(x) = C ′s ·

xi
|x|
K1(|x|),

where K1 is the Bessel-Macdonald function of order 1, with the asymptotics

K1(r) ∼ C3r
−1, as r → 0+

K1(r) ∼ C4r
−1/2e−r, as r →∞.

Combining this example and Theorem 3.4.1, we obtain more examples

Proposition 3.5.5. Let v1, . . . , vl be D(R) functions such that vi 6≡ 0. Then

Gn(x1, . . . , xn−l)⊗ v1(xn−l+1) · · · ⊗ vl(xn) ∈ dk(Rn)

if and only if 1 ≤ k < n− l ≤ n.

3.6 Application to PDE

We will illustrate how non-homogeneous dk spaces can be used in the analysis of classic PDE.

The following result was shown in [11]: if ∆U = F in R2 and divF = 0, then

‖U‖∞ + ‖∇U‖2 ≤ C‖F‖1.

As it has been noted in [14] (see Remark 2.1 there), one can relax the condition divF = 0

to divF ∈ L1 to obtain

‖∇U‖2 ≤ C(‖F‖1 + ‖divF‖1).
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However (as is also noted in [14] without explanation), U may be no longer be an L∞

vector field.

Let us explain this using Theorem 3.2.6. Let g(x) = log |x|. Then g ∗F is continuous for

any F ∈ L1
1 and if

‖U‖∞ = (2π)−1‖g ∗ F‖∞ ≤ C(‖F‖1 + ‖divF‖1)

were true for any F ∈ Dk(R2), then we would have

|g ∗ F (0)| = |
∫
g(x)F (x)dx| ≤ C‖F‖Υ1

1
,

and g(x) = log |x| would be an d1 function and by Theorem 3.2.6, log |x| ∈ bmo(R2).

However, this is false by Remark 3.5.3.

So the solution of equation ∆U = F ∈ R2 can be essentially unbounded even if divF ∈ L1,

because the fundamental solution of ∆ in R2 is not an element of d1(R2).

Based on the examples of dn−1(Rn) functions, one can guess that the situation should be

better in the case of the Helmholtz equation.

Indeed, the following proposition shows that solutions to the Helmholtz equation can be

fully controlled even under relaxed conditions.

Theorem 3.6.1. Let F ∈ L1(R2) and divF ∈ L1(R2). Then the system (I − ∆)U = F

admits a unique solution U such that

‖U‖∞ + ‖∇U‖2 ≤ C(‖F‖1 + ‖divF‖1).

Proof. Without loss of generality we can assume that F ∈ S(R2;R2) The solution U has the

form U(x) = G2 ∗ F (x), where G2(x) is the Bessel potential of order 2. By Example 3.5.4,

G2 ∈ d1(R2). Thus for any x ∈ R2,

|U(x)| = |Gn ∗ F (x)| ≤ ‖G2‖d1‖τxF‖Υ1
1(R2) = ‖J2‖d1‖F‖Υ1

1(R2),

where τx is the translation operator defined by (τxf)(y) = f(y − x). In other words

‖U‖∞ ≤ C(‖F‖1 + ‖divF‖1). (3.6.1)
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In order to control ∇U notice that the decay of F and G2 implies∫
|∇Ui(x)|2dx = −

∫
Ui(x)∆Ui(x)dx =

=

∫
Ui(x)Fi(x)dx−

∫
U2
i (x)dx.

Hence, recalling that U is a convolution of the L1 functions G2 and F ,

‖∇U‖2 ≤ C‖U‖1/2
∞ (‖F‖1 + ‖U‖1)1/2 ≤ C‖U‖1/2

∞ ‖F‖
1/2
1 .

Using (3.6.1) we complete the proof.

3.7 L1 forms on domains

Let Ω be a domain in Rn. We start by defining local versions of the spaces L1
k and Υ1

k

associated with Ω.

Definition 3.7.1. For 1 ≤ k ≤ n, we define L1
k(Ω) as subspace of Dk(Ω) consisting of

elements Φ =
∑
|I|=k

φIdx
I such that all components φI are L1(Ω) functions. This space is

equipped with the norm

‖Φ‖L1
k

=
∑
|I|=k

‖φI‖L1(Ω).

Definition 3.7.2. Let 1 ≤ k ≤ n−1. We say that Φ ∈ Dk(Ω) belongs to Υ1
k(Ω), if Φ ∈ L1

k(Ω)

and dΦ ∈ L1
k+1(Ω). We equip Υ1

k(Ω) with the norm

‖Φ‖Υ1
k

= ‖Φ‖L1
k

+ ‖dΦ‖L1
k+1
.

Finally, we define

Υ1
k,0(Ω) = Dk(Ω),

where the closure is taken with respect to the Υ1
k(Ω) norm.

Unlike in the case of Rn, Dk(Ω) are not dense in Υ1
k(Ω) (hence the definition of Υ1

k,0). In

order to define the appropriate density result, we need the following definitions.

Definition 3.7.3. Let Ω be a bounded domain in Rn. By Dk(Ω), 1 ≤ k ≤ n, we denote the

space of restrictions of Dk(Rn) differential forms to Ω.
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Definition 3.7.4. Let Ω be a bounded domain. We say that its boundary ∂Ω satisfies the

segment condition if for any z ∈ ∂Ω there exists Rz > 0, an orthogonal transformation

A ∈ O(n) and a continuous function F defined in a neighborhood of the hyper-plane Rn−1

such that

Ω ∩ BRz(z) = {Ay : y = (y′, yn) ∈ Rn, |y − A−1(z)| < Rz, yn > F (y′)}. (3.7.1)

If the function F can be chosen as a Lipschitz function, the domain Ω is called a (strongly)

Lipschitz domain.

Proposition 3.7.5. Let 1 ≤ k ≤ n.

• If Ω is any open subset of Rn, then Υ1
k(Ω) ∩ Ek(Ω) is dense in Υ1

k(Ω).

• If Ω is a bounded domain with ∂Ω satisfying the segment condition, then Dk(Ω̄) is

dense in Υ1
k(Ω).

Proof. Both of these facts are well known for Sobolev spaces (see e.g. [1] or [44]). In par-

ticular, the first part of the proposition is an analogue of the famous Meyers-Serrin theorem

[51], and can be proved in exactly the same way. We will show the proof of the second part

following the argument in [67] for Sobolev spaces.

Since Ω is bounded, ∂Ω is compact and we can find a finite number, say m < ∞, of

zj ∈ ∂Ω, Rj > 0, Aj ∈ O(n) and Fj ∈ C(Rn−1) satisfying (3.7.1) with ∂Ω ⊂
⋃m
j=1 BRj(zj).

Since the number of balls BRj is finite, there exists δ > 0 such that

Ω̄ ⊂
⋃
j

BRj(zj) ∪ {x ∈ Ω|dist(x, ∂Ω) > δ}. (3.7.2)

Let θ1, . . . , θm, η be the partition of unity associated to the covering (3.7.2) of Ω̄, i.e.

θj ∈ D(BRj(zj)), j = 1, . . .m, η ∈ D({x ∈ Ω|dist(x, ∂Ω) > δ}) and

m∑
j=1

θj(x) + η(x) = 1 for any x ∈ Ω̄.

Let Φ ∈ Υ1
k(Ω) be arbitrary. We need to show that for any small ε > 0 there exist Φε ∈ Dk(Ω̄)

such that

‖Φ− Φε‖Υ1
k
→ 0, as ε→ 0.
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By the first part of the theorem we can assume without loss of generality that Φ ∈ Ek(Ω) ∩

Υ1
k(Ω).

Let us decompose Φ using the partition of unity we introduced

Φ =
m∑
j=1

θjΦ + η(x)Φ =
m∑
j=1

Φj + Φ0.

Each Φj ∈ Υ1
k(Ω). Moreover Φ0, being supported in Ω, is an element of Dk(Ω). Therefore

we need to approximate each Φj, j ∈ [1,m] by forms Φj
ε ∈ Dk(Ω̄j). Once it is done, the form

Φε = Φ0 +
m∑
j=1

Φε ∈ D ¯(Ω) will be the approximation of Φ with

‖Φ− Φε‖Υ1
k
→ 0 as ε→ 0.

We make use of the segment condition. Fix j ∈ [1,m], put Ωj = Ω ∩ BRj and

Ω′j = A−1
j (Ωj) = {y = (y′, yn) : |y − A−1zj| < Rj, yn > F (y′)}.

Let A∗j be the pull back associated with Aj, i.e. A∗j : Υ1
k(Ωj) → Υ1

k(Ω
′
j) is a linear map

defined by the action A∗jΦ(y) =
∑
|I|=k

φI(Ay)dyI , for any Φ(x) =
∑
|I|=k

φI(x)dxI ∈ Υ1
k(Ωj).

It is known that the pull-back commutes with exterior differentiation and with the wedge

product, and preserves the norm ‖A∗jΦ‖Υ1
k(Ω′j)

= |detAj|‖Φ‖Υ1
k(Ωj) = ‖Φ‖Υ1

k(Ωj) (see e.g. [61],

pp 22-23).

So if for arbitrarily small ε > 0 and each Ψj = A∗jΦ
j we can find Ψj

ε ∈ Dk(Ω̄′j) such that

‖Ψj −Ψj
ε‖Υ1

k(Ω′j)
→ 0 as ε→ 0,

then (A−1)∗Ψj
ε ∈ Dk(Ω̄j) will be an approximation of Φj:

‖Φj − (A−1)∗Ψj
ε‖Υ1

k(Ωj) = ‖(A−1)∗Ψj − (A−1)∗Ψj
ε‖Υ1

k(Ωj) → 0 as ε→ 0.

Notice that Ψj vanishes on {y ∈ BRj(A
−1zj) : yn > F (y′)} and we can extend Ψj by 0 to an

element of Υ1
k({y = (y′, yn) : yn > F (y′)}). Finally, for sufficiently small ε > 0, we put

Ψj
ε(y
′, yn) = Ψj(y′, yn + ε).

Such Ψj
ε is an element of Dk(Ω̄′j) and as ε→ 0

‖Ψj −Ψj
ε‖L1

k(Ω′j)
→ 0
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and

‖dΨj − dΨj
ε‖L1

k+1(Ω′j)
→ 0,

due to the facts that d commutes with translations and ‖f(· + y)− f(·)‖L1 → 0 as |y| → 0

for any f ∈ L1(Rn).

3.8 dk classes on Lipschitz domains Ω

In this section we define dk classes on domains. Everywhere in this section we assume Ω to

be a bounded Lipschitz domain in Rn.

Definition 3.8.1. Let 1 ≤ k ≤ n. A distribution u ∈ D′(Ω) is said to belong to dk(Ω) if

there exists C > 0 such that |u(φI)| ≤ C‖Φ‖Υ1
k(Ω) for any

Φ =
∑
|I|=k

φIdx
I ∈ Dk(Ω).

We denote the space of such distributions by dk(Ω) and equip it with the norm

‖u‖dk(Ω) := sup{|u(φI)| : Φ ∈ Dk(Ω); ‖Φ‖Υ1
k(Ω) ≤ 1}.

Remark 3.8.2. Let 1 ≤ k ≤ n. We want to consider distributions u ∈ E ′(Ω) such that

|u(φI)| ≤ C‖Φ‖Υ1
k(Ω) for some finite C > 0 and any

Φ =
∑
|I|=k

φIdx
I ∈ Dk(Rn).

The class of E ′(Ω)∩ dk(Rn), equipped with the norm ‖ · ‖dk(Rn) forms an incomplete normed

space. Therefore we define dkz(Ω) as follows.

Remark 3.8.3. The definitions we use were suggested by Van Schaftingen in [77]. It is also

possible to define dk(Ω) as we did in Remark 3.2.3. Any u ∈ D′(Ω) defines a linear map

ũ : Dk(Ω)→ R(nk) by

ũ

∑
|I|=k

φIdx
I

 = (u(φI))I .

By Proposition 3.7.5, u ∈ dk(Ω) if and only if ũ can be extended to a bounded linear map

from Υ1
k,0(Ω) to (R(nk), ‖ · ‖max).
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3.8.1 dkz(Ω) spaces

All properties of dkz(Ω) spaces can be deduced from the previous results and the following

definition

Definition 3.8.4. Let 1 ≤ k ≤ n. Then

dkz(Ω) = {u ∈ dk(Rn) : supp u ∈ Ω}.

Remark 3.8.5. It is clear that dkz(Ω) is a closed subspace of dk(Rn), hence complete, and

E ′(Ω)∩ dk(Rn) ⊂ dkz(Ω). Conversely, any u ∈ dkz is the weak limit of E ′(Ω)∩ dk(Rn). Indeed,

consider any u ∈ dk(Rn) supported in Ω̄. By Theorem 3.2.6 and the definition of bmoz(Ω̄),

u ∈ bmoz(Ω). In particular u ∈ L1(Ω). Let ηj be a sequence of D(Ω) functions such that

lim
j→∞

ηj = χΩ, the characteristic function of Ω. Then by Lebesgue’s dominated convergence

theorem, for any Φ ∈ Dk(Ω̄) and I,∫
Ω

u(x)φI(x)dx = lim
j→∞

∫
Ω

(ηju)(x)φI(x)dx.

This shows that u = lim
j→∞

(ηju) is a weak limit.

Combining this definition with Lemma 3.2.4 we obtain

Proposition 3.8.6. The spaces dkz(Ω) form a monotone family, i.e. the following embeddings

hold

dnz (Ω) ⊂ dn−1
z (Ω) ⊂ · · · ⊂ d1

z(Ω).

Proposition 3.8.7. Let Ω be a bounded Lipschitz domain and W 1,n
0 (Ω) be the closure of D(Ω)

functions in the norm ‖ · ‖W 1,n(Ω). Then W 1,n
0 (Ω) is continuously embedded into dn−1

z (Ω).

Proof. The space W 1,n
0 (Ω) can be characterized (see e.g. Theorem 5.29 in [1]) as follows: let

f ∈ W 1,n(Ω), then f ∈ W 1,n
0 (Ω) if and only if the extension of f by zero to Rn \ Ω̄ belongs to

W 1,n(Rn). Using this characterization, we can identify any u ∈ W 1,n
0 (Ω) with ũ ∈ W 1,n(Rn)

supported in Ω̄. By Van Schaftingen’s theorem such ũ is an element of dn−1(Rn) and is

supported in Ω̄. Therefore by the last proposition ũ ∈ dn−1
z (Ω).

Proposition 3.8.8. The space d1
z(Ω) is a proper subspace of bmoz(Ω).
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Proof. It follows immediately from Theorem 3.2.6, Proposition 3.8.4 and the definition of

bmoz(Ω).

All in all, we can see that the spaces dkz(Ω) form a family of intermediate spaces between

W 1,n
0 (Ω) and bmoz(Ω).

3.8.2 dk(Ω) spaces

It follows directly from the definitions of dk(Rn) and dk(Ω), that u → u|Ω maps dk(Rn) to

dk(Ω) and

‖u|Ω‖dk(Ω) ≤ ‖u‖dk(Rn), (3.8.1)

where u|Ω stands for the restriction of u to Ω.

Repeating verbatim the proof of Proposition 3.2.4, one obtains

Proposition 3.8.9. Let 1 ≤ k < l ≤ n and u ∈ dl(Ω). Then u ∈ dk(Ω) and ‖u‖dk(Ω) ≤

‖u‖dl(Ω). In other words

dn(Ω) ⊂ dn−1(Ω) ⊂ · · · ⊂ d1(Ω).

In order to show that W 1,n(Ω) ⊂ dn−1(Ω), we recall the extension property of Sobolev

spaces. It is well-known (see e.g. Theorem 5.24 in [1]) that if Ω is a Lipschitz domain then

there exists a bounded linear operator E : W l,p(Ω) → W l,p(Rn) such that Eu = u almost

everywhere in Ω for all u ∈ W l,p(Ω). If we consider such an extension E on W 1,n(Ω) and

recall (3.8.1) and Theorem 3.2.5, then

‖u‖dn−1(Ω) = ‖Eu|Ω‖dn−1(Ω) ≤ ‖Eu‖dn−1(Rn) ≤

≤ ‖Eu‖W 1,n(Rn) ≤ ‖E‖‖u‖W 1,n(Ω).

In other words,

Proposition 3.8.10. If Ω is a bounded Lipschitz domain, then W 1,n(Ω) is continuously

embedded into dn−1(Ω).

The following result is the analogue of Theorem 3.2.6 on Lipschitz domains.
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Theorem 3.8.11. Any u ∈ d1(Ω) is a bmor(Ω) function and

‖u‖bmor(Ω) ≤ C‖u‖d1(Ω).

The proof is more technical than the one of Theorem 3.2.6 because of the presence of

∂Ω. Firstly, we state a corollary of the Nečas inequality:

‖f‖L2(Ω) ≤ C(‖f‖W−1,2(Ω) + ‖∇f‖W−1,2(Ω))∀f ∈ L2(Ω).

Lemma 3.8.12 ([5], Lemma 10). Let Ω be a bounded Lipschitz domain in Rn. If g ∈ L2(Ω)

and
∫
g = 0, then there exists a vector-valued function F ∈ W 1,p

0 (Ω,Rn) such that divF = g, in Ω

‖DF‖L2 ≤ C‖g‖2.

Here DF is a matrix ∂jFi and C > 0 depends only on the Lipschitz constant of Ω.

Using this lemma we prove the following

Lemma 3.8.13. Let Ω be a bounded Lipschitz domain in Rn. If g ∈ H1
z (Ω), then there exists

a vector-valued function F ∈ W 1,1
0 (Ω,Rn) such that divF = g, in Ω

‖DF‖L1 ≤ C‖g‖H1 .

Proof. Let g ∈ H1
z (Ω). Then by Theorem 2.5.5, it can be decomposed into H1

z (Ω) atoms

ai ∈ L2(Rn) as

g =
∞∑
i=1

λiai

and
∞∑
i=1

|λi| ≤ 2‖g‖H1 .

For each i ≥ 1, by means of Lemma 3.8.12, we can find V i ∈ W 1,2
0 (Qi,Rn), such that divVi = ai in Qi

‖DV i‖L2 ≤ C‖ai‖L2 .

As W 1,2
0 (Bi) fields, V i can be continuously extended by 0 to W 1,2(Ω). We denote these

extensions by the same V i. We claim that F =
∞∑
i=1

λiV
i is the solution we seek.
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Indeed, since ai are atoms, we have

‖DV i‖L1 ≤ |Qi|1/2‖DV i‖L2 ≤ C|Qi|1/2‖ai‖L2 ≤ C1 for all i ≥ 1.

Therefore, the partial sums
∑N

i=1 λiDV
i, supported in Ω, converge to an element of W 1,1

0 (Ω,Rn×n)

and

‖DF‖L1 ≤ C1

∑
i

|λi| ≤ C‖g‖H1 .

Finally, by the construction of F ,

divF =
∑
i

λi · divV i =
∑
i

λiai = g.

Now we can prove the last theorem of this section

Proof of Theorem 3.8.11. We will use the duality between h1
z(Ω) and bmor(Ω) asserted by

Theorem 2.5.12. By Lemma 2.5.8, it is enough to show that for any f ∈ D(Ω) and u ∈ d1(Ω)

|u(f)| ≤ C‖u‖d1‖f‖h1 . (3.8.2)

Given f ∈ D(Ω), we write f as the sum f = g + θ, where

g = f −
∫
f(x)dx · ψ,

θ =

∫
f(x)dx · ψ,

where ψ ∈ D(Ω) is any function with
∫
ψ = 1.

Note that θ ∈ D(Ω) with ‖θ‖h1 ≤ ‖ψ‖L∞‖f‖h1 and ‖θ‖W 1,1 ≤ ‖f‖h1‖ψ‖W 1,1 . Moreover if

we define Θ =
n∑
i=1

θdxi ∈ D1(Ω), then ‖Θ‖Υ1
1(Ω) ≤ C‖ψ‖W 1,1‖f‖h1 . Therefore

|u(θ)| ≤ ‖u‖d1(Ω)‖Θ‖Υ1
1(Ω) ≤ Cψ‖u‖d1(Ω)‖f‖h1 . (3.8.3)

On the other hand, for g ∈ D(Ω), we recall Lemma 2.4.3 to see that g ∈ H1
z (Ω) and

‖g‖H1 ≤ CΩ‖g‖h1 ≤ C ′ψ‖f‖h1 . (3.8.4)
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Hence, Lemma 3.8.13 is applicable and there exists F ∈ W 1,1
0 (Ω;Rn) such that divF = g, in Ω

‖DF‖L1(Ω;Rn×n) ≤ C‖g‖H1 .

Using this F , we introduce n differential forms

Φj =
n∑
i=1

∂iFjdx
i

and claim that all Φj ∈ Υ1
1,0(Ω) and ‖Φj‖Υ1

1(Ω) ≤ C ′ψ‖f‖h1 . Assuming the claim and recalling

that u is well defined on components of Υ1
1,0(Ω) forms (see Remark 3.8.3), one has

|u(g)| = |u(
n∑
i=1

∂iFi)| ≤
n∑

i,j=1

|u(∂iFj)| ≤ (3.8.5)

≤ n‖u‖d1(Ω) max
1≤j≤n

‖Φj‖Υ1
1(Ω) ≤ C‖u‖d1(Ω)‖f‖h1 .

We complete the proof by deducing (3.8.2) from (3.8.3), (3.8.5) and the triangle inequality.

In order to prove the claim, we note that dΦj = 0 by construction and all components of

Φj are L1(Ω) functions, bounded in the L1-norm by a multiple of ‖g‖H1 . Recalling (3.8.4),

we may conclude that

‖Φj‖Υ1
1(Ω) = ‖Φj‖L1

1(Ω) ≤ C‖f‖h1 .

Furthermore, Fj ∈ W 1,1
0 (Ω) for j = 1, . . . , n, which means that there exist sequences

{Fm
j }∞m=1 ⊂ D(Ω) such that ‖∂iFm

j − ∂iFj‖L1(Ω) → 0, as m → ∞. Hence, by forming

closed D1(Ω)-forms

Φj,m =
n∑
i=1

∂iF
m
j dx

i,

we can construct D1(Ω) approximations of Φj, such that as m→∞,

‖Φj,m − Φj‖Υ1
1(Ω) = ‖Φj,m − Φj‖L1

1(Ω) → 0,

which shows that Φj ∈ Υ1
1,0(Ω) for j = 1, . . . , n.
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Chapter 4

Functions on Riemannian manifolds

with bounded geometry

4.1 Preliminaries

4.1.1 Riemannian manifolds

Let M be a connected smooth manifold, and TM and T ∗M be its tangent and cotangent

bundles respectively (see e.g. [42] for the basic theory of manifolds). The space of smooth

maps X : M → TM , we will denote by Γ(TM).

A metric g on M is a smooth function g : TM × TM → R such that

gp : TpM × TpM → R

is symmetric bi-linear and positive definite for all p ∈M . The manifold M equipped with a

metric g is called a Riemannian manifold and is denoted by (M, g).

4.1.2 Connection and co-variant derivative

A connection ∇ is defined as a smooth map ∇ : Γ(TM)×Γ(TM)→ Γ(TM) which is linear

in both variables, i.e. for each α, β ∈ R and X, Y, Z ∈ Γ(TM)

∇(αX + βZ, Y ) = α∇(X, Y ) + β∇(Z, Y ),
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∇(X,αY + βZ) = α∇(X, Y ) + β∇(X,Z)

and satisfying the following relations for any smooth f : M → R

∇(fX, Y ) = f∇(X, Y ),

∇(X, fY ) = f∇(X, Y ) +X(Df)Y.

For a fixed X ∈ Γ(TM), the map ∇X := ∇(X, ·) : Γ(TM) → Γ(TM) is called the (co-

variant) derivative in the direction X.

Among infinitely many connections on M , we will only be interested in the Levi-Civita

connection ∇, which satisfies two additional conditions: it is consistent with the Riemannian

metric

Zg(X, Y ) = g(∇(Z,X)) + g(X,∇(Z, Y )), ∀X, Y, Z ∈ Γ(TM)

and is torsion-free in the sense

∇(X, Y )−∇(Y,X) = [X, Y ],

where the commutator [X, Y ] ∈ Γ(TM) is defined as a vector field satisfying [X, Y ](θ) =

X(D(Y (θ)))− Y (D(X(θ))) for any θ ∈ T ∗M .

4.1.3 Geodesics and exponential maps

If γ : (a, b) ⊂ R → M is smooth, then γ′(t) ∈ Tg(t)M for each t ∈ (a, b). We say that γ is a

geodesic if ∇γ′(t)γ
′(t) = 0 for all t ∈ (a, b).

One of the basic facts about geodesics is the following result (the proof can be found on

p. 65 in [25])

Proposition 4.1.1. Let (M, g) be a Riemannian manifold. For every point p ∈ M , there

exists a neighborhood of p, Op ⊂M , ε > 0,

Up = {(q,X) : q ∈ Op, X ∈ TqM, g(X,X) < ε2}

and a smooth map γq,X(t) : Up × (−2, 2)→ M such that for every fixed (q,X) ∈ Up, γq,X is

the unique geodesic satisfying γq,X(0) = q and γ′q,X(0) = X.
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The uniqueness of γq,X in the proposition should be understood as follows. If there exists

γ̃ : (a, b)→M , a < 0 < b, such that γ̃(0) = q and γ̃′(0) = X, then γ̃ = γq,X on (a, b)∩(−2, 2).

This allows us to introduce the exponential maps.

Definition 4.1.2. Let p ∈ M and Bε(0) = {X ∈ TpM : g(X,X) < ε2} as in the last

proposition, then the map expp : Bε(0)→M defined by

expp(X) = γp,X(1), for X ∈ Bε(0)

is called the exponential map at p.

It follows from the inverse function theorem (see e.g. Proposition 2.9 in [25]) that for

each p ∈ M , expp is a diffeomorphism of some neighborhood of the origin in TpM onto its

image in M , which contains p ∈M for expp(0) = p. It shows that expp defines a coordinate

chart on M . Such coordinates are called the normal geodesic coordinates of M .

Let us note an important property of homogeneity of geodesics: γ : (−a, a) → M is a

geodesic with γ(0) = p and γ′(0) = X ∈ TpM , if and only if γc(t) := γ(ct), c > 0 is a geodesic

defined on (−a/c, a/c) and γc(0) = p, γ′c(0) = cX. This implies that if given p ∈ M , the

domain of the map γq,X(t) in the proposition above can be extended to Up × (−2c, 2c) for

some c > 1, then expp admits an extension to Bcε(0) ⊂ TpM . The case c = ∞ is of special

importance.

Definition 4.1.3. A Riemannian manifold (M, g) is called geodesically complete if the

exponential map expp admits an extension to the entire tangent space TpM or equivalently,

if any geodesic γ with γ(0) = p can be extended to a geodesic γ : R→M .

4.1.4 Riemannian manifold as a metric space

Given any smooth curve γ : [a, b]→M , the derivative γ′(t) ∈ Tg(t)M and one can define the

length of γ by

|γ| =
∫ b

a

√
g(γ′(t), γ′(t))dt.

The distance between any two points p, q ∈M then can be defined as

d(p, q) = inf
γ:γ(a)=p,γ(b)=q

|γ|.
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It is known (see e.g. [25], p. 146) that d(·, ·) is a metric. The completeness of such metric

space is characterized by the Hopf-Rinow theorem: (M, g) equipped with the above metric

d is a complete metric space if and only if (M, g) is geodesically complete.

4.1.5 Integration on (M, g)

We recall that on an oriented smooth manifold M of dimension n, there exist nowhere

vanishing n-differential forms, called volume elements. By fixing one of volume elements

dx1 ∧ · · · ∧ dxn, we define the integral of an n-differential form ω : M → Λn(M) via an

arbitrary covering of M by coordinate charts {(Ui, φi)} compatible with orientation and a

subordinate partition of unity {ψi}∫
M

ω =
∑
i

∫
φi(Ui)

(ψifi) ◦ φ−1(x)dx,

where fi are representations of ω in the coordinates φi = (x1, . . . , xn)

ω = fidx
1 ∧ · · · ∧ dxn.

On an oriented Riemannian manifold, there exists the canonical volume element is defined

as a n-differential form

dvol =
√

det(gi ,j )dx 1 ∧ · · · ∧ dxn

in any local coordinates (x1, . . . , xn) such that (∂x1 , . . . , ∂xn) is a positively oriented basis of

the tangent space and gi,j is a matrix representation of g in these coordinate systems.

4.2 Riemannian manifolds with bounded geometry

Let (M, g) be a complete Riemannian manifold. Then expp is defined on TpM and, as

mentioned earlier, for sufficiently small rp > 0, maps Brp(0) ∈ TpM diffeomorphically onto

an open subset of M . Let us denote by injM(p), the supremum of all such rp > 0 and define

the injectivity radius of M as

injM := inf{injM(p) : p ∈M}.

54



Definition 4.2.1. A Riemannian manifold (M, g) is called a manifold with bounded geom-

etry if

1. M is complete and connected;

2. injM > 0;

3. For every multi-index α, there exists Cα > 0 such that |Dαgi,j| ≤ Cα in the normal

geodesic coordinates (Ωp(rp), exp−1
p ).

Examples of manifolds with bounded geometry include compact Riemannian manifold,

Rn and Hn (see e.g. [26]).

4.2.1 Tame partition of unity

Let (M, g) be a Riemannian manifold with bounded geometry. For δ ∈ (0, injM), we denote

by Ωδ(p), the image Bδ(0) by the map expp which is called a geodesic ball with radius δ

centered at p.

Proposition 4.2.2 ([72] p. 284). For sufficiently small δ > 0 there exists a uniformly locally

finite covering of M by a sequence of geodesic balls {Ωδ(pj)}j∈Z+ and a corresponding smooth

partition of unity {ψj}j∈Z+ subordinate to {Ωδ(pj)}j∈Z+.

Such covering and partition of unity we will call following Taylor [68], a tame covering

and a tame partition of unity.

4.3 W s,p(M), h1(M) and bmo(M)

Definition 4.3.1 ([72], Chapter 7). Let (M, g) be a Riemannian manifold with bounded

geometry and let {ψj} be a tame partition of unity subordinate to a tame cover by geodesic

balls {Ωδ(pj)}. The Sobolev space W s,p(M), 1 < p <∞, s > 0 is defined as

W s,p(M) = {f ∈ D′(M) :
∑
j∈Z+

‖ψjf ◦ exppj ‖
p
W s,p(Rn) <∞}

Taylor in [68], introduced versions of Hardy spaces and bmo on manifolds with bounded

geometry. One way to define h1(M) is as follows:
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Definition 4.3.2 ([68] Corollary 2.4). Let f ∈ D′(M) and {ψj} a tame partition of unity

subordinate to a tame cover by geodesic balls {Ωδ(pj)}. We say that f ∈ h1(M) if
∑

j ‖(ψjf)◦

exppj ‖h1(Rn) <∞. We equip the space h1(M) with the norm

‖f‖h1(M) =
∑
j

‖(ψjf) ◦ exppj ‖h1(Rn).

The space bmo(M) is defined similarly

Definition 4.3.3 ([68] Corollary 3.4). Let f ∈ L1
loc(M) and {ψj} a tame partition of unity

subordinate to a tame cover by geodesic balls {Ωδ(pj)}. We say that f ∈ bmo(M) if∑
j ‖(ψjf) ◦ exppj ‖bmo(Rn) <∞. We equip the space bmo(M) with the norm

‖f‖bmo(M) =
∑
j

‖(ψjf) ◦ exppj ‖bmo(Rn).

Remark 4.3.4. All these classes of functions have equivalent global definitions. However, for

our purposes it is more convenient to use the introduced versions. We refer to [68], [4] and

[72] for alternative definitions and the proofs of their equivalence.

4.4 dk(M) spaces and the embedding into bmo(M)

Definition 4.4.1. Let {ψj} be a tame partition of unity subordinate to a tame cover by

geodesic balls {Ωδ(pj)}. We say that u ∈ D′(M) ∈ dk(M) if for each j, (ψju)◦exppj ∈ d
k(Rn)

and

‖u‖dk(M) :=
∑
j

‖(ψju) ◦ exppj ‖dk(Rn) <∞.

We complete this part with the result which immediately follows from the definitions

of the spaces W 1,n(M), dk(M), bmo(M) and the results of Section 3.2: Lemma 3.2.4 and

Theorems 3.2.5, 3.2.6.

Theorem 4.4.2. Let M be the Riemannian manifold with bounded geometry. Then the

following continuous embeddings are true

W 1,n(M) ⊂ dn−1(M) ⊂ · · · ⊂ d1(M) ⊂ bmo(M)
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Part II

Delay parabolic equations
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Chapter 5

Introduction

5.1 Non-spatial population models with time delay

The simplest mathematical model of population dynamics is the so-called Malthusian growth

model
dx

dt
= λx,

where x(t) is the population size at moment t and λ > 0 is the reproductive rate or difference

between birth and death rate. This model can be used to model population for short periods

but fails to predict the long-term future, because x(t) grows exponentially fast as t→∞.

A more realistic population model is known as the Verhulst growth model is derived from

the principle that the population change dx
dt

is proportional to the size of population x and

the remaining resources K − x. In other words,

dx

dt
= λx

(
1− x

K

)
, (5.1.1)

where K > 0 is the so-called carrying capacity of the population. The factor 1 − x/K on

the right hand side of (5.1.1), which makes it different from the exponential model, can be

viewed as a self-regulatory mechanism of the system or a feedback to the depleting resources.

Given initial condition x(0) = x0 < K, one can easily solve the equation to obtain

x(t) =
x0K

x0 − (x0 −K)e−λt
.

This function is monotonically increasing from x0 to K.
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However this monotonicity does not always agree with the long-term observations of some

populations. Certain species showed the presence of regular cycles in the population profiles

(see e.g. [34], [59]). One of the explanations of this phenomenon was suggested by a renown

ecologists Hutchinson [38]. He suggested that the feedback of the system occurs with some

time delay and suggested a modified equation, which is known as the Hutchinson equation

dx(t)

dt
= λx(t)

(
1− x(t− τ)

K

)
,

where τ > 0 is the time delay parameter. It is far more difficult to study the solutions of

this equation than of (5.1.1). In order to illustrate this, we note that the change of variables

y(t) = −1 + x(t)/K, s = τt transforms the equation into

dy(s)

ds
= −λτy(s− 1) (1 + y(s)) , (5.1.2)

which was studied by for the first time by Wright [80]. It was shown by Wright that the trivial

solution y(t) = 0 is asymptotically stable if λτ < π/2 and unstable if λτ > π/2, which implies

the corresponding results for the equilibrium state x(t) = K of the Hutchinson’s equation (in

[38] this result is attributed to Lars Onsager, p 237 in [38]). However, the question whether

y = 0 is a globally stable solution of (5.1.2), posed by Wright in 1955 remains open.

5.2 Spatial population models with time delay

The spatial population models are used to simulate the process of how the population disperse

in space and grows in time.

5.2.1 Models without delay

The fundamental spatial model, based on the extension of the logistic equation (5.1.1) is

known as the Fisher-KPP equation

∂u(t, x)

∂t
−D∆xu(t, x) = (α− βu(t, x))u(t, x). (5.2.1)

Here u(t, x) is a population size at location x at time t, ∆x is the Laplacian in variable

x, D is a diffusion coefficient, and α > 0 and β > 0 are the birth and death rates.
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It was proposed for x ∈ R in 1937 by Fisher [29]. At the same time it was studied in

two dimensional case and with a more general reaction term on the right by Kolmogorov,

Petrovskiy and Piskunov (KPP) [41].

A linearized version of Fisher-KPP model can be obtain from (5.2.1) by choosing β = 0

(thus assuming the Malthusian growth)

∂u(t, x)

∂t
−D∆xu(t, x) = αu(t, x). (5.2.2)

This equation is sometimes called the Skellam model after J.G. Skellam who first proposed

to consider it in [62].

A more general approach to the modelling of population dynamics in space and time is

to consider a reaction-diffusion equation

∂u(t, x)

∂t
−D∆xu(t, x) = F (u(t, x)), (5.2.3)

where F is the so-called growth function, which is assumed to be smooth and satisfy F (0) =

F (u+) = 0, for some u+ > 0.

Clearly, a linear function F corresponds to (5.2.2), while the choice F (u) = αu − βu2

gives (5.2.1). Other examples often used in the biological models are the Ricker function

F (u) = Cue−ku [58] and the Beverton-Holt function F (u) = Cu
1+ku

[9]. Another example of

the growth function is F (u) = 3u2

1+2u2 −u, which is interesting for biologists for it exhibits the

so-called strong Allee effect (F (u) < 0 for u ∈ (0, 1/2) and F (u) > 0 for u ∈ (1/2, 1)). A

detailed discussion of these models and their generalizations in the non-spatial setting can

be found in [54].

5.2.2 Models with time delay

The incorporation of the time lag into (5.2.3) gives a more general model

∂u(t, x)

∂t
−D∆xu(t, x) = F (u(t, x), u(t− τ)). (5.2.4)

There have been numerous studies of this type of equations over the last 25 years. In

[16], Britton considered the case F (u, v) = u(1 + αu+ v). In particular, his equation

∂u(t, x)

∂t
−D∆xu(t, x) = u(t, x)(1 + αu(t, x) + u(t− τ, x))
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generalizes the Hutchinston equation (corresponds to D = 0) and the Fisher-KPP equation

(corresponds to τ = 0).

The time-delay version of the Ricker function F (u, v) = pve−αv − βu became known as

the Nicholson function after the work [33], where it was shown that the model based on

such growth function explains the experimental observations of blowflies by Nicholson [53]

. The properties of spatial models with the Nicholson growth function were studied in [2],

[31] [43],[49] and other works.

5.2.3 The structure of Part 2

The structure of the rest of this part is as follows. In Section 6 we discuss the stability of

travelling wave solutions of non-linear equation and the corresponding linearized problem.

We formulate our main results regarding some linear parabolic equations with time delay,

which completely characterizes the stability region for these type of equations. In Section 7

we prove these results.
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Chapter 6

Main results

6.1 Travelling wave solutions and their stability

Following [47] and [50], we consider the initial value problem

∂u(t, x)

∂t
−D∆xu(t, x) = b(u(t− τ, x))− d(u(t, x)) (6.1.1)

u(t, x) = u0(t, x), where (t, x) ∈ [−τ, 0]× Rn,

where b, d are non-linear functions that we will call the birth and death rate functions. We

assume the functions satisfy the following conditions

(H.1) b(0) = d(0) = 0 and there exists u+ > 0 such that b, d ∈ C2[0, u+] are non-decreasing

functions and b(u+) = d(u+)

(H.2) b′(0) > d′(0) ≥ 0, 0 ≤ b′(u+) < d′(u+)

(H.3) For u ∈ (0, u+), d′′(u) ≥ 0 and b′′(u) ≤ 0

This model is quite general and includes the Fisher-KPP model with time delay and the

spatial model of Nicholson equation as special cases.

The conditions imply that the equation

du(t)

dt
= b(u(t− τ))− d(u(t))
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has two equilibrium solutions u = u− := 0 and u = u+, the latter of which is stable while the

former is not. The last condition prevents the existence of other equilibrium points between

0 and u+.

One the fundamental question in the theory of nonlinear PDE is the existence and sta-

bility of the travelling wave solution between these two equilibrium states.

Definition 6.1.1. A special solution of (6.1.1) of the form u(t, x) = φ(x · θ + ct) with

θ ∈ Rn : |θ| = 1 and φ(s)→ u± as s→ ±∞ is called a travelling wave solution with velocity

c .

It is possible to show (see Proposition 1.1 in [50]) that for any τ > 0 there exists c∗ > 0

such that there exist travelling waves with any velocity c ≥ c∗ and there is no travelling wave

with velocity c < c∗.

The progress in the study of the stability of travelling wave solutions can be summarized

as follows. For sufficiently large c > c∗ the local stability of travelling wave solutions was

shown in [49] (see also [48] for a more general result). The global stability for all c > c∗ was

obtained later in [45] (see also [46] for a more general version). The global stability of the

travelling waves including the critical case c = c∗ was established in [47] and [50].

It was shown in Section 3 of [50] that using the conditions imposed on the birth and

death functions, the question of stability of travelling wave solutions can be reduced to the

study of the linear parabolic equation with time delay

∂tu(t, x)−∆xu(t, x) + w · ∇xu+ αu(t, x) = βu(t− τ, x), t > 0, x ∈ Rn, (6.1.2)

where α > 0, β > 0 are specific contants depending on the wave speed c.

6.2 Parabolic equations with time delay

The equation (5.2.4) with F (u, v) = αu− βv, where α and β are called birth and mortality

rates, generalizes the Skellam model (5.2.2). The asymptotic behavior of their solutions was

completely understood by Travis and Webb in [70]. More precisely, Travis and Webb, in

their famous work [70] (see also [81]), considered the question of stability of the following
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Figure 6.1: Stability regions for equation (6.2.1) with τ = 1 on intervals of length π, 2π, 4π

boundary value problem:

(∂t −∆x + αI)u(t, x)− βu(t− τ, x) = 0, t > 0, x ∈ [0, π], (6.2.1)

u(t, 0) = u(t, π) = 0, t > 0

u(t, x) = φ(t, x) ∈ C([−τ, 0], L2[0, π]).

It was shown that the exact stability region is an open set bounded below by the solid graph

Λ shown in Figure 6.1. More precisely, if (τβ, τα) lies strictly above the curve, then there

exist K, ε > 0 such that |u(t, x)| ≤ K‖φ‖e−εt, uniformly in x ∈ Rn. Otherwise, there exists

a solution u(t, x) and x0 such that

lim sup
t→∞

|u(t, x0)| > 0.

It is not difficult to see that Travis-Webb’s reasoning implies that by amplifying the

period from π to Rπ, the stability region shifts upward by 1/R (dotted curves on Figure

7.3.1). So it is natural to expect that the epigraph of the limiting curve (the dashed curve

Γ on Figure 6.1) should be the stability region of the equation on the real line.

The stability problem of travelling wave described above suggests to consider a more

general setting and include first order derivatives in equation and consider the following
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initial value problem:

(∂t −∆x + w · ∇x + αI)u(t, x)− βu(t− τ, x) = 0, (6.2.2)

u(t, x) = φ(t, x) ∈ C([−τ, 0], L1(Rn)), (6.2.3)

where α, β ∈ R, τ > 0, w ∈ Rn, u(t, x) ∈ C(R, L1(Rn)).

It turns out that the following theorems are true for the limiting graph Γ, which will be

precisely defined by below in Definition 7.1.1.

Theorem 6.2.1 (A). Let τ > 0 and α, β ∈ R be such that Γ(τβ) ≤ ατ and ατ > −1. Then

there exists K > 0 such that, for any u(x, t) ∈ C([−τ,∞), L1(Rn)) satisfying (6.2.2) with

w = 0 and (6.2.3),

|u(x, t)| ≤ K‖φ‖t−n/2.

Moreover, if τα > Γ(τβ), then there exists ε > 0 such that

|u(x, t)| ≤ K‖φ‖e−εt.

Theorem 6.2.2 (B). Let τ > 0, w ∈ Rn \ {0} α ∈ R, and β > 0 be such that Γ(τβ) ≤ ατ .

Then there exists K > 0 such that, for any u(x, t) ∈ C([−τ,∞), L1(Rn)) satisfying (6.2.2)

and (6.2.3),

|u(x, t)| ≤ K‖φ‖t−n/2.

Moreover, if τα > Γ(τβ), then there exists ε > 0 such that

|u(x, t)| ≤ K‖φ‖e−εt.

Theorem 6.2.3 (C). Given τ > 0, β < 0, w ∈ Rn \ {0}, there exists α ∈ R such that

τα > Γ(τβ) and there exists u(x, t) ∈ C([−τ,∞), L1(Rn)) satisfying (6.2.2) such that

lim sup
t→∞

|u(0, t)| =∞.

So if w in (6.2.2) equals zero, then indeed, every solution inside the stability region decays

exponentially as t→∞. Moreover, for critical α, β, all solutions decay at least algebraically

as t → ∞. The same is true for the general w ∈ Rn when β > 0. However, in the left half

plane, the boundary of the stability region lies strictly above the graph Γ.
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Chapter 7

The Proofs of the main theorems

7.1 Preliminaries

We start with the following simple delay ODE

v′(t) + av(t)− beiθv(t− 1) = 0, (7.1.1)

where a, b, θ ∈ R are some constants and v(t) is a continuous function specified on t ∈ [−1, 0].

Definition 7.1.1. For x ∈ R and θ ∈ (0, π), we define

Γ(x, θ) = F (t(x, θ), θ) = (θ − t) cot(t),

where t(x, θ) ∈ (0, π) is implicitly defined by x = θ−t
sin(t)

.

It is not difficult to check that for each x ∈ R the following limits exist

lim
θ→0+

Γ(x, θ), lim
θ→π−

Γ(x, θ).

We extend the definition Γ(x, θ) for θ ∈ [0, π], by continuity and for [π, 2π], by putting

Γ(x, π + ω) = Γ(x, π − ω), ω ∈ (0, π). This makes Γ(x, ·) a continuous function on [0, 2π],

which we can further extend periodically to R. The graphs of Γ(x, θ) are shown in Figure

7.1.

In order to simplify notation we put

Γ(x) := Γ(x, 0) = lim
θ→0+

Γ(x, θ).
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The following theorem shows how the function Γ(x, θ) plays the role of the stability

criteria for equation (7.1.1).

Theorem 7.1.2 (Hayes-Sakata). Let a, b, θ ∈ R.

If a > Γ(b, θ) then there exists K(a, b, θ), ε(a, b, θ) > 0 such that

|v(t)| ≤ K‖v‖C[−1,0]e
−εt, (7.1.2)

for any continuous solution of (7.1.1).

If a ≤ Γ(b, θ), then there exists a solution of (7.1.1), v(t), such that

lim sup
t→∞

|v(t)| > 0.

In the case θ = 0 this result was proved by Hayes in [36], and for arbitrary θ it was

considered by Sakata in [60].

How is it relevant to our initial value problem (6.2.2)? Let u(t, x) be a solution of (6.2.2).

Then applying the Fourier transform in x, we obtain a delay ODE(
d

dt
+ (|ξ|2 + iw · ξ + α)I

)
û(ξ, t)− βû(ξ, t− τ) = 0. (7.1.3)

Changing variables by putting γ = w·ξ
|ξ| , r = |ξ|, and ur(t) = û(t, ξ), we have

u′r(t) + (α + r2 + iγr)ur(t)− βur(t− τ) = 0, t > 0. (7.1.4)

Lemma 7.1.3. Let α, β, γ ∈ R, τ, r ≥ 0.

If ur(t) is a solution of (7.1.4) then

ur(t) = e−iγtrvr(t/τ), (7.1.5)

where

v′r(s) + (a+ τr2)vr(s)− beicrvr(s− 1) = 0, s > 0 (7.1.6)

with a = τα, b = τβ, c = τγ.

Proof. Change variables: s = t/τ , ũr(·) = ur(τ ·). Then

ũ′r(s) + τ(α + r2 + iγr)ũr(s)− τβũr(s− 1) = 0

Now put vr(s) = eiγτrsũr(s) = eiγtrur(t).
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So, if u(t, x) is a solution of (6.2.2), then for each ξ ∈ Rn,

|û(t, ξ)| = |vξ(t/τ)|,

where vξ(t) is a solution of equation (7.1.1), whose asymptotic behavior as t→∞ is described

by estimate (7.1.2). The problem is that, estimate (7.1.2) is not directly applicable for our

purposes. In order to get back to u(x, t), we need to invert the Fourier transform and deal

with

|u(t, x)| ≤
∫
|û(ξ, t)|dξ.

So we need a more quantitative estimate than (7.1.2), with a more explicit dependence on

ξ.

Figure 7.1: Graphs of Γ(x, θ): for values θ = 0, θ = π/4, θ = π/2, θ = 3π/2 and θ = π from

the left to the right

7.2 Proofs of theorems A-C

Our main goal is to obtain estimates for solutions of (7.1.4) similar to the theorem of Hayes-

Sakata but also exhibiting the role of the parameter r.

In the next section we will prove the following results
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Theorem 7.2.1. Let ur(t) be a solution of (7.1.4). If α ≥ |β|, then

|ur(t)| ≤
√

2‖ur‖C[−τ,0]

(
1 + τ |β|

1 + τα + τr2

)t/τ
Theorem 7.2.2. If β < 0 and ατ ≥ Γ(τβ) > −1, then for any R > 0 there exist

C(a, b, τ, R), ε(a, b, τ, R) > 0 such that

|ur(t)| ≤ C‖ur‖C[−τ,0]e
−εr2te−µ∗t/(2τ), ∀t > 0, 0 ≤ r ≤ R

for all ur ∈ C[−1,∞), solving (7.1.4) with γ = 0. Here

µ∗ = sup{µ ≥ 0 : ατ − µ ≥ Γ(τβeµ)}.

Theorem 7.2.3. Let β < 0, τ > 0, γ 6= 0. Then there exist α such that τα > Γ(τβ), R > 0

and ur(t), solutions of (7.1.4), such that

lim
t>0
|ur(t)| =∞, r ∈ [R/2, R].

We start by showing how Theorems 7.2.1-7.2.3 imply Theorems A-C.

7.2.1 Proof of Theorem A

Let u(x, t) be a solution of (6.2.2), with w = 0. Then for each ξ ∈ Rn, the function

ur(t) = û(t, ξ) satisfies (7.1.4) with r = |ξ|, γ = 0. Let ατ ≥ Γ(τβ). There are two possible

cases

β > 0 case

If ατ ≥ Γ(τβ) and β > 0, then α ≥ β > 0. Applying Theorem 7.2.1,

|û(ξ, t)| ≤
√

2‖û(ξ, t)‖C[−τ,0]

(
1 + τβ

1 + τα + τ |ξ|2

)t/τ
,

for each fixed ξ. This estimate shows that for large t, û(ξ, t) ∈ L1 in the variable ξ. Therefore,

by the Fourier inversion,

|u(x, t)| =
∣∣∣∣∫ û(ξ, t)e−iξxdξ

∣∣∣∣ ≤ √2

∫
sup
−τ≤t≤0

|û(ξ, t)|
(

1 + τβ

1 + τα + τ |ξ|2

)t/τ
dξ ≤
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≤
√

2 sup
−τ≤t≤0

‖u(·, t)‖L1

∫ (
1 + τβ

1 + τα + τ |ξ|2

)t/τ
dξ

Observe that:

if α = β then ∫ (
1 + τβ

1 + τβ + τ |ξ|2

)t/τ
dξ = O(t−n/2);

if α > β then ∫ (
1 + τβ

1 + τα + τ |ξ|2

)t/τ
dξ = O(e−εt)

for some ε > 0.

So, we conclude that if β > 0 and α = β then any solution of (6.2.2) with initial data

(6.2.3) u(x, t) satisfies

|u(x, t)| ≤ K‖φ‖C([−τ,0],L1)t
−n/2

and if α > β, then ∃ε > 0 such that

|u(x, t)| ≤ K‖φ‖C([−τ,0],L1)e
−εt.

β < 0 case

Let ατ ≥ Γ(βτ) > −1 and β < 0, and take R > 0 be large enough to ensure α + R2 > |β|.

By Fourier inversion,

|u(x, t)| ≤
∫
|ξ|≤R

|û(ξ, t)|dξ +

∫
|ξ|>R

|û(ξ, t)|dξ.

The first integral can be estimated by Theorem 7.2.2,∫
|ξ|≤R

|û(ξ, t)|dξ ≤ KR‖φ‖e−µ∗t
∫
e−ε|ξ|

2tdξ ≤ K ′R‖φ‖e−µ∗tt−n/2,

where µ∗ > 0 if ατ > Γ(βτ) and µ∗ = 0 if ατ = Γ(βτ). The second integral is handled by

Theorem 7.2.1 as above, ∫
|ξ|>R

|û(ξ, t)|dξ ≤ L‖φ‖e−δt,

with some δ > 0.

So we conclude that if β < 0 and u(x, t) is a solution of (6.2.2) and :

if ατ ≥ Γ(βτ) then

|u(x, t)| ≤ K‖φ‖t−n/2,
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if ατ > Γ(βτ) then

|u(x, t)| ≤ K‖φ‖e−εt

for some ε > 0.

7.2.2 Proof of Theorem B

Let α ≥ |β|. Note that in the proof of Theorem A, for β > 0, we did not use the fact that

w = 0. Therefore using the same argument as in the case β > 0 above, one can see that any

solution u(x, t) of (6.2.2) satisfies

|u(x, t)| ≤ K‖φ‖t−n/2.

Moreover if α > β, then ∃ε > 0 such that

|u(x, t)| ≤ K‖φ‖e−εt.

7.2.3 Proof of Theorem C

Let β < 0, w 6= 0, η ∈ [1/2, 1] and γ = η|w|. Let α and R > 0 be as in Theorem 7.2.3. It

follows from the proof of that theorem that such α and R > 0 can be chosen uniformly in

η ∈ [1/2, 1].

Then there exists complex valued function λη(r) on [R/2, R] with <(λη(r)) ≥ ε0 on

r ∈ [R/2, R] and such that

λη(r) + (α + r2 + iη|w|r)− βe−τλη(r) = 0, r ∈ [R/2, R], η ∈ [1/2, 1]

Let ψ be a positive Schwartz function such that ψ(ξ) = 0 if

ξ · w ≤ 1/2|w||ξ|

or

|ξ2| /∈ [R/2, R].

Denote

ρ(t, ξ) = ψ(ξ) exp(λη(ξ)(|ξ|)t).

71



Finally, put

u(x, t) =

∫
ψ(ξ)eλη(ξ)(|ξ|)te−iξxdξ,

where η(ξ) = cos(ξ, w). By construction such function is a solution of (6.2.2) and

|u(0, t)| =
∣∣∣∣∫ ψ(ξ)eλη(ξ)(|ξ|)tdξ

∣∣∣∣ ≥ Ceε0t
∣∣∣∣∫ ei=(λη(ξ)(|ξ|)t)

∣∣∣∣
Therefore, there exists α such that Γ(β) < α < |β| and a solution u(x, t) of (6.2.2) so that

lim sup
t→∞

|u(0, t)| =∞.

7.3 Proofs of theorems 7.2.1-7.2.3

We will need the following proposition which is a corollary of a more general principle (e.g.

Theorem 5.4 of [23] or Theorem 4.3 in [6])

Proposition 7.3.1. Let a, b, θ ∈ R and

ha,b,θ(λ) = λ+ a− be−λ+iθ.

1. If all zeros of ha,b(λ) lie in the half plane <(λ) ≤ 0 and all purely imaginary zeros

λ = iy are simple, then there exists K(a, b) > 0 such that for every v(t) ∈ C[−1,∞],

satisfying (7.1.1), we have

|v(t)| ≤ K(a, b)‖v‖C[−1,0], ∀t > 0.

2. If all zeros of ha,b(λ) lie in the half-plane <(λ) < −ε < 0, then there is K(a, b) > 0 so

that

|v(t)| ≤ K(a, b)‖v‖C[−1,0]e
−εt, t > 0,

for all continuous solutions of (7.1.1).

The following lemma is self-evident.

Lemma 7.3.2. Let a, b, θ ∈ R, and µ ∈ R. Let v(t) be continuous on [−1, 0] and

v′(t) + av(t)− beiθv(t− 1) = 0.
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If we let w(t) = eµtv(t), then w(t) is a continuous solution of

w′(t) + a∗w(t)− b∗eiθw(t− 1) = 0, (7.3.1)

with

a∗ = a− µ, b∗ = beµ. (7.3.2)

Let us outline our strategy, before going into details.

By Lemma 7.1.3, it is enough to estimate solutions of equation (7.1.6). So we start with

it.

When r in (7.1.6) equals 0, the Hayes-Sakata theorem gives a necessary and sufficient

condition to ensure the stability of all solutions: if a > Γ(b) then there exist K(a, b) and

ε(a, b) so that

|v0(t)| ≤ K(a, b)‖v0‖C[−1,0]e
−ε(a,b)t.

If we assume that c = 0 in (7.1.6), then as r > 0 increases, the corresponding point (b, a+τr)

is moving more into the region of stability. In this case we can expect a better order of decay,

i.e. ε(a + r2, b) should be an increasing function of r. Though, potentially, the function

K(a + r2, b) could also start growing, it turns out to be uniformly bounded in the region

a > |b|. In this case we obtain the most accurate estimate - Theorem 7.2.1. We cannot say

that K(a, b) is uniformly bounded in a > Γ(b), because it blows up to ∞ near the point

(−1,−1), so we will need to be careful near that point. Finally, controlling the growth of ε

as a function of r, we will prove Theorem 7.2.2.

If c 6= 0, the situation is different. Figure 7.1 shows that as θ increases the graphs are

“moving”to the right. If the point (a, b), of the parameters in (7.1.6), lies in the left half

plane, then as r grows, the point (b, a + τr2) moves upward as before, but now the graph

shifts to the right at the rate proportional to r. As a result, for small r > 0, the point

(b, a + τr2) will end up below the stability region, which is the epigraph of Γ(x, cr). This

will prove Theorem 7.2.3.
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7.3.1 Proof of Theorem 7.2.1

Lemma 7.3.3. Let a > 0 and u ∈ C[−1,∞) satisfy

u′(t) + au(t)− aeiθu(t− 1) = 0. (7.3.3)

If for some m ∈ N

|<(eikθu)(t)|, |=(eikθu)(t)| ≤ 1, k = 0, 1, . . . . ,m; t ∈ [−1, 0],

then for non-negative integer l so that l ≤ m,

|<(eikθu)(t)|, |=(eikθu)(t)| ≤ 1, k = 0, 1, . . .m− l; t ∈ [l − 1, l]. (7.3.4)

Proof. We will prove only the real-part case using induction in l (imaginary parts can be

considered exactly in the same way).

For l = 0, there is nothing to prove. Assume that the claim is true for l = l0 < m. Put

u(t) = e−atC(t). Then C(l0) = eal0u(l0) and

C ′(t) = eataeiθu(t− 1), t ∈ [l0, l0 + 1].

Clearly, C(t) = C(l0) +
∫ t
l0
C ′(y)dy. Multiply the function C by exponentials eikθ (k ≤

m− l0 − 1) and use (7.3.3) to get

eikθC(t) = eal0eikθu(l0) +

∫ t

l0

aeayei(k+1)θu(y − 1)dy.

Then using our assumption,

<(eikθC(t)) ≤ eal0 +

∫ t

l0

aebydy = eat

and

<(eikθC(t)) ≥ −eal0 −
∫ t

l0

aeaydy = −eat

for t ∈ [l0, l0 + 1], k ∈ [0,m− l0 − 1]. Hence, |<(eikθu(t))| ≤ 1.

Corollary 7.3.4. Let a > 0, θ ∈ R. If u ∈ C[−1,∞) is a solution of

u′(t) + au(t)− aeiθu(t− τ) = 0,

then

|u(t)| ≤
√

2‖u‖C[−τ,0], t ≥ 0.
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Lemma 7.3.5. Let a ≥ |b|, c ∈ R and r, τ > 0.

If vr(t) ∈ C[−1,∞) is a solution of

v′r(t) + (a+ τr2)vr(t)− beicrvr(t− 1) = 0, t > 0,

then

|vr(t)| ≤
√

2‖vr‖C[−1,0]

(
1 + |b|

1 + a+ τr2

)t
,

all t, r > 0.

Proof. Fix r and let z = sup{µ : µ+ |b|eµ ≤ a+ τr2}. If v(r) is a continuous solution of

v′(t) + (a+ τr2)v(t) = beicrv(t− 1), t > 0,

then by Lemma 7.3.2, v(t) = w(t)e−zt, where

w′(t) + dw(t)− dei(cr+arg(b))w(t− 1) = 0,

where d = a− z = |b|ez. By the above corollary,

|w(t)| ≤
√

2‖w(t)‖ ≤
√

2‖v(t)‖C[−1,0].

Therefore

|v(t)| ≤
√

2‖v(t)‖C[−1,0]e
−zt

As it follows from the definition of z

a+ τr2 − z = |b|ez

a+ τr2 = z + |b|ez ≤ (1 + |b|)ez − 1

z ≥ ln

(
1 + a+ τr2

1 + |b|

)
.

Finally,

|v(t)| ≤
√

2‖v(t)‖C[−1,0]

(
1 + |b|

1 + a+ τr2

)t
.

Now applying Lemmas 7.1.3 and 7.3.5, we obtain Theorem 7.2.1.
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7.3.2 Proofs of Theorems 7.2.2 and 7.2.3

Proof of Theorem 7.2.2

Put

K(α, β) = sup
v

sup
t>0

|v(t)|eµ∗t/2

‖v‖C[−1,0]

,

where the outer supremum is taken over all continuous solutions of

v′(t) + αv(t)− βv(t− 1) = 0 (7.3.5)

and

µ∗ = sup{µ ≥ 0 : Γ(βeµ) + µ ≤ α}. (7.3.6)

By this choice, every solution of (7.3.5) satisfies

|v(t)| ≤ K(α, β)‖v‖Ce−µ∗t/2.

It follows from the proof of Theorem 5.2 in [35] and Lemma 7.3.2, that K(α, β) is a

continuous function on S = {(β, α) : α > Γ(b)}. The function K(α, β) roughly speaking

plays the role of
√

2 that we had in the last lemma. Note that K(α, β) can be continuously

extended to S̄ \ (−1,−1), because if α = Γ(β) > −1, then all imaginary solutions of λ +

α − βe−λ = 0 are simple. However, for α = Γ(−1) = −1, λ = 0 is a double root of

λ+ α− βe−λ = 0 and by Proposition 7.3.1, K(−1,−1) =∞.

Lemma 7.3.6. Let b ∈ (−∞, 0), a ≥ Γ(b) > −1 and r, τ > 0. Let µ∗ be defined by (7.3.6).

For any R > 0 there exists C(a, b, τ, R), ε(a, b, τ, R) > 0 such that

|vr(t)| ≤ C‖vr‖C[−1,0]e
−ετr2te−µ∗t/2, ∀t > 0, 0 ≤ r ≤ R

for all vr ∈ C[−1,∞) satisfying

v′r(t) + (a+ τr2)vr(t) = bvr(t− 1), t > 0.

Proof. As we showed above

|vr(t)| ≤ K(α + τr2, β)‖vr‖C[−1,0]e
−z(r)t/2,
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where

z(r) = sup{µ ≥ 0 : a+ τr2 − µ ≥ Γ(βeµ)}

Since K(a, b) is continuous and can be extended to ∂S \ (−1,−1) and a > −1, there exists

C > 0 such that K(a+ τr2, b) < C. So all we need to do is to show that for some ε,

z(r) ≥ z(0) + ετr2, 0 ≤ r ≤ R

or

z′(r) ≥ τεr2, 0 ≤ r ≤ R.

By the definition of z(r)

a+ τr2 − z(r) = Γ(bez(r))

and for x = bez 6= −1

z′(r) =
2τr

1 + Γ′(x)x
.

We complete the proof by showing that for |x| < L, x 6= −1

− 1 < Γ′(x)x < 2L. (7.3.7)

If x ≥ −1, then Γ(x) = x and Γ′(x) = 1. For x = −t/ sin(t) < −1, Γ(x(t)) = −t cot(t).

Then
d

dt
Γ(x(t)) =

t− cos(t) sin(t)

sin2(t)

dx

dt
=
t cos(t)− sin(t)

sin2(t)

Γ′(x) =
t− cos(t) sin(t)

t cos(t)− sin(t)
,

where x = − t
sin(t)

, t ∈ (0, π). It is not difficult to show that

−2 ≤ t− cos(t) sin(t)

t cos(t)− sin(t)
≤ −1, t ∈ (0, π).

So for −L < x < −1.

0 ≤ Γ′(x)x ≤ 2L.

Combining Lemma 7.1.3 and the last lemma, we obtain Theorem 7.2.2.
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Proof of Theorem 7.2.3

The final goal is to show that if γ 6= 0 then it is impossible to obtain results similar to the

ones established above. More precisely, for any β < 0, there exists R > 0 and continuous

functions ur(t), solutions of (7.1.4) with τα > Γ(τβ), such that

sup
t>0
|ur(t)| =∞, ∀r ∈ (0, R).

Lemma 7.3.7. Let a, b ∈ R, τ, r > 0 and

z(r) = sup{µ ∈ R : a+ τr2 − µ ≥ Γ(beµ, cr)}.

If c 6= 0, then for any b < 0, there exists a > Γ(b) and R > 0 such that

z(r) < 0, ∀r ∈ [R/2, R].

Proof. Since Γ(x, θ) is even with respect to θ we can assume that c > 0. We will show that

given c > 0 and b < 0, there exists ε = ε(b, c) > 0 so that

lim
r→0+

z′(r) ≤ −ε < 0.

This will be enough to prove the theorem because then for some small R > 0

z(r) = z(0) +

∫ r

0

z′(s)ds ≤ z(0)− εr/2, r ∈ [R/2, R].

Hence, choosing a− Γ(b) > 0 so small that z(0) < εR/8, we will have

z(r) ≤ −εR/8 < 0, r ∈ [R/2, R].

Recall that for θ 6= 0 mod π,

Γ(x, θ) = F (t(x, θ), θ),

where

F (t, θ) = (θ − t) cot(t)

and t(x, θ) ∈ (0, π), so that

x =
θ − t
sin(t)

.

Let us fix t0 ∈ (0, π) so that b = −t0/ sin(t0).
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By the definition of z(r),

a+ τr2 − z(r) = Γ(bez(r), cr) = F (t(bez(r), cr), cr)

2τr − z′ = F ′t (t, cr)(t
′
x(be

z, cr)[bezz′] + ct′θ(be
z, cr)) + cF ′θ(t, cr),

and

z′ =
2τr − cF ′θ(t, cr)− cF ′t (t, cr)t′θ(bez, cr)

1 + F ′t (t, cr)t
′
x(be

z, cr)bez
.

Furthermore,

F ′θ(t, θ) = cot(t)

F ′t (t, θ) = −sin(t) cos(t) + (θ − t)
sin2(t)

and

t′θ =
sin(t)

sin(t) + (θ − t) cos(t)
.

So

F ′θ(t, θ) + F ′t (t, θ)t
′
θ(x, θ) =

cos(t)

sin(t)
− sin(t) cos(t) + (θ − t)

sin(t)(sin(t) + (θ − t) cos(t))

=
−(θ − t) sin2(t)

sin(t)(sin(t) + (θ − t) cos(t))
=

t− θ
1 + (θ − t) cot(t)

=
t− θ

1 + Γ(x, θ)

Therefore, denoting x = bez(r),

z′(r) =
2τr − c(t(x, cr)− cr)/(1 + Γ(x, θ))

1 + Γ′x(x, cr)x

and recalling (7.3.7) one can see that

lim
r→0+

z′(r) =
−ct0

(1 + Γ(b))(1 + Γ′x(b)b)
≤ −ε < 0,

for some ε > 0.

Lemma 7.3.8. Given b < 0, τ > 0, c 6= 0, there exists a > Γ(b, cr), R > 0 and vr(t) ∈

C[−1,∞), solutions of (7.1.6) such that

sup
t>0
|vr(t)| =∞, r ∈ [R/2, R].
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Proof. By Lemma 7.3.2,

vr(t) = e−z(r)wr(t)

where

w′r(t) + Γ(bez(r), cr)wr(t)− bez(r)eicrwr(t− 1) = 0.

By part (b) of Theorem 7.1.2, there are always wr(t) such that

lim sup
t→∞

|wr(t)| > 0.

Combining the last result with Lemma 7.1.3, we obtain Theorem 7.2.3.

7.4 Implications to the stability of travelling waves

One of the motivations to study the Skellam model with time delay was to give a more

rigorous proof of Theorem 2.3. in [50]. Since there we deal with positive coefficients α, β,

this goal was achieved by proving Theorem B.

In its current form, the negative result (Theorem C) is not applicable to population

models, because a negative death rate β does not have a biological meaning. However, if

both α and β are negative, then we can swap the roles of the variables in (6.1.2) and have

a positive death rate −α and positive birth rate −β. Such growth rates cannot be obtained

from the linearization of the model (6.1.1) satisfying conditions (H.1) - (H.3). It seems

plausible that the right setting in which the negative result can be used is the growth model

with the Allee effect, where b(u) − d(u) has three zeros 0, u1, u2 and b − d is negative and

concave up on (0, u1) and positive and concave down on (u1, u2).
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