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Abstract

Random and periodic representations of composite microstructures are inherently different

both in terms of the resultant range of stresses that each phase carries as well as the total

load over the entire volume comprising both matrix and fiber phases. In this study, an

algorithm was developed to generate random representative volume elements (RVE) with

varying volume fractions and minimum distances between fibers. The random microstruc-

tures were analyzed using finite element models (FEM) and the results compared to those

for periodic microstructured RVEs in terms of the range of stress values, maximum stress,

and homogenized stiffness values. Using a large number of random RVE analyses, a mean-

ingful estimation for range and average maximum stress in the matrix phase was achieved.

Results show that random microstructures exhibit a much larger range of stress values than

periodic microstructures, resulting in an uneven distribution of load and distinct areas of

high and low stress concentration in the matrix. It is shown that the maximum stress in

the matrix phase, often responsible for failure initiation, is largely dependent on the random

morphology, minimum distances between fibers, and volume fraction. Moreover, it is shown

that the predicted overall load-carrying capacity of the matrix changes depending on the

use of random or periodic microstructures.

Keywords:

micromechanics, representative volume element (RVE), finite element, random

microstructure, stress concentration

1. Introduction

Micromechanical analysis can provide researchers with a range of information on the local

and global properties of composite materials. Many studies in composite structural design
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and analysis are done at the macrostructural level using homogenized material properties,

but there are a number of macrostructural behaviours that are governed by fiber/matrix

interactions and properties at the microstructural (fiber) level [1, 2]. A thorough under-

standing of composite fiber/matrix interactions and their underlying mechanisms is critical

to understanding and predicting the macrostructural behaviour of these materials.

Figure 1 shows two examples of typical periodic and random microstructures. Microme-

chanical analysis is traditionally performed on a periodic (or repeating) microstructure,

where there are two types of periodic microstructures commonly referred to as hexagonal

and square packed. The periodic microstructure assumption confines researchers to the study

of global phenomena such as global effective properties, often leading to difficulties with the

accurate prediction of material properties and associated behaviour under load. Because

of the irregular nature of the fiber distribution within the composite cross section, a phe-

nomenon such as failure that is highly dependent on local morphology can not be accurately

studied using ordered cross sections based on the periodic microstructure assumption.

Real composite structural morphology is very different from the repeating microstructure

model and there is therefore an error associated with the use of repeating microstructures for

analysis, particularly in the context of non-linear problems [3]. Microstructural morphology

of composites influences the magnitudes and the distribution of stresses at the microstruc-

tural scale and ultimately dictates the overall behavior of the composite material at the

macrostructural level. For this reason, irregular or random microstructures based on real

composite morphologies have been adopted for the evaluation of linear and non-linear prop-

erties of composites by several researchers [4, 5, 6]. Random microstructures have also been

used in the computational design of novel fibers [7].

It should also be noted that analytical approaches such as the famous Mori-Tanaka

method [8, 9] ] and self-consistent schemes have been successful at predicting the overall

properties of composites. In addition, there exist homogenization methods that can com-

pute second order moments of local stress [10, 11]. However, analytically predicting the

range and distribution of stresses and strains, and the interactions between fibers or inclu-

sion phase remains a challenge. In a recent study, it was shown that finite element analysis

results of strain maps have a good agreement with experimental results acquired from digi-

tal image correlation (DIC). [12]. And with the computational advances of recent decades,

it is affordable to analyze irregular or random microstructures and study local phenomena

using finite element analysis. A significant challenge associated with the analysis of ran-

dom microstructures is the generation of a representative volume element (RVE) that is a
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geometrical representation of the actual microstructure [13], meaning that the RVE must

be statistically equivalent to a real microstructure [14, 15]. A good geometrical represen-

tation requires that the size of the RVE be optimum; if the RVE is too small it cannot

include the range of irregularities that affects stress distribution and if it is too large, it is

computationally expensive.

Transverse matrix microcracking is often the first mode of failure in composite struc-

tures [16] and governs the fracture process [17, 18]. The current study is focused on the

transverse cross-section where the failure and fracture initiation is dominated by matrix

properties and where the distribution of fibers dictates the stress concentrations and distri-

butions in the matrix. Random microstructures are used to study the effects of morphology

and fiber distribution on stress concentrations and the maximum stresses in the matrix phase

of carbon-epoxy composites.

In this study, we show that the maximum stress in the matrix is largely dependent

on the random morphology of the microstructure. First, the stresses in the matrix phase

for periodic and random microstructures are analyzed with a new approach using an area

percentage histogram. The histogram is a method to display the results for the entirety of

the matrix phase for both types of microstructure. Secondly, it is shown that it is necessary

to investigate a large number of random samples to ensure the inclusiveness of the analysis

for maximum stress. This is because the maximum stress in the matrix phase depends on the

specific random morphology and consequently, the results of analyses for maximum stress

in random RVEs leads to a range of values rather than a singular value. These values then

can be used in probabilistic design optimization of macro-scale structures [19] or reliability

analysis, uncertainty modeling, and life prediction of composite parts [20, 21, 22].

The results show the range and frequency of the maximum stress values vary with dif-

ferent types of microstructures. It is shown that both the range of values as well as the

maximum stress is strongly dependent on the minimum distance between fibers. Also, the

modulus properties in the transverse direction change depending on the choice of microstruc-

tural representation due to the difference in the load-carrying behavior of the matrix in the

random and periodic microstructures. It is shown that the matrix phase participates less in

carrying the transverse load in random microstructures compared to periodic ones.

2. Microstructural representation

Although the word random implies no biased information, random microstructures fol-

low rules such as the minimum distance between fibers. As soon as such a rule is added

3



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

to a “random” phenomena it is no longer random, and perhaps a better term for these mi-

crostructures would be pseudo-random or irregular. For the purposes of this study, however,

the term “random” is used to describe irregular microstructures and the term “periodic” for

regular or repeating microstructures.

Several methods exist for the generation of random microstructures. These methods

can be classified in two main categories; image-processing based and numerical generation.

For the first method, an image from the cross section of the composite is acquired and the

microstructure topology is generated numerically using image processing techniques [23, 24,

3, 25]. This method requires several steps (image acquisition, image processing, etc) and

can be computationally expensive if a large number of different random arrangements are

to be studied.

The second category involves generating the random microstructures algorithmically.

The primary challenge associated with these methods is to come up with an approach where

the resulting microstructure is a statistically fair representation of the actual microstructure.

Statistical functions such as the nearest fiber distance distribution function of virtual and

actual microstructure can be compared to find a fair RVE or Statistically Equivalent RVE

(SERVE) [14, 26]. Random Sequential Absorption (RSA) is one of the methods used to gen-

erate random positions of fibers and particles [27, 28], and has been shown to be statistically

representative [29]. Another approach used by Gusev et al. [30, 31] employs a Monte Carlo

technique to generate random microstructures from perturbations of a regularly packed mi-

crostructure. A similar method based on the perturbation of regular microstructure is used

in [32] to generate meso-scale random RVEs. Vaughan et al.[33] used statistical data from

image processing of cross-sections to generate microstructures that are representative of

actual samples. A method also is developed that starts from overlapping fibers, then by

moving the fibers in several steps non-overlapping realistic RVEs were generated [34]. An-

other algorithm called Random Sequential Expansion (RSE) has been developed that can

achieve high volume fractions [35]. Another method uses a discrete element method to create

RVEs that includes fibers with non-identical radii[36, 37]. Melro et al. proposed a three-step,

computationally efficient algorithm for the generation of random microstructures [38]. All

the above methods have been reviewed against the criteria proposed by Swaminathan et

al. [14] and can generate a SERVE for a random microstructure. Table 1 lists the available

methods from the literature for the generation of random microstructures.

The approach used in this study is similar to that introduced in [38], a method that

has been shown to be able to achieve high volume fractions and be statistically representa-
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tive [39]. First, a series of random center points is generated where the random center point

generator checks to make sure there is no overlap with other previously generated fibers.

The method includes the option of defining a minimum distance between fibers. High fiber

volume fractions, particularly for large δ = l/r ratios (length of RVE to radius of fiber), are

not possible using the random generator alone because after a number of iterations there is

no valid location for the addition of a new center point. The next step in obtaining higher

fiber fractions is to move the center points in the RVE to make room for new fibers (this step

is called stirring the fibers in [38]). The current work includes a novel refinement whereby

the algorithm creates empty spaces by choosing the most isolated fibers to move. Choosing

the most isolated fibers increases the probability of creating an empty space, thus increasing

the chance of adding a new fiber. For example, if fibers that are already close together are

moved towards each other, no empty space is created for adding a new fiber. Isolated fibers

are identified by averaging the distances to three or four nearest neighbors for each fiber, and

identifying isolated fibers as those with the largest average distance. The number of moving

candidates can be changed depending on iteration number and desired volume fraction. Fig-

ure 2 illustrates the schematic of the isolated fiber selection method. The moving direction

is towards neighboring fibers, and the move distance is a random value chosen between the

determined minimum distance and the distance between two fibers. Figure 2A depicts the

situation where adding a new fiber (shown with dashed lines) is not possible before moving

the isolated fibers. After moving the fiber toward neighboring fibers as shown in Fig.2B, an

empty space is created and the new fiber does not overlap with others.

Although the microstructure is random, the RVE itself must be periodic, meaning that

if one puts a number of generated microstructures side-by-side, there will be only complete

fibers in the resulting structure with no partial fibers resulting from the combination of

RVEs. If a center point is close to the border of the RVE such that the distance from the

border is less than the radius of the fiber, the remainder of the fiber must be repeated on the

opposite side of the RVE in order to satisfy the periodicity of the RVE microstructure. The

reason for the periodic RVE requirement is to permit reasonable estimates of the stress field

in the RVE [3]. The use of periodic boundary conditions is explained further in Section 3.

3. Finite element implementation

The commercial Finite Element (FE) software Abaqus [40] was used to conduct this

study. Random and periodic microstructures where the bonding between fibers and matrix

is considered perfect are analyzed using FEM. It has been shown that interface properties
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have a significant effect on failure initiation and failure path [41, 42], and damage progression

and their properties are normally defined using a cohesive zone element. However, for the

purpose of this study in which the material is considered to be in the elastic region, this

bond is considered perfect in order to reduce the number of elements and computational

time required to perform the analysis on several hundred samples.

Two types of boundary conditions (periodic and tension boundary conditions) are applied

to the RVE. A large number of random microstructures were generated and values for the

maximum stress in the matrix phase was extracted from each FE solution. The material

properties used in this study are given in Table 2. The elements that are used are triangular

3-node linear plane strain elements. The mesh size is defined using a sensitivity analysis for

different sizes of elements, and a mesh size of one fourth of the fiber radius (r/4) was chosen

for the study.

3.1. Boundary Conditions

The boundary conditions for microstructural analysis can be applied in two ways. One

approach is to embed the RVE in a homogeneous block of material where the global material

properties are the same as the RVE material properties and then apply the regular displace-

ment boundary conditions to the homogeneous block [43]. The advantage of this approach

is that the RVE itself does not have to be periodic but it requires a larger number of ele-

ments and is computationally expensive. The second, more commonly employed and more

efficient approach is to create a periodic or repeating RVE microstructure as discussed above

where, in addition to the displacement boundary conditions, the periodic boundary condi-

tions are also satisfied. Periodic boundary conditions (PBC) combined with repeating RVE

microstructures provide an efficient tool for homogenization and microstructural analysis.

In this study, the second approach (PBCs) was used for imposing boundary conditions.

Periodic boundary conditions (PBC) are imposed on the edges of the RVE. The following

formulae describes the applied PBC:

u(0, y) − u(l1, y) = εxl1

v(x, 0) − v(x, l2) = εyl2
(1)

where u and v denote displacements, εx and εy are strains, and l1 and l2 are the lengths

of RVE in the x and y directions, respectively. Generally, for homogenization purposes, εx

is set equal to 1 and εy to 0. The effective global properties are then found by integrating

the stresses over the area (or volume). A detailed description of PBCs for composites can be

found in [44]. PBCs are imposed in Abaqus using the equation boundary condition option.
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Figure 3 shows a typical RVE with boundary conditions, where each node at the edge of the

RVE is connected with an equation (Eq. 1) to the counterpart node on the opposite edge.

While periodic boundary conditions are required to ensure the periodicity of the RVE,

displacement boundary conditions are applied in order to generate stresses. For the purposes

of this study, the displacement boundary conditions are applied along the x direction and

are set to be equivalent to one percent strain.

Figure 4 shows a typical random RVE microstructure analyzed using the finite element

model defined in this study. The reinforcement phase (fiber) is depicted as white to give an

accent to the stress distributions in the matrix phase which are the focus of this study. The

areas in the matrix where the fibers are close together can be seen to generate high stress

concentrations.

3.2. Validation of RVE size

One of the important challenges in micromechanical studies is determining the appropri-

ate size of the RVE, a problem that has been studied by a number of researchers [3, 14, 29, 45].

In general, the mechanical response behavior of the RVE is expected to be equivalent to

that of the same materials at the macro scale in order to describe the RVE as representative.

There are statistical descriptors based on the spatial arrangement of fibers, such as the prob-

ability density function of nearest neighbor distances, that can be compared to distributions

in a real microstructure in order to determine the convergence of the RVE [14, 29]. The

advantage of using the statistical descriptors is that the microstructure does not necessarily

require a FEM solution for a convergence study. Alternative approaches include studying

the convergence of the RVE micromechanical features such as energy density, mean von

Mises stress, effective properties, or strain energy [24, 29, 33, 45].

While micromechanical analyses are traditionally performed for the purpose of deter-

mining homogenized material properties such as modulus for composite materials, they can

also be used for other purposes such as damage modeling and the determination of residual

stresses [7, 41, 42, 46]. The failure mechanism in composites is, in general, governed by

the matrix behavior. While composite materials are used in design for their fiber-dominated

properties such as high stiffness and fracture toughness, it is an important consideration that

the onset of failure usually occurs in the matrix phase. Damage often initiates as matrix

micro-cracking leading to delamination between plies, particularly under fatigue loading.

Often the behavior of composites in the transverse direction (perpendicular to fibers) is

not considered critical in a design process based on simple loading conditions and static
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strength margins. However, stress analysis in the transverse direction can reveal important

information with respect to the failure mechanisms of composites.

The current study is focused on the onset of failure and stress concentrations in the

matrix phase and the effects of microstructural morphology on stress distributions at the

microstructural level in composites. Failure in the matrix begins at the areas with the highest

stress concentrations, and the location of these areas is highly dependent on the morphology

and random distribution of fibers in the cross section as shown in Fig. 4. The accuracy of

the predicted stress distribution within the RVE is related to its size in that the RVE must

be large enough to include a representative variety of microstructural morphologies. The

current work determines the appropriate size of RVE using a convergence study based on

the maximum von Mises stress (σv) in the matrix phase for different δ ratios, and since the

fiber radius (r) is constant, the ratio of δ is directly proportional to the RVE size. For each

δ, one hundred different samples with different microstructural morphologies were analyzed

using FEM to find the maximum σv in the matrix phase for each sample. Typical random

microstructures with the same fiber volume but different values of δ are shown in Figure 5

for Vf = 50%. It should be noted that the actual Vf and number of fibers are identical

across all of the one hundred samples (each δ and Vf ), and the difference between actual Vf

in FEA samples and the target Vf is negligible and always less than one percent. The values

for target and actual Vfs are shown in Table 3. Figure 6 plots the average of the maximum

σv in the matrix phase against the RVE size over a hundred different random samples and

includes the standard deviation for volume fractions of 60, 50, and 40%. It can be seen that

the standard deviation reduces with increasing δ, and the required size of the RVE can be

considered to have converged when there is no further change in standard deviation with

change in RVE size. In this study, a value of δ equal to 40 is considered to be convergent

and can therefore be considered to include all possible combinations of morphologies and

random patterns. It is worth noting that Terada and co-workers [3] have also studied the

convergence of maximum σv for a single Vf of 50%, but based their findings on the study

of a single microstructure. The results of the current work are based on a convergence

study conducted on 3 different fiber volumes using data from the averaged results of 100

different random morphologies as a means of ensuring the convergence of the standard

deviation. Figure 6 shows that for both average and standard deviation, the convergence is

reached at δ = 40 which is in agreement with the results of previously published convergence

studies [3, 33]. This RVE size was then used for a series of statistical and micromechanical

analyses of failure initiation in the matrix phase of a typical carbon/epoxy composite.
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4. Results

Random microstructures under load produce stress distribution that are very different

from those of periodic or repeating microstructures under the same load. While the homog-

enized stiffness properties obtained using random and periodic RVE microstructures may

be similar, the maximum stresses and the distribution of the stresses over the matrix and

fiber phases are completely different. For example, in Figure 6 the maximum stress values

predicted by the random RVE model are more than twice the values predicted by the peri-

odic RVE model. Because failure initiation in the matrix of composite materials occurs at

the locations with the high stress concentration, it can be important to accurately predict

both the magnitude and location of these stresses.

4.1. Stress distributions in the matrix

Figure 7 compares the stress distributions in the matrix phase between random and

periodic RVE microstructures for three different volume fractions. The histograms shown

in Figure 7 use matrix stress and matrix area data acquired from one hundred samples.

The stresses are created by applying one percent of tensile strain, and where the minimum

distance between fibers has been set to 0.05×r. The stress levels and associated areas for each

element of matrix phase are extracted from the model and analysed to provide the probability

of occurrence for each of the defined stress levels, which corresponds to how the stress is

distributed over the volume of the matrix (Vm). For example, Fig. 7c shows that the range

of stress values in the random microstructures is about four times larger than in the periodic

microstructure. The reason for the higher maximum stresses in the random microstructure

matrix is because the fibers can be closer together, thus creating stress concentrations. The

reason for the lower values of minimum stresses in random microstructures is that, for the

same volume of matrix, because of random distribution of fibers there are areas of matrix

that participate less in carrying the load. Moreover, we can see that the maximum matrix

stress in the random microstructure in Figure 7 is more than two times that for the periodic

microstructure, which means that failure could potentially initiate at much lower loads than

predicted using a periodic microstructures RVE model. The results shown in Figure 7 are the

acquired results for one hundred samples, and this type of histogram provides a statistical

estimation for stress concentrations that can be used for failure initiation predictions.

4.2. Minimum fiber distance

Figure 4 illustrates that the stress concentrations in the matrix phase are located where

the fibers are closest together. It has been shown that minimum fiber distance has a sig-
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nificant effect on stress localizations for certain loading conditions [47]. Also, the effects of

minimum fiber distance, as an indicator for randomness, has been studied with respect to

changes in homogenized properties of composites [48]. In this work, we take a statistical

approach to quantify the effect of inter-fiber distance (see Fig. 8) on stress concentrations.

Three different minimum distances are defined in the algorithm that are 0.1×r ≈ 0.3µm and

0.05 × r ≈ 0.15µm and 0.01 × r ≈ 0.03µm. A typical distribution of first neighbor distance

for the three type of samples is shown in Fig. 9. In reality, the minimum distance between

fibers depends largely on the specific technique used to manufacture the composite and the

overall quality of the part. Defects such as resin-rich areas and voids have a substantial

effect on microstructural morphology, forcing fibers to be located with little or no minimum

distance. This means that the stress is not distributed evenly in the microstructure and

there are areas of matrix that carry a lot of the load (where fibers are close) and areas

that carry little load (resin-rich areas). This uneven distribution of load can result in lower

failure loads and is one of the reasons that in industries such as aerospace, where composites

are used in primary load-bearing components, there are rigorous microstructural quality

controls for voids and resin-rich areas. Hojo et al. showed that, in their samples, some

fibers are almost touching (∆min ≈ 0)[47] which means high stress concentrations and dry

fibers. Also, in the study conducted by Vaughan and McCarthy [33] the minimum distance

was found to be 0.5µm (∆min ≈ 0.1r). The effects of minimal fiber distance on composite

properties such as residual stress and strength has been studied by Yang et. al [49], who

showed that small fiber distances have significant effects on the failure behavior. In this

work, we extend this approach to the analysis of a large number of random RVEs in order

to include a large spectrum of random morphologies. As a result, this study provides a

spectrum histogram of maximum matrix stresses rather than a single value, providing useful

data for probabilistic-type analysis. Three minimum distances were chosen to analyze possi-

ble differences in maximum stresses in the matrix phase. Three different volume fractions of

40, 50, and 60% were used with varying values for minimum distance between fibers, and for

each case of Vf and minimum distance three hundred random microstructure RVE samples

were generated and analyzed and the maximum von Mises stress in matrix for each case

extracted from the model.

Figure 10 shows the frequency (sample count in this case) of occurrence of maximum

stresses in the matrix phase for three different minimum distances and three different volume

fractions. The two main results demonstrated in this figure are the range of stress values and

the magnitude of the maximum stress values. For example, for Vf = 40% shown in Fig. 10a,
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and the minimum distance of 0.10r, the maximum von Mises stress in the matrix has a

range of about 45 MPa, and for the same volume fraction but a lesser minimum distance of

0.05r this range is increased to about 50 MPa, and finally for a minimum distance of 0.1r

the range is further increased to 90 MPa. The increase in the range of maximum stresses

shows that samples with lower minimum distance are less predictable in terms of stress

localization. The other observation that can be made is that when the minimum distance

is set to 0.01r the stress values are much higher than when the minimum distance is set

to 0.1r. For Vf = 50% in Fig. 10b the average maximum stress for 0.01r is about 230

MPa and for the same volume fraction but larger minimum distance of 0.1r the stress value

reduces to 160 MPa which is about 34% lower than the average for the first set of samples.

Overall, Figure 10 shows the significance of minimum distance and micromechanical quality

of samples in terms of maximum von Mises stresses in the matrix and failure initiation.

4.3. Load-carrying and homogenized properties study

The RVE analysis is traditionally used for homogenization purposes in order to predict

the engineering stiffness properties of composite materials.The homogenized properties of

composite (Ēij) is calculated based on the following formulae:

Ēij =
Fm
ij + F f

ij

Aε
(2)

in which A is the total area of the RVE (A = Am + Af ), ε is the strain that is applied

to the model and Fm
ij and F f

ij are the overall forces that the matrix and fiber phases carry

respectively and are obtained by the integration of the stresses over the area of each phase

(Am & Af ):

Fm
ij =

∫
Am

σijdA

F f
ij =

∫
Af

σijdA
(3)

Table 4 shows the results of the homogenization study for different volume fractions and

types of microstructures. It shows that the load carrying capacity of the matrix decreases for

random microstructures compared to periodic microstructures. This means that while the

predicted maximum stress for a random microstructure is much higher than for the periodic

microstructure (see Figs. 6,7), the overall amount of the matrix participating in carrying the

load decreases. This is because there are areas where the fibers are sparse and, consequently,
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less load is transferred to the matrix phase. In addition, there is a significant difference in

the homogenized values of the composite property Ē2 for the case of random microstructure

compared to the case of periodic ones. Ē2 for random microstructures is larger than that of

periodic microstructures for all three of the volume fractions studied. The difference between

Ē2 values for a volume fraction of 40% is 6 percent and increases to about 12 percent for

a volume fraction of 60%. This discrepancy demonstrates the importance of using random

microstructures for the determination of homogenized properties as well as for predicting

failure and other nonlinear analyses.

5. Concluding remarks

In this paper, it is shown that predicted values for stress concentrations and stress dis-

tributions in the matrix phase of a composite material are largely driven by the random

microstructure of the RVE and are probabilistic phenomena. Exploration of stress concen-

tration and failure initiation at the microscale provides useful data for damage analysis of

composite materials at a larger structural scale [50]. In this study, results are obtained for

a spectrum of random morphologies by analyzing a large number of random RVE samples.

These results have statistically-acceptable ranges of data for failure initiation and maximum

stress which can be propagated in a stochastic failure analysis of composites.

The difference between random and periodic microstructures was studied in terms of the

range of stresses that the matrix phase experiences as well as the overall load that each

phase carries. It was shown that, as a consequence of random microstructures, there are ar-

eas where fibers are close to each other resulting in high stress concentrations. Using several

hundred FE analyses, the stress concentrations for different volume fractions and mini-

mum distances between fibers were calculated and analysed using probability histograms.

Changing the minimum distance between fibers changes the probability distribution and the

average maximum stresses in the matrix phase of the random RVE samples. Larger values

for minimum distance results in smaller ranges of stress values and a lower average for the

maximum stress in the matrix phase of the composite RVE. The effect of minimum distance

is quantified in terms of variation and frequency of maximum stress in random RVEs.

Lastly, predicted homogenized stiffness properties (Ē2) and the load-carrying partic-

ipation of each phase (Fm
2 and F f

2 ) was determined for both periodic and random mi-

crostructures over a range of volume fractions. It was shown that the matrix of the random

microstructure RVE participates less load-carrying than it does in periodic FEA models.
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Table 1: Available methods from the literature for the generation of random microstructures/inclusion.

Name: used/introduced in:

Random Sequential Absorption (RSA) [28, 29]
Perturbation of Regular Packing [30, 31, 32, 4, 37]∗

Perturbation of Irregular Packing [34]
Combined Method [33]
Random Sequential Expansion (RSE) [35]
RAND uSTRU GEN [38, 39, 7]
∗The method for perturbation may differ for different studies.

Table 2: Typical stiffness properties for epoxy matrix and carbon fibers in transverse direction.

Property Value

Ef (MPa) 28000
νf 0.23
Em (MPa) 2755
νm 0.34

Table 3: Target and actual obtained fiber volume fraction for three different target volume fractions and six
different aspect ratios.

Target Vf = 40% Target Vf = 50% Target Vf = 60%

δ(l/r) Actual Vf (%) δ(l/r) Actual Vf (%) δ(l/r) Actual Vf (%)

10.0 40.84 10.0 50.26 10.0 59.69
20.0 40.05 20.0 50.26 20.0 59.69
30.0 40.14 30.0 49.92 30.0 60.04
40.0 40.05 40.0 50.07 40.0 60.08
50.0 39.96 50.0 50.01 50.0 59.94
60.0 39.97 60.0 50.00 60.0 60.04
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Table 4: Homogenized properties and portion of forces that each phase carries in transverse direction.

Vf Microstructure
Fm
2

F2

F f
2

F2
Ē2(GPa)

40% Periodic 0.53 0.47 5.36
Random 0.49 0.51 5.71

50% Periodic 0.43 0.57 6.37
Random 0.39 0.61 6.91

60% Periodic 0.33 0.67 7.82
Random 0.28 0.72 8.75

(a) Periodic microstructure (b) Random microstructure

square

hexagonal

Figure 1: Two types of microstructures with the same number of fibers (and Vf ) where (a) is a periodic or
uniform microstructure and (b) is a random or nonuniform microstructure. Square and hexagonal packing
(or unit cells) are shown in the periodic microstructure.
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A B
Figure 2: Schematic of moving isolated fibers. (A) shows the microstructure before moving in which adding
a new fiber (dashed circle) is not possible, (B) after moving the fibers that opens a space for adding a new
fiber

equation 
boundary 
condition

equation 
boundary 
condition

l2

l1

x

y

Figure 3: A typical fiber distribution in a periodic microstructure with periodic boundary conditions (PBCs).
All the nodes on the edges are bound with counter nodes on the opposite edge using equation boundary
conditions.
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stress concentrations

Figure 4: Stress concentrations as a result of the random morphology of a microstructure.

d = 10 (l=30mm, r=3mm) d = 20 (l=60mm, r=3mm) d = 30 (l=90mm, r=3mm)

d = 40 (l=120mm, r=3mm) d = 50 (l=150mm, r=3mm) d = 60 (l=180mm, r=3mm)

Figure 5: Typical random microstructures with δ = l/r ratios with Vf = 50%.
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Figure 6: The average and standard deviation (error bars) of the maximum stress in the matrix for one
hundred samples for both random and periodic microstructure versus to δ = l/r ratio of RVE.
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(a) Vf=40%
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(b) Vf=50%
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(c) Vf=60%

Figure 7: Histogram of von Mises stress in the matrix (σv) for volume fractions of 40, 50 and 60% for both
random and periodic microstructures. The minimum distance for random microstructures are set to 0.05×r.
The stress is generated by applying ε = 1%. The random microstructure histograms are calculated using
data from one hundred samples.
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D

r

Figure 8: The distance between two fibers (inter-fiber distance) marked by ∆. The minimum distance
between fibers can be altered in the algorithm.
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Figure 9: Typical distribution of first neighbor distance and their fiber counts for Vf = 50% and three cases
of minimum distance.
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(b) Vf=50%
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Figure 10: Maximum von Mises stress (σv) in matrix phase for three hundred random samples for each
histogram.
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