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Abstract

On Two-Sample Tests For Time Series

Abeer Alzahrani

In this thesis, we consider the two-sample problem of time series. Given two time

series data x1, ..., xn and y1, ..., ym, we would like to test whether they follow the same

time series model. First, we develop a unified procedure for this testing problem. The

procedure consists of three steps: testing stationarity, comparing correlation structures and

comparing residual distributions. Then, we apply the established procedure to analyze real

data. We also propose a modification to a nonparametric two-sample test, which can be

applied to high dimensional data with equal means and variances.
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Introduction

In this thesis, we consider the two-sample problem of time series. The problem is stated

as follows:

Given two time series data x1, ..., xn and y1, ..., ym with the models M1 and M2, re-

spectively, we want to test whether M1 = M2 or M1 �= M2.

This problem has been widely considered and has a broad range of applications. For

example, in microarray analysis, suppose there are two time series observations, one is

considered as a control set and the other is exposed to an infection. People are intrested in

testing if both samples share the same expression or if the infection has altered the exposed

set. This problem has been studied in [20] by Stegle et al. where they purposed a robust

Bayesian two-sample test to detect the difference of the two time series.

In marine ecosystems studies, time series are viewed as documentations and records of

different species over long periods of time. It is important to compare the time series on

different periods and to see relations between different species. Smith et al. [19] studied the

relation between anchovy biomass and its primary production in Southern California Bight.

Two sample tests have been used to compare the performances of different methods.

In [12], people discussed which method is more efficient in forecasting macroeconomic

time series and further estimate the difference. Zhang et al. [21] compared four time series

methods by using infectious disease data.

In the literature, different approaches have been applied to the two-sample problem of

time series. The test proposed by Stegle et al. is efficient for gene problems with small

sample sizes. Smith et al. [19] introduced a comparison method based on their data. In

addition, Montero-Manso et al. [13] proposed a test for time series based on pairwise dis-

tance. In order to obtain a better performance in some cases, they required a large sample
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size. They also needed the time series to have the same length. Some other papers consid-

ered hypothesis testing for time series. In these papers the time series model is assumed to

be the AR(1) model and the noise term is assumed to be Gaussian [18] or exponential [15].

In this thesis, we discuss the two-sample problem of time series in a more general per-

spective. Our analysis completely depends on the samples only, without prior information

on the noise distributions and with one sample from each model. We consider this problem

by following a procedure that shows where the differences between the time series samples

are. We will detect if the differences are from the correlation structures of the models or

from the noise distributions.

Our first step is to test stationarity of the two samples. If one sample is stationary and

the other is not, then there is no need to continue the study. We conclude that the samples

are from different models. If both of them are stationary or both are non-stationary, we

continue our study. For the case that both of them are non-stationary we find a suitable

transformation to make one sample stationary and then apply the same transformation to

the other sample. If the second transformed sample is also stationary we continue the study.

Chapter 1 presents tests that will be used to check the stationarity of the samples.

Our second step is to investigate the two stationary time series or the two stationary

transformed time series. We will compare their correlation structures. This will be done by

following the method preposed in [16], where the χ2−test is used to test correlation based

on residuals of a fitted autoregressive model. Our second step will be presented in Chapter

2.

If the two samples share the same correlation structure, we then apply a two-sample

test on the residuals of each sample. Given that we have only one sample from each model,

an applicable test to use would be the Bayesian two-sample test proposed by Holmes et al.

[7], which uses the Pólya tree process as a prior distribution. This is step three that will

be introduced in Chapter 3. By following these three steps we can decide whether the two

time series share the same model. If not, we identify whether the difference is caused by

the correlation structures or the noise distributions.

If there are at least four samples from each model we also consider other tests. These

include the Biswas and Ghosh test (BG-test) [2] and its slight modification, the BG3−test.
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The BG-test is an inter-point test that is based on the Baringhaus and Franz test (BF-test)

[1]. Different from the BF-test, the BG-test is also applicable to dependent data. A main

assumption of the BG-test is that samples should have different means or different vari-

ances. To overcome this difficulty, we suggest the BG3− test which will also be introduced

in Chapter 3.

In Chapter 4, we apply the established procedure to analyze real data. The data is ob-

tained from Environment and Climate Change Canada, which monitors the national long-

term water quality. We also use illustrative examples to show the advantage of using the

BG3-test. In the appendix, we give the R codes, which might be useful for interested read-

ers.

3



Chapter 1

Stationarity of Time Series

Roughly speaking, a time series is stationary if the mean, variance and autocorrelation

structure do not change over time. Given a time series {Xt, t ∈ Z} where E(X2
t ) < ∞.

Denote μX(t) = E(Xt), and γX(r, s) = Cov(Xr, Xs), ∀ t, r and s ∈ Z. {Xt} is said to be

stationary (weakly stationary) if (cf. [4]):

(1) μX(t) is independent of t.

(2) γX(t+ h, t) is independent of t for each h ∈ Z.

We say that {Xt} is strictly stationary if the joint distributions of (X1, ..., Xn) and

(X1+h, ..., Xn+h) do not change for all h ∈ Z and n > 0. Throughout this thesis when we

use the term stationary we mean weakly stationary.

Given a time series data, the basic method to test its stationarity is to consider the data

plot and the sample autocorrelation function (ACF) plot.

Definition 1.1 ([4])

Let x1, ..., xn be observations of a time series. The sample mean of x1, ..., xn is:

x̄ =
1

n

n∑
t=1

xt.

The sample autocovariance function is:

γ̂(h) = n−1
n−|h|∑
t=1

(xt+|h| − x̄)(xt − x̄), −n < h < n.
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The sample autocorrelation function is:

ρ̂(h) =
γ̂(h)

γ̂(0)
, −n < h < n.

If the |ρ̂(h)| plot shows a slow decay as h increases, this indicates that the sample has

a trend component. If the |ρ̂(h)| plot exhibits a periodic behavior, then it indicates that the

sample has a seasonal component. Hence, the sample ACF can be used to check stationar-

ity of the observed data. We should note that the lags (h) of the sample ACF should not be

close to the sample size and should not be larger than a third of the sample size for it to be

a good estimate of the ACF. If the time series data is stationary, we will try to fit it with an

AR(p) model.

To further analyze the stationarity of the time series data, we consider the Kwiatkowski-

Phillips-Schmidt-Shin test (KPSS-test) [10] and the augmented Dickey-Fuller test (ADF-

test) [17]. The KPSS-test and the ADF-test check stationarity and non-stationarity through

analyzing the existence of unit roots. Suppose a time series {yt} follows an AR(p) model:

yt − φ1 yt−1 − φ2 yt−2 − · · · − φp yt−p = εt.

By rewriting the model with the backward shift operator B, we get:

(1− φ1 B − φ2 B
2 − · · · − φp B

p)yt = εt, (1)

where Byt = yt−1 and Bj(yt) = yt−j, j ≥ 1. We check for unit roots by considering the

characteristic equation. To this end, we replace the backward shift operator B in (1) by a

variable x and find the zeros of the equation:

1− φ1 x− φ2 x
2 − · · · − φp x

p = 0.

{yt} is regarded as stationary if all solutions satisfy |x| �= 1, ∀x ∈ C. Here C denotes

the set of all complex numbers. {yt} is non-stationary if a unit root |x| = 1 exists. The

non-stationarity in the case of unit roots is overcome by differencing.

The KPSS-test tests the null hypothesis of trend-stationarity against the unit root exis-

tence. By trend-stationarity we mean that the removal of the deterministic trend will result

in a stationary time series. The test assumes that a time series could be decomposed in the
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following form:

yt = ξt+ rt + εt, (2)

where ξt is the deterministic trend, rt = rt−1 + ut is a random walk with ut ∼ iid (0, σ2
u),

r0 is fixed, and εt is a stationary error. Based on this decomposition, the null hypothesis is

equivalent to testing σ2
u = 0 which results in a trend-stationary time series. To test this hy-

pothesis, the Lagrange multiplier (LM) statistic is used. Based on the upper-tail LM statistic

test we accept or reject H0, under the assumptions: ut are normal and εt ∼iid N(0, σ2
ε ). The

test hypotheses are:

H0 : σ2
u = 0 vs. H1 : σ2

u > 0.

Denote the residuals from (2) by et and the estimate of the error variance of the residuals

by σ̂2
ε , with St =

∑t
i=1 ei, t = 1, ..., T . The LM statistic is calculated as ([10]):

LM =
T∑
t=1

S2
t /σ̂ε

2.

This statistic was derived as a special case from the one developed by Nabeya and Tanaka

[14]. Considering the decomposition in (2), if ξ = 0 then it becomes a level-stationary

problem around the value of r0 rather than a trend-stationary problem. The test statistic in

this case is calculated by replacing et with yt − ȳ.

As for the ADF-test, the null hypothesis is that the time series has a unit root, hence is

not stationary. Assume we have an AR(p) model {yt}:

yt − φ1yt−1 − φ2yt−2 − · · · − φpyt−p = εt.

By rewriting the time series, we get:

yt − yt−1 = (

p∑
i=1

φi − 1)yt−1 − (

p∑
i=2

φi)(yt−2 − yt−1)− · · · − φp(yt−p − yt−(p−1)) + εt

Δyt = (

p∑
i=1

φi − 1)yt−1 − (

p∑
i=2

φi)Δyt−2 − · · · − φpΔyt−p + εt.
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Hence to test for a unit root we check if 1−∑p
i=1 φi = 0. So the ADF-test statistic is given

as:

t̂Φ=1 =
Φ̂− 1

SE(Φ̂)
,

where Φ =
∑p

i=1 φi, Φ̂ is the least-squares estimator and SE(Φ̂) is the standard error of the

estimator. The ADF-test statistic is similar to the t-statistic, with the difference that under

the null hypothesis t̂Φ=1 follows the Dickey-Fuller distribution.

We note that the above two tests compliment to each other. Since they have alternating

hypotheses, if the KPSS-test accepts the null hypothesis and the ADF-test rejects it, we

conclude that the sample is trend-stationary. However if the KPSS-test rejects H0 and the

ADF-test accepts it, we conclude that the sample has a unite root hence is non-stationary.

The existence of a trend component can be decided based on the original data plot and the

ACF plot.

Returning to our main problem, if we find that the observed data X = (x1, ..., xn) and

Y = (y1, ..., ym) are both non-stationary, we need to perform some transformations to get

stationary samples. We start with X and apply a suitable transformation, say t(·), to obtain

a stationary time series t(X). Then we apply the same transformation to Y . If t(Y ) is a

stationary series, we proceed to the second step of our procedure. However, if t(Y ) remains

non-stationary then this is a clear indicator that the two samples have different models.

7



Chapter 2

Correlation Comparison

In this chapter we use the approach proposed by Quenouilles [16], which gives an

efficient method to compare the correlation structures of two lengths of time series. This

method is to be used on two different time series or different periods of the same time

series. Given two sets of observations x1, ..., xn and y1, ..., ym, we calculate their ACFs rs
and r′s, s = 1, ..., p, respectively. Then we test the consistency of the two sets of estimated

ACFs with a correlation structure that depends on the pooled data. A main assumption

of this method is that
∑∞

i=q+1 φ
2
i may be neglected for q << (n + m)/p: if the samples

x1, ..., xn have a true fit as:

xt =
∞∑
i=1

φi xt−i + εt,

we estimate a fitted model as an AR(p) model instead of the true model AR(∞).

Now let us describe the correlation comparison method. Assume that we have two time

series observations x1, ..., xn and y1, ..., ym.

(1) We start by pooling both observations and fitting them with an autoregressive model.

For fitting the combined time series x1, ..., xn, y1, ..., ym we use the Yule-Walker

AR(p) model:

Definition 2.1 ([4])

The fitted Yule-Walker AR(p) sample model is:

Xt − φ̂p1Xt−1 − · · · − φ̂ppXt−p = Zt, {Zt} ∼ WN(0, σ̂p),

where

8



φ̂φφp = (φ̂p1, ..., φ̂pp)
′ = R̂RR

−1
p ρ̂ρρp, σ̂p = γ̂(0)

[
1− ρ̂ρρ′pR̂RR

−1
p ρ̂ρρp

]
,

and

ρ̂ρρp = (ρ̂(1), ..., ρ̂(p))′ = γ̂p/γ̂(0), R̂RRp = [ρ̂(i− j)]pi,j=1 .

(2) By using the fitted model, we calculate the partial ACFs (PACFs) vs, v′s of the resid-

uals of each sample separately, and for any two samples we assume independence.

(3) Calculate χ2
(p) =

∑p
s=1(vs − v′s)

2/(
1

n− s
+

1

m− s
), and use the upper-tailed χ2−

test to accept or reject similar correlation structures.

This method is justified by the following fact. If {Zt} ∼ iid(0, σ2) in the Yule-Walker

model, then the sample partial correlations are normally distributed and independent with

var(vs) = 1/(n− s), 1 ≤ s ≤ p. Hence the square of the difference of their distributions

will follow a χ2− distribution. This justifies the last step of the method that measures the

goodness of fit, which has been verified by the works of Daniels et al. [5] and Jenkins et al.

[8].

To further explain the method, we apply it to the following examples:

(1) M1 : Xt = 0.1Xt−1 + et, et ∼ N(0, 1).

(2) M2 : Xt = 0.1Xt−1 + wt, wt ∼ N(1, 1).

(3) M3 : Xt = 0.5Xt−1 + ut, ut ∼ N(1, 1).

(4) M4 : Xt = 0.5Xt−1 + ot, ot ∼ Exp(1).

Each time series is of length 100 and we assume X0 = 0. These models will be compared

as follows:

(1) M1 vs. M2 (2) M2 vs. M3 (3) M2 vs. M4 (4) M3 vs. M4.

After generating the samples we start our illustration by combining both samples in

each case and using Yule-Walker in R to find their fitted model {yt}. In the following,

{wt} denotes white noise.

• M1 vs. M2:

wt = yt−0.0566 yt−1 − 0.0503 yt−2 − 0.0735 yt−3 − 0.0695 yt−4 − 0.0728 yt−5

−0.0533 yt−6 − 0.1412 yt−7 − 0.1131 yt−8 − 0.1253 yt−9.
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• M2 vs. M3:

wt = yt − 0.1822 yt−1.

• M2 vs. M4:

wt = yt − 0.2424 yt−1.

• M3 vs. M4:

wt = yt − 0.368 yt−1.

Following the second step of the method, we calculate the PACFs of the residuals of

each time series by virtue of the fitted model in each case. By using the obtained vs, v
′
s, we

get χ2
p =

∑p
i=1(vi − v′i)

2/(
2

100− i
):

χ2
(p) χ2

0.05, p Result

M1 vs. M2: χ2
(9) = 5.495457 χ2

0.05, 9 = 16.29 accept H0

M2 vs. M3: χ2
(1) = 5.295579 χ2

0.05, 1 = 3.84 reject H0

M2 vs. M4: χ2
(1) = 10.28117 χ2

0.05, 1 = 3.84 reject H0

M3 vs. M4: χ2
(1) = 0.8266143 χ2

0.05, 1 = 3.84 accept H0

Table 2.1: Correlation comparison: simulation study

Based on the values χ2
0.05, 9 = 16.29 and χ2

0.05, 1 = 3.84 and the upper-tailed χ2−test,

we get the results in Table 2.1. Here accepting H0 means both samples share the same

correlation structure and rejection means that they have different models. All results of the

test are compatible with the original sample correlations, and this illustration shows that

even for different noise distributions we can still obtain the expected results.
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Chapter 3

Residual Comparison

If the two samples pass the first two steps, then we only need to compare the residual

terms to test our main hypothesis. To test the distributions of the residuals, which are

obtained from the fitted model via the correlation comparison test, we perform a two-

sample test. Assume that e1, ..., en ∼ F and w1, ..., wm ∼ G, we want to test whether they

have the same underlying distribution:

H0 : F = G,

H1 : F �= G.

For this kind of problem there are a number of available nonparametric tests. In this thesis

we will consider three tests, where each test has its own strength.

Considering the fact that we have one sample from each distribution and usually the

residuals are iid or weakly dependent, we choose to use the Bayesian two-sample test

[7]. The test depends mainly on the Bayes factor. Assume that the data follow one of

the hypotheses H0 and H1. Based on the prior probabilities Pr(H0) and Pr(H1) = 1 −
Pr(H0), we get the posterior probabilities Pr(H0|data) and Pr(H1|data). Applying the

Bayes rule, we get:

Pr(Hk|data) = Pr(data|Hk)Pr(Hk)

Pr(data|H0)Pr(H0) + Pr(data|H1)Pr(H1)
, k = 0, 1.

11



Calculating the ratio of posterior of both hypotheses, we get:

Pr(H0|data)
Pr(H1|data) =

Pr(data|H0)

Pr(data|H1)
· Pr(H0)

Pr(H1)
,

where the Bayes factor is:

B =
Pr(data|H0)

Pr(data|H1)
.

The Bayes factor calculates the probability of both hypotheses given the data. Depend-

ing on this ratio, we accept or reject the null hypothesis. The main issue with Bayesian test

is to provide an explicit expression for the Bayes factor. In the parametric case, supposing

our hypotheses are around a parameter θk, we use integration to calculate the density:

Pr(data|Hk) =

∫
Pr(data|θk, Hk)π(θk|Hk)dθk.

However, in the nonparametric case this is more challenging since there is no exact param-

eter to integrate around. Hence, this mainly depends on the prior used for the data and its

integration. The two-sample Bayesian test in the study by Holmes et al. [7] uses the Pólya

tree distribution as its prior. The authors provided a closed formula of the Bayes factor.

Other tests can be used even if the observations are not iid, but they require a sample

size greater than 3 for it to perform well with a level of significance α = 0.05. Consider-

ing the time series samples as high dimensional vectors, where the number of time points

indecates the dimension of the vector, we will deal with the two-sample problem using the

Biswas and Ghosh test (BG-test) [2]. This test is an improved version of the Baringhaus

and Franz test (BF-test) [1]. The BF-test is based on the inter-point distance. It assumes

that the observations are independent and preforms very well in location problems, but has

a fairly poor performance in high dimensional low sample size settings (HDLSS) when

dealing with a scale or location-scale problem. Based on the BF-test, Biswas and Ghosh

[2] proposed a new inter-point test that overcomes this problem. To study the behavior of

their test in high dimension, they made some assumptions which ensure that the test can be

used for weakly dependent samples, hence it could be applied to the time series samples

directly. The BG-test assumes that samples have different means and variances. So it fails

in cases of different distributions that share the same mean and variance such as the N(1, 1)

and Exp(1). We will propose an adjustment to the existing BG-test that allows it to apply
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to more general situations.

Although the two-sample Bayesian test is a 1−dimensional test, it has some advan-

tages over the previously mentioned nonparametric tests. It performs well in all mentioned

problems, including the case of equal means and variances. Choosing which test is more

suitable depends on the samples we want to test. Since in the correlation structure chapter

we chose the Yule-Walker method to model our observations, we can say that the residuals

are white noise (might not iid). To assume that the residuals are iid we need to consider

how they will be used, their relation to other information and the how the data was col-

lected.

If the residuals are assumed to be iid, it is sufficient to use the BG-test if our sample

sizes n,m are at least 4 for a 0.05 level of significance. We can also apply the two-sample

Bayesian test for any size of samples, since the residuals are iid we can pool the residuals

of each group of time series and test them as one sample from each group. However, if the

residuals are only white noise (WN), the only test applicable will be the BG-test, and in

this case we need a sample size that is 4 or greater to get more accurate results. If samples

pass the BG-test in the WN case, this implies that the residuals have the same distribution.

But since we have no information on the variances or means of the residual samples, this

could lead to a false conclusion. Hence we need a modified method to get a more precise

result. In the end of this thesis, we will introduce the so called BG3−test.

3.1 Two-sample Bayesian test

Holmes et al. [7] proposed a Bayesian approach to the two-sample problem. Given

two sets of samples yyy(1) ∼iid F (1) and yyy(2) ∼iid F (2), the Bayesian test depends on eval-

uating the evidence of the null hypothesis against the alternative, where F (1) and F (2) are

unknown distributions.

Since the underlying distributions of the data are unknown, to apply the Bayesian ap-

proach, we need to define priors over the data. Holmes et al. [7] used Pólya tree priors (PT

priors):

under H0 :F
(1) = F (2),

under H1 :F
(1) �= F (2),
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Figure 3.1: A Pólya tree distribution till level k = 3

where F (1) and F (2) are independent draws from the PT prior, and the test evaluates the

Bayes factor for the two models.

Pólya tree priors are a class of distributions for random probability measures that par-

titions the domain Ω into disjoint binary partitions as seen in Figure 3.1. At level k we

have:

{B(k)
j , j = 0, ..., 2k − 1},

B
(k)
i ∩ B

(k)
j = ∅, i �= j,

B
(k)
j = B

(k+1)
2j ∪B

(k+1)
2j+1 , k = 1, 2, ..., j = 0, ..., 2k − 1.

By constructing a random measure on the sets Bj of the tree, a random measure is

defined on Ω, where :

θj : probability of going left,

1− θj : probability of going right,

where θj is a random variable with the distribution θj ∼ πj and the partitions are indexed

as:

• εεεk = {εk1, ..., εkk} : sample path of an element till level (k).

• εki ∈ {0, 1}: indicates that at level (i) we either go left (0) or right (1).

• Bεεεk : the partition where the particle at level (k) falls in.

• θεεεm ∼ Beta (αεεεm0, αεεεm1).
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From the PT Figure, we can see that the probability of the particle falling into Bεεεk is:

Pr (Bεεεk) =
k∏

i=1

(θεεεi−1)
1−εii (1− θεεεi−1)

εii .

The Pólya tree distribution was constructed by Lavine [11], where he gave the following

definition:

Definition 3.1 ([11])

Let Π = {B0, B1, B00, ...} and A = (α0, α1, α00, ...). A random probability measure F on

Ω is said to have a Pólya tree distribution, or Pólya tree prior, with parameters (Π,A),

written F ∼ PT (Π,A), if:

∃ non-negative numbers A = (α0, α1, α00, ...) and random variables Θ = (θ, θ0, θ1, θ00, ...)

such that:

(1) θj in Θ are mutually independent.

(2) ∀k = 1, 2, ... and every εεεk ∈ {0, 1}k, θεεεk ∼ Beta (αεεεk0, αεεεk1) .

(3) ∀k = 1, 2, ... and every εεεk ∈ {0, 1}k,

F (Bεεεk |Θ) =
k∏

i=1

(θεεεi−1)
1−εii (1− θεεεi−1)

εii . (3)

Hence by sampling the θj’s in Θ, we obtain a realization of F ∼ PT (Π,A). The Pólya

tree can be centered on some distribution G such that E [F ] = G. Lavine [11] defined this

probability measure using equation (3) as follow:

G(Bεεεk) =E

[
k∏

i=1

(θεεεi−1)
1−εii (1− θεεεi−1)

εii

]

=
k∏

i=1

E
[
(θεεεi−1)

1−εii]E [(1− θεεεi−1)
εii ]

=
k∏

i=1

αεεεk0

αεεεk0 + αεεεk1

αεεεk1

εεεk0 + αεεεk1

for any measurable set Bεεεk .
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The first attraction of using the PT priors is that it can be centered on any distribution

G, this is accomplished by setting the partitioning subsets as the dyadic quantiles of G, and

setting αεεεk0 = αεεεk1. So at level 1 we will have two partitions satisfying G(B0) = G(B1) =

1/2, and for any εεεk ∈ {0, 1}k the partitions satisfy G(Bεεεk0|Bεεεk) = G(Bεεεk1|Bεεεk) = 1/2. If

Ω ≡ R ([11]):

B0 =
(−∞, G−1(0.5)

)
,

B1 =
[
G−1(0.5),∞)

,

...

Bεεεk =
[
G−1{(k∗ − 1) /2k, G−1

(
k∗/2k

))
,

k ={1, 2, ...}, k∗ = {1, ..., 2k}.

The α’s in this test are chosen as constants in each level, i.e. αεεεm0 = αεεεm1 = cm, and

cm = c/2m, c > 0 to imply that F is absolutely continuous with probability 1.

The second attraction of using the PT prior is that it has the conjugate property, mean-

ing that given the prior: F ∼ PT (Π,A) and data yyy ∼ F , the posterior will also

have a Pólya tree distribution: F |yyy ∼ PT (Π,A∗) with the set of updated parameters

A∗ = {α∗00, α∗01, α∗000, ...} and α∗εεεi |yyy = αεεεi +nεεεi , where nεεεi is the number of observations in

yyy that belong to Bεεεi . Then:

θ∗j |yyy = Beta(αj0 + nj0, αj1 + nj1),

where nj0 and nj1 are the numbers of observations going left and right respectively at every

knot j in the tree.

The calculation of the marginal likelihood of any set of observations depends on the nj0

and nj1:

Pr (yyy|Θ,ΠΠΠ,A) =
∏

j θ
nj0

j (1− θj)
nj1 ,

where θj|A ∼ Beta(αj0, αj1), and j ∈ {0, 1, 00, ...}. By integrating out Θ we get the
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following marginal likelihood:

Pr (yyy|ΠΠΠ,A) =

∫
θj

Pr (yyy|Θ,ΠΠΠ,A) · Pr (θj|ΠΠΠ,A) d(θj)

=

∫
θj

∏
j

θ
nj0

j (1− θj)
nj1 .

(θj)
(αj0−1)(1− θj)

(αj1−1)

B(αj0, αj1)
d(θj)

=
∏
j

1

B(αj0, αj1)

∫ 1

0

θ
αj0+nj0−1
j (1− θj)

αj1+nj1−1d(θj)

=
∏
j

B(αj0 + nj0, αj1 + nj1)

B(αj0, αj1)
.

Hence:

Pr (yyy|ΠΠΠ,A) =
∏
j

(
Γ(αj0 + αj1)

Γ(αj0)Γ(αj1)

Γ(αj0 + nj0)Γ(αj1 + nj1)

Γ(αj0 + nj0 + αj1 + nj1)

)
. (4)

Based on the equation (4), we calculate the Bayes factor of our problem. To provide

the weight of evidence in favor of H0 given the data using PT prior we assume:

F (1), F (2) ∼iid PT (Π,A) ,

αj0 = αj1 = cm2.

From the Bayes theorem:

Pr
(
H0|yyy(1,2)

) ∝ Pr
(
yyy(1,2)|H0

)
Pr (H0) ,

P r
(
H0|yyy(1,2)

)
Pr (H1|yyy(1), yyy(2)) =

Pr
(
yyy(1,2)|H0

)
Pr (yyy(1), yyy(2)|H1)

Pr (H0)

Pr (H1)
,

where yyy(1,2) = {yyy(1), yyy(2)}.

Using Pr (yyy|ΠΠΠ,A) in (4):

Pr
(
yyy(1,2)|H0

)
:θ∗j |yyy(1,2) ∼ Beta(αj0 + n

(1)
j0 + n

(2)
j0 , αj1 + n

(1)
j1 + n

(2)
j1 ),

P r
(
yyy(1), yyy(2)|H1

)
:θ
∗(1)
j |yyy(1) ∼ Beta(αj0 + n

(1)
j0 , αj1 + n

(1)
j1 )

θ
∗(2)
j |yyy(2) ∼ Beta(αj0 + n

(2)
j0 , αj1 + n

(2)
j1 ).
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Hence the Bayes factor is given ([7]):

Pr
(
yyy(1,2)|H0

)
Pr (yyy(1), yyy(2)|H1)

=
∏
j

bj,

where:

bj =
Γ(αj0)Γ(αj1)

Γ(αj0 + αj1)

Γ(αj0 + n
(1)
j0 + n

(2)
j0 )Γ(αj1 + n

(1)
j1 + n

(2)
j1 )

Γ(αj0 + n
(1)
j0 + n

(2)
j0 + αj1 + n

(1)
j1 + n

(2)
j1 )

× Γ(αj0 + n
(1)
j0 + αj1 + n

(1)
j1 )

Γ(αj0 + n
(1)
j0 )Γ(αj1 + n

(1)
j1 )

Γ(αj0 + n
(2)
j0 + αj1 + n

(2)
j1 )

Γ(αj0 + n
(2)
j0 )Γ(αj1 + n

(2)
j1 )

,

j ∈ {∅, 0, 1, 00, ...}.

The Bayesian method requires us to specify {Π,A} for our PT prior. The default setting

for A: αj0 = αj1 = cm2, and for Π: start by standardizing the joint data yyy(1,2), then set

Π = Φ(.)−1, i.e. the partitions are defined on the quantiles of a standard normal density.

Th proofs of the consistency of the truncation of the Bayes factor are given in the study

by Holmes et al. [7]. It is more challenging to prove the consistency in the non-truncated

case, but the paper provides a number of simulations that suggest consistency for the non-

truncated test ([7]). Following these notations a definition of the truncated Bayes factor is

given:

• n = n
(1)
∅ + n

(2)
∅ : total sample size,

• 2l(εεε): number of partitions at level l(εεε).

Truncated Bayes factor:

BFk0 =
∏
{j|l(j)≤k0} bj,

where the level of truncation k0 ∈ N. We also define a truncated Hypothesis test:

H0,k0 : ∀εεε|l(εεε) ≤ k0, F (1) (Bεεε) = F (2) (Bεεε) ,

vs.

H1,k0 : ∃εεε|l(εεε) ≤ k0, F (1) (Bεεε) �= F (2) (Bεεε) .
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3.2 Other two-sample tests

The tests we consider here perform very well when dealing with high-dimensional ob-

servations with sample sizes that are greater than 3. Considering the time series samples as

high dimensional vectors, where the number of time points indicates the dimension of the

vector, we will deal with the two-sample problem using the BG-test ([2]).

When using nonparametric tests in this thesis, we wish to test the underlying distribu-

tion that the data was drawn from, rather than the parameters of the distribution. Since

we have no knowledge of the shape or form of the distribution, rather than assuming it is

normal and testing its parameters we test the distribution as a whole without giving these

assumptions. Hence this approach is suitable for any kind or size of samples.

3.2.1 BF-test and BG-test

• BF-test (2004):

Baringhaus and Franz [1] introduced a multivariate two-sample test based on inter-

point distance between variables from both distributions where X,X∗ ∼iid F, Y,Y∗ ∼iid

G and ‖ · ‖ is the Euclidean norm. This measures the difference between both distri-

butions F and G. Using the inequality 2E‖X−Y‖−E‖X−X∗‖−E‖Y−Y∗‖ ≥ 0,

where it equals 0 if and only if F = G, and the empirical representation of E‖ · ‖,

the test is given as follows:

TBF
m,n =

mn

m+ n

[
1

mn

m∑
j=1

n∑
k=1

‖Xj −Yk‖− 1

2m2

m∑
j=1

m∑
k=1

‖Xj −Xk‖

− 1

2n2

n∑
j=1

n∑
k=1

‖Yj −Yk‖
]
.

The null hypothesis will be rejected for large values of the statistic and accepted oth-

erwise. Based on simulations, Baringhaus and Franz concluded that this test reaches

high power similar to the parametric Hotelling’s T 2−test in normal location prob-

lems, and is sensitive to location changes.

• BG-test (2013):

Since the BF-test was studied for the low-dimension setting, Biswas and Ghosh pro-

posed a test that is applicable in high-dimension low sample size (HDLSS) settings.
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In their illustrative example they showed where the BF-test and other nonparametric

test show low performance in HDLSS setting, with examples covering the cases of

location, scale and location-scale problems. From the illustration they concluded that

the BF-test does not perform well in location-scale problems and performs poorly in

scale problems. Considering the cases where the BF-test fails, Biswas and Ghosh [2]

identified the problem and proposed the following test:

Let

X,X∗ ∼iid F, Y,Y∗ ∼iid G,

where X,X∗,Y, and Y∗ are independent random vectors, and:

‖X−X∗‖ ∼ DFF , ‖Y −Y∗‖ ∼ DGG,

and ‖X−Y‖ ∼ DFG,

with respective means: μFF , μFG and μGG, define the bivariate distribution:

(‖X−X∗‖, ‖X−Y‖) ∼ DF ,

(‖Y −X‖, ‖Y −Y∗‖) ∼ DG.

We can rewrite the hypotheses in the following way:

H0 : F =G

H1 : F �=G
⇐⇒ H”

0 : μμμDF
=μμμDG

H”
1 : μμμDF

�=μμμDG

,

since:

F = G ⇔ μμμDF
= μμμDG

⇔ μFF = μFG = μGG.

The BG-test statistic is:

TBG
m,n = ‖μ̂μμDF

− μ̂μμDG
‖2,
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where for the data: xxx1, ...,xxxm ∼iid F and yyy1, ..., yyyn ∼iid G

μ̂̂μ̂μDF
=

[
μ̂FF =

(
m

2

)−1 m∑
i=1

m∑
j=i+1

‖xxxi − xxxj‖,

μ̂FG =(mn)−1
m∑
i=1

n∑
j=1

‖xxxi − yyyj‖
]
,

μ̂̂μ̂μDG
=

[
μ̂FG =(mn)−1

m∑
i=1

n∑
j=1

‖xxxi − yyyj‖,

μ̂GG =

(
n

2

)−1 n∑
i=1

n∑
j=i+1

‖yyyi − yyyj‖
]
.

Similar to the BF-test, we reject the null hypothesis for large values of the test. By

running the same HDLSS example on the BG-test, the test shows excellent perfor-

mance in the cases where the BF-test examines poor performance.

3.2.2 BG3-test

From the assumptions of the BG-test, we can see that the test is not applicable to the

case that the distributions have the same mean and variance. To overcome this problem, we

suggest to use the skewness of the distributions (third moments) to differentiate between

them. Hence, in the case of equal means and variances and different third moments we

replace x and y in the BG-test with x3 and y3, respectively.

• BG3-test:

TBG3

m,n = ‖μ̂μμ(3)
DF

− μ̂μμ
(3)
DG

‖2,
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where for the data: xxx1, ...,xxxm ∼iid F and yyy1, ..., yyyn ∼iid G,

μ̂μμ
(3)
DF

=

[
μ̂
(3)
FF =

(
m

2

)−1 m∑
i=1

m∑
j=i+1

‖xxx3
i − xxx3

j‖,

μ̂
(3)
FG =(mn)−1

m∑
i=1

n∑
j=1

‖xxx3
i − yyy3j‖

]
,

μ̂μμ
(3)
DG

=

[
μ̂
(3)
FG =(mn)−1

m∑
i=1

n∑
j=1

‖xxx3
i − yyy3j‖,

μ̂
(3)
GG =

(
n

2

)−1 n∑
i=1

n∑
j=i+1

‖yyy3i − yyy3j‖
]
.

Biswas and Ghosh [2] showed the limiting behavior of their proposed test by study-

ing its performance as the dimensions increase to infinity and the sample sizes are

fixed. Based on the assumptions they made for their study, which are from the as-

sumptions made by Hall et al. [6], we propose the following:

Assuming that the samplesxxx3
i = (x3

1, ..., x
3
d) ∼iid F̄ , i = 1, ...,m and yyy3j = (y31, ..., y

3
d) ∼iid

Ḡ, j = 1, ..., n have fixed sample sizes m and n, d → ∞, let:

μ̄μμ1 and Σ̄ΣΣ1: mean vector and dispersion matrix of F̄ .

μ̄μμ2 and Σ̄ΣΣ2: mean vector and dispersion matrix of Ḡ.

Hall et al. [6] gave the following assumptions, where they considered a d−dimensional

observationXXX =
(
X(1), ..., X(d)

)
as a truncation of a finite time seriesXXX =

(
X(1), ...

)
:

A1 ∃ ω2
1, ω

2
2 > 0 and u, such that:

(a) trace
(
Σ̄ΣΣ1

)
/d → ω2

1.

(b) trace
(
Σ̄ΣΣ2

)
/d → ω2

2.

(c) ‖μ̄μμ1 − μ̄μμ2‖2/d → u2 as d → ∞..

A2 Fourth moments of XXX3 and YYY 3 are uniformly bounded.

A3 Under some permutation:

for
(
U3
(q), V

3
(q)

)
=

(
X3

(q), X
3
∗(q)

)
,
(
X3

(q), Y
3
(q)

)
,
(
Y 3
(q), Y

3
∗(q)

)
.

The sequence: {(
U3
(q) − V 3

(q)

)2

, q ≥ 1
}

is ρ mixing

meaning:

sup1≤q≤q′≤∞,|q−q′|>r|corr
{(

U3
(q) − V 3

(q)

)2

,
(
U3
(q′) − V 3

(q′)

)2 }
| ≤ ρ(r)
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where: ρ(r) → 0 as r → ∞.

Proposition 3.1 Suppose that we have m independent observations from each of F̄

and Ḡ, which satisfy A1-A3. Also assume that either u2 > 0 or ω1 �= ω2. Then,

unless m is very small (i.e.,
(
2m
m

) ≤ 2/α), the power of the proposed test of level α

converges to 1 as d tends to infinity.

Similar to the BG-test, we reject the null hypothesis for large values of the test, and

for a test of level of significance of 0.05 this test also requires a sample size greater

than or equal 4. By combining the BG-test and the BG3−test, we can deal with

the case that the two samples have the same mean and variance but with different

skewness. This point will be further explained in the simulation study in the next

chapter.
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Chapter 4

Case Study

In this chapter, we illustrate our procedure based on a case study. We will also show

the performance of the BG3-test based on simulation.

4.1 Analysis of real data

We apply our proposed procedure to four real data sets, which are from the national

long-term water quality monitoring data. The data sets provide one time series sample

from each of the seven sites monitored. We will compare the levels of zinc, lead, PH and

alkalinity measured in Microgram/Liter (Ug/L), PH and Milligram/Liter (MG/L) in six of

these sites on Yukon river basin, which is the third longest river in North America. Here we

ignore the seventh site since it has only 22 data points. The quality monitoring of the river

was done by Environment and Climate Change Canada (ECCC) from year 2005 till 2015,

and the measures were taken monthly. The data set includes measurements of PH, major

ions and metals taken over the mentioned period.

In this thesis, we will work with two metals, zinc and lead. We study the differences

between the models of the observations in each site. We will also consider the PH and

alkalinity measures. PH is the intensity or level of how acidic or basic the water is. It has

a range between 0 and 14, where 0 is acidic, 14 is basic and 7 being neutral. Alkalinity is

closely related to PH, where it measures the ability of water to resist changes in PH ([23]).

There are a number of species that form alkalinity, however in this data they only measure

the levels of bicarbonate HCO−3 .

First, we consider the zinc data set. We denote the samples from site 1 till site 6 as

s1, ..., s6. In the following, we will use the same site notations in all cases. The locations of
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Figure 4.1: Locations of the sites of the samples

the sites are shown in Figure 4.1. The samples have 103, 104, 128, 102, 99, 75 time points

respectively, which are given in Figure 4.2. Note that although the plots show the difference

in the range of values and hence have different average values, this does not mean that they

do not share the same structure.

We test the stationarity of the time series of each sample using the package ‘tseries’

in R for the KPSS-test [10], and the ADF-test [17]. For the KPSS-test the null hypothesis

is stationarity, so for a P-value < 0.05 we reject H0, however for the ADF-test the null hy-

pothesis is non-stationarity, so when the P-value < 0.05 the time series is trend-stationary.

In this set of data we see that the plots do not show any trend in s1, s2, s4 and s5, see Figure

4.2 and Figure 4.3. Hence, trend stationarity tests are considered as stationarity tests in this

case and we will use the KPSS-test for level-stationarity. However for s3 and s6 we will

test trend-stationarity. The results of the tests are given in Table 4.1.
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Figure 4.2: Time series plots for zinc levels
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Figure 4.3: ACF plots for zinc levels
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sample Test stationary:

KPSS ADF non-stationary

s1 0.10000000 0.01000000 2:0

s2 0.10000000 0.01000000 2:0

s3 0.01000000 0.06636761 0:2

s4 0.1000000000 0.0159199336 2:0

s5 0.1000000 0.0100000 2:0

s6 0.0100000000 0.3738797188 0:2

Table 4.1: P-values and stationarity of zinc samples

Based on these results, we will continue this study in two groups. The first group

contains the samples that are stationary depending on the stationary over non-stationary

results given in Table 4.1, which are s1, s2, s4 and s5. The rest will form the second group.

From this step we know that the models of the samples in the first group are different from

the models of the samples in the second group. Considering that the time series of the first

group are stationary, we continue the study by following the second step of our procedure,

which is comparing their correlation structures. We pair the samples as follows:

(1) s1 vs. s2, (2) s1 vs. s4, (3) s1 vs. s5,

(4) s2 vs. s4, (5) s2 vs. s5, (6) s4 vs. s5.

For each pair we gather both samples and fit them to an AR(p) model by Yule-walker using

R. We obtain the following models:

(1) s1 vs. s2:

wt = yt − 0.2245 yt−1.

(2) s1 vs. s4:

wt = yt−0.3858 yt−1 − 0.1475 yt−2 − 0.0373 yt−3 − 0.0059 yt−4 − 0.0348 yt−5

−0.0734 yt−6 − 0.2048 yt−7 + 0.0437 yt−8 − 0.0683 yt−9 − 0.0887 yt−10

−0.1027 yt−11 − 0.1430 yt−12 + 0.2454 yt−13 + 0.1255 yt−14 − 0.0262 yt−15

−0.1741 yt−16 + 0.1202 yt−17.
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(3) s1 vs. s5:

wt = yt−0.0637 yt−1 − 0.1148 yt−2 + 0.0475 yt−3 + 0.0620 yt−4 − 0.0131 yt−5

+0.0765 yt−6 − 0.0415 yt−7 − 0.1573 yt−8 + 0.0704 yt−9 − 0.0285 yt−10

−0.0477 yt−11 − 0.0693 yt−12 − 0.0101 yt−13 − 0.1807 yt−14 − 0.0845 yt−15

−0.1998 yt−16.

(4) s2 vs. s4:

wt = yt−0.3739 yt−1 − 0.1373 yt−2 − 0.0449 yt−3 − 0.0314 yt−4 − 0.0258 yt−5

−0.0277 yt−6 − 0.1924 yt−7 + 0.0124 yt−8 − 0.0899 yt−9 − 0.1089 yt−10

−0.1047 yt−11 − 0.1629 yt−12 + 0.2104 yt−13 + 0.1159 yt−14 − 0.0290 yt−15

−0.1781 yt−16 + 0.1001 yt−17 − 0.0729 yt−18 + 0.0731 yt−19 + 0.1203 yt−20.

(5) s2 vs. s5:

wt = yt−0.0624 yt−1 − 0.1152 yt−2 + 0.0496 yt−3 + 0.0637 yt−4 − 0.0124 yt−5

+0.0781 yt−6 − 0.0397 yt−7 − 0.1579 yt−8 + 0.0702 yt−9 − 0.0258 yt−10

−0.0476 yt−11 − 0.0689 yt−12 − 0.0095 yt−13 − 0.1808 yt−14 − 0.0840 yt−15

−0.1978 yt−16.

(6) s4 vs. s5:

wt = yt−0.4115 yt−1 − 0.1596 yt−2 − 0.0615 yt−3 − 0.0111 yt−4 − 0.0128 yt−5

−0.0481 yt−6 − 0.1727 yt−7 + 0.0745 yt−8 − 0.0537 yt−9 − 0.0517 yt−10

−0.0706 yt−11 − 0.1301 yt−12 + 0.2411 yt−13 + 0.0958 yt−14 − 0.0117 yt−15

−0.1726 yt−16.

Calculating the residuals of the data in each case, and calculating their PACFs, we get the

values in Table 4.2.
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χ2
(p) χ2

0.05, p Result

s1 vs. s2: χ2
(1) = 0.1895918 χ2

0.05, 1 = 3.84 accept H0

s1 vs. s4: χ2
(17) = 7.659143 χ2

0.05, 17 = 27.59 accept H0

s1 vs. s5: χ2
(16) = 15.40808 χ2

0.05, 16 = 26.30 accept H0

s2 vs. s4: χ2
(20) = 18.21268 χ2

0.05, 20 = 31.41 accept H0

s2 vs. s5: χ2
(16) = 14.96461 χ2

0.05, 16 = 26.30 accept H0

s4 vs. s5: χ2
(16) = 16.21758 χ2

0.05, 16 = 26.30 accept H0

Table 4.2: Correlation comparison for group 1 of zinc data

From Table 4.2, we see that s1, s2, s4 and s5 have the same correlation structure. This

allows us to proceed to the third step and test the difference in the distributions of the

residuals of the samples, which are calculated based on the fitted model of each pair. Since

we have one sample from each site, the most suitable two-sample test to be used is the

Bayesian two-sample test [7]. The script of the test is available online for Matlab/Octave

by François Caron, who is one of the authors of [7].

We see from the results of this test in Table 4.3 that the samples s1 and s2 have the same

model, but they only differ from the s4 and s5 models in the distributions of residuals.

residuals of : Result P (H0|y1, y2)
s1 vs. s2: accept H0 1.0000

s1 vs. s4: reject H0 2.3137× 10−50

s1 vs. s5: reject H0 6.6413× 10−24

s2 vs. s4: reject H0 7.2522× 10−50

s2 vs. s5: reject H0 4.3468× 10−18

s4 vs. s5: reject H0 4.8405× 10−18

Table 4.3: Bayesian two-sample test results for the residual distributions in group 1 of zinc
data

We now consider the second group of samples, our first step is to transform our samples

to stationary time series. Starting with s3 we apply differencing, since the sample shows

the existence of a unit root. Applying the same transformation to s6, we see that it is also

transformed to a stationary time series. By denoting the transformed data of s3 and s6 by

t3, t6 we see from their ACF plots in Figure 4.4 that they have no trend. We obtain their

stationarity (level-stationarity) results in Table 4.4.

30



0 5 10 15 20

-0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

(a) Site 3

0 5 10 15

-0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

(b) Site 6

Figure 4.4: ACF plots for transformed zinc samples

sample Test stationary:

KPSS ADF non-stationary

t3 0.1000000 0.0100000 2:0

t6 0.1000000 0.0100000 2:0

Table 4.4: P-values and stationarity of transformed zinc samples

Working with the transformed stationary samples, we compare their correlation structure,

by fitting them gathered to an AR(p) model first:

(1) t3 vs. t6:

wt = yt+0.1336 yy−1 + 0.1076 yt−2 + 0.1348 yt−3 + 0.1468 yt−4 + 0.2234 yt−5

+0.2718 yt−6 + 0.0296 yt−7 + 0.1387 yt−8 + 0.0568 yt−9 + 0.1962 yt−10

−0.0496 yt−11 − 0.1665 yt−12.

We then calculate the residuals of each transformed sample, and their PACFs to get the χ2
(p)

values as seen in Table 4.5.
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χ2
(p) χ2

0.05, p Result

t3 vs. t6: χ2
(12) = 29.38165 χ2

0.05, 12 = 21.03 reject H0

Table 4.5: Correlation comparison for group 2 of zinc data

We see that t3 and t6 do not share the same correlation, hence, there is no need to compare

their residual distributions and they have different models.

Second, we follow the same steps to study the water quality time series for lead levels

in the Yukon river basin, where the samples have the lengths 103, 103, 126, 101, 101, 75,

see Figure 4.5.

Using the same notations of the zinc example, and noting that the samples do not have

a trend component (Figure 4.6) we run the stationarity tests and get the results in table 4.6.

sample Test stationary:

KPSS ADF non-stationary

s1 0.06966754 0.01000000 2:0

s2 0.1000000 0.0100000 2:0

s3 0.100000000 0.010000000 2:0

s4 0.1000000 0.0100000 2:0

s5 0.1000000 0.0100000 2:0

s6 0.01000000 0.02935544 1:1

Table 4.6: P-values and stationarity of lead samples

From the stationarity tests, we can see that the only sample that does not pass both tests

is s6, which means that it differs from the rest of the samples. We continue the test with

s1, s2, s3, s4 and s5 by comparing the two samples correlation structure in each case as

follows:

(1) s1 vs. s2:

wt = yt.

32



Lead total

tim
e 

po
in

ts

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

(a) Site 1

Lead total

tim
e 

po
in

ts

0 20 40 60 80 100

0.
0

0.
1

0.
2

0.
3

0.
4

(b) Site 2

Lead total

tim
e 

po
in

ts

0 20 40 60 80 100 120

0
1

2
3

4
5

6
7

(c) Site 3

Lead total

tim
e 

po
in

ts

0 20 40 60 80 100

0
5

10
15

20
25

(d) Site 4

Lead total

tim
e 

po
in

ts

0 20 40 60 80 100

0
1

2
3

4
5

(e) Site 5

Lead total

tim
e 

po
in

ts

0 20 40 60

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

(f) Site 6

Figure 4.5: Time series plots for lead levels
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Figure 4.6: ACF plots for lead levels
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(2) s1 vs s3:

wt = yt−0.3697 yt−1 + 0.0173 yt−2 − 0.0163 yt−3 + 0.0437 yt−4 + 0.0046 yt−5

−0.0661 yt−6 − 0.0314 yt−7 − 0.0381 yt−8 + 0.0359 yt−9 + 0.0309 yt−10

−0.0046 yt−11 − 0.4652 yt−12 + 0.2447 yt−13.

(3) s1 vs s4:

wt = yt−0.1595 yt−1.

(4) s1 vs s5:

wt = yt − 0.1002 yt−1 − 0.1061 yt−2.

(5) s2 vs. s3:

wt = yt−0.3701 yt−1 + 0.0187 yt−2 − 0.0142 yt−3 + 0.0436 yt−4 + 0.0042 yt−5

−0.0642 yt−6 − 0.0280 yt−7 − 0.0375 yt−8 + 0.0351 yt−9 + 0.0322 yt−10

−0.0031 yt−11 − 0.4667 yt−12 + 0.2466 yt−13.

(6) s2 vs. s4:

wt = yt − 0.1579 yt−1.

(7) s2 vs. s5:

wt = yt − 0.0965 yt−1 − 0.1029 yt−2.

(8) s3 vs. s4:

wt = yt − 0.1142 yt−1.

35



(9) s3 vs. s5:

wt = yt−0.1935 yt−1 + 0.0064 yt−2 + 0.0385 yt−3 + 0.0658 yt−4 + 0.0289 yt−5

−0.0208 yt−6 − 0.0107 yt−7 − 0.0396 yt−8 + 0.0401 yt−9 + 0.0399 yt−10

−0.0084 yt−11 − 0.2825 yt−12.

(10) s4 vs. s5:

wt = yt−0.131 yt−1.

χ2
(p) χ2

0.05, p Result

s1 vs. s3: χ2
(13) = 15.38609 χ2

0.05, 13 = 22.36 accept H0

s1 vs. s4: χ2
(1) = 0.2432327 χ2

0.05, 1 = 3.84 accept H0

s1 vs. s5: χ2
(2) = 0.2805838 χ2

0.05, 2 = 5.99 accept H0

s2 vs. s3: χ2
(13) = 18.4757 χ2

0.05, 13 = 22.36 accept H0

s2 vs. s4: χ2
(1) = 0.7021482 χ2

0.05, 1 = 3.84 accept H0

s2 vs. s5: χ2
(2) = 0.4781823 χ2

0.05, 2 = 5.99 accept H0

s3 vs. s4: χ2
(1) = 3.360954 χ2

0.05, 1 = 3.84 accept H0

s3 vs. s5: χ2
(12) = 20.66411 χ2

0.05, 12 = 21.03 accept H0

s4 vs. s5: χ2
(1) = 0.1096292 χ2

0.05, 1 = 3.84 accept H0

Table 4.7: Correlation comparison for lead data

Since each pair share the same correlation (Table 4.7) we continue to test the distribu-

tions of the residuals by the Bayesian two-sample test.
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residuals of : Result P (H0|y1, y2)
s1 vs. s2: accept H0 0.9998

s1 vs. s3: reject H0 1.4812× 10−16

s1 vs. s4: reject H0 1.6966× 10−52

s1 vs. s5: accept H0 0.9998

s2 vs. s3: reject H0 2.3196× 10−17

s2 vs. s4: reject H0 1.4426× 10−53

s2 vs. s5: reject H0 0.3565

s3 vs. s4: reject H0 5.1348× 10−23

s3 vs. s5: reject H0 0.3089

s4 vs. s5: reject H0 2.2098× 10−29

Table 4.8: Bayesian two-sample test results for the residual distributions of lead data

From the results of the residual distribution test, we note that the sample s1 shares the same

model with s2 and s5.

For the PH samples, we follow the same steps to study their models. The samples have

the lengths 112, 107, 128, 95, 89, 75, see Figure 4.7.

Using the same notations, and since there is no trend component in s3, s4 and s5, we

apply the stationarity tests. However for s1, s2 and s6 since they exhibit a trend based on

Figure 4.8, we apply trend-stationarity tests. The test results are obtained in Table 4.9.

sample Test stationary:

KPSS ADF non-stationary

s1 0.01000000 0.07607635 0:2

s2 0.01000000 0.01102785 1:1

s3 0.10 0.01 2:0

s4 0.10 0.01 2:0

s5 0.10 0.01 2:0

s6 0.1000000 0.1294852 1:1

Table 4.9: P-values and stationarity of PH samples

From Table 4.9, based on the results we form two groups. The first consists of s3, s4 and s5

and the second contains s1, s2 and s6. This implies that the samples in the first group have
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Figure 4.7: Time series plots for PH levels
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Figure 4.8: ACF plots for PH levels
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models different from the samples of the second group. Starting with the stationary group,

we compared the two-sample correlation structures in each case as follows:

(1) s3 vs. s4:

wt = yt − 0.2868 yt−1.

(2) s3 vs s5:

wt = yt − 0.3651 yt−1.

(3) s4 vs s5:

wt = yt − 0.2522 yt−1.

χ2
(p) χ2

0.05, p Result

s3 vs. s4: χ2
(1) = 0.04555956 χ2

0.05, 1 = 3.84 accept H0

s3 vs. s5: χ2
(1) = 0.005987199 χ2

0.05, 1 = 3.84 accept H0

s4 vs. s5: χ2
(1) = 0.02198864 χ2

0.05, 1 = 3.84 accept H0

Table 4.10: Correlation comparison for group 1 of PH data

From Table 4.10, we see that all samples of group 1 share the same correlation structure,

so we continue to test the distributions of the residuals by the Bayesian two-sample test.

residuals of : Result P (H0|y1, y2)
s3 vs. s4: accept H0 0.9039

s3 vs. s5: accept H0 0.9961

s4 vs. s5: reject H0 0.0024

Table 4.11: Bayesian two-sample test results for the residual distributions in group 1 of PH
data

Based on residual distribution test results, we see that s3 shares the same model with s4 and

s5.

We now consider the second group of samples. Applying the differencing transforma-

tion on s1 and running the stationarity tests, we get a stationary sample. Applying the same
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Figure 4.9: ACF plots for transformed PH samples

transformation to s2 and s6, and testing their stationarity as well we get the results in Table

4.12. Since there is no trend in the ACF plots of the transformed samples (Figure 4.9) we

will use stationarity tests.

sample Test stationary:

KPSS ADF non-stationary

t1 0.10 0.01 2:0

t2 0.10 0.01 2:0

t6 0.1000000 0.0126347 2:0

Table 4.12: P-values and stationarity of transformed PH samples
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Fitting the gathered transformed samples to AR(p) models to test their correlation struc-

tures, we get:

(1) t1 vs. t2:

wt = yt+0.2034 yt−1 + 0.2087 yt−2 + 0.3339 yt−3 + 0.0581 yt−4 + 0.1883 yt−5

+0.2403 yt−6 + 0.0969 yt−7 + 0.1237 yt−8.

(2) t1 vs. t6:

wt = yt+0.3223 yt−1 + 0.3055 yt−2 + 0.1458 yt−3 − 0.0515 yt−4 + 0.0712 yt−5

+0.1352 yt−6 + 0.2100 yt−7 + 0.2255 yt−8 + 0.1074 yt−9.

(3) t2 vs. t6:

wt = yt+0.3106 yt−1 + 0.3026 yt−2 + 0.2585 yt−3 + 0.0482 yt−4 + 0.2255 yt−5

+0.1884 yt−6 + 0.2365 yt−7 + 0.2763 yt−8 + 0.2009 yt−9 + 0.1217 yt−10

+0.1474 yt−11 + 0.1477 yt−12 + 0.1104 yt−13 + 0.0746 yt−14 + 0.2057 yt−15

+0.0286 yt−16 − 0.0411 yt−17 + 0.0463 yt−18 − 0.0452 yt−19 + 0.0804 yt−20

−0.0243 yt−21 − 0.2352 yt−22.

The χ2
(p) values based on the PACFs of the residuals are given in Table 4.13.

χ2
(p) χ2

0.05, p Result

t1 vs. t2: χ2
(8) = 9.410847 χ2

0.05, 8 = 15.51 accept H0

t1 vs. t6: χ2
(9) = 6.217005 χ2

0.05, 9 = 16.92 accept H0

t2 vs. t6: χ2
(22) = 14.78596 χ2

0.05, 22 = 33.92 accept H0

Table 4.13: Correlation comparison for group 2 of PH data

Based on the Bayesian two-sample test results in Table 4.13, s1 and s2 share the same

model.
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residuals of : Result P (H0|y1, y2)
t1 vs. t2: accept H0 0.8026

t1 vs. t6: reject H0 9.7893× 10−06

t2 vs. t6: reject H0 2.4720× 10−05

Table 4.14: Bayesian two-sample test results for the residual distributions in group 2 of PH
data

Finally, we consider the alkalinity(HCO−3 ) levels in the studied six sites. The sample

lengths are as follow 111, 107, 128, 103, 102, 75, see Figure 4.10.

sample Test stationary:

KPSS ADF non-stationary

s1 0.10 0.01 2:0

s2 0.10 0.01 2:0

s3 0.10 0.01 2:0

s4 0.10 0.01 2:0

s5 0.10 0.01 2:0

s6 0.07777487 0.07544538 1:1

Table 4.15: P-values and stationarity of alkalinity (HCO−3 ) samples

Running the stationarity tests on the samples, since there is no trend (Figure 4.11) we

see that all samples are stationary except s6. We continue the study with the stationary

samples by comparing their correlation structure in each case as follows:

(1) s1 vs. s2:

wt = yt−0.6027 yt−1 + 0.0710 yt−2 + 0.0383 yt−3 − 0.0008 yt−4 + 0.0524 yt−5

+0.0124 yt−6 − 0.1622 yt−7 − 0.0084 yt−8 + 0.0208 yt−9 − 0.0196 yt−10

−0.2808 yt−11 + 0.0359 yt−12 + 0.1728 yt−13 − 0.0400 yt−14 − 0.0234 yt−15

+0.0988 yt−16 − 0.2073 yt−17 + 0.2194 yt−18 − 0.0522 yt−19 + 0.0564 yt−20

−0.1989 yt−21 + 0.1317 yt−22.
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Figure 4.10: Time series plots for alkalinity (HCO−3 ) levels
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Figure 4.11: ACF plots for alkalinity (HCO−3 ) levels
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(2) s1 vs s3:

wt = yt−0.8113 yt−1 + 0.0454 yt−2 − 0.0003 yt−3 − 0.0728 yt−4 + 0.0310 yt−5

+0.0596 yt−6 − 0.0509 yt−7 − 0.0619 yt−8 + 0.0694 yt−9 + 0.0034 yt−10

−0.1353 yt−11 − 0.2313 yt−12 + 0.2312 yt−13.

(3) s1 vs s4:

wt = yt−0.6254 yt−1 − 0.0806 yt−2 − 0.0429 yt−3 − 0.0087 yt−4 + 0.0908 yt−5

−0.0352 yt−6 − 0.0071 yt−7 − 0.2369 yt−8.

(4) s1 vs s5:

wt = yt − 0.1485 yt−1 − 0.1016 yt−2 − 0.0947 yt−3 − 0.1036 yt−4.

(5) s2 vs. s3:

wt = yt−0.8114 yt−1 + 0.0446 yt−2 + 0.0029 yt−3 − 0.0707 yt−4 + 0.0281 yt−5

+0.0621 yt−6 − 0.0522 yt−7 − 0.0617 yt−8 + 0.0673 yt−9 + 0.0063 yt−10

−0.1337 yt−11 − 0.2364 yt−12 + 0.2362 yt−13.

(6) s2 vs. s4:

wt = yt−0.6232 yt−1 − 0.0805 yt−2 − 0.0426 yt−3 − 0.0083 yt−4 + 0.0930 yt−5

−0.0351 yt−6 − 0.0091 yt−7 − 0.2370 yt−8.

(7) s2 vs. s5:

wt = yt − 0.1503 yt−1 − 0.1035 yt−2 − 0.1008 yt−3.
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(8) s3 vs. s4:

wt = yt−0.6335 yt−1 + 0.0253 yt−2 + 0.0518 yt−3 + 0.0083 yt−4 + 0.0891 yt−5

+0.0630 yt−6 + 0.0001 yt−7 − 0.0406 yt−8 + 0.0950 yt−9 + 0.0423 yt−10

−0.0753 yt−11 − 0.1818 yt−12 + 0.2871 yt−13.

(9) s3 vs. s5:

wt = yt − 0.2893 yt−1 − 0.0943 yt−2.

(10) s4 vs. s5:

wt = yt − 0.2359 yt−1.

Based on the fitted model in each case, and by calculating the PACFs of the residuals of

each sample, we compare the correlation structures depending on the χ2
(p) values in Table

4.16.

χ2
(p) χ2

0.05, p Result

s1 vs. s2: χ2
(22) = 5.690048 χ2

0.05, 22 = 33.92 accept H0

s1 vs. s3: χ2
(13) = 7.48145 χ2

0.05, 13 = 22.36 accept H0

s1 vs. s4: χ2
(8) = 9.182556 χ2

0.05, 8 = 15.51 accept H0

s1 vs. s5: χ2
(4) = 9.911388 χ2

0.05, 4 = 9.49 reject H0

s2 vs. s3: χ2
(13) = 8.155671 χ2

0.05, 13 = 22.36 accept H0

s2 vs. s4: χ2
(8) = 9.590492 χ2

0.05, 8 = 15.51 accept H0

s2 vs. s5: χ2
(3) = 11.68419 χ2

0.05, 3 = 7.81 reject H0

s3 vs. s4: χ2
(13) = 7.66186 χ2

0.05, 13 = 22.36 accept H0

s3 vs. s5: χ2
(2) = 23.57606 χ2

0.05, 2 = 5.99 reject H0

s4 vs. s5: χ2
(1) = 9.372886 χ2

0.05, 1 = 3.84 reject H0

Table 4.16: Correlation comparison for alkalinity (HCO−3 ) data

From the correlation structure results, we see that s1, s2, s3 and s4 share the same corre-

lation structure, hence, we continue to compare their noise distributions. We conclude that

the sample from s5 has a different model.
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residuals of : Result P (H0|y1, y2)
s1 vs. s2: accept H0 0.5554

s1 vs. s3: reject H0 3.6059× 10−27

s1 vs. s4: reject H0 4.8698× 10−26

s2 vs. s3: reject H0 6.6108× 10−27

s2 vs. s4: reject H0 1.0041× 10−22

s3 vs. s4: accept H0 0.9890

Table 4.17: Bayesian two-sample test results for the residual distributions of alkalinity
(HCO−3 ) data

Table 4.17 shows that only the samples s1 and s2, s3 and s4 share the same model.

Based on the above analysis, we conclude that in the time series models of zinc, lead,

PH and alkalinity levels the time series from the first and second site share the same model.

This can be a result of the relatively close distance between both sites (around 50 km).

Also, considering the PH and alkalinity results, we see that in both cases the samples from

the third and the fourth site share the same model, this is compatible with the definition

of PH and alkalinity. Since both sites have the same resistance model for change of PH

(alkalinity), they also have the same PH models. We also note that in the PH case the

sample from site 3 shares the same model with the sample from site 5, this does not happen

in the alkalinity case. This could be relied on the fact that alkalinity constitutes of more

than one anion, which contributes in resisting the change in PH levels. However, the data

we studied measures alkalinity based on the HCO−3 levels only (cf. [22] and [23]). In the

lead samples, we concluded that the sample from s1 has the same model as the sample from

s2 and the samples from s1 and s5 have the same model, but s2 and s5 do not share the same

model. This does not contradict with our procedure, since this procedure is for comparing

two samples only. Also, the difference between the models of s2 and s5 is in the residual

terms, this means that if the residuals of s1 and s2 are similar and the residuals of s1 and

s5 are also similar, then the residuals of s2 and s5 could be less similar than the other pairs,

hence the models differ. A similar phenomenon happens in the PH study with the samples

from s3, s4 and s5.
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4.2 Illustrative examples

To see the advantage of using the BG3−test, we consider the illustrative examples in

Biswas and Ghosh [2] by adding the equal means and variances case. Given two time

series models, we will test the performance of both tests in location, scale, location-scale,

and equal means and variances problems:

M1 : Xt = 0.1Xt−1 + et,

M2 : Yt = 0.1Yt−1 + wt,

t = 3, ..., 400.

By taking 20 samples from each model and repeating the tests 200 times we calculate

the powers of both tests as the time points (dimensions) increase. A power of a test is

represented by the proportion of rejection of the null hypothesis. The problems considered

are:

(a) Location problem: et ∼ N(0, 1) and wt ∼ N(0.3, 1).

(b) Scale problem: et ∼ N(0, 1) and wt ∼ N(0, 1.3).

(c) Location-scale problem: et ∼ N(0, 1) and wt ∼ N(0.2, 1.2).

(d) Different distributions, with equal means and variance:

et ∼ N(1, 1) and wt ∼ Exp(1).

et ∼ N(
1

2
,
1

12
) and wt ∼ Unif(0, 1).

As we can see in Figure 4.12, the BG3-test outperforms the BG-test in cases (b),(c),(d),(e)

and (f), but does not perform very well in the location problem (a). The reason for this is

similar to why the BF-test performs better in location problems, based on the simulated

data. The added term μ̂FF − μ̂GG in the BG-test which serves as noise in the location

problem increases in the BG3-test. Running the same simulation but using a permuta-

tion Monte-Carlo-bootstrap instead of a normal Monte-Carlo-bootstrap to obtain a critical

value, we get the power plots in Figure 4.13. Similar to the first figure, the BG3-test out-

performs the BG-test in (d) and (e) where the samples have the same mean and variance

but differ in the third moment.
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We can conclude that the combination of the results of both tests will give a better

result to the general two-sample problem. If the BG-test accepts the null hypothesis, we

note from the simulations that this result could be false in the same mean and variance case.

Hence, we need to apply the BG3−test to confirm the result.
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Figure 4.12: Powers of BG-test (red) and BG3-tests (green) via normal Monte-Carlo-
bootstrap
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Figure 4.13: Powers of BG-test (red) and BG3-tests (green) via permutation Monte-Carlo-
bootstrap
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Future work

To the best of our knowledge, there is no direct Bayesian test for two-sample time

series unless the noise distribution is known and the noise terms are iid. We would like to

generalize the Bayesian two-sample test given by Holmes et al. [7] to the non-iid setting.

Also, we would like to consider the problem in a multivariate setting, where there is more

than one time series sample from each model. Another issue for future work would be

to consider explicit forms of the Bayes factor using other prior distributions, for example,

the Dirichlet process mixtures (DPM) as in Borgwardt et al. [3]. We are interested in

comparing the performances of different Bayesian tests.
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Appendix A

R Codes

We include the codes from the zinc example for s1 vs. s2.

Correlation comparison

Fitting an AR(p) model to the gathered data of s1 = x1 and s2 = y1:

ar(x = c(x1,y1), method = "yule-walker")

Residual calculation of each data set based on the fitted AR(p)model:

For x1:

w<-vector("numeric",103)

for(i in 2:104){

y=c(0,x1)

w[i]<-y[i]-0.2245*y[i-1]

}

w1=w[-c(1)]

For y1:

w<-vector("numeric",104)

for(i in 2:105){

y=c(0,y1)

w[i]<-y[i]-0.2245*y[i-1]

}
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w2=w[-c(1)]

Calculating the PACFs for the χ2−test:

w<-vector("numeric",20)

for(i in 1:20){

v=c(pacf(w1,plot=F)$acf)

v1=c(pacf(w2,plot=F)$acf)

w[i]<-(v[i]-v1[i])ˆ2/ ((1/(103-i))+(1/(104-i)))

}

Residual Comparison: Other Two-Sample Tests

Based on the cramer.test code source from the ‘‘cramer’’ package, we modify

its code in the following way:

#require(boot)

.BG.statistic<-function(daten,indexe,mm,nn,lookup) {

xind<-indexe[1:mm]

yind<-indexe[(mm+1):(mm+nn)]

(sum(lookup[xind,yind])/(mm*nn)-sum(lookup[xind,xind])/(mmˆ2))ˆ2

+(sum(lookup[xind,yind])/(mm*nn)-sum(lookup[yind,yind])/(nnˆ2))ˆ2

}

BG.test<-function(x,y,conf.level=0.95,replicates=1000,sim="ordinary",

just.statistic=FALSE,kernel="phiCramer") {

RVAL <- list(method = paste("nonparametric BG-Test with kernel",

kernel,"\n(on equality of two distributions)"),

d = 0,

m = 0,

n = 0,

statistic = 0,

conf.level = conf.level,

crit.value = 0,
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p.value = 0,

result = 0,

sim = sim,

replicates = replicates

)

if ((is.vector(x))&&(is.vector(y))) RVAL$d<-1

if ((is.matrix(x))&&(is.matrix(y))) if (ncol(x)==ncol(y))

RVAL$d<-ncol(x)

if (RVAL$d==0) stop("types of x and y incompatible or

inappropriate.")

if (RVAL$d==1) {

RVAL$m<-length(x)

RVAL$n<-length(y)

daten<-matrix(c(x,y),ncol=1,byrow=TRUE)

} else {

RVAL$m<-nrow(x)

RVAL$n<-nrow(y)

daten<-matrix(c(t(x),t(y)),ncol=ncol(x),byrow=TRUE)

}

lookup<-matrix(rep(0,(RVAL$m+RVAL$n)ˆ2),ncol=(RVAL$m+RVAL$n))

for (i in 2:(RVAL$m+RVAL$n))

for (j in 1:(i-1)) {

lookup[i,j]<-sum((daten[i,]-daten[j,])ˆ2)

lookup[j,i]<-lookup[i,j]

}

lookup<-eval(call(kernel,lookup))

if (just.statistic) {

RVAL$statistic<-.BG.statistic(daten,1:(RVAL$m+RVAL$n),

RVAL$m,RVAL$n,lookup)

} else if (sim!="eigenvalue") {

b<-boot(data=daten,statistic=.BG.statistic,mm=RVAL$m,

nn=RVAL$n,lookup=lookup,sim=RVAL$sim,stype="i",R=RVAL

$replicates)

RVAL$statistic<-b$t0
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RVAL$p.value<-1-rank(c(b$t0,b$t))[1]/(replicates+1)

RVAL$crit.value<-sort(b$t)[round(RVAL$conf.level*RVAL

$replicates)]

if (RVAL$statistic>RVAL$crit.value) RVAL$result<-1

}

class(RVAL) <- "BGtest"

return(RVAL)

}

print.BGtest<-function(x,...) {

cat("\n",x$d,"-dimensional ",x$method,"\n\n")

cat("\tx-sample: ",x$m," values ")

cat("y-sample: ",x$n," values\n\n")

if (x$crit.value>0) {

cat("critical value for confidence level ",

format(100 * x$conf.level),"% : ",x$crit.value,"\n")

cat("observed statistic ",x$statistic,",

so that\n\t hypothesis (\"x is distributed as y\") is ")

cat(ifelse(x$result==0," ACCEPTED"," REJECTED"),".\n")

cat("estimated p-value = ",x$p.value,"\n\n")

if (x$sim!="eigenvalue") {

cat("\t[result based on ",x$replicates,"

",x$sim," bootstrap-replicates]\n\n");

}

} else {

cat("observed statistic ",x$statistic,"\n\n")

}

invisible(x)

}

phiCramer<-function(x) return(sqrt(x)/2)

The following code is based on the location problem in the illustrative examples:

Application of the BG-test:

w1=rep(1000,40)
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for (i in 1:40){

m=seq(3,400,10)

w1[i]=sum(replicate(200,{

xx=replicate(20,{ x11=arima.sim(model=list(ar=0.1),n=m[i],

innov=rnorm(m[i],mean=0,sd=1))

x1=c(x11)})

x=matrix(xx,byrow=TRUE,ncol=m[i])

yy=replicate(20,{y11=arima.sim(model=list(ar=0.1),n=m[i],

innov=rnorm(m[i],mean=0.3,sd=1))

y1=c(y11)})

y=matrix(yy,byrow=TRUE,ncol=m[i])

BG.test(x,y)$result}))}

Application of the BG3-test:

w2=rep(1000,40)

for (i in 1:40){

m=seq(3,400,10)

w2[i]=sum(replicate(200,{

xx=replicate(20,{ x11=arima.sim(model=list(ar=0.1),n=m[i],

innov=rnorm(m[i],mean=0,sd=1))

x1=c(x11)})

x=matrix(xx,byrow=TRUE,ncol=m[i])

yy=replicate(20,{y11=arima.sim(model=list(ar=0.1),n=m[i],

innov=rnorm(m[i],mean=0.3,sd=1))

y1=c(y11)})

y=matrix(yy,byrow=TRUE,ncol=m[i])

BG.test(xˆ3,yˆ3)$result}))}
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