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ABSTRACT 
 

Cdk1 has a role in phosphorylating TRAMM 

 

Sari Snounou 

 

TRAMM was originally identified as a protein that co-precipitates with the TRAPP 

(transport protein particle) complex that functions in membrane trafficking. Recent work 

in our laboratory suggested a role for this protein in mitosis, specifically in chromosome 

congression prior to metaphase. In the early stages of mitosis, TRAMM is post-

translationally modified by phosphorylation. Knockdown of the protein causes it to affect 

the localization of various kinetochore proteins with the strongest effect on CENP-E. The 

two proteins were also shown to interact using a yeast two hybrid assay (Milev et al., 

2015). 

 

In this study, I show that TRAMM also interacts with CENP-E through a co-

immunoprecipitaiton assay and this interaction appears to be enhanced in mitotic 

lysates. Using various inhibitors of mitotic kinases, I further show that only inhibition of 

Cdk1 prevents the phosphorylation of TRAMM. This suggests that Cdk1, apart from the 

other mitotic kinases, has a role in phosphorylating TRAMM. Furthermore, I also use 

bioinformatics tools to predict the structure of TRAMM. Finally I express and purify a 

recombinant form of TRAMM in a homogeneous monodispersed protein sample. 
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Chapter 1: Introduction 

 

1.1 Membrane trafficking 

 

Membrane trafficking is an essential cellular process that occurs in virtually every cell. 

This process allows the cell to specifically deliver cargo molecules between its 

organelles, as well as their secretion to the extracellular space through exocytosis. This 

process is mediated by transport vesicles. The appropriate targeting of a vesicle requires 

a series of molecular events including sorting, budding, movement, tethering, and fusion 

of the vesicle. Each step increases the specificity of the trafficking process (Bonifacino 

and Glick, 2004). An example of this would be Endoplasmic Reticulum (ER) to Golgi 

traffic, where proteins are properly folded and packaged into coated vesicles (COPII), 

and transported from the ER to the Golgi (Hughes and Stephens 2008). In the Golgi, 

proteins are subjected to post translational modifications such as glycosylation, 

phosphorylation and packaging into carrier vesicles that bud from the trans-Golgi, 

allowing them to be transported to other cellular locations (Godi et al., 2004). 

1.1.1 TRAPP complex 

 

In 1998, Sacher and colleagues described the transport protein particle (TRAPP) 

complex while working on a protein called Bet3 (a 22KDa hydrophilic protein involved in 

ER-Golgi transport) (Sacher et al., 1998).Through epitope tagging of Bet3p and its 

purification from cell lysates in Saccharomyces cerevisiae, Bet3p was found to be a 

member of a large complex that is now known as TRAPP. This complex is specifically 

involved in the tethering process, as it is the first contact between vesicles and their 

target membrane. The TRAPP complex is considered to be one of the best studied of 

the multisubunit tethering complexes at the molecular level (Sacher et al., 2008). 

 

TRAPP I, II and III are three forms of TRAPP that were found to co-exist in S. cerevisiae. 

Studies show that all TRAPP complexes share the function of being a guanine 

nucleotide exchange factor (GEF) for Ypt1. This is accomplished by conserving 4 of their 

typical 6 core subunits: Bet3p, Bet5p, Trs23p, and Trs31p (Kim et al., 2006). These 

conserved subunits along with two additional subunits (Trs33p and Trs20p) form the 

TRAPP I complex. This complex functions at the level of ER-to-Golgi trafficking by 
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binding to COPII-coated ER-derived vesicles, and brings them to closer proximity of the 

acceptor membranes (Sacher et al., 1998). TRAPP II is composed of 10 subunits (the 

TRAPP I subunits and an additional 4 subunits; Trs65p, Trs120p, Trs130p and Tca17p) 

found to function at the level of intra-Golgi and late Golgi trafficking (Sacher et al., 2001). 

TRAPP III is made up of 7 subunits (the six TRAPP I subunits and an additional subunit 

called Trs85p) and functions in selective and non-selective autophagy (Lynch-Day et al., 

2010). 

 

The TRAPP complex is conserved throughout eukaryotes. It is found in mammals in an 

organized fashion represented by TRAPP II (consisting of C1, C2, C2L, C3, C4, C5, C6, 

C9, and C10) and TRAPP III (C1, C2, C2L, C3, C4, C5, C6, C8, C11, C12, C13) (Zong 

et al., 2011). This includes mammalian orthologues and additional unique mammalian 

subunits such as TRAMM (previously called TRAPPC12) and TRAPPC13 (also known 

as FLJ13611) (Table 1.1) (Sacher and Milev, 2016).TRAPP II and TRAPP III share the 

basic core subunits. What differentiates them are the C9 and C10 subunits in TRAPP II 

while TRAPP III contains C8, C11, C12, and C13 (Bassik et al., 2013). The TRAPP 

complex function is partially conserved since the mammalian TRAPP II complex is a 

GEF for Rab1 (Rab1 is an orthologue to yeast Ypt1p) (Ishikawa et al., 2009). The 

mammalian TRAPP III complex is functionally similar to that of yeast as it is involved in 

cellular autophagy (Behrends et al., 2010). 

 

1.1.2 TRAMM 

 

Trafficking of membranes and mitosis (TRAMM) is a 79 KDa protein that is one of the 

subunits of the mammalian TRAPP III complex (Scrivens et al., 2011). Depletion of 

TRAMM in HeLa cells results in Golgi fragmentation suggesting that it functions at an 

early stage of ER-to-Golgi trafficking (Scrivens et al. 2011). Interestingly, a recent 

discovery in our laboratory has shown that TRAMM has an important function in mitosis. 

TRAMM is the only subunit of TRAPP complex that has a role in mitosis (Figure 1.1(A)). 

Upon depletion of TRAMM, some chromosomes failed to congress to the metaphase 

plate and the cells remained arrested in this pre-metaphasestate of mitosis (Figure 

1.1(C)). TRAMM is phosphorylated during early mitosis (Figure 1.1(B)) and this 

phosphorylation plays a critical role in CENP-E recruitment to the kinetochores (see 

below) (Milev et al., 2015). 
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Figure 1.1 TRAMM has a role in mitosis. (A) Hela cells were photographed by bright 

field microscopy 24h after treatment with siRNA against the TRAPP subunits indicated. 

Cells were quantified by counting the number of mitotic cells in multiple fields. Depletion 

of TRAMM arrested cells in mitosis. Quantification of this effect indicated that the mitotic 

index increased from 6.4% for untreated (NC) or nonspecific siRNA (siNS) to 29.7% 

after depletion of TRAMM. This effect was not seen for other subunits of TRAPP 

complex indicating that TRAMM is the only subunit of TRAPP that has a role in mitosis. 

(B) Western blots of Hela cell lysates probed for anti-TRAMM, anti-phospho histone-H3 

(p-Hist-H3) (mitotic marker) and anti-tubulin (loading control). Hela cells were 

leftuntreated (asynchronous), treated with thymidine to arrest the cells at G1/S (Thym), 

or treated with colcemid (colc) to arrest the cells in mitosis. Colcemid treatment of cells 

reduced the mobility of TRAMM from 79 KDa (in asynchronous cells and thymidine-

treated cells) to 83 KDa. Phosphatase treatment increased the mobility of colcemid-

treated cells from 83 KDa to 79 KDa indicating that TRAMM is mitotically 
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phosphorylated. (C) Hela cells expressing fluorescently labeled histone H2B were 

treated with non-specific (NS top row) or TRAMM (bottom row) siRNA. The cells were 

subjected to live cell imaging 20 hours after treatment. Time at 0min refers to nuclear 

envelope break down in prophase (NEBD). TRAMM knockdown (KD) led to the 

presence of polar chromosomes that never migrated to the metaphase plate indicating 

that TRAMM has a role in chromosome congression (Milev et al., 2015). 

 

 

1.1.3 Membrane trafficking proteins in mitosis 

 

Proteins with at least two unrelated functions are described by the term “moonlighting.” 

Studies have shown that many membrane trafficking proteins have “moonlighting” 

functions in mitosis. TRAMM is one amongst the many such as clathrin, dynamin, epsin, 

and cyclin-G associated kinases (GAKs) (Royle, 2012). 

 

Clathrin is a protein coat used by cells to assist in the budding of vesicles from their 

respective donor membranes (Maro et al., 1985). Clathrin is also found in mitotic 

spindles, and its depletion destabilizes kinetochore fibers even though they are entirely 

lacking membranes (Royle et al., 2005). GAK is an  auxillin homologue that is a 

threonine and serine kinase that is associated with cyclin-G and functions in the removal 

of clathrin from clathrin coated vesicles. Interestingly, the depletion of GAK resulted in 

cellular arrest in pre-metaphase, showing mitotic moonlighting functionality (Greener et 

al., 2000).  

 

1.2 Mitosis 

 

Mitosis starts with chromosome condensation and ends with two daughter cells that 

have identical numbers of chromosomes. This process comprises 5 phases: prophase, 

prometaphase, metaphase, anaphase, and telophase (De Souza and Osmani, 2007).  

 

During prophase, the chromosomes begin to condense and are held together in pairs by 

the action of cohesion complexes. This is followed by nuclear breakdown (in most 

eukaryotes) and centrosomes begin to move towards opposite poles of the cell (Howell 

et al., 2001). The Knl1-Mis12 -Ndc80 (KMN) complex becomes active to bind to the 
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kinetochores at the centromeres of the condensed chromosomes and spindle 

microtubules start to appear from centrosomes in preparation for prometaphase (see 

below) (Muller-Reichert et al., 2007). Microtubule elongation and attachment to the 

kinetochores, and further chromosomal condensation for the purpose of alignment at the 

metaphase plate occur during prometaphase (May and Hardwick, 2006). The movement 

of chromosomes to the metaphase plate at the center of the cell is known as 

chromosome congression and upon completion of this process the cells are said to be in 

metaphase (May and Hardwick, 2006). Anaphase corresponds to the movement of the 

sister chromatids to opposite poles of the cell via microtubule depolymerization. The last 

phase of mitosis is telophase, where the nuclear membrane reforms, nuclei reappear, 

chromosomes decondense to chromatin, and the remaining spindle microtubules 

depolymerize (Bucciarelli et al., 2003). Concurrently with telophase, cytokinesis forms 

actin-myosin rings in the center of the cell, which results in cellular abscission to create 

two identical daughter cells post mitosis (Lara-Gonzalez et al., 2012).  

 

1.3 Kinetochores 

 

Kinetochores (KT) are inner proteinaceous complexes (greater than 200 proteins in 

mammalian cells) that assemble on the centromere of each chromosome (Errico et al., 

2010). KTs mediate the interactions between the centromere of sister chromatids and 

spindle microtubules (MTs), mediating all movements of chromosomes during mitosis 

(O’Connor et al., 2008). They have been conserved throughout eukaryotes due to their 

evolutionary importance in mitosis and are composed of two main core components: the 

Constitutive Centromere-Associated Network (CCAN) and Knl1-Mis12 -Ndc80 (KMN) 

complex network (Godek et al., 2015). 

 

CCAN are part of the inner portion of KTs that directly bind to the centromeric 

nucleosomes and links them to the KMN network. This is possible due to CCAN’s 

histone H3 variant known as CENP-A, which is a component of a larger 16 centromeric 

protein complex (Figure 1.1) (Musacchio and Salmon, 2007). 

 

The KMN network is located on the outer portion and is responsible for the interaction 

with kinetochore microtubules (the binding of KTs to MTs) and serves as a spindle 

assembly checkpoint (SAC) protein scaffold (Musacchio et al., 2011). The outer KT only 
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assembles post-NEBD and consists of approximately 20 proteins (mostly microtubule 

interacting proteins) adjacent to the CCAN. These outer KT proteins include KMN, 

mitotic checkpoint proteins, and motor proteins including CENP-E (see below) 

(Musacchio and Salmon, 2007). The KMN network, consisting of 3 major components 

(Knl1, Mis12 and Ndc80 complex) associates with KTs.  

 

 
Figure 1.2 Kinetochore Structure at the Centromere. This cross-sectional view of the  

kinetochores show its complex macro structure consisting of many protein complexes. 

These complexes include the CENP-A protein complex (consisting of 16 centromere 

proteins), KMN network, SAC, CPC, APC, INCENP, etc. Microtubule attachment is 

present at the KMN network. This structure represents post nuclear envelope breakdown 

(NEBD) due to CENP-E binding to MT. SAC seems to be inactive in this representation 

due to the soluble Cdc20 available to activate APC. Although Mad1:Mad2 complex is 

present, there are no interactions with open Mad2 and no presence of Mad2:Cdc20 

complex. Overall this shows a state of mitotic progression around metaphase of Mitosis. 
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(Musacchio and Salmon, 2007) 

 

 

The outer kinetochore assembly and recruitment is performed by the Mis12 complex, as 

it recruits Knl1 that further draws the centromere and spindle assembly checkpoint 

(SAC) proteins into proximity (Cheeseman et al., 2008). The Ndc80 complex increases 

the binding affinity of KT to the MT via electrostatic interactions with the aid of Mis12 and 

Knl1 (Cheeseman et al., 2008). The Ndc80 complex also interacts with the spindle- and 

kinetochore-associated (Ska) complex, which is required for anaphase transition and 

onset (Errico et al., 2010). Unstable attachments of sister chromatids to the spindle 

microtubules can activate signaling of spindle checkpoints causing mitotic arrest 

(Sivakumar et al., 2016). The binding affinity of the KT to the MT can be regulated by 

phosphorylating the proteins in the KMN network by Aurora B kinase (see below). These 

mechanisms reduce the possibility of chromosome segregation defects (Cheeseman et 

al., 2008).  

 

1.4 Mitotic Kinases 

 

Protein phosphorylation is a common process for cellular regulation and cell signaling. 

Cellular regulation allows for check point control during complex cellular processes such 

as switching through all the different phases of the cell cycle. Some of the most critical 

kinases that control the progression of mitosis in the cell cycle are cyclin-dependent 

kinases (CDKs), Polo-like kinases (Plks), and Aurora Kinases (Santamaría et al., 2007). 

 

1.4.1 Cyclin-dependent Kinases 

 

Mammalian cell cycle progression is highly dependent on the activity of CDKs due to 

their regulatory impact by phosphorylating key substrates (Santamaría et al., 2007). The 

concentrations of CDKs are relatively constant during the cell cycle, but the activity of 

this family of enzymes is highly dependent upon the expression levels of cyclins in the 

cell, and they are only active in their cyclin-CDK complex. Due to the variable expression 

of cyclins and their specificity towards binding CDKs (as each CDK can bind to a specific 

cyclin), they can be used as biomarkers during all stages of the cell cycle 

(Satyanarayana and Kaldis, 2009). The transition between phases of the cell cycle is 
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driven by the changing concentration of cyclins within the cell as cellular arrest occurs if 

an issue arises with production or degradation of these substrates (Malumbres and 

Barbacid, 2009).  

 

1.4.2 Cyclin-dependent Kinase 1 

 

Cdk1 is highly regulated as it functions in the irreversible transition of the cell from 

Interphase to mitosis. Due to the critical role of Cdk1 in this process, it is regulated 

through compartmental barriers, phosphorylation (at threonine 14 and tyrosine 15), and 

by the presence of Cyclin A and B (which can also be regulated through 

phosphorylation) (Potapova et al., 2009). Cyclin A remains associated with Cdk1 from 

late S into late G2-phase. The increase in cyclin B concentrations in the cytoplasm 

pushes the formation of cyclin B-Cdk1 complex leaving free cyclin A, which is degraded 

by ubiquitination(Fung et al., 2005). This event initiates prophase as more cyclin B-Cdk1 

complexes form. The complexes remain inactive as ATP orientation within the active site 

of the kinase is altered because the threonine 14 and tyrosine 15 residues have been 

phosphorylated by Wee and Myt kinases (Potapovaet al., 2009). The cyclin B-Cdk1 

complex is only in its active form after Cdc25 phosphatase dephosphorylates these two 

residues (Mailand et al., 2002). Cdc25 is regulated by phosphorylation via Polo-like 

kinases (Plks) (see below) as a further measure of mitotic regulation (Mailandet al., 

2002). 

 

Activated cyclin B-Cdk1 is located in the cytoplasm but the nucleus acts as a 

compartmental barrier, preventing it from phosphorylating its target substrates. Cyclin B-

Cdk1 complexes up-regulate their own transport into the nucleus as their overall 

concentration increases within the cytoplasm (Lindqvist et al., 2010). The entry of the 

complex may occur slightly before NEBD (Gavet and Pines 2010). Once in the nucleus, 

signal cascades result in spindle stabilization and elongation. Cyclin B-Cdk1 also 

increases expression of survivin and other key substrates that are critical for mitotic 

progression (Lindqvist et al., 2010). Knockdown of cyclin B, Cdk1 or cyclin B-Cdk1 

complex can result in cellular arrest or apoptosis due to low survivin levels, as well as 

cells having difficulty polarizing causing mitotic disarray (Castedo et al., 2002). Mitosis 

initiates with cyclin B-Cdk1 complex and the degradation of cyclin B at anaphase triggers 

mitotic exit (Errico et al., 2010). 
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1.4.3 Aurora and Polo-like kinases 

 

Polo-like kinases (Plks) are enzymes that play important roles in mitotic entry, exit, and 

spindle formation. They are shown to have high expression during mitosis and improper 

inhibition of this family of enzymes can lead to cellular apoptosis (Wang et al., 2002). 

Plks are characterized by highly conserved N-terminal serine/threonine kinase domains 

and polo-box domains (PBDs) at the C-terminus (Lee et al., 2014). One of the most 

studied members of the Plk family is Plk1. It participates downstream of mitotic entry due 

to its regulation of Cdc25 via phosphorylation, which leads to the activation of cyclin B-

Cdk1 (Lee et al., 2014). Plk1 has further involvement with mitotic spindles, centrosomes, 

and kinetochores, which makes it a key enzyme during mitosis (Jones et al., 2003).  

 

The mitotic progression and entry into cytokinesis is regulated by Aurora Kinases, a 

family of serine/threonine kinases (Fu et al., 2007). Three major Aurora Kinases in 

mammals are Aurora A, B, and C. Aurora A functions near the centrosomes activating 

cyclin B-Cdk1 by phosphorylating Cdc25B playing a key role in recruiting proteins 

responsible for the nucleation of microtubules (Marumoto et al., 2002). Aurora B is a 

subunit of the chromosomal passenger complex (CPC), which contributes to the 

progression of mitosis by orchestrating chromosomal alignment, cytokinesis, and the 

modification of histones (Vader et al., 2006) (Carmenaet al., 2013). Aurora C is shown to 

be versatile as it behaves like Aurora A during interphase and can compensate for low 

concentrations of Aurora B by acting as its mimic (Salaün et al., 2008). 

 

 

 

 

1.5 Cell Cycle Checkpoints 

 

Cells that undergo the cell-cycle must proceed in a regulated fashion to conserve the 

integrity of the genome and to ensure proper cell division. To ensure that each phase of 
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the cell cycle has gone through completion before initiating the next, the conditions of a 

cell cycle checkpoint must be met or cellular arrest may occur (Malumbres and Barbacid, 

2009). Improper bypass of these checkpoints can be intimately linked to psoriasis, 

neurocutaneousdisorders, and cancer (Malumbres and Barbacid, 2009).Three major 

checkpoints control the cell cycle. There are two non-mitotic checkpoints, which include 

the G1 to S-phase and G2 to M-phase checkpoints. The main mitotic checkpoint is the 

spindle assembly checkpoint (SAC) (Kastan et al., 2004). 

 

1.5.1 Spindle Assembly Checkpoint 

 

The spindle assembly checkpoint (SAC) is a surveillance mechanism that monitors 

chromosomes within the cell to ensure their proper segregation during mitosis. The core 

SAC proteins present in mammals are Mad1, Mad2, BubR1, Bub1, and Cdc20 (MCC 

complex) (Malmanche et al., 2006). SAC is activated if there are any errors in 

chromosomal attachment to the spindle apparatus. They have to be specifically attached 

in the proper orientation with the appropriate tension upon the sister centromeres to the 

extending microtubules from each spindle pole at the opposite ends of the cell (Lara-

Gonzalez et al., 2012). Unattached kinetochores prevent SAC inactivation and recruit 

open Mad2. Open Mad2 can bind with either Mad1 or Cdc20. The mechanism is 

believed to involve recruitment of Mad2 to Mad1 resulting in closed Mad2. This complex 

can interact allosterically with other open Mad2 proteins to increase its binding affinity to 

Cdc20 forming a closed Mad2-Cdc20 complex. The Mad2-Cdc20 complex inhibits 

Cdc20’s interaction with the anaphase promoting complex APC (Caldas and DeLuca, 

2013).  

 

The suppression of APC will inhibit anaphase onset and progression of mitosis. APC 

functions as a ubiquitin ligase that is responsible for the degradation of cyclin B which 

arrests the cell in mitosis (see below) (Fung et al., 2005). It also degrades securin 

resulting in the activation of separase that functions in cleaving the cohesion complex, 

separating the sister chromatids from each other (Fu et al., 2005). This ubiquitin ligation 

is mediated by the cofactor Cdc20 (Morgan et al., 2007).  

 

The SAC ensures that misaligned chromatids do not separate. One possible cause for 

misalignment can be errors in MT-KT capture by CENP-E. If this issue bypasses the 



	  
	  

11	  
	  

SAC, the daughter cells may have unequal chromosomes (aneuploidy) that can result in 

neurological and neurodevelopmental diseases, and cancer (Poduriet al., 2013).  

 

1.6 Centromere Associated Protein E 

 

Centromere Associated Protein E (CENP-E) is a plus-end kinesin motor protein in 

mammalian cells that is responsible for chromosomal movement and spindle elongation. 

This protein functions in chromosome congression to the equator of the cell (Sardar et 

al., 2010). It consists of three major domains: a dimeric coiled coil intervening region, an 

amino-terminal motor domain, and a carboxy-terminal MT binding domain (Grancell and 

Sorger, 1998). The motor domain of CENP-E allows it to travel down MTs towards the 

KTs post-NEBD (Yao et al., 2000). The plus-end motor activity is fueled by ATP 

hydrolysis in prometaphase and only binds MTs at the surface of kinetochores in 

anaphase. CENP-E is located at the outer kinetochore extending about 100nm from its 

surface and remains there throughout the rest of the phases in mitosis. It binds to MTs at 

the surface of KTs with its MT-binding domain (Musinipally et al., 2013). Unlike typical 

plus end-directed kinesins, CENP-E also transitions in a minus-direction. The minus-

directed transition of mono-oriented chromosomes towards the metaphase plate is 

achieved by spindle depolymerization that is fueled by GTP hydrolysis (Grancell and 

Sorger, 1998). However, depletion of CENP-E does not hinder chromosomes from 

transitioning to the spindle equator. Even though chromosomal transition is not arrested, 

the loosely bound MTs to their KTs do increase the chances of chromosome mis-

segregation (Putkey et al., 2002) and aneuploidy in daughter cells (Kim et al., 2008). 

This suggests that CENP-E functions in KT-MT binding.  

 

During metaphase CENP-E functions at the level of the SAC. Its conformational changes 

at the surface of the KT can cause SAC amplification by interacting via its motor domain 

with BubR1. This interaction enhances the autophosphorylation activity of BubR1 which 

is important for the attachment of MT to KT (Foltz et al., 2006). The enhancement of 

BubR1 kinase activity by CENP-E is not critical to the progression of mitosis since 

CENP-E depletion does not result in the inhibition of APC (Zhao et al., 2011). The 

activity of BubR1 decreases to basal levels without causing mitotic arrest at anaphase 

entry (Weaver et al. 2003). Mitotic arrest can occur depending on the number of 
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unattached KTs present. If one KT is unattached in HeLa cells, mitotic arrest does not 

occur. Once 7 unattached KTs are present in HeLa cells, mitotic arrest occurs as CENP-

E can form a ternary complex with BubR1 and can silence its kinase activity (Mao et al., 

2005). This interaction activates the mitotic checkpoint complex, resulting in the 

inhibition of APC (Guo et al., 2012). Xenopus extracts have resulted in no mitotic arrest 

through this mechanism (Weaver et al. 2003) making this process cell-type dependent. 

TABLE 1.1: 
 
Mammalian and yeast TRAPP subunit nomenclature  
S. cerevisiae TRAPP subunit (KDa) Mammalian TRAPP subunit (KDa) 

                      Bet5p (18)                     TRAPPC1 (17) 

                      Tca17p (17)                     TRAPPC2L (16) 

                      Trs20p (22)                     TRAPPC2 (16) 

                      Bet3p (22)                     TRAPPC3, TRAPPC3L (20) 

                      Trs23p (23)                     TRAPPC4 (24) 

                      Trs31p (31)                     TRAPPC5 (21) 

                      Trs33p (33)                     TRAPPC6a,b (19,15) 

                      Trs65p (65)  

                      Trs85p (85)                     TRAPPC8 (161) 

                      Trs120p (120)                     TRAPPC9 (140) 

           Trs130p (130)                     TRAPPC10 (142) 

                     TRAPPC11 (129) 

                     TRAMM (79) 

                     TRAPPC13 (40) 

Proteins on the same row indicate homologues; empty cells indicate no 

homologues detected in databases. 
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Project: Cdk1 has a role in phosphorylating TRAMM 

 

TRAMM was originally identified as a protein that co-precipitates with the TRAPP 

(transport protein particle) complex that functions in membrane trafficking. Recent work 

in our laboratory suggested a role for this protein in mitosis, specifically in chromosome 

congression prior to metaphase (Figure 1.1(A), Figure 1.1(C)). In early stages of mitosis, 

TRAMM is post-translationally modified by phosphorylation (Figure 1.1(B)). Knockdown 

of the protein causes it to affect the localization of various kinetochore proteins with the 

strongest effect on CENP-E. The two proteins were shown to interact in vitro using a 

yeast two hybrid assay (Milev et al., 2015). 

 

In this study, I will use a co-immunoprecipitation assay to check whether the in vitro 

interaction between TRAMM and CENP-E also occurs in vivo. Using various inhibitors of 

mitotic kinases, I will identify the kinase responsible for the phosphorylation of TRAMM. 

Furthermore, I will also use bioinformatics tools to predict and analyze the structure of 

TRAMM. Finally I will express and purify the recombinant form of TRAMM in a 

homogeneous monodispersed protein sample as an initial step towards future structural 

analysis via crystallization. This study will allow us to better understand the unique role 

of TRAMM in mitosis.  
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Chapter 2: Materials and Methods 

 

2.1 Buffers and solutions  

 

All buffers and solutions used in this project are listed in Table 2.1 at the end of the 

Materials and Methods section.  

 

2.2 Protein analysis techniques  

 

2.2.1 Protein expression and purification:  

  

E. coli Arctic Express ® cells were transformed with a recombinant form of TRAMM that 

was inserted into pDEST-17 plasmid (containing a 6x His tag). The cells were grown at 

37°C overnight on Luria Bertani (LB) agar plates supplemented with 

ampicillin (amp) (100 mg/mL). A single colony was used to inoculate a 20 mL starter 

culture of LB+amp media that was incubated with shaking at 37°C overnight. 500 mL 

of LB+amp media was inoculated with the starter culture (with or without 10 mM MgCl2), 

then incubated at 30°C with shaking until the OD at 600 nm reached 0.7-0.8. Expression 

of recombinant TRAMM was then induced by addition of IPTG (Isopropyl β-D-1-

thiogalactopyranoside) to a final concentration of 1 mM. After 24 hours shaking at 12°C, 

cells were harvested by centrifugation at 10,000 × g for 10 min at 4°C. Pellets containing 

recombinant TRAMM were re-suspended in 35 mL of lysis buffer containing 7µl of 0.5 M 

AEBSF (protease inhibitor). This was followed by programmed sonication (10 sec 

on/10 sec off for 2 minutes). Lysates (with or without 5 units of DNAse I 

from Thermo Scientific Lot 00152435) were cleared at 30,000 × g for 30 min at 

4°C. During this time the Ni2+-beads were prepared as follows. A 50% slurry of nickel 

beads was resuspended in lysis buffer. The mixture was centrifuged at 270 × g for 2 

minutes at 4°C. The buffer was aspirated leaving a small volume above the beads. After 

3 washes, the beads were resuspended in lysis buffer and added to the 

supernatant obtained as described above. Note that 500 µL of washed nickel beads, 

which is equivalent to 1 mL of 50% slurry solution were incubated with each sample for 1 

h. The mixture was passed through a gravity column to collect the beads and the column 

was washed once with 10 mL of lysis buffer and twice with 15 mL of washing 
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buffer. TRAMM was eluted by incubation for 5 minutes with 0.5 mL elution buffer before 

being collected.   

  

2.2.2 Co-immunoprecipitation (IP):   

 

For each sample, 1 mg of HeLa cell lysate (collected from a 10 cm dish) was mixed with 

2 µg of anti-GFP IgG and incubated for 2 h on ice. During this time Protein-G agarose 

beads were prepared as follows. A 50% slurry solution of protein-G agarose beads 

was resuspended in lysis buffer then centrifuged for 30 seconds at 5000 rpm at 4°C. The 

supernatant was removed without disturbing the pellet that contains the beads. The 

washing process was repeated three times before the beads were re-suspended 

in PBS and added to the samples (10 µl of beads per sample, which is equivalent to 20 

µl of 50% slurry solution). The mixture was left shaking for 1 hour at 4°C. The beads in 

the mixture were washed with lysis buffer 3 times. After the last wash was 

completed and the buffer was aspirated, 20 µL of 1x sample buffer containing 5% BME 

(B-mercaptoethanol) was added and the sample was incubated at 96°C for 2 minutes. 

Before freezing at -20ºC, the beads in the sample were pelleted at 13000 rpm for 2 

minutes.   

  

2.2.3 Mass spectrometry:  

  

After His-tagged TRAMM was purified and subjected to SDS PAGE, the Coomassie blue 

stained gel was rinsed with MilliQ H2O. The desired band was excised with a clean 

scalpel and diced into small pieces. Coomassie destaining was performed by the 

addition of 100 µL of NH4HCO3 in 50% methanol. The mixture was centrifuged briefly 

and the supernatant was discarded. 100 µL of 100% acetonitrile (ACN) was added to the 

gel particles and the mixture was incubated for 5 minutes with occasional mixing. The 

mixture was centrifuged and the supernatant was discarded. Gel particles were covered 

with 100 µL of 10 mM DTT and the mixture was incubated at 50°C for 30 minutes. Brief 

centrifugation was performed and the liquid was discarded. The particles were alkylated 

by the addition of 100 µL of 55 mM iodoacetamide. After 30 minutes of incubation at 

room temperature, the mixture was centrifuged and the liquid was removed. The 

particles were dehydrated using 100 µL ACN and dried in a speed vac for 

20 minutes. After drying, the particles were incubated on ice with 10 µL of 20 
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ng/µL trypsin for 10 minutes with occasional vortex mixing. Excess trypsin was removed 

and 30 µL of 50mM NH4CO3 was added. The mixture was incubated for 18 hours at 

37°C to allow for protein digestion. 50 µL of H20 was added to each sample and the 

mixture was vortexed for 2 minutes, and then centrifuged at 5000 rpm for 30 

seconds. The supernatant containing tryptic peptides was transferred to a newly labeled 

tube. The volume was reduced to 15 µL using a speed vac. Samples were cleaned 

using a C18 ziptip (Millipore) and subjected to HPLC-MS. For HPLC a Spursil Column 

C18, 3mm particle size, 150mm long, 2.1mm diameter from Agilent model 1200 was 

used. For mass spectrometric analysis the sample was injected into a Waters QTOF3 

(also known as an Ultima) at a mass range of 400Da to 2000Da with a dissolving 

temperature of 300°C at a flow rate of 10µL/min.   

 

2.2.4 Dynamic Light Scattering:   

 

Purified recombinant His-tagged TRAMM protein was subjected to size 

exclusion chromatography (described in 2.2.8) and 0.5mL fractions were 

collected. The fractions that represented the TRAMM peak (fractions 20-25) were 

combined to reach a volume of 2.5mL. The mixture was concentrated by using 

an Amicon ultra-4 centrifugal filter unit that was centrifuged at 4000 × g for 5 minutes at 

25°C to obtain a final volume of 50 µL. The mixture was then filtered with a 0.45-

micron filter syringe. The filtered solution was subjected to dynamic light scattering 

using a DynaPro Nanostar instrument at 25°C and laser power of 100 crescents.     

 

2.2.5 Bradford Assay:   

 

Using Ultrospec 2100pro spectrophotometer at 595 nm, a standard calibration curve was 

prepared from known quantities of BSA. Five different points were used in each standard 

curve corresponding to 1,2,4,6 and 10 µg of BSA. 10 µL of the protein sample was 

diluted with 1 mL of Bradford reagent. The protein sample concentration was determined 

by comparison with the standard curve at an OD of 595 nm.   

  

2.2.6 Western blotting:   

 

Samples were subjected to electrophoresis on 8%, 10%, 12% or 15% Polyacrylamide 
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gels at 120V. Proteins were transferred to nitrocellulose membranes for 1 h at 100 V in 

cold transfer buffer. The membranes were blocked with 5% skim milk for 1 hour and 

then incubated with primary antibody in PBSt (concentrations mentioned in the antibody 

section below) for 2 hours. After 3 washes with PBSt for 5 minutes each, the membranes 

were incubated with the secondary antibody (anti-mouse or anti-rabbit conjugated to 

horseradish peroxidase) at a dilution of 1:10000 for 1 hour. Finally, ECL reagent 

(Amersham Life Science) was added in the dark room and incubated with the membrane 

for 2 minutes and then exposed to photographic film at different time exposures (1 sec–

15 min) to produce the desired exposure.     

 

2.2.7 Size exclusion chromatography:   

 

Recombinant His-tagged TRAMM protein was purified as described above and 100 µg of 

the 150 mM imidazole elution was loaded onto a Superpose 6 column and fractionated 

in gel filtration buffer at a rate of 0.5 mL/min. Fractions of 0.5 mL were collected and 

resolved by SDS-PAGE and Coomassie blue staining.   

  

2.3 Tissue culture techniques   

  

 2.3.1 Cell culture:   

 

HeLa or HEK293T cells were grown in Dulbecco’s Modified Eagle Medium (DMEM) 

supplemented with 10% fetal bovine serum (FBS) at 37°C in a humidified incubator with 

5% CO2. Cells were either asynchronously growing or synchronized at different stages of 

the cell cycle as described below.  

  

 2.3.1.1 Double thymidine treated cells:   

 

HeLa cells plated at 25-30% confluency (300,000-350,000 cells per 10 cm dish) were 

treated with 2 mM thymidine for 18 hours, washed 2 times with PBS, and then released 

into medium for 6 hours. HeLa cells were subjected to another treatment of 2mM 

thymidine for 16 hours before they were either harvested or released into DMEM.  
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 2.3.1.2 Nocodazole treated cells:   

 

After 3 hours of the second thymidine release (as mentioned above), 100 ng/mL 

of Nocodazole was added into the medium. After 9 hours of the nocodozole treatment, 

cells were treated with one of the following kinase inhibitors: 100 nM BI-2536 (a Plk1 

inhibitor), 2 µM ZM-44743 (an Aurora A, B, C inhibitor), 9 µM R0-3306 (a Cdk1, 2 

inhibitor), or left untreated before cells were harvested at different time points as 

mentioned in the results (section 3.2).   

 

 2.3.1.3 Colcemid treated cells:   

 

When HeLa cells (plated on a 10 cm dish) reached 80% confluency, they were 

treated with 5 µg/mL of colcemid for 17 hours before they were washed 3 times with 

PBS before harvesting.   

  

 2.3.2 HeLa cells harvesting:   

 

Mitotic cells treated with colcemid or nocodazole were directly collected in 

the medium since they were easily removed from the plastic dishes. Non-mitotic cells 

were trypsinized for 2 minutes after which the cells were washed with PBS. Both mitotic 

and non-mitotic cells were pelleted at 1900 rpm for 2.5 minutes at 4°C, and washed with 

PBS before they were pelleted again and finally lysed with lysis buffer. Cells were stored 

at -20°C until they were subjected to western blots.   

  

 2.3.3 Lambda phosphatase treatment:   

 

HeLa total cell lysates were centrifuged at 16000 rpm for 20 minutes at 4°C to remove 

the cell debris. Cell extracts were incubated for 2 hours at 30°C with Lambda 

phosphatase solution (containing 400 units of Lambda phosphatase, 1x NEBuffer for 

protein metallophosphatases and 1mM MnCl2) from Bio England Biolabs (P0753S). The 

reaction was terminated by the addition of 4x SDS sample buffer followed by boiling for 2 

minutes at 96°C.  
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Table 2.1 List of buffers and solutions used in this study 
 

Reagent name Components 
 

Nickel-bead purification lysis 

buffer 

 

50mM Tris-base pH 8.5, 5% v/v glycerol, 1% Triton X-100, 0.3M NaCl, 

10mM BetaMercaptoethanol 
Nickel-bead purification wash 

buffer 
50mM Tris-base pH 8.5, 200 mM NaCl, 5mM imidazole 

Nickel-bead purification elution 

buffer 
50mM Tris-base pH 8.5, 1mM BME, 200 mM NaCl, 50-200 mM imidazole 

PBS 0.061% w/v Na2HPO4, 0.8% w/v NaCl, 0.02% w/v KCl, 0.02% w/v 
KH2PO4 pH 7.3 

PBSt PBS with 0.1% v/v Tween-20 
4x sample buffer 80 mM Tris-HCl pH 6.8, 0.1% bromophenol blue, 5% v/v 

Betamercaptoethanol, 10% v/v glycerol, 2% w/v SDS 

SDS-PAGE running buffer 25mM Tris-base, 200mM glycine, 0.1% SDS 

Western blotting transfer 

buffer 
Tris-base, 200mM glycine, 25mM, 20% methanol 

Mammalian cells lysis buffer 50mM Tris-base pH 7.2, 1% Triton X- 100(v/v), 0.5mM EDTA, 1mM DTT, 

150mM NaCl, 2 tablets of Phospho-Stop (Roche) per 10mL, 1 tablet of 

protease inhibitor cocktail (Roche). 

Gel filtration buffer 50mM Tris-base pH 7.2, 0.5mM EDTA, 150mM NaCl 

Luria Bertani (LB) 0.5% w/v yeast extracts, 1% w/v tryptone, 1% w/v NaCl 
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Table 2.2   List of antibodies used in this study  
  

Antigen Type Host WB dilution Size Catalog number Source 
 

Cyclin B1 
 

P 
 

r 
 

1:1,000 
 

58 
 

4138 
 

Cell Signaling 
Phospho-histone H3 M m 1:1,000 17 3377 Cell Signaling 
TRAMM P m 1:1,000 78 Ab27076 Abcam 
TRAMM P r 1:1,000 78 N/A Sacher laboratory 
Tubulin M m 1:5,000 50 Ab27076 Abcam 
GFP M m 1:1,000 27 Ab1218 Abcam 
Protein sizes are indicated in kilodaltons. M, monoclonal; P, polyclonal; N/A, not applicable; r, rabbit; m, 

mouse; WB, western blotting. 
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Chapter 3: Results 

 

3.1 TRAMM associates directly or indirectly with CENP-E in vivo 

 

TRAMM plays a role in mitosis and its depletion results in a chromosome 

congression failure. This is caused by the mislocalization of some kinetochore proteins 

and the strongest effect was seen for CENP-E. Results of this yeast two-hybrid assay 

suggested a direct interaction between TRAMM and CENP-E (Milev et al., 2015). 

 

To confirm that the interaction that was seen by yeast two-hybrid also occurs in vivo, 

lysates prepared from human embryonic kidney (HEK293T) cells stably expressing 

GFP-tagged CENP-E were used for Co-IPs. HeLa cells were used as negative controls. 

Reasoning that the expression of CENP-E increases during mitosis (as compared to 

interphase cells) (Testa et al., 1994), lysates from asynchronous cells 

or colcemid treated (mitotic) cells were incubated with anti-GFP to precipitate CENP-E 

and then probed for TRAMM. As compared to the control HeLa cells, a greater amount 

of TRAMM co-precipitated with CENP-E indicating that it associates with CENP-E 

directly or indirectly in vivo (Figure 3.1). More interestingly, this association increased in 

mitotic cells when compared to interphase cells. This result is consistent with the yeast 

two-hybrid result showing that TRAMM does not only interact with CENP-E in vitro, but 

the two also associate directly or indirectly in vivo. 
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Figure 3.1 TRAMM associates directly or indirectly with CENP-E invivo. 

Bacterial artificial chromosome (BAC) cell line expressing CENP-E-GFP in HEK293T 

and HeLa cells (negative control) were co-immunoprecipitated using GFP antibody. The 

left panel represents 10% of the inputs and right panels represents the IPs. Cells were 

either left asynchronous (A) or treated with colcemid (Col) to arrest cells in mitosis. 

Samples were probed for GFP and TRAMM. 
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3.2 Phosphorylation of TRAMM is Cdk1 dependent 

 

TRAMM is phosphorylated early in mitosis and dephosphorylated at the onset of 

anaphase. This phosphorylation leads to the appearance of a slower migrating doublet 

at ~83 KDa as compared to a faster-migrating band at ~79 KDa of non-

phosphorylated TRAMM (Milev et al., 2015). In order to determine the kinase 

responsible for phosphorylating TRAMM during mitosis, we focused on the three main 

mitotic kinase families: Cdks, Aurora kinases, and Plks. 

 

HeLa cells were arrested at the G1/S boundary by thymidine treatment and then 

released into medium containing nocodazole (to arrest the cells at 

prometaphase). HeLa cells were then treated with BI-2536 (a Plk1 

inhibitor) in Figure 3.2(A), ZM-44743 (an Aurora A, B, C inhibitor) in Figure 3.2(B), R0-

3306 (a Cdk1, 2 inhibitor) in Figure 3.2(C), or left untreated in Figure 3.2(D). Figure 

3.2 shows the results of HeLa cells that were collected at various times following double 

thymidine release, lysed and subjected to western blots. Samples were probed for 

TRAMM, phospho-Histone 3 (mitotic marker), and Tubulin (loading 

control). HeLa cells that were collected 3h following the release from double 

thymidine treatment showed no signs of phosphorylation because the cells were still in 

interphase (phospho-H3 is absent). At 11h following release, HeLa cells showed a 

slower migrating form representing the phosphorylation of TRAMM during 

mitosis (phospho-H3 is present). When the cells were only treated with nocodazole 

(control condition), the phosphorylation of TRAMM was present from 11h to 13h (Figure 

3.2(D)). Similar results were seen in Figure 3.2(A) and Figure 3.2(B) upon the treatment 

with BI-2536 and ZM-447439, respectively. In contrast, when HeLa cells were treated 

with RO-3306 TRAMM was phosphorylated at 11h but not at subsequent time points 

(Figure 3.2(C)). The dephosphorylation that occurred in the presence of 

the Cdk inhibitor but not in the presence of the Plk or Aurora kinase inhibitors suggests 

that phosphorylation of TRAMM at mitosis is Cdk-dependent. At a concentration of 9 µM, 

RO-3306 inhibits Cdk1 and Cdk2. Cdk2 is mainly involved in interphase while Cdk1 is 

one of the main protein kinases orchestrating mitosis. This strongly suggests that 

phosphorylation of TRAMM is Cdk1-dependent. 
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Figure 3.2 Phosphorylation of TRAMM is Cdk1 dependent. Western blot analysis of 

HeLa cells collected at different time indicated in hours after double thymidine treatment. 

Note that all blots were subjected to the same exposure time. As indicated in materials 

and methods section cells were treated with various mitotic protein kinase inhibitors after 

11h of the second thymidine release: A) BI-2536 (Plk1 inhibitor); B) ZM0447439 (Aurora 

A,B,C inhibitor); C) RO3306 (Cdk1,2 inhibitor); D) no inhibitor was added. Antibodies 

used in western blots are: Anti TRAMM; Anti PH3 (phospho-histone 3); Anti tubulin.  
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3.3 Prediction of the structure of TRAMM and possible phosphorylation sites 

 

Solving the structure of TRAMM is an important step to determining its 

function (Freeman et al., 2002). However, in the absence of the structure, bioinformatics 

tools can give us some limited information on TRAMM. According to UniProt database 

TRAMM contains 4 distinct TPR repeats in the carboxy half of the protein (Figure 3.3 

(A)) and 12 overlapping TPR domains according to KEGG database (Figure 3.3(B) and 

Figure 3.3(C)). The Tetratricopeptide repeat (TPR) domain is a structural motif that 

consists of degenerate 34 amino acid repeats. These alpha helix pair repeats fold 

together forming scaffolds to mediate protein-protein interactions (Blatch et al., 

1999). Interestingly, other cell division proteins such as APC subunits including cdc16 

and cdc23 contain TPR motifs for their unique functions in facilitating protein-protein 

interactions, and the assembly of multiprotein complexes (Passmore et al., 

2005). Phyre 2 database was also utilized for performing the structural analysis of 

TRAMM. According to Phyre 2, the secondary structure showed 53% unstructured 

regions, 44% structured helices and 1% β strands. Moreover, tertiary structural 

analysis (Figure 3.4(A)) revealed that the TPR domains are exposed and not shielded by 

the amino terminus, thus facilitating protein-protein interactions. As mentioned above, 

TRAMM is predicted to be largely unstructured and studies have shown that 

unstructured regions are often involved in posttranslational modifications, such as 

phosphorylation (Dyson et al., 2005). 

 

I next sought to determine which sites of TRAMM are potenitally phosphorylated during 

mitosis. Uniprot database revealed 2 possible phosphorylation sites: 109 and 184 

(Figure 3.3(A)). To precisely predict the possible sites of phosphorylation, 

several phosphoproteomic studies (Milev et al., 2015; Dephoure et al., 2008; Kettenbach 

et al., 2011; Mayya et al., 2009) were mined for TRAMM phosophorylation (Figure 

3.4(B)). This revealed 5 sites of phosphorylation that occur in vivo. Consistent with 

results from Figure 3.4(A), Figure 3.4(B) predicts amino acids 109 and 184 as possible 

sites of phosphorylation and adds 3 extra possible phosphorylation sites: 107, 127 and 

182. All 5 sites of phosphorylation: 107, 109, 127, 182 and 184 are located in the 

unstructured N-terminal portion of the protein. Now that I have determined the 5 possible 

sites of phosphorylation, I checked whether any of these sites contain Cdk1 consensus 

motif (S/T P) (Dephoure et al., 2008). Interestingly residues 107, 109 and 182, conform 
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to the Cdk1 consensus motif (S/T P). This is consistent with the results shown 

in Figure 3.2. 
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Figure 3.3 (A) Schematic representation of TRAMM’s conserved motifs extracted 

from Uniprot database. Table 3.1 and Figure 3.3 (B) Conserved motifs extracted 

from KEGG analysis. 

 

Phosphorylation sites identified in TRAMM 
Residue Peptide Source 

T107 PEPAGTPSPSGEAD Milev et al., 2015; Dephoure et al., 2008 
S109 PEPAGTPSPSGEAD Milev et al., 2015; Dephoure et al., 2008 
S127 DAAPSSGGAPR Milev et al., 2015; Dephoure et al., 2008 

S182 PQMVKSPSFGGAS 
Milev et al., 2015; Mayya et al., 2009;  

Kettenbach et al., 2011 

S184 PQMVKSPSFGGAS 
Milev et al., 2015; Dephoure et al., 2008;  

Mayya et al., 2009 

B 
 

Figure 3.4 Prediction of TRAMM tertiary structure and possible phosphorylation 

sites. (A) Tertiary structure prediction from Phyre 2 showing unstructured region in 

green, helices in red and TPR repeats in pink. (B) Possible phosphorylation sites of 

TRAMM extracted from different studies. 
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3.4 Optimization of TRAMM recombinant protein purification 

 

One way to address the function of TRAMM is to determine its three-dimensional 

structure by techniques such as small-angle x-ray scattering, nuclear magnetic 

resonance or X-ray crystallography. The first step towards elucidating the three-

dimensional structure is purifying the protein of interest. Such a protein could also be 

used for generating anti-TRAMM antibody. Moreover, the purified protein could be used 

in an in vitro kinase assay to confirm that Cdk1 has a role in phosphorylating TRAMM 

(section 3.2). Recombinant TRAMM was expressed in BL21 (DE3) cells but the protein 

was found to be in the insoluble fraction. Reasoning that proteins tend to fold better at 

lower temperatures, I next tried to express the protein in Arctic Express (DE3)® cells. 

These cells were used since they contain two low-temperature chaperones (Cpn10 and 

Cpn60) to aid in protein folding. The expression and purification of TRAMM in Arctic 

Express cells, resulted in the presence of two bands as shown in Figure 3.5(A): a slower 

migrating polypeptide that was at the molecular size of TRAMM (79 KDa) and a faster 

migrating species. The two bands were excised, trypsinized and subjected to mass 

spectrometry. Mass spectrometry results of the slower migrating polypeptide are shown 

in Figure 3.6(A). Peaks were collected and graphs representing M/Z versus intensity 

(data not shown) were utilized to conclude the mass of fragmented peptides. Utilizing the 

masses of the fragmented peptides, and with the help of database searches, this 

polypeptide was identified as our protein of interest, TRAMM. Mass 

spectrometry also revealed that the faster migrating species was an undesired bacterial-

expressed contaminant belonging to the ArnA gene (data not shown). The issue of 

contamination was addressed by the treatment with divalent cations (MgCl2) (based 

on personal communication with Eduardo A. Ceccarelli on ResearchGate) that had the 

ability to suppress the expression of ArnA in E. coli. This resulted in the purification of 

just the TRAMM protein (Figure 3.5(B)). However, this treatment led to the appearance 

of a smear on the top of our band of interest. Due to its high molecular weight and 

smeary appearance, it was suspected to be DNA. Therefore, lysates were treated 

with DNAseI. The combination of MgCl2 and DNAseI treatments resulted in a clear single 

band (Figure 3.5(C)). 

 

A western blot utilizing a commercially-available TRAMM antibody was conducted on the 
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protein sample to confirm the mass spectrometry results. Figure 3.6(B) shows that anti-

TRAMM was specifically binding to the protein sample, which resulted in a 79 kDa band 

corresponding to the molecular size of TRAMM). This band was absent in the negative 

control (bovine serum albumin). All together mass spectrometry, as an unbiased 

technique, and western blotting conclude that the purified protein sample is TRAMM. 

 

The purified protein was used for generating an anti-TRAMM antibody, which was 

utilized for probing all subsequent western blots. The homemade antibody recognizes 

the same polypeptide as the commercial anti-TRAMM antibody, where it is able to detect 

TRAMM in its phosphorylated state (HeLa cells treated with colcemid but not lambda 

phosphatase) and non-phosphorylated form (Lambda phosphatase 

treated HeLa cells) (Figure 3.6(C)). 
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Figure 3.5 SDS-PAGE followed by Comassie bleu staining of purified TRAMM. (A) 

Purification process was done in the absence of MgCl2, showing TRAMM (the higher 

band) and another undesired polypeptide. (B) Purification process was done the 

presence of MgCl2, but without DNAse treatment showing a smear on the top of the 

band. Lanes (1), (2) and (3) represent different elutions with 150mM imidazole elution 

buffer. (C) Purification process was in presence of MgCl2 and DNAse. Lanes (1), (2) and 

(3) represent different elutions with 150mM imidazole elution buffer. 
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Figure 3.6 Confirmation of TRAMM and antibody production. (A) Mass spectrometry 

data showing data showing the variation of time as function of the intensity of 

fragmented peptides. (B) Western blot probed with anti-TRAMM for protein sample and 

negative control BSA (Bovine serum albumin). (C) Western blot of asynchronous, 

colcemid treated and thymidine arrested HeLa cells. HeLa cells were either treated with 

Lambda phosphatase (+), or left untreated. Blots were probed for TRAMM using 

homemade antibody. 
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3.5 Recombinant purified TRAMM protein analysis by dynamic light scattering 

 

The polydispersity of a protein sample represents the protein’s particle size distribution 

width. A protein sample with less than 20% polydispersity is considered to be 

monodispersed (Price et al., 2009). Figure 3.7(A) represents the initial observation 

of the dynamic light scattering (DLS) of a TRAMM protein sample, showing 2 peaks at 

3x106 counts/sec with radius R=39.5nm and R=107.6nm, respectively. This result does 

not represent a protein of molecular weight= 79KDa. The R is too large and the counts 

are too high. To address this problem the buffer containing TRAMM was changed by 

fractionating the sample on a size exclusion (Superpose 6) column removing B-

mercaptoethanol and imidazole. Fractions collected from the size exclusion column were 

subjected to SDS-PAGE and Coomassie blue staining (Figure 3.7(B), top panel) 

revealing a band at the desired molecular size of TRAMM, mainly in fractions 20-25. 

These fractions were combined and concentrated, and then analyzed by DLS. The 

resulting sample was at 27.4% polydispersity, which is still considered to be a 

polydispersed sample >20% polydispersity, as shown in Figure 3.7(C). Reasoning that 

the elution by size exclusion chromatography was occurring at a size greater than that 

expected for a 79kDa polypeptide, we suspected the presence of high molecular weight 

particles in the solution besides TRAMM. For the purpose of removing the undesired 

high molecular weight particles from the solution; the sample from Figure 3.7(C) was 

filtered using a 0.45 micron filter to yield the solution analyzed in Figure 3.7(D). Results 

in Figure 3.7(D) yielded 16.5% polydispersed species at R=15.4nm that is reasonable 

for a 79KDa protein. The monodispersed protein (<20% polydispersity) obtained from 

Figure 3.7(D) was subjected to western blotting and probed with the homemade anti-

TRAMM antibody. While the negative control (purified TRAPPC2) did not show any band 

at 79 KDa, the purified sample showed a clear band of the expected size (Figure 3.7(B), 

bottom panel), confirming that the monodispersed protein analyzed in Figure 3.7(D) is 

TRAMM. As a result, Figure 3.7 shows successful optimization and transition 

of the polydispersed protein sample of purified TRAMM to a monodispersed protein 

sample. A monodispersed protein sample is a strong indicator of successful 

crystallization of the protein, which could reveal its three-dimensional structure (Goh et 

al., 2004). 
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Figure 3.7 Recombinant purified TRAMM protein analysis by dynamic light 

scattering. (A) Graph representing DSL results of purified TRAMM protein sample in its 

initial elution buffer. (B) Top: Size exclusion chromatography of purified recombinant 

TRAMM. Eluted protein at 150mM imidazole was fractionated on Superpose 6 size 

exclusion column and subjected to Coomasie blue staining. Molecular size standard is 
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indicated on top; bottom panel: Western blot probed  with anti-TRAMM for TRAMM 

protein sample (after changing the buffer and filtering the sample using 0.45 micron filter 

as described in materials and methods section 2.2.5) and negative control TRAPPC2. 

(C) Graph representing DSL results of purified TRAMM protein sample in elution buffer 

without DTT and imidazole. (D) Graph representing DLS results of purified TRAMM 

protein sample in new buffer and filtered using 0.45 micron filter. 
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Chapter 4: Discussion 

	  

The TRAPP complex was initially discovered as a tethering factor involved in membrane 

trafficking (Sacher et al., 1998). Recent work in our laboratory suggests that TRAMM is 

involved in mitosis (Milev et al., 2015). Size exclusion chromatography of HeLa cells 

revealed that TRAMM, which belongs to the TRAPP complex during interphase, 

dissociates from the complex and shifts to lower molecular size fractions during mitosis. 

The mechanism by which TRAMM dissociates from the TRAPP complex during mitosis 

is still unclear. In mitosis, TRAMM is post-translationally modified by phosphorylation 

(Milev et al., 2015). Phosphorylation can cause conformational changes that could affect 

protein-protein interactions and thus allow proteins to be dissociated from their 

complexes (Nishi et al., 2011). This would provide a mechanism for TRAMM to perform 

its role during mitosis and to dissociate from the TRAPP complex. Alternatively, TRAMM 

could dissociate from the complex by a different mechanism, which is independent of the 

phosphorylation. Interestingly, TRAMM-5D (a phosphomimetic mutant that contained all 

five potential phosphorylation sites changed to aspartic acid residues) was able to recruit 

more CENP-E to the kinetochores than TRAMM-5A (a mutant that had all five 

phosphorylation sites changes to nonphosphorylatable alanine residues). As compared 

to TRAMM-5A, TRAMM-5D showed a reduced ability to suppress the increase in mitotic 

index induced by TRAMM depletion. These results could suggest that although the 

phosphorylation of TRAMM is not necessary, it needs to be reversible for proper 

function. In this study, I show that Cdk1 is most likely the kinase responsible for the 

phosphorylation of TRAMM. The dephosphorylation observed when Cdk1 was inhibited 

could be explained by the fact that in mitosis there is a balance between kinases and 

phosphatases. It is this balance that orchestrates the cell cycle and allows the cell to 

progress throughout mitosis (Barr et al., 2011). Upon altering the kinase-phosphatase 

equilibrium by inhibiting Cdk1, which is the kinase responsible for phosphorylating 

TRAMM, the corresponding phosphatase would be capable of dephosphorylating 

TRAMM.  

    

Several facts could support that TRAMM is phosphorylated by Cdk1. Cdk1 is a major 

mitotic kinase that phosphorylates more than 200 cell cycle related proteins mainly 

involved in triggering mitotic entry and progression with maximal activity at metaphase 
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(Errico et al., 2010; Ubersax et al.,2003). In parallel with the activity of Cdk1, TRAMM is 

phosphorylated as the cell enters mitotis and dephosphorylated as the cell enters 

anaphase in parallel with degradation of cyclin B-Cdk1 (Milev et al., 

2015). TRAMM also contains the Cdk1 consensus motif in 3 out of its 5 predicted 

phosphorylation sites. Moreover, per Phosphokinase 3.1 kinase prediction, Cdk1 was 

one of the possible kinases at site 182 with p>0.5. For confirming that Cdk1 is the kinase 

responsible for phosphorylating TRAMM, purified Cdk1 was incubated with recombinant 

purified TRAMM in the presence of ATP (without the use of radioactive labeling). 

TRAMM’s molecular weight is expected to shift in the presence Cdk1 due to 

phosphorylation. Inconclusive results were obtained as western blots showed that 

TRAMM’s molecular weight was identical in the presence and absence of Cdk1(results 

not shown). For future work, this experiment could be repeated by incubating purified 

Cdk1 with purified TRAMM in the presence of gamma labeled ATP to produce a clear 

and consistent result where TRAMM is expected to be radiolabeled. 

    

TRAMM is among various proteins such as Aurora B and BubR1 which affect CENP-E 

localization to the kinetochores (Liu et al., 2007; Putkey et al., 2002). It is noteworthy that 

when compared to other proteins, TRAMM has the most dramatic effect on the 

localization of CENP-E. CENP-E and TRAMM co-localize early in mitosis when TRAMM 

is maximally phosphorylated. Upon depletion of CENP-E, some chromosomes are 

improperly attached to the microtubules and are incapable of aligning at the metaphase 

plate (Milev et al., 2015). This resembles the phenotype of TRAMM depletion (Yao et al., 

2000), suggesting that there is a strong link between CENP-E and TRAMM. This link 

was further confirmed by a yeast two-hybrid interaction that clearly suggests that the two 

interact in vitro (Milev et al., 2015). Further investigation in this study showed that the 

two do not only interact in vitro but also associate in vivo. However, this result was 

irreproducible, which could be due to the weak and transient association between 

CENP-E and TRAMM. Further investigation is needed to confirm this interaction in vivo. 

This could include epitope tagging of TRAMM and creating a stable cell line expressing 

the tagged form of TRAMM. Precipitating TRAMM in mitotically arrested cells and using 

mass spectrometry or western blot would confirm whether CENP-E is among the 

interactors.  

    

Here we aimed to analyze TRAMM in terms of structure and its newly reported function 
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in mitosis. Upon analyzing the secondary structure by bioinformatics, the presence of 4 

TPR motifs in the C-terminal portion of the protein was identified. Since this motif is 

involved in protein-protein interactions, it is tempting to speculate that this domain binds 

to CENP-E. In addition, the amino-terminal portion of the protein is predicted to be 

mainly unstructured. This same region contains the 5 residues involved in 

phosphorylation.  

    

In the absence of a structure for TRAMM, the understanding of the mechanism of its 

function is limited. To overcome this issue, efforts were made towards producing a 

protein suitable for structural studies. I purified the recombinant form of TRAMM by 

expressing it in Arctic Express cells. Arctic Express cells possess Cpn10 and Cpn60 

chaperonins that could help fold the protein of interest at cold temperatures. As such, 

this allowed recombinant TRAMM to be expressed as a soluble protein, a necessary first 

step in any structural study. To determine the importance of the unstructured N-terminal 

region on both the nature and structure of TRAMM, a truncated construct of TRAMM 

(missing the N-terminal unstructured domain) was expressed in Arctic Express cells 

(results not shown). TRAMM was expressed in a soluble form, but was not eluting from 

the column, suggesting that the solubility of TRAMM was affected. This is consistent with 

unpublished results showing that truncated TRAMM at the N-terminal could not rescue 

and suppress TRAMM knockdown-induced mitotic arrest. Moreover, 

a phosphomimetic mutant that contained all five potential phosphorylation sites changed 

to aspartic acid residues was expressed in Arctic Express cells (results not shown). 

Once again, the solubility of TRAMM was altered and it was not eluting from the column 

despite its presence in both the total cell lysate and the supernatant. All together this 

could suggest that the folding of the unstructured N-terminal portion containing the 

phosphorylation sites could be altered during mitosis to help regulate the function of 

TRAMM.  

    

The monodispersed purified TRAMM sample is a strong indicator of successful 

crystallization of TRAMM. To date, 6 mammalian TRAPP subunits (TRAPPC1-

TRAPPC6) have been crystallized (Sacher et al., 2008). Revealing the three-

dimensional structure of TRAMM will provide insights into its function and would allow us 

to address many unanswered questions. Despite the sequence homology, 

TRAMM could share similar folds with proteins that have known cell cycle related 
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functions that would give us more insights into TRAMM's mitotic function. Besides 

crystallography, the recombinant protein could be incubated with lysates from cells 

arrested either in interphase (to identify membrane trafficking interactors) or in mitosis 

(to identify cell division interactors of which we expect CENP-E). Once interactors are 

identified, truncated forms of TRAMM would be used to map the regions on TRAMM 

where these proteins interact.  

 

Interestingly, ongoing research on several patients carrying mutations in TRAMM where 

the protein is undetectable results in a delay in mitosis (Milev et al, 2017). These 

patients have severe developmental delays, which could be correlated to the mitotic 

delay caused by the mutation in TRAMM. TRAMM is among many other proteins such 

as CHAMP1 (a zinc finger protein) that can cause defects in mitosis resulting in such 

diseases (Tanaka et al., 2016). It is noteworthy that one of the mutations identified in a 

patient with TRAMM mutations affects a highly conserved alanine that is a part of 

the TPR conserved motif (Zeytuni et al., 2012). 

 

TRAMM is amongvarious TRAPP subunits that are involved in a wide range of cellular 

activities. For example, the TRAPP II complex has been implicated in Rabin8 

centrosome targeting and cilia formation where C3, C9, and C10 are essential subunits 

for this process (Westlake et al., 2011).  

 

Apart from its functions in the TRAPP complex, including membrane trafficking and cilia 

formation, TRAPPC9 is speculated to be a moonlighting protein that functions in the NF-

kB pathway and neuronal differentiation in the cerebellum (Khattak et al., 2014). This is 

shown by TRAPPC9 interacting with NIK in a yeast two-hybrid screening, which is 

involved in the transcription of NF-kB. Mutations in TRAPPC9 have been identified in 

individuals that have microcephaly and non-syndromic autosomal-recessive mental 

retardation (Brunet and Sacher, 2014).  

 

The TRAPPC4 protein was suggested to regulate ERK signaling, but it is still unclear 

whether this is done in a TRAPP context or not (Brunet and Sacher, 2014). In a yeast 

two hybrid screening, TRAPPC4 interacts with ERK2 and directly affects the levels 

of phospho-ERK1/2 due to the possible involvement in its transportation from the 

cytoplasm to the nucleus.  This transportation mechanism may be a moonlighting 
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function as increased levels of TRAPPC4 and phosphor-ERK1/2 are present in the 

nucleus of colonic carcinoma tissues, which may be independent of the TRAPP 

complex (Zhao et al., 2011).   

 

Other moonlighting functions involving the TRAPP complex are collagen secretion and 

glycosylation, which are specifically affected by TRAPPC2 and TRAPPC11 respectively 

(Jones et al., 2003; Venditti et al., 2012; DeRossi et al., 2016). TRAPPC2 mutations can 

be linked to skeletal specific X-linked Spondyloepiphyseal Dysplasia Tarda (SEDT) due 

to it altering collagen secretion and affecting Golgi integrity. The recruitment of TANGO1 

(a collagen receptor) by TRAPPC2 leads to its interaction with Sar1 (GTP-bound COPII) 

that is critical to the dissociation of Sar1 from the membrane at ER exit sites (Venditti et 

al., 2012). Mutations in Sar1B have shown to cause defects in the dissociation of 

chylomicrons from the ER which may lead to various types of chylomicron retention 

diseases (CMRD) (Jones et al., 2003). Further research into the interactions of 

TRAPPC2 with this pathway may assist in better understanding chylomicron dissociation 

and unanswered questions around CMRD (Brunet and Sacher, 2014). Other subunits in 

the complex such as TRAPPC2L and TRAPPC11 have also shown to have affect Golgi 

fragmentation, and may cause disorders ranging from neurodevelopmental delay of 

newborn children to miscarriages and lethality (Wen et al., 2015; Sacher et al., 2014).  

 

TRAPPC11 (a component of human TRAPP III) has shown to have critical effects on the 

Golgi and can be lethal to humans due to its high importance in development (Brunet 

and Sacher, 2014). One study has shown that the depletion of TRAPPC11 causes a 

stressed unfolded protein response (UPR), specifically ER stress-inducing UPR, which 

results in hypoglycosylation and accumulation of lipid droplets in fibroblasts (DeRossi et 

al, 2016). Viral insertion causing TRAPPC11 depletion in zebrafish was shown to reduce 

N-linked glycosylation which led to liver steatosis(DeRossi et al., 2016). In addition to the 

liver, TRAPPC11 plays a physiological role in multiple other tissues including the 

muscle, eye, brain, and bone (Liang et al., 2015). Although the detailed mechanisms 

causing the neurological and muscular defects in TRAPPC11 patients are still unknown, 

the vast majority of individuals with TRAPPC11 mutations suffer from intellectual 

disabilities and neuromuscular defects (such as type 2S limbe-girdle muscular 

dystrophy) caused by hypoglycosylation (Bögershausen et al., 2013). Collectively, the 

phenotype of TRAPPC11 patients clearly shows a wide TRAPPC11-opathy which could 
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be due to the impairment of TRAPPC11 functions in multiple processes. 

 

Continual research on TRAPP and its subunits has shown its wide variety of 

moonlighting functions, which is found to play important roles in many cellular 

processes. This project has allowed us to take a step further to understand TRAMM and 

its newly reported function in mitosis. Yet many questions still need to be addressed, 

including: Is TRAMM a part of a multi-subunit complex during mitosis or does it only 

associate transiently with some protein partners such as CENP-E? Which phosphatase 

is responsible for dephosphorylating TRAMM? How does TRAMM associate back with 

the TRAPP complex during interphase? Not only the research in TRAMM and its 

correlation to the cell cycle needs further investigation, but research into the mammalian 

TRAPP complex as a whole is still in its infancy. The more we learn about the 

mammalian TRAPP complex, the greater we emphasize the importance of its research 

to better understand the cell's various functions including membrane trafficking and cell 

division. 
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