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ABSTRACT 

 

The Bare Necessities for Doing Undergraduate Multivariable Calculus 

 

Hadas Brandes 

 

 

Students in two mathematics streams at Concordia University start their programs on similar 

footing in terms of pre-requisite courses; their paths soon split in the two directions set by the Pure and 

Applied Mathematics (MATH) courses and the Major in Mathematics and Statistics (MAST) courses. In 

particular, likely during their first year of studies, the students set out to take a two-term arrangement 

of Multivariable Calculus in the form of MAST 218 – 219 and MATH 264 – 265, respectively. There is an 

ongoing discussion about the distinction between the MAST and MATH courses, and how it is justified. 

This thesis seeks to address the matter by identifying the mathematics that is essential for students to 

learn in order to succeed in each of these courses. We apply the Anthropological Theory of the Didactic 

(ATD) in order to model the knowledge to be taught and to be learned in MAST 218 and MATH 264, as 

decreed by the curricular documents and course assessments. The ATD describes units of mathematical 

knowledge in terms of a practical block (tasks to be done and techniques to accomplish them) and a 

theoretical block that frames and justifies the practical block. We use these notions to model the 

knowledge to be taught and learned in each course and reflect on the implications of the inclusion and 

exclusion of certain units of knowledge in the minimal core of what students need to learn. Based on 

these models, we infer that the learning of Multivariable Calculus in both courses follows in a tradition 

observed in single-variable calculus courses, whereby students develop compartmentalized units of 

knowledge. That is, we find that it is necessary for students in MAST 218 and MATH 264 to specialize in 

techniques that apply to certain routine tasks, and to this end, it suffices to learn bits and pieces of 

theoretical knowledge that are not unified in a mathematically-informed way. We briefly consider 

potential implications of such learning in the wider context of the MATH and MAST programs. 
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Chapter I: Introduction 

The idea that sparked this thesis was an ongoing discussion about two courses in Concordia University’s 

Mathematics and Statistics Department: MAST 218 and MATH 264, or ‘Multivariable Calculus I’ for 

students in the Major in Mathematics and Statistics program (MAST) and students in the Pure and Applied 

Mathematics Specialization (MATH). Historically, the courses were created to cater to the two different 

programs. Today, there’s discussion as to whether the distinction is still relevant. One of the goals at the 

onset of my research was to look at the “distance” between the two courses. A second goal came about 

in the application of the Anthropological Theory of the Didactic (ATD) to the study of undergraduate 

mathematics, which in itself was an important theoretical and operationalization exercise. The first and 

second goals happened to fit together well, as it turned out useful in the exercise of applying the ATD to 

have to analyze two courses, as opposed to just one. As I explain below, through these two initial aims I 

ultimately set to identify and describe the minimal knowledge essential for MAST 218 and MATH 264 

students to learn in order to succeed in their course. 

 The ATD is a research programme developed by Chevallard (1999) that focuses on didactic 

practices as they occur in an institution. I don’t go into the details of discussing the meaning of “institution” 

in the context of ATD – it suffices to say that it refers to a group of persons with common goals, with a 

common set of rules and norms that organize their behavior and interactions, and with a set of strategies 

to achieve those goals. The institution’s features are somewhat independent of the individuals who 

participate in it; the institution and its features persist over time – before and after individuals join and 

leave; and there are mechanisms to share the rules, norms and strategies with new comers. The 

university, the mathematics and statistics department, MAST 218, MATH 264, the classroom, are 

examples of institutions (for a further discussion on the meaning of “institution” in the context of ATD, 

see Hardy, 2009a). Chevallard contends that every institutional didactic practice is forged by a variety of 

internal and external conditions that stem from all levels of society – from governmental policies to those 

of a particular teaching institution, social and cultural norms, all the way down to the experiences of the 

instructors and students directly involved in a given didactic practice.  In simple terms, the ultimate goal 

of any (mathematics) educational institution is to share/transmit/teach (mathematical) knowledge. 

However, from the perspective of ATD, knowledge does not exist in the vacuum, rather, it is bound to the 

institution in which it is shared and somehow connected to the knowledge shared in other related 

institutions; such connection is called transposition and is of didactic nature in the context of educational 

institutions. Didactic transpositions take place along a spectrum of knowledge in which scholarly 
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mathematics (the mathematical knowledge developed, shared and used by the experts – the 

mathematicians) is transposed into the knowledge to be taught in a given institution, up to a transposition 

into knowledge actually learned by the students. Chevallard (1999) distinguishes several stages in this 

transformation of mathematical knowledge: scholarly knowledge, knowledge to be taught, knowledge 

actually taught, knowledge to be learned, and knowledge actually learned. An essential feature of the ATD 

is an epistemological model called praxeology – this feature allows the researcher to model the 

mathematical knowledge in any one of the stages of the didactic transposition. 

 The notion of praxeology serves to model a unit of knowledge. Chevallard (1999) defines it by a 

theoretical block and a practical block. The theoretical block of a praxeology consists of a theory Θ, a set 

of concepts and assumptions, and a technology 𝜃, a set of notions and arguments justified by the theory; 

Θ and 𝜃 come about through a discourse that joins the elements of each set in some rational way. The 

practical block contains the tasks 𝑇 to be achieved in a praxeology and the techniques 𝜏 with which to 

complete these tasks. The technology from the theoretical block produces, explains, and justifies the 

techniques, thereby connecting the two blocks into a single unit of knowledge, a praxeology, denoted 

Π = (𝑇, 𝜏; Θ, 𝜃). I expand on this notion and provide examples in Chapter III. 

 The language and concepts in the ATD helped sharpen the initial aim of this thesis of measuring 

the distance between MAST 218 and MATH 264. The goal became to identify the minimal knowledge that 

students of 218 and 264 need to learn to succeed in these courses; thus, I set out to characterize the 

knowledge that is essential for students to learn in order to provide acceptable solutions in their final 

exams. To this end, I treated three instances of didactic transposition: I created a reference model based 

on the scholarly multivariable calculus knowledge that is to be transposed, a model of the knowledge to 

be taught in both courses, as indicated by the curricular documents, and a model of the knowledge to be 

learned, as determined by the final examinations in each course as these largely determine students’ 

success rate in the courses. The main purpose of the model of the knowledge to be taught is to model the 

knowledge to be learned. 

 In addition to the goal of identifying and describing (in terms of praxeologies) the minimal 

knowledge required for MAST 218 and MATH 264 students to learn to succeed in the course, I aim to 

examine what MAST and MATH students gain and what they may be missing given the core of the 

knowledge to be learned. That is, I hope to identify discrepancies between the knowledge to be taught 

and the knowledge to be learned, and to conjecture the effects of the exclusions. 
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 This thesis begins with a two-part literature review in Chapter II. The first section considers 

research on the learning of calculus, with specific attention to studies on tasks that students have to do. 

The second section discusses the relevance and affordances of the ATD to the evaluation of university 

mathematics education. I introduce concepts and constructs of the ATD to allow for this discussion, 

though I expand on them more fully in Chapter III, which I preview next. Section II.ii and Chapter III 

together fund a fuller depiction of the theoretical framework for this thesis. 

 Chapter III gives an overview of ATD as a theoretical framework and an explanation of my 

application of the ATD to this study. I provide here the operational definition of knowledge to be taught 

and knowledge to be learned in this thesis. 

 I describe the institutional context of MAST 218 and MATH 264 in Chapter IV; as per the ATD, no 

mathematical praxeology can be discussed in the void, and the didactic transposition of a unit of 

mathematical knowledge exists in a given institution defined by its norms and organizations. I open with 

the stated missions of the two programs that house these courses: the Major in Mathematics in Statistics 

(MAST) and the Pure and Applied Mathematics Specialization (MATH). I proceed with the entry 

requirements and degree requirements for each; I situate both courses in their respective programs; and 

finally describe the heavily-coordinated, multi-section quality of MAST 218 and MATH 264. 

 In Chapter V, I discuss my reference model of the scholarly knowledge from which starts the 

transposition of multivariable calculus that is ultimately to be taught and learned in 218/264. 

 Chapter VI centers on the knowledge to be taught (KT) in the two courses. In a first section, I 

explain my methodology for constructing a model of the knowledge to be taught: how I identified the 

praxeologies, how I coded and recorded their theoretical and practical blocks, and how and why I cross-

referenced among elements of theoretical blocks and among elements of the practical blocks. I present 

the models that resulted from this work in the second section of the chapter. 

 In Chapter VII, I restate the aim of having a model of the knowledge to be learned (KL) in the 

context of this thesis; I present my methodology for identifying the praxeologies of the KL; finally, I present 

a model of the knowledge to be learned and append to each praxeology a discussion of the units of KT 

that are present and absent in the KL. 

 Chapter VIII is a two-part discussion. It opens with a discussion of the ideal student in these 

courses: the student who possesses, at the minimum, the knowledge required to provide suitable 

solutions in the final exam. I describe the ideal MAST 218 student and the ideal MATH 264 student in 
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terms of the structure (𝑇, 𝜏; Θ, 𝜃) of the praxeologies they need to learn to succeed in their course; we 

will see that the theoretical blocks (Θ, 𝜃) of the praxeologies of the KT are distorted in the transposition 

into knowledge to be learned. I conclude with some comments on the affordances and limitations of ATD 

in this study. 

 I close in Chapter IX by recapitulating the core components of this thesis and reviewing certain 

aspects of my methodology. In a second section, I briefly conjecture the implications of the absence of 

certain components of the KT in the KL. I conclude with a brief proposal of a follow-up study aim at 

capturing the knowledge at each step of the didactic transposition in MAST 218 and MATH 264. 
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Chapter II: Literature Review 

This work is set in undergraduate mathematics education; specifically, in two courses that, together with 

their sequels, set the tone for MATH and MAST1  students’ first year of undergraduate mathematics 

education as they move from MAST 218/MATH 264 onto MAST 219/MATH 265, the second halves of a 

two-term approach to multivariable calculus. The following two-part literature review gives context to 

this study. I first go over some of the research on the learning of calculus; in particular, I consider studies 

that have probed into the tasks that students have to do. I then review literature on the affordances of 

the Anthropological Theory of the Didactic (ATD) to the study of university mathematics education. This 

sets the stage for the use of the ATD in this study, which I discuss in Chapter III. 

Section II.i: Teaching and Learning of Calculus  

Research on the learning of calculus often probes at the nature of students’ learning of calculus; from 

their concept image (in the sense of Tall & Vinner, 1981) and use of core notions such as limits (Cottrill et 

al., 1996; Hardy, 2009b; Swinyard & Larsen, 2012), continuity (Vinner, 1987), and rate of change 

(Thompson, 1994), down to the hand played by algebraic dexterity (Gray, Loud, & Sokolowski, 2009; White 

& Mitchelmore, 1996). Important concepts in mathematics education have been developed and initially 

illustrated against students’ learning of calculus; e.g., cognitive obstacles (Tall & Vinner, 1981) and 

epistemological obstacles (Sierpinska, 1990; Sierpinska, 1994). There’s a pattern that indicates calculus 

students mostly engage in procedural work that requires no more than a superficial image of these 

concepts; for instance, Tall & Vinner (1981) identify various distinctions between students’ personal 

concept image of limit and continuity and the formal concepts as decreed by the professional 

mathematical community. Some studies further suggest that the images students form in calculus courses 

can become epistemological obstacles; for instance, the image students form of limit in traditional 

calculus courses as something that a function approaches might impede their understanding and use of 

the formal definition of limit (Cornu, 2002). 

My study is situated within this body of research; my goal is to describe the knowledge that 

multivariable calculus students need to learn to succeed in the first half of a year-long sequence of 

courses. In using the lens of the Anthropological Theory of the Didactic (see the following section and 

Chapter III), I aim to characterize this knowledge in terms of a theoretical block (a discourse unified by a 

                                                                 
1 Recall from the introduction that MATH and MAST are the two programs in which the courses MATH 264 and 
MAST 218 occur; MATH refers to the Pure and Applied Specialization and MAST to the Major in Mathematics and 
Statistics. 
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set of axioms, definitions, and theorems) and practical block (a set of tasks and techniques supported and 

explained by the theoretical block). In a later stage, I hope to conjecture potential effects of the type of 

knowledge that is to be learned on students’ images of multivariate calculus concepts, and, on a macro-

level, on the perceptions or misconceptions they may develop about mathematics. Given that the 

multivariable calculus courses (MAST 218 and MATH 264) that I consider follow a format similar to that of 

their earlier counterparts (see section IV.v), I expand on a few studies that have characterized the tasks 

that calculus students typically do in these earlier counterparts and how these tasks may relate to their 

conceptualization (or lack thereof) of key calculus notions. 

In conjunction with students’ particular formulations of calculus concepts, studies also focus on 

the role played by the routine problems that typify students’ single-variable calculus studies (Hardy, 

2009b; Lithner, 2004; Selden, Selden, Hauk, & Mason, 1999). These studies emphasize the exercise-driven 

quality of the course assessments, in the sense of Selden et al.’s (1999) very or moderately routine 

problems, which, respectively, “mimic sample problems found in the text or lectures, except for minor 

changes in wording, notation, coefficients, constants, or functions that students view as incidental to the 

way the problems are solved” and “can be solved by well-practiced methods” such as “change of variable 

integration problems in calculus” (p.18).  

The exercise-driven quality of the course assessments extends to elements of the course curricula 

(Lithner, 2004). Calculus textbooks traditionally adhere to a definition-theorem-example-exercise format, 

wherein the exercises repeat the problematics of the examples and algorithms outlined in the text.  

Lithner (2004) measured the extent to which intrinsic mathematical properties play a role in the minimal 

reasoning required to solve routine tasks in traditional Calculus textbooks. His metrics were three types 

of reasoning, each of which is a step up from the previous in its use of intrinsic mathematical properties:  

 identification by similarities (IS), whereby a strategy for tackling a problem is chosen based 

on the similarities of certain surface properties between the new problem and a known 

problem (e.g. given a limit-finding problem, note whether the limit is taken at a numerical 

value of infinity and identify the type of function involved); the implemented strategy is 

identical to that of the known problem; 

 local plausible reasoning (LPR) is required if components in the exercise are similar to a known 

problem but differ in a few local parts (e.g. if the known exercise involves a whole number 

exponent but the new exercise involves a non-integer rational exponent); some reasoning 
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rooted in mathematical properties must be made to ensure the strategy is suitable in the new 

exercise; the implemented strategy is identical to that of the known problem; 

 global plausible reasoning (GPR) is required if the “strategy choice is founded on analyzing 

and considering the intrinsic mathematical properties of the components in the exercise” and 

the solution is formed similarly (Lithner, 2004, p. 419). 

Lithner’s classification of reasoning types runs along a scale of how big a role is played by the mathematical 

properties intrinsic to the problem versus the reapplication of known algorithms; this scale runs parallel 

to Selden & Selden’s (1999) spectrum of problems from very routine to very non-routine, which vary based 

on how familiar the solver is with the given problem. Schoenfeld (1985) similarly distinguishes between 

the very and the non-routine as simply exercises and problems. The more routine the problem, the less 

interaction is required of the solver with the mathematics specific to that problem. 

The assessments in North-American calculus courses are largely drawn from the course textbook, 

which Lithner (2004) demonstrated to be steeped routine problems. Accordingly, he found students’ 

strategies to be anchored in what they recalled superficially rather than in the mathematics specific to the 

given problems (Lithner, 2000). This correlates with calculus students’ failure to complete non-routine 

problems (Selden et al., 1989; Selden et al., 1999; Hardy, 2009b). Lithner’s finding that the great majority 

of calculus textbook exercises require no more than IS reasoning suggests that students’ superficial 

reliance on intrinsic mathematical properties in favor of the recall of algorithms may have roots in their 

learning environment – or, in the language of ATD, in their institutional context. 

Section II.ii: Using ATD to study UME2 

Chevallard’s Theory of Didactic Transposition (1985) lights on the anthropological backdrop of the 

mathematics found in educational settings. First, it recognizes that this mathematics occurs in a setting – 

that is, an institution. From there, the Theory of Didactic Transposition underlines the trail whence that 

contextualized mathematics originated; Chevallard details a transposition that starts with mathematics in 

its originally produced or scholarly form and phases into mathematics to be taught as prescribed by a 

curriculum, actually taught by course instructors, and eventually learned by students. The mathematics 

cannot be separated from its contextual elements. The following is a diagram typically used to represent 

                                                                 
2 To make sense of this brief literature review on the affordances of Anthropological Theory of the Didactic (ATD) 
to the study of undergraduate mathematics education (UME), I introduce briefly some key concepts that are 
further expanded and discussed in the chapter addressing the theoretical framework of this thesis (Chapter III).  
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didactic transposition from scholarly knowledge to knowledge actually learned by students (adapted from 

Barbé et al. (2005) and Bosch et al. (2005)): 

 

This is a commonly used representation, but its linearity doesn’t account for the complexity of didactic 

transposition as knowledge is likely transposed in more than one direction (e.g. knowledge to be learned 

may influence knowledge actually taught, in the sense that teaching in the classroom may be informed by 

any upcoming assessments). The processes involved in the transpositions are complex and most research 

has focused mainly on the ‘final’ products of each stage. 

The Anthropological Theory of the Didactic (Chevallard, 2002) provides an epistemological model 

to describe mathematical knowledge as a human activity (thus the anthropology word in the title) as it 

occurs in a given institution (research mathematics; applied mathematics; engineering; school 

mathematics at different educational levels; mathematics teacher training institutes, etc.). ATD holds that 

mathematical knowledge can be described in terms of an organization of mathematical nature. This 

“organization of mathematical knowledge,” called in ATD a (mathematical) praxeology3, is a special case 

of a praxeology, a system of four components that together model an activity4:  

• a set 𝑇 of types of tasks which indicate the nature and goals of the activity;  

• a set 𝜏 of techniques available to accomplish each type of task;  

• a technology5 𝜃 that justifies these techniques (a logos about the techniques); and 

                                                                 
3 Chevallard chose the word “praxeology” to reflect that the model of knowledge refers to a discourse (logos) about 
a practice (praxis). In some texts, Chevallard and his colleagues refer to praxeologies as organization of knowledge, 
and more specifically, as mathematical organizations. We stick to the word praxeology to emphasize its nature: the 
logos about a praxis (in the same sense that the words biology, anthropology, sociology, etc., are used). 
4 Although I expand on the concepts brought forward by the theory of ATD used in this thesis in Chapter III, it is 
necessary for the discussion here to present these concepts. 
5 The word “technology” is a literal translation form the word “technologie,” the French term used by the proponents 
of ATD. We stick to the word “technology” in this thesis, as it has been so far the preferred English translation, 
although we agree with colleagues who have recently proposed that “methodology” was perhaps a more accurate 
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• a theory 𝛩 that justifies the technology.   

The ATD models each of the steps in the didactic transposition in the form of these units of 

knowledge called praxeologies, each formed of a theoretical and practical block (Chevallard, 1999). I 

expand on these in an overview of the theoretical assumptions of ATD in section III.i. For now, it suffices 

to note that the theoretical block of a praxeology consists of the technology, that is, notions and 

arguments bound by some rational discourse and justified by a theory, its conceptual basis. The theoretical 

block explains and warrants the tasks and corresponding techniques that form the practical block of a 

praxeology. Furthermore, it is the theoretical block that “makes it possible to preserve the practice and 

communicate it to others, so that they, too, can participate in it” (this suggests a didactic intention in any 

(cultural) institutional practice; an activity cannot become part of a practice if there are no means with 

which to teach and maintain it – hence ‘Anthropological Theory of the Didactic’) (Hardy, 2009b, p.5).   

Further, the Anthropological Theory of the Didactic (ATD) maintains that that “the study of any 

didactic problem needs to adopt a particular standpoint (model) of the involved mathematical practices” 

(Bosch, Chevallard, & Gascón, 2005, p.4). Such a reference model sets the platform from which the 

researcher observes the didactic transposition in a study of a given didactic problem (see Chapter V). 

 The ATD lends itself to the study of university mathematics education (UME) and has been used 

as such on some occasions (Bergé, 2008; Barquero, Bosch, & Gascón, 2008; Hardy, 2009b; De 

Vleeschouwer, 2010). Winsløw, Barquero, de Vleeschouwer, & Hardy (2014) discuss the affordances of 

the ATD to the study of UME in the form of its theoretical assumptions and the models it provides. I outline 

below some of the main themes in the application of ATD to UME. 

Section II.ii.a: Conditions and constraints 

The conditions and constraints that shape mathematics in UME stem mainly from internal and external 

sources: e.g., university policies, professors, and students; ministerial policies, society, and cultural 

context. A university’s rules and principles can trickle down to the mathematics classroom; Winsløw et al. 

mention external funding and admission conditions (p.99) as factors that can ultimately fashion didactic 

practices. 

 University professors both teach and research. Since teaching is not their only duty, it can be 

difficult for teachers of university mathematics to expand on their didactic processes, in terms of choosing 

                                                                 
translation (Giovanniello, 2017; Pelczer, 2017; personal communication between my supervisor and Anna 
Sierpinska).  
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questions to work on, techniques to work with, and the theory on which the work is based (Winsløw et 

al., 2014). This results in a restricted ‘action space’ (Chevallard, 2002a) as the course mathematics is tightly 

wound to the textbook and time and curricular constraints lead to “heavily transposed” theory and 

practice (Winsløw et al., 2014, p.99). 

 On the other end, external conditions also appear in the shape of students’ past and current 

mathematical and personal experiences, expectations, needs, and aspirations (Winsløw et al., 2014). 

Students from various schools, cities, states or provinces, and countries arrive with a trove of peculiarities. 

Their experience in mathematics is colored by their primary and high-school studies and now heads a slew 

of transition problems throughout their university mathematics studies (discussed further below). 

Winsløw et al. (2014) attribute students’ transition problems to “discontinuities between the 

mathematical praxeologies that appear in school, at the beginning of university studies, and in the more 

advanced parts of such studies” (p.99).  Students’ specific mathematical constraints are tinted with their 

academic needs and professional expectations (and those imposed by the culture and society they live 

in); the didactic situation of UME is therefore defined by more than an aim to prepare students for 

university mathematics and its professional applications/uses. 

Section II.ii.b: Transitions in students’ praxeologies 

Winsløw et al. (2014) explain that an institution’s praxeological model is well-fitted with teachers’ 

praxeologies but ill-reflected in students’ praxeologies. Teachers include in their view the theoretical and 

practical blocks as well as the ways in which the theory justifies and explains the practice; students, at the 

pre-university level and in some cases at the university level, tend to have a praxeology defined mostly by 

practice. This is especially observed in differential and integral calculus courses where assessment is 

concerned mostly with the practical block and, while at times it may pick at the theoretical, it generally 

does not address the ways in which the theoretical maintains the practical. This may have a precedent in 

the way the knowledge is taught in the classroom, as teachers don’t necessarily have time to justify the 

tasks and techniques, given often-hefty curricula to deliver. Students, for their part, tacitly accept the 

existence of a theoretical discourse supporting the practical (the techniques) without concerning 

themselves with it (Hardy, 2009b; Winsløw et al., 2014). Their work focuses mainly in recognizing types of 

tasks and identifying a suitable technique (Hardy; 2009b; Winsløw et al., 2014), much as in Lithner’s 

identification of similarities reasoning (2004), Schoenfeld’s exercises (1985), or Selden et al.’s very and 

moderately routine problems (1999). 
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As students progress in their undergraduate mathematics studies they undergo two transitions. 

Where once they might have tacitly ignored theoretical blocks and worked exclusively within the practical 

block of a praxeology, they increasingly have to engage with theory and technology in their completion of 

tasks. Winsløw et al. (2014) call the transition from praxeologies that are purely practical to praxeologies 

that include a theoretical and a practical block a first transition to university mathematical praxeologies 

(p.101). For example, prior to the first transition, students complete tasks such as using the derivative 

rules to find the derivative of a function. Here, differentiability is an always-met condition of the functions 

upon which students act in the tasks they do. A first transition would occur once tasks require students to 

explicitly acknowledge differentiability before applying derivative rules (e.g. ‘if 𝑓 is differentiable, then …’; 

or ‘𝑓 does not have a derivative there because it’s not differentiable at that point’). Prior to the first 

transition, it is sufficient for students to attend only to the practical block of the mathematical knowledge; 

at the other end of the transition, students are required to explicitly acknowledge the theoretical block as 

the justification for the techniques they choose to use for the completion of a task. 

A second transition follows when students reach courses whose curricula and assessment 

prioritize what once may have been the theory and technology of a practical block; as students transition 

into proof-making and validating, the theoretical blocks of the past become the practical blocks of their 

present. Students’ tasks lie in proving and their techniques directly draw from elements of a theoretical 

block. For instance, the second transition will have occurred in a student who knows to use the definition 

or theorems about continuity to prove that, if a function is continuous, then some property of that 

function is true. The characteristics of a second transition are that students both explicitly acknowledge 

and use the theoretical block to generate a technique for achieving a task. 
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Chapter III: Anthropological Theory of the Didactic 

In this chapter, I present an overview of the Anthropological Theory of the Didactic (ATD) by outlining 

three of its main theoretical assumptions and explaining its affordances to research methodology in the 

form of praxeologies. I conclude with a description of my application of the ATD to this study of two 

undergraduate multivariable calculus courses. 

Section III.i: An overview 

This study is set in the framework of the Anthropological Theory of the Didactic (ATD). As discussed just 

previously in Section II.ii, this scientific research programme (Lakatos, 1974) can be used to good effect in 

research concerning university mathematics education (UME) (Winsløw et al., 2014). 

The ATD is driven by a core of three assumptions. First, that the “interactions of students, teachers 

and mathematical knowledge in [a given teaching context]” are marked by “the transformation of 

scholarly knowledge to knowledge to be taught to knowledge actually taught and learned (Chevallard 

1985; Bosch & Gascón, 2006)” (Winsløw et al., 2014, p.96). This is termed a didactic transposition; its study 

plots the transformation of a unit of knowledge from conception to conversion into knowledge to be 

taught and then learned in a certain context – that is, in an institution, which must also be taken into 

account for its role in the transposition. To study a didactic transposition, the researcher must create an 

epistemological model of the knowledge; this reference model frames the research questions, data 

collection, and data analysis (Bosch et al., 2005; Winsløw et al., 2014).  

 A second key assumption of the ATD supplies an approach to the study of a didactic transposition: 

that “human activity, and in particular mathematical activity, can be modelled with the notion of 

praxeologies” (Winsløw et al., 2014, p.97). The ATD therefore calls for “explicit models of mathematical 

activity” that constitute praxeologies and give stage for the description and analysis of an activity. 

Chevallard (1999) explains a praxeology (henceforth, Π) in terms of its theoretical and practical 

blocks. The latter consists of types of tasks (𝑇) and the techniques (𝜏) used to perform them; the former 

couples the theory (𝛩) and technologies (𝜃) that justify the practical block; 𝛱 =  (𝑇, 𝜏; 𝛩, 𝜃). Winsløw et 

al. (2014) describe technology6 as “a set of notions and arguments arranged into a more or less rational 

discourse to provide a first description, explanation and justification of the techniques, and also to 

organize the different types of tasks and techniques” and theory as an “abstract set of concepts and 

arguments, which functions as a basis and support of the technology” (p.97). For instance, the 

                                                                 
6 See note 4 in Section II.ii. 
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completeness of 𝑅 (theory) frames the definitions of supremum and infimum (technologies) that can then 

be used to produce techniques for tasks that do with the bounds of subsets of 𝑅. The language of theory-

technology-task-technique accommodates praxeologies of different ranges in precision. Depending on 

whether a praxeology describes a single type of task (e.g. finding the limit of rational functions at points 

of indetermination), a set of tasks joined by some technology (e.g. finding the limit of rational functions), 

or a wider range united by a theory (e.g. determining whether the limit of a rational function exists at a 

point and finding it if it does), it is termed either a point, local, or regional praxeology (Winsløw et al., 

2014). 

 The environment in which a praxeology occurs is the focus of a third basic assumption. The ATD 

stresses the importance of “the conditions that enable or favour the development of [a] praxeology in the 

institution, and the constraints that tend to impede that development” ((Winsløw et al., 2014, p.98). 

These may occur along several levels of what Chevallard (2002b) presents as a “hierarchy of levels of 

didactic codetermination”: civilization, society, teaching institution, pedagogy, discipline, domain, sector, 

theme, question/subject (as presented in Winsløw et al., 2014, p. 98). 

Section III.ii: Applying the ATD to the study of MAST 218 and MATH 264 

The goal of this study is to describe and analyze the minimal units of knowledge that a student needs in 

order to achieve academic success in MAST 218 or MATH 264. The framework’s assumption of the role of 

didactic transposition in the interactions between teachers, students, and mathematical knowledge 

suggests the importance of considering the chain that links scholarly knowledge, knowledge to be taught, 

knowledge actually taught, knowledge to be learned, and knowledge actually learned. To the end of 

describing the minimal knowledge that is required of students to learn in MAST 218 and MATH 264, I 

construct three models; each corresponding to a moment of didactic transposition: 

 A reference model, that is, a model of the scholarly knowledge; 

 a model of the knowledge to be taught in MAST 218/MATH 264; more specifically, I model the 

knowledge that could be taught, as decreed by the course outline and textbook. This is distinct 

from the knowledge actually taught, which stems from students’ and instructors’ combined 

experiences; and 

 a model of the knowledge to be learned, as indicated by the course assessments. 

In what follows I describe the operational definitions of the knowledge to be taught and knowledge to 

be learned. 
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Section III.ii.a: Knowledge to be Taught 

This section outlines the operational definition of knowledge to be taught (KT) proposed in this study. In 

Section VI.i, I explain at length how I constructed my model of the KT in MAST 218/MATH 264. In short, 

the source materials are the syllabus (see Appendix C) and textbook, James Stewart’s Multivariable 

Calculus, which are the same for both courses. (Potential variations of the textbook edition from year to 

year do not manifest themselves as a difference in content and approach.) The textbook is formed of 

chapters, each split into sections. The course outline sequences the sections to be taught and lists end-of-

section exercises that form the assignments for the course. By “knowledge to be taught,” I mean the 

praxeologies that constitute the mathematical knowledge in the sections and exercises of the textbook 

indicated on the course outline. 

Before I specify how praxeologies are manifested in the textbook, a note on the notions of theory 

and technology and how they occur in this text. As discussed in the overview above, the ATD defines 

theory as the conceptual basis for a technology, which in turn consists of the “rational discourse” and 

“notions and arguments” within it that together allow for and support the practical block of a praxeology 

(Winsløw et al., 2014, p.97). I argue that in the case of the mathematical knowledge delivered in this 

course, technology and theory can be taken as one. There is no clear distinction between the two in the 

textbook. The technologies throughout are set in the geometry and algebra of three-dimensional space 

organized in the Cartesian system, and at times in the wider theory of Euclidean metric spaces. However, 

the concepts and assumptions (the theory in the words of ATD) are not made explicit and tend to be 

weaved into the notions and arguments (the technology). For example, the notions of closed and bounded 

sets are defined in 𝑅2 and the terms are then used in the statement of the Extreme Value Theorem; there 

is no further discourse on the concepts of “closed,” “bounded,” or “sets,” nor of their value to the validity 

of this theorem. Further, the focus of the mathematical knowledge to be taught in this multivariable 

calculus course is mainly in the practical blocks, as will be seen later on. Thus, for the purpose of this study, 

it was sufficient to compile the set of items that form the theoretical blocks of the praxeologies of the KT 

without making any distinctions between theory and technology. 

Mathematical knowledge is manifested in the textbook through point, local, and regional 

praxeologies in the different layers of the structure of Stewart’s Multivariable Calculus. The syllabus lists 

sections from four chapters (and a couple of sections from a fifth); the sections from each chapter are 

unified by a set of technologies and tasks, and it is in this sense that the textbook’s chapters form regional 

praxeologies. For instance, Chapter 14, Partial Derivatives, unifies by the theory of (mostly three-
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dimensional) Euclidian metric space the praxeologies Π16 Functions of Several Variables, Π17 Limits and 

Continuity, Π18  Partial Derivatives, Π19  Tangent Planes and Linear Approximations, Π20  Chain Rule, 

Π21 Directional Derivatives and the Gradient Vector, Π22 Maximum and Minimum Values, and Π23 

Lagrange Multipliers (described in Section VI.ii.b). 

Each section in the textbook is centered on a given technology. For instance, section 12.5, 

Equations of Lines and Planes, consists of a set of tasks and techniques unified by the technology of linear 

equations (e.g. finding equations for lines, planes, or distances between objects in space). Section 12.4, 

Cross Product, expands on applications and properties of the technology of cross product. Section 14.4, 

Tangent Planes and Linear Approximation, is driven by the linearization of functions and includes various 

tasks produced by this technology: finding the tangent plane to a surface, to approximate a function by 

its linearization, to find the differential of a function, to show that a function is differentiable at a point… 

Each section brings with it tasks and associated techniques that are produced and explained by that 

section’s particular technology. The sections of the textbook have the quality of local praxeologies. 

I consulted the examples and end-of-section exercises listed on the course outline to determine 

the tasks to be taught in accordance with each section’s theoretical block. This is where point praxeologies 

may arise. For instance, in the section Equations of Lines and Planes, I identified the tasks 𝑇10.3.1 (to find 

a vector equation of a plane), 𝑇10.3.2 (to find a scalar equation of a plane), and 𝑇10.3.3 (to find a linear 

equation of a plane). (More on the notation 𝑇𝑖.𝑗.𝑘 in Section VI.i.) These three are the same type of task 

𝑇10.3, to find the equation of a plane. They all rely on the same technology of vectors and normal vectors 

and consist of different techniques that accomplish the same task of finding an equation for a plane. Thus, 

𝑇10.3 = {𝑇10.3.1, 𝑇10.3.2,𝑇10.3.3} constitutes an example of a point praxeology in the knowledge to be taught. 

Section III.ii.b: Knowledge to be Learned 

In an operational sense, I define the knowledge to be learned (KL) as the subset of the knowledge to be 

taught which students need to know in order to provide solutions to the questions on final exams. This 

operationalization, although useful to describe and characterize the KL, does not properly reflect the fact 

that a transposition takes place and that some of the praxeological elements (likely, elements of the 

theoretical block) are more likely ill-defined than well-defined subsets of the praxeological elements of 

the KT. While the KL may borrow elements of the KT praxeologies, the discourse that unifies the two blocks 

of a praxeology might be distorted in the transposition. 

In Chapter VII, I elaborate on why final exams are suitable for determining the knowledge students 

must learn, as well as the methodology I adopted to map the KL as a subset of the KT. 
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Section III.ii.c: Institutional context of the didactic transposition 

The ATD contents that no element of the didactic transposition can be talked about in the void; this 

transposition occurs within a given institution. For instance, the completeness property of 𝑅 takes on 

different meanings and roles in the distinct institutions of Calculus and Analysis (Bergé, 2008). Another 

example: the knowledge learned about limits in Calculus differs from that learned in Analysis. The notion 

of function occurs in a variety of domains of mathematics, but there’s a distinction between its existence 

in high-school mathematics and a university Set Theory course. The mathematics that exists in different 

institutions differs according to their respective goals and norms, even if the mathematical knowledge at 

the source is the same. The didactic transposition of any mathematical knowledge is therefore determined 

by the institution in which it occurs. 

In concert with the importance attributed by the ATD to the institutional context of a didactic 

transposition, I describe in Chapter IV the institutional contexts of MAST 218 and 264, base my 

methodology on the institutions formed by these courses (by using their respective curricular and 

assessment documents as a source of data), and later consider the potential effects of the institutional 

context on the knowledge to be learned in these courses.  

 

 

 

 

 

 

 

 



17 
 

Chapter IV: Institutional Context of MAST 218 and MATH 264 

MAST 218 and MATH 264 are housed in two programs in Concordia University’s Department of 

Mathematics and Statistics. MAST 218 is the Multivariable Calculus I course for students in the Major in 

Mathematics and Statistics (MAST); MATH 264 is the sister course for those in the Pure and Applied 

Mathematics specialization (MATH). The institutional context of the courses will serve to understand who 

the students are, their background, what their degree entails, and how these multivariable calculus course 

fit into their paths of study. 

Section IV.i: Mission 

The Mathematics and Statistics Department explains the mission of its programs on the 

departmental website as follows: 

[The Major in Mathematics and Statistics] is designed for students who wish to enter the job 

market right after graduation. As a Mathematics and Statistics student, you’ll uncover the 

mathematical structure of random systems such as the economy and the stock market, health 

and survival, and weather forecasting.  You will build a solid foundation in linear algebra, calculus, 

probability and number theory, and learn to use professional software tools for mathematics and 

data analysis applications. 

More precisely,  

The Major in Mathematics & Statistics is a 42-credit program with a common core of 36 credits. 

It is aimed at students who would like to have a good background in the mathematical sciences, 

but whose goals are to enter the job market upon graduation, rather than to pursue graduate 

studies. The focus of the Major is on the applicable nature of the mathematical sciences as tools 

for solving, and as ways of thinking about, a wide range of problems. Certain selected topics will 

be covered in each course accompanied by the use of appropriate software applications.7 

Those who opt for the 60-credit specialization in Pure and Applied Mathematics are promised to 

enter a field that has both a rich history and many future career possibilities. As a mathematician, 

you’ll design and analyze mathematical models and develop systems for testing and evaluation. 

                                                                 
7 http://www.concordia.ca/artsci/math-stats/programs/undergraduate/mathematics-statistics-ba-bsc.html 
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In essence, you will use mathematics to find creative solutions for systems such as 

communications, software development, encryption technologies, banking and drug testing. 

Through labs and lectures, you will learn to use professional software tools for mathematics and 

data analysis applications. You’ll also learn to think in the abstract and fine-tune your analytical 

skills. 

After graduation, students have the knowledge and skill to design and analyze mathematical 

systems in any number of scientific or business fields. This program is designed to prepare 

students for graduate studies.8 

In sum, the major stream aims for the applications of mathematics and a professional career, 

while the pure and applied program is a preparation for graduate studies in mathematics. 

Section IV.ii: Entry requirements 

The cut-off average for those applying to the pure and applied program is a C+ for university transfers, a 

75% average for Canadian high-school students, or a 24 CRC9 for Cegep students; for the MAST, the cut-

off is a C for university transfers, 70% for Canadian high-school students, or holding a Cegep diploma. That 

being said, “students with less than a 70% average in Cegep Mathematics courses [are] required to take 

a six-credit “transition” Calculus and Linear Algebra course (MAST 214) upon entry into the MATH/STAT 

Major” and this course does “not count for credits in the major.”10 In any case, the cut-off average for 

admission is more of an indicator and “may change depending on the applicant pool.”11  

Other than the slight difference in cut-off averages, both programs have the same entry 

requirements – differential and integral single-variable calculus and introductory linear algebra in the 

form of courses equivalent to Concordia University’s MATH 203, 205, and 204, respectively. In Quebec, 

those who have a Cegep degree in programs such as the Pure and Applied or Health Sciences will have 

                                                                 
8 http://www.concordia.ca/artsci/math-stats/programs/undergraduate/pure-applied-mathematics-ba-bsc.html 
9 The CRC, cote du rangement collégial in French, is a score that ranks a student’s academic performance in 
Quebec colleges. It is based on statistical methods that consider students’ individual performance along with the 
strength of various groups (e.g. their high school, their classmates in Cegep courses…) Universities use this score 
for admission purposes. 
10 http://www.concordia.ca/academics/undergraduate/calendar/current/sec31/31-200.html#programs  
11 http://www.concordia.ca/artsci/math-stats/programs/undergraduate/mathematics-statistics-ba-bsc.html 
http://www.concordia.ca/artsci/math-stats/programs/undergraduate/pure-applied-mathematics-ba-bsc.html  

http://www.concordia.ca/academics/undergraduate/calendar/current/sec31/31-200.html#programs
http://www.concordia.ca/artsci/math-stats/programs/undergraduate/mathematics-statistics-ba-bsc.html
http://www.concordia.ca/artsci/math-stats/programs/undergraduate/pure-applied-mathematics-ba-bsc.html
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completed courses equivalent to these. Students may enter the programs without having completed all 

three courses, as long as they do within the first 30 credits of their degree. 

Differential single-variable calculus, often titled “Calculus I,” is typically held in a one-term course 

that covers functional notation, differentiation of polynomials, the power, product, quotient, and chain 

rules, differentiation of elementary functions, implicit differentiation, higher derivatives, maxima and 

minima, as well as applications to tangents to plane curves, graphing, related rates, and approximations 

using the differential; the course concludes with antiderivatives, definite integrals, and area 12 , in 

anticipation of integral calculus. Students learn to apply the differential techniques from Calculus I and 

integration techniques from the following Calculus II to a set of routine problems, the solutions to which 

are steeped in algebraic methods.  

“Calculus II” acquaints students with techniques of integration (substitutions, integration by parts, 

partial fractions), improper integrals, physical applications of the definite integral, infinite series and tests 

for convergence, power series, and Taylor’s theorem13. 

Lastly, the introductory linear algebra course includes the “[a]lgebra and geometry of vectors, dot 

and cross products, lines and planes,” and “[s]ystem of equations, operations on matrices, rank, inverse, 

quadratic form, and rotation of axes.”14 Students are folded into a practice of linear algebra methods and 

techniques specific to vectors and matrices as well as their applications to the solution spaces of systems 

of equations. 

Section IV.iii: Degree Requirements 

The following are the degree requirements for the two programs; the left column indicates the number 

of credits to be completed from the list of courses on the right, each of which is worth 3 credits. 

60     BA or BSc Specialization in Pure and Applied Mathematics 

30    MATH 251 Linear Algebra I, 252 Linear Algebra II, 264 Advanced Calculus I, 265 Advanced Calculus 

II, 354 Numerical Analysis, 361 Operations Research, 364 Analysis I, 365 Analysis II; STAT 249 

Probability I, 250 Statistics 

                                                                 
12 Description extracted from Concordia University’s Undergraduate Calendar 
http://www.concordia.ca/academics/undergraduate/calendar/current/sec31/31-200.html 
13 Description extracted from Concordia University’s Undergraduate Calendar 
http://www.concordia.ca/academics/undergraduate/calendar/current/sec31/31-200.htmls 
14 Description extracted from Concordia University’s Undergraduate Calendar 
http://www.concordia.ca/academics/undergraduate/calendar/current/sec31/31-200.html 
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12     MATH 366 Complex Analysis I, 369 Abstract Algebra I, 370 Ordinary Differential Equations, 464 

Real Analysis 

3    Chosen from MAST 217 Introduction to Mathematical Thinking, 232 Mathematics with Computer 

Algebra 

9    Chosen from any other 400-level MATH/STAT courses 

6    MATH/STAT chosen with prior departmental approval 

42 BA or BSc Major in Mathematics and Statistics 

33    COMP 218 or 248; MAST 217 Introduction to Mathematical Thinking or COMP 232; MAST 218 

Multivariable Calculus I, 219 Multivariable Calculus II, 221 Applied Probability, 232 Mathematics 

with Computer Algebra, 234 Linear Algebra and Applications I, 235 Linear Algebra and 

Applications II, 324 Introduction to Optimization, 331 Mathematical Modelling, 333 Applied 

Statistics 

3    Chosen from MAST 330 Differential Equations, 332 Techniques in Symbolic Computations 

3     Chosen from MAST 223 Introduction to Stochastic Methods of Operations Research, 334 

Numerical Analysis, 335 Investment Mathematics, 397 Topics in Mathematics and Statistics, 398 

Reading Course in Mathematics and Statistics 

3     Chosen with prior departmental approval15 

Section IV.iv: Multivariable Calculus in the MAST and MATH Programs 

Multivariable Calculus is taught in a sequence of two courses: MAST 218 and 219 in the major program 

and MATH 264 and 265 in the pure and applied specialization. MAST 218 and MATH 264 are equivalent 

courses that share the same course outline but have different final examinations. They are requisite for 

registration to MAST 219 and MATH 265, where again the course outline is identical and the exams 

different. 

The prerequisites for MAST 218/MATH 264 are the same as the mathematics courses in the entry 

requirements: differential and integral calculus and introductory linear algebra. These courses can 

therefore be taken early in a student’s mathematical studies. 218 and 219 are mandatory courses in the 

MAST program and are requisite for one more core course: MAST 221, Applied Probability. The list of core 

                                                                 
15 http://www.concordia.ca/academics/undergraduate/calendar/current/sec31/31-200.html  

http://www.concordia.ca/academics/undergraduate/calendar/current/sec31/31-200.html
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courses common to MATH students and to which 264/265 are a gateway is far longer: STAT 249 

(Probability I), STAT 250 (Statistics), MATH 354 (Numerical Analysis), MATH 366 (Complex Analysis I), 

MATH 370 (Ordinary Differential Equations), and MATH 464 (Real Analysis). This adds up to a third of a 

MATH student’s program credits. Thus, on one hand this study deals with MAST 218, a course which MAST 

students must pass to obtain their degree but which is not an entry point for the entirety of the program 

and therefore holds less power over the course of an undergraduate career. On the other hand, there’s 

MATH 264:  a gateway to a vast swath of its program’s courses. 

Section IV.v: Multi-Section Quality of MAST 218/MATH 264 

The three prerequisite courses for entry into the MAST and MATH programs (and registration in MAST 

218/MATH 264) are actually entry points into all STEM programs. Because of this, they attract an unusually 

high number of students and are administered accordingly. The hundreds of registrants for each 

prerequisite course are split into 4-6 (or more) crowded classrooms every semester; these sections are 

heavily coordinated by a strict curriculum, a course examiner, and common assessments (Sierpinska, 

Bobos, & Knipping, 2008). A course outline specifies what to teach every week along with recommended 

exercises from the textbook. A course examiner – a department professor not teaching any of that term’s 

sections – writes the assessments so students in all sections write the same assignments, midterms, and 

exams. The identical assignments are completed in an online platform which accepts only students’ final 

answer and evaluates it immediately upon submission of a response. Final exams are consistent from term 

to term in both format and content; the course examiner conducts a common grading system by assigning 

each instructor the same 3-4 questions to correct on all students’ exams, thereby implementing some 

standard in the marking of all students registered in the course. Past final exams are readily available to 

students at the university print shop as well as online; students’ expectations are also given considerable 

weight, as concern with students’ reactions gains traction and prevents changes being made to the final 

exams. Finally, instructors (both long-standing staff and graduate students teaching the course for the 

first time) may change from section to section or term to term; but they need to exercise their freedom 

within the restrictions set by the coordination across sections and terms. 

 The highly-coordinated flavor of the prerequisite mathematics courses extends to MAST 218 and 

MATH 264. Even in terms where only a single section is offered for one of these courses, the multi-section 

quality of the prerequisites persists. MAST 218 and MATH 264 share the same course outline, a document 

copied and pasted from term to term and which specifies what to teach every week. The weight attributed 

to the various assessments remains the same as the grade distribution in the mathematics prerequisite 
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courses. The assignments for 218 and 264 are often the same exercises from the book, the difference 

being that MAST students are allocated the questions whose answers appear at the end of the textbook 

and MATH students are allocated questions of the same type but whose answers are not available. One 

exam is given for all MAST sections and another for the MATH sections, and these exams are consistent 

across terms. On the whole, the previous comments on the features of stemming from the multisection 

quality of the prerequisite courses are all applicable to the case of 218/264. 

  



23 
 

Chapter V: Reference Model 

I present my reference model (see Sections III.i, III.ii) of the scholarly knowledge at the backbone of the 

MAST 218/MATH 264 curricula in the discussion below. I considered the scholarly mathematical 

knowledge upon which rests the multivariable calculus in our courses before and after handling the 

knowledge to be taught; before, in order to obtain a perspective unimpeded by the specifics of the 

curriculum, and after, to reflect on how the knowledge to be taught in 218/264 fits into my 

epistemological model. As discussed in the introduction, one of my main goals is to examine what students 

are gaining or missing given the minimal core of the knowledge they must learn to succeed in this first 

multivariable calculus course. The following account of the relevant scholarly mathematics abetted my 

concluding conjectures on the effects of the knowledge to be learned on students’ mathematics learning. 

The course outline points at the topics which are to be transposed into knowledge taught and 

learned: in the first half of the course are parametric curves, polar curves, conic sections, vector algebra, 

equations of lines and planes, cylinders and quadric surfaces; in the second half, vector functions and 

vector calculus, multivariable functions and their limits, partial derivatives, tangent planes and linear 

approximations, the chain rule, directional derivatives and the gradient vector, and a study of maxima and 

minima of multivariable functions. Upon consulting Marsden, Tromba, and Weinstein’s Basic 

Multivariable Calculus (1993), I surmised that the mathematics involved is rooted in the study of curves 

and surfaces in the context of two regional praxeologies: Π1 Curves in Euclidean space and Π2 Surfaces 

in Euclidean space, each unified by the theory of Euclidean metric space. The main tasks in Π1 are 𝑇1.1, to 

represent plane, space, and 𝑛-dimensional curves in parametric form, and the former two in algebraic 

and graphical form as well; and 𝑇1.2, to describe these curves at given points. Similarly, the main tasks in 

the practical block of Π2 Surfaces in Euclidean metric space are to represent (𝑇2.1) and describe (𝑇2.2) 

surfaces particularly in 𝑅3 but also generally in 𝑅𝑛. Π1 and Π2 rest on the following concepts taken in 

context of Euclidean metric space: dimension, coordinate systems, real and vector-valued functions (along 

with domain, target, range, and graph), injectivity and surjectivity of functions, neighborhood of a point, 

limits, continuity, and differentiability of multivariable functions; paths in the plane and in space, 

parametrization of curves, level curves; parametrized and geometric surfaces, level surfaces; and vector 

algebra.  

The theory and tasks outlined above are the extent of the model I formed prior to tackling the 

knowledge to be taught; there is a wide spectrum of technologies and associated techniques available to 

support the tasks of representing and describing curves and surfaces. The first few chapters of Luther 
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Pfahler Eisenhart’s Treatise on the Differential Geometry of Curves and Surfaces (1909) provide a list of 

technologies that complete the theoretical blocks of Π1 and Π2. For instance, he expands on a score of 

technologies that pertain to space curves, among them the notions of parametric equations, arc length, 

tangent to a curve, order of contact, normal plane, curvature and radius of first curvature, osculating 

plane, principal normal and binormal, osculating circle, center of first curvature, torsion, form of a curve 

in the neighborhood of a point, etc. On the whole, in light of these technologies, the tasks 𝑇1.2 and 𝑇2.2 of 

describing curves and surfaces can be seen to aim for these objects’ local geometric properties and 

invariant quantities. 

 My reference model of the multivariable calculus scholarly knowledge that serves as a starting 

point of the transposition into knowledge to be taught to students in the MATH and MAST programs rests 

much in the application of multivariable calculus to the study of curves and surfaces in the neighborhood 

of a point. The 218/264 course outline does include sections on particular examples of curves and surfaces 

– conic sections and quadric surfaces, to be precise (it remains to be seen whether these are approached 

with the lens of differential calculus). Beyond the affordances of calculus to differential geometry, I include 

in my reference model knowledge specific to multivariable calculus in the theory of completeness, limits, 

continuity, differentiability, Riemann integration, etc. in 𝑅𝑛 .  
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Chapter VI: Knowledge to be taught 

As discussed in Section III.ii.a, the knowledge to be taught in MAST 218 and MATH 264 can be captured in 

the form of praxeologies. Based on the assumptions of the ATD, mathematical activity consists of 

theoretical and practical components and can be modelled accordingly (see Section III.i). This chapter 

opens with a description of my methodology in creating such a two-part model of the knowledge to be 

taught: a theoretical block formed of theory and technology; and a practical block formed of tasks and 

techniques sustained by the theoretical block. This starts with identifying the praxeologies and their 

theoretical and practical blocks, continues with the coding and recording of the components of these 

blocks, and ends with the cross-referencing I undertook to bring out the dynamics between the 

praxeologies throughout the course. 

The first steps of the methodology – identifying, recording, and coding the praxeologies – allowed 

the creation of a model of the knowledge to be taught. Having this model is one of the stated aims of my 

research, in and of itself, but also serves the further goal of constructing a model of the knowledge to be 

learned and exploring the inclusion and exclusion of certain units of knowledge in the minimal core of 

what students need to learn, and what the implications might be for students’ calculus and general 

mathematics studies. The cross-referencing I did also serves this goal; by having a map of connections 

between the theoretical blocks of the KT (knowledge to be taught) praxeologies and within and across 

their practical blocks, it was possible to get a more granular image of what students do or do not need to 

learn in the detail of the ways in which they must learn to use components of one praxeology in the 

context of another. 

 Section VI.ii opens with an above-ground view of the knowledge to be taught; that is, a view of 

the grid of connections between the theoretical blocks of the praxeologies, powered by the cross-

referencing discussed in the first part of this chapter. This is followed by a ground-view of the knowledge 

to be taught, where the contents of the praxeologies are presented: the theoretical blocks first and 

practical blocks second. 

Section VI.i: Methodology 

The following is a description of how I constructed the model of the knowledge to be taught in MAST 218/ 

MATH 264: how I identified the praxeologies; how I recorded and coded the items in their theoretical and 

practical blocks; and how and why I identified cross-references – making explicit the connections across 

theoretical blocks and across and within practical blocks. 
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Section VI.i.a: Identifying the praxeologies 

As discussed in Section III.ii.a, the knowledge to be taught in MAST 218 and MATH 264 is defined in this 

thesis as the praxeologies that constitute the mathematical knowledge in the textbook sections that are 

listed on the syllabus. This knowledge can be modelled in one fell swoop: both courses have the same 

course outline, which lists sections along with end-of-section exercises from the courses’ textbook, James 

Stewart’s Multivariable Calculus. I used the outlines from the years 2014-2017 for both courses. But for 

two sections on power series (leading to a section on Taylor series, which appears in all outlines) that are 

included in the Fall 2014 outline for MATH 264 but not in the others, the course outlines are identical. 

 Thus, my model of the knowledge to be taught is based on those course outlines and on the 8th 

edition of Stewart’s Multivariable Calculus – the courses’ textbook. The different editions of this textbook 

bear little to no difference; at most, the functions in the exercises are shuffled or constants are changed. 

In Section III.ii.a, I explained that each section in the text can be treated as a (local) praxeology; 

accordingly, I extracted from the textbook the theoretical and practical blocks that constitute each 

praxeology (Π) and borrowed the section titles to name them. The theoretical blocks consist of the 

definitions, theorems, corollaries, or properties present in the text. To identify the tasks to be taught in a 

given Π, I considered the examples as well as the end-of section exercises indicated in the course outline. 

In most cases, I associated tasks with techniques that are showcased either in the examples or in the 

discussion portions of the text. 

Section VI.i.b: Coding and recording the theoretical and practical blocks 

The course outline, which is shared in common by 218 and 264, sequences 24 sections in Stewart’s 

Multivariable Calculus. The corresponding praxeologies, denoted by Π1, Π2,… , Π24 , are numbered 

according to their order of appearance on this outline, that is, the order in which they are to be taught – 

with the exception of the section on Taylor Series. I coded this review section (indicated on the outline as 

“review”) of material previously taught in MATH 205 (integral calculus) as Π24 (despite it being the 8th 

section in line)16.  

 As discussed in the previous section, I found the theoretical block of each praxeology in the 

definitions, theorems, and explanations in the textbook section to which the praxeology corresponds. I 

                                                                 
16 In all honesty, I worked on this section last with the expectation that none of the later sections in the course 
outline would build on Taylor Series – and they did not, indeed – and forgot to skip a digit in numbering the sections 
following this one. 
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recorded the components of the theoretical blocks as items and listed them and the textbook passages 

that describe them in their order of appearance in the text so as to reflect the discourse that pieces these 

items together. In particular, items that are presented as theorems in the textbook are indicated as such 

here as well. The lists of items that form the theoretical block for each praxeology are presented in the 

next section and the corresponding document with passages extracted from the book in Appendix D. The 

following is an example of the components of a theoretical block of a praxeology:  

Terms that are defined: Differentiable, Differential, Increment of a function, Linear approximation 

(or tangent plane approximation), Linear approximation, Linearization, Tangent plane and 

Equations to describe it 

Theorem: Differentiability of a function 

This is a list of terms that are defined in the context of a discourse (e.g. “equation to describe a tangent 

plane” does not refer only to the equation but also to the explanation – in the textbook – of how it’s 

derived from the definition of tangent plane); it is in that way that these form the theoretical block of 

Π19, Tangent Planes and Linear Approximations. These items produce, explain, and justify the techniques 

used to perform the tasks in the same praxeology. 

 The practical block of each praxeology Π consists of the tasks and the techniques with which the 

tasks are to be accomplished in the context of this course. Each task is denoted Ti.j, where i indicates the 

Π in which the task is to be taught and j serves to differentiate between types of task (see Section III.ii.a 

for a discussion of the meaning of a ‘task type’). In some cases, a third digit is used, Ti.j.k, when several 

tasks Ti.j.1, Ti.j.2, … , Ti.j.n  differ in some sense but have the common goal of some task Ti.j,  as in the 

previously discussed (Section III.ii.a) case of 𝑇10.3.1, 𝑇10.3.2, and 𝑇10.3.3, which all have the same goal as 

𝑇10.3, to find an equation for a plane, but each of which aims for a particular equation (vector, scalar, and 

linear, respectively) . The technique for performing a task Ti.j  is coded 𝜏i.j, or 𝜏i.j.1, 𝜏i.j.2, … , 𝜏i.j.n  when 

several techniques are taught for dealing with a given task. For instance, task 𝑇3.2, to sketch/graph a curve 

given in polar coordinates, can be tackled with four techniques: 𝜏3.2.1 (plot points and join them to sketch 

the curve), 𝜏3.2.2  (use the graph of the curve in Cartesian coordinates to read "the values of r that 

correspond to increasing values of theta" (Stewart, 2015, p.702), 𝜏3.2.3 (use the symmetries of a curve, if 

any: symmetry about the polar axis; symmetry about the pole; symmetry about the line pi/2...), and 𝜏3.2.4 

(use a graphing device; if it doesn't have a "built-in polar graphing command" (p.705), convert to 

parametric equations (𝑇3.1, 𝜏3.1)). Finally, I denote particular combinations of tasks and techniques, that 

is, the practical block of a praxeology, or subsets of the practical block, as (T𝑖,𝑗, τ𝑖,𝑗). 
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Section VI.i.c: Cross-referencing the praxeologies 

I present in this section the cross-referencing I did between the theoretical blocks of the praxeologies and 

within and across their practical blocks. By “cross-references” in theoretical blocks, I mean instances in 

which the textbook’s definition or explanation involves a term introduced in another section of the text. 

In the context of the practical blocks, I consider two cases of “cross-references”:  when similar types of 

tasks appear in different local praxeologies and when a technique for a given task involves steps that 

correspond to another task or technique. 

In general, references in the textbook are not made explicit; it is up to the reader to recoup the 

meaning of concepts as they appear throughout the book. This may be challenging for students at this 

level. An implicit reference makes one of two presumptions: that students have internalized the concept, 

or that they at least recognize that is has been previously introduced. As will be seen later in Chapter VII, 

however, students’ learning may not be driven by the same principles as those that run the construction 

of mathematical knowledge as material to be taught. For that matter, an explicit outline of the cross-

references that connect the praxeologies in the knowledge to be taught may help determine the missing 

links in what students need to learn (recall from Section III.ii.b the working definition of knowledge to be 

learned as a subset of knowledge to be taught). 

The main goal of making explicit the connections between the theoretical blocks of the local 

praxeologies is to explain the role of these praxeologies in the course as a whole. For example, I found 

that the regional praxeologies of Partial Derivatives (local praxeologies Π16 − Π23) and Vector Functions 

(local praxeologies Π12 − Π15) rely greatly on the local praxeology Π10, Equations of Lines and Planes. 

This, along with Π10 belonging to the domain of linear algebra and not calculus, suggests that this local 

praxeology is included in the knowledge to be taught to support the technologies that appear in the 

praxeologies of Partial Derivatives and Vector Functions: equations of planes and lines are necessary for 

construction of technologies that appear in the praxeologies of Partial Derivatives (e.g., the definition and 

equation of a normal line to a level surface at a point) and Vector Functions (e.g., the definition and 

equation of an osculating plane to a curve at a point). A map of the dynamics between the praxeologies 

whose knowledge is to be taught may therefore help provide reasons for which knowledge is or isn’t to 

be learned; in particular, a map might elucidate why some praxeologies or certain portions of praxeologies 

have wider representation that others in the final examinations. 

The discussion on theoretical blocks extends to the practical blocks; cross-references help 

underline tasks and techniques that are particularly useful in a variety of praxeologies, in the knowledge 
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both to be taught and learned. Cross-referencing the task-technique pairs that are steps in other tasks 

ensured the inclusion in the model of knowledge to be learned of task-technique pairs that might be too 

basic to be specifically tested for on a final exam. For example, students are never specifically tasked with 

finding the value of a multivariable function (𝑇16.1, 𝜏16.1); this is hardly the making of a meaty exam 

problem. But it’s certainly essential for students to be able to execute this task, as is indicated by the 

frequency with which (𝑇16.1, 𝜏16.1) shows up in the description of solutions to exam problems (see the 

models of knowledge to be learned in Section VII.iii). On the whole, then, cross-referencing subsets of the 

practical blocks contributes to the end-game of identifying the knowledge that students must learn to 

succeed in the course and the knowledge that isn’t quite as essential for that. 

On another but related note, I found an operational advantage to having cross-references. This 

has to do with the KL model thought as a subset of the KT model. For instance, consider technique 𝜏21.5 

for performing task 𝑇21.5, “to find the equation of the normal line to a level surface at a point,” from the 

local praxeology Π21 Directional Derivatives and the Gradient Vector:  

𝝉𝟐𝟏.𝟓 

find the gradient vector at that point (𝑇21.2, 𝜏21.2) and use that as the line's directional numbers 

to form its symmetric equations  (𝑇10.1.3, 𝜏10.1.3.1).  

The two steps in 𝜏21.5 correspond to task-technique pairs identified elsewhere; one in this praxeology, 

Π21, and one in another, Π10. These cross-references proved useful in modelling the knowledge to be 

learned to solve exam problems that involved normal lines to level surfaces. Rather than retrace all the 

steps that may be involved in the solutions to these questions, I was able to use these cross-references 

instead. 

In sum, the overarching purpose of the model of the knowledge to be taught is to model the 

knowledge to be learned. Mapping connections in the form of cross-references between and within the 

praxeologies of the knowledge to be taught adds to the description of knowledge to be learned. The 

contribution of cross-references manifests itself most in the analysis of the knowledge to be learned; they 

can explain the presence or absence of praxeologies (or parts thereof) and suggest the effects of inclusions 

and exclusions. 
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Section VI.i.c.i: Cross-references across theoretical blocks 

In each theoretical block Π𝑖, I tagged items with the theoretical block components to which they make 

reference to and that belong to Π𝑗, when 𝑖 ≠ 𝑗. Consider the terms that are defined in the theoretical 

block of Π10, Equations of Lines and Planes: 

Direction numbers of a line [Tages: Π6, Π7], Distance from a point to a plane in R3 [Tags: Π6], 

Linear equations in R3 [Tags: Π6], Normal vector of a plane [Tags: Π7,Π8], Parametric equations 

of a line [Tags: Π1, Π6,Π7], Point-slope form of a line [Tags: Π6], Scalar equation of the plane 

[Tags: Π6], Skew lines, Symmetric equations of a line [Tags: Π6,Π7], Vector equation of a line 

[Tags: Π6, Π7, (Π1)], Vector equation of a line segment [Tags: Π7], Vector equation of the plane 

[Tags: Π6, Π7,Π8] 

For instance, item “Normal vector of a plane” is tagged with “Π7” and “Π8” because the notions of vectors 

and parallel vector (defined in Π7) and of orthogonal vectors (defined in Π8) occur in the textbook’s 

definition of normal vector of a plane (see Appendix D for the textbook excerpts defining the items in the 

theoretical blocks). This work is summarized in a map (presented soon in Section VI.ii) of the cross-

references made in theoretical blocks of different praxeologies.  

Section VI.i.c.ii: Cross-references within and across practical blocks 

Cross-references in practical blocks make explicit the interconnections between tasks and techniques 

across and within praxeologies. In my model, where each type of task is given by a code 𝑇𝑖.𝑗  and a 

description of the task, I tagged a task with the code of another task if they have a similar goal and involve 

similar technology; by ‘tagging’ I mean that in the description of a task, I reference in brackets the task to 

which it is similar. I illustrate with an example: consider the two tasks 

 𝑻𝟐𝟐.𝟒 (from Π22 Maximum and minimum values) 

To use extreme values in conjunction with techniques from other praxeologies to solve various 

problems in 2 or 3 dimensions 

𝑻𝟐𝟑.𝟐 (from Π23 Lagrange multipliers) 

To solve extreme value problems that can be modeled by a function f(x,y,z) subject to a 

constraint g(x,y,z) = k 

These tasks are similar in that they both have the goal of solving extreme value problems that can be 

modelled by multivariable functions and completed with techniques based in the technology of partial 
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derivatives. In my model, I therefore ‘tagged’ 𝑇22.4  by writing 𝑇23.2  in brackets next to it (i.e. 

“𝑇22.4 (𝑇23.2)”) and vice-versa to indicate the similarity. 

Techniques τi.j  are tagged with task-technique pairs that correspond to steps in the process 

required by τi.j; ‘tagging’ here means that in the description of a technique, I referenced in brackets task-

technique pairs that corresponded to each step. For example, consider task 𝑇13.2.1 and its associated 

technique 𝜏13.2.1: 

𝑻𝟏𝟑.𝟐.𝟏 

To find the unit tangent vector at a point  

𝝉𝟏𝟑.𝟐.𝟏  

- find the tangent vector at the give point, which is the task-technique pair (𝑇13.1, 𝜏13.1) 

- then find the unit vector in that direction, which is (𝑇7.4, 𝜏7.4.1).  

Just as with the map of the connections between theoretical blocks, identifying the use of tasks 

in the completion of other tasks helps uncover the dynamics of the knowledge to be taught throughout 

the course. Additionally, these references were especially helpful in creating a model of the knowledge to 

be learned; as discussed later in section VII.ii, I identified praxeologies of knowledge to be learned from 

the knowledge required to solve final exam questions; to this end, I constructed solutions to exam 

questions by identifying tasks from the praxeologies of the knowledge to be taught. Thus, it was useful to 

have cross-references describing steps in the technique for a given task, as these traced out all the steps 

that might be required for the solution to an exam question. 

Section VI.ii: The model 

I present in this section the model of the knowledge to be taught in MAST 218/MATH 264. I do this in two 

stages. First, we consider the praxeologies from afar, focusing on the connections forged by the cross-

referencing between them rather than the mathematical content specific to teach. I call this a sky-view of 

the model, as it allows us to see the praxeologies mapped out in the course as a whole, but not the 

features that make up each praxeology. We zoom in on the praxeologies in the next stage: the ground-

view of each praxeology consists of the row of items forming its theoretical block and a tree of the tasks 

and techniques that make up its practical block. Thus, the praxeologies that comprise the knowledge to 

be taught are mapped along their theoretical and practical axes in section VI.ii.b; but first, in section VI.ii.a, 

I acknowledge that these praxeologies are to be taught (in some way or another) in the context of a 
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course.  Taken together, the ground- and sky-view constitute a multi-dimensional model of the knowledge 

to be taught. 

Section VI.ii.a: Praxeologies, as seen from the sky  

The first figure I present is a bird’s eye view of the praxeologies that together make up the knowledge to 

be taught (see Figure 2). More precisely, this figure is a map that features the cross-references I identified 

across the theoretical blocks (see Section VI.i.c, Cross-referencing the praxeologies). Each local praxeology 

appears in a box. Recall that the praxeologies in my model each correspond to a section from the course 

textbook; there, these sections are subdivisions of chapters, and so I reflect this structure by color coding 

the praxeology boxes by chapter. As explained in the language of the ATD (section III.ii.a), each chapter 

constitutes a regional praxeology. Thus, color-coding by chapter helps trace the connections between 

local praxeologies both within the regional praxeology to which they belong and across the totality of 

knowledge to be taught. For instance, the regional praxeology of Partial Derivatives, previously identified 

as the sum total of the local praxeologies Π16 through Π23 (see section III.ii.a), builds a great deal on 

theory and technology from the local praxeologies Π6  Three-Dimensional Coordinate Systems, Π7 

Vectors, Π8  Dot Product, Π10  Equations of Lines and Planes, so these become “pre-requisite” 

praxeologies (“pre-requisite” knowledge). The local praxeologies that do with gradients require 

technology pertaining to Π12 Vector Functions and Space Curves and Π13 Derivatives and Integrals of 

Vector Functions. Therefore, full grasp on the theoretical blocks of the regional praxeology of Partial 

Derivatives includes not only the theory and technology specific to that praxeology but also components 

of local praxeologies belonging to a different regional praxeology to which it refers or on which it builds – 

“pre-requisite” praxeologies. In the next section, I present the theoretical block for each local praxeology 

in the form of a list of the components specific to that praxeology; the map of the cross-referencing 

between them, shown below, makes explicit the ‘prerequisite’ relations. 

A few words on how to read the map of cross-references between the KT theoretical blocks 

(Figure 2): two boxes are bound by an arrow if the theoretical block of the praxeology in the box at the 

endpoint of the arrow has items that build on concepts introduced in the praxeology at the initial point of 

the arrow. Arrows are either full or dotted. A full arrow indicates that the endpoint praxeology uses a 

term that was defined in the initial-point praxeology; in this case, the reader would have to know the 

concept from that ‘initial’ praxeology to understand it in the new context. For instance, the definition of 

the arc length function of a curve in Π14 builds on the concept of vector function from Π12; such a 

reference would warrant a full arrow. A dotted arrow indicates that the endpoint praxeology involves a 
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concept that had previously appeared in the initial-point praxeology, but that the discourse in the 

endpoint praxeology provides enough information for this concept to be understood without reference 

to its initial occurrence in the book.  For instance, while the notion of trace of a surface first appears in 

Π11 (Cylinders and Quadric Surfaces), it comes up again in Π16 (Functions of Several Variables), Π18 

(Partial Derivatives), and Π19 (Tangent Planes and Linear Approximations); in none of these cases is it 

necessary to have first read the definition of trace in Π11. The distinction between the two types of cross-

references highlights the extent to which a given local praxeology provides mathematical knowledge that 

is needed in other local praxeologies. In the grand scheme of things, this might help explain the presence 

or absence of tasks from some KT praxeologies in the knowledge to be learned (see sections VIII.i.b and 

VIII.i.c).  

 

Figure 1. Description of elements in the map (Figure 2) of cross-references between theoretical blocks of 

Π of knowledge to be taught. 

In Figure 2, the map of cross-references between theoretical blocks of praxeologies of the 

knowledge to be taught, the local praxeologies are represented in color-coded boxes, as in Figure 1. The 

color reflects the textbook chapter in which the local praxeology occurs as a section. The black-and-white 

boxes in Figure 1 indicate the kinds of connections that the theoretical block of a local praxeology may 

have to the theoretical blocks of local praxeologies. Figure 2 follows below: 
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Figure 2. Map of the cross-references between theoretical blocks of Π of the knowledge to be taught in MAST 

218/MATH 264. 
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 The map of the praxeologies of 218/264 suggests that they are taught in a way such that the 

earlier half of the course supplies technologies that can be used to support theory and practice in the later 

praxeologies. Students are first introduced to parametric plane curves; they are taught polar coordinates 

and how to find areas and lengths of polar curves; this first chapter ends with the equations of conic 

sections. The next chapter introduces the Cartesian three-dimensional coordinate system, direction 

vectors, defines vectors in terms of components, and goes over vector operations and applications; this 

chapter concludes with the equations of cylinders, quadric surfaces, lines, and planes. From here on, the 

third and fourth chapters covered in the course build on the praxeologies from the first two. In particular, 

the chapter on vector functions recycles the notions of parameter and parametric curves seen at the start 

of the course. All praxeologies related to vector functions build on vector theory and technology 

introduced in Π7 Vectors, and many also make use of theory from Π8 Dot product and Π9 Cross product. 

The last chapter, Partial Derivatives, dips into the three-dimensional coordinate system presented in Π6 

and uses the technology of vectors and the dot product to do so. Vector functions and their derivatives 

come up in the teaching of Π19 Tangent planes and linear approximations, Π21 Directional derivatives 

and the gradient vector, and Π23 Lagrange multipliers.  

 Some of the local praxeologies in the former half of the course are not built on to the same extent 

as the notions of parameter and vectors: Π2, the calculus of parametric curves, is not referred to in the 

later teachings of the calculus of general space curves (barring the exception of the generalization of the 

arc length formula, where the authors remind the reader of the more specific version seen earlier on). 

Polar coordinates (Π3), areas and lengths in polar coordinates (Π4), conic sections (Π5), and cylinders and 

quadric surfaces (Π11) are an independent bunch as well. Knowledge of the equations and definitions of 

the curves and surfaces covered in Π5 and Π11 is not necessary for handling of the knowledge to be 

taught in later chapters.  The notion of traces first introduced in Π11 does reappear in Π16 Functions of 

several variables, Π18 Partial derivatives, and Π19 Tangent planes and linear approximations, but its use 

in these later praxeologies is in no way dependent on its initial appearance in Π11. 

 On the whole, the pairings of vector functions with space curves and multivariable functions with 

surfaces are the crown jewels of our multivariable course... On the fringes of this dominion, there lurk 

Taylor and Maclaurin Series. The power to approximate that these series afford to those who yield them 

is left unspoken; the knowledge to be taught is rather a regimen of finding the Taylor series and radii of 

convergence of classes of functions familiar from high-school algebra courses (neatly tabled and 

summarized at the end of the chapter).  
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Section VI.ii.b: Praxeologies, as seen from the ground 

Each praxeology is presented in this section as the combination of its theoretical block – the list of items 

(definitions, theorems, etc.) of which it consists – and its practical block – the tasks and techniques 

justified and explained by the theoretical block. The sky-view of the praxeology gave us a perspective on 

how the praxeologies build on one another; this, in turn, allowed us to surmise that some local 

praxeologies may be taught for the prerequisite quality of their mathematical content, that is, for their 

use in praxeologies that are taught later in the term. The view from above also highlighted some ‘islands’ 

in the knowledge to be taught – that is, local praxeologies that are either faintly or not at all connected to 

the majority of the praxeologies. Now we’ll walk the grounds of the praxeologies: the theoretical and 

practical blocks formed by the principles discussed in section III.ii.a and the methodology described in 

section VI.i. 

Section VI.ii.b.i: The Theoretical Blocks 

The following is the list of items (terms that are defined, theorems) that, together with the discourse that 

binds them, form the theoretical block for each praxeology. If an item builds on an item from a different 

Π, this Π is tagged in brackets. The excerpts from the textbook explaining each item are in Appendix D. 

𝚷1 Curves Defined by Parametric Equations: Initial point of a parametric curve, Parameter, Parametric 

curve, Parametric equations, Terminal point of a parametric curve  

𝚷𝟐  Calculus with Parametric Curves: Arc Length of a parametric curve [Tags: Π1 ], Area under a 

parametric curve [Tags: Π1], Concavity of a parametric curve [Tags: Π1], Tangent of a parametric curve 

representing a differentiable function [Tags: Π1]. 

𝚷𝟑 Polar Coordinates: Transformations between the polar and coordinate systems, Polar axis, Polar 

coordinates, Polar coordinate system, Pole, Product Rule, Tangent to a polar curve [Tags: Π2]. 

𝚷𝟒 Areas and Lengths in Polar Coordinates: Arc length of a polar curve [Tags: Π2], Area of a region 

bounded by a polar curve, Area of a sector of a circle, Product Rule, Riemann sums. 

𝚷𝟓 Conic Sections: Axis - Major axis of an ellipse, Minor axis of an ellipse, Of a parabola; Cartesian 

equation of an ellipse, Cartesian equation of a hyperbola, Cartesian equation of a parabola, Directrix of a 

parabola, of a conic section; Eccentricity, Ellipse – equation of, focus of; of a hyperbola, of a parabola, of 

a conic section; Hyperbola, Parabola, Rotation in polar coordinates [Tags: Π3 ], Theorem 5.1 – 

Classification of conic sections by eccentricity [Tags: Π3], Theorem 5.2 – Polar equation of conic section 

[Tags: Π3], Vertex of an ellipse, of a hyperbola, of a parabola. 
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𝚷𝟔 Three-Dimensional Coordinate Systems: Coordinate axes, Coordinates in space, Coordinate planes, 

Distance formula in three dimensions, Equation of a sphere, Equation in 𝑅3𝑠, Origin, Projection onto the 

coordinate planes, Three-dimensional rectangular coordinate system. 

𝚷𝟕 Vectors: Algebraic scalar multiplication, Algebraic vector addition, Components of a vector, Definition 

of scalar multiplication, Definition of vector addition, Difference of vectors, Equivalent/Equal vectors, 

Initial point of a vector, Length of a vector in R2 and in R3, Magnitude/length of a vector, Negative of a 

vector, Parallel vectors, Position vector, Properties of vectors, Relation between the representation of a 

vector and the vector, Representations of a vector, Standard basis vectors, Terminal point of a vector, 

Triangle law for vector addition, Unit vector, Unit vector in the direction of a given vector, Vector - 

Displacement vector, n-dimensional vector; Zero vector 

𝚷𝟖 Dot Product: Angle between two vectors [Tags: Π7], Components of the unit vector in the direction 

of a given vector [Tags: Π7], Direction angles [Tags: Π7], Direction cosines [Tags: Π7], Displacement vector 

of an object [Tags: Π7], Dot (/scalar/inner) product [Tags: Π7], Orthogonal (perpendicular) vectors [Tags: 

Π7], Orthogonality and dot product [Tags: Π7], Projection - Scalar projection [Tags: Π7], Vector projection 

[Tags: Π7]; Properties of the Dot Product [Tags: Π7], Theorem: dot product of two vectors and the angle 

between them [Tags: Π7], Work done by a constant force [Tags: Π7] 

𝚷𝟗 Cross Product: Coplanar vectors [Tags: Π7], Corollary of Theorem 9.2: parallel vectors [Tags: Π7], 

Cross product [Tags: Π7,Π8], Determinant of order 2, of order 3; Geometric interpretation of cross 

product [Tags: Π7], Geometric interpretation of triple scalar product [Tags: Π7], Properties of the cross 

product [Tags: Π7], Scalar triple product [Tags: Π7,Π8], Theorem 9.1: Orthogonality of cross product 

[Tags: Π7, Π8], Theorem 9.2: Magnitude of the cross product [Tags: Π7, Π8], Torque [Tags: Π7,Π8], 

Vector triple product 

𝚷𝟏𝟎 Equations of Lines and Planes: Direction numbers of a line [Tages: Π6, Π7], Distance from a point to 

a plane in R3  [Tags: Π6], Linear equations in R3  [Tags: Π6], Normal vector of a plane [Tags: Π7, Π8], 

Parametric equations of a line [Tags: Π1, Π6,Π7], Point-slope form of a line [Tags: Π6], Scalar equation of 

the plane [Tags: Π6], Skew lines, Symmetric equations of a line [Tags: Π6,Π7], Vector equation of a line 

[Tags: Π6, Π7, (Π1)], Vector equation of a line segment [Tags: Π7], Vector equation of the plane [Tags: 

Π6, Π7,Π8] 

𝚷𝟏𝟏 Cylinders and Quadric Surfaces: Cone [Tags: Π5, Π6], Cylinder [Tags: Π6], Ellipsoid [Tags: Π5, Π6], 

Elliptic paraboloid [Tags: Π5, Π6], Hyperboloid of one sheet [Tags: Π5, Π6], Hyperboloid of two sheets 
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[Tags: Π5, Π6],Hyperbolic paraboloid [Tags: Π5, Π6], Quadric surface [Tags: Π5, Π6], Rulings of a cylinder 

[Tags: Π6], Traces (or cross-sections) of a surface [Tags: Π6] 

𝚷𝟏𝟐  Vector Functions and Space Curves: Component functions of a vector function [Tags: Π7 ], 

Continuous vector function [Tags: Π7 ], Limit of a vector function [Tags: Π7 ], Parameter [Tags: 

Π6, Π7, (Π1) ], Parametric equations of a space curve [Tags: Π6,Π7, (Π1) ], Space curve [Tags: 

Π6, Π7, (Π1)], Vector-valued function [Tags: Π7] 

𝚷𝟏𝟑  Derivatives and Integrals of Vector Functions: Derivative of a vector function [Tags: Π7, Π12], 

Integral of a continuous vector function [Tags: Π7, Π12 ], Second derivative of a vector function 

[Tags: Π12], Tangent line [Tags: Π7, Π12], Tangent vector [Tags: Π7, Π12], Theorem 13.1: derivative of a 

vector function [Tags: Π7, Π12], Theorem 13.2: differentiation rules [Tags: Π7,Π8, Π9, Π12], Theorem 

13.3: Fundamental theorem of calculus [Tags: Π7, Π12], Unit tangent vector [Tags: Π7, Π12] 

𝚷𝟏𝟒 Arc Length and Curvature: Arc length function [Tags: Π7, Π12,Π13, (Π1)], Binomial vector [Tags: 

Π7, Π8,Π9, Π12,Π13 ], Corollary of Theorem 14.1: Curvature of a plane curve, Curvature [Tags: 

Π7, Π12,Π13 ], Length of a curve [Tags: Π2, Π6, Π7,Π12, Π13 ], Normal plane [Tags: Π8,Π10, Π13 ], 

Normal vector [Tags: Π7,Π8, Π9, Π12,Π13 ], Osculating circle (or circle of curvature) [Tags: 

Π8, Π10,Π13], Osculating plane [Tags: Π8,Π10, Π13], Parametrizing a curve with respect to arc length 

[Tags: Π7, Π12,Π13, (Π1) ], Smooth curve [Tags: Π7, Π12,Π13 ], Smooth parametrization [Tags: 

Π7, Π12,Π13], Theorem 14.1: Curvature of a curve using only its vector function [Tags: Π7,Π9, Π12,Π13] 

𝚷𝟏𝟓 Motion in Space – Velocity and Acceleration: Acceleration [Tags: Π12,Π13], Newton’s Second Law 

of Motion [Tags:  Π12], Normal component of acceleration [Tags: Π7, Π8,Π9, Π12,Π13, Π14], Speed 

[Tags: Π7, Π12,Π13], Tangential component of acceleration [Tags: Π7,Π8, Π9, Π12,Π13, Π14], Velocity 

vector [Tags: Π7, Π12,Π13] 

𝚷𝟏𝟔 Functions of Several Variables: Function of two variables [Tags: Π6], Domain of a two-variable 

function [Tags: Π6], Graph of a two-variable function [Tags: Π6], Linear function of two variables [Tags: 

Π6, Π10], Range of a two-variable function [Tags: Π6], Level curves of a two-variable function [Tags: 

(Π11)]; Function of three variables, Domain of a three-variable function, Level surfaces of a three-variable 

function; Function of n variables  [Tags: Π7, Π8], Domain of an n-variable function [Tags: Π7, Π8] 

𝚷𝟏𝟕 Limits and Continuity of Multivariable Functions: Continuous [Tags: Π16], Limit laws [Tags: Π16], 

Limit of a two-variable function [Tags: Π16], Polynomial function of two variables [Tags: Π16], Continuity 
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of polynomial functions [Tags: Π16], Rational function of two variables [Tags: Π16], Continuity of rational 

functions [Tags: Π16] 

𝚷𝟏𝟖 Partial Derivatives: Clairaut’s Theorem [Tags: Π16, Π17], Interpretation of partial derivatives [Tags: 

Π6, Π11, Π16], Partial derivatives of a two-variable function [Tags: Π16], Partial derivatives of functions 

of three or more variables [Tags: Π16], Partial derivatives of order 3 or higher [Tags: Π16, Π17], Partial 

differential equations, Second partial derivatives [Tags: Π16] 

𝚷𝟏𝟗  Tangent Planes and Linear Approximations: Differentiable [Tags: Π16,Π18], Differential [Tags: 

Π16,Π18 ], Increment of a function [Tags: Π16,Π18 ], Linear approximation (or tangent plane 

approximation) [Tags: Π16, Π18], Linear approximation of a two-variable function in the notation of 

differentials [Tags: Π16,Π18 ], Linearization [Tags: Π16, Π18 ], Tangent plane - Definition [Tags: 

Π7, Π13,Π16,Π17, Π18, (Π11)], Tangent plane - Equation [Tags: Π7, Π10,Π13,Π16, Π17,Π18, (Π11)], 

Theorem: Differentiability of a function [Tags: Π16,Π17, Π18] 

𝚷𝟐𝟎 Chain rule: Chain rule (case 1) [Tags: Π16, Π18,Π19], Chain rule (case 2) [Tags: Π16,Π18, Π19], 

Chain rule (general version) [Tags: Π16, Π18,Π19, Differentiation of a single-variable function defined 

implicitly [Tags: Π16, Π17,Π18,Π19], Differentiation of a two-variable function defined implicitly [Tags: 

Π16,Π17, Π18,Π19] 

𝚷𝟐𝟏  Directional Derivatives and the Gradient Vector: Directional derivative [Tags: 

Π6, Π7,Π10, Π13,Π16,Π18], Directional derivative in the notation of the gradient vector [Tags: Π8, Π19], 

Gradient vector [Tags:  Π7, Π8,Π12, Π16,Π18,Π19 ], Normal line to a surface at a point [Tags: 

Π8, Π10,Π12,Π13, Π16,Π19, Π20 ], Tangent plane to a level surface at a point [Tags: 

Π8, Π10,Π12,Π13, Π16,Π19, Π20], Theorem 21.1: Existence of the directional derivatives of a function, 

formula in terms of partial derivatives [Tags:Π7, Π16,Π18, Π19,Π20], Theorem 21.2: Maximizing the 

directional derivative [Tags: Π7, Π8,Π19] 

𝚷𝟐𝟐 Maximum and Minimum Values: Absolute maximum [Tags: T Π16], Absolute minimum [Tags: Π16], 

Bounded set, Closed set, Critical point [Tags: Π16, Π18], Extreme value theorem for functions of two 

variables [Tags: Π16 , Π17 ], Local maximum [Tags: Π16 ], Local maximum value [Tags: Π16 ], Local 

minimum [Tags: Π16], Local minimum value [Tags: Π16], Theorem 22.1: Partial derivatives at local 

maxima and minima [Tags: Π16,Π18], Second derivatives test [Tags: Π16, Π17,Π18] 

𝚷𝟐𝟑  Lagrange Multipliers: Lagrange multiplier [Tags: Π7,Π8, Π12,Π13, Π16,Π19, Π20,Π21,Π22 ], 

Method of Lagrange Multipliers (one constraint) [Tags: Π7,Π16, Π21,Π22 ], Method of Lagrange 
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Multipliers (two constraints) [Tags: Π7,Π16, Π18,Π21, Π22], The geometric basis of Lagrange’s method 

for functions of two variables [Tags: Π7,Π8, Π12,Π13, Π16,Π19, Π20,Π21,Π22], Two constraints [Tags: 

Π7, Π8,Π10, Π16, Π21, Π22] 

𝚷𝟐𝟒 Taylor and Maclaurin Polynomials: Binomial series, Maclaurin series, 𝑛th-degree Taylor polynomial, 

Remainder of a Taylor series, Taylor series, Taylor’s inequality, Theorem 24.1: Coefficients in the power 

series expansion of a function, Theorem 24.2 

Section VI.ii.b.ii: The Practical Blocks 

To make practical blocks more accessible, I constructed each of them in the form of a graph with tasks 

and techniques in the place of vertices; full arrows connect types of tasks with specific tasks and dotted 

arrows connect these to corresponding techniques. This representation makes for easier differentiation 

of the different types of tasks, especially in praxeologies that involve a multitude of tasks; while the coding 

of the tasks is designed to reflect this (i.e., 𝑇2.3 and 𝑇2.5 are two different task types in the practical block 

of Π2), a visual representation reinforces this difference. Alternatively, a graph can help highlight the 

similarities between tasks in cases such as the following: 𝑇10.1.1 (to find a vector equation of a 

line), 𝑇10.1.2 (to find parametric equations of a line), and 𝑇10.1.3 (to find symmetric equations of a line) are 

three tasks taught in the textbook, and are really just variations on the task type 𝑇10.1 (to find an equation 

of a line). A graphical representation also lends itself well to cases of task types that are taught to be 

performed via a slew of different techniques. Following the first of these graphs below, I present a guide 

explaining the anatomy of these trees. 

 

Figure 3. Practical block of KT Π1. 
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The following is a guide for reading the figures that depict the practical blocks of praxeologies Π𝑖 of the 

knowledge to be taught (KT): 

Praxeology (fat-bordered pink boxes) – Each tree branches out the tasks and techniques that together 

make up the practical block of a praxeology; the name of the praxeology (borrowed from the title of the 

textbook section to which it corresponds) is indicated in each tree by a central pink box. 

Tasks (full arrows) – From the central pink box flow out ‘full’ arrows that indicate the main tasks to be 

taught within this praxeology. In some cases, a task is shown to split into a set of other tasks. For example, 

in Π1, two (full) arrows branch out from task 𝑇1.2 into tasks 𝑇1.2.1 and 𝑇1.2.2. This means that 𝑇1.2.1 and 

𝑇1.2.2 appear as tasks in the textbook; I found them to share a common purpose (in the sense discussed in 

section III.ii.a), and therefore piled them under the umbrella 𝑇1.2. 

Techniques (dotted arrows) – Apart from a handful of tasks which could be tackled with too wild an array 

of techniques, most in this course are linked with at most a handful of techniques. Whenever possible, 

these boxes include a reference to an example in the textbook (Stewart, 2015) that demonstrates the 

technique. 

Cross-references – Task boxes are shaded yellow if the task is a variation of a task from another 

praxeology (e.g. “To find the length of a polar curve” in Π4 is akin to the task of finding “the length of a 

parametric curve” in Π2), the difference being in the object to which the technology is applied. Technique 

boxes are shaded green if the procedure outlined within involve steps that are themselves task-technique 

pairs coded in another praxeology. 

I proceed with the maps of the remaining 23 praxeologies of the knowledge to be taught in MAST 218 and 

MATH 264: 
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Figure 4. Practical block of KT Π2. 
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Figure 5. Practical block of KT Π3. 

 

Figure 6. Practical block of KT Π4. 
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Figure 7. Practical block of KT Π5. 
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Figure 8. Practical block of KT Π6. 
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Figure 9. Practical block of KT Π7. 



47 
 

 

Figure 10. Practical block of KT Π8. 

 

Figure 11. Formulas referred to in the practical block of KT Π8. 



48 
 

 

Figure 12. Practical block of KT Π9. 
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Figure 13. Practical block of KT Π10. 
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Figure 14. Practical block of KT Π11. 

 

Figure 15. Practical block of KT Π12. 
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Figure 16. Practical block of KT Π13. 
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Figure 17. Practical block of KT Π14.

 

Figure 18. Formulas referred to in the practical block of KT Π14. 
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Figure 19. Practical block of KT Π15. 

 

Figure 20. Formulas referred to in the practical block of KT Π15. 
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Figure 21. Practical block of KT Π16. 
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Figure 22. Practical block of KT Π17. 
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Figure 23. Practical block of KT Π18. 
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Figure 24. Practical block of KT Π19. 

 

Figure 25. Formulas referred to in the practical block of KT Π19. 
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Figure 26. Practical block of KT Π20. 

 

Figure 27. Formulas referred to in the practical block of KT Π20. 
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Figure 28. Practical block of KT Π21. 

 

Figure 29. Formulas referred to in the practical block of KT Π21. 
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Figure 30. Practical block of KT Π22. 

 

Figure 31. Formulas referred to in the practical block of KT Π22. 

 

Figure 32. Practical block of KT Π23. 
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Figure 33. Formulas referred to in the practical block of KT Π23. 

 

 

Figure 34. Practical block of KT Π24. 
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Chapter VII: Knowledge to be learned 

This chapter opens with a recapitulation of the main goal of having a model of the knowledge to be 

learned. The methodology I used to create it is explained in a second section: I outline how I identified the 

praxeologies forming the knowledge to be learned and then how I created the model from there. I finally 

present the model in a third section organized by praxeology, wherein the model for each praxeology is 

followed by a discussion of the knowledge to be learned within. 

Section VII.i: Aim 

A cursory examination of the 218/264 finals reveals that the solutions to the exam problems are richly apt 

to be sequenced as task-technique pairs from the model of knowledge to be taught. Accordingly, I model 

the knowledge to be learned in each course as a subset of the knowledge to be taught. As discussed in 

the introduction (p.8), the purpose is to measure the distance between the two models: that is, to identify 

the knowledge to be taught that’s also to be learned, to propose explanations of the inclusions, and to 

conjecture the effects of the exclusions. I begin by describing my approach to identifying the practical 

blocks of the knowledge to be learned; I then present and explore the model for each mathematical 

organization in the knowledge to be learned. The case-by-case analysis where I discuss the knowledge 

that is and isn’t to be learned in each mathematical organization delivers a lay of the land. In a second 

stage, I take a more global approach, taking account of the institutional context, reference model, and 

model of the knowledge to be taught to identify the undercurrents that characterize the knowledge to be 

learned in 218 and 264.  

Section VII.ii: Methodology 

Section VII.ii.a: Identifying the praxeologies 

My model is based on final examinations from the recent past. Altogether, I considered six MAST 218 and 

six MATH 264 exams from the years 2012-2015 (Appendices A and B). These exams are typically 8 – 10 

questions long, with some of these split into 2-4 sub-questions themselves. In both courses, students are 

graded according to the scheme that yields the better mark: 90% final exam, 10% assignments; or 60% 

final exam, 30% midterm, and 10% assignments. It is suitable to draw out the knowledge to be learned 

solely from the final examinations as the grading scheme burdens them with the bulk of determining a 

student’s academic performance in the course. Further, in most of the semesters I considered for this 

study, the assignments came straight out of the exercise pages of the textbook. Since the particular 
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exercises that were chosen were mirror images of examples from the text, it was more appropriate to 

treat them as knowledge to be taught than knowledge to be learned; in any case, whatever the grading 

scheme these exercises shape only 10% of students’ final grades.  

I began my study by describing the solution to each17 exam question in terms of KT task-technique 

pairs that occur in the solution. I did not record steps in the solution that do with single-variable calculus 

from the prerequisite courses; the purpose of this model was purely to identify the subset of the KT model 

which is also to be learned. I reflect on the role of algebraic and single-variable differentiation techniques 

in the discussion that follows the model. Apart from a handful of cases in the MATH 264 exams, these 

sequences of task-technique pairs constitute complete solutions to the exam questions. 

This formed the first step in the creation of a KL model: for each of MAST 218 and MATH 264, a 

table listed the problems in each final exam.  I enumerated the problems and appended a description of 

the task. I omitted certain details in favor of focusing on task types rather than specificity.  

Here is an instance of this work. Consider problem 3b from the MATH 264 Fall 2012 exam, 

Find the tangent plane 𝑇 that touches 𝑆 at (𝑥, 𝑦) = (2,1) 

where the surface 𝑆 is given by 𝑧 = 𝑓(𝑥, 𝑦) = 1 − 𝑒
−(

1

4
𝑥2+𝑦2)

. I recorded this as “to find the tangent plane 

to a surface at a point.” This task corresponds identically to task 𝑇19.1 from the KT model; in turn, the 

technique for this task requires the completion of 𝑇18.2: to find the value of the partial derivative of a 

function at a point. Thus, problem 3b is recorded as the task “to find the tangent plane to a surface at a 

point” and associated with the KT sequence [(𝑇18.2, 𝜏18.2), (𝑇19.1, 𝜏19.1)]. In this example, the exam task 

happened to correspond to a KT task; this is not always the case. Nonetheless, the approach remains: 

identify the sequence of KT task-technique pairs that occur in the solution.   

The next step in the creation of a KL model was to group together tasks that are of the same type 

and identify the praxeologies that form the 218/264 exams. In many cases, sets of task types 

corresponded to KT local praxeologies; I combined local praxeologies to form regional ones that 

themselves occur in the knowledge to be taught. The following are the regional praxeologies of the 

knowledge to be learned: 

 

 

 

 

                                                                 
17 I did not consider Bonus questions as these, by definition, are not required, and my end-goal is to determine the 
minimal knowledge essential for students to learn to succeed on their exam. 
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MAST 218 MATH 264 

Partial derivatives and surfaces 
Partial derivatives and surfaces 

Space curves and vector functions Space curves and vector functions 

Equations of lines and planes and distances in 𝑅3 Distances in 𝑅3 

Limits of rational functions Limits of rational functions 

Polar curves Polar curves 

Taylor series Taylor series 

Conic sections Conic sections 

Spheres  

Quadric surfaces  

Parametric plane curves  

Table 1. Praxeologies of knowledge to be learned in MAST 218 and MATH 264. 

Section VII.ii.b: Creating the model 

The final model is a display of the practical block of each Π that makes up the knowledge to be 

learned in MAST 218 and MATH 264. This display combines the models for each course and uses colors to 

distinguish between the two; this readily allows for a comparison of the knowledge to be learned in both 

courses. Further, a simultaneous look at the two courses allows observations about one to highlight 

aspects of the second. My model takes the form of the figure below (Figure 33). The praxeologies that I 

identified in the knowledge to be learned (denoted KL Π from now on) are at times local and other times 

regional; the local KL Π correspond to a single KT Π and the regional KL Π to a set of local KT Π. In general: 

 

KL Π = {KT Π | tasks based on practical block of KT Π occur as exam questions } 

 

For instance, upon considering the exam tasks that do with the regional praxeology Partial Derivatives and 

Surfaces, I noted that a cluster of tasks deals with the chain rule – as in the KT Π20, the Chain Rule – and 

another with directional derivatives and the gradient vector – as in the KT Π21. Thus, the KL Π Partial 

Derivatives and Surfaces is partitioned into sub-clusters of tasks that match up with KT Π16 and Π18 −

Π23. Each such sub-cluster lists tasks that occur as questions in the 218/264 exams. 

The figure below displays the structure of the models of knowledge to be learned: the yellow box 

at the bottom indicates the KL Π; the black and white box at the top indicates the corresponding KT Π 



65 
 

whose tasks occur in exams and combine to form the KL Π; as noted above, some KL Π are associated with 

only one KT Π, others with several. The tasks that occur in MAST 218 exams are indicated below the KT Π 

they belong to in red boxes, MATH 264 in blue; those that occur in both – in gradiented red-and-blue. 

 

Figure 35. Structure of the display of a praxeology of knowledge to be learned. 

To more faithfully represent the weight attributed to various praxeologies and specific tasks, the 

model of each KL Π is girded with three layers of frequency data:  

1. the number of MAST 218 exams in which a task occurs is indicated in a red box and the 

number of MATH 264 exams in which it occurs in a blue box.  

These tasks are clustered under the KT Π to which they belong; this Π is indicated in a black-and white 

box and  

2. the number of exams in which it occurs is marked therein.  
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Without this additional layer of information, it might be easy to misinterpret the weight given to certain 

tasks in the exams. For instance, three tasks from KT Π11 Cylinders and Quadric Surfaces appear in MAST 

218 exams, once each. Thus, the box for each of them is marked “1” in red, meaning that each task occurs 

in one MAST 218 examination. For all the reader knows, these three tasks may occur in three different 

exams (out of six) – this would mean that this Π bears bulk in the knowledge to be learned in MAST 218. 

However, all three of these particular tasks occurred in the same examination.  The box “Π11 Cylinders 

and Quadric Surfaces” is therefore marked with “1” in red (i.e. 1 (one) MAST 218 exam). The reader now 

knows that the tasks in the cluster Π11 occur in only one exam – and so they occur as a single problem 

and are absent in 5 out of 6 exams. Thus, by considering both the number of exams in which a KT Π 

appears and the number of exams in which its tasks occur, it’s possible to gain a more accurate account 

of the knowledge to be learned. The last layer of frequency indicated in each KL Π  is  

3. the number of exams in which the regional Π occurs. To obtain this number, I counted 

the number of exams in which the totality of the (local) tasks within the Π occur. 

Section VII.iii: The model 

The following is an updated version of Table 1, appended with the number of occurrences of each 

praxeology in the knowledge to be learned. 

KL Praxeology 
Number of MAST 218 exams 

(/6) in which KL Π occurs 

Number of MATH 264 exams 

(/6) in which KL Π occurs 

Partial derivatives and surfaces 6 6 

Space curves and vector functions 6 4 

Equations of lines and planes & distances in 

𝑅3 
6 1 

Polar curves 5 4 

Limits of rational functions 4 3 

Taylor series 2 4 

Conic sections 1 2 

Spheres 1 0 

Quadric surfaces 1 0 

Parametric plane curves 4 0 

Table 2. Number of MAST 218 and MATH 264 exams in which KL praxeologies occur. 
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Before I embark on a general discussion of the landscape of these multivariate calculus courses, I 

present and examine each of the regions into which the knowledge to be learned is divvied up – the 

praxeologies tabled up top. 
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Section VII.iii.a: Partial Derivatives and Surfaces (Π16, Π18 to Π23)
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Figure 36. Model of the KL Π Partial derivatives and surfaces. 
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 By far the most tested praxeology of the lot, Partial Derivatives and Surfaces is the hallmark of 

every MAST 218 and MATH 264 exam: it stars in at least 2-4 questions for major students and 4-5 in pure 

and applied students’ exams. The tasks here all rely on students’ capacity to use the technique of partial 

derivatives. Students need not know the definition of partial derivatives in terms of limits, but they do 

need to know how to find the partial derivatives of a function: differentiate only with respect to the 

variable in question and treat the others as constants. 

 The tasks in this KL Π can be partitioned among 7 KT Π: 

 Π16 Functions of Several variables (MAST 218 – 1; MATH 264 – 1) 

In both MAST 218 and MATH 264, students are asked to find and sketch the domain of a 

two-variable function: the former are treated to the function 𝑓(𝑥, 𝑦) = √𝑦 + √25 − 𝑥2 − 𝑦2 

and the latter to 𝑓(𝑥, 𝑦) = √4 − 𝑥2 − 𝑦2 + √1 − 𝑥2. To provide an appropriate solution to this 

exercise, students need to know that the square root is only defined for nonnegative (real) 

numbers (‘real’ in parentheses, as the mathematics at this level of study is tacitly assumed to 

occur in real space). From here it’s a matter of determining the values of 𝑥 and 𝑦 for which the 

radicands are nonnegative. In both cases, students need to recognize the inequality 𝑥2 + 𝑦2 ≤

𝑐2 (where 𝑐 is a constant) represents a disk of radius 𝑐. Finally, students need to know that the 

domain of a function 𝑓(𝑥) = 𝑔(𝑥) = ℎ(𝑥) is the intersection of the domains of 𝑔 and ℎ. 

This exercise is akin to those students are tasked with in high-school algebra courses – 

the difference is in the extra independent variable. This does not translate to a difference in 

technique or the need for new knowledge, however. Equations of disks in 𝑅2  are a core 

component in high-school algebra, as is the task of finding the domain of a square-root function. 

What’s new is in that the function is in two variables; but the task students need to do projects 

them back onto the plane of high-school algebra. They don’t need to make any explicit links 

between the domain they find and the two-variable function. In the theoretical block of the 

knowledge to be taught, the graph of a two-variable function is defined as a surface “lying directly 

above or below its domain in the 𝑥𝑦-plane” (Stewart, 2015, p.930). Students don’t need to make 

the link between the significance of a two-variable function and the procedures they apply to it 

in the practical block. 

 Π18 Partial derivatives (MAST 218 – 3; MATH 264 – 5) 
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This set of tasks is constituted of those where students are to find partial derivatives of 

various functions but not yet use them for much further purpose. We see here that MAST 218 

students specifically need to learn how to find the first partial derivatives of implicitly-defined 

functions (i.e. to differentiate both sides of the equation with respect to a single variable and then 

isolate the derivative). MAST 218 students needed to be able to do this in half of the six exams I 

studied; in the same number of MATH 264 exams, students were also tasked with finding the first 

partial derivative of a function, though not always an implicitly-defined one. On two other 

occasions MATH students needed to verify whether a function satisfies a partial differential 

equation, in what is perhaps a nod to the Ordinary Differential Equation course students in the 

Pure and Applied stream are to take later on. (The Differential Equations course available to 

students in the major stream is optional.) 

 Π20 Chain Rule (MAST 218 – 2; MATH 264 – 3) 

The questions that lead students to apply the chain rule are straightforward requests to 

find the first partial derivatives of functions of variables that are themselves functions as well; in 

some cases, they are also instructed to use the chain rule. In all cases, students aren’t burdened 

with the task of determining that the chain rule is indeed applicable; differentiability is not a 

property so much as an assumption for the functions in the exams.  The only difference between 

how MAST 218 and MATH 264 students are tested here is in the number of variables involved. 

The reason for this ‘dissimilarity’ is hard to discern – it simply requires a repetition of the same 

computations. 

 Π19 Tangent planes and linear approximations (MAST 218 – 3; MATH 264 – 2) 

The main task here is to find an equation of the tangent plane to a surface at a point. To 

do this, students need to find the first partial derivatives of the given function and use these to 

produce the equation of the plane. This task is routine in the KT Π19 – indeed, it corresponds to 

task (T19.1 , τ19.1), so the equation of a tangent plane to a surface at a point belongs to the trove 

of items that students are familiar with from the textbook examples and (assignment) exercises. 

The alternative is to be able to derive the equation of the tangent plane – a task which is not 

expected of students, and requires control of items from various theoretical blocks of the 

knowledge to be taught: the geometric interpretation of the partial derivatives of a two-variable 

function at a point 𝑃(𝑎, 𝑏, 𝑐) as “the slopes of the tangent lines at 𝑃(𝑎, 𝑏, 𝑐) to the traces 𝐶1 and 

𝐶2 of 𝑆 in the planes 𝑦 = 𝑏 and 𝑥 = 𝑎” (Stewart, 2015, p.955); the definition of tangent plane at 
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a point as the plane that contains these two tangent lines; and the derivation of the equation of 

this tangent plane, which dabbles in a range of algebraic manipulations.  

MAST 218 students sometimes need to combine the routine task (𝑇19.1, 𝜏19.1) of finding 

the equation of a tangent plane with their theoretical knowledge of parallel planes in order “to 

find a point on a surface such that the tangent plane at this point is parallel to a given plane” (this 

occurs in two exams). In terms of the relevant theoretical knowledge, students must know that 

the normal of a plane determines its direction and be able to extract from the equation of a plane 

its normal. This is knowledge from linear algebra which is taught in this course in the KT Π10 

Equations of lines and planes. 

Finally, the matter of linear approximations comes up only once, and this in a MATH 264 

exam when students are tasked with finding the tangent plane to a surface at a point and then 

using the equation they’ve formed to approximate the value of the function at a nearby point. 

Given the absence of such an exercise from the rest of the exams, it seems that linear 

approximations are not given much value as knowledge to be learned. This, combined with the 

routine nature of the task that does regularly appear (to find the equation of the tangent plane to 

a surface at a point) as knowledge to be learned from the KT Π19, Tangent Planes and Linear 

Approximations, has far-reaching implications: students are tested for their ability to form an 

equation of a tangent plane, but not on the theoretical meaning of these planes and their 

descriptive value in approximating surfaces. Students need to be able to find the partial 

derivatives of the given function; they need to be able to recall the standard equation of a tangent 

plane; they need to plug the values of the partial derivatives at the given point into the equation. 

They don’t need to explain the relation between a surface that is the graph of the function and its 

tangent planes. 

 Π21 Directional derivatives and the gradient vector (MAST 218 – 3; MATH 264 – 6) 

This Π from the knowledge to be taught is a staple of MATH 264 exams and appears in 

half of the MAST 218 exams. Some of the tasks from this KT Π that occur in the exams have to do 

with the rate of change of a function at a point: to find the direction in which a function increases 

the most, to find its maximum rate of change at a point, and to find the directions in which it has 

a given rate of change. The rest of the problems do with finding the equations of tangent planes 

and normal lines to level surfaces. 



73 
 

Before I discuss the knowledge to be learned from the practical and theoretical blocks of 

Π21, I lay a few words on some of the ‘prerequisite’ technologies that support the techniques 

used to solve the tasks at hand but aren’t specific to Π21. From a practical standpoint, students 

must be fluent in the calculation of magnitudes of vectors and, apart from this, know how to find 

the unit vector in the direction of a given vector (this in particular requires knowing scalar 

multiplication of vectors). Depending on how a student learns to find the directional derivative of 

a point, they may or may not need to know how to compute a dot product. Finally, the definition 

of gradient vector rests on a knowledge of what vectors are. These snippets are from the practical 

and theoretical blocks of the KT Π7, Vectors, and in some cases, the component definition of dot 

product from Π8, Dot Product. 

The exam tasks that relate to Π21  all require students to find either the directional 

derivative or the gradient vector of a two of three-variable function. This is one more exercise in 

computing partial derivatives. Students don’t have to do much with directional derivatives further 

than this. On one occasion, a MAST 218 exam had students compute the directional derivative of 

a function at a point in a given direction. On two occasions, MATH 264 students had to find the 

direction in which the directional derivative of a function has a given value. These students had 

to go one step further than finding an expression for the directional derivative of a function – they 

had to set it up in an equation to determine the point that yields a particular value; an algebraic 

matter. Grosso modo, there isn’t much ado about directional derivatives beyond computing them. 

Computing gradient vectors, on the other hand, is a task that students must learn to 

execute in describing certain aspects of surfaces that are the graphs of functions and level 

surfaces. While this isn’t of much import in MAST 218 exams, appearing as it does in only two of 

them, it is a significant technique for MATH 264 students to learn and know how to use in the 

context of surfaces. In terms of the theory they need to learn, they need to know that the direction 

in which a two-variable function increases the most is given by its gradient vector; concordantly, 

they also need to know that the maximum rate of change of a function is the magnitude of its 

gradient. This is a theorem in the theoretical block for the KT Π21. Students must also view the 

gradient vector in its capacity as a normal to the tangent plane to a level surface at a point. This 

knowledge, coupled with knowing how to construct the equation of a plane given its normal or 

the equation of a line given a vector parallel to it (the stuff of KT Π10, Equations of lines and 

planes), enables students to achieve the tasks of finding the equations of tangent planes and 
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normal lines to level surfaces. Hence, the theoretical knowledge to be learned about gradient 

vectors is their role in determining the direction in which a function increases the most at a point 

and in fixing the tangent plane to level surfaces at a point.  

 Π22 Maximum and minimum values and Π23 Lagrange multipliers (MAST 218 – 6; MATH 264 – 

6) 

Students in 218 and 264 alike must be adept at the procedures for finding the local and 

global maxima and minima of functions. Students are invariably assigned the routine tasks that 

drive the theoretical blocks of Π22 and Π23: to find the critical points of a function and to classify 

them; to find the extreme values of a function over a closed bounded set (always a disk, rectangle, 

or triangle); and to use Lagrange multipliers to find the extreme values of a function subject to a 

single constraint. 

For the first task, students must know that critical points are those where all partial 

derivatives are zero – they may even have an intuitive understanding of why this is so. Thus, they 

find the function’s partial derivatives, set them equal to zero, and solve. For the second task, 

students must apply the second derivative test – of which the underlying technology, properties 

of the Hessian matrix, is absent from the knowledge to be taught, but which is fully within reach 

of 218/264 students’ computational skill. In fact, beyond having an intuitive hold of the relation 

between critical points and derivatives, students are held responsible purely for procedural 

handiwork. To find the extreme values of functions over closed bounded sets, they may again 

visualize why these values can be found on a closed bounded set, even if they have yet to form a 

rigorous conceptualization of ‘closed’ ‘bounded’ ‘sets’ – as individual concepts and as a 

conglomerate which 264 students are set to encounter in their later Analysis courses. Thus, 

students unwittingly apply the Extreme Value Theorem; its assumptions are always satisfied in 

the questions on the exam. In bona fide fashion, functions are always continuous, and the 

rectangles, disks, and triangles they’re defined on are always closed and bounded. Finally, 

students receive explicit instructions to use Lagrange multipliers to find the extreme values of 

two-variable functions subject to a single condition. Yet again, this amounts to a sequence of 

routine tasks involving computation of derivatives and systems of equations – the “Method of 

Lagrange Multipliers,” outlined as such in the textbook – whose execution requires zero recall of 

the theoretical discussion that funds it.   
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On the whole, the mathematical organization of Partial Derivatives and Surfaces in the knowledge 

to be learned belies the theoretical block at its basis. For one, the functions dealt to students are 

differentiable by default. Students needn’t spare a thought as to why there is even a directional derivative 

or gradient vector to be found in the given cases. Since differentiability is consistently a non-issue, it 

follows that this bit of theoretical knowledge is not to be learned. I expand on the treatment of 

differentiability, continuity, and limit in this multivariable calculus course later, following the discussion 

of the remaining praxeologies in the knowledge to be learned. On the basis of the current mathematical 

organization, I suggest only that technologies in the knowledge to be taught about surfaces are trimmed 

down in the knowledge to be learned; students are to learn them as techniques useful in the execution of 

tasks that do with two or three-variable functions. Directional derivatives and gradient vectors are no 

longer technologies contingent upon certain conditions; they are exercises to be done, rather than 

quantities that help study certain classes of functions; and in this metamorphosis from technology to task 

to technique, directional derivatives and gradients lose their descriptive prowess.  

The practical blocks of the KT Π fare similarly. The practical block of the knowledge to be learned 

in the praxeology Partial derivatives and Surfaces is a selection of discrete tasks from the practical block 

of the KT Π. More precisely, students don’t generally have to do a multitude of tasks that together would 

give a portrait of a function at a point. They alternately have to find a tangent plane at a point, or a 

directional derivative, or simply a partial derivative. Only once do students have to use the tangent plane 

at a point on a surface to approximate the value of the function at a nearby point in the domain. The 

matter of the domain of functions comes up once. The various technologies students have to learn to use 

are virtually distinct from the theory of surfaces that they support. The absence in all examinations of the 

task of sketching a surface is most indicative of a rupture between the computations students must do 

and the surfaces that their results are meant to describe. Yet again, it seems that the technologies of this 

mathematical organization – continuity, differentiability, differentials (which, along with increments of a 

function, are no-shows), gradient vectors, directional derivatives – are not to be learned in any theoretical 

capacity. The first of these are properties which are both assumed and forgotten; the latter occur in the 

computation of gradients and derivatives in a set of routine tasks and techniques that deal with functions 

given in their algebraic form. In sum, the knowledge to be learned in the mathematical organization of 

Partial Derivatives and Surfaces is bereft of a cohesive account of partial derivatives in their relation to 

surfaces. 
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Section VII.iii.b: Space Curves and Vector Functions (Π12 to Π15) 
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Figure 37. Model of the KL 𝛱 Space curves and vector functions. 

 I explore the knowledge to be learned in the context of each KT Π in decreasing order of their 

number of occurrences in my set of final exams. 

 Π14 Arc length and curvature (MAST 218 – 5; MATH 264 – 4) 

It’s hardly a curve-ball that arc length and curvature form a praxeology that’s among the 

most frequently tested in 218 and 264 assessments. For one, they are cornerstone quantities in 

the description of space curves. Additionally, recall the map of cross-references between the 

theoretical blocks of the knowledge to be taught: Π14 scaffolds upon theory and technology that 

relate to parametric curves, three-dimensional coordinate systems, equations of lines and planes, 

and the triad of vectors, dot product, and cross product. This seems an opportunity to test a great 

scope of students’ knowledge in one fell swoop. One of the aims of the discussion that follows is 

to determine the minimal scope of theoretical and practical knowledge to be learned for a student 

to execute the tasks in this mathematical organization. 

MAST 218 students primarily need to find the length of a curve. They have a formula: the 

arc length of a curve given by vector function 𝐫(𝑡), with 𝑎 ≤ 𝑡 ≤ 𝑏, is given by 
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∫ |𝐫′(𝑡)|

𝑏

𝑎

𝑑𝑡. 

Finding the arc length of a curve is therefore an exercise in computing the derivative of a vector 

function, finding the magnitude of the vector function, and finally integrating over the interval 

[𝑎, 𝑏].  The conditions necessary for the application of this formula are always met - the 

components of the vector functions in the exam are continuously differentiable and the vector 

function injective. 

It is unnecessary for students to learn the importance of arc length as an invariant 

property of a curve; none of the tasks highlight in any way the independence of arc length of the 

parametrization of a curve. None of the tasks highlight the utility of this property, either: absent 

are the tasks (to be taught) of reparametrizing a curve using its arc length function or of finding a 

point on a curve a number of units away from a given point on the curve. As far as the arc length 

of a space curve is concerned, students need only know a formula. What they’re missing out on 

is the purpose of studying arc length to begin with. 

The curvature of space curves receives a similar sentence. MATH 264 students must find 

it, and MAST 218 students must identify a point on the curve where it is zero. Both tasks whittle 

down to a formula (from a choice of two) for finding the curvature 𝜅 of a curve 𝒓(𝑡) at a point: 

𝜅(𝑡) =
|𝐓′(𝑡)|

|𝐫′(𝑡)|
  or        𝜅(𝑡) =

|𝐫′(𝑡)×𝐫′′(𝑡)|

|𝐫′(𝑡)|3
 

 where 𝐓 is the unit tangent vector of 𝐫. 

This task, which at face-value seems to be about curvature, is more accurately an exercise 

in computing derivatives and magnitudes of vector functions. On the one exam (from the twelve 

considered) where students are relieved of the duty to learn by heart the library of formulas 

relating to properties of space curves, students have to turn their focus elsewhere: for a given 

vector function, find its curvature, and then show that 𝜅(𝑡) → 0 as 𝑡 → 0,∞, and to find the 

maximum value of 𝜅(𝑡). Students are not asked to explain nor observe how the first task they 

complete in effect ensures that the second task can be achieved. This is reminiscent of two routine 

tasks from the North-American standard Differential Calculus course: given a single-variable 

function, to find its limit at zero and at infinity and to find its maximum value. Altogether, the 

nature of the exam tasks is such that students don’t need to learn the relation between a space 
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curve and its curvature; their job rests with the vector calculus techniques that relate to it. They 

can turn a blind eye to the theoretical underpinnings and definition of curvature and successfully 

answer exam questions where the term ‘curvature’ shows up. 

The story repeats in the remaining tasks. On separate occasions, students have to find the 

equations for the normal and osculating planes of a curve. In all, the tasks that students must 

learn to undertake any task in this mathematical organization are to find the derivative of vector 

functions; to find the unit tangent vector to a curve at a point; to find the magnitude of a vector; 

to do scalar multiplication; and to form an equation for a plane, given its normal. These tasks form 

the underbelly of the mathematical organization of Arc Length and Curvature. 

What is at the forefront of this mathematical organization? Altogether, the various 

geometric properties of curves that are to be taught – tangent, normal, binormal vectors; tangent, 

normal, osculating planes; the osculating circle – can be learned as entities unrelated to one 

another. (On that note: the osculating circle is exempt from the exams I studied.) Students are 

never required to use these geometric properties cohesively to give a local description of a curve. 

They have to find equations for a different property on each exam; and in most cases, they don’t 

need to have an intuitive understanding of these properties. For instance, students needn’t know 

that the osculating plane at a point 𝑃 on a curve is “the plane that comes closest to containing 

the part of the curve near 𝑃” (Stewart, 2015, p.907). Thus, it’s not necessary for students to form 

a full-fledged local conception of a curve. The task Π14.10 from the practical block of Π14 might 

have required students to do so: to graph the osculating circle of a plane curve at a point. Just as 

in the case of Partial Derivatives and Surfaces, the absence of a graphing task is telling of the 

discrete nature of the knowledge to be learned in the Π Arc Length and Curvature – discrete both 

in the disconnectedness of the tasks, with different exams poking at points of curves once with 

an osculating plane, once with a normal vector, another time with curvature, and in how students 

must learn differential and integral calculus techniques to find these geometric properties but not 

what these properties actually signify. 

 Π13 Derivatives and integrals of vector functions (MAST 218 – 3; MATH 264 – 2) 

Most of the questions that do tasks specific to the practical block of Π13 have students 

find either the tangent vector or the tangent line to a curve at a point. Thus, as in their first 

differential calculus course, students need to know that the tangent to a curve at a point is given 
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by the derivative of the function it represents. To find the tangent line, students need to combine 

this knowledge with technique taught in Π10, Equations of lines and planes. 

In one exam in each of 218 and 264, students are to find the angle of intersection between 

two curves. For this, they must know that the tangent line to a curve at a point approximates it 

locally; upon finding equations for the tangent vectors to the two curves at the point of 

intersection, students must know how to find the angle between two vectors (task 𝑇8.2.1 from the 

KT Π, Dot product). This task requires students to engage with the theoretical block of a KT Π. 

Students must settle on an appropriate model for the situation (tangent lines to model the curve 

locally at the given point) and select a task from the practical block accordingly. 

 Π15 Motion in space - velocity and acceleration (MAST 218 – 2; MATH 264 – 1) 

In this little-represented mathematical organization, students must know how to obtain 

the velocity, acceleration, and speed of a curve at a point. To this end, they need to learn that the 

velocity of a curve at a point is given by the derivative at that point, that acceleration is the 

derivative of velocity, and speed the magnitude of the velocity. In one MAST 218 exam, students 

are tasked with finding these three quantities given the position function of a particle. 

Additionally, they’re asked to find the particle’s minimum speed. To this end, they must compute 

the magnitude of the velocity and find its minimum using knowledge learned in single-variable 

calculus and relearned, in a sense, in Π22 , Maximum and minimum values of multivariable 

functions. 

A second MAST 218 exam asked of students to find the tangential and normal 

components of the acceleration vector of a space curve. This amounts to an application of 

formulas provided in the knowledge to be taught. As in the case of most technologies referred to 

in this KL Π of vector functions and space curves, students don’t need to provide a geometric 

interpretation of these concepts and formulas. 

In sum, the exam tasks drawn from the KT Π15 Motion in space are firmly rooted in the 

task of finding the derivative of a vector function. The tasks don’t delve much further than this. 

For instance, 𝑇15.6 , to solve projectile motion problems, is absent from the knowledge to be 

learned. This Π in the knowledge to be learned seems a missed opportunity to hand MAST 218 

students problems of a more applicative nature (in line with the MAST program’s stated mission 

of focusing on this aspect of mathematics).  

 Π12 Vector functions and space curves (MAST 218 – 1; MATH 264 – 0) 
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In a turn of events, students are not asked to find anything, but to validate a property of 

vector functions: they must show that 

𝑑

𝑑𝑡
|𝐫(𝑡)| =

1

|𝐫(𝑡)|
𝐫(𝑡) ∙ 𝐫′(𝑡) 

This task is non-routine in the sense that students aren’t given a particular vector function to work 

with. This means they must produce an appropriate representation for 𝒓(𝑡) that will enable them 

to work with the technologies involved. To this end, students should write 𝐫(𝑡) in terms of its 

component functions: 

𝐫(𝑡) = (𝑓1(𝑡), 𝑓2(𝑡), … , 𝑓𝑛(𝑡)) 

It’s not clear if students are expected to provide as general a proof as possible (i.e. 𝑛 component 

functions) or if they may assume the vector function to have, say, three components. In any case, 

the first task is to represent 𝐫(t) component-wise. This is an unusual requirement that calls for a 

theoretical approach to vector functions. Students don’t generally need to explicitly think about 

vector functions having the form of a vector; they receive concrete vector functions along with 

some task that requires them to do calculations. Students who do choose to express 𝐫(𝑡) in the 

appropriate form can move on to the more computational job of applying the definitions of 

magnitude, dot product, and derivative of vector functions.  

The second part of the exam question is the following: “If the vector 𝐫(𝑡) has constant 

length in the interval (𝑎, 𝑏), show that the derivative vector is perpendicular to 𝐫(𝑡) at all points 

of this interval.” To show this, students need to use the first part of the problem. They need to 

know that the derivative of a constant is zero; further, they need to know that two vectors are 

orthogonal if their dot product is zero. 

This problem requires students to work on a more abstract level than usual: they need to 

have some awareness of symbolic representations and their affordances in choosing to represent 

𝐫(𝑡) component-wise. It’s difficult to assess just how much reflection was required of students 

taking this examination to determine an approach to the question. Tasks specific to proving 

properties of vector functions and their derivatives make a brief appearance in the textbook; the 

extent to which this type of task was emphasized by the instructor is beyond my reach. 

Additionally, since this question occurred in one of the earlier final exams that I studied (2013), I 

don’t know if prior finals (accessible to students at the university print shop) bandied about such 

tasks more frequently than in recent years’ exams. 
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It is essential for 218 and 264 students alike to be fluent in differentiation and vector algebra 

techniques to engage in the Π of Vector functions and space curves. They need to know derivative rules 

for single-variable functions to execute virtually all the tasks in this Π, as their respective techniques all 

rest on the differentiation of vector functions. They need also employ the following subset of vector 

algebra tasks and techniques taught in the course: (𝑇7.1.2.2, 𝜏7.1.2.2) (scalar multiplication of vectors given 

in component form), (𝑇7.3, 𝜏7.3) (to find the magnitude of a vector), (𝑇7.4, 𝜏7.4) (to find the unit vector in 

the direction of a given vector), and (𝑇8.1, 𝜏8.1.1) (to find the dot product of two vectors given in component 

form). This summarizes the minimal technical skills students need to have to undertake any of the tasks 

from Π12 through Π15 (the constituent KT Π of the KL Π Vector functions and space curves). 

The knowledge to be taught in the chapter Vector Functions mostly relates to the differential 

geometry of space curves. The minimal scope of knowledge to be learned, however, does not bridge the 

link between curves and the calculus of vector functions. The routine nature of the tasks, mostly of the 

types “to find an invariant quantity of a curve” or “to find the equation of a geometric property of curves,” 

enables students to learn formulas and does not require them to develop neither an intuitive nor a 

rigorous definition of these invariants and properties of curves. 

Section VII.iii.c: Equations of Lines and Planes and Distances in 𝑅3 (Π10) 
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Figure 38. Model of the KL Π Equations of lines and planes and distances in 𝑅3. 

Tasks whose goal is to find the equation of a line or a plane (not for a higher purpose) occur in all 

six MAST exams but only in one MATH exam.  This KL Π corresponds to the KT Π10 Equation of lines and 

planes. 

The knowledge to be learned to answer the exam questions specific to this Π forms a quite 

specific praxeology. Equations of planes are to be found in two setups: 

1. Given three points in the plane; 

2. Given a point and a line that lie in the plane. 

The second case reduces to the first. From this point, the procedure is use the three points to find two 

vectors parallel to the plane (but not to each other), to find their cross product and therefore a normal to 

the plane, and to use this normal to form an equation for the plane. The theoretical knowledge at the 

base of this task: that a plane is determined by a normal and a point on the plane; that the cross product 

of two vectors produces a vector orthogonal to both; that the displacement from one point to another in 

space can be represented by a vector; and an understanding of the notation used for the component form 

of points and vectors alike. 

 Students tasked with finding the equations of lines are given a variety of scenarios: 

1. A line that is the intersection of two planes (this occurs as a sub-step in the task “to find the 

equation of a plane passing through a point and a line); 

2. A line parallel to two (intersecting) planes and containing a given point; 

3. A line perpendicular to a plane and containing a given point. 

The first of these corresponds to (𝑇10.5.3.2, 𝜏10.5.3.2), where the technique is to find a point on the line (e.g. 

by setting one of the coordinates to 0) and find a vector parallel to the line by computing the cross product 

of the normal vectors of the planes. The second case is in fact a re-wording of the first. The third case 

requires student to find two vectors on the plane and compute their cross product to find a vector parallel 

to the line. In all, the theoretical knowledge to be learned is that a line is determined by a point and a 

vector parallel to it; to recognize from the equation of a plane its normal; and to know that the cross 

product of two vectors produces a vector orthogonal to both. 

 Beyond knowing the form of the equations of a lines and planes, MAST 218 students need to know 

how these objects are determined by vectors parallel or perpendicular to them. They also need to know 
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an important theorem about cross product and how to compute it. This does not need to be learned by 

MATH students. 

 In one MATH 264 and four MAST 218 exams, students need to find the distance between a point 

𝑃 and either a line or a plane. To this end, they must find the point 𝑄 on the line (or plane) whose distance 

from 𝑃 is minimal. It’s essential for students to realize this point is such that 𝑃𝑄⃗⃗⃗⃗  ⃗ is orthogonal to the line 

(or plane). The rest of the task is in modelling this theoretical knowledge: choose an arbitrary point 

𝑄 (𝑥, 𝑦, 𝑧) on the line, express the vector 𝑃𝑄⃗⃗⃗⃗  ⃗ in component form, find a vector 𝐮 in the direction of the 

line, and solve the equation  

𝑃𝑄⃗⃗⃗⃗  ⃗ ∙ 𝐮 = 0 

This produces the point 𝑄  and allows students to compute the distance between 𝑃 and the line: the 

magnitude of  𝑃𝑄⃗⃗⃗⃗  ⃗. 

 Equations of lines and planes and distances in 𝑅3 constitutes a major mathematical organization 

for which MAST 218 students must be prepared. They must be adept at representing vectors, computing 

dot and cross products, and finding the magnitude of vectors; they also need to know how to relate 

vectors and vector operations to lines and planes. It is curious that, on each of the multivariable calculus 

exams in the major stream, at least one question is barren of any calculus. This is not so for those in the 

pure and applied stream; but that’s not to say that they needn’t learn some of the linear algebra 

techniques that form the core of this mathematical organization. After all, their learning of line and plane 

equations supports the tasks in the earlier-discussed Π of Partial Derivatives and surfaces; and their 

learning of the definition of orthogonality based on dot product, the computation of dot product and 

vector magnitude is also key to performing tasks in both the praxeologies of Partial Derivatives and Vector 

Functions. The role of Π10, Equations of Lines and Planes, in the context of the knowledge to be taught 

seems to be to support both theory and practice of praxeologies of concepts belonging to calculus. Why 

is it that MAST 218 students need to learn linear algebra techniques for the endgame of solving linear 

algebra problems – in a multivariable calculus course? I conjecture an answer in the conclusion. 
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Section VII.iii.d: Parametric Plane Curves (Π2) 

 

Figure 39. Model of the KL Π Parametric plane curves. 

Only MAST 218 students are tested on the techniques taught in the first chapters of the course 

on plane curves and parametric equations. The tasks they are assigned all do with the calculus of 

parametric curves, as taught in the KT Π2, Calculus with parametric curves. Almost all the tasks from the 

practical block of this KT Π occur throughout the four exams that exhibit problems specific to plane curves. 

To find the parameter values where a curve has vertical or horizontal tangent lines (𝑇2.2, 𝜏2.2) is a 

task that occurs in two exams. Knowing the properties of a vertical or horizontal tangent allows students 

to determine the equations to solve: 
𝑑𝑥

𝑑𝑡
= 0 or 

𝑑𝑦

𝑑𝑡
= 0. This is essentially an exercise of single-variable 

calculus, but could be considered as a review for students of the notion of tangent, a recurring concept 

throughout the knowledge to be learned in this course. 

 MAST 218 are also tasked with finding the second derivative of a parametric curve (𝜏2.4 ) – 

sometimes purely for the sake of computing it and sometimes to determine the value of a parameter for 

which a curve is concave upward (𝑇2.4, 𝜏2.4). This boils down to the following: given parametric equations 

𝑥 = 𝑓(𝑡) and 𝑦 = 𝑔(𝑡), where 𝑥 and 𝑦 are differentiable functions of 𝑡 and 𝑦 a differential function of 𝑥, 
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to differentiate 𝑦  with respect to 𝑥.  The technique is an instantiation of the chain rule. Since 𝑦  is a 

differentiable function of 𝑥 and 𝑥 of 𝑡, 

𝑑𝑦

𝑑𝑡
=

𝑑𝑦

𝑑𝑥
∙
𝑑𝑥

𝑑𝑡
 

Thus, as long as 
𝑑𝑥

𝑑𝑡
 is nonzero,  

𝑑𝑦

𝑑𝑥
=

𝑑𝑦
𝑑𝑡
𝑑𝑥
𝑑𝑡

          (∗) 

The textbook notes that students could remember this equation “by thinking of canceling the 𝑑𝑡 ’s” 

(Stewart, 2015, p.689). The alternative to this trick – deriving the equation anew – requires students to 

use the technique encapsulated in the three inches of paper preceding this sentence. (The chain rule for 

single-variable functions.) Finding the second derivative of a parametric curve rests on this same 

technique. Since 
𝑑𝑦

𝑑𝑥
 here is in fact a differentiable function of 𝑥 and 𝑡, Formula (∗) can be applied to find 

𝑑2𝑦

𝑑𝑥2: 

𝑑2𝑦

𝑑𝑥2
=

𝑑

𝑑𝑥
(
𝑑𝑦

𝑑𝑥
) 

Beyond knowing of the existence of this formula (along with the formula itself or how to derive it), 

students need to know that the concavity of a plane curve is determined by the sign of its second 

derivative. Yet again, both the technique and bit of theory to be learned here are matters of single-variable 

calculus.  

Integration pops up in the wake of two tasks: to find the arc length of a parametric curve and to 

find the area enclosed by a parametric curve. Both tasks are to be executed with the flick of a formula. 

Here, as with the cases of differentiation with parametric curves, students don’t need to have a rigorous 

or even intuitive understanding of parametric curves; but they do need to understand the symbolic 

representation that encapsulates these curves and recognize the presence of a parameter as a marker of 

parametric equations. They need to be able to differentiate and integrate using the given equations 

appropriately, as indicated by the formulas.  They don’t quite need to learn the relation between 

parametric equations (that define a parametric curve) and the curve traced out by the parameter therein. 

Students may learn this relation, but they don’t need to in order to complete the tasks in this mathematical 

organization. 
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I will venture an explanation as to why MATH 264 exams exclude questions that call for the 

techniques specific to this mathematical organization and what the role of this Π may be in that course. 

Recall that parametric curves are taught in the first week. The exercises in differentiation and integration 

with parametric curves are opportunities for students to freshen up on the techniques they learned in 

their single-variable calculus course. The theoretical block of this Π also allows students to brush up on 

the concept of tangent, a key technology in much of the theory to be taught later on in the course. 

Introducing parametric curves, finally, familiarizes students with the notion of parameter, major in the 

later teaching of vector functions and space curves. These last concepts – vector functions and space 

curves – seem to occupy much space in the knowledge to be learned by MATH 264 students. The 

techniques learned in the context of vector functions are more general than the very specific ones to be 

learned for parametric curves. Perhaps the specificity of the parametric curve techniques makes them less 

attractive, if the aim is to arm students with techniques with greater potential for application. 

In sum, the practical block of Π2, Calculus with parametric curves, is not knowledge to be learned 

in MATH 264. Upon considering the map of cross-references between the theoretical blocks in the 

knowledge to be taught, however, the knowledge to be learned in this Π seems to rest mainly in its 

introduction of parameters. This technology comes in handy in Π11 Equations of Lines and Planes, Π12 

Vector Functions and Space Curves, and Π14  Arc Length and Curvature – three Π  central to the 

knowledge to be learned in MAST 218 and MATH 264 alike. If we view Π2 in this light, the question may 

switch from “why is its practical block not to be learned by MATH 264 students?” to “why is its practical 

block to be learned by MAST 218 students?” I believe the answer may lie in the institutional context of 

the course and will conjecture in the conclusion (chapter IX). 
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Section VII.iii.e: Limits of Rational Functions (Π17) 

 

Figure 40. Model of the KL Π Limits of rational functions. 

 Tasks that involve the notion of limit are a core component of the 218/264 final exams. The 

following are the two types of tasks that students encounter; they are both preceded with the statement 

Find the limit, if it exists, or show that the limit does not exist. 

In both tasks, students are given an expression lim
(𝑥,𝑦)→(0,0)

𝑓(𝑥, 𝑦) where 𝑓 takes on an indeterminate form 

at the origin. To show the limit does not exist, it suffices to find two paths along which the function 

approaches different values in a neighborhood of the origin; if the limit exists, it’s necessary to conjecture 

what this limit might be and then use an 𝜀 − 𝛿 argument to show that it’s indeed the limit. I outline the 

details of each of these tasks as they occur on the final exams. 

Type 1 

lim
(𝑥,𝑦)→(0,0)

2𝑥𝑦

𝑥2 + 2𝑦2
 

This rational function is similar to those that occur in the set of exercises assigned to students 

from the textbook (see exercises 5-22 in (Stewart, 2015, p.950)). In the knowledge to be taught in Π17, 

three paths in particular are used in examples to show that the limit of a rational function does not exist: 

the lines 𝑦 = 𝑥, 𝑦 = −𝑥, and the parabola 𝑦 = 𝑥2. As a general technique for the task of determining 

whether a function does not have a limit at a given point, students learn to substitute any two of these 

expressions for 𝑦 into the function:  
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[Along the line 𝑦 = 𝑥, the function takes the value] 

2𝑥𝑥

𝑥2 + 2𝑥2
=

2𝑥2

3𝑥2
=

2

3
 

[Using the properties of limits, it follows that the limit of the function as it approaches the origin 

along the line 𝑦 = 𝑥 is 
2

3
.] 

Along the line 𝑦 = −𝑥, the function takes the value 

2𝑥(−𝑥)

𝑥2 + 2(−𝑥)2
= −

2𝑥2

3𝑥2
= −

2

3
 

[Using the properties of limits, it follows that the limit of the function as it approaches the origin 

along the line 𝑦 = −𝑥 is −
2

3
.] 

The statements I include in brackets reflect the knowledge to be taught, but it is not clear whether 

it is expected of students to demonstrate this reasoning or if it is sufficient to apply the algorithm of 

“substitute 𝑥  and – 𝑥  for 𝑦 ; if the result is different, the limit does not exist.” Since the function 

approaches different values along two different paths nearing the origin, the limit does not exist at that 

point. Students may be under tight time constraints in an exam situation, and therefore don’t have much 

time, will, or even the habit to try out different approaches. They might automatically reach for the 𝑦 =

𝑥, 𝑦 = −𝑥 test to determine if the function has a limit at the origin upon recognizing the type of task. 

Students who choose to consider the mathematical properties of the given rational function may note 

(intuitively) that the numerator is an odd function while the denominator is even, thereby implying the 

function may take on different values in the different quadrants. In either case, the most readily available 

strategy is to plug in 𝑥 and – 𝑥 in place of 𝑦 and see what happens. Depending on the expectations stated 

in class by their instructors, it may or may not be necessary for students to demonstrate (e.g. by using the 

term ‘path’ appropriately) a somewhat intuitive understanding that the existence of the limit of a 

multivariable function at a point is contingent upon the function approaching the same value along any 

path near that point. Thus, I surmise that one of the minimal units of knowledge to be learned from Π17, 

Limits, is the algorithm described above that aims to compare the value of a function 𝑓(𝑥, 𝑦) for different 

values of 𝑦. 

To complete the task described above, it is not essential for students to learn the institutional 

definition of limit is, as found in the textbook: 
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Let 𝑓 be a function of two variables whose domain 𝐷 includes points arbitrarily close to (𝑎, 𝑏). 

Then we say that the limit of 𝒇(𝒙, 𝒚) as (𝒙, 𝒚) approaches (𝒂, 𝒃) is 𝐿 and we write 

lim
(𝑥,𝑦)→(𝑎,𝑏)

𝑓(𝑥, 𝑦) = 𝐿 

 if for every number 𝜀 > 0 there is a corresponding number 𝛿 > 0 such that 

if        (𝑥, 𝑦) ∈ 𝐷  and 0 < √(𝑥 − 𝑎)2 + (𝑦 − 𝑏)2 < 𝛿   then |𝑓(𝑥, 𝑦) − 𝐿| < 𝜀 

(Stewart, 2015, p.944)) 

A particular version of the 𝜀 − 𝛿 argument does need to be learned for students to use an appropriate 

technique for the second type of task:   

Type 2 

lim
(𝑥,𝑦)→(0,0)

3𝑥2𝑦

𝑥2 + 𝑦2
 

 The function to be evaluated here is also similar to the ones students are tasked with in 

assignments (see exercises 5-22 in (Stewart, 2015, p.950)). In all of the MAST 218 and MATH 264 exams I 

considered, Type 2 tasks all had four things in common: 

1. The function is rational in all cases but one (the exception involves a trigonometric function);   

2. The denominator in the expression is 𝑥2 + 𝑦2; 

3. The limit is taken at the origin;  

4. The limit is zero. 

To accomplish this task, it is sufficient on some occasions to use properties of limits (𝜏17.2.2) or the Squeeze 

Theorem (𝜏17.2.3) to find this limit, both of which require an appropriate set of algebraic manipulations 

but not an understanding of the limit; students may also use the 𝜀 − 𝛿  technique (𝜏17.2.1 ). The 

standardized form of the functions in this type of task allows for an algorithmic application of the 𝜀 − 𝛿 

technique that – due to its algorithmic nature – may not require a full understanding of the concepts. I 

explain: to begin this task, students need to first assess whether the limit is likely to exist or not. Upon 

plugging in a couple of values for 𝑥 or 𝑦, they find that the limit may be zero; unless the function can be 

simplified, this requires the use of 𝛿 and 𝜀. The solution (following the steps as taught in the text, as in 

p.947 of (Stewart, 2015)) would then go like this, as per the technique 𝜏17.2.1: 

Step 1: Apply the definition of limit in terms of 𝜀 and  𝛿: 
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Let 𝜀 > 0.  We want to find 𝛿 > 0 such that 

if 0 < √𝑥2 + 𝑦2 < 𝛿 then |
3𝑥2𝑦

𝑥2+𝑦2 − 0| < 𝜀 

Step 2: Make appropriate algebraic manipulations of the expression 
|3𝑥2𝑦|

𝑥2+𝑦2 to obtain an inequality of the 

sort 
|3𝑥2𝑦|

𝑥2+𝑦2 ≤ 𝑐√𝑥2 + 𝑦2 where 𝑐 is a constant. 

Step 3: Choose 𝛿 = 𝜀/𝑐, so that 

|
3𝑥2𝑦

𝑥2 + 𝑦2
− 0| ≤ 𝑐√𝑥2 + 𝑦2 < 𝑐𝛿 = 𝑐 (

𝜀

𝑐
) = 𝜀 

The steps in 𝜏17.2.1 that pertain to 𝜀 and 𝛿 could be replicated without an understanding of the concepts; 

it is not necessary for students to have a definition of limit that corresponds in any way to the formal 

definition, which includes a variety of concepts that are known to be of great difficulty for students to 

grasp (neighborhood of a point, the meaning of the quantifiers ‘for all’ and ‘there exists’, etc.). Step 2 is 

the only one where students are required to produce technique, but here what they require is algebraic 

dexterity that is quite unrelated to the notion of limit. 

 In all, I conclude from the given tasks and the techniques available from Π17 that the knowledge 

that is essential for MATH 264 and MAST 218 students to learn from this praxeology is of an algorithmic 

nature and requires algebraic manipulations. In tasks where students find the limit of a function, it is not 

essential to have an understanding of what it means for a limit to exist; in tasks where students show that 

the limit of a function does not exist at a point, they may benefit from learning that the limit of a function 

fails to exist at a point if the function has different values as it approaches the point along a certain path. 

In the latter case, though, algebraic manipulations are sufficient to determine that the limit of a function 

does not exist. 
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Section VII.iii.f: Polar Curves (Π3 − Π4) 

Figure 41. Model of the KL Π Polar curves. 

 One of the more frequently occurring praxeologies in 218/264 exams, Polar curves are to be 

learned from two KT Π: Π3 Polar coordinates and Π4 Areas and lengths in polar coordinates. 

 Π3 Polar coordinates (MAST 218 – 4; MATH 264 – 2) 

A task that students are often given in 218/264 exams is to identify a polar curve by finding 

its Cartesian equations and then sketch that curves. Students must therefore be adept at the 

algebraic manipulations involved in the transformation from polar to Cartesian equations. The 

polar equations in the exams are invariably of the following forms: 

𝛾1:   𝑟 = 2 + sin𝜃,      0 ≤ 𝜃 ≤ 2𝜋 

𝛾2:   𝑟 = 3 sin𝜃,     0 ≤ 𝜃 ≤ 𝜋 
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up to a change in the constants and where the trigonometric functions are either sine or cosine. 

Students learn the specific algebraic manipulations necessary to convert these into Cartesian 

equations in examples from the textbook. For instance, Example 6 (Stewart, 2015, p.701) outlines 

the procedure for converting curves of the form of 𝛾2: 

1. Use the equations established from relations in the trigonometric unit circle, choosing 

equations based on whether the trigonometric function is sine or cosine:  

Use the equation 𝑦 = 𝑟 sin𝜃 to write sin𝜃 = 𝑦/𝑟 , so the equation 𝑟 = 3 sin𝜃 

becomes 𝑟 = 3𝑦/𝑟. 

2. Express the Cartesian variable in terms of the polar variable, and again use the equations 

established from relations in the trigonometric unit circle: 

It follows that 3𝑦 = 𝑟2 = 𝑥2 + 𝑦2, which gives 𝑥2 + 𝑦2 − 3𝑦 = 0. 

3. Complete the square to obtain the Cartesian equation for the curve: 

Completing the square, we obtain 𝑥2 + (𝑦 −
3

2
)
2
=

9

4
 

Students must recognize the standard equation of circles to identify the curve given by this 

equation as well as the center and radius of the circle obtained. A recipe of similar taste produces 

the Cartesian equation of curves of the form of 𝛾1. First, it’s critical for students to be familiar with 

the basic relations established in the trigonometric circle. Students must also be fluent in the 

application of these very specific procedures lest they lose valuable exam time; this particular 

procedure also comes with the perk of yielding a recognizable Cartesian equation (students are 

always asked to identify the curve in these questions). 

 To sketch these curves, students must know how to plot points in polar coordinates. To 

plot a polar curve of the form 𝛾1:   𝑟 = 2 + sin𝜃, 0 ≤ 𝜃 ≤ 2𝜋, students are taught to first sketch 

it in Cartesian coordinates by shifting the sine curve up by 2 units. A similar approach can be taken 

for curves of the form of 𝛾2. Students need to learn to use the Cartesian graph of the curve to 

determine “the values of 𝑟 that correspond to increasing values of 𝜃” (Stewart, 2015, p.702). 

From this data they plot points and approximate the parts of the curve between them. For 

instance, if, when 𝜃  increases from 𝛼  to 𝛽, 𝑟  decreases from 𝑎  to 𝑏 , then identify in a polar 

coordinate system the points with these polar coordinates, and connect them using rounded 

curves. 
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 The tasks to be learned in the Π3, Polar coordinates, require highly specific techniques 

that dabble in algebraic manipulations and the relations established between polar and Cartesian 

coordinates by the trigonometric unit circle. On one occasion, MATH 264 students were asked to 

find the slope of a tangent to a polar curve. The technique for this task couples knowledge of the 

unit circle relations with a formula forged by a combination of the chain and product rules in order 

to find the derivative of 𝑦 with respect to 𝑥 (the slope of the tangent). All in all, students are 

tasked with learning an algebraically-specific set of techniques to tackle a slim number of 

questions on polar curves that may occur in MATH 264 exams but are almost sure to be present 

in MAST 218 finals. 

 Π4 Areas and lengths in polar coordinates (MAST 218 – 5; MATH 264 – 4) 

MAST 218 students exclusively have to find the area of a region that is enclosed by polar 

curves while MATH 264 students are either given the same task or have to find the length of a 

polar curve. Both cases are tackled by a formula that students presumably need to learn by heart. 

The area problem is often paired with the above task of converting polar equations to Cartesian 

equations, where students are given two curves to convert, identify, and sketch; in these cases, 

students must find the intersection of the two curves before applying the integration formulas. In 

all, these tasks especially test students’ technique in integrating single-variable functions. 

Section VII.iii.g: Conic Sections (Π5) 

 

Figure 42. Model of the KL Π Conic sections. 
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 Conic sections make brief appearances in 218 and 264 exams alike. In one instance, students have 

to find the Cartesian equation of a hyperbola; in another, the Cartesian equation of an ellipse. A third 

instance tacks on the task of describing a conic section in the context of surfaces – here students are asked 

to describe the level curve of a surface (“given by 𝑧 =
1

2
”); upon substituting 

1

2
 for 𝑧 in the equation for the 

surface and manipulating the equation appropriately, students find that the level curve is an ellipse. 

Altogether, the three questions indicate that students are expected to recognize the equations of conic 

sections and, conversely, to use their geometric properties (e.g. foci) to form their standard Cartesian 

equation.  

Section VII.iii.h: Quadric Surfaces and Spheres (Π6, Π11)

 

Figure 43. Model of the KL Π Quadric surfaces and spheres. 

Notice that the tasks on quadric surfaces and spheres occur all occur in a single MAST 218 exam. 

The spherically-concerned problem has students find the equation of a sphere given its center 

and a point on the sphere; to find the intersection curve of this sphere and one of the coordinate planes 

(the 𝑦𝑧-plane, specifically); and to find the center and radius of an altogether different sphere given by 

the following equation: 
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𝑥2 + 𝑦2 + 𝑧2 − 8𝑥 + 2𝑦 + 6𝑧 + 1 = 0 

The first of these tasks is an action of recall to fetch the standard equation of spheres. The second task 

requires students to know that coordinate planes can be described by the coordinate which remains 

constant along that plane. That is, they need to connect “the 𝑦𝑧-plane” with the equation 𝑥 = 0. The 

remainder of this task is an algebraic matter, as is the technique necessary for finding the sphere given by 

the above non-standard equation. Note that the wording of the third question informs students that this 

equation gives a sphere; thus, students can decide which manipulations to enact based on the final shape 

of they need the equation to be in. The minimum knowledge to be learned in relation to spheres is 

therefore their standard equation and an agility in the algebraic manipulations that can reshape quadratic 

equations (that represent spheres) to take on the standard form of spheres. 

 Three problems later, students are asked to identify and sketch the graph of the surface given by 

4𝑥2 + 4𝑦2 − 8𝑦 + 𝑧2 = 0 

To identify the surface given by this equations, students need to know that the graph of a second-degree 

equation in three variables is a quadric surface. To sketch the graph of this surface, students need to find 

some of its traces, sketch them, and from this glean the shape of the entire surface.  

Section VII.iii.i: Taylor Series (Π24) 

 

Figure 44. Model of the KL Π Taylor Series.  
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The knowledge to be learned in Π24 is similar to what’s taught and learned in the prerequisite 

MATH 205 course, where Taylor series are covered in the last week of the term. Here, the topic is indicated 

as a “review” on the course outline. There is no apparent link between the task and techniques for finding 

Taylor series of single-variable functions, their radii or interval of convergence, and the rest knowledge to 

be taught and learned in this multivariable calculus course. 
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Chapter VIII: Discussion 

Based upon the praxeology-specific discussions in Chapter VII on the knowledge to be learned, I 

portray an ideal student for each of MAST 218 and MATH 264. By ‘ideal student,’ I mean a student who 

has learned all that is necessary to succeed in the course; by ‘succeed,’ I mean to get acceptable solutions 

in the final exam. I follow this discussion with some comments on the affordances and limitations of ATD 

in this study. 

Section VIII.i: Ideal students 

I propose a portrait of the ideal students in MAST 218 and MATH 264 in three parts: the shared attributes 

of these ideal students, who follow a coordinated curriculum after all; the knowledge to be learned 

specifically by the ideal MAST 218 student; and that which is specific to the MATH 264 student. By 

addressing the similarities and peculiarities of the ideal students in these courses, I hope to address one 

of the questions that had spurred this study and shed some light on the distance between MAST 218 and 

MATH 264. 

Section VIII.i.a: The shared attributes of the ideal MAST 218 and MATH 264 students 

MAST 218 and MATH 264 students dabble in the themes of partial derivatives and surfaces; space curves 

and vector functions; equations of lines and planes and distance in 𝑅3; limits of rational functions; polar 

curves; Taylor Series; 218 students also fiddle with parametric plane curves; conic sections; and quadratic 

surfaces and spheres. The MAST 218 spread includes in it tasks drawn from almost all the praxeologies in 

the knowledge to be taught; what it shares in common with MATH 264 is mostly taught in the second half 

of the course, with the exception of polar curves, distances in 𝑅3, and Taylor series. Let’s call ‘ideal 

student’ one who has the requisite knowledge to write acceptable solutions in a final exam. What, then, 

are the praxeologies of an ideal student in MAST 218 or MATH 264? How might we characterize these 

praxeologies? 

I argue that the shared attributes of the ideal MAST 218 and MATH 264 students, beyond any 

particular mathematical themes, are in the characteristics of these students’ praxeologies.  Below, I 

consider which parts of the KT praxeologies are to be learned and characterize them in the language of of 

Lithner (2004) and Selden et al. (1999). I conclude by situating the knowledge to be learned by the ideal 

MAST 218 and MATH 264 students in the path of university mathematics transitions outlined by Winsløw 

et al. (2014) (see section II.ii.b). 
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Of the 24 KT praxeologies, 19 explicitly occur in questions in the MAST 218 final exams and 17 in 

MATH 264 exams. That being said, four of the praxeologies that do not occur explicitly do so implicitly in 

both 218/264 in the shape of subtasks or because they introduce concepts built on by other praxeologies; 

and one more praxeology occurs implicitly in 218. This means that all 24 of the KT praxeologies occur in 

some shape or form as KL praxeologies in MAST 218, and 21 of them as KL praxeologies in MATH 264. (Of 

course, this is over the span of six final exams, so a student in a given semester might not enjoy the delight 

of such a thorough final; but I take the sum of the six exams as representative of what’s fair game in any 

given semester, thereby constituting the knowledge to be learned in either course.) Thus, the knowledge 

to be learned in both courses is not necessarily a subset of the knowledge to be taught in the sense that 

some praxeologies are to be learned while others aren’t. Rather, as I aim to show below, it is a subset in 

the sense of what’s left of these praxeologies after the didactic transposition of knowledge to be taught 

into knowledge to be learned. 

One of the most obvious ways in which the MAST 218/MATH 264 KT praxeologies change in this 

transposition is in the down-sizing of certain practical blocks. For instance, consider the praxeology of 

Polar Coordinates, which occurs in identical form in the 218/264 exams (see section VII.iii.f). The ideal 

student in either course can convert polar equations into Cartesian equations and sketch the polar curve 

given by the equations – given the same two particular polar expressions. The ideal student’s topos 

(‘action space’) (Chevallard, 2002a) does not need to extend beyond the point praxeology specific to each 

of these particular functions. The KT local praxeology of polar coordinates is concentrated into one KL 

point praxeology. Practical blocks are also downsized in the more obvious sense – for instance, from an 

array of 6 types of tasks in Π19, only two appear in the final exams. The practical block of Π12 vanishes 

completely from the ideal student’s topos. 

Regardless of whether a praxeology’s KT practical block remains relatively intact or is stripped 

down to a point praxeology or two, most of the praxeologies seem to undergo a surgical removal of their 

theoretical backing in the transposition from KT to KL. For instance, consider Π18,Π20, Π21,Π22, and 

Π23, local KT praxeologies that constitute much of the regional praxeology of Partial Derivatives and 

whose KT and KL practical blocks are nearly identical. These constitute a number of questions out of the 

8-10 in each MAST 218 and MATH 264 exam (see section VII.iii.a). The practical blocks of Π18 and Π20, 

Partial Derivatives and Chain Rule respectively, are reduced to computational tasks whereby the ideal 

student needs to apply the appropriate differentiation algorithm; the geometric interpretation of partial 

derivatives as slopes is unneeded and the ideal student does not need to know any of the theory or 
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technology at the backbone of the procedures. The ideal student does not need to learn the limit-based 

definition of partial derivative nor the definitions and roles of limits, continuity, and differentiability in the 

concepts of derivative, gradient, minima and maxima of a function; if anything, the ideal student may 

benefit from conceptualizing directional derivatives as the derivatives of a function in given directions, 

but students are not asked to express any such conceptualizations. Thus, the theoretical blocks of Π18 

and Π20 vanish in the transposition of the praxeologies from KT to KL. This is similarly the case for Π22 

and Π23; the ideal student is fluent in the algorithms prescribed by these praxeologies but doesn’t need 

to justify or explain them. The exception is in Π21, where the student first needs to know that the 

components of the gradient vector of a function are the function’s partial derivatives, but must also 

associate with gradient some meaning beyond its symbolic representation (e.g. that the maximum rate of 

change of a function is the magnitude of its gradient). The absence of theoretical blocks in the ideal 

student’s praxeology is manifested in several ways, then: first, in that the student does not need to justify 

the validity or choice of technique (e.g. by stating that the chain rule is applicable since the functions 

involved are all differentiable); second, in that the final exam questions do not ask of students to interpret 

their results (e.g. by making a sketch of a surface near a point where some geometric properties of the 

surface were computed); and finally, in that it is not necessary to have more than a superficial grasp of 

the concepts in the theoretical blocks to undertake the types of tasks in the final exams. I expand on this 

last point. 

In general, the ideal student can recognize task types and identify the appropriate technique, in 

reasoning similar to Lithner’s identification of similarities (IS) (2004) (see section II.i). For instance, 

consider the limit-related tasks in the final exams. As previously discussed (section VI.iii.e), the question 

is always the same: find the limit of a function 𝑓(𝑥, 𝑦) at the origin, if it exists, or show that it does not 

exist. There is little variation in the given function 𝑓 from one exam to the next: either it is an odd rational 

function with no limit or it involves a trigonometric component which could be rid of to reduce 𝑓 to a 

rational function in the process of a 𝜀 − 𝛿 argument (in these cases, the exam functions invariably have 

limit 0). Such functions did occur as exercises in these students’ assignments; students who accessed 

previous years’ exams will have also encountered them there. Further, this type of task (beyond the 

particular function) is identical to the type of task taught in Π17 . Thus, IS describes the strategy 

undertaken by the ideal student as the tasks in the KL praxeologies are mostly identical to their 

counterparts in the KT; further, the types of KT of tasks that occur as KL are mostly associated with only 

one technique. Consider also Π15, Motion in Space – Velocity and Acceleration. Exam tasks taken from 

Π15 require students to find the velocity, acceleration, and speed of a particle given its position function. 
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However, projectile problems – arguably the endgame of Π15 – are absent from the KL. These are the 

types of problems that do not have one single applicable technique. Hence, the ideal student needs to 

know and use task-technique pairs that occur in the KT praxeologies in order to use reasoning similar to 

Lithner’s IS (2004). I gave only the two examples of Π17 and Π15, but they are representative of most of 

the types of exercises students are dealt in MAST 218 examinations. Therefore, there seems to be no 

discontinuity between this course and students’ prior mathematics schooling, where their responsibility 

was also mainly in the recognition of types of task and the choice of an appropriate known technique 

(Winsløw et al., 2004). 

IS reasoning is defined by a lack of reflection required on the intrinsic mathematical properties 

particular to the problem at hand (Lithner, 2004). Indeed, in the case just discussed of velocity, 

acceleration, and speed, the ideal student can view these superficially as first derivative, second 

derivative, and magnitude of the velocity, respectively; it is not necessary for the student to base velocity 

and acceleration in the concept of limit. Consider also Π14, Arc Length and Curvature. There is little to no 

difference between the KT and KL tasks from Π14;  the variations require only some extra use of 

theoretical knowledge from Π10. For instance, instead of the task of finding the equation of a normal 

plane to a curve at a point, students might be asked to find a point on a curve where the normal plane is 

parallel to a given plane. Apart from this difference, the Π14 tasks and associated techniques are the same 

in the KT and KL. To identify and make use of these similarities, the ideal student needs to be familiar with 

the terms in the question statements (arc length, curvature, normal plane, unit normal vector, binormal 

vector, osculating plane…) and to know the formulas for deriving them. This is surface knowledge; the 

ideal student is not tested on the definitions of these quantities and geometric properties as they relate 

to a curve at a point (e.g. a student might need to find the equation for an osculating plane, but does not 

need to explain what the osculating plane describes). This neglect of the intrinsic mathematical properties 

(Lithner, 2004) of the curves which students (unwittingly) describe suggests that the theoretical block of 

Π14 (and many other praxeologies, for that matter) need not be present in the ideal MAST 218 student.  

At the beginning of this discussion, I set out to show that theoretical blocks are missing from the 

ideal student’s topos in a few senses: the student is not required to use theory or technology to justify or 

explain the techniques chosen to complete a task, and at times is even told which technique to use (e.g. 

students are instructed to ‘use Lagrange Multipliers’ or ‘use the chain rule’); the student is not required 

to interpret the numerical or algebraic results of their calculus in any way; and it suffices for the student 

to learn the components of the theoretical blocks only superficially. In all, it seems that MAST 218 and 
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MATH 264 follow in the pre-university mathematics tradition whereby students need not link the practical 

and theoretical blocks of a praxeology (Winsløw et al., 2014). Further, the components of the practical 

blocks themselves are discrete, as the ideal student does not need to combine different tasks in any way 

– for instance, the ideal student must know how to find the invariant quantities of a curve, but needn’t 

provide a local description of a curve based on its invariant quantities (see section VII.iii.b). This may be 

called the “compartmentalization of knowledge in calculus courses” described by Winsløw et al. (2014, 

p.104). 

I have considered which subsets of the praxeologies students are tested for and in particular how 

their practical and theoretical blocks are manifested in the ideal student’s praxeologies. On the whole, it 

appears that the ideal student in MAST 218 and MATH 264 needs to know a surface version of the KT 

theoretical blocks: they need to know terms and associated formulas, in some cases have some intuitive 

image of certain concepts, and be fluent in the algorithms described by the technologies (e.g. the method 

of Lagrange multipliers). This surface acquisition of the theoretical block aids the ideal student in 

recognizing types of task that are either very or moderately routine (Selden et al., 1999) in the KT practical 

blocks, as well as in identifying the suitable technique for completing the task. I use the terms very and 

moderately routine based on the evidence that most of the final exam questions corresponded identically 

or nearly identically to a task type from a KT praxeology; as previously mentioned, the variations generally 

occurred in the form of some additional algebraic formulation that is not specific to calculus. 

 In light of the absence of theoretical blocks in the ideal student’s praxeologies, I conclude that 

these praxeologies are actually practical blocks. This places MAST 218 and MATH 264 in the stage prior to 

the first transition in university mathematics education: 

 

Taken from (Winsløw et al., 2014, p.101) 

Where Π refers to the practical block of a praxeology and Λ to its theoretical block. As discussed in section 

II.ii.b, the first transition in undergraduate mathematics studies occurs when students no longer work 

strictly within the practical block of a praxeology and begin to incorporate a theoretical block; a second 

transition occurs when students’ past theoretical blocks become their current practical blocks (e.g. when 

they start making and validating proofs).  
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I conjecture that the sequel (and mandatory) courses MAST 219 and MATH 265 follow in the same 

steps as those set by 218 and 264; I base this on the continued institutional context of the courses, both 

in terms of the students’ backgrounds and in their equally heavily-coordinated and controlled quality with 

detailed course outlines, course examiner, and common assessments. Most importantly, the curriculum 

follows in the same textbook, implying that the knowledge to be taught is of a similar flavor to that of 

218/264. Assuming that the knowledge to be learned continues similarly, this would imply that MATH and 

MAST students’ first year of undergraduate mathematics includes a sequence of courses that sets the 

ideal student’s topos prior to the first of two transitions in the learning of undergraduate mathematics. 

Section VIII.i.b: Some specifics on the ideal MAST 218 student 

The MAST 218 students are responsible for snippets of a few KT praxeologies that MATH 264 students do 

not need to learn: the standard equations of spheres and quadratic surfaces (from Π6  and Π11, 

respectively) and much of the practical block of Π2, Calculus with Parametric Curves (to be specific, the 

techniques to the tasks involve single-variable differentiation and the recall of some formulae). 

More substantially, the main peculiarity of the ideal MAST 218 student is her proficiency in the 

practical and at times theoretical blocks of Π10, Equations of Lines and Planes. This is interesting as Π10 

is a unit of knowledge that MAST 218 need to learn to succeed in the prerequisite course MATH 204 

(introductory linear algebra; see section IV.ii); but Π10 is not specific to the domain of multivariable 

calculus, and indeed its role in the knowledge to be taught seems to be mostly to support knowledge 

developed in the KT regional praxeologies Vector Functions and Partial Derivatives. Nevertheless, the 

MAST 218 student can flexibly identify and combine different task types from Π10 as necessary in order 

to find the equations of a planes and lines and planes (in the process, using (𝑇7.1.2.2, 𝜏7.1.2.2), (𝑇7.2, 𝜏7.2.1), 

and (𝑇7.3, 𝜏7.3) from the practical block of Π7, Vectors, and the notions of parallel and orthogonal vectors 

along with their relation to scalar multiplication and the dot product). Further, because the task of finding 

the equation either of a plane or line (or both) required a variation of subtasks from one exam to the next, 

I surmise that perhaps the ideal student can use the mathematical properties intrinsic to each of these 

linear algebraic situations to determine which strategy to implement (Lithner, 2004).  

Section VIII.i.c: Some specifics on the ideal MATH 264 student 

 The ideal MATH 264 student can complete any of the task types in the practical blocks of the 

following KT praxeologies: Π24 (Taylor Polynomials), Π14 (Arc Length and Curvature), and the Partial 

Derivatives-related praxeologies Π16, Π18,Π20,Π21, Π22, and Π23. (The ideal MAST 218 is responsible 

for only certain task types in each of these praxeologies.) This ideal student can also complete a few tasks 
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from the other KT praxeologies (as discussed in section VI.iii), but does not need to accomplish tasks 

specific to the KT Π7 (Vectors), Π8 (Dot Product), Π9 (Cross Product), nor Π10 (Equations of Lines and 

Planes). As discussed above in the case of the ideal MAST 218 student, the knowledge in these 

praxeologies is prerequisite to MATH 264 both mathematically and officially by departmental policies (see 

section IV.ii). Given the prominent role of lines and planes in the theoretical blocks of the KT regional 

praxeologies Vector Functions (Π12 − Π15) and Partial Derivatives (Π16 − Π23) (see section VI.ii.a to 

view the map of cross-references between the theoretical blocks of the KT praxeologies), I surmise that 

the ideal MATH 264 student needs to know the minimal subsets of Π7 − Π10 that are necessary to access 

knowledge in Π12 − Π15  and Π16 − Π23 : from Π7,  the notion and component representation of 

vectors, the notion and formula of length of a vector, the relation between scalar multiplication and 

parallel vectors, and the definition of unit vector;  to do scalar multiplication (𝑇7.1.2.2, 𝜏7.1.2.2), to express 

a vector in component form given its endpoints (𝑇7.2, 𝜏7.2.1), to find the length of a vector (𝑇7.3, 𝜏7.3), and 

to find the unit vector in the direction of a given vector (𝑇7.4, 𝜏7.4); from Π8, the definition of orthogonal 

vectors; and from Π10, the equations of lines and planes. 

 I noted in section IV.iv that MATH 264 is a gateway to a significant portion of the MATH program: 

STAT 249 (Probability I), STAT 250 (Statistics), MATH 354 (Numerical Analysis), MATH 366 (Complex 

Analysis I), MATH 370 (Ordinary Differential Equations), and MATH 464 (Real Analysis). Briefly, I note that 

the notion of partial differential equations does occur as knowledge to be learned (see section VII.iii.a; 

the ideal student can verify that a function satisfies a partial differential equation); more concretely, the 

ideal MATH 264 student certainly needs to be able to find partial derivatives of functions, a technique that 

can be handy in MATH 370. On the whole, it might be interesting to ‘compare’ the knowledge to be 

learned by the ideal student in MATH 264 with the knowledge she has to learn in these other courses, to 

investigate in what sense this course is prerequisite or prepares this student for the mathematical 

knowledge that is planned to be taught in these courses. 

Section VIII.ii: Affordances and limitations of ATD 

The ATD turns to the institutional components that can shape a student’s learning of mathematics, rather 

than the cognitive phenomena that tend to be the focus of mathematics education research (Winsløw et 

al., 2014). By using praxeologies to model the stages in a didactic transposition and with the aid of a 

reference model (see section III.i), the researcher can situate and gain insight into students’ ways of 

knowing. For instance, Hardy (2009b) explains that while calculus students operate within the practical 

blocks of a praxeology, they don’t just tacitly accept (if at all) the mathematical theoretical block but rather 
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replace it with a model idiosyncratic to their beliefs. The difficulties students may incur later in Analysis 

courses can be viewed in terms of how students need to restructure the blocks of their praxeologies by 

first dispensing of the social, cognitive, or didactic justifications they’ve adopted (Winsløw et al., 2014). 

On the whole, the study of students’ difficulties in university mathematics can benefit from an ATD 

approach as it provides a framework for addressing and interpreting the discrepancies between students’ 

praxeologies, their teachers’, the institutional, and the scholarly. 

The ATD advises to study the discrepancies among layers of a transposition in its institutional 

context. In the setting of university mathematics education, the researcher needs to account for the 

internal and external conditions and constraints determined by university and departmental policies, 

professors’ responsibilities, the structure of a course, and students’ mathematical and personal 

experiences. The external conditions brought in by the students can be exceptionally varied as universities 

increasingly recruit on the international level (Winsløw et al., 2014); variations may be especially felt in 

courses taken in the first halves of a university degree, such as calculus and analysis courses. 

In the absence of the holistic take required by ATD for describing a didactic transposition, the 

affordances of the theory may be limited in some ways. For this study, I considered only the knowledge 

to be taught and learned in a course by examining curricular documents and course assessments. I used 

my model of KT to model KL by tracing tasks in the exam questions back to similar tasks in the KT 

praxeologies (see section VII.ii on my methodology). In the absence of a model of the knowledge actually 

taught, however, this approach proved tenuous in treating unusual exam questions. These occurred 

chiefly in a few questions on one of the earlier MATH 264 exams and in the form of (MATH 264) bonus 

questions. I took the examiner’s choice to position certain questions as bonuses as an indication that the 

knowledge (in both theoretical and practical senses) required to solve them is not essential for MATH 264 

students to learn. I therefore chose to exclude these from my model. As for the non-bonus unusual 

questions, the techniques required to solve them proved unfit to be described as a subset of KT. Access 

to the knowledge actually taught would have indicated the extent to which these questions were indeed 

unusual, and perhaps pointed at the strategy expected of students. Thus, my methodology of describing 

KL tasks in terms of KT tasks was insufficient to capture instances of KL that deviated from the norm. By 

and large, the exam questions lent themselves well to this methodology and the fringe cases were scarce, 

so this was not a significant problem in this study. But perhaps for courses that have a less heavily-

coordinated flavor and with more variation in the assessments, an introductory study that considers only 
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fragments of a didactic transposition might not be as appropriate or might require some changes in the 

methodology. 
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Chapter IX: Conclusions 

I open my concluding chapter with a review of the core components of this study: this consists of a 

recapitulation of my work with some intermittent remarks on the advantages and pitfalls of the 

methodology. I follow with some conjectures about the implications of what MAST 218 and MATH 264 

students need or don’t necessarily need to learn; and I finish with a suggestion for follow-up research. 

Section IX.i: Review 

The goal of this study was to determine the minimal units of knowledge that are essential for MAST 218 

and MATH 264 students to learn in order to provide acceptable solutions in their final exams. To identify 

these ‘bare necessities,’ I used an approach based on the ATD. I extracted a model of the knowledge to 

be taught from the curricular documents; I did this by identifying praxeologies and their practical and 

theoretical blocks in the textbook sections listed on the course outline. I then modelled the knowledge to 

be learned as a subset of the KT by identifying sequences of tasks and techniques from the model of KT 

that form a solution for each final exam question. I did this for all (non-bonus) questions in six past final 

exams for each of MAST 218 and MATH 264 from the recent past (2012-2015); given the heavily-

coordinated quality of these courses from one term to the next, I presume the sum of six finals for each 

course is representative of the knowledge to be learned by students in any particular term. 

 This work resulted in the creation of a model of the KT in the shape of 24 local praxeologies that 

reflect the 24 sections listed on the course outline. I represented the practical block of each praxeology in 

the form of a tree; in the place of vertices I wrote a more or less direct description of the tasks and 

techniques, and used arrows to indicate whether the endpoint is a task or technique. Given that most of 

the practical blocks included a substantial number of different types of tasks and associated techniques, I 

found it helpful to represent each practical block as a graph. I also listed the components (definitions, 

theorems…) of the theoretical block that frames each of these practical blocks; the pitfall is that these lists 

do not reflect the discourse that combines the items therein, which is key to the makings of a theoretical 

block as the components of theory and technology are not discrete. To make up for this shortcoming, I 

attached the relevant excerpts from the textbook as a reference in Appendix D.  Finally, I created a grid 

mapping the cross-references (in the sense that a term or concept from one section is used later on in 

another section) made between the praxeologies’ theoretical blocks. This grid reflects cross-references 

that are generally implicit in the text, meaning that it is up to the reader to recognize previously-defined 

terms or concepts and recoup their meaning. I also cross-referenced tasks and techniques in the practical 

blocks; in particular, in the description of a given technique, I identified steps that correspond to tasks 
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that occur elsewhere (be it in the same or a different practical block). While my models of the practical 

and theoretical block of each praxeology depict the mathematical knowledge and activity specific to the 

praxeology, the cross-referencing between the blocks identified the mathematical knowledge and activity 

that are ‘prerequisite’ for each praxeology. The cross-referencing uncovered further dynamics of the 

knowledge to be taught. For instance, it pointed at some praxeologies which are heavily referenced by 

other praxeologies, suggesting that they may be taught for their prerequisite capacity (e.g. the 

praxeologies that belong to the domain of linear algebra). 

 In a first step toward a model of the KL, I used the practical blocks of the KT Π to identify the 

sequences (𝑇𝑖, 𝜏𝑖)𝑖  that describe a solution. A potential dent in the methodology here is that I did not 

account for flexibility in the creation of a solution; while solutions to a particular exam question may vary 

to some extent, I described the solution of each exam question  using only one sequence of task-technique 

pairs from the KT ; I based the choice of (𝑇𝑖, 𝜏𝑖)𝑖 on the operational definition of the KL as a subset of the 

KT, meaning that I described solutions to exam questions in terms of pairs (𝑇𝑖 , 𝜏𝑖)𝑖 that solve the ‘problem’ 

in the quickest possible way – thereby circumventing other, perhaps longer, sequences (𝑇𝑖, 𝜏𝑖)𝑖  that 

would function as solutions just as well but perhaps require different units of knowledge. 

 The model of the KL consists of regional praxeologies unified by a mostly absent theoretical block, 

in the sense that students can do tasks and techniques in these praxeologies without knowing the theory 

or technology that explain and justify them. I partition each regional praxeology of the KL among the local 

praxeologies of the KT and describe the tasks within in a more or less direct way; the techniques are given 

by the set of (𝑇𝑖, 𝜏𝑖)𝑖  (from the practical blocks of the KT) required for the completion of the task. The 

representation of the KL in terms of the local praxeologies of the KT as well as in terms of the tasks and 

techniques of the KT has the advantage that it directly relates the KL to the KT. The readily-available link 

between the KT and the KL can suggest the transposition that occurs between the two. 

 I capped my findings on the knowledge to be learned in MAST 218 and MATH 264 with a discussion 

of what the ideal student in each course might look like. That is, I described the praxeologies that would 

enable a student in each course to provide acceptable solutions in the final exam. I inferred from the 

models of the KL that the praxeologies of the ideal student – in either course – are subsets of the practical 

blocks in the KT; the theoretical blocks of the KT are not required to be learned in more than a superficial 

and compartmentalized sense. Students need to recognize terms and have a surface definition for them. 

For instance, it’s necessary for the ideal student to know that the normal to a curve at a point is a line (or 

vector) orthogonal to the curve. It’s also necessary to know the associated formulas. It’s not necessary to 
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explain the intrinsic mathematical properties or uses of components of the theoretical blocks, however. 

For instance, the ideal student needn’t know the utility of an equation for the tangent plane to a surface; 

the ideal student need only be able to find such an equation in certain circumstances (e.g. given the 

equation for a level surface and a point that it contains). 

On the whole, it seems that the ideal student can get by with a compartmentalized subset of the 

KT praxeologies. A model of the knowledge actually learned by students in these courses would indicate 

more concretely the nature of students’ theoretical blocks. For instance, in a study of students’ learning 

of single-variable calculus, Hardy (2009b) used elements of the ATD and found that students use social, 

cognitive, and didactic reasoning to justify and explain the tasks and techniques with which they engage. 

In any case, the evidence from this study seems sufficient to suggest that the KL in MAST 218 and MATH 

264 exists almost strictly within the practical blocks of the praxeologies of the KT. This situates the ideal 

student for both these courses in a stage prior to the first transition of university mathematics education 

(see section II.ii.b). Given the indications that MAST 219 and MATH 265, the second halves of the two-

term approach to multivariable calculus, are similar in content and quality to MAST 218 and MATH 264 

(the textbook, the format of course outlines, grading schemes, and multi-section quality remain 

unchanged), this suggests that the first year of MAST and MATH students’ mathematical studies includes 

a sequence of courses where it is not essential to make theoretical considerations. 

Section IX.ii: Conjectures  

Based on what was just discussed at the end of section IX.i and on the collected evidence and analysis of 

the praxeologies of the KL (section VI.iii, where I present the model of the KL), I conjecture implications of 

certain gaps in the knowledge that’s necessary for MAST 218 and MATH 264 students to learn. I focus on 

two matters in particular given their prominent role in my reference model: the absence of the concepts 

of limit, continuity, and differentiation in the knowledge that’s essential for students to learn; and the role 

(or lack thereof) of curves and surfaces in the knowledge to be learned. 

Section IX.ii.a: Limits, continuity, and differentiation matters 

A subset of the theoretical blocks of KT Π that vanishes in the transposition from KT to KL includes the 

concepts of limit, continuity, and differentiability. Both MAST and MATH students can be successful in 

their first multivariable calculus courses and not have an image of limits, continuity, and differentiability 

that is rooted in the mathematical definitions of the terms. For that matter, the ideal student in both 

courses can get by without even knowing the terms ‘continuous’ and ‘differentiable’; these are part of the 

theory in the KT that justifies and explains when certain technologies (e.g. partial derivatives) are defined, 
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but in final exams the functions given are always continuous and differentiable. Students are not tasked 

with determining nor acknowledging that these conditions are satisfied. The situation is similar with limits. 

It is enough for students’ knowledge of limits to be confined to the point praxeologies built around the 

tasks of ‘finding the limit of a two-variable function at a point of indetermination (specifically when this 

point is the origin)’ and ‘showing the limit of a rational two-variable function does not exist at the origin.’ 

The requisite theoretical knowledge for the former includes properties of limits, the Squeeze Theorem, 

and an application of a particular 𝜀 − 𝛿  argument that, in this institution, comes down to algebraic 

manipulation. To show the limit of a function does not exist, in the second case, the requisite theoretical 

knowledge is that the limit of a two-variable function at a point does not exist if the function approaches 

different values along two paths near that point – although, as discussed in section VI.iii.e, this may not 

be necessary either. At no point is it necessary for the ideal student to learn a definition of the limit of a 

function at a point that is based in any way in the formal definition.  

 I conjecture the implications of the absence of the concepts of limits, continuity, and 

differentiability being in the knowledge to be learned. As far as the ideal student is concerned, these are 

terms that happened to occur in the knowledge to be taught (and perhaps the knowledge actually taught 

as well); but as they are not an issue in the tasks students are responsible for completing, the conditions 

of limits, continuity, and differentiability are assumptions (that students can ignore) rather than 

properties of certain classes of functions. Indeed, students are not confronted with functions that fail to 

be differentiable, and only at times (in the knowledge to be taught) with a small set of functions (i.e. 

rational) that have points of discontinuity. For MATH 264 students, this might contribute to difficulties in 

Analysis where limits and continuity become the objects at the center of students’ mathematical activity 

and are no longer concepts whose significance and definition are not even requisite knowledge. 

Beyond the mathematical knowledge specific to these concepts, I wonder whether the treatment 

of properties as assumptions may contribute to a misconception about the structure of mathematics. 

MATH 264 students spend the first two terms of their mathematics degree in courses that do not require 

them to reflect or acknowledge differences between assumptions and things that need proving; or on the 

arbitrary (man-made) nature of definitions. This runs in contrast to the axiomatic nature of mathematics, 

and, I surmise, might contribute to difficulties as students transition to courses where their tasks lie in 

proving, and therefore on an understanding of the role of assumptions and conditions. 
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Section IX.ii.b: The absence of curves and surfaces 

In my reference model, I considered the multivariable calculus at the start of the transition from scholarly 

knowledge to knowledge to be taught and learned in MAST 218 and MATH 264; I viewed it as calculus 

that pertains in particular to the description of curves and surfaces. On the surface, this seems to be the 

case in the final examinations: students are asked to find geometric properties of curves and surfaces. 

However, it seems to me that students needn’t acknowledge that this is what they are doing. Their tasks 

are largely of a computational nature; the question statement includes the terms ‘curve’ and ‘surface,’ 

but the meaning of these is in their algebraic or parametric representation. As previously discussed 

(Section VIII.i.a), tangent and normal lines and planes, osculating planes and circles, etc. are terms that 

the ideal student needs to know, and be able to represent in algebraic notation; but it’s not essential for 

the ideal student to have a geometric image of these concepts. The implication of this, I think, is that 

students don’t have to be aware of the mathematical properties intrinsic to any particular task. It seems 

that the ideal student needs to learn multivariable calculus techniques but does not need to connect the 

results of these techniques to any geometric object, even though the work is largely set in 𝑅2 and 𝑅3. This 

may contribute to a perception that mathematics resides purely in symbolic representation and 

manipulations. These are undeniably crucial to mathematics, but making a habit of detaching symbols 

from their context is unsustainable in the mathematical activity that MATH 264 students are headed for.  

Section IX.iii: Follow-Up Research 

My application of the ATD to MAST 218 and MATH 264 focused on two instances in the didactic 

transposition outlined by the ATD: the knowledge to be taught and the knowledge to be learned. 

Combined, these provide a snapshot of the minimal praxeologies that students need to have in order to 

provide acceptable solutions in their final exams. The models and analyses I suggest of the KL do not 

describe what students actually learn and are not informed by what is actually taught. 

The tight time constraints to which university courses are subjected, and in particular MAST 218 

and MATH 264 given their laden curricula, contribute to a significant discrepancy between the knowledge 

to be taught and that which is actually taught. Professors have to make decisions, perhaps based on the 

established standards of final exams, regarding what to teach during class time and how to do so. In 

courses typified by procedure-driven assessments, such as calculus, it is likely for instructors to spend less 

time expanding on theory and technology (perhaps limiting themselves to the presentation of key 

definitions and theorems) and even less on the justifications and explanations that link the theoretical 

and practical blocks (Winsløw et al., 2014). In this case, only a skeleton of the theoretical block of the KT 
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praxeology remains in the knowledge actually taught as the teacher accepts the theoretical justifications 

but perhaps does not make explicit the links between theory and practice. The gap between knowledge 

to be taught and knowledge actually learned is significant, especially at this level of undergraduate 

mathematics studies where students’ learning is driven less by the textbook than by the instructor’s 

teachings.  

 I therefore propose to follow-up on this study with a research project that includes all steps in the 

didactic transposition in each of MAST 218 and MATH 264: the scholarly knowledge, the knowledge to be 

taught, the knowledge actually taught, the knowledge to be learned, and the knowledge actually learned. 

A full-blown approach would be necessary to make any conclusive inferences that could, perhaps, be the 

basis for recommendations for teaching and assessments. 

To capture the entire scope of a didactic transposition, and in recognition of the role of an 

institutional context in this transposition, I suggest a research project that monitors a few sections of a 

multivariable calculus course in a given term as follows. In what follows I suggest an approach to modelling 

the knowledge actually taught and actually learned, the two instances that were not addressed in the 

current study. To construct a model of the knowledge actually taught, I propose a combination of two 

approaches. A first approach is to regularly interview the instructors throughout the term to discern their 

praxeologies of the mathematics, what they plan to teach in the classroom, and to obtain instructors’ 

reflections on what they ended up teaching; this could provide a model of the knowledge actually taught 

as perceived by the instructor. A second approach might be to collect the class notes for each lesson taken 

by a number of the students (the same ones throughout the semester) and model the praxeologies found 

therein; this would provide a model of the knowledge actually taught as perceived by the students. A 

combination of the two might be helpful in tracing the transition from knowledge to be taught to 

knowledge actually learned, and situating the knowledge actually taught along the spectrum between the 

two. To model the last stage in the transposition, I propose collecting students’ final examinations and 

using their solutions as basis for a model of the knowledge actually learned. 
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Appendix B – MATH 264 Final Examinations 
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Appendix C – MATH 218/MATH 264 Course Outline 
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Appendix D – Excerpts from the Textbook for the Theoretical Blocks of 
the KT Praxeologies 
 

Π1 Curves Defined by Parametric Equations 
Parameter; parametric equations; parametric curve 

Suppose that 𝑥 and 𝑦 are both given as functions of a third variable 𝑡 (called a parameter) by the 

equations 

𝑥 = 𝑓(𝑡) 𝑦 = 𝑔(𝑡) 

(called parametric equations). Each value of 𝑡 determines a point (𝑥, 𝑦), which we can plot in a coordinate 

plane. As 𝑡  varies, the point (𝑥, 𝑦) = (𝑓(𝑡), 𝑔(𝑡))  varies and traces out a curve 𝐶,  which we call a 

parametric curve. 

p.680 

Initial and terminal points of a parametric curve 
 In general, the curve with parametric equations 

𝑥 = 𝑓(𝑡) 𝑦 = 𝑔(𝑡) 𝑎 ≤ 𝑡 ≤ 𝑏 

 has initial point (𝑓(𝑎), 𝑔(𝑎)) and terminal point (𝑓(𝑏), 𝑔(𝑏)). 

p.681 

Π2 Calculus with Parametric Curves 
Tangent of a parametric curve representing a differentiable function; concavity of a parametric 
curve 

Tags - T1 Parametric equation for a curve 

Suppose 𝑓  and 𝑔  are differentiable functions and we want to find the tangent line at a point on the 

parametric curve 𝑥 = 𝑓(𝑡), 𝑦 = 𝑔(𝑡), where 𝑦 is also a differentiable function of 𝑥. Then the Chain Rule 

gives 

𝑑𝑦

𝑑𝑡
=

𝑑𝑦

𝑑𝑥
∙
𝑑𝑥

𝑑𝑡
 

 If 
𝑑𝑥

𝑑𝑡
≠ 0, we can solve for 

𝑑𝑦

𝑑𝑥
: 

𝑑𝑦

𝑑𝑥
=

𝑑𝑦
𝑑𝑡
𝑑𝑥
𝑑𝑡

          if 
𝑑𝑥

𝑑𝑡
≠ 0 

[This equation] (which you can remember by thinking of canceling the 𝑑𝑡’s) enables us to find the slope 

𝑑𝑦/𝑑𝑥 of the tangent of a parametric curve without having to eliminate the parameter 𝑡. 

p.689 

[I]t is also useful to consider 𝑑2𝑦/𝑑𝑥2. This can be found by replacing 𝑦 by 𝑑𝑦/𝑑𝑥 in [the equation for the 

slope of the tangent to a parametric curve]: 
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𝑑2𝑦

𝑑𝑥2
=

𝑑

𝑑𝑥
(
𝑑𝑦

𝑑𝑥
) =

𝑑
𝑑𝑡

(
𝑑𝑦
𝑑𝑥

)

𝑑𝑥
𝑑𝑡

 

p.689 

This second derivative is used to determine the concavity of a parametric curve. 

Area under a parametric curve 
Tags - T1 Parametric equation for a curve 

We know that the area under a curve 𝑦 = 𝐹(𝑥) from 𝑎  to 𝑏  is 𝐴 = ∫ 𝐹(𝑥)𝑑𝑥
𝑏

𝑎
, where 𝐹(𝑥) ≥ 0. If the 

curve is traced out once by the parametric equations 𝑥 = 𝑓(𝑡) and 𝑦 = 𝑔(𝑡), 𝛼 ≤ 𝑡 ≤ 𝛽 , then we can 

calculate an area formula by using the Substitution Rule for Definite Integrals as follows: 

𝐴 = ∫ 𝑦 𝑑𝑥 = ∫ 𝑔(𝑡)𝑓′(𝑡)𝑑𝑡
𝛽

𝛼

𝑏

𝑎
 [or ∫ 𝑔(𝑡)𝑓′(𝑡)𝑑𝑡

𝛼

𝛽
 

p.691 

Arc Length of a parametric curve 
Tags - T1 Parametric equation for a curve 

If a curve 𝐶 is described by the parametric equation 𝑥 = 𝑓(𝑡), 𝑦 = 𝑔(𝑡), 𝛼 ≤ 𝑡 ≤ 𝛽, where 𝑓′ and 𝑔′ are 

continuous on [ 𝛼, 𝛽] and 𝐶 is traversed exactly once as 𝑡 increases from 𝛼 to 𝛽, then the length of 𝐶 is 

𝐿 = ∫ √(
𝑑𝑥

𝑑𝑡
)
2

+ (
𝑑𝑦

𝑑𝑡
)
2

𝑑𝑡
𝛽

𝛼

 

p.693 

Π3 Polar coordinates 
Coordinate system, Cartesian coordinates, polar coordinate system, pole, polar axis, polar 
coordinates 

A coordinate system represents a point in the plane by an ordered pair of numbers called coordinates. 

Usually we use Cartesian coordinates, which are directed distances from two perpendicular axes. Here we 

describe a coordinate system introduced by Newton, called the polar coordinate system, which is more 

convenient for many purposes. 

We choose a point in the plane that is called the pole (origin) and is labeled 𝑂. Then we draw a ray (half-

line) starting at 𝑂 called the polar axis. This axis is usually drawn horizontally to the right and corresponds 

to the positive 𝑥-axis in Cartesian coordinates. 

If 𝑃  is any other point in the plane, let 𝑟  be the distance from 𝑂  to 𝑃 and let 𝜃  be the angle (usually 

measured in radians) between the polar axis and the line 𝑂𝑃 as in Figure 1. Then the point 𝑃 is represented 

by the ordered pair (𝑟, 𝜃) and 𝑟, 𝜃 are called polar coordinates of 𝑃. We use the convention that an angle 

is positive if measured in the counterclockwise direction from the polar axis and negative in the clockwise 

direction. If 𝑃 = 𝑂, then 𝑟 = 0 and we agree that (0, 𝜃) represents that pole for any value of 𝜃. 

We extend the meaning of polar coordinates (𝑟, 𝜃) to the case in which 𝑟 is negative by agreeing that, as in 

Figure 2, the points (−𝑟, 𝜃) and (𝑟, 𝜃) lie on the same line through 𝑂 and at the same distance |𝑟| from 𝑂, 

but on opposite sides of 𝑂. If 𝑟 > 0, the point (𝑟, 𝜃) lies on the same quadrant as 𝜃; if 𝑟 < 0, it lies in the 

quadrant on the opposite side of the pole. Notice that (−𝑟, 𝜃) represents the same point as (𝑟, 𝜃 + 𝜋). 
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p.698 

Transformations between the polar and Cartesian coordinate systems  
The following relations between Cartesian and polar coordinates are based on the definition of the trigonometric 

functions and the relations established within the trigonometric unit circle. See Figure 5 on p.699.   

𝑥 = 𝑟 cos 𝜃 , 𝑦 = 𝑟 sin 𝜃  and  𝑟2 = 𝑥2 + 𝑦2, tan 𝜃 =
𝑦

𝑥
 

Tangent to a polar curve  
 Tags – T2 Tangent to a parametric curve 

The textbook derives a formula for the slope of the tangent to a polar curve 𝑟 = 𝑓(𝜃) from the formula for the 

tangent to parametric curves (T2) and an application of the product rule to the parametric equations 

𝑥 = 𝑓(𝜃) cos 𝜃,   𝑦 = 𝑓(𝜃) sin 𝜃 

𝑑𝑦

𝑑𝑥
=

𝑑𝑦
𝑑𝜃
𝑑𝑥
𝑑𝜃

=

𝑑𝑟
𝑑𝜃

sin 𝜃 + 𝑟 cos 𝜃

𝑑𝑟
𝑑𝜃

 cos 𝜃 − 𝑟 sin 𝜃
 

p.703 

Π4 Areas and Lengths in Polar Coordinates 
Area of a sector of a circle 

𝐴 =
1

2
𝑟2𝜃 

Where 𝑟 is the radius and 𝜃 is the radian measure of the central angle of the sector of a circle. 

This formula is used along with Riemann sums to “develop the formula for the area of a region whose boundary is 

given by a polar equation.” 

p.709 

Riemann sums 
Riemann sums are used to develop a formula for the area bounded by a polar curve. See p.709-710. 

Area of a region bounded by a polar curve (T4) 
The area 𝐴 of a region bounded by a polar curve 𝑟 = 𝑓(𝜃) is given by 

𝐴 = ∫
1

2
𝑟2𝑑𝜃

𝑏

𝑎

 

p.710 

Arc length of a polar curve 
Tags – T2 Arc length of a parametric curve 

The length of a curve with polar equation 𝑟 = 𝑓(𝜃), 𝑎 ≤ 𝜃 ≤ 𝑏, is 

𝐿 = ∫ √𝑟2 + (
𝑑𝑟

𝑑𝜃
)
2𝑏

𝑎

𝑑𝜃 

p.712 

This formula is derived from the formula for the arc length of a parametric curve (T2) and an application of the 

product rule. 
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Π5 Conic Sections 
Parabola; focus, directrix, vertex, and axis of a parabola 

A parabola is the set of points in a plane that are equidistant from a fixed point 𝐹 (called the focus) and a 

fixed line (called the directrix). This definition is illustrated by Figure 2. Notice that the point halfway 

between the focus and the directrix lies on the parabola; it is called the vertex. The line through the focus 

perpendicular to the directrix is called the axis of the parabola. 

p.714 

Ellipse and foci of an ellipse 
An ellipse is the set of points in a plane the sum of whose distances from two fixed points 𝐹1 and 𝐹2 is 

constant (See Figure 6). These two fixed points are called the foci (plural of focus). 

p.716 

Cartesian equation of an ellipse; vertices, major axis, and minor axis of an ellipse; symmetry of an 
ellipse 

[Consider an ellipse that has its] foci on the 𝑥-axis at the points (−𝑐, 0) and (𝑐, 0) as in Figure 7 so that the 

origin is halfway between the foci. Let the sum of the distances from a point on the ellipse to the foci be 

2𝑎 > 0. 

Then the equation of the ellipse […] [is] 

𝑥2

𝑎2
+

𝑦2

𝑏2
= 1        (∗) 

[where 𝑏2 = 𝑎2 − 𝑐2; since 𝑎2 − 𝑐2 ≤ 𝑎2, it follows that 0 < 𝑏 ≤ 𝑎.] 

The points (𝑎, 0) and (−𝑎, 0) are called the vertices of the ellipse and the line segment joining  the vertices 

is called the major axis. 

The line segment joining (0, 𝑏) and (0, −𝑏) is the minor axis. 

[Note that the equation of the ellipse] is unchanged if 𝑥 is replaced by – 𝑥 or 𝑦 is replaced by −𝑦, so the 

ellipse is symmetric about both axes. Notice that if the foci coincide, then 𝑐 = 0, so 𝑎 = 𝑏 and the ellipse 

becomes a circle with radius 𝑟 = 𝑎 = 𝑏. 

p.716 

If the foci of an ellipse are located on the 𝑦-axis at (0, ±𝑐), then we can find its equation by interchanging 

𝑥 and 𝑦 in (∗). The ellipse 

𝑥2

𝑏2
+

𝑦2

𝑎2
= 1          𝑎 ≥ 𝑏 > 0 

has foci (0, ±𝑐), where 𝑐2 = 𝑎2 − 𝑏2, and vertices (0, ±𝑎). 

p.717 

Hyperbola and foci of a hyperbola 
A hyperbola is the set of all points in a plane the difference of whose distances from two fixed points 𝐹1 

and 𝐹2 (the foci) is a constant. 

p.717 

Cartesian equation of a hyperbola; vertices of a hyperbola; symmetry of a hyperbola 
[W]hen the foci are on the 𝑥-axis at (±𝑐, 0)and the difference of distances is 
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|𝑃𝐹1| − |𝑃𝐹2| = ±2𝑎, then the equation of the hyperbola is 

𝑥2

𝑎2
−

𝑦2

𝑏2
= 1      (∗) 

where 𝑐2 = 𝑎2 + 𝑏2. Notice that the 𝑥-intercepts are again ±𝑎 and the points (𝑎, 0) and (−𝑎, 0) are the 

vertices of the hyperbola. But if we put 𝑥 = 0 in Equation (∗) we get 𝑦2 = −𝑏2, which is impossible, so 

there is no 𝑦-intercept. The hyperbola is symmetric with respect to both axes. 

To analyze the hyperbola further, we look at Equation (∗) and obtain 

𝑥2

𝑎2
= 1 +

𝑦2

𝑏2
≥ 1 

This shows that 𝑥2 ≥ 𝑎2,  so |𝑥| = √𝑥2 ≥ 𝑎.  Therefore we have 𝑥 ≥ 𝑎  or 𝑥 ≤ −𝑎.  This means that the 

hyperbola consists of two parts, called its branches. 

When we draw a hyperbola it is useful to first draw its asymptotes, which are the dashed lines 𝑦 = (
𝑏

𝑎
) 𝑥 

and 𝑦 = −(
𝑏

𝑎
) 𝑥 shown in Figure 12 (p.718). Both branches of the hyperbola approach the asymptotes; that 

is, they come arbitrarily close to the asymptotes. 

If the foci of a hyperbola are on the 𝑦-axis, then by reversing the roles of 𝑥 and 𝑦 we obtain the following 

information: 

The hyp erbola 

𝑦2

𝑎2
−

𝑥2

𝑏2
= 1 

 has foci (0, ±𝑐), where 𝑐2 = 𝑎2 + 𝑏2,vertices (0, ±𝑎), and asymptotes 𝑦 = ± (
𝑎

𝑏
) 𝑥. 

p.718 

Cartesian equation of a parabola 
 An equation of the parabola with focus (0, 𝑝) and directrix 𝑦 = −𝑝 is  

𝑥2 = 4𝑝𝑦 

p.715 

Rotation in polar coordinates 
 Tags – T3 Polar coordinates 

[T]he graph of 𝑟 = 𝑓(𝜃 − 𝛼) is the graph of 𝑟 = 𝑓(𝜃) rotated counterclockwise about the origin through 

an angle 𝛼. 

p.725 

Theorem 5.1 – Classification of conic sections by eccentricity 
Tags – T3 Polar coordinates, Transformation between Cartesian and polar coordinates 

Let 𝐹 be a fixed point (called the focus) and 𝑙 be a fixed line (called the directrix) in a plane. Let 𝑒 be a fixed 

positive number (called the eccentricity). The set of all points 𝑃 in the plane such that  

|𝑃𝐹|

|𝑃𝑙|
= 𝑒 
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(that is, the ratio of the distance from 𝐹 to the distance from 𝑙 is the constant 𝑒) is a conic section. The conic 

is  

(a) An ellipse if 𝑒 < 1 

(b) A parabola if 𝑒 = 1 

(c) A hyperbola if 𝑒 > 1 

p.722 

Theorem 5.2 – Polar equation of conic section 
Tags – T3 Polar coordinates 

 A polar equation of the form 

𝑟 =
𝑒𝑑

1±𝑒 cos 𝜃
  or 𝑟 =

𝑒𝑑

1±𝑒 sin 𝜃
 

represents a conic section with eccentricity 𝑒. The conic is an ellipse if 𝑒 < 1, a parabola if 𝑒 = 1, or a 

hyperbola if 𝑒 > 1. 

p.724 

Π6 Three-Dimensional Coordinate Systems 
Origin, coordinate axes, coordinate planes 

In order to represent points in space, we first choose a fixed point 𝑂 (the origin) and three directed lines 

through 𝑂 that are perpendicular to each other, called the coordinate axes and labeled the 𝑥-axis, 𝑦-axis, 

and 𝑧-axis. Usually we think of the 𝑥- and 𝑦-axes as being horizontal and the 𝑧-axis as being vertical, and 

we draw the orientation of the axes as in Figure 1. The direction of the 𝑧-axis is determined by the right-

hand rule as illustrated in Figure 2: If you curl the fingers of your right hand around the 𝑧-axis in the direction 

of a 90° counterclockwise rotation from the positive 𝑥-axis to the positive 𝑦-axis, then your thumb points 

in the positive direction of the 𝑧-axis. 

The three coordinate axes determine the three coordinate planes illustrated in Figure 3(a). the 𝑥𝑦-plane 

is the plane that contains the 𝑥- and 𝑦-axes; the 𝑦𝑧-plane contains the 𝑦- and 𝑧-axes; the 𝑥𝑧-plane 

contains the 𝑥- and 𝑧- axes. These three coordinate planes divide space into eight parts, called octants. 

The first octant, in the foreground, is determined by the positive axes. 

p.832 

Coordinates in space 
[I]f 𝑃 is any point in space, let 𝑎 be the (directed) distance from the 𝑦𝑧-plane to 𝑃, let 𝑏 be the distance 

from the 𝑥𝑧-plane to 𝑃, and let 𝑐 be the distance from the 𝑥𝑦-plane to 𝑃. We represent the point 𝑃 by the 

ordered triple (𝑎, 𝑏, 𝑐) of real numbers and we call 𝑎, 𝑏, and 𝑐 the coordinates of 𝑃; 𝑎 is the 𝑥-coordinate, 

𝑏 is the 𝑦-coordinate, and 𝑐 is the 𝑧-coordinate. Thus, to locate the point (𝑎, 𝑏, 𝑐), we can start at the origin 

and move 𝑎 units along the 𝑥-axis, then 𝑏 units parallel to the 𝑦-axis, and then 𝑐 units parallel to the 𝑧-axis 

as in Figure 4. 

p.832 

Projection onto the coordinate planes 
If we drop a perpendicular from 𝑃 to the 𝑥𝑦-plane, we get a point 𝑄 with coordinates (𝑎, 𝑏, 0) called the 

projection of 𝑃 onto the 𝑥𝑦-plane. Similarly 𝑅(0, 𝑏, 𝑐) and 𝑆(𝑎, 0, 𝑐) are the projections of 𝑃 onto the 𝑦𝑧-

plane and 𝑥𝑧-plane, respectively. 

p.833 
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Three-dimensional rectangular coordinate system 
The Cartesian product 𝑅 × 𝑅 × 𝑅 = {(𝑥, 𝑦, 𝑧)|𝑥, 𝑦, 𝑧 ∈ 𝑅} is the set of all ordered triples of real numbers 

and is denoted by 𝑅3. We have given a one-to-one correspondence between points 𝑃 in space and ordered 

triples (𝑎, 𝑏, 𝑐) in 𝑅3. It is called a three-dimensional rectangular coordinate system. 

p.833 

Equation in 𝑅3 
In three-dimensional analytic geometry, an equation in 𝑥, 𝑦, and 𝑧 represents a surface in 𝑅3. 

p.833 

[Note that w]hen an equation is given, we must understand from the context whether it represents a curve 

in 𝑅2 or a surface in 𝑅3. 

p.834 

An example (Example 1, p.833) is given to clarify that an equation that contains less than three variables (e.g. 𝑦 =

5), if given in 𝑅3, should be understood in that context. 

Distance formula in three dimensions 
 The distance |𝑃1𝑃2| between the points 𝑃1(𝑥1, 𝑦1, 𝑧1) and 𝑃2(𝑥2, 𝑦2, 𝑧2) is 

|𝑃1𝑃2| = √(𝑥2 − 𝑥1)
2 + (𝑦2 − 𝑦1)

2 + (𝑧2 − 𝑧1)
2 

p.835 

The proof in the textbook (p.835) constructs a rectangular box with 𝑃1(𝑥1, 𝑦1, 𝑧1) and 𝑃2(𝑥2, 𝑦2, 𝑧2) at opposite ends. 

The distance between 𝑃1 and 𝑃2 is found upon two applications of the Pythagorean Theorem and a bit of algebra 

(combining the two equations that result from the Pythagorean Theorem). 

Equation of a sphere 
 An equation of a sphere with center 𝐶(ℎ, 𝑘, 𝑙) and radius 𝑟 is 

(𝑥 − ℎ)2 + (𝑦 − 𝑘)2 + (𝑧 − 𝑙)2 = 𝑟2 

 In particular, if the center is the origin 𝑂, then an equation of the sphere is 

𝑥2 + 𝑦2 + 𝑧2 = 𝑟2 

p.835 

Π7 Vectors 
Vector; displacement vector; initial and terminal points of a vector; equivalent/equal vectors; 
and the zero vector 

The term vector is used by scientists to indicate a quantity (such as displacement or velocity or force) that 

has both magnitude and direction. 

[…] 

For instance, suppose a particle moves along a line segment from point 𝐴 to point 𝐵. The corresponding 

displacement vector 𝐯, shown in Figure 1, has initial point 𝐴 (the tail) and terminal point 𝐵 (the tip) and 

we indicate this by writing 𝐯 = 𝐴𝐵⃗⃗⃗⃗  ⃗. 

“We say that 𝐮 and 𝐯 are equivalent (or equal) and we write 𝐮 = 𝐯” if “the vector 𝐮 = 𝐶𝐷⃗⃗⃗⃗  ⃗ has the same 

length and the same direction as 𝐯 even [if] it is in a different position.” 

The zero vector, denoted by 𝟎, has length 0. It is the only vector with no specific direction. 
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p.838 

Definition of vector addition; triangle law for vector addition 
If 𝐮 and 𝐯 are vectors positioned so the initial point of 𝐯 is at the terminal point of 𝐮, then the sum 𝐮 + 𝐯 is 

the vector from the initial point of 𝐮 to the terminal point of 𝐯. 

p.838 

This is called the triangle law for vector addition. 

Definition of scalar multiplication; parallel vectors; negative of a vector 
If 𝑐 is a scalar and 𝐯 is a vector, then the scalar multiple 𝑐𝐯 is the vector whose length is |𝑐| times the length 

of 𝐯 and whose direction is the same as 𝐯 if 𝑐 > 0 and is opposite to 𝐯 if 𝑐 < 0. If 𝑐 = 0 or 𝐯 = 𝟎, then 𝑐𝐯 =

𝟎. 

p.839 

Notice that two nonzero vectors are parallel if they are scalar multiples of one another. In particular, the 

vector −𝐯 = (−1)𝐯 has the same length as 𝐯 but points in the opposite direction. We call it the negative 

of v. 

p.839 

Difference of vectors 
 By the difference 𝐮 − 𝐯 of two vectors we mean 

𝐮 − 𝐯 = 𝐮 + (−𝐯) 

p.839 

Components of a vector; representations of a vector; position vector 
If we place the initial point of a vector 𝐚 at the origin of a rectangular coordinate system, then the terminal 

point of 𝐚 has coordinates of the form (𝑎1, 𝑎2)  or (𝑎1, 𝑎2, 𝑎3) , depending on whether our coordinate 

system is two- or three-dimensional (See Figure 11). These coordinates are called the components of 𝐚 and 

we write 

𝐚 = 〈𝑎1, 𝑎2〉 or 𝐚 = 〈𝑎1, 𝑎2, 𝑎3〉 

p.840 

[T]he vectors shown in Figure 12 are all equivalent to the vector 𝑂𝑃⃗⃗⃗⃗  ⃗ = 〈3,2〉 whose terminal point is 𝑃(3,2). 

What they have in common is that the terminal point is reached from the initial point by a displacement of 

three units to the right and two upward. We can think of all these geometric vectors as representations of 

the algebraic vector 𝐚 = 〈3,2〉. The particular representation 𝑂𝑃⃗⃗⃗⃗  ⃗  from the origin to the point 𝑃(3,2) is 

called the position vector of the point 𝑃. 

In three dimensions, the vector 𝐚 = 𝑂𝑃⃗⃗⃗⃗  ⃗ = 〈𝑎1, 𝑎2, 𝑎3〉 is the position vector of the point 𝑃(𝑎1, 𝑎2, 𝑎3). 

p.840 

Relation between the representation of a vector and the vector 
 Given the points 𝐴(𝑥1, 𝑦1, 𝑧1) and 𝐵(𝑥2, 𝑦2, 𝑧2), the vector 𝐚 with representation 𝐴𝐵⃗⃗⃗⃗  ⃗ is 

𝐚 = (𝑥2 − 𝑥1, 𝑦2 − 𝑦1 , 𝑧2 − 𝑧1) 

p.840 
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Magnitude/length of a vector 
The magnitude or length of the vector 𝐯 is the length of any of its representations and is denoted by the 

symbol |𝐯| or ‖𝐯‖. 

p.841 

Length of a vector in 𝑅2 and in 𝑅3 
 The length of the two-dimensional vector 𝐚 = ⟨𝑎1, 𝑎2⟩ is 

|𝐚| = √𝑎1
2 + 𝑎2

2 

The length of the three-dimensional vector 𝐚 = ⟨𝑎1, 𝑎2, 𝑎3⟩ is 

|𝐚| = √𝑎1
2 + 𝑎2

2 + 𝑎3
2 

p.841 

Algebraic vector addition and scalar multiplication 
 If 𝐚 = 〈𝑎1, 𝑎2〉 and 𝐛 = 𝑐, then 

𝐚 + 𝐛 = 〈𝑎1 + 𝑏1, 𝑎2 + 𝑏2〉  𝐚 − 𝐛 = 〈𝑎1 − 𝑏1, 𝑎2 − 𝑏2〉 

𝑐𝐚 = 〈𝑐𝑎1, 𝑐𝑎2〉 

 Similarly, for three-dimensional vectors, 

〈𝑎1, 𝑎2, 𝑎3〉  + 〈𝑏1, 𝑏2, 𝑏3〉  = 〈𝑎1 + 𝑏1, 𝑎2 + 𝑏2, 𝑎3 + 𝑏3〉  

〈𝑎1, 𝑎2, 𝑎3〉 − 〈𝑏1, 𝑏2, 𝑏3〉  = 〈𝑎1 − 𝑏1, 𝑎2 − 𝑏2, 𝑎3 − 𝑏3〉 

𝑐〈𝑎1, 𝑎2, 𝑎3〉 = 〈𝑐𝑎1, 𝑐𝑎2, 𝑐𝑎3〉 

p.841 

𝑛-dimensional vector 
 An 𝑛-dimensional vector is an ordered 𝑛-tuple: 

𝐚 = 〈𝑎1, 𝑎2, … , 𝑎𝑛〉 

Where 𝑎1, 𝑎2, … , 𝑎𝑛 are real numbers that are called the components of 𝐚. Addition and scalar 

multiplication are defined in terms of components just as for the cases 𝑛 = 2 and 𝑛 = 3. 

p.842 

We denote by 𝑉𝑛 the set of all 𝑛-dimensional vectors. 

Properties of vectors 
 If 𝐚, 𝐛, and 𝐜 are vectors in 𝑉𝑛 and 𝑐 and 𝑑 are scalars, then 

1. 𝐚 + 𝐛 = 𝐛 + 𝐚 

2. 𝐚 + (𝐛 + 𝐜) = (𝐚 + 𝐛) + 𝐜 

3. 𝐚 + 𝟎 = 𝐚 

4. 𝐚 + (−𝐚) = 𝟎 

5. 𝑐(𝐚 + 𝐛) = 𝑐𝐚 + 𝑐𝐛 

6. (𝑐 + 𝑑)𝐚 = 𝑐𝐚 + 𝑑𝐚 

7. (𝑐𝑑)𝐚 = 𝑐(𝑑𝐚) 

8. 1𝐚 = 𝐚 
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p.842 

Standard basis vectors 
Let 

𝐢 = 〈1,0,0〉 𝐣 = 〈0,1,0〉 𝐤 = 〈0,0,1〉 

 These vectors 𝐢, 𝐣, and 𝐤 are called the standard basis vectors. 

 Similarly, in two dimensions we define 𝐢 = 〈1,0〉 and 𝐣 = 〈0,1〉. 

p.842 

Unit vector 
A unit vector is a vector whose length is 1. 

p.843 

Unit vector in the direction of a given vector 
In general, if 𝐚 ≠ 𝟎, then the unit vector that has the same direction as 𝐚 is 

𝐮 =
1

|𝐚|
𝐚 =

𝐚

|𝐚|
 

p.843 

Π8 Dot Product 
Dot/scalar/inner product 
 Tags – T7 Components of a vector 

If 𝐚 = 〈𝑎1, 𝑎2, 𝑎3〉 and 𝐛 = 〈𝑏1, 𝑏2, 𝑏3〉, then the dot product [also called scalar product or inner product] 

of 𝐚 and 𝐛 is the number 𝐚 ∙ 𝐛 given by 

𝐚 ∙ 𝐛 = 𝑎1𝑏1 + 𝑎2𝑏2 + 𝑎3𝑏3 

p.847 

Properties of the Dot Product 
Tags – T7 Vectors, 𝑉3, magnitude of a vector, algebraic vector addition and scalar 
multiplication, zero vector 

 If 𝐚, 𝐛, and 𝐜 are vectors in 𝑉3 and 𝑐 is a scalar, then 

1. 𝐚 ∙ 𝐚 = |𝐚|𝟐 

2. 𝐚 ∙ 𝐛 = 𝐛 ∙ 𝐚 

3. 𝐚 ∙ (𝐛 + 𝐜) = 𝐚 ∙ 𝐛 + 𝐚 ∙ 𝐜 

4. (𝑐𝐚) ∙ 𝐛 = 𝑐(𝐚 ∙ 𝐛) = 𝐚 ∙ (𝑐𝐛) 

5. 𝟎 ∙ 𝐚 = 0 

p.847 

The proof of these properties (p.848) relies mainly on the definition of dot product and some algebraic 

manipulations. 

Angle between two vectors 
 Tags – T7 Representations of a vector, parallel vectors 

[T]he angle 𝜽 between 𝐚 and 𝐛 … is defined to be the angle between the representations of 𝐚 and 𝐛 that 

start at the origin, where 0 ≤ 𝜃 ≤ 𝜋. 
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 Note that if 𝐚 and 𝐛 are parallel vectors, then 𝜃 = 0 or 𝜃 = 𝜋. 

p.848 

Theorem 8.1: the dot product of two vectors and the angle between them18 
 Tags – T7 Vectors, magnitude of a vector 

 If 𝜃 is the angle between the vectors 𝐚 and 𝐛, then  

𝐚 ∙ 𝐛 = |𝐚||𝐛| cos 𝜃 

p.848 

The proof in the textbook (p.848) uses the Law of Cosines to establish an equation involving the vectors 𝐚 and 𝐛; 

properties of the dot product are then applied to manipulate this equation. 

Orthogonal (perpendicular) vectors 
 Tags – T7 Vectors 

Two nonzero vectors 𝐚 and 𝐛 are called perpendicular or orthogonal if the angle between them is 𝜃 =
𝜋

2
. 

The zero vector 𝟎 is considered to be perpendicular to all vectors. 

p.849 

Orthogonality and dot product 
 Tags – T7 Vectors, magnitude of a vector 

[Theorem 8.1] gives 

𝐚 ∙ 𝐛 = |𝐚||𝐛| cos
𝜋

2
= 0 

and conversely if 𝐚 ∙ 𝐛 = 0, then cos 𝜃 = 0, so 𝜃 =
𝜋

2
. 

 [Therefore, t]wo vectors 𝐚 and 𝐛 are orthogonal if and only if 𝐚 ∙ 𝐛 = 0. 

p.849 

Direction angles and direction cosines of a vector 
 Tags – T7 Vectors, magnitude of a vector, standard basis vectors 

The direction angles of a nonzero vector 𝐚 are the angles 𝛼, 𝛽, and 𝛾 (in the interval [0, 𝜋]) that 𝐚 makes 

with the positive 𝑥-, 𝑦-, and 𝑧-axes, respectively. (See Figure 3.) 

The cosines of these direction angles, cos 𝛼 , cos 𝛽, and cos 𝛾, are called the direction cosines of the vector 

𝐚. Using [Theorem 8.1,] we obtain 

cos 𝛼 =
𝐚 ∙ 𝐢

|𝐚||𝐢|
=

𝑎1

|𝐚|
 

Similarly, we also have 

cos 𝛽 =
𝑎2

|𝐚|
 cos 𝛾 =

𝑎3

|𝐚|
 

p.850 

                                                                 
18 The textbook acknowledges that this may be taken as the definition of dot product (p.848) 
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Components of the unit vector in the direction of a given vector 
Tags – T7 Component form of vectors, magnitude of a vector, algebraic scalar 
multiplication of a vector, unit vector in the direction of a given vector 

Recall that the direction cosines of a vector 𝐚 = (𝑎1, 𝑎2, 𝑎3) are 

cos 𝛼 =
𝑎1

|𝐚|
 cos 𝛽 =

𝑎2

|𝐚|
 cos 𝛾 =

𝑎3

|𝐚|
 

 

By squaring the expressions in [these equations] and adding, we see that 

cos2 𝛼 + cos2 𝛽 + cos2 𝛾 = 1 

We can also use [these equations] to write 

𝐚 = 〈𝑎1, 𝑎2, 𝑎3〉 = 〈|𝐚| cos 𝛼 , |𝐚| cos 𝛽 , |𝐚| cos 𝛾〉 

= |𝐚|〈cos 𝛼 , cos 𝛽 , cos 𝛾〉 

Which says that the direction cosines of 𝐚 are the components of the unit vector in the direction of 𝐚. 

p.850 

Vector projection, scalar projections 
Tags – T7 Representations of vectors, initial point of a vector, magnitude of a vector 

Figure 4 shows representations 𝑃𝑄⃗⃗⃗⃗  ⃗ and 𝑃𝑅⃗⃗⃗⃗  ⃗ of two vectors 𝐚 and 𝐛 with the same initial point 𝑃. If 𝑆 is the 

foot of the perpendicular from 𝑅 to the line containing 𝑃𝑄⃗⃗⃗⃗  ⃗, then the vector with representation 𝑃𝑆⃗⃗ ⃗⃗   is called 

the vector projection of 𝐛 onto 𝐚 and is denoted by proj𝐚𝐛. 

The scalar projection of 𝑏 onto 𝑎 (also called the component of 𝐛 along 𝐚) is defined to be the signed 

magnitude of the vector projection, which is the number |𝐛| cos 𝜃, where 𝜃 is the angle between 𝐚 and 𝐛. 

(See Figure 5.) This is denoted by comp𝐚𝐛. Observe that it is negative if 
𝜋

2
≤ 𝜃 ≤ 𝜋. The equation 

𝐚 ∙ 𝐛 = |𝐚||𝐛| cos 𝜃 = |𝐚|(|𝐛| cos 𝜃) 

shows that the dot product of 𝐚 and 𝐛 can be interpreted as the length of 𝐚 times the scalar projection of 

𝐛 onto 𝐚. We summarize these ideas as follows. 

Scalar projection of 𝐛 onto 𝐚: comp𝐚𝐛 =
𝐚∙𝐛

|𝐚|
 

Vector projection of 𝐛 onto 𝐚: proj𝐚𝐛 = (
𝐚∙𝐛

|𝐚|
)

𝐚

|𝐚|
=

𝐚∙𝐛

|𝐚|𝟐
𝐚 

p.851 

Displacement vector of an object; work done by a constant force 
 Tags – T7 Vectors, magnitude of a vector 

In Section 5.4 we defined the work done by a constant force 𝐹 in moving an object through a distance 𝑑 

as 𝑊 = 𝐹𝑑, but this applies only when the force is directed along the line of motion of the object. 

Suppose, however, that the constant force is a vector 𝐅 = 𝑃𝑅⃗⃗⃗⃗  ⃗ pointing in some other direction, as in 

Figure 6. If the force moves the object from 𝑃 to 𝑄, then the displacement vector is 𝐃 = 𝑃𝑄⃗⃗⃗⃗  ⃗. The work 

done by this force along 𝐃 and the distance moved: 

𝑊 = (|𝐅| cos 𝜃)|𝐃| 
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But then, from Theorem 8.1, we have 

𝑊 = |𝐅||𝐃| cos 𝜃 = 𝐅 ∙ 𝐃 

Thus the work done by a constant force 𝐅 is the dot product 𝐅 ∙ 𝐃, where 𝐃 is the displacement vector. 

p.851-2 

Π9 Cross Product 
Cross product (vector product); determinants of order 2 and 3  
 Tags – T7 Component form of a vector 

  T8 Orthogonal vectors 

 If 𝐚 = 〈𝑎1, 𝑎2, 𝑎3〉 and 𝐛 = 〈𝑏1, 𝑏2, 𝑏3〉, then the cross product of 𝐚 and 𝐛 is the vector 

𝐚 × 𝐛 = 〈𝑎2𝑏3 − 𝑎3𝑏2, 𝑎3𝑏1 − 𝑎1𝑏3, 𝑎1𝑏2 − 𝑎2𝑏1〉 

[The cross product] is also called the vector product. Note that 𝐚 × 𝐛 is defined only when 𝐚 and 𝐛 are 

three-dimensional vectors. 

p.855 

This definition is preceded by some computations with dot products to demonstrate the link between the definition 

of cross product and the search for a vector perpendicular to two given vectors. 

In order to make [this definition] easier to remember, we use the notation of determinants. A determinant 

of order 𝟐 is defined by 

|
𝑎 𝑏
𝑐 𝑏

| = 𝑎𝑑 − 𝑏𝑐 

 A determinant of order 𝟑 can be defined in terms of second-order determinants as follows: 

|

𝑎1 𝑎2 𝑎3

𝑏1 𝑏2 𝑏3

𝑐1 𝑐2 𝑐3

| = 𝑎1 |
𝑏2 𝑏3

𝑐2 𝑐3
| − 𝑎2 |

𝑏1 𝑏3

𝑐1 𝑐3
| + 𝑎3 |

𝑏1 𝑏2

𝑐1 𝑐2
| 

If we now rewrite [the definition of cross product] using second-order determinants and the standard basis 

vectors 𝐢, 𝐣,  and 𝐤, we see that the cross product of the vectors 𝐚 = 𝑎1𝐢 + 𝑎2𝐣 + 𝑎3𝐤 and 𝐛 = 𝑏1𝐢 + 𝑏2𝐣 +

𝑏3𝐤 is 

𝐚 × 𝐛 = |
𝑎2 𝑎3

𝑏2 𝑏3
| 𝐢 − |

𝑎1 𝑎3

𝑏1 𝑏3
| 𝐣 + |

𝑎1 𝑎2

𝑏1 𝑏2
| 𝐤 

[W]e often write 

𝐚 × 𝐛 = |
𝐢 𝐣 𝐤
𝑎1 𝑎2 𝑎3

𝑏1 𝑏2 𝑏3

| 

p.855 

Theorem 9.1: Orthogonality of the cross product 
 Tags – T7 vectors 

  T8 Orthogonality, orthogonality and dot product 

 The vector 𝐚 × 𝐛 is orthogonal to both 𝐚 and 𝐛. 

p.856 
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The proof established orthogonality by computing the dot product of 𝐚 × 𝐛 with 𝐚 and showing it is 0. 

Theorem 9.2: Magnitude of the cross product19 
 Tags – T7 Vectors, magnitude of a vector 

  T8 Angle between vectors 

 If 𝜃 is the angle between 𝐚 and 𝐛 (so 0 ≤ 𝜃 ≤ 𝜋), then 

|𝐚 × 𝐛| = |𝐚||𝐛| sin 𝜃 

p.857 

The proof follows from the definitions of cross product and length of a vector and some algebraic manipulations. 

Corollary of Theorem 9.2: parallel vectors 
 Tags – T7 vectors, parallel vectors 

Two nonzero vectors 𝐚 and 𝐛 are parallel if and only 

𝐚 × 𝐛 = 𝟎 

p.857 

Geometric interpretation of cross product 
 Tags – T7 Magnitude of a vector 

The length of the cross product 𝐚 × 𝐛 is equal to the area of the parallelogram determined by 𝐚 and 𝐛. 

p.858 

Properties of the cross product 
Tags – T7 vectors, component form of a vector, algebraic vector addition and scalar 
multiplication 

If 𝐚, 𝐛, and 𝐜 are vectors and 𝑐 is a scalar, then 

1. 𝐚 × 𝐛 = −𝐛 × 𝐚 

2. (𝑐𝐚) × 𝐛 = 𝑐(𝐚 × 𝐛) = 𝐚 × (𝑐𝐛) 

3. 𝐚 × (𝐛 + 𝐜) = 𝐚 × 𝐛 + 𝐚 × 𝐜 

4. (𝐚 + 𝐛) × 𝐜 = 𝐚 × 𝐜 + 𝐛 × 𝐜 

5. 𝐚 ∙ (𝐛 × 𝐜) = (𝐚 × 𝐛) ∙ 𝐜 

6. 𝐚 × (𝐛 × 𝐜) = (𝐚 ∙ 𝐜)𝐛 − (𝐚 ∙ 𝐛)𝐜 

p.859 

The textbook proves property 5 and notes that “these properties can be proved by writing the vectors in terms of 

their components and using the definition of a cross product” (p.859). 

Scalar triple product 
 Tags – T7 Vectors 

  T8 Dot product 

                                                                 
19 At this point, the textbook acknowledges that its definition of cross product is equivalent to defining it as a “vector 
that is perpendicular to both 𝐚 and 𝐛, whose orientation is determined by the right-hand rule, and whose length is 
|𝐚||𝐛| sin 𝜃” (p.857) 
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The product 𝐚 ∙ (𝐛 × 𝐜) that occurs in Property 5 [from Properties of the cross product] is called the scalar 

triple product of the vectors 𝐚, 𝐛, and 𝐜. Notice from Equation 12 [in the proof of property 5 (p.859)] that 

we can write the scalar triple product as a determinant: 

𝐚 ∙ (𝐛 × 𝐜) = |

𝑎1 𝑎2 𝑎3

𝑏1 𝑏2 𝑏3

𝑐1 𝑐2 𝑐3

| 

p.859 

Coplanar vectors 
 Tags - T7 Vectors 

Three vectors are said to be coplanar if they lie in the same plane (p.859). 

Geometric interpretation of triple scalar product 
 Tags – T7 Vectors, magnitude of a vector 

  T8 Angle between vectors 

The geometric significance of the scalar triple product can be seen by considering the parallelepiped 

determined by the vectors 𝐚, 𝐛, and 𝐜. (See Figure 3.) The area of the base parallelogram is 𝐴 = |𝐛 × 𝐜|. If 

𝜃 is the angle between 𝐚 and 𝐛 × 𝐜, then the height ℎ of the parallelepiped is ℎ = |𝐚|| cos 𝜃 |. (We must 

use | cos 𝜃 | instead of cos 𝜃 in case 𝜃 >
𝜋

2
. ) Therefore the volume of the parallelepiped is  

𝑉 = 𝐴ℎ = |𝐛 × 𝐚||𝐚||cos 𝜃| = |𝐚 ∙ (𝐛 × 𝐜)| 

p.859 

Therefore, to summarize: 

The volume of the parallelepiped determined by the vectors 𝐚, 𝐛, and 𝐜 is the magnitude of their scalar 

triple product: 

𝑉 = |𝐚 ∙ (𝐛 × 𝐜)| 

p.860 

Vector triple product 
The product 𝐚 × (𝐛 × 𝐜) that occurs in Property 6 [from Properties of the cross product] is called the vector 

triple product of 𝐚, 𝐛, and 𝐜. 

p.860 

Torque 
 Tags – T7 Vectors, magnitude of a vector 

  T8 Angle between vectors 

[C]onsider a force 𝐅 acting on a rigid body at a point given by a position vector 𝐫. (For instance, if we tighten 

a bolt b applying a force to a wrench as in Figure 4, we product a turning effect.) The torque 𝝉 (relative to 

the origin) is defined to be the cross product of the position and force vectors 

𝝉 = 𝐫 × 𝐅 

and measures the tendency of the body to rotate about the origin. The direction of the torque vector 

indicates the axis of rotation. According to [Theorem 2: Magnitude of the cross product], the magnitude of 

the torque vector is 
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|𝝉| = |𝐫 × 𝐅| = |𝐫||𝐟| sin 𝜃 

where 𝜃 is the angle between the position and force vectors.  

p.860 

Π10 Equations of Lines and Planes 
Point-slope form of a line 
 Tags – T6 Three-dimensional coordinate systems 

A line in the 𝑥𝑦-plane is determined when a point on the line and the direction of the line (its slope or angle 

of inclination) are given. The equation of the line can then be written using the point-slope form. 

Likewise, a line 𝐿 in three-dimensional space is determined when we know a point 𝑃0(𝑥0, 𝑦0, 𝑧0) on 𝐿 and 

the direction of 𝐿. 

p.863 

Vector equation of a line 
 Tags – T6 Three-dimensional coordinate systems 

T7 Vectors, position vectors, representation of a vector, Triangle Law for vector 
addition, parallel vectors 

  (T1 Parameters) 

In three dimensions the direction of a line is conveniently described by a vector, so we let 𝐯 be a vector 

parallel to 𝐿. Let 𝑃(𝑥, 𝑦, 𝑧) be an arbitrary point on 𝐿 and let 𝐫𝟎 and 𝐫 be the position vectors of 𝑃0 and 𝑃 

(that is, they have representations 𝑂𝑃0
⃗⃗ ⃗⃗ ⃗⃗  ⃗ and 𝑂𝑃⃗⃗⃗⃗  ⃗). If 𝐚 is the vector with representation 𝑃𝑃0

⃗⃗ ⃗⃗ ⃗⃗  ⃗, as in Figure 1, 

then the Triangle Law for vector addition gives 𝐫 = 𝐫𝟎 + 𝐚. But, since 𝐚 and 𝐯 are parallel vectors, there is a 

scalar 𝑡 such that 𝐚 = 𝑡𝐯. Thus 

𝐫 = 𝐫𝟎 + 𝑡𝐯 

which is a vector equation of 𝐿. Each value of the parameter 𝑡 gives the position vector 𝐫 of a point on 𝐿. 

In other words, as 𝑡 varies, the line is traced out by the tip of the vector 𝐫. 

p.864 

Parametric equations of a line 
 Tags – T1 Parametric equations, parameter 

T6 Three-dimensional coordinate systems 

  T7 Component form of a vector 

Parametric equations for a line through the point (𝑥0, 𝑦0, 𝑧0) and parallel to the direction vector 〈𝑎, 𝑏, 𝑐〉 

are 

𝑥 = 𝑥0 + 𝑎𝑡 𝑦 = 𝑦0 + 𝑏𝑡 𝑧 = 𝑧0 + 𝑐𝑡 

p.864 

The textbook derives the parametric equations for a line from the vector equation of a line by expressing each vector 

in component form and equating the components (p.864). 

Symmetric equations and direction numbers of a line 
 Tags – T6 Three-dimensional coordinate systems 
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  T7 Component form of a vector, parallel vectors 

[I]f a vector 𝐯 = 〈𝑎, 𝑏, 𝑐〉 is used to describe the direction of a line 𝐿, then the numbers 𝑎, 𝑏, and 𝑐 are called 

direction numbers of 𝐿. Since any vector parallel to 𝐯  could also be used, we see that any three numbers 

proportional to 𝑎, 𝑏, and 𝑐 could also be used as a set of direction numbers for 𝐿. 

Another way of describing a line 𝐿 is to eliminate the parameter 𝑡 from [its parametric equations: 𝑥 = 𝑥0 +

𝑎𝑡 𝑦 = 𝑦0 + 𝑏𝑡 𝑧 = 𝑧0 + 𝑐𝑡]. 

If none of 𝑎, 𝑏, or 𝑐 is 0, we can solve each of these equations for 𝑡: 

𝑡 =
𝑥−𝑥0

𝑎
 𝑡 =

𝑦−𝑦0

𝑏
 𝑡 =

𝑧−𝑧0

𝑐
 

Equating these results, we obtain 

𝑥 − 𝑥0

𝑎
=

𝑦 − 𝑦0

𝑏
=

𝑧 − 𝑧0

𝑐
 

These equations are called symmetric equations of 𝐿. 

If one of 𝑎, 𝑏, or 𝑐 is 0, we can still eliminate 𝑡. For instance, if 𝑎 = 0, we could write the equations of 𝐿 as 

𝑥 = 𝑥0  
𝑦−𝑦0

𝑏
=

𝑧−𝑧0

𝑐
 

This means that 𝐿 lies in the vertical plane 𝑥 = 𝑥0. 

p.865 

Vector equation of a line segment 
 Tags – T7, Vectors, properties of vectors 

 The line segment from 𝐫𝟎 to 𝐫𝟏 is given by the vector equation 

𝐫(𝑡) = (1 − 𝑡)𝐫𝟎 + 𝑡𝐫𝟏  0 ≤ 𝑡 ≤ 1 

p.866 

Normal vector of a plane 
 Tags – T7 Vectors, parallel vector 

T8 Orthogonal vector 

A single vector parallel to a plane is not enough to convey the “direction” of the plane, but a vector 

perpendicular to the plane does completely specify its direction. Thus a plane in space is determined by a 

point 𝑃0(𝑥0, 𝑦0, 𝑧0) in the plane and a vector 𝐧 that is orthogonal to the plane. This orthogonal vector 𝐧 is 

called a normal vector.  

p.867 

Vector equation of the plane 
 Tags – T6 Three-dimensional coordinate systems 

  T7 Position vectors, representation of a vector, difference of vectors 

  T8 Dot product and orthogonality, properties of the dot product 

Let 𝑃(𝑥, 𝑦, 𝑧) be an arbitrary point in the plane, and let 𝐫𝟎 and 𝐫 be the position vectors of 𝑃0 and 𝑃. Then 

the vector 𝐫 − 𝐫𝟎 is represented by 𝑃0𝑃⃗⃗⃗⃗⃗⃗  ⃗. (See Figure 6.) The normal vector 𝐧 is orthogonal to every vector 

in the given plane. In particular, 𝐧 is orthogonal to 𝐫 − 𝐫𝟎 and so we have 
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𝐧 ∙ (𝐫 − 𝐫𝟎) = 0 

which can be rewritten as  

𝐧 ∙ 𝐫 = 𝐧 ∙ 𝐫𝟎 

Either [of these equations] is called a vector equation of the plane. 

p.867 

Scalar equation of the plane 
 Tags – T6 Three-dimensional coordinate systems 

A scalar equation of the plane through the point 𝑃0(𝑥0, 𝑦0, 𝑧0) with normal vector 𝐧 = 〈𝑎, 𝑏, 𝑐〉 is 

𝑎(𝑥 − 𝑥0) + 𝑏(𝑦 − 𝑦0) + 𝑐(𝑧 − 𝑧0) = 0 

p.867 

Linear equations in 𝑅3 
 Tags – T6 Three-dimensional coordinate systems 

By collecting the terms in [the scalar equation of a plane, 𝑎(𝑥 − 𝑥0) + 𝑏(𝑦 − 𝑦0) + 𝑐(𝑧 − 𝑧0) = 0], we can 

rewrite the equation of a plane as 

𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0 

where 𝑑 = −(𝑎𝑥0 + 𝑏𝑦0 + 𝑐𝑧0). [This equation] is called a linear equation in 𝑥, 𝑦, and 𝑧. Conversely, it can 

be shown that if 𝑎, 𝑏, and 𝑐 are not all 0, then [this linear equation] represents a plane with normal vector 

〈𝑎, 𝑏, 𝑐〉. 

p.867 

Since a linear equation in 𝑥, 𝑦, and 𝑧 represents a plane and two nonparallel planes intersect in a line, it 

follows that two linear equations can represent a line. The points (𝑥, 𝑦, 𝑧) that satisfy both 𝑎1𝑥 + 𝑏1𝑦 +

𝑐1𝑧 + 𝑑1 = 0 and 𝑎2𝑥 + 𝑏2𝑦 + 𝑐2𝑧 + 𝑑2 = 0 lie on both of these planes, and so the pair of linear equations 

represents the line of intersection of the planes (if they are not parallel). 

p.869 

Distance from a point to a plane in 𝑅3 
 Tags – T6 Three-dimensional coordinate systems 

The distance 𝐷 from a point 𝑃1(𝑥1, 𝑦1, 𝑧1) to the plane 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0 is 

𝐷 =
|𝑎𝑥1 + 𝑏𝑦1 + 𝑐𝑧1 + 𝑑|

√𝑎2 + 𝑏2 + 𝑐2
 

p.870 

Skew lines 
Two lines in 𝑅3 are said to be skew if they have no intersection and are not parallel (that is, if they do not lie in the 

same plane) (p.866). Skew lines “can be viewed as lying on two parallel planes” (p.870). 

Π11 Cylinders and Quadric Sections 
Traces of a surface 

Tags – T6 Three-dimensional coordinate systems 
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[T]he curves of intersection of [a] surface with planes parallel to the coordinate planes […] are called traces 

(or cross-sections) of the surface. 

p.874 

Cylinder; rulings of a cylinder 
Tags – T6 Three-dimensional coordinate systems 

A cylinder is a surface that consists of all lines (called rulings) that are parallel to a given line and pass 

through a given plane curve. 

p.874 

If one of the variables 𝑥, 𝑦, or 𝑧 is missing from the equation of a surface, then the surface is a cylinder. 

p.874 

Quadric surface 
Tags –  T6 Three-dimensional coordinate systems 

  T5 Conic sections 

A quadric surface is the graph of a second-degree equation in three variables 𝑥, 𝑦, and 𝑧. The most general 

such equation is  

𝐴𝑥2 + 𝐵𝑦2 + 𝐶𝑧2 + 𝐷𝑥𝑦 + 𝐸𝑦𝑧 + 𝐹𝑥𝑧 + 𝐺𝑥 + 𝐻𝑦 + 𝐼𝑧 + 𝐽 = 0 

where 𝐴, 𝐵, 𝐶, … , 𝐽 are constants, but by translation and rotation it can be brought into one of the two 

standard forms 

𝐴𝑥2 + 𝐵𝑦2 + 𝐶𝑧2 + 𝐽 = 0 or 𝐴𝑥2 + 𝐵𝑦2 + 𝐼𝑧 = 0 

Quadric surfaces are the counterparts in three dimensions of the conic sections in the plane. 

 p.875 

Ellipsoid 
Tags –  T6 Three-dimensional coordinate systems 

  T5 Conic sections 

An ellipsoid is a quadric surface all of whose traces are ellipses: 

𝑥2

𝑎2
+

𝑦2

𝑏2
+

𝑧2

𝑐2
= 1 

If  𝑎 = 𝑏 = 𝑐, the ellipsoid is a sphere. 

p.877 

Elliptic paraboloid 
Tags –  T6 Three-dimensional coordinate systems 

  T5 Conic sections 

An elliptic paraboloid is a quadric surface whose horizontal traces are ellipses and vertical traces parabolas; the 

“variable raised to the first power indicates the axis of the paraboloid”: 

𝑧

𝑐
=

𝑥2

𝑎2
+

𝑦2

𝑏2
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p.877 

Hyperbolic paraboloid 
Tags –  T6 Three-dimensional coordinate systems 

  T5 Conic sections 

A hyperbolic paraboloid is a quadric surface whose horizontal traces are hyperbolas and vertical traces parabolas: 

𝑧

𝑐
=

𝑥2

𝑎2
−

𝑦2

𝑏2
 

Cone 
Tags –  T6 Three-dimensional coordinate systems 

  T5 Conic sections 

A cone is a quadric surface whose horizontal traces are ellipses and “vertical traces in the planes 𝑥 = 𝑘 and 𝑦 = 𝑘 

are hyperbolas if 𝑘 ≠ 0 but are pairs of lines if 𝑘 = 0”: 

𝑧2

𝑐2
=

𝑥2

𝑎2
+

𝑦2

𝑏2
 

p.877 

Hyperboloid of one sheet 
Tags –  T6 Three-dimensional coordinate systems 

  T5 Conic sections 

A hyperboloid of one sheet is a quadric surface whose horizontal traces are ellipses and vertical traces hyperbolas; 

“the axis of symmetry corresponds to the variable whose coefficient is negative”: 

𝑥2

𝑎2
+

𝑦2

𝑏2
−

𝑧2

𝑐2
= 1 

p.877 

Hyperboloid of two sheets 
Tags –  T6 Three-dimensional coordinate systems 

  T5 Conic sections 

A hyperboloid of two sheets is a quadric surface whose horizontal traces in 𝑧 = 𝑘 are ellipses if 𝑘 > 𝑐 or 𝑘 < −𝑐 

and vertical traces are hyperbolas; the two minus signs indicate two sheets: 

−
𝑥2

𝑎2
−

𝑦2

𝑏2
+

𝑧2

𝑐2
= 1 

p.877 

Π12 Vector Functions and Space Curves 
Vector-valued function; component functions of a vector function 
 Tags – T7 Vectors, 𝑉3, component form of a vector/components of a vector 

In general, a function if a rule that assigns to each element in the domain an element in the range. A vector-

valued function, or vector function, is simply a function whose domain is a set of real numbers and whose 

range is a set of vectors. We are most interested in vector functions 𝐫 whose values are three-dimensional 
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vectors. This means that for every number 𝑡 in the domain of 𝐫 there is a unique vector in 𝑉3 denoted by 

𝐫(𝑡).  If 𝑓(𝑡), 𝑔(𝑡),  and ℎ(𝑡)  are the components of the vector 𝐫(𝑡),  then 𝑓, 𝑔,  and ℎ  are real-valued 

functions called the component functions of 𝐫 and we can write 

𝐫(𝑡) = 〈𝑓(𝑡), 𝑔(𝑡), ℎ(𝑡)〉 = 𝑓(𝑡)𝐢 + 𝑔(𝑡)𝐣 + ℎ(𝑡)𝐤 

We use the letter 𝑡 to denote the independent variable because it represents time in most applications of 

vector functions. 

p.888 

Limit of a vector function 
 Tags – T7 Vectors, component form of a vector/components of a vector 

 If 𝐫(𝑡) = 〈𝑓(𝑡), 𝑔(𝑡), ℎ(𝑡)〉, then 

lim
𝑡→𝑎

𝐫(𝑡) = 〈lim
𝑡→𝑎

𝑓(𝑡), lim
𝑡→𝑎

𝑔(𝑡), lim
𝑡→𝑎

ℎ(𝑡)〉 

 provided the limits of the component functions exist. 

p.888 

Continuous vector function 
Tags – T7 Vectors, component form of a vector/components of a vector 

 A vector function 𝐫 is continuous at 𝒂 if  

lim
𝑡→𝑎

𝐫(𝑡) = 𝐫(𝑎) 

In view of [the definition of the limit of a vector function], we see that 𝐫 is continuous at 𝑎 if and only if its 

component functions 𝑓, 𝑔, and ℎ are continuous at 𝑎. 

p.889 

Space curve; parametric equations of a space curve; parameter 
 Tags –  T6 Three-dimensional coordinate systems 

  (T1 – Parametric equations of a curve, parameter, plane curves) 

T7 Vector, component form of a vector, position vector of a point, standard basis 
vectors 

There is a close connection between continuous vector functions and space curves. Suppose that 𝑓, 𝑔, and 

ℎ are continuous real-valued functions on an interval 𝐼. Then the set 𝐶 of all points (𝑥, 𝑦, 𝑧) in space, where 

𝑥 = 𝑓(𝑡) 𝑦 = 𝑔(𝑡) 𝑧 = ℎ(𝑡) (∗) 

and 𝑡 varies throughout the interval 𝐼, is called a space curve. The equations in (∗) are called parametric 

equations of 𝑪 and 𝑡 is called a parameter. We can think of 𝐶 as being traced out by a moving particle 

whose position at time 𝑡  is (𝑓(𝑡), 𝑔(𝑡), ℎ(𝑡)).  If we now consider the vector function 𝐫(𝑡) =

〈𝑓(𝑡), 𝑔(𝑡), ℎ(𝑡)〉 , then 𝐫(𝑡)  is the position vector of the point 𝑃(𝑓(𝑡), 𝑔(𝑡), ℎ(𝑡))  on 𝐶.  Thus any 

continuous vector function 𝐫 defines a space curve 𝐶 that is traced out by the tip of the moving vector 𝐫(𝑡), 

as shown in Figure 1. 

p.889 

Plane curves can also be represented in vector notation. For instance, the curve given by the parametric 

equations 𝑥 = 𝑡2 − 2𝑡 and 𝑦 = 𝑡 + 1 could also be described by the vector equation 
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𝑟(𝑡) = 〈𝑡2 − 2𝑡, 𝑡 + 1〉 = (𝑡2 − 2𝑡)𝐢 + (𝑡 + 1)𝐣 

 where 𝐢 = 〈1,0〉 and 𝐣 = 〈0,1〉. 

p.889 

 

Π13 Derivatives and Integrals of Vector Functions 
Derivative of a vector function; tangent vector; tangent line; unit tangent vector 
 Tags – T12 Vector functions 

T7 Position vectors, difference of vectors, scalar multiple of a vector, magnitude 
of a vector, unit vector 

The derivative 𝐫′ of a vector function 𝐫 is defined in much the same way as for real-valued functions:  

𝑑𝐫

𝑑𝑡
= 𝐫′(𝑡) = lim

ℎ→0

𝐫(𝑡 + ℎ) − 𝐫(𝑡)

ℎ
 

if this limit exists. The geometric significance of this definition is shown in Figure 1. If the points 𝑃 and 𝑄 

have position vectors 𝐫(𝑡)  and 𝐫(𝑡 + ℎ) , then 𝑃𝑄⃗⃗⃗⃗  ⃗  represents the vector 𝐫(𝑡 + ℎ) − 𝐫(𝑡) , which can 

therefore be regarded as a secant vector. If ℎ > 0, the scalar multiple (
1

ℎ
) (𝐫(𝑡 + ℎ) − 𝐫(𝑡)) has the same 

direction as 𝐫(𝑡 + ℎ) − 𝐫(𝑡). As ℎ → 0, it appears that this vector approaches a vector that lies on the 

tangent line. For this reason, the vector 𝐫′(𝑡) is called the tangent vector to the curve defined by 𝐫 at the 

point 𝑃,  provided that 𝐫′(𝑡)  exists and 𝐫′(𝑡) ≠ 𝟎.  The tangent line to 𝐶  at 𝑃  is defined to be the line 

through 𝑃 parallel to the tangent vector 𝐫′(𝑡). We will also have occasion to consider the unit tangent 

vector, which is 

𝐓(𝑡) =
𝐫′(𝑡)

|𝐫′(𝑡)|
 

p.896 

Theorem 13.1: derivative of a vector function 
 Tags – T12 Vector functions 

  T7 Components of a vector, standard basis vectors, properties of vectors 

If 𝐫(𝑡) = 〈𝑓(𝑡), 𝑔(𝑡), ℎ(𝑡)〉 = 𝑓(𝑡)𝐢 + 𝑔(𝑡)𝐣 + ℎ(𝑡)𝐤, where 𝑓, 𝑔, and ℎ are differentiable functions, then 

𝐫′(t) = 〈𝑓′(t), 𝑔′(t), ℎ′(𝑡)〉 = 𝑓′(𝑡)𝐢 + 𝑔′(𝑡)𝐣 + ℎ′(𝑡)𝐤 

p.896 

The proof in the textbook (p.896) relies on the definition of derivative of a vector function, properties of vector 

addition and scalar multiplication (T7), and the definition of the derivative of real-valued functions. 

Theorem 13.2: differentiation rules20 
 Tags – T12 Vector functions 

  T7 Vector addition and scalar multiplication 

                                                                 
20 There are virtually no tasks to be taught that require these rules; there’s just one example in the textbook that 
demonstrates their utility, but nothing more. 
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  T8 Dot product 

  T9 Cross product 

Suppose 𝐮 and 𝐯 are differentiable vector functions, 𝑐 is a scalar, and 𝑓 is a real-valued function. Then 

1. 
𝑑

𝑑𝑡
[𝐮(𝑡) + 𝐯(𝑡)] = 𝐮′(𝑡) + 𝐯′(𝑡) 

2. 
𝑑

𝑑𝑡
[𝑐𝐮(𝑡)] = 𝑐𝐮′(𝑡) 

3. 
𝑑

𝑑𝑡
[𝑓(𝑡)𝐮(𝑡)] = 𝑓′(𝑡)𝐮(𝑡) + 𝑓(𝑡)𝐮′(𝑡) 

4. 
𝑑

𝑑𝑡
[𝐮(𝑡) ∙ 𝐯(𝑡)] = 𝐮′(𝑡) ∙ 𝐯(𝑡) + 𝐮(𝑡) ∙ 𝐯′(𝑡) 

5. 
𝑑

𝑑𝑡
[𝐮(𝑡) × 𝐯(𝑡)] = 𝐮′(𝑡) × 𝐯(𝑡) + 𝐮(𝑡) × 𝐯′(𝑡) 

6. 
𝑑

𝑑𝑡
[𝐮(𝑓(𝑡))] = 𝑓′(𝑡)𝐮′(𝑓(𝑡)) (Chain Rule) 

p.898 

The textbook notes that “[t]his theorem can be proved either directly from [the definition of the derivative of a 

vector function] or by using [Theorem 13.1] and the corresponding differentiation formulas for real-valued 

functions” (p.898). The proof for Formula 4 is provided (p.898). 

Second derivative of a vector function 
 Tags – T12 Vector functions 

Just as for real-valued functions, the second derivative of a vector function 𝐫 is the derivative of 𝐫′, that is, 

𝐫′′ = (𝐫′)′. 

p.898 

Integral of a continuous vector function 
 Tags – T12 Vector functions 

T7 Vectors, component form of a vector/components of a vector, standard basis 
vectors 

The definite integral of a continuous vector function 𝐫(𝑡) can be defined in much the same way as for real-

valued functions except that the integral is a vector. But then we can express the integral of 𝐫  in terms of 

the integrals of its components 𝑓, 𝑔, and ℎ as follows. 

∫ 𝐫(𝑡) 𝑑𝑡 
𝑏

𝑎
 = lim

𝑛→∞
∑ 𝐫(𝑡𝑖

∗)Δ𝑡𝑛
𝑖=1  

    = lim
𝑛→∞

[(∑ 𝑓(𝑡𝑖
∗)Δ𝑡)𝐢𝑛

𝑖=1 + (∑ 𝑔(𝑡𝑖
∗)Δ𝑡)𝐣𝑛

𝑖=1 + (∑ ℎ(𝑡𝑖
∗)Δ𝑡)𝐤]𝑛

𝑖=1  

and so 

∫ 𝐫(𝑡) 𝑑𝑡
𝑏

𝑎

= (∫ 𝑓(𝑡)𝑑𝑡
𝑏

𝑎

) 𝐢 + (∫ 𝑔(𝑡)𝑑𝑡
𝑏

𝑎

) 𝐣 + (∫ ℎ(𝑡)𝑑𝑡
𝑏

𝑎

)𝐤 

This means that we can evaluate an integral of a vector function by integrating each component function. 

p.899 

We use the notation ∫ 𝐫(𝑡)𝑑𝑡 for indefinite integrals (antiderivatives). 

p.899 
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Theorem 13.3: Fundamental theorem of calculus 
 Tags – T12 Vector functions 

  T7 Difference of vectors 

 We can extend the Fundamental Theorem of Calculus to continuous vector functions as follows: 

∫ 𝐫(𝑡)𝑑𝑡
𝑏

𝑎

= 𝐑(𝑡)]𝑎
𝑏 = 𝐑(𝑏) − 𝐑(𝑎) 

 where 𝐑 is an antiderivative of 𝐫, that is, 𝐑′(𝑡) = 𝐫(𝑡). 

p.899 

Π14 Arc Length and Curvature 
Length of a curve 
 Tags –  T13 Derivative of a vector function 

  T12 Vector equations, space curves 

T7 Magnitude of a vector 

  T6 Three-dimensional coordinate system 

  T2 Length of a parametric (plane) curve 

Suppose that [a space curve] has the vector equation 𝐫(𝑡) = 〈𝑓(𝑡), 𝑔(𝑡), ℎ(𝑡)〉, 𝑎 ≤ 𝑡 ≤ 𝑏, or, equivalently, 

the parametric equations 𝑥 = 𝑓(𝑡), 𝑦 = 𝑔(𝑡), 𝑧 = ℎ(𝑡), where 𝑓′, 𝑔′, and ℎ′ are continuous. If the curve is 

traversed exactly once as 𝑡 increases from 𝑎 to 𝑏, then it can be shown that its length is 

𝐿 = ∫ √[𝑓′(𝑡)]2 + [𝑔′(𝑡)]2 + [ℎ′(𝑡)]2𝑑𝑡
𝑏

𝑎

 

= ∫ √(
𝑑𝑥

𝑑𝑡
)
2

+ (
𝑑𝑦

𝑑𝑡
)
2

+ (
𝑑𝑧

𝑑𝑡
)
2

𝑑𝑡
𝑏

𝑎

 

Notice that both of the arc length formulas [here for space curves and in the MO T2 for plane curves] can 

be put into the more compact form 

𝐿 = ∫ |𝐫′(𝑡)|𝑑𝑡
𝑏

𝑎

 

p.902 

Arc length function; parametrizing a curve with respect to arc length 
 Tags –  T13 Derivative of a vector function  

T12 Vector functions, space curve 

  T7 Standard basis vectors, magnitude of a vector 

  (T1 Parametrization of a curve) 

 [S]uppose that 𝐶 is a curve given by a vector function 

𝐫(𝑡) = 𝑓(𝑡)𝐢 + 𝑔(𝑡)𝐣 + ℎ(𝑡)𝐤  𝑎 ≤ 𝑡 ≤ 𝑏 
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Where 𝐫’ is continuous and 𝐶 is traversed exactly once as 𝑡 increases from 𝑎 to 𝑏. We define its arc length 

function 𝑠 by 

𝑠(𝑡) = ∫ |𝐫′(𝑢)|𝑑𝑢 = ∫ √(
𝑑𝑥

𝑑𝑢
)
2

+ (
𝑑𝑦

𝑑𝑢
)
2

+ (
𝑑𝑧

𝑑𝑢
)
2

𝑑𝑢
𝑡

𝑎

𝑡

𝑎
 (∗) 

Thus 𝑠(𝑡) is the length of the part of 𝐶 between 𝐫(𝑎) and 𝐫(𝑡). (See Figure 3.) If we differentiate both sides 

of [equation (∗)] using Part 1 of the Fundamental Theorem of Calculus, we obtain 

𝑑𝑠

𝑑𝑡
= |𝐫′(𝑡)| 

It is often useful to parametrize a curve with respect to arc length because arc length arises naturally from 

the shape of the curve and does not depend on a particular coordinate system. If a curve 𝐫(𝑡) is already 

given in terms of a parameter 𝑡 and 𝑠(𝑡) is the arc length function given by [equation (∗)], then we may be 

able to solve for 𝑡  as a function of 𝑠: 𝑡 = 𝑡(𝑠). Then the curve can be reparametrized in terms of 𝑠  by 

substituting for 𝑡: 𝐫 = 𝐫(𝑡(𝑠)). 

p.903 

Curvature; smooth parametrization; smooth curve 
 Tags – T13 Tangent vector, derivative of a vector function  

T12 Parametric equations of a curve 

  T7 Magnitude of a vector, unit tangent vector 

A parametrization 𝐫(𝑡) is called smooth on an interval 𝐼 if 𝐫′ is continuous and 𝐫′(𝑡) ≠ 𝟎 on 𝐼. A curve is 

called smooth if it has a smooth parametrization. A smooth curve has no sharp corners or cusps; when the 

tangent vector turns, it does so continuously. 

If 𝐶 is a smooth curve defined by the vector function 𝐫, recall that the unit tangent vector 𝐓(𝑡) is given by 

𝐓(𝑡) =
𝐫′(𝑡)

|𝐫′(𝑡)|
 

 and indicates the direction of the curve. […] 

The curvature of 𝐶 at a given point is a measure of how quickly the curve changes direction at that point. 

Specifically, we define it to be the magnitude of the rate of change of the unit tangent vector with respect 

to arc length. (We use arc length so that the curvature will be independent of the parametrization.) Because 

the unit tangent vector has constant length, only changes in the direction contribute to the rate of change 

of 𝐓. 

The curvature of a curve is 

𝜅 = |
𝑑𝐓

𝑑𝑠
| 

 where 𝐓 is the unit tangent vector. 

The curvature is easier to compute if it is expressed in terms of the parameter 𝑡 instead of 𝑠, so we use the 

Chain Rule (Theorem 13.2.3, Formula 6) to write 

𝑑𝐓

𝑑𝑡
=

𝑑𝐓

𝑑𝑠

𝑑𝑠

𝑑𝑡
 and  𝜅 = |

𝑑𝐓

𝑑𝑠
| = |

𝑑𝐓/𝑑𝑡

𝑑𝑠/𝑑𝑡
| 

But 
𝑑𝑠

𝑑𝑡
= |𝐫′(𝑡)| from [the Fundamental Theorem of Calculus applied to the arc length function], so 
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𝜅(𝑡) =
|𝐓′(𝑡)|

|𝐫′(𝑡)|
 

p.904 

Theorem 1: Curvature of a curve using only its vector function 
 Tags –  T13 Derivative of a vector function, second derivative of a vector function 

T12 Vector functions, space curve 

  T9 Cross product 

  T7 Magnitude of a vector 

 The curvature of the curve given by the vector function 𝐫 is 

𝜅(𝑡) =
|𝐫′(𝑡) × 𝐫′′(𝑡)|

|𝐫′(𝑡)|3
 

p.904 

Corollary of Theorem 14.1: Curvature of a plane curve 
For the special case of a plane curve with equation 𝑦 = 𝑓(𝑥), we choose 𝑥 as the parameter and write 

𝐫(𝑥) = 𝑥𝐢 + 𝑓(𝑥)𝐣. Then 𝑟′(𝑥) = 𝐢 + 𝑓′(𝑥)𝐣 and 𝐫′′(𝑥) = 𝑓′′(𝑥)𝐣. Since 𝐢 × 𝐣 = 𝐤 and 𝐣 × 𝐣 = 𝟎, it follows 

that 𝐫′(𝑥) × 𝐫′′(𝑥) = 𝑓′′(𝑥)𝐤. We also have |𝐫′(𝑥)| = √1 + [𝑓′(𝑥)]2 and so, by [Theorem 14.1],  

𝜅(𝑥) =
|𝑓′′(𝑥)|

[1 + (𝑓′(𝑥))
2
]
3/2

 

p.905 

Normal and binomial vectors 
 Tags –  T13 Tangent vector 

  T12 Vector function 

T9 Cross product 

T8 Orthogonal vectors, dot product 

  T7 Unit vector, magnitude of a vector 

At a given point on a smooth space curve 𝐫(𝑡), there are many vectors that are orthogonal to the unit 

tangent vector 𝐓(𝑡).  We single out one by observing that, because |𝐓(𝑡)| = 1  for all 𝑡, we have 𝑇(𝑡) ∙

𝑇′(𝑡) = 0 by Example 13.2.4 [if |𝐫(𝑡)| is constant, then 𝐫′(𝑡) is orthogonal to 𝐫(𝑡) for all 𝑡], so 𝐓′(𝑡) is 

orthogonal to 𝐓(𝑡).  Note that, typically, 𝐓′(𝑡)  is itself not a unit vector. But at any point where [the 

curvature] 𝜅 ≠ 0 we can define the principal unit normal vector 𝐍(𝑡) (or simply unit normal) as 

𝐍(𝑡) =
𝐓′(𝑡)

|𝐓′(𝑡)|
 

We can think of the unit normal vector as indicating the direction in which the curve is turning at each point. 

The vector 𝐁(𝑡) = 𝐓(𝑡) × 𝐍(𝑡) is called the binormal vector. It is perpendicular to both 𝐓 and 𝐍 and is also 

a unit vector. (See Figure 6.) 

p.906 
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Normal and osculating planes; osculating circle (or circle of curvature) 
 Tags -  T13 Tangent vector 

  T10 Vectors which determine a plane containing a point 

T8 Orthogonal vectors 

The plane determined by the normal and binomial vectors 𝐍 and 𝐁 at a point 𝑃 on a curve 𝐶 is called the 

normal plane of 𝐶  at 𝑃 . It consists of all lines that are orthogonal to the tangent vector 𝐓. The plane 

determined by the vectors 𝑇 and 𝑁 is called the osculating plane of 𝐶 at 𝑃. […] it is the plane that comes 

closest to containing the part of the curve near 𝑃. (For a plane curve, the osculating plane is simply the 

plane that contains the curve.) 

The circle that lies in the osculating plane of 𝐶 at 𝑃, has the same tangent as 𝐶 at 𝑃, lies on the concave side 

of 𝐶  (toward which 𝑁  points), and has radius 𝜌 = 1/𝜅  (the reciprocal of the curvature) is called the 

osculating circle (or the circle of curvature) of 𝐶 at 𝑃. 

p.907 

Π15 Motion in Space – Velocity and Acceleration 
Velocity vector 
 Tags –  T13 Tangent vector, tangent line 

  T12 Vector functions, space curves 

  T7 Difference of vectors 

Suppose a particle moves through space so that its position vector at time 𝑡 is 𝐫(𝑡). Notice from Figure 1 

that, for small values of ℎ, the vector 

𝐫(𝑡 + ℎ) − 𝐫(𝑡)

ℎ
       (∗) 

approximates the direction of the particle moving along the curve 𝐫(𝑡). Its magnitude measures the size of 

the displacement vector per time. The vector (∗) gives the average velocity over a time interval of length ℎ 

and its limit is the velocity vector 𝐯(𝑡) at time 𝑡: 

𝐯(𝑡) = lim
ℎ→0

𝐫(𝑡 + ℎ) − 𝐫(𝑡)

ℎ
= 𝐫′(𝑡) 

 Thus the velocity vector is also the tangent vector and points in the direction of the tangent line. 

p.910 

Speed 
 Tags –  T13 Derivative of a vector function 

  T12 Vector functions, space curves 

  T7 Magnitude of a vector 

The speed of [a] particle [moving through space] at time 𝑡 is the magnitude of the velocity vector, that is, 

|𝐯(𝑡)|. This is appropriate because, from [the definition of the velocity vector] and from Equation 13.3.7 

[
𝑑𝑠

𝑑𝑡
= |𝐫′(𝑡)|], we have 

|𝐯(𝑡)| = |𝐫′(𝑡)| =
𝑑𝑠

𝑑𝑡
= rate of change of distance with respect to time 
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p.910 

Acceleration 
 Tags –  T13 First and second derivatives of a vector function 

  T12 Vector functions, space curve 

[T]he acceleration of [a] particle [moving through space] is defined as the derivative of the velocity: 

𝐚(𝑡) = 𝐯′(𝑡) = 𝐫′′(𝑡) 

p.911 

Newton’s Second Law of Motion 
 Tags – T12 Vector functions 

 [I]f, at a time 𝑡, a force 𝐅(𝑡) acts on an object of mass 𝑚 producing an acceleration 𝐚(𝑡), then 

𝐅(𝑡) = 𝑚𝐚(𝑡) 

 p.912 

Tangential and normal components of acceleration 
Tags –  T14 Curvature, tangent vector, normal vector, osculating plane of a space curve 

T13 First and second derivatives of a vector function 

  T12 Vector function, space curve 

  T9 Cross product 

  T8 Dot product 

  T7 Vector addition, scalar multiplication, magnitude of a vector 

When we study the motion of a particle, it is often useful to resolve the acceleration into two components, 

one in the direction of the tangent and the other in the direction of the normal. If we write 𝑣 = |𝐯| for the 

speed of the particle, then […] 

𝐚 = 𝑣′𝐓 + 𝜅𝑣2𝑵 

[where 𝐚 is the acceleration of the particle, 𝐓 the unit tangent vector, 𝜅  the curvature, and 𝐍 the unit 

normal vector.] 

Writing 𝑎𝑇 and 𝑎𝑁 for the tangential and normal components of acceleration, we have 

𝐚 = 𝑎𝑇𝐓 + 𝑎𝑁𝑵 (∗) 

where 

𝑎𝑇 = 𝑣′  and 𝑎𝑁 = 𝜅𝑣2 

 This resolution is illustrated in Figure 7. 

Let’s look at what formula (∗) says. The first thing to notice is that the binormal vector 𝐁 is absent. No 

matter how an object moves through space, its acceleration always lies in the plane of 𝐓  and 𝐍  (the 

osculating plane). (Recall that 𝐓 gives the direction of motion and 𝐍 points in the direction the curve is 

turning.) Next we notice that the tangential component of acceleration is 𝑣′, the rate of change of speed, 

and the normal component of acceleration is 𝜅𝑣2, the curvature times the square of the speed. […] 
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Although we have expressions for the tangential and normal components of acceleration [above], it’s 

desirable to have expressions that depend only on 𝐫, 𝐫′, and 𝐫′′. To this end we take the dot product of 𝐯 =

𝑣𝐓 with 𝐚 as given by Equation (∗): […] 

Therefore 

𝑎𝑇 = 𝑣′ =
(𝐯 ∙ 𝐚)

𝑣
=

𝐫′(𝑡) ∙ 𝐫′′(𝑡)

|𝐫′(𝑡)|
 

 Using the formula for curvature given by Theorem 13.3.10, we have 

𝑎𝑁 = 𝜅𝑣2 =
|𝐫′(𝑡) × 𝐫′′(𝑡)|

|𝐫′(𝑡)|3
|𝐫′(𝑡)|2 =

|𝐫′(𝑡) × 𝐫′′(𝑡)|

|𝐫′(𝑡)|
 

p.914-5 

Π16 Functions of Several Variables 
Function of two variables; domain; range 
 Tags – T6 Three-dimensional rectangular coordinate system 

A function 𝒇 of two variables  is a rule that assigns to each ordered pair of real numbers (𝑥, 𝑦) in a set 𝐷 a 

unique real number denoted by 𝑓(𝑥, 𝑦). The set 𝐷 is the domain of 𝑓 and its range is the set of values that 

𝑓 takes on, that is, {𝑓(𝑥, 𝑦)|(𝑥, 𝑦) ∈ 𝐷}. 

We often write 𝑧 = 𝑓(𝑥, 𝑦)  to make explicit the value taken on by 𝑓  at the general point (𝑥, 𝑦).  The 

variables 𝑥  and 𝑦  are independent variables and 𝑧  is the dependent variable. [Compare this with the 

notation 𝑦 = 𝑓(𝑥) for functions of a single variable.] 

[…] 

If a function 𝑓 is given by a formula and no domain is specified, then the domain of 𝑓 is understood to be 

the set of all pairs (𝑥, 𝑦) for which the given expression is a well-defined real number. 

p.928 

Graph of a two-variable function 
 Tags – T6 Three-dimensional rectangular coordinate system, equation in 𝑅3 

If 𝑓 is a function of two variables with domain 𝐷, then the graph of 𝑓 is the set of all points (𝑥, 𝑦, 𝑧) in 𝑅3 

such that 𝑧 = 𝑓(𝑥, 𝑦) and (𝑥, 𝑦) is in 𝐷. 

Just as the graph of a function 𝑓 of one variable is a curve 𝐶 with equation 𝑦 = 𝑓(𝑥), so the graph of a 

function 𝑓 of two variables is a surface 𝑆 with equation 𝑧 = 𝑓(𝑥, 𝑦). We can visualize the graph 𝑆 of 𝑓 as 

lying directly above or below its domain 𝐷 in the 𝑥𝑦-plane (see Figure 5). 

p.930 

Linear function of two variables 
 Tags -  T6 Three-dimensional rectangular coordinate system 

  T10 Linear equation of a plane 

 [The] function 

𝑓(𝑥, 𝑦) = 𝑎𝑥 + 𝑏𝑦 + 𝑐 

 […] is called a linear function. The graph of such a function has the equation 

𝑧 = 𝑎𝑥 + 𝑏𝑦 + 𝑐 or 𝑎𝑥 + 𝑏𝑦 − 𝑧 + 𝑐 = 0 
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 so it is a plane. 

p.931 

Level curves 
 (Tags – T11 Traces of a surface) 

The level curves of a function 𝑓 of two variables are the curves with equations 𝑓(𝑥, 𝑦) = 𝑘, where 𝑘 is a 

constant (in the range of 𝑓). 

A level curve 𝑓(𝑥, 𝑦) = 𝑘 is the set of all points in the domain of 𝑓 at which 𝑓 takes on a given value 𝑘. In 

other words, it shows where the graph of 𝑓 has height 𝑘. 

You can see from Figure 11 the relation between level curves and horizontal traces. The level curves 

𝑓(𝑥, 𝑦) = 𝑘 are just the traces of the graph of 𝑓 in the horizontal plane 𝑧 = 𝑘 projected down to the 𝑥𝑦-

plane. 

p.933 

Function of three variables; domain 
A function of three variables, 𝑓, is a rule that assigns to each ordered triple (𝑥, 𝑦, 𝑧) in a domain 𝐷 ⊂ 𝑅3 a 

unique real number denoted by 𝑓(𝑥, 𝑦, 𝑧). 

p.937 

Level surfaces of a three-variable function 
It’s very difficult to visualize a function 𝑓 of three variables by its graph, since that would lie in a four-

dimensional space. However, we do gain some insight into 𝑓 by examining its level surfaces, which are the 

surfaces with equations 𝑓(𝑥, 𝑦, 𝑧) = 𝑘, where 𝑘  is a constant. If the point (𝑥, 𝑦, 𝑧) moves along a level 

surface, the value of 𝑓(𝑥, 𝑦, 𝑧) remains fixed. 

p.939 

Function of 𝑛 variables; domain 
 Tags –  T8 Dot product 

T7 𝑛-dimensional vectors 

A function of 𝒏 variables is a rule that assigns a number 𝑥 = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) to an 𝑛-tuple (𝑥1, 𝑥2, … , 𝑥𝑛) 

of real numbers. We denote by 𝑅𝑛 the set of all such 𝑛-tuples. […] 

The function 𝑓 is a real-valued function whose domain is a subset of 𝑅𝑛. Sometimes we will use vector 

notation to write such functions more compactly: If 𝐱 = 〈𝑥1, 𝑥2, … , 𝑥𝑛〉, we often write 𝑓(𝐱) in place of 

𝑓〈𝑥1, 𝑥2, … , 𝑥𝑛〉 . With this notation we can rewrite the function defined in [ an equation 𝐶 =

𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) = 𝑐1𝑥1 + 𝑐2𝑥2 + ⋯+ 𝑐𝑛𝑥𝑛] as 

𝑓(𝐱) = 𝐜 ∙ 𝐱 

where 𝐜 = 〈𝑐1, 𝑐2, … , 𝑐𝑛〉 and 𝐜 ∙ 𝐱 denotes the dot product of the vectors 𝐜 and 𝐱 in 𝑉𝑛 . 

In view of the one-to-one correspondence between points (𝑥1, 𝑥2, … , 𝑥𝑛)  in 𝑅𝑛  and their position 

vectors 𝐱 = 〈𝑥1, 𝑥2, … , 𝑥𝑛〉 in 𝑉𝑛, we have three ways of looking at a function 𝑓 defined on a subset of 𝑅𝑛: 

1. As a function of 𝑛 real variables 𝑥1, 𝑥2, … 𝑥𝑛 

2. As a function of a single point variable (𝑥1, 𝑥2, … , 𝑥𝑛) 

3. As a function of a single vector variable 𝐱 = 〈𝑥1, 𝑥2, … , 𝑥𝑛〉 

We will see that all three points of view are useful. 
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p.938 

Π17 Limits and Continuity of Multivariable Functions 
Limit of a two-variable function 
 Tags – T16 Function of two variables, domain of a two-variable function 

Let 𝑓 be a function of two variables whose domain 𝐷 includes points arbitrarily close to (𝑎, 𝑏). Then we say 

that the limit of 𝒇(𝒙, 𝒚) as (𝒙, 𝒚) approaches (𝒂, 𝒃) is 𝐿 and we write 

lim
(𝑥,𝑦)→(𝑎,𝑏)

𝑓(𝑥, 𝑦) = 𝐿 

 if for every number 𝜀 > 0 there is a corresponding number 𝛿 > 0 such that 

if        (𝑥, 𝑦) ∈ 𝐷  and 0 < √(𝑥 − 𝑎)2 + (𝑦 − 𝑏)2 < 𝛿   then |𝑓(𝑥, 𝑦) − 𝐿| < 𝜀 

Other notations for the limit in [this definition] are 

lim
𝑥→𝑎
𝑦→𝑏

𝑓(𝑥, 𝑦) = 𝐿     and  𝑓(𝑥, 𝑦) → 𝐿 as (𝑥, 𝑦) → (𝑎, 𝑏) 

p.944 

[This definition] says that the distance between 𝑓(𝑥, 𝑦) and 𝐿 can be made arbitrarily small by making the 

distance from (𝑥, 𝑦)  to (𝑎, 𝑏)  sufficiently small (but not 0 ). The definition refers only to the distance 

between (𝑥, 𝑦) and (𝑎, 𝑏). It does not refer to the direction n of approach. Therefore, if the limit exists, 

then 𝑓(𝑥, 𝑦) must approach the same limit no matter how (𝑥, 𝑦) approaches (𝑎, 𝑏). Thus, if we can find 

two different paths of approach along which the function 𝑓(𝑥, 𝑦) has different limits, then it follows that 

lim
(𝑥,𝑦)→(𝑎,𝑏)

𝑓(𝑥, 𝑦) does not exist. 

[To summarize:] 

If 𝑓(𝑥, 𝑦) → 𝐿1  as (𝑥, 𝑦) → (𝑎, 𝑏)  along a path 𝐶1  and 𝑓(𝑥, 𝑦) → 𝐿2  as (𝑥, 𝑦) → (𝑎, 𝑏)  along a path 𝐶2, 

where 𝐿1 ≠ 𝐿2, then lim
(𝑥,𝑦)→(𝑎,𝑏)

𝑓(𝑥, 𝑦) does not exist. 

p.945 

Limit laws 
 Tags – T16 Function of two variables 

The Limit Laws listed in Section 1.6 can be extended to functions of two variables: the limit of a sum is the 

sum of the limits, the limit of a product is the product of the limits, and so on. In particular, the following 

equations are true. 

lim
(𝑥,𝑦)→(𝑎,𝑏)

𝑥 = 𝑎 lim
(𝑥,𝑦)→(𝑎,𝑏)

𝑦 = 𝑏 lim
(𝑥,𝑦)→(𝑎,𝑏)

𝑐 = 𝑐 

The Squeeze Theorem also holds. 

p.947 

 

Continuous 
 Tags – T16 Function of two variables 

 A function 𝑓 of two variables is called continuous at (𝑎, 𝑏) if  

lim
(𝑥,𝑦)→(𝑎,𝑏)

𝑓(𝑥, 𝑦) = 𝑓(𝑎, 𝑏) 
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 We say 𝑓 is continuous on 𝐷 if 𝑓 is continuous at every point (𝑎, 𝑏) in 𝐷. 

 […] 

Using the properties of limits, you can see that sums, differences, products, and quotients of continuous 

functions are continuous on their domains. 

p.948 

Polynomial function of two variables; rational function of two variables; continuity of polynomial 
and rational functions on their domain 
 Tags – T16 Function of two variables, domain of a two-variable function 

A polynomial function of two variables (or polynomial, for short) is a sum of terms of the form 𝑐𝑥𝑚𝑦𝑛 , 

where 𝑐 is a constant and 𝑚 and 𝑛 are nonnegative integers. A rational function is a ratio of polynomials. 

The limits in [Limit laws] show that the functions 𝑓(𝑥, 𝑦) = 𝑥, 𝑔(𝑥, 𝑦) = 𝑦, and ℎ(𝑥, 𝑦) = 𝑐 are continuous. 

Since any polynomial can be built up out of the simple functions 𝑓, 𝑔, and ℎ by multiplication and addition, 

it follows that all polynomials are continuous on 𝑅2. Likewise, any rational function is continuous on its 

domain because it is a quotient of continuous functions. 

p.948 

Limits and continuity of functions of three or more variables 
 Tags – T16 Function of three or more variables 

  (T6 Distance between points in 𝑅3) 

Everything that we have done in this section can be extended to functions of three or more variables. The 

notation 

lim
(𝑥,𝑦,𝑧)→(𝑎,𝑏,𝑐)

𝑓(𝑥, 𝑦, 𝑧) = 𝐿 

means that the values of 𝑓(𝑥, 𝑦, 𝑧) approach the number 𝐿  as the point (𝑥, 𝑦, 𝑧) approaches the point 

(𝑎, 𝑏, 𝑐) along any path in the domain of 𝑓. Because the distance between two points (𝑥, 𝑦, 𝑧) and (𝑎, 𝑏, 𝑐) 

in 𝑅3is given by √(𝑥 − 𝑎)2 + (𝑦 − 𝑏)2 + (𝑧 − 𝑐)2, we can write the precise definition as follows: for ever 

number 𝜀 > 0 there is a corresponding number 𝛿 > 0 such that 

if (𝑥, 𝑦, 𝑧) is in the domain of 𝑓 and 0 < √(𝑥 − 𝑎)2 + (𝑦 − 𝑏)2 + (𝑧 − 𝑐)2 < 𝛿 

then |𝑓(𝑥, 𝑦, 𝑧) − 𝐿| < 𝜀 

The function 𝑓 is continuous at (𝑎, 𝑏, 𝑐) if  

lim
(𝑥,𝑦,𝑧)→(𝑎,𝑏,𝑐)

𝑓(𝑥, 𝑦, 𝑧) = 𝑓(𝑎, 𝑏, 𝑐) 

p.949 

Vector notation for limits of multivariable functions 
 Tags – T16 Function of 𝑛 variables 

  T7 𝑛-dimensional vectors, magnitude of a vector 

If 𝑓  is defined on a subset 𝐷  of 𝑅𝑛 ,  then lim
𝐱→𝐚

𝑓(𝐱) = 𝐿  means that for every number 𝜀 > 0  there is a 

corresponding number 𝛿 > 0 such that 

if 𝐱 ∈ 𝐷 and 0 < |𝐱 − 𝐚| < 𝛿 then |𝑓(𝐱) − 𝐿| < 𝜀 
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p.950 

Π18 Partial Derivatives 
Partial derivatives of a two-variable functions 
 Tags –  T16 Functions of several variables 

[I]f 𝑓 is a function of two variables 𝑥 and 𝑦, suppose we let only 𝑥 vary while keeping 𝑦 fixed, say 𝑦 = 𝑏, 

where 𝑏 is a constant. Then we are really considering a function of a single variable 𝑥, namely, 𝑔(𝑥) =

𝑓(𝑥, 𝑏). If 𝑔 has a derivative at 𝑎, then we call it the partial derivative of 𝒇 with respect fo 𝒙 at (𝒂, 𝒃) and 

denote It by 𝑓𝑥(𝑎, 𝑏). Thus 

𝑓𝑥(𝑎, 𝑏) = 𝑔′(𝑎) where 𝑔(𝑥) = 𝑓(𝑥, 𝑏)  (∗) 

 By the definition of the derivative, we have 

𝑔′(𝑎) = lim
ℎ→0

𝑔(𝑎 + ℎ) − 𝑔(𝑎)

ℎ
 

 and so Equation (∗) becomes 

𝑓𝑥(𝑎, 𝑏) = lim
ℎ→0

𝑓(𝑎 + ℎ, 𝑏) − 𝑓(𝑎, 𝑏)

ℎ
 

Similarly, the partial derivative of 𝒇 with respect to 𝒚 at (𝒂, 𝒃), denoted by 𝑓𝑦(𝑎, 𝑏), is obtained by keeping 

𝑥 fixed (𝑥 = 𝑎) and finding the ordinary derivative at 𝑏 of the function 𝐺(𝑦) = 𝑓(𝑎, 𝑦): 

𝑓𝑦(𝑎, 𝑏) = lim
ℎ→0

𝑓(𝑎, 𝑏 + ℎ) − 𝑓(𝑎, 𝑏)

ℎ
 

p.953 

In summary: 

 If 𝑓 is a function of two variables, its partial derivatives are the functions 𝑓𝑥 and 𝑓𝑦 defined by 

𝑓𝑥(𝑥, 𝑦) = lim
ℎ→0

𝑓(𝑥 + ℎ, 𝑦) − 𝑓(𝑥, 𝑦)

ℎ
 

𝑓𝑦(𝑥, 𝑦) = lim
ℎ→0

𝑓(𝑥, 𝑦 + ℎ) − 𝑓(𝑥, 𝑦)

ℎ
 

p.954 

Interpretation of partial derivatives 
 Tags – T16 Functions of several variables 

  T11 Traces of a surface 

  T6 Three-dimensional coordinate systems 

To give a geometric interpretation of partial derivatives, we recall that the equation 𝑧 = 𝑓(𝑥, 𝑦) represents 

a surface 𝑆  (the graph of 𝑓 ). If 𝑓(𝑎, 𝑏) = 𝑐, then the point 𝑃(𝑎, 𝑏, 𝑐)  lies on 𝑆.  By fixing 𝑦 = 𝑏, we are 

restricting our attention to the curve 𝐶1 in which the vertical plane 𝑦 = 𝑏 intersects 𝑆. (In other words, 𝐶1 

is the trace of S in the plane 𝑦 = 𝑏.). Likewise, the vertical plane 𝑥 = 𝑎 intersects 𝑆 in a curve 𝐶2. Both of 

the curves 𝐶1 and 𝐶2 pass through the point 𝑃. (See Figure 1.) 

Note that the curve 𝐶1is the graph of the function 𝑔(𝑥) = 𝑓(𝑥, 𝑏), so the slope of its tangent 𝑇1 at 𝑃 is 

𝑔′(𝑎) = 𝑓𝑥(𝑎, 𝑏). The curve 𝐶2is the graph of the function 𝐺(𝑦) = 𝑓(𝑎, 𝑦), so the slope of its tangent 𝑇2 at 

𝑃 is 𝐺′(𝑏) = 𝑓𝑦(𝑎, 𝑏). 
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Thus the partial derivatives 𝑓𝑥(𝑎, 𝑏) and 𝑓𝑦(𝑎, 𝑏) can be interpreted geometrically as the slopes of the 

tangent lines at 𝑃(𝑎, 𝑏, 𝑐) to the traces 𝐶1 and 𝐶2 of 𝑆 in the planes 𝑦 = 𝑏 and 𝑥 = 𝑎. 

[…] [P]artial derivatives can also be interpreted as rates of change. If 𝑧 = 𝑓(𝑥, 𝑦), then 𝜕𝑧/𝜕𝑥 represents 

the rate of change of 𝑧 with respect to 𝑥 when 𝑦 is fixed. 

p.955 

Partial derivatives of functions of three or more variables 
 Tags – T16 Functions of several variables 

Partial derivatives can also be defined for functions of three or more variables. For example, if 𝑓 is a 

function of three variables 𝑥, 𝑦, and 𝑧, then its partial derivative with respect to 𝑥 is defined as 

𝑓𝑥(𝑥, 𝑦, 𝑧) = lim
ℎ→0

𝑓(𝑥 + ℎ, 𝑦, 𝑧) − 𝑓(𝑥, 𝑦, 𝑧)

ℎ
 

and it is found by regarding 𝑦 and 𝑧 as constants and differentiating 𝑓(𝑥, 𝑦, 𝑧) with respect to 𝑥. If 𝑤 =

𝑓(𝑥, 𝑦, 𝑧), then 𝑓𝑥 = 𝜕𝑤/𝜕𝑥 can be interpreted as the rate of change of 𝑤 with respect to 𝑥 when 𝑦 and 𝑧 

are held fixed. But we can’t interpret it geometrically because the graph of 𝑓 lies in four-dimensional space. 

In 𝑢 is a function of 𝑛 variables, 𝑢 = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛), its partial derivatives with respect to the 𝑖th variable 

𝑥𝑖  is 

𝜕𝑢

𝜕𝑥𝑖

= lim
ℎ→0

𝑓(𝑥1, … , 𝑥𝑖−1, 𝑥𝑖 + ℎ, 𝑥𝑖+1, … , 𝑥𝑛) − 𝑓(𝑥1, … , 𝑥𝑖 , … , 𝑥𝑛)

ℎ
 

 and we also write 

𝜕𝑢

𝜕𝑥𝑖

=
𝜕𝑓

𝜕𝑥𝑖

= 𝑓𝑥𝑖
= 𝐷𝑖𝑓 

p.957-8 

Second partial derivatives 
 Tags – T16 Functions of several variables 

If 𝑓 is a function of two variables, then its partial derivatives 𝑓𝑥 and 𝑓𝑦 are also functions of two variables, 

so we can consider their partial derivatives (𝑓𝑥)𝑥 , (𝑓𝑥)𝑦 , (𝑓𝑦)𝑥
, (𝑓𝑦)𝑦

, which are called the second partial 

derivatives of 𝑓. If 𝑧 = 𝑓(𝑥, 𝑦) we use the following notation: 

(𝑓𝑥)𝑥 = 𝑓𝑥𝑥 = 𝑓11 =
𝜕

𝜕𝑥
(
𝜕𝑓

𝜕𝑥
) =

𝜕2𝑓

𝜕𝑥2
=

𝜕2𝑧

𝜕𝑥2
 

(𝑓𝑥)𝑦 = 𝑓𝑥𝑦 = 𝑓12 =
𝜕

𝜕𝑦
(
𝜕𝑓

𝜕𝑥
) =

𝜕2𝑓

𝜕𝑦𝜕𝑥
=

𝜕2𝑧

𝜕𝑦𝜕𝑥
 

(𝑓𝑦)𝑥
= 𝑓𝑦𝑥 = 𝑓21 =

𝜕

𝜕𝑥
(
𝜕𝑓

𝜕𝑦
) =

𝜕2𝑓

𝜕𝑥𝜕𝑦
=

𝜕2𝑧

𝜕𝑥𝜕𝑦
 

(𝑓𝑦)𝑦
= 𝑓𝑦𝑦 = 𝑓22 =

𝜕

𝜕𝑦
(
𝜕𝑓

𝜕𝑦
) =

𝜕2𝑓

𝜕𝑦2
=

𝜕2𝑧

𝜕𝑦
 

Thus the notation 𝑓𝑥𝑦  (or 𝜕2𝑓/𝜕𝑦𝜕𝑥 ) means that we first differentiate with respect to 𝑥  and then with 

respect to 𝑦, whereas in computing 𝑓𝑦𝑥, the order is reversed. 

p.958 



175 
 

Clairaut’s Theorem 
 Tags –  T17 Continuous multivariable functions 

  T16 Multivariable functions 

Suppose 𝑓  is defined on a disk 𝐷  that contains the point (𝑎, 𝑏).  If the functions 𝑓𝑥𝑦  and 𝑓𝑦𝑥  are both 

continuous on 𝐷, then  

𝑓𝑥𝑦(𝑎, 𝑏) = 𝑓𝑦𝑥(𝑎, 𝑏) 

p.959 

Partial derivatives of order 3 or higher 
 Tags –  T17 Continuous multivariable functions 

  T16 Multivariable functions 

 Partial derivatives of order 3 or higher can also be defined. For instance, 

𝑓𝑥𝑦𝑦 = (𝑓𝑥𝑦)𝑦
=

𝜕

𝜕𝑦
(

𝜕2𝑓

𝜕𝑦𝜕𝑥
) =

𝜕3𝑓

𝜕𝑦2𝜕𝑥
 

and using Clairaut’s Theorem it can be shown that 𝑓𝑥𝑦𝑦 = 𝑓𝑦𝑥𝑦 = 𝑓𝑦𝑦𝑥  if these functions are continuous. 

p.960 

Partial differential equations 
Partial derivatives occur in partial differential equations that express certain physical laws. For instance, the 

partial differential equation 

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
= 0 

is called Laplace’s equation Pierre Laplace (1749-1827). Solutions of this equation are called harmonic 

functions; they play a role in problems of heat conduction, fluid flow, and electric potential. 

p.960 

 The wave equation 

𝜕2𝑢

𝜕𝑡2
= 𝑎2

𝜕2𝑢

𝜕𝑥2
 

 Describes the motion of a waveform. 

p.960 

Π19 Tangent Planes and Linear Approximations 
Definition of tangent plane 
 Tags –  T18 Partial derivatives 

T17 Continuity of a function 

T16 Multivariable function 

T13 Tangent line to a curve 

(T11 Traces of a surface) 
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T6 Geometry of 𝑅3 

Suppose a surface 𝑆  has equation 𝑧 = 𝑓(𝑥, 𝑦),  where 𝑓  has continuous first partial derivatives, and let 
𝑃(𝑥0, 𝑦0, 𝑧0)  be a point on 𝑠.  As in the preceding section, let 𝐶1 and 𝐶2  be the curves obtained by 
intersecting the vertical planes 𝑦 = 𝑦0 and 𝑥 = 𝑥0 with the surface 𝑆. Then the point 𝑃 lies on both 𝐶1 and 
𝐶2. Let 𝑇1 and 𝑇2 be the tangent lines to the curves 𝐶1 and 𝐶2 at the point 𝑃. Then the tangent plane to the 
surface 𝑆 at the point 𝑃 is defined to be the plane that contains both tangent lines 𝑇1 and 𝑇2. (See Figure 
1.) 

We will see in Section 14.6 that if 𝐶 is any other curve that lies on the surface 𝑆 and passes through 𝑃, then 
its tangent line at 𝑃 also lies in the tangent plane. Therefore you can think of the tangent plane to 𝑆 at 𝑃 as 
consisting of all possible tangent lines at 𝑃 to curves that lie on 𝑆 and pass through 𝑃. The tangent plane at 
𝑃 is the plane that most closely approximates the surface 𝑆 near the point 𝑃. 

 p.968 

Equation of tangent plane 
 Tags –  T18 Partial derivatives of two-variable functions as slopes 

T17 Continuity of a function 

T16 Multivariable function 

T13 Tangent line to a curve 

(T11 Traces of a surface) 

T10 Equations of lines and planes 

T6 Geometry of 𝑅3 

We know from Equation 12.5.7 that any plane passing through the point 𝑃(𝑥0, 𝑦0, 𝑧0) has an equation of 
the form 

𝐴(𝑥 − 𝑥0) + 𝐵(𝑦 − 𝑦0) + 𝐶(𝑧 − 𝑧0) = 0 

 By dividing this equation by 𝐶 and letting 𝑎 = −𝐴/𝐶 and 𝑏 = −𝐵/𝐶, we can write it in the form 

𝑧 − 𝑧0 = 𝑎(𝑥 − 𝑥0) + 𝑏(𝑦 − 𝑦0) (∗) 

If Equation (∗) represents the tangent plane at 𝑃, then its intersection with the plane 𝑦 = 𝑦0 must be the 
tangent line 𝑇1. Setting 𝑦 = 𝑦0 in Equation (∗) gives 

𝑧 − 𝑧0 = 𝑎(𝑥 − 𝑥0) where 𝑦 = 𝑦0 

and we recognize this as the equation (in point-slope form) of a line with slope 𝑎. But from Section 14.3 we 
know that the slope of the tangent 𝑇1 is 𝑓𝑥(𝑥0, 𝑦0). Therefore 𝑎 = 𝑓𝑥(𝑥0, 𝑦0). 

Similarly, putting 𝑥 = 𝑥0  in Equation (∗), we get 𝑧 − 𝑧0 = 𝑏(𝑦 − 𝑦0), which must represent the tangent 
line 𝑇2, so 𝑏 = 𝑓𝑦(𝑥0, 𝑦0). 

p.968 

In summary: 

Suppose 𝑓 has continuous partial derivatives. An equation of the tangent plane to the surface 𝑧 = 𝑓(𝑥, 𝑦) 
at the point 𝑃(𝑥0, 𝑦0, 𝑧0) is  

𝑧 − 𝑧0 = 𝑓𝑥(𝑥0, 𝑦0)(𝑥 − 𝑥0) + 𝑓𝑦(𝑥0, 𝑦0)(𝑦 − 𝑦0) 

p.968 
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Linearization; linear approximation (or tangent plane approximation) 
 Tags – T18 Partial derivatives 

T16 Linear function of two variables and its graph, functions of two variables 

The linear function whose graph is [the tangent plane to the graph of a function 𝑓 of two variables at the 
point (𝑎, 𝑏, 𝑓(𝑎, 𝑏))], namely 

𝐿(𝑥, 𝑦) = 𝑓(𝑎, 𝑏) + 𝑓𝑥(𝑎, 𝑏)(𝑥 − 𝑎) + 𝑓𝑦(𝑎, 𝑏)(𝑦 − 𝑏) 

 is called the linearization of 𝑓 at (𝑎, 𝑏) and the approximation 

𝑓(𝑥, 𝑦) ≈ 𝑓(𝑎, 𝑏) + 𝑓𝑥(𝑎, 𝑏)(𝑥 − 𝑎) + 𝑓𝑦(𝑎, 𝑏)(𝑦 − 𝑏) 

 is called the linear approximation or the tangent plane approximation of 𝑓 at (𝑎, 𝑏). 

p.970 

 For […] functions [of more than two variables] the linear approximation is 

𝑓(𝑥, 𝑦, 𝑧) ≈ 𝑓(𝑎, 𝑏, 𝑐) + 𝑓𝑥(𝑎, 𝑏, 𝑐)(𝑥 − 𝑎) + 𝑓𝑦(𝑎, 𝑏, 𝑐)(𝑦 − 𝑏) + 𝑓𝑧(𝑎, 𝑏, 𝑐)(𝑧 − 𝑐) 

 and the linearization 𝐿(𝑥, 𝑦, 𝑧) is the right side of this expression. 

p.973 

Differentiable; increment of a function 
 Tags –  T18 Partial derivatives 

T16 Multivariable functions 

 [C]onsider a function of two variables, 𝑧 = 𝑓(𝑥, 𝑦), and suppose 𝑥 changes from 𝑎 to 𝑎 + Δ𝑥  and 𝑦 
changes from 𝑏 to 𝑏 + Δ𝑦. Then the corresponding increment of 𝑧 is 

Δ𝑧 = 𝑓(𝑎 + Δ𝑥, 𝑏 + Δ𝑦) − 𝑓(𝑎, 𝑏) 

Thus the increment Δ𝑧  represents the change in the value of 𝑓  when (𝑥, 𝑦)  changes from (𝑎, 𝑏)  to 
(𝑎 + Δ𝑥, 𝑏 + Δ𝑦). By analogy with [the definition of differentiability of a one-variable function 𝑦 = 𝑓(𝑥) in 
terms of the increment of 𝑦 if 𝑥 changes from 𝑎 to 𝑎 + Δ𝑥] we define the differentiability of a function of 
two variables as follows. 

 If 𝑧 = 𝑓(𝑥, 𝑦), then 𝑓 is differentiable at (𝑎, 𝑏) if Δ𝑧 can be expressed in the form 

Δ𝑧 = 𝑓𝑥(𝑎, 𝑏)Δ𝑥 + 𝑓𝑦(𝑎, 𝑏)Δ𝑦 + 𝜀1Δ𝑥 + 𝜀2Δ𝑦 

 where 𝜀1 and 𝜀2 → 0 as (Δ𝑥, Δ𝑦) → (0,0). 

p.970 

A differentiable function [of more than two variables] is defined by an expression similar to the one in [the 
definition above]. 

p.973 

If 𝑤 = 𝑓(𝑥, 𝑦, 𝑧), then the increment of 𝑤 is 

Δ𝑤 = 𝑓(𝑥 + Δ𝑥, 𝑦 + Δ𝑦, 𝑧 + Δ𝑧) − 𝑓(𝑥, 𝑦, 𝑧) 

p.973 

Theorem: Differentiability of a function 
 Tags –  T18 Partial derivatives 

T17 Continuity of a function 
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T16 Multivariable functions 

If the partial derivatives 𝑓𝑥 and 𝑓𝑦 exist near (𝑎, 𝑏) and are continuous at (𝑎, 𝑏), then 𝑓 is differentiable at 

(𝑎, 𝑏). 

p.971 

Differential 
 Tags –  T18 Partial derivatives 

T16 Multivariable functions 

For a differentiable function of two variables, 𝑧 = 𝑓(𝑥, 𝑦), we define the differentials 𝑑𝑥  and 𝑑𝑦 to be 
independent variables; that is, they can be given any values. Then the differential 𝑑𝑧, also called the total 
differential, is defined by 

𝑑𝑧 = 𝑓𝑥(𝑥, 𝑦)𝑑𝑥 + 𝑓𝑦(𝑥, 𝑦)𝑑𝑦 =
𝜕𝑧

𝜕𝑥
𝑑𝑥 +

𝜕𝑧

𝜕𝑦
𝑑𝑦 

(Compare with [the definition of the differential of 𝑦 = 𝑓(𝑥): 𝑑𝑦 = 𝑓′(𝑥)𝑑𝑥].) Sometimes the notation 𝑑𝑓 
is used in place of 𝑑𝑧. 

p.972 

The differential 𝑑𝑤 [of a function of three variables] is defined in terms of the differentials 𝑑𝑥, 𝑑𝑦, and 𝑑𝑧 
of the independent variables by 

𝑑𝑤 =
𝜕𝑤

𝜕𝑥
𝑑𝑥 +

𝜕𝑤

𝜕𝑦
𝑑𝑦 +

𝜕𝑧

𝜕𝑧
𝑑𝑧 

p.974 

Linear approximation of a two-variable function in the notation of differentials 
 Tags –  T18 Partial derivatives 

T16 Multivariable functions 

If we take 𝑑𝑥 = Δ𝑥 = 𝑥 − 𝑎  and 𝑑𝑦 = Δ𝑦 = 𝑦 − 𝑏  in [the definition of a differential of a function 𝑧 =
𝑓(𝑥, 𝑦)], then the differential of 𝑧 is 

𝑑𝑧 = 𝑓𝑥(𝑎, 𝑏)(𝑥 − 𝑎) + 𝑓𝑦(𝑎, 𝑏)(𝑦 − 𝑏) 

So, in the notation of differentials, the linear approximation [ 𝑓(𝑥, 𝑦) ≈ 𝑓(𝑎, 𝑏) + 𝑓𝑥(𝑎, 𝑏)(𝑥 − 𝑎) +
𝑓𝑦(𝑎, 𝑏)(𝑦 − 𝑏) of 𝑓 at (𝑎, 𝑏)] can be written as 

𝑓(𝑥, 𝑦) ≈ 𝑓(𝑎, 𝑏) + 𝑑𝑧 

p.972 

Π20 Chain Rule 
Chain rule (case 1) 
 Tags –  T19 Differentiable function 

  T18 Partial derivative 

  T16 Multivariable function  

Suppose that 𝑧 = 𝑓(𝑥, 𝑦) is a differentiable function of 𝑥 and 𝑦, where 𝑥 = 𝑔(𝑡) and 𝑦 = ℎ(𝑡) are both 

differentiable functions of 𝑡. Then 𝑧 is a differentiable function of 𝑡 and 
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𝑑𝑧

𝑑𝑡
=

𝜕𝑓

𝜕𝑥

𝑑𝑥

𝑑𝑡
+

𝜕𝑓

𝜕𝑦

𝑑𝑦

𝑑𝑡
 

p.978 

 Since we often write 𝜕𝑧/𝜕𝑥 in place of 𝜕𝑓/𝜕𝑥, we can rewrite the Chain Rule in the form 

𝑑𝑧

𝑑𝑡
=

𝜕𝑧

𝜕𝑥

𝑑𝑥

𝑑𝑡
+

𝜕𝑧

𝜕𝑦

𝑑𝑦

𝑑𝑡
 

p.978 

The proof is provided in the textbook (p.978). 

Chain rule (case 2) 
 Tags –  T19 Differentiable function 

  T18 Partial derivative 

  T16 Multivariable function 

Suppose that 𝑧 = 𝑓(𝑥, 𝑦)  is a differentiable function of 𝑥  and 𝑦,  where 𝑥 = 𝑔(𝑠, 𝑡)  and 𝑦 = ℎ(𝑠, 𝑡)  are 

differentiable functions of 𝑠 and 𝑡. Then 

𝜕𝑧

𝜕𝑠
=

𝜕𝑧

𝜕𝑥

𝜕𝑥

𝜕𝑠
+

𝜕𝑧

𝜕𝑦

𝜕𝑦

𝜕𝑠
                

𝜕𝑧

𝜕𝑡
=

𝜕𝑧

𝜕𝑥

𝜕𝑥

𝜕𝑡
+

𝜕𝑧

𝜕𝑦

𝜕𝑦

𝜕𝑡
 

p.979 

The proof is omitted in the textbook. 

Chain rule (general version) 
 Tags –  T19 Differentiable function 

  T18 Partial derivative 

  T16 Multivariable function 

Suppose that 𝑢 is a differentiable function of the 𝑛 variables 𝑥1, 𝑥2, … , 𝑥𝑛  and each 𝑥𝑗  is a differentiable 

function of the 𝑚 variables 𝑡1, 𝑡2, … , 𝑡𝑚. Then 𝑢 is a function of 𝑡1, 𝑡2, … , 𝑡𝑚 and  

𝜕𝑢

𝜕𝑡𝑖
=

𝜕𝑢

𝜕𝑥1

𝜕𝑥1

𝜕𝑡𝑖
+

𝜕𝑢

𝜕𝑥2

𝜕𝑥2

𝜕𝑡𝑖
+ ⋯+

𝜕𝑢

𝜕𝑥𝑛

𝜕𝑥𝑛

𝜕𝑡𝑖
 

 for each 𝑖 = 1,2, … ,𝑚. 

p.980 

The proof is omitted in the textbook. 

Differentiation of a single-variable function defined implicitly 
Tags –  T19 Differentiable function 

  T18 Partial derivative 

  T17 Continuity of a function 

  T16 Multivariable function 

The Chain Rule can be used to give a more complete description of the process of implicit differentiation 

that was introduced in Sections 2.6 and 14.3 [T18 Partial derivatives]. We suppose that an equation of the 
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form 𝐹(𝑥, 𝑦) = 0  defines 𝑦  implicitly as a differentiable function of 𝑥,  that is, 𝑦 = 𝑓(𝑥),  where 

𝐹(𝑥, 𝑓(𝑥)) = 0 for all 𝑥 in the domain of 𝑓. If 𝐹 is differentiable, we can apply Case 1 of the Chain Rule to 

differentiate both sides of the equation 𝐹(𝑥, 𝑦) = 0 with respect to 𝑥. Since both 𝑥 and 𝑦 are functions of 

𝑥, we obtain 

𝜕𝐹

𝜕𝑥

𝑑𝑥

𝑑𝑥
+

𝜕𝐹

𝜕𝑦

𝑑𝑦

𝑑𝑥
= 0 

 But 𝑑𝑥/𝑑𝑥 = 1, so if 𝜕𝐹/𝜕𝑦 ≠ 0, we solve for 𝑑𝑦/𝑑𝑥 and obtain 

𝑑𝑦

𝑑𝑥
=

𝜕𝐹
𝜕𝑥
𝜕𝐹
𝜕𝑦

= −
𝐹𝑥

𝐹𝑦

       (∗) 

To derive this equation we assumed that 𝐹(𝑥, 𝑦) = 0 defines 𝑦 implicitly as a function of 𝑥. The Implicit 

Function Theorem, proved in advanced calculus, gives conditions under which this assumption is valid: it 

states that if 𝐹 is defined on a disk containing (𝑎, 𝑏), where 𝐹(𝑎, 𝑏) = 0, 𝐹𝑦(𝑎, 𝑏) ≠ 0, and 𝐹𝑥  and 𝐹𝑦  are 

continuous on the disk, then the equation 𝐹(𝑥, 𝑦) = 0 defines 𝑦 as a function of 𝑥 near the point (𝑎, 𝑏) and 

the derivative of this function is given by Equation (∗). 

p.982 

Differentiation of a two-variable function defined implicitly 
Tags –  T19 Differentiable function 

  T18 Partial derivative 

  T17 Continuity of a function 

  T16 Multivariable function 

 [S]uppose that 𝑧 is given implicitly as a function 𝑧 = 𝑓(𝑥, 𝑦) by an equation of the form 𝐹(𝑥, 𝑦, 𝑧) = 0. This 

means that 𝐹(𝑥, 𝑦, 𝑓(𝑥, 𝑦)) = 0 for all (𝑥, 𝑦) in the domain of 𝑓. If 𝐹 and 𝑓 are differentiable, then we can 

use the Chain Rule to differentiate the equation 𝐹(𝑥, 𝑦, 𝑧) = 0 as follows: 

𝜕𝐹

𝜕𝑥

𝜕𝑥

𝜕𝑥
+

𝜕𝐹

𝜕𝑦

𝜕𝑦

𝜕𝑥
+

𝜕𝐹

𝜕𝑧

𝜕𝑧

𝜕𝑥
= 0 

But  

𝜕

𝜕𝑥
(𝑥) = 1         and         

𝜕

𝜕𝑥
(𝑦) = 0 

 so this equation becomes 

𝜕𝐹

𝜕𝑥
+

𝜕𝐹

𝜕𝑧

𝜕𝑧

𝜕𝑥
= 0 

If 𝜕𝐹/𝜕𝑥 ≠ 0,  we solve for 𝜕𝑧/𝜕𝑥 and we obtain the first formula in [the following equations]. The formula 

for 𝜕𝑧/𝜕𝑦 is obtained in a similar manner. 

𝜕𝑧

𝜕𝑥
= −

𝜕𝐹
𝜕𝑥
𝜕𝐹
𝜕𝑧

              
𝜕𝑧

𝜕𝑦
= −

𝜕𝐹
𝜕𝑦

𝜕𝐹
𝜕𝑧

 

Again, a version of the Implicit Function Theorem stipulates conditions under which our assumption is valid: 

if 𝐹 is defined within a sphere containing (𝑎, 𝑏, 𝑐), where 𝐹(𝑎, 𝑏, 𝑐) = 0, 𝐹𝑧(𝑎, 𝑏, 𝑐) ≠ 0, and 𝐹𝑥, 𝐹𝑦 , and 𝐹𝑧 
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are continuous inside the sphere, then the equation 𝐹(𝑥, 𝑦, 𝑧) = 0 defines 𝑧 as a function of 𝑥 and 𝑦 near 

the point (𝑎, 𝑏, 𝑐) and this function is differentiable, with partial derivatives given by [the equations above]. 

p.983 

Π21 Directional Derivatives and the Gradient Vector 
Directional derivative 
 Tags –  T18 Partial derivatives, rate of change 

T16 Multivariable function, graph of a two-variable function 

  T13 Tangent line to a curve 

  T10 Plane determined by a point and two vectors parallel to it 

  T7 Unit vector 

  T6 Three-dimensional coordinate systems 

 Recall that if 𝑧 = 𝑓(𝑥, 𝑦), then the partial derivatives 𝑓𝑥 and 𝑓𝑦 are defined as 

𝑓𝑥(𝑥0, 𝑦0) = lim
ℎ→0

𝑓(𝑥0 + ℎ, 𝑦0) − 𝑓(𝑥0, 𝑦0)

ℎ
 

𝑓𝑦(𝑥0, 𝑦0) = lim
ℎ→0

𝑓(𝑥0, 𝑦0 + ℎ) − 𝑓(𝑥0, 𝑦0)

ℎ
 

and represent the rates of change of 𝑧 in the 𝑥- and 𝑦-directions, that is, in the directions of the unit vectors 

𝐢 and 𝐣. 

Suppose that we now wish to find the rate of change of 𝑧 at (𝑥0, 𝑦0) in the direction of an arbitrary unit 

vector 𝐮 = 〈𝑎, 𝑏〉. (See Figure 2.) To do this we consider the surface 𝑆 with the equation 𝑧 = 𝑓(𝑥, 𝑦) (the 

graph of 𝑓) and we let 𝑧0 = 𝑓(𝑥0, 𝑦0). Then the point 𝑃(𝑥0, 𝑦0, 𝑧0) lies on 𝑆. The vertical plane that passes 

through 𝑃 in the direction of 𝐮 intersects 𝑆 in a curve 𝐶. (See Figure 3.) The slope of the tangent line 𝑇 to 𝐶 

at the point 𝑃 is the rate of change of 𝑧 in the direction of 𝐮. 

If 𝑄(𝑥, 𝑦, 𝑧) is another point on 𝐶 and 𝑃′, 𝑄′ are the projections of 𝑃, 𝑄 onto the 𝑥𝑦-plane, then the vector 

𝑃′𝑄′⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   is parallel to 𝐮 and so 

𝑃′𝑄′⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = ℎ𝐮 = 〈ℎ𝑎, ℎ𝑏〉 

 for some scalar ℎ. Therefore 𝑥 − 𝑥0 = ℎ𝑎, 𝑦 − 𝑦𝑜 = ℎ𝑏, so 𝑥 = 𝑥0 + ℎ𝑎, 𝑦 = 𝑦0 + ℎ𝑏, and 

Δ𝑧

ℎ
=

𝑧 − 𝑧0

ℎ
=

𝑓(𝑥0 + ℎ𝑎, 𝑦0 + ℎ𝑏) − 𝑓(𝑥0, 𝑦0)

ℎ
 

If we take the limit as ℎ → 0, we obtain the rate of change of 𝑧 (with respect to distance) in the direction of 

𝑢, which is called the directional derivative of 𝑓 in the direction of 𝐮. 

 The directional derivative of 𝑓 at (𝑥0, 𝑦0) in the direction of a unit vector 𝐮 = 〈𝑎, 𝑏〉 is  

𝐷𝐮𝑓(𝑥0, 𝑦0) = lim
ℎ→0

𝑓(𝑥0 + ℎ𝑎, 𝑦0 + ℎ𝑏) − 𝑓(𝑥0, 𝑦0)

ℎ
 

 if this limit exists. 

By comparing [the definition of directional derivative] with [that of the partial derivatives 𝑓𝑥 and 𝑓𝑦 of a 

function𝑓(𝑥, 𝑦)], we see that if 𝐮 = 𝐢 = 〈1,0〉, then 𝐷𝐢𝑓 = 𝑓𝑥 and if 𝐮 = 𝐣 = 〈0,1〉, then 𝐷𝐣𝑓 = 𝑓𝑦. In other 

words, the partial derivatives of 𝑓 with respect to 𝑥 and 𝑦 are just special cases of the directional derivative. 
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p.986-7 

For functions of three variables we can define directional derivatives in a similar manner. Again 𝐷𝐮𝑓(𝑥, 𝑦, 𝑧) 

can be interpreted as the rate of change of the function in the direction of a unit vector 𝐮. 

The directional derivative of 𝑓 at (𝑥0, 𝑦0, 𝑧0) in the direction of a unit vector 𝐮 = 〈𝑎, 𝑏, 𝑐〉 is 

𝐷𝐮𝑓(𝑥0, 𝑦0, 𝑧0) = lim
ℎ→0

𝑓(𝑥0 + ℎ𝑎, 𝑦0 + ℎ𝑏, 𝑧0 + ℎ𝑐) − 𝑓(𝑥0, 𝑦0, 𝑧0)

ℎ
 

if this limit exists. 

  

If we use vector notation, then we can write both definitions […] of the directional derivative in the compact 

form  

𝐷𝐮𝑓(𝐱0) = lim
ℎ→0

𝑓(𝐱0 + ℎ𝐮) − 𝑓(𝐱0)

ℎ
 

where 𝐱0 = 〈𝑥0, 𝑦0〉 if 𝑛 = 2 and 𝐱0 = 〈𝑥0, 𝑦0, 𝑧0〉 if 𝑛 = 3. This is reasonable because the vector equation 

of the line through 𝐱0 in the direction of the vector 𝐮 is given by 𝐱 = 𝐱0 + 𝑡𝐮 (Equation 12.5.1 [in T10] and 

so 𝑓(𝐱0 + ℎ𝐮) represents the value of 𝑓 at a point on this line. 

p.991 

Theorem 1: Existence of the directional derivatives of a function, formula in terms of partial 
derivatives 
 Tags – T20 Chain rule 

  T19 Differentiable function 

  T18 Partial derivative 

  T16 Multivariable function 

  T7 Unit vector 

If 𝑓 is a differentiable function of 𝑥 and 𝑦, then 𝑓 has a directional derivative in the direction of any unit 

vector 𝐮 = 〈𝑎, 𝑏〉 and 

𝐷𝐮𝑓(𝑥, 𝑦) = 𝑓𝑥(𝑥, 𝑦)𝑎 + 𝑓𝑦(𝑥, 𝑦)𝑏 

p.988 

The proof is provided in the textbook (p.988-9).  

If the unit vector 𝐮 makes an angle 𝜃 with the positive 𝑥-axis (as in Figure 2), then we can write 𝐮 =

〈cos 𝜃 , sin 𝜃〉 and the formula in the theorem above becomes 

𝐷𝐮𝑓(𝑥, 𝑦) = 𝑓𝑥(𝑥, 𝑦) cos 𝜃 + 𝑓𝑦(𝑥, 𝑦) sin 𝜃 

p.989 

If 𝑓(𝑥, 𝑦, 𝑧) is differentiable and 𝐮 = 〈𝑎, 𝑏, 𝑐〉, then the same method that was used to prove [the above 

theorem in the case of two-variable functions] can be used to show that  

𝐷𝐮𝑓(𝑥, 𝑦, 𝑧) = 𝑓𝑥(𝑥, 𝑦, 𝑧)𝑎 + 𝑓𝑦(𝑥, 𝑦, 𝑧)𝑏 + 𝑓𝑧(𝑥, 𝑦, 𝑧)𝑐 

p.991 
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Gradient vector 
 Tags –  T19 Differentiable function 

  T18 Partial derivatives 

  T16 Multivariable function 

  T12 Vector function 

  T8 Dot product 

  T7 Vectors, standard basis vectors 

Notice from [Theorem 1] that the directional derivative of a differentiable function can be written as the 

dot product of two vectors: 

𝐷𝐮𝑓(𝑥, 𝑦) = 𝑓𝑥(𝑥, 𝑦)𝑎 + 𝑓𝑦(𝑥, 𝑦)𝑏 

 = 〈𝑓𝑥(𝑥, 𝑦), 𝑓𝑦(𝑥, 𝑦)〉 ∙ 〈𝑎, 𝑏〉 

 = 〈𝑓𝑥(𝑥, 𝑦), 𝑓𝑦(𝑥, 𝑦)〉 ∙ 𝐮 

The first vector in this dot product occurs not only in computing directional derivatives but in many other 

contexts as well. So we give it a special name (the gradient) of 𝑓 and a special notation (𝐠𝐫𝐚𝐝 𝑓 or ∇𝑓, which 

is read “del 𝑓”). 

If 𝑓 is a function of two variables 𝑥 and 𝑦, then the gradient of 𝑓 is the vector function ∇𝑓 defined by  

∇𝑓(𝑥, 𝑦) = 〈𝑓𝑥(𝑥, 𝑦), 𝑓𝑦(𝑥, 𝑦)〉 =
𝜕𝑓

𝜕𝑥
𝐢 +

𝜕𝑓

𝜕𝑦
𝐣 

p.990 

 For a function 𝑓 of three variables, the gradient vector, denoted by ∇𝑓 or 𝐠𝐫𝐚𝐝 𝑓, is 

∇𝑓(𝑥, 𝑦, 𝑧) = 〈𝑓𝑥(𝑥, 𝑦, 𝑧), 𝑓𝑦(𝑥, 𝑦, 𝑧), 𝑓𝑧(𝑥, 𝑦, 𝑧)〉 

 or, for short, 

∇𝑓 = 〈𝑓𝑥, 𝑓𝑦, 𝑓𝑧〉 =
𝜕𝑓

𝜕𝑥
𝐢 +

𝜕𝑓

𝜕𝑦
𝐣 +

𝜕𝑓

𝜕𝑧
𝐤 

p.991 

Directional derivative in the notation of the gradient vector 
 Tags –  T19 Differentiable function  

  T8 Dot product 

 With [the] notation for the gradient vector, we can rewrite [the equation 

𝐷𝐮𝑓(𝑥, 𝑦) = 〈𝑓𝑥(𝑥, 𝑦), 𝑓𝑦(𝑥, 𝑦)〉 ∙ 𝐮] for the directional derivative of a differentiable function as 

𝐷𝐮𝑓(𝑥, 𝑦) = ∇𝑓(𝑥, 𝑦) ∙ 𝐮 

p.990 

Similar notation for the directional derivative of functions of more than two variables (p.991). 

Theorem 2: Maximizing the directional derivative 
 Tags -  T19 Differentiable function 
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  T8 Dot product 

  T7 Magnitude of a vector 

Suppose 𝑓 is a differentiable function of two or three variables. The maximum value of the  directional 

derivative 𝐷𝐮𝑓(𝐱) is |∇𝑓(𝐱)| and it occurs when 𝐮 has the same direction as the gradient vector ∇𝑓(𝐱). 

p.992 

The proof is based on the expression of the directional derivative in the notation of the gradient vector and uses 

the version of dot product that involves the angle between two vectors (p.992). 

Tangent plane to a level surface at a point; normal line to a surface at a point 
Tags –  T20 Chain rule 

T19 Differentiable function 

 T16 Function of three variables, level surface of a function of three variables 

  T13 Tangent vector to a curve at a point 

  T12 Vector functions and space curves 

T10 Scalar equation of a plane, normal to a plane, symmetric equations of a line 

  T8 Dot product, dot product and orthogonality 

Suppose 𝑆 is a surface with equation 𝐹(𝑥, 𝑦, 𝑧) = 𝑘, that is, it is a level surface of a function 𝐹 of three 

variables, and let 𝑃(𝑥0, 𝑦0, 𝑧0) be a point on 𝑆. Let 𝐶 be any curve that lies on the surface 𝑆 and passes 

through the point 𝑃. Recall from Section 13.1 [T12 Vector functions and space curves] that the curve 𝐶 is 

described by a continuous vector function 𝐫(𝑡) = 〈𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)〉 . Let 𝑡0  be the parameter value 

corresponding to 𝑃; that is, 𝐫(𝑡0) = 〈𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)〉. Since 𝐶  lies on S, any point (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) must 

satisfy the equation of 𝑆, that is, 

𝐹(𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) = 𝑘  (∗) 

If 𝑥, 𝑦, and 𝑧 are differentiable functions of 𝑡 and 𝐹 is also differentiable, then we can use the Chain Rule to 

differentiate both sides of Equation [(∗)] as follows: 

𝜕𝐹

𝜕𝑥

𝑑𝑥

𝑑𝑡
+

𝜕𝐹

𝜕𝑦

𝑑𝑦

𝑑𝑡
+

𝜕𝐹

𝜕𝑧

𝑑𝑧

𝑑𝑡
= 0        (∗∗) 

But, since ∇𝐹 = 〈𝐹𝑥, 𝐹𝑦 , 𝐹𝑧〉 and 𝐫′(𝑡) = 〈𝑥′(𝑡), 𝑦′(𝑡), 𝑧′(𝑡)〉, Equation [(∗∗)] can be written in terms of a 

dot product as 

∇𝐹 ∙ 𝐫′(𝑡) = 0 

 In particular, when 𝑡 = 𝑡0 we have 𝐫(𝑡0) = 〈𝑥0, 𝑦0 , 𝑧0〉  

∇𝐹(𝑥0, 𝑦0, 𝑧0) ∙ 𝐫′(𝑡0) = 0 (∗∗∗) 

Equation [(∗∗∗)] says that the gradient vector at 𝑃, ∇𝐹(𝑥0, 𝑦0, 𝑧0), is perpendicular to the tangent vector 

𝐫′(𝑡0)  to any curve 𝐶  on S   that passes through 𝑃.  (See Figure 9.) If ∇𝐹(𝑥0, 𝑦0 , 𝑧0) ≠ 𝟎,  it is therefore 

natural to define the tangent plane to the level surface 𝐹(𝑥, 𝑦, 𝑧) = 𝑘 at 𝑃(𝑥0, 𝑦0, 𝑧0) as the plane that 

passes through 𝑃 and has normal vector ∇𝐹(𝑥0, 𝑦0, 𝑧0). Using the standard equation of a plane (Equation 

12.5.7), we can write the equation of this tangent plane as 

𝐹𝑥(𝑥0, 𝑦0, 𝑧0)(𝑥 − 𝑥0) + 𝐹𝑦(𝑥0, 𝑦0, 𝑧0)(𝑦 − 𝑦0) + 𝐹𝑧(𝑥0, 𝑦0, 𝑧0)(𝑧 − 𝑧0) = 0 
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The normal line to 𝑆  at 𝑃  is the line passing through 𝑃  and perpendicular to the tangent plane. The 

direction of the normal line is therefore given by the gradient vector ∇𝐹(𝑥0, 𝑦0, 𝑧0) and so, by Equation 

12.5.3, its symmetric equations are  

𝑥 − 𝑥0

𝐹𝑥(𝑥0, 𝑦0, 𝑧0)
=

𝑦 − 𝑦0

𝐹𝑦(𝑥0, 𝑦0, 𝑧0)
=

𝑧 − 𝑧0

𝐹𝑧(𝑥0, 𝑦0, 𝑧0)
 

p.994 

Π22 Maximum and Minimum Values 

Local maximum, local maximum value; local minimum, local minimum value; absolute maximum, 
absolute minimum 
 Tags –  T16 Function of two variables, domain of a two-variable function 

A function of two variables has a local maximum at (𝑎, 𝑏) if 𝑓(𝑥, 𝑦) ≤ 𝑓(𝑎, 𝑏) when (𝑥, 𝑦) is near (𝑎, 𝑏). 

[This means that 𝑓(𝑥, 𝑦) ≤ 𝑓(𝑎, 𝑏) for all points (𝑥, 𝑦) in the disk with center (𝑎, 𝑏). ] The number 𝑓(𝑎, 𝑏) 

is called a local maximum value. If 𝑓(𝑥, 𝑦) ≥ 𝑓(𝑎, 𝑏)  when (𝑥, 𝑦)  is near (𝑎, 𝑏),  then 𝑓  has a local 

minimum at (𝑎, 𝑏) and 𝑓(𝑎, 𝑏) is a local minimum value. 

If the inequalities in [the above definition] fold for all points (𝑥, 𝑦) in the domain of 𝑓, then 𝑓  has an 

absolute maximum (or absolute minimum) at (𝑎, 𝑏). 

p.1000 

Theorem 1: Partial derivatives at local maxima and minima 
 Tags – T18 Partial derivatives 

  T16 Function of two variables 

If 𝑓 has a local maximum or minimum at (𝑎, 𝑏) and the first-order partial derivatives of 𝑓 exist there, then 

𝑓𝑥(𝑎, 𝑏) = 0 and 𝑓𝑦(𝑎, 𝑏) = 0. 

p.1000 

Critical point 
 Tags – T18 Partial derivatives 

  T16 Function of two variables 

A point (𝑎, 𝑏) is called a critical point (or stationary point) of 𝑓 if 𝑓𝑥(𝑎, 𝑏) = 0 and 𝑓𝑦(𝑎, 𝑏) = 0, or if one of 

these partial derivatives does not exist. [Theorem 1] says that if 𝑓 has a local maximum or minimum at 

(𝑎, 𝑏), then (𝑎, 𝑏) is a critical point of 𝑓. However, as in single-variable calculus, not all critical points give 

rise to maxima or minima. At a critical point, a function could have a local maximum or a local minimum or 

neither. 

p.1000 

Second derivatives test 
 Tags – T18 First and second partial derivatives 

  T17 Continuous multivariable functions 

  T16 Function of two variables 

((T9 Determinant of order 2)) 



186 
 

Suppose the second partial derivatives of 𝑓 are continuous on a disk with center (𝑎, 𝑏), and suppose that 

𝑓𝑥(𝑎, 𝑏) = 0 and 𝑓𝑦(𝑎, 𝑏) = 0 [that is, (𝑎, 𝑏) is a critical point of 𝑓]. Let 

𝐷 = 𝐷(𝑎, 𝑏) = 𝑓𝑥𝑥(𝑎, 𝑏)𝑓𝑦𝑦(𝑎, 𝑏) − [𝑓𝑥𝑦(𝑎, 𝑏)]
2
 

(a) If 𝐷 > 0 and 𝑓𝑥𝑥(𝑎, 𝑏) > 0, then 𝑓(𝑎, 𝑏) is a local minimum. 

(b) If 𝐷 > 0 and 𝑓𝑥𝑥(𝑎, 𝑏) < 0, then 𝑓(𝑎, 𝑏) is a local maximum. 

(c) If 𝐷 < 0, then 𝑓(𝑎, 𝑏) is not a local maximum or minimum. 

Note 1  In case (c) the point (𝑎, 𝑏) is called a saddle point of 𝑓 and the graph of 𝑓 crosses its tangent plane 

at (𝑎, 𝑏). 

Note 2 If 𝐷 = 0, the test gives no information: 𝑓 could have a local maximum or local minimum at (𝑎, 𝑏), 

or (𝑎, 𝑏) could be a saddle point of 𝑓. 

Note 3 To remember the formula for 𝐷, it’s helpful to write it as a determinant: 

𝐷 = |
𝑓𝑥𝑥 𝑓𝑥𝑦

𝑓𝑦𝑥 𝑓𝑦𝑦
| = 𝑓𝑥𝑥𝑓𝑦𝑦 − (𝑓𝑥𝑦)

2
 

p.1001 

Closed set 
Just as a closed interval contains its endpoints, a closed set in 𝑅2 is one that contains all its boundary points. 

[A boundary point of 𝐷 is a point (𝑎, 𝑏) such that every disk with center (𝑎, 𝑏) contains points in 𝐷 and also 

points not in 𝐷. ] 

p.1005 

Bounded set 
 A bounded set in 𝑅2 is one that is contained within some disk. 

p.1005 

Extreme value theorem for functions of two variables 
 Tags – T17 Continuous multivariable functions 

  T16 Function of two variables 

If 𝑓 is continuous on a closed, bounded set 𝐷 in 𝑅2, then 𝑓 attains an absolute maximum value 𝑓(𝑥1, 𝑦1) 

and an absolute minimum value 𝑓(𝑥2, 𝑦2) at some points (𝑥1, 𝑦1) and (𝑥2, 𝑦2) in 𝐷. 

p.1005 

Π23 Lagrange Multipliers 
The geometric basis of Lagrange’s method for functions of two variables; Lagrange multiplier 
 Tags – T22 Extreme values 

  T21 Normal line, gradient vector 

  T20 Chain rule 

T19 Differentiable 

T16 Multivariable functions, level curve of a two-variable function, level surface of 
a three-variable function 
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  T13 Tangent vector 

  T12 Vector functions, space curves 

  T8 Orthogonal 

  T7 Parallel vectors/scalar multiple of a vector, zero vector 

[W]e start by trying to find the extreme values of 𝑓(𝑥, 𝑦) subject to a constraint of the form 𝑔(𝑥, 𝑦) = 𝑘. In 

other words, we seek the extreme values of 𝑓(𝑥, 𝑦) when the point (𝑥, 𝑦) is restricted to lie on the level 

curve 𝑔(𝑥, 𝑦) = 𝑘.  Figure 1 shows this curve together with several level curves of 𝑓.  These have the 

equations 𝑓(𝑥, 𝑦) = 𝑐, where 𝑐 = 7, 8, 9, 10, 11. To maximize 𝑓(𝑥, 𝑦) subject to 𝑔(𝑥, 𝑦) = 𝑘 is to find the 

largest value of 𝑐 such that the level curve 𝑓(𝑥, 𝑦) = 𝑐 intersects 𝑔(𝑥, 𝑦) = 𝑘. It appears from Figure 1 that 

this happens when these curves just touch each other, that is, when they have a common tangent line. 

(Otherwise, the value of 𝑐 could be increased further.) This means that the normal lines at the point (𝑥0, 𝑦0) 

where they touch are identical. So the gradient vectors are parallel; that is, ∇𝑓(𝑥0, 𝑦0) = 𝜆∇𝑔(𝑥0, 𝑦0) for 

some scalar 𝜆. 

This kind of argument also applies to the problem of finding the extreme values of 𝑓(𝑥, 𝑦, 𝑧) subject to the 

constraint 𝑔(𝑥, 𝑦, 𝑧) = 𝑘.  Thus the point (𝑥, 𝑦, 𝑧)  is restricted to lie on the level surface 𝑆 with 

equation 𝑔(𝑥, 𝑦, 𝑧) = 𝑘. Instead of the level curves in Figure 1, we consider the level surfaces 𝑓(𝑥, 𝑦, 𝑧) =

𝑐  and argue that if he maximum value of 𝑓  is 𝑓(𝑥0, 𝑦0, 𝑧0) = 𝑐,  then the level surface 𝑓(𝑥, 𝑦, 𝑧) = 𝑐  is 

tangent to the level surface 𝑔(𝑥, 𝑦, 𝑧) = 𝑘 and so the corresponding gradient vectors are parallel. 

This intuitive argument can be made precise as follows. Suppose that a function 𝑓 has an extreme value at 

a point 𝑃(𝑥0, 𝑦0, 𝑧0) on the surface 𝑆 and let 𝐶 be a curve with vector equation 𝐫(𝑡) = 〈𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)〉 

that lies on 𝑆 and passes through 𝑃. If 𝑡0 is the parameter value corresponding to the point 𝑃, then 𝐫(𝑡0) =

〈𝑥0, 𝑦0, 𝑧0〉. The composite function ℎ(𝑡) = 𝑓(𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) represents the values that 𝑓 takes on the 

curve 𝐶.  Since 𝑓  has an extreme value at (𝑥0, 𝑦0, 𝑧0),  it follows that ℎ  has an extreme value at 𝑡0,  so 

ℎ′(𝑡0) = 0. But if 𝑓 is differentiable, we can use the Chain Rule to write 

0 = ℎ′(𝑡0) 
 = 𝑓𝑥(𝑥0, 𝑦0, 𝑧0)𝑥

′(𝑡0) + 𝑓𝑦(𝑥0, 𝑦0 , 𝑧0)𝑦
′(𝑡0) + 𝑓𝑧(𝑥0, 𝑦0 , 𝑧0)𝑧′(𝑡0) 

 = ∇𝑓(𝑥0, 𝑦0, 𝑧0) ∙ 𝐫′(𝑡0) 

This shows that the gradient vector ∇𝑓(𝑥0, 𝑦0, 𝑧0) is orthogonal to the tangent vector 𝐫′(𝑡0) to every such 

curve 𝐶. But we already know from Section 14.6 [T21 Directional derivatives and the gradient vector] that 

the gradient vector of 𝑔, ∇𝑔(𝑥0, 𝑦0, 𝑧0), is also orthogonal to 𝐫′(𝑡0) for every such curve. (See Equation 

14.6.18.) this means that the gradient vectors ∇𝑓(𝑥0, 𝑦0, 𝑧0) and ∇g(𝑥0, 𝑦0, 𝑧0) must be parallel. Therefore, 

if ∇𝑔(𝑥0, 𝑦0, 𝑧0) ≠ 𝟎, there is a number 𝜆 such that 

∇𝑓(𝑥0, 𝑦0, 𝑧0) = 𝜆∇g(𝑥0, 𝑦0 , 𝑧0) 

 The number 𝜆 in [this equation] is called a Lagrange multiplier. 

p.1011-1012 

Method of Lagrange Multipliers (one constraint) 
 Tags -  T22 Maximum and minimum values 

  T21 Gradient vector 

  T16 Three-variable functions, level surface of a three-variable function 

  T7 Zero vector, scalar multiplication of a vector 
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To find the maximum and minimum values of 𝑓(𝑥, 𝑦, 𝑧) subject to the constraint 𝑔(𝑥, 𝑦, 𝑧) = 𝑘 [assuming 

that these extreme values exist and ∇𝑔 ≠ 𝟎 on the surface 𝑔(𝑥, 𝑦, 𝑧) = 𝑘]: 

(a) Find all values of 𝑥, 𝑦, 𝑧, and 𝜆 such that 

∇𝑓(𝑥, 𝑦, 𝑧) = 𝜆∇𝑔(𝑥, 𝑦, 𝑧) 

and      𝑔(𝑥, 𝑦, 𝑧) = 𝑘 

(b) Evaluate 𝑓 at all the points (𝑥, 𝑦, 𝑧) that result from step (a). The largest of these values is the maximum 

value of 𝑓; the smallest is the minimum value of 𝑓. 

p.1012 

Two constraints 
Tags -  T22 Maximum and minimum values 

 T21 Gradient vector 

 T16 Three-variable functions, level surface of a three-variable function 

 T10 Plane determined by two vectors 

 T8 Orthogonal 

 T7 Zero vector, sum and scalar multiplication of vectors 

Suppose now that we want to find the maximum and minimum values of a function 𝑓(𝑥, 𝑦, 𝑧)  subject to 

two constraints (side conditions) of the form 𝑔(𝑥, 𝑦, 𝑧) = 𝑘 and ℎ(𝑥, 𝑦, 𝑧) = 𝑐. Geometrically, this means 

that we are looking for the extreme values of 𝑓 when (𝑥, 𝑦, 𝑧) is restricted to lie on the curve of intersection 

𝐶  of the level surfaces 𝑔(𝑥, 𝑦, 𝑧) = 𝑘 and ℎ(𝑥, 𝑦, 𝑧) = 𝑐. (See Figure 5.) Suppose 𝑓 has such an extreme 

value at a point 𝑃(𝑥0, 𝑦0, 𝑧0). We know from the beginning of this section that ∇𝑓 is orthogonal to 𝐶 at 𝑃. 

But we also know that ∇𝑔 is orthogonal to 𝑔(𝑥, 𝑦, 𝑧) = 𝑘 and ∇ℎ is orthogonal to ℎ(𝑥, 𝑦, 𝑧) = 𝑐, so ∇𝑔 and 

∇ℎ are both orthogonal to 𝐶. This means that the gradient vector ∇𝑓(𝑥0, 𝑦0, 𝑧0) is in the plane determined 

by ∇𝑔(𝑥0, 𝑦0, 𝑧0) and ∇ℎ(𝑥0, 𝑦0, 𝑧0). (We assume that these gradient vectors are not zero and not parallel.) 

So there are numbers 𝜆 and 𝜇 (called Lagrange multipliers) such that 

∇𝑓(𝑥0, 𝑦0, 𝑧0) = 𝜆∇𝑔(𝑥0, 𝑦0, 𝑧0, ) + 𝜇∇ℎ(𝑥0, 𝑦0, 𝑧0) 

p.1016 

Method of Lagrange Multipliers (two constraints) 
 Tags -  T22 Maximum and minimum values 

  T21 Gradient vector 

  T18 Partial derivatives 

  T16 Three-variable functions, level surface of a three-variable function 

  T7 Scalar multiplication of a vector 

In this case Lagrange’s method is to look for extreme values by solving five equations in the five unknowns 

𝑥, 𝑦, 𝑧, 𝜆, and 𝜇. These equations are obtained by writing [the equation ∇𝑓(𝑥0, 𝑦0 , 𝑧0) = 𝜆∇𝑔(𝑥0, 𝑦0 , 𝑧0, ) +

𝜇∇ℎ(𝑥0, 𝑦0, 𝑧0)] in terms of its components and using the constraint equations: 

𝑓𝑥 = 𝜆𝑔𝑥 + 𝜇ℎ𝑥  

𝑓𝑦 = 𝜆𝑔𝑦 + 𝜇ℎ𝑦 

𝑓𝑧 = 𝜆𝑔𝑧 + 𝜇ℎ𝑧 
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𝑔(𝑥, 𝑦, 𝑧) = 𝑘 

ℎ(𝑥, 𝑦, 𝑧) = 𝑐 

p.1016 

Π24 Taylor Series 
Theorem 1: Power series expansion of a function 
 If 𝑓 has a power series representation (expansion) at 𝑎, that is, if 

𝑓(𝑥) = ∑ 𝑐𝑛(𝑥 − 𝑎)𝑛

∞

𝑛=0

              |𝑥 − 𝑎| < 𝑅 

 then its coefficients are given by the formula 

𝑐𝑛 =
𝑓(𝑛)(𝑎)

𝑛!
 

p.800 

Taylor series; Maclaurin series 
Substituting [the] formula for 𝑐𝑛 [in Theorem 1] back into the series, we see that if 𝑓 has a power series 

expansion at 𝑎, then it must be of the following form.  

𝑓(𝑥) = ∑
𝑓(𝑛)(𝑎)

𝑛!
(𝑥 − 𝑎)𝑛

∞

𝑛=0

 

 
= 𝑓(𝑎) +

𝑓′(𝑎)

1!
(𝑥 − 𝑎) +

𝑓′′(𝑎)

2!
(𝑥 − 𝑎)2 +

𝑓′′′(𝑎)

3!
(𝑥 − 𝑎)3 + ⋯ 

The series in [this equation] is called the Taylor series of the function 𝒇 at 𝒂 (or about 𝒂 or centered at 𝒂). 

For the special case 𝑎 = 0 the Taylor series becomes 

𝑓(𝑥) = ∑
𝑓(𝑛)(0)

𝑛!
𝑥𝑛

∞

𝑛=0

= 𝑓(0) +
𝑓′(0)

1!
(𝑥) +

𝑓′′(0)

2!
𝑥2 + ⋯ 

 This case arises frequently enough that it is given the special name Maclaurin series. 

p.800 

𝑛th-degree Taylor polynomial 
 [T]he partial sums [of the Taylor series of a function 𝑓 at 𝑎] are 

 

𝑇𝑛(𝑥) = ∑
𝑓(𝑖)(𝑎)

𝑖!
(𝑥 − 𝑎)𝑖

𝑛

𝑖=0

 

 
= 𝑓(𝑎) +

𝑓′(𝑎)

1!
(𝑥 − 𝑎) +

𝑓′′(𝑎)

2!
(𝑥 − 𝑎)2 + ⋯+

𝑓(𝑛)(𝑎)

𝑛!
(𝑥 − 𝑎)𝑛 

Notice that 𝑇𝑛 is a polynomial of degree 𝑛 called the 𝒏th-degree Taylor polynomial of 𝒇 at 𝒂. 

p.801 

Remainder of a Taylor series 
 In general, 𝑓(𝑥) is the sum of its Taylor series if 

lim
𝑛→∞

𝑇𝑛(𝑥) 
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 If we let 

𝑅𝑛(𝑥) = 𝑓(𝑥) − 𝑇𝑛(𝑥)  so that   𝑓(𝑥) = 𝑇𝑛(𝑥) + 𝑅𝑛(𝑥) 

then 𝑅𝑛(𝑥) is called the remainder of the Taylor series. If we can somehow show that lim
𝑛→∞

𝑅𝑛(𝑥) = 0, 

then it follows that 

lim
𝑛→∞

𝑇𝑛(𝑥) = lim
𝑛→∞

[𝑓(𝑥) − 𝑅𝑛(𝑥) = 𝑓(𝑥) − lim
𝑛→∞

𝑅𝑛(𝑥) = 𝑓(𝑥) 

 We have therefore proved the following theorem [Theorem 2]. 

p.801 

Theorem 2 
 If 𝑓(𝑥) = 𝑇𝑛(𝑥) + 𝑅𝑛(𝑥), where 𝑇𝑛 is the 𝑛th-degree Taylor polynomial of 𝑓 at 𝑎 and 

lim
𝑛→∞

𝑅𝑛(𝑥) = 0 

 for |𝑥 − 𝑎| < 𝑅, then 𝑓 is equal to the sum of its Taylor series on the interval |𝑥 − 𝑎| < 𝑅. 

 p.801 

Taylor’s inequality 
If |𝑓(𝑛+1)(𝑥)| ≤ 𝑀 for |𝑥 − 𝑎| ≤ 𝑑, then the remainder 𝑅𝑛(𝑥) of the Taylor series satisfies the inequality 

|𝑅𝑛(𝑥)| ≤
𝑀

(𝑛 + 1)!
|𝑥 − 𝑎|𝑛+1        for |𝑥 − 𝑎| ≤ 𝑑 

p.802 

Binomial series 
 [T]he Maclaurin series of 𝑓(𝑥) = (𝑎 + 𝑥)𝑘 is 

∑
𝑓(𝑛)(0)

𝑛!
𝑥𝑛 =

∞

𝑛=0

∑  

∞

𝑛=0

𝑘(𝑘 − 1)⋯ (𝑘 − 𝑛 + 1)

𝑛!
𝑥𝑛 

 This series is called the binomial series. 

[…] 

The traditional notation for the coefficients in the binomial series is 

(
𝑘

𝑛
) =

𝑘(𝑘 − 1)(𝑘 − 2)⋯ (𝑘 − 𝑛 + 1)

𝑛!
 

and these numbers are called the binomial coefficients. 

p.806 

In summary: 

 If 𝑘 is any real number and |𝑥| < 1, then 

(1 + 𝑥)𝑘 = ∑ (
𝑘

𝑛
)

∞

𝑛=0

𝑥𝑛 = 1 + 𝑘𝑥 +
𝑘(𝑘 − 1)

2!
𝑥2 +

𝑘(𝑘 − 1)(𝑘 − 2)

3!
𝑥3 + ⋯ 

  

Although the binomial series always converges when |𝑥| < 1, the question of whether or not it converges 

at the endpoints, ±1, depends on the value of 𝑘. It turns out that the series converges at 1 if −1 < 𝑘 ≤ 0 
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and at both endpoints if 𝑘 ≥ 0. Notice that if 𝑘 is a positive integer and 𝑛 > 𝑘, then the expression for (𝑘
𝑛
) 

contains a factor (𝑘 − 𝑘), so (𝑘
𝑛
) = 0 for 𝑛 > 𝑘. This means that the series terminates and reduces to the 

ordinary Binomial Theorem when 𝑘 is a positive integer. 

p.807 

 

 

 


