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Highlights

• We conduct a comprehensive review on multi-level facility location problems

• We present the main characteristics of these problems and identify three cate-
gories

• We discuss some similarities and differences with related areas

• We present overviews of formulations, algorithms and applications

• We trace the historical development of the field
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Abstract

We conduct a comprehensive review on multi-level facility location problems which
extend several classical facility location problems and can be regarded as a subclass
within the well-established field of hierarchical facility location. We first present the
main characteristics of these problems and discuss some similarities and differences
with related areas. Based on the types of decisions involved in the optimization
process, we identify three different categories of multi-level facility location problems.
We present overviews of formulations, algorithms and applications, and we trace the
historical development of the field.

Keywords: Location, Multi-level facility location, Hierarchical, Review, Supply
chain

1. Introduction

Discrete facility location problems (FLPs) constitute a major area of interest for
researchers and practitioners in operations research (OR). The mathematical struc-
ture of some FLPs, which has proven fruitful to the development of solution method-
ologies broadly used today in OR, combined with their applicability to real-life prob-
lems, have made FLPs a core topic that has led to a vast number of publications,
including several books and surveys (see, for example [36, 39, 71, 77, 94]). A sub-
class of FLPs called multi-level facility location problems (MLFLPs) has attracted
increasing attention in the last two decades. However, to the best of our knowledge,
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no recent publication consolidates the available material on this particular subject.
Thus, we felt that the time was adequate to discuss the main aspects of MLFLPs
in order to differentiate them from related topics and classify this rapidly emerging
area. In this article we review the most representative MLFLPs as well as their
historical development, models, solution methods and applications. For this purpose
we survey over 60 OR-related studies published since the late 1970s, among which
more than 40 have appeared in the last decade.

In an MLFLP we are given a set of customers that have a service or product
requirement and a set of potential facilities partitioned into k levels. The goal is to
determine which facilities to open simultaneously at each level, so that customers
are assigned to one or multiple sequences of opened facilities, while optimizing an
objective function. Some of these problems generalize fundamental FLPs such as
the uncapacitated facility location problem (UFLP) [30, 43, 75] and the capacitated
FLP [42]. For example, in one of the first papers on MLFLPs, Kaufman et al. [68]
introduced the so-called warehouse and plant location problem. Later, a slightly
different version of that problem was presented and denoted as the two-level un-
capacitated facility location problem (TUFLP). A natural extension to more than
two levels of facilities corresponds to the multi-level uncapacitated facility location
problem (MUFLP).

MLFLPs can also be viewed as a special case of an important class of problems
called hierarchical facility location problems (HFLPs), where systems involving dif-
ferent types of interacting facilities that provide services to a set of customers are
studied. Applications of HFLPs arise naturally in supply chain management (SCM)
[91], where the interactions between plants, warehouses, distribution centers, and re-
tail stores play a major role, and in health care systems [105] in which users must be
served from different levels of clinics and hospitals. Other examples arise in hierar-
chical telecommunication networks [25, 57], freight transportation [49, 51], and solid
waste management systems [16]. Therefore, HFLPs are more general than MLFLPs
and constitute a larger class of problems. However, given the increasing interest
in MLFLPs in recent years, the number of publications has grown drastically and
therefore the need for a clear distinction within HFLPs. Hence, we present a detailed
differentiation of these two classes of problems throughout Section 2.

The two surveys of Şahin and Süral [31] and Zanjirani Farahani et al. [121] provide
classifications and overviews of models, applications, and algorithms for HFLPs.
Reference [31] covers the literature until 2004. Reference [121] is more recent but
does not present most of the papers on MLFLPs in the broader context of HFLPs.
Perhaps, one of the reasons for the exclusion of some of these problems is that they
are known under different names and can be confused with similar, out-of-scope,
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problems. When preparing this survey, we have found that the terms multi-echelon,
multi-stage, multi-level, hierarchical, and multi-layer facility location problems have
all been used to refer to what we call MLFLPs.

The main contribution of this article is twofold. First, we formally define MLFLPs
in order to present a unified framework for this still-growing area of research, and to
differentiate it from other related areas within the field of facility location. Second, we
consolidate the main contributions in the context of MLFLPs with a comprehensive
review dating back to 1977 but with an emphasis on the last two decades. The paper
is organized as follows. Section 2 establishes the types of decisions that pertain to
MLFLPs and discusses the main characteristics of these problems. It also relates
them with well-known areas of research and describes some of the applications that
have been most relevant to MLFLPs. In Section 3 we present some of the historical
milestones of the area and identify the main categories of MLFLPs that have been
studied. We also discuss some variants and summarize the main references. Sections
4 to 6 are divided following the proposed classification scheme for MLFLPs. In each of
the latter sections we provide overviews of the corresponding models and algorithms.
Conclusions follow in Section 7. To facilitate reading, Table 1 summarizes the main
abbreviations used throughout the paper.

Table 1: Summary of the main abbreviations

OR: Operations research TUFLP: Two-level uncapacitated facility location problem
MILP: Mixed-integer linear programming TEUFLP: Two-echelon uncapacitated facility location problem
ILP: Integer linear programming TFLDP: Two-level facility location design problem
LP: Linear programming TECFLP-S: Two-echelon CFLP with single assignment constraints
PBF: Path-based formulation TCFLP: Two-level capacitated facility location problem
ABF: Arc-based formulation TUFLP-S: TUFLP with single assignment constraints
FLP: Facility location problem TCFLP-E: TCFLP with edge set-up costs
HFLP: Hierarchical facility location problem MUFLP: Multi-level uncapacitated facility location problem
GNDP: General network design problem MUFLP-E: MUFLP with edge set-up costs
UFLP: Uncapacitated facility location problem MUpLP: Multi-level uncapacitated p-location problem
CFLP: Capacitated facility location problem MUpLP-E : MUpLP with edge set-up costs
p-MP: p-median problem MFLDP: Multi-level facility location design problem
MLFLP: Multi-level facility location problem MpMP: Multi-level p-median problem

2. Decisions, related problems and applications

We first discuss the types of decisions that are involved in an MLFLP. For this
purpose and for the sake of clarity when referring to these decisions, we introduce
some notation that is used to model an MLFLP. Let G = (V ∪ I, E) be a graph with
vertex set V ∪ I and edge set E. The set I corresponds to the customers, and the set
V is partitioned into {V1, · · · , Vk}, corresponding to the sets of potential facilities at
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levels 1 to k. The edges always link two different levels. An MLFLP involves some
of the following decisions.

Design decisions: facility location and edge activation The location decisions
determine where to open the facilities. Given an underlying network G, facil-
ities may be located at both the vertices or the edges of the network. This
review focuses on discrete location problems, where it is assumed that facilities
can only be located at the vertices of G. We refer to [54, 62, 117] for gener-
alizations of results of Hakimi [61] on node optimality properties for HFLPs.
The UFLP [30] and the p-MP [61] are well-known examples where facility lo-
cation decisions are involved. The network design decisions select the edges
to be activated. These edges are used to provide transportation services be-
tween customers and facilities of the first level, and facilities between different
levels. Fixed-charged network design problems [82] such as the fixed charged
transportation problem [107] are well-known problems involving network de-
sign decisions, among others. However, in this paper we concentrate on those
problems where the facility location decisions are non-trivial.

Tactical decisions: allocation and routing The allocation decisions determine
which facilities will be used to serve each customer. In FLPs, two types of
allocation strategies have been considered. In single allocation, each customer
is assigned to exactly one facility, whereas in multiple allocation each customer
is allowed to be assigned to more than one facility, if beneficial. The routing
decisions indicate the routes (or paths) on G that will be used to satisfy the
customer demands. We use the term route to indicate the sequence of edges
used to send flows between pairs of vertices. These types of decisions commonly
appear in network flow problems which have been widely studied [9]. Since we
consider different levels of facilities (Vr), the allocation decisions can also be
viewed as the assignment of customers to open facilities of lower to higher levels,
sequentially. That is, a path between customers and highest-level facilities is
associated with a multi-level allocation structure. Finally, observe that the
network design and routing decisions are also interrelated, since the edges that
can be used in the paths are determined by the network design decisions.

Both of the above types of decisions are directly related to the fixed and variable
costs. For example, when a vertex jr ∈ Vr is selected to locate a facility, a set-up cost
fjr is incurred. Analogously, when an edge {j1, j2} ∈ E is activated a set-up cost
hj1j2 must be paid. The tactical decisions are affected by variable costs. A common
example is transportation costs which are generally related to the distances between
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the vertices. Transportation (or distribution) costs cij1···jk are variable since they also
depend on the customer’s demands di and the sequence of used facilities j1, · · · , jk.
Some classical problems such as the UFLP involve set-up costs for opening facilities
and transportation costs for assigning customers directly to facilities.

In order to better define the scope of this survey, we further discuss the above
types of decisions in the context of MLFLPs. First, it is required that non-trivial
facility location decisions be taken at every level of the hierarchy, simultaneously.
Other problems involve two or more levels of facilities but only in one of them is
the selection of facilities considered. We present some examples of this type of prob-
lems in Section 2.1.2. Depending on the application, network design and routing
decisions may be explicitly considered or not, that is, the activation of edges and
flow patterns are not necessarily non-trivial decisions. More importantly, this type
of decisions should not be confused with routing decisions commonly encountered
in similar problems such as location-routing problems [10, 33], where tours or paths
between vertices of the same level in the network are considered. In the case of
MLFLPs, there is no direct interaction between customers, and no horizontal inter-
actions between facilities of the same level. This can be seen from the definition of
the set E which corresponds to links between facilities and customers of different
levels. Typically the edges between facilities of different levels are defined sequen-
tially, i.e., for r = 1, · · · , k − 1, let Er = {{a, b} ∈ E : a ∈ Vr and b ∈ Vr+1}, and let
E0 = {{i, b} ∈ E : i ∈ I and b ∈ V1}. When this is the case we require a sequence of
exactly one open facility at each level. As we will discuss later in this section, this
feature corresponds to what is called a single flow pattern in the context of HFLPs.
However, some problems with multi-flow patterns are also considered as MLFLPs.
These assign customers to sequences of open facilities that can skip levels. Most of
these multi-flow pattern problems can be modeled as single-flow-patterns by simply
adding dummy vertices in the corresponding missing levels [106, 110], at the expense
of increasing the instance size.

A common requirement in MLFLPs is that every served customer must be allo-
cated to an open facility of the kth level either directly or through a sequence of open
facilities, and every open facility of level r must be connected to an open facility
of level r + 1, except those of level k. When flow patterns are considered, the flow
between levels must go in one direction and there ought to be only one type of arc
available. Some HFLPs, especially those that arise in the framework of waste man-
agement systems, consider flows in two directions or more than one type of arc (see,
for instance[16, 97]). These types of problems lie outside the scope of this paper.

Another important feature that differentiates MLFLPs from similar problems is
that the set of vertices V ∪I consisting of potential sites and customers is partitioned
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from the input into k+ 1 levels. This means that the set V is also partitioned into k
subsets, one for each level of facilities. Notably, in early works the partitioning of the
set V did not necessarily consist of pairwise disjoint sets [68, 106]. However, most
of the more recent papers assume pairwise disjoint sets. In any case, in contrast to
some HFLPs where one can open different facilities at any vertex of the network,
including those that model customer zones, in MLFLPs the sets Vr differ from Vr+1

for all r. This also means that in MLFLPs the number of levels is not part of the
decision process and facilities of type r can only be located in Vr, i.e. the hierarchy
is given as an input of the problem. Note also that the hierarchy is imposed only
on the vertices and not on the edges, in contrast for instance to multi-level network
design problems where usually the network design decisions are predominant [15, 56].
Finally, in terms of the objective function we restrict this review to those MLFLPs
with median and fixed charge objective (minisum) functions. We note that in recent
years variations of some MLFLPs allow the planner to have the option of incurring a
penalty instead of serving all customers. Such penalties are included in the objective
function and take into account the benefit of deciding which customers to serve.
Therefore, we do not restrict MLFLPs to require each customer to be allocated to a
sequence of open facilities.

2.1. Related problems

Different classes of FLPs are related to MLFLPs. We next discuss some of the
areas that we consider to be most relevant to this review and we point out the main
differences and similarities with MLFLPs.

2.1.1. Hierarchical facility location problems

We have already discussed some applications, definitions and references [31, 121]
for this class of FLPs. In particular, since we consider MLFLPs as a special case
of HFLPs, we have mentioned some of the differences between the two types of
problems. We now emphasize other relevant differences between them. Hence we
use the classification scheme and terminology of HFLPs given in [31] in order to
categorize MLFLPs in that context. It is based on four criteria: flow pattern, service
availability, spatial configuration and objective. A flow pattern refers to the way in
which a facility at a given level receives or offers services or products to another
facility at a different level and is either single-flow or multi-flow. In a network with
single-flow patterns, the flow from or to the customers must pass through all higher
levels until it reaches its point of origin or destination, whereas in an multi-flow
pattern, facilities of some level may receive or send flow directly from or to any higher
level. Service availability specifies whether a higher-level facility provides all services
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offered by its lower-level facilities plus another one (nested), or whether facilities
at each level provide different services (non-nested). In the spatial configuration
category a network can be coherent or non-coherent. In a coherent network, an open
facility of a lower-level must receive or send service from or to exactly one higher-
level facility. Non-coherent systems allow more than one higher-level facility serving a
given lower-level facility. Median, covering and fixed charge objectives are considered
in HFLPs. Therefore, for an MLFLP we have noted that the single-flow pattern is
more common and in principle a non-nested structure is considered. In terms of
the coherency criterion some papers have included certain assumptions while others
simply impose single assignment constraints which in both cases imply a coherent
structure [for example, 25, 49, 102].

Three main differences thus arise between MLFLPs and HFLPs apart from those
mentioned above, namely the type of objective function, the type of demands and the
service availability criterion. First, we note that other HFLPs that consider covering
or pure median objectives typically appear in the context of having the same set V
as potential sites for all types of facilities. In MLFLPs it is common to observe fixed-
charge-type objective functions. On the other hand, the service availability criterion
which was first discussed by Narula [98], is strictly interrelated with the presence
of different types of demand. In some HFLPs the requirements from the customers
are services, and the same customer can demand different types of service offered by
certain types of facilities in the hierarchy. These problems are generally motivated
by health care applications where geographical zones require service from regional
hospitals, local hospitals or clinics. Examples of this feature are provided in [93, 111].
In contrast, in MLFLPs there is only one type of demand, more in the spirit of a
production-distribution system where for instance, plants serve warehouses which in
turn serve customers. Therefore, we assume a non-nested configuration for MLFLPs
since we refer to different types of facilities instead of services, although this is also
application-dependent.

2.1.2. Multi-echelon location-routing problems

The term multi-level is not the only one used in the context of MLFLPs. For
example, we found multi-echelon, multi-stage, multi-layer and multi-tier among the
more common terminologies. Typically the terms layer and level are used as syn-
onyms, referring to the sets Vr or types of facilities as we did above. On the other
hand, the term echelon is generally associated with distribution networks where
products are transported between each pair of levels. Such pairs are called echelons
[17, 47, 79]. Multi-echelon FLPs are thus very similar to MLFLPs. In Section 3 we
highlight the main steps in the evolution of both terms. In fact, some of the papers
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that we review as MLFLPs denote their problems as multi-echelon. There are two
main characteristics that we can use to differentiate the terminology in this case.
The first one is that although all of the multi-echelon problems involve a multi-level
environment, not all of them require facility location decisions at every level. For
example, Geoffrion [52] Klose [69, 70] and Li et al. [79] study two-echelon FLPs in
which facilities to be opened are only selected at one of the levels. This is partially
because the predominant decisions are made at the echelons, and these typically
involve routing variables. Indeed, the second differentiating feature lies precisely in
the routing patterns. In MLFLPs we are concerned with problems where facility,
and sometimes network design decisions, are predominant with no routing decisions
between vertices of the same level involved. Cuda et al. [33] recently reviewed two-
echelon routing problems. Another term that is generally related to echelons is the
word tier, which has mainly been used in the context of freight transportation sys-
tems and city logistics [83, 84]. These problems also involve vehicle routing decisions
and are therefore out of the scope of this paper. The term stage has also been used in
the MLFLPs context. This is probably the most elusive one when trying to associate
it to something in particular. To mention a few MLFLPs references, in [76, 88, 96]
the term stage is used when referring to what we denote as levels. However, in other
papers it has been used in the sense of what we identified as echelons [e.g. 69, 70, 79].
Finally, the term stages may also apply for dynamic FLPs and stochastic programs.
In this review we attempt to select those that are concerned with MLFLPs.

2.1.3. General network design problems

We note that the types of decisions involved in MLFLPs mentioned above are
very much in the spirit of those identified by Contreras and Fernández [28], who clas-
sified a broader class of optimization problems referred to as general network design
problems (GNDPs), where both the facility location and network design decisions
are predominant and non-trivial. Thus, MLFLPs can also be seen as a special case
of the more general class of GNDPs. However, the authors concentrated on single-
level problems, excluding MLFLPs from their study. Nonetheless, their classification
of GNDPs based on the type of demand can be useful for our study of MLFPLs.
Contreras and Fernández [28] present two main categories of GNDPs: problems that
involve User-Facility demands (UF), and those with User-User demands (UU). In
UF, facilities are the service providers to users and typically there are no interac-
tions between facilities. Therefore, demands are routed from facilities to users. On
the other hand in UU, facilities consolidate commodities that are routed from origins
to destinations and thus, they are used as intermediate locations. The network de-
sign and routing decisions influence the optimal solution structure by deciding how
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to connect users to facilities and facilities to each other. This means that in most
UU cases facilities interact with each other. An example of GNDPs with UU de-
mands in which there is a multi-level environment are the so-called hierarchical hub
location problems [11, 120]. In MLFLPs, from the perspective of GNDPs, we restrict
our attention to those problems that have a UF demand and incorporate non-trivial
network design decisions.

Another important subclass of GNDPs is referred to as Connected Facility Loca-
tion Problems. In particular, note that every solution of an MLFLP can be viewed
as a tree rooted at a artificial vertex with edges to the facilities of the highest level.
Then, if we consider that there are no operational costs, previously denoted as cij1···jk ,
and incorporating the set-up costs for opening facilities in the edges the correspond-
ing MLFLP actually coincides with a Hop Constrained Connected Facility Location
Problem [81] or a Hop Constrained Steiner Tree Problem [58]. This is yet another
interesting bridge between network design problems and MLFLPs.

2.1.4. Supply chain network design problems

MLFLPs also relate to the well-studied area of supply chain management [13,
109]. There has been a great effort to establish the importance of location problems
in SCM [34, 85, 91]. For instance, Melo et al. [91] review facility location models in
the context of SCM and identify features that such models must capture in order
to be consistent with the strategic decisions involved in SCM. In particular, the
authors discuss the importance of having different types of facilities, very much
like an MLFLP, where the strategic decisions of the SCM system are considered.
However, SCM usually involve decisions on the inventory, procurement, production,
routing, etc, and thus, reviewing such a general class of problems is beyond the
scope of this paper. Nevertheless, MLFLPs can be considered as a simple version of
a supply chain network design problem where most of the tactical and operational
decisions are not involved.

2.2. Applications

Two types of applications arise frequently in MLFLPs-related papers. The first
one is concerned with production-distribution systems where customers require a
product that must be provided from first-level facilities (warehouses) which in turn
is sent from production plants. This line of research naturally evolved from some
early works where the warehouse and plant location problem was introduced [68, 106].
Some variations include additional levels in the distribution network such as retail
stores or distribution centers and more sophisticated models in freight transporta-
tion [27, 49, 51]. Also note that the applications that motivate this type of MLFLP
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generally do not exceed more than three levels of facilities. Some examples where
a production-distribution system is studied are [41, 47, 60, 76, 88, 89, 96, 103, 104,
110, 113, 118, 119]. However, other papers more involved in the development of
approximation algorithms for the general k-level case also make reference to distri-
bution systems [7, 23, 26]. Moreover, an interesting variant of the problem arises
when decision maker determines whether to provide the service to each customer or
to pay a penalty for those that are not served [12, 24].

The second major application area emerges from the telecommunications industry
and the design of computer networks. In this case, one must decide where to locate
devices such as routers and multiplexers and how to allocate customers (terminals)
to a sequence of devices. A recent survey on location problems in telecommunica-
tions was presented by Fortz [45]. Other examples of references where this type of
application is discussed are [5, 6, 25, 35, 57, 59, 66, 67, 95]. Finally, other studies
in the context of MLFLPs have been motivated by applications in different fields.
For instance, waste disposal systems [17, 20, 21, 114], supply chain of disaster relief
system [53], and health care systems [32].

3. A classification scheme and overview of the related literature

We now present a classification scheme for MLFLPs based on the types of deci-
sions involved and on the different possible combinations of them. On the one hand,
design decisions correspond to (i) opening of facilities and (ii) activating edges, while
on the other hand, (iii) allocation and routing decisions are made to satisfy customer
demands. Since selecting which facilities are opened at each level is a requirement
of every MLFLP, we are left with the three possible combinations of (ii) and (iii) to
define our categories. Given that non-trivial decisions are closely related to the types
of costs (or profits) considered in the definition of each problem, we could also refer
to the corresponding category by type of cost. We have selected one fundamental
problem from each category in order to identify them more easily as follows. When
there are only design decisions (i) and (ii) involved, we refer to them as multi-level
facility location design problems (MFLDPs). When there are facility location and
tactical decisions (i) and (iii), we refer to the MUFLP. Finally, when all three types
of decisions are present, we refer to the MUFLP with edge set-up costs (MUFLP-
E). The latter is clearly a more general version combining the former two. In the
following example we sketch an instance of the three problems in a two-level envi-
ronment in order to illustrate this categorization. We summarize the main notation
used throughout the paper in Table 2.

Example 1. Consider an underlying network consisting of I = {i}, V1 = {11, 21}
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and V2 = {12, 22} and all edges between I and V1 as well as those between V1 and
V2 exist. The fixed costs for opening facilities are f11 = 5, f21 = 10, f12 = 20, and
f22 = 25 and we assume that there are no fixed costs for opening edges between I and
V1. We analyze three scenarios, one for each of the aforementioned representative
problems in this two-level context (TFLDP, TUFLP, TUFLP-E). For the TFLDP
and the TUFLP-E, consider edge set-up cost h11112 = 5, h11122 = 10, h12112 = 3, and
h12122 = 5. For the TUFLP and the TUFLP-E let ci1112 = 10, ci1122 = 1, ci2112 = 5,
and ci2122 = 5 be the corresponding transportation costs. Therefore, we obtain
three different optimal solutions, one for each problem. For the TFLDP the optimal
value is 30, opening facilities 11 and 12 as well as the edge {11, 12}. This solution
is depicted in Figure 1a. We have represented with darker colors open facilities and
links. Similarly, for the TUFLP and the TUFLP-E we have optimal values equals
to 31 and 38, respectively. The corresponding solutions are shown in Figures 1b and
1c.

11 21

2212

i

(a) TFLDP solution

11

12

i

21

22

(b) TUFLP solution

11 21

2212

i

(c) TUFLP-E solution

Figure 1: Three examples of two-level FLPs

In Sections 4 to 6 we present formal definitions of the problems and discuss the
related variants and references in more detail for each category of MLFLPs. We also
present what we consider to be milestones of the field, and the trends that they have
defined. On our historical path towards defining those most representative MLFLPs,
we introduce some commonly used MILP formulations within each category, and thus
we illustrate the differences and relationships with each other as well as their varia-
tions. Table 3 summarizes the main MLFLP publications and includes side criteria
such as capacitated/uncapacitated and the solution approach (exact or approximate)
that was applied in the corresponding reference. Some references may therefore ap-
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Table 2: Summary of main notation

Notation Definition
Sets G = (V ∪ I, E) graph with vertices V ∪ I and edges E

V set of potential sites
I set of customers
Vr set of potential sites of level r, for r = 1, · · · , k
Er set of edges between Vr and Vr+1, for r = 1, · · · , k − 1
E0 set of edges between I and V1
Q set of possible paths of facilities, exactly one from each level e.g.

q = j1, · · · , jk ∈ Q
Parameters k number of levels

fjr fixed cost for opening facility jr ∈ Vr, for r = 1, · · · , k
cij1···jk variable cost (or profit) for serving customer i through the sequence

j1 · · · jk
h1j1j2 fixed costs for opening edge {j1, j2} ∈ E1

h0ij1 fixed costs for opening edge {i, j1} ∈ E0

pr maximum number of facilities to open at level r, for r = 1, · · · , k
di demand of customer i ∈ I

βj1 , αj2 capacities at facilities j1 ∈ V1 and j2 ∈ V2, respectively
Variables yjr binary decision for opening facility jr ∈ Vr, for r = 1, · · · , k

xij1···jk binary (continuous) decision for assigning customer i ∈ I to se-
quence j1 · · · jk with jr ∈ Vr for r = 1, · · · , k

t1j1j2 binary decision for opening edge {j1, j2} ∈ E1

t0ij1 binary decision for opening edge {ij1} ∈ E0

zriab binary decision determining whether the edge {a, b} ∈ Er is used
to serve customer i, for r = 1, · · · , k

vij1 binary decision if customer i is assigned to j1 ∈ V1. Also used as
amount of flow between i ∈ I and j1 ∈ V1

wjrjr+1 (fraction of) flow between jr ∈ Vr and jr+1 ∈ Vr+1, for r =
0, · · · , k − 1, with V0 = I

ηi continuous variable for the profit of serving customer i ∈ I
xq binary decision for opening path q ∈ Q

pear in more than one box of the table. We also include papers containing polyhedral
studies or introducing MILP formulations only in the “exact” columns.

From Table 3 we can observe that certain areas have received considerably more
attention than others. For example, in the uncapacitated cases an important number
of publications are concerned with the development of approximation algorithms,
except for the MUFLP-E variant. Thus, more research must be carried out to further
investigate whether adding fixed costs on the edges changes the problem drastically
from an approximation perspective. Also, in the uncapacitated case, we see that
models and exact algorithms have been proposed for almost all categories listed in
the table. However, only recently was an exact solution method designed for large-
scale instances of the general MUFLP-E with k > 2 [101]. On the other hand, in
the capacitated versions, the effort appears to have focused on the two-level variants.
This leaves aside only a few references where approximation algorithms have been
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designed for the general case where k > 2.

Uncapacitated Capacitated
Heuristics Exact Heuristics Exact

MUFLP
k = 2 [48, 74, 95, 108,

122]
[4, 20, 32, 68, 76,
88, 106]

[6, 41, 60, 80, 96,
103, 104, 119]

[1, 2, 5, 21, 80,
89, 103, 104,
114, 118, 119]

k > 2 [3, 7, 8, 12, 22–
24, 38, 44, 46,
59, 72, 74, 78,
86, 87, 90, 92,
102, 110, 115,
116, 123]

[46, 73, 102, 110] [7, 23, 26, 37]

MUFLP-E
k = 2 [17, 47] [17, 25, 47, 49,

50]
[53, 66, 112] [53, 66, 113]

k > 2 [101]

MFLDP
k = 2 [95] [14, 25] [95] [25]
k > 2 [35, 44, 67]

Table 3: Summary of MLFLPs references

4. MLFLPs with tactical decisions

Perhaps the simplest version of an MLFLP, yet the most studied, is the TUFLP
which can be defined as follows. Assuming that all facilities are uncapacitated and
given fixed costs fjr for setting up facility jr, for r = 1, 2, as well as distribution
costs cij1j2 for serving customer i through the pair j1, j2, the problem consists of
determining which facilities to open at each level so that every customer is served
via a pair of open facilities (j1, j2), while minimizing the total cost. Consider the
binary decision variables yjr equal to 1 if and only if facility jr ∈ Vr is open, and the
continuous variable xij1j2 equal to the fraction of the demand of customer i satisfied
by second-level facility j2 through first-level facility j1. The TUFLP can then be
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formulated as

(F1-TUFLP) minimize
∑

i∈I

∑

j1∈V1

∑

j2∈V2
cij1j2xij1j2+

2∑

r=1

∑

jr∈Vr
fjryjr

subject to
∑

j2∈V2

∑

j1∈V1
xij1j2 = 1 i ∈ I (1)

∑

j1∈V1
xij1j2 ≤ yj2 i ∈ I, j2 ∈ V2 (2)

∑

j2∈V2
xij1j2 ≤ yj1 i ∈ I, j1 ∈ V1 (3)

xij1j2 ≥ 0 i ∈ I, j1 ∈ V1, j2 ∈ V2 (4)

yjr ∈ {0, 1} jr ∈ Vr, r = 1, 2. (5)

Note that the variables xij1j2 are allowed to be declared as continuous since in the
uncapacitated case they will take integer values in any case [4]. However, the earliest
version of the problem that we were able to identify is a slightly different variant
which was denoted as the warehouse and plant location problem in the seminal work
of Kaufman et al. [68]. Assuming that V2 ⊆ V1, the authors imposed the additional
constraint that with each open plant there must be an open warehouse in the same
location:

yj2 ≤ yj1 j1 ∈ V1, j2 ∈ V2.
A few years later, Ro and Tcha [106] introduced a modified version of this con-

straint by including a set of “adjunct” warehouses to each plant, thus enforcing the
constraint that if a plant is opened the associated warehouses are opened, but not
vice versa. When the sets of adjunct warehouses are empty, the problem corre-
sponds to what we call the TUFLP. The same year, Tcha and Lee [110] presented
a problem without this additional constraint, which is then a TUFLP. These au-
thors also generalized the problem to k levels and denoted it as the MUFLP. They
introduced an MILP for the MUFLP which is nowadays referred to as path-based
formulation (PBF), where each sequence of facilities j1, j2, · · · , jk, with jr ∈ Vr, is
called a path, and every customer must be allocated to a path of open facilities. It
is straightforward to derive the corresponding MILP formulation for the MUFLP
by extending the decision variables yjr and xij1···jk for r = 1, · · · , k from those of
the F1-TUFLP. We thus select the MUFLP as the representative problem for those
MLFLPs encompassed in this category. We divide this section into the uncapacitated
and the capacitated cases. The former is in turn divided into three parts namely,
formulations, exact algorithms and heuristics.
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4.1. Uncapacitated case

As for the single-level case, we follow the uncapacitated/capacitated criterion for
MLFLPs. This distinction is important since capacity constraints usually play a
major role in models and algorithms.

4.1.1. Formulations

Two main families of MILP formulations are commonly used for MLFLPs. The
first is related to the PBF explained before that extends from the F1-TUFLP using
variables xij1···jk for the allocation of customers, and yjr variables for selecting facil-
ities. The second type of formulation is the so-called arc-based formulation (ABF).
In contrast with PBF, in an ABF the decision variables are in a sense split between
levels, that is, the variables are associated with arcs instead of paths. At this point
it is important to note that a path in k levels (a sequence of k facilities, one from
each level), actually coincides with arcs in the two-level case. Also, we refer to arcs
and edges indistinctly unless otherwise needed. Therefore, the initial formulation
F1-TUFLP can be viewed as a PBF or as an ABF, from which the extended versions
are derived. For example, Gabor and van Ommeren [46] introduced the following
MILP for the MUFLP in which decision variables are associated to arcs instead of
paths. Assuming that the sets Er contain all possible edges between levels r and
r + 1, for r = 1, · · · , k − 1 and that cij1···jk = cij1 + · · · + cjk−1jk , let zriab = 1 if
customer i uses the edge {a, b} ∈ Er, yjr as defined before and vij1 = 1 if customer i
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is assigned to j1 ∈ V1. An ABF for the MUFLP is then (F2-MUFLP)

minimize
∑

i∈I

∑

j1∈V1
cij1vij1 +

∑

i∈I

k−1∑

r=1

∑

{a,b}∈Er

cabz
r
iab +

k∑

r=1

∑

jr∈Vr
fjryjr

subject to
∑

j1∈V1
vij1 = 1 i ∈ I (6)

∑

b∈V2
z1ij1b = vij1 {i, j1} ∈ E0 (7)

∑

b∈Vr+1

zriab =
∑

b′∈Vr−1

zr−1ib′a i ∈ I, a ∈ Vr, r = 2, · · · , k − 1 (8)

vij1 ≤ yj1 {i, j1} ∈ E0 (9)
∑

a∈Vr−1

zr−1iab ≤ yb i ∈ I, b ∈ Vr, r = 2, · · · , k (10)

vij1 ≥ 0 {i, j1} ∈ E0 (11)

zriab ≥ 0 i ∈ I, {a, b} ∈ Er, r = 1, · · · , k − 1 (12)

yjr ∈ {0, 1} jr ∈ Vr, r = 1, · · · , k. (13)

Note that the variables vij1 can be eliminated from the model either by consol-
idating the sets of constraints (6) and (7) or by setting ziij1 = vij1 , in which case
(7) can be embedded in (8). However, we have opted to reproduce the model as
presented in [46]. When k = 2 we obtain the initial formulation F1-TUFLP de-
scribed above. Note also that this formulation has another interpretation from the
perspective of network design. In particular, it relates to a multi-commodity flow for-
mulation where the set I corresponds to the set of commodities, constraints (6)–(8)
to the flow-conservation constraints and, (9)–(10) to the capacity constraints.

Other ABFs have been studied for the problem, in particular those that consider
variables wjrjr+1 representing the flow from facility jr ∈ Vr to facility jr+1 ∈ Vr+1,
with V0 = I. As we will discuss, this type of formulation is common in the capacitated
cases. One example in the uncapacitated variant arises in the seminal work of Aardal
et al. [4], which introduces an ABF for the TUFLP by defining wij1 =

∑
j2∈V2 xij1j2

and wj1j2 =
∑

i∈I xij1j2 . The authors compared the LP relaxations of the two for-
mulations concluding that the bound of the F1-TUFLP formulation is always better
than that obtained with their ABF. This result typically generalizes to k levels, but
the size of a PBF grows much faster than that of an ABF. Aardal et al. [4] also
conducted a polyhedral study of the associated polytope of F1-TUFLP. In particu-
lar, they developed a characterization of the extreme points of its LP relaxation as
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well as results extending all nontrivial facets of the single-level UFLP to the TUFLP.
They proved, among other results, that (2)–(4) define facets of the convex hull of
the associated polyhedral set of F1-TUFLP. Moreover, they introduced two classes
of facet-defining inequalities for a modified version of the F1-TUFLP and stated
conditions under which these inequalities also induce facets for the single-level case.
However, these results have never been extended to the case k > 2.

Another example of an ABF using the variables wjrjr+1 for the TUFLP was stud-
ied by Maŕın [88]. Landete and Maŕın [76] also used the disaggregated version of
constraints (2) and (3) and introduced a reformulation of the TUFLP as a set pack-
ing problem for which the corresponding polyhedral study was developed, along with
facet-defining inequalities and an algorithm. More recently, Kratica et al. [73] and
Marić et al. [87] independently introduced a new ABF for the MUFLP, very much in
the spirit of the ABF introduced in [4] for the two-level case. Kratica et al. [73] pro-
vided computational results comparing on general purpose solvers the performance
of the new formulation with those of the PBF and of the F2-MUFLP.

Ortiz-Astorquiza et al. [102] presented a new type of MILP for a slightly more
general MUFLP in which for given values of pr, r = 1, · · · , k, cardinality constraints
(
∑

jr∈Vr yjr ≤ pr) are imposed at each level. They called this problem the multi-
level uncapacitated p-location problem (MUpLP) since it generalizes the well-known
UpLP presented by Cornuéjols et al. [29], which in turn subsumes the UFLP and
the p-median problem (p-MP) [61]. The multi-level version of the p-median problem
is denoted by MpMP. In [102], the authors developed the new formulation of the
maximization version of the problem based on an alternative combinatorial repre-
sentation given in [100], in which the objective function satisfies the submodularity
property. Thus, considering the variables ηi representing the profit (or cost) of serv-
ing customer i ∈ I, and Q the set of all possible paths q = j1, · · · jk having exactly
one facility at each level, one can project out the variables xiq to xq from the PBF
and obtain the submodular formulation

18



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

(SF-MUpLP) maximize
∑

i∈I
ηi

subject to ηi ≤ ciqt +
∑

q∈Q
(ciq − ciqt)+xq i ∈ I, t = 0, · · · , |Q| − 1,

(14)
∑

q∈Q:jr∈q
xq ≤Mryjr jr ∈ Vr, r = 1, · · · , k, (15)

∑

jr∈Vr
yjr ≤ pr r = 1, · · · , k, (16)

xq ∈ {0, 1} q ∈ Q, (17)

yjr ∈ {0, 1} jr ∈ Vr, r = 1, · · · , k, (18)

where for each i ∈ I, and r = 1, · · · , k, 0 = ciq0 ≤ ciq1 ≤ · · · ≤ ciq|Q| and Mr

are sufficiently large numbers. Note that the disaggregated version of constraints
(16) may also be used. In [102] a computational comparison of formulations for the
MUpLP was carried out. Because of the large number of constraints (14) the authors
embedded the SF-MUpLP in a branch-and-cut framework exploiting an efficient way
of solving the separation problem. For comparison purposes, they considered the
PBF extension of the F1-TUFLP, the F2-MUFLP, the branch-and-cut SF-MUpLP
and the ABF of [73]. Their computational results showed that when the cardinality
constraints are predominant, the SF-MUpLP dominates the other three formulations
in terms of CPU time spent to obtain the optimal solution, while in the case of
pr = |Vr|, i.e. for the MUFLP, there is no clear dominance of one model over the
others. While the PBF grows considerably faster when k > 2, their experiments
show that it yields a good LP bound in comparison with those of the submodular
formulation and the ABF of [73], and therefore a smaller enumeration tree. The
F2-MUFLP modified for the general problem seems to take much longer when the
cardinality constraints are active, but it is rather efficient in the MUFLP case. The
ABF of [73] and the submodular formulation achieve a balance between memory
usage and computing time spent when the problem is more general. However, the
experiments pointed to a better average performance for the submodular formulation.
Instances with up to 2,000 customers, 200 potential facilities, and four levels of
hierarchy were solved to optimality.
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4.1.2. Exact algorithms

All of the early works on MLFLPs introduced exact algorithms for different ver-
sions of the problem. For example, the three ground-setting papers [68, 106, 110]
presented branch-and-bound methods that extended those known for the single-level
case. However, the algorithms of [106, 110] were based on the assumption that the
submodular property extends directly from the single-level version. The correctness
of such methods was later discussed by Barros and Labbé [18] who showed that
the objective function of the representation of the corresponding problems does not
satisfy this property. More recently, Ortiz-Astorquiza et al. [100] introduced an al-
ternative combinatorial representation of the (maximization version of the problem)
whose objective function does satisfies submodularity.

Tcha and Lee [110] presented a modified version for the MUFLP of the dual
ascent procedure of Erlenkotter [40] known for the single-level UFLP. However, ever
since these solution methods were proposed, only a few papers have dealt with the
development of specialized exact solution algorithms for variants of the MUFLP.
The papers of Maŕın [88], Landete and Maŕın [76], Gendron et al. [49] and Ortiz-
Astorquiza et al. [101] are perhaps the exceptions. However, [49, 101] study the more
general case where fixed costs on the edges are considered, so these contributions will
be discussed in the following sections.

As already mentioned, an ABF for the TUFLP was proposed in [88] from which
the authors studied several Lagrangian relaxations. The authors showed when the
so-called Lagrangian bound satisfied the integrality property, that is, the case when
the optimal value obtained from the Lagrangian dual coincides with that of the LP re-
laxation. Moreover, they presented several results in which dominance relationships
between bounds of the different relaxations are given, and developed a bounding pro-
cedure based on the lower bounds obtained by applying a subgradient optimization
procedure for one of the Lagrangian relaxations. They argued for the selection of a
relaxation based on a balance between dominance and ease of solution. Landete and
Maŕın [76] reformulated the TUFLP as a set packing problem and presented different
classes of facet-defining inequalities for the reformulation. Based on these inequali-
ties, they developed a branch-and-cut algorithm and compared its performance with
that of a general purpose solver.

4.1.3. Heuristics

Most research efforts towards the development of algorithms for MUFLP-related
problems have focused on heuristics. We can start by differentiating two main re-
search streams: heuristics without a performance guarantee, and ρ-approximation
algorithms i.e., polynomial-time heuristics that yield a feasible solution with an ob-
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jective function value lying within a factor of ρ of the optimal value. Most of the
work on heuristics has focused on the latter stream.

In the area of heuristics without a bounded worst-case ratio, Korać et al. [72],
Marić [86], Marić et al. [87] presented algorithms for the MUFLP considering that
the costs c are metric (i.e. nonnegative, symmetric and satisfying the triangle in-
equality) and additive with respect to the k levels. These algorithms were tested
mainly on instances modified from single-level versions of FLPs. The largest size of
instances involved 2000 customers and five levels of potential sites. In [86] a genetic
algorithm is presented including an implementation with a dynamic programming
scheme to find the sequences of open facilities to satisfy customers demands. Accord-
ing to the authors, the dynamic programming component is the main ingredient that
enables the genetic algorithm to solve large-scale instances within a short amount
of time. Later, in [72, 87] improvements on the genetic algorithm were introduced.
For instance, improving the implementation of the dynamic programming approach
and incorporating local search procedures designed for the MUFLP, which are de-
noted as memetic algorithms. Another memetic algorithm was designed by Mǐsković
and Stanimirović [95] to obtain solutions of the TUFLP using the formulation in-
troduced in [76]. Gendron et al. [48] developed a metaheuristic for the two-level
uncapacitated facility location problem with single assignment constraints, denoted
TUFLP-S. In the TUFLP-S the restrictions that each open first-level facility can
be connected to at most one open second-level facility are required. The authors
developed what they called a multi-layer variable neighborhood search metaheuristic
for the TUFLP-S and a similar variant with modular costs. The term multi-layer
comes from partitioning the neighborhood structures into several layers, where for
each layer a variable neighborhood search scheme is applied. They compared the
performance of their algorithm with that of a MILP solved using a general purpose
solver, and with that of a slope-scaling heuristic based on the same formulation.

There also exist approximation algorithms with performance guarantee. However,
since there are two versions of the MUFLP and its variants namely, a maximization
and a minimization version, we must review them separately. The reason for this
additional classification comes from the fact that from an approximation perspective,
the maximization and minimization versions of an optimization problem are not
necessarily comparable. This was discussed in [65, 108] for the single-level case and
in [102, 123] for the multi-level case.

a) Maximization version

We note that in the maximization version of the MUFLP, the values of cij1···jk
correspond to the profit of serving customer i through path j1 · · · jk. This can be

21



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

thought as ciq = bi −Diq, where bi is the price that client i ∈ I pays for the service,
and Diq is the total operational cost of serving client i through path q = j1 · · · jk.
Observe also that adding to ciq a constant γi for every possible path q does not
change the optimal solution. This is because in the MUFLP one must serve every
client and thus, having new values of c defined as c′iq = ciq + γi changes the cost
of every feasible solution by the same amount. This property is well known for the
single-level case [30]. The price bi can thus be seen as the corresponding constant γi
and therefore, only the costs are relevant for the decision, yielding the minimization
version of the problem. This is why from an optimization point of view, it seems to
be more common to work with the minimization version than with its maximization
counterpart. Moreover, note that the objective function

z =
∑

i∈I

k∑

r=1

∑

jr∈Vr
cij1···jkxij1···jk −

k∑

r=1

∑

jr∈Vr
fjryjr

can take positive or negative values and thus, a correcting factor in the definition of
measure of relative deviation for approximate solutions must be added [29].

Let z∗ be the optimal value of the problem and let zR be a sufficiently small
number, typically defined depending on the input of the problem, such that z∗ ≤
z ≤ zR, where z is the value of any feasible solution. Bumb [22] assumed that all
costs and profits are non-negative and presented an approximation algorithm based
on the technique of independently randomized rounding which yields a solution Z
satisfying

Z − zR
z∗ − zR

≥ 0.47.

This worst-case bound was soon improved to 0.5 by Zhang and Ye [123]. Recently,
based on an alternative representation of the MUFLP [100] in which the objective
function satisfies the submodularity property, Ortiz-Astorquiza et al. [102] were able
to extend to the k-level case the constant-performance guarantees of Cornuéjols et al.
[29] and Nemhauser et al. [99] derived for the single-level case. In [102], they studied
the MUpLP which includes as special cases the MUFLP and the Mp-MP. The authors
showed that when the profits c are additive, a polynomial time greedy algorithm
always yields a solution satisfying

Z − zR
z∗ − zR

≥ 1− 1

e
≈ 0.63.

Based on the foreseen difficulties of extending their algorithm to the general case
of k levels, Bumb [22] questioned whether there exists an approximation algorithm
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with performance guarantee independent on the number of levels for the maximiza-
tion version, as was the case at the time for the minimization counterpart. The
recent result of [102] answers this question in a positive manner.

b) Minimization version

Since almost all the related papers assumed that the costs c are induced by a
metric on V ∪ I and are additive with respect to the levels as already mentioned, in
the remainder of this section we retain these assumptions unless otherwise stated.
We observe that Shmoys et al. [108] and Aardal et al. [3] were the first to present
approximation algorithms with constant-performance guarantees for the two-level
and multi-level cases, respectively. These papers set the ground for a rich line of
research. In [108] a 3.16-approximation algorithm was introduced which was soon
improved in [3] to a 3-approximation algorithm for the general k-level case. However,
the drawback of these algorithms seems to be that they are based on randomized
rounding of the optimal solution of an LP relaxation. Even if the algorithms have
polynomially bounded running times, the LP relaxation contains an exponential
number of variables and thus, solving it may be difficult in practice. Guha et al.
[59], Meyerson et al. [92] were the first to design efficient combinatorial algorithms
capable of finding a solution within a factor of O(log|I|) and 9.2 of the optimal
value, respectively. They presented these results for the MUFLP as a special case
of more general network design problems. These worst-case bounds were improved
by Bumb and Kern [23] who developed a dual ascent algorithm for the MUFLP
with a performance guarantee of 6, and by Ageev [7] and Ageev et al. [8], using the
result of Edwards [38] who proved that any ρ-approximation algorithm for the UFLP
leads to a 3ρ-approximation algorithm for the MUFLP. This yielded combinatorial
4.83- and 3.27-approximation algorithms for any k ≥ 2 with worst-case bounds of
2.8446 and 3.1678 for k = 2 and k = 3, respectively. Zhang [122] later combined
techniques such as randomized rounding, dual fitting and a greedy procedure to
obtain the best-to-date 1.77-approximation algorithm for the TUFLP. Moreover,
the author also obtained an O(ln|I|)-approximation algorithm for the non-metric
TUFLP. In the same year, Fleischer et al. [44] published their results which consisted
of an O(lnk|I|)-approximation algorithm for the non-metric MUFLP. A few years
later, Gabor and van Ommeren [46] described a 3-approximation algorithm for the
MUFLP based on LP-rounding using a new MILP formulation. The importance
of this model lies in its polynomial number of variables and constraints in contrast
with the previous formulation by [3]. Finally, since many techniques used for the
development of such algorithms extend from those applied to the single-level versions,
a natural question is whether the MUFLP is computationally harder than the UFLP.
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This question remained open until recently when Krishnaswamy and Sviridenko [74]
proved inapproximability results which showed that there exists no approximation
algorithm with performance guarantee better than 1.539 for the TUFLP unless P =
NP . They also showed that for the general case of k > 2, when k tends to infinity,
the hardness factor is 1.61.

Similarly, approximation algorithms with performance guarantee were developed
for variants of the MUFLP. For example, Wang et al. [115, 116] proposed a 4-
approximation algorithm based on LP-rounding techniques for the stochastic MU-
FLP, that is, when demands are uncertain. Melo et al. [90] improved the performance
guarantee to 4 − o(1). Another variant of the MUFLP that has received attention
in the last few years is the so-called MUFLP with penalties [12, 24, 78], in which
the decision maker determines whether to provide the service to each customer or to
pay a penalty for those that are not served. In particular, Byrka et al. [24] presented
the MUFLP as a special case and provides the best known constant-performance
guarantee for k > 2 which tends to 3 when k is sufficiently large.

4.2. Capacitated case

Several features of single-level FLPs, including applications, solution methods
and variants of the problems have been extended to MLFLPs. However, since the
number of publications suggests that the uncapacitated cases have attracted more
attention, defining streams of research for the capacitated case seems more challeng-
ing. Here we discuss the main contributions corresponding to the capacitated variant
of the TUFLP, called the two-level capacitated facility location problem (TCFLP).
Analogously to the uncapacitated case, it seems that the TCFLP is the one that has
been the most studied among capacitated MLFLPs. In this problem, capacities in
one or both levels of facilities are imposed, denoted by αj2 and βj1 . From the early
works on the TCFLP we note that of Aardal [1], who presented MILP formulation
for the problem and a polyhedral study. The same author [2] later introduced a refor-
mulation along with computational results. In contrast with the TUFLP, in this case
a more common formulation involves ABF or also called two-index formulations. Let
di be the demand value for each i ∈ I, and let vij1 and wj1j2 be continuous variables
representing the flow to customer i from j1 and that of the plant j2 to warehouse j1,
respectively. Denoting by cij1 and cj1j2 the unit transportation costs from i to j1 and
from j1 to j2, respectively, the TCFLP can be formulated as

(TCFLP) minimize
∑

i∈I

∑

j1∈V1
cij1vij1 +

∑

j1∈V1

∑

j2∈V2
cj1j2wj1j2 +

2∑

r=1

∑

jr∈Vr
fjryjr
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subject to
∑

j1∈V1
vij1 ≥ di i ∈ I (19)

∑

j2∈V2
wj1j2 ≥

∑

i∈I
vij1 j1 ∈ V1 (20)

∑

j1∈V1
wj1j2 ≤ αj2yj2 j2 ∈ V2 (21)

∑

j2∈V2
wj1j2 ≤ βj1yj1 j1 ∈ V1 (22)

yjr ∈ {0, 1} jr ∈ Vr, r = 1, 2 (23)

vij1 ≥ 0, wj1,j2 ≥ 0 i ∈ I, j1 ∈ V1, j2 ∈ V2. (24)

Maŕın and Pelegŕın [89] compared a two-index and a three-index formulation
for the development of an exact algorithm for the TCFLP based on Lagrangian
relaxations. More recently, Litvinchev and Ozuna Espinosa [80], Wildbore [118] de-
veloped exact and approximate algorithms mainly based on Lagrangian relaxations
along with the corresponding computational results obtained for the TCFLP. Fer-
nandes et al. [41] introduced a genetic algorithm tested on different instances of size
|I| = 200, |V1| = 100 and |V2| = 50 along with a comparison of results with the
instances of [80]. Guo et al. [60] proposed a hybrid evolutionary algorithm for the
same version of the problem and Chen and Wang [26] designed an approximation
algorithm for the general k-level version. As in the uncapacitated case, assuming
that the values of c are induced by a metric, for k levels, Ageev [7], Bumb and Kern
[23], and Du et al. [37] developed ρ-approximation algorithms with values of ρ equal
to 12, 9 and k + 2 +

√
k2 + 2k + 5 + ε, respectively.

Other authors have studied some variations of the TCFLP. For example, Bloemhof-
Ruwaard et al. [21] solved a slightly different version of the problem in the context
of a waste disposal system, while Pirkul and Jayaraman [103] presented a MILP
formulation and heuristic methods for a multi-commodity, single-source TCFLP in
which cardinality constraints are imposed at both levels. Pirkul and Jayaraman
[104] considered the case without the single-source requirements. Yet another vari-
ant introduced by Addis et al. [5, 6] is the TCFLP with single source constraints at
both levels and dimensioning of the facilities, that is, with modular capacities. The
authors provided exact and heuristic algorithms to solve instances with up to 200
customers and 50 potential sites of facilities. A similar version of the problem was
studied by Wu et al. [119] who developed a Lagrangian relaxation-based procedure.
Finally, Wang and Yang [114] and [96] considered variations of the TCFLP under
uncertainty.
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5. MLFLPs with network design and tactical decisions

In the early 1990s, Gao and Robinson [47] introduced the term echelon in the
context of MLFLPs by presenting a new MILP for a variant of the TUFLP, denoted
as two-echelon uncapacitated facility location problem (TEUFLP). This formulation
was mainly motivated by the desire to extend the dual adjustment procedures of [40]
for the TUFLP, which Tcha and Lee [110] had previously been unable to achieve.
This modification of the problem can be viewed as if the fixed costs for opening
warehouses also depend on the plants from which they are served, that is, there
is a fixed cost associated with each pair of facilities from levels one and two, i.e.
operating together. Equivalently, this variant can be seen as having fixed costs for
opening edges between facilities of different levels associated with the selection of
facilities at the first level. Thus, the authors consider h1j1j2 to be the fixed costs
for opening warehouse j1 and supplying it from plant j2, and the binary variables
t1j1j2 = 1 if j1 is opened and simultaneously served from j2. The TEUFLP can be
formulated as

(F1-TEUFLP) minimize
∑

i∈I

∑

j1∈V1

∑

j2∈V2
cij1j2xij1j2 +

∑

j2∈V2
fj2yj2 +

∑

j2∈V2

∑

j1∈V1
hj1j2t

1
j1j2

(1), (4)

t1j1j2 ≤ yj2 j1 ∈ V1, j2 ∈ V2, (25)

xij1j2 ≤ t1j1j2 i ∈ I, j1 ∈ V1, j2 ∈ V2, (26)

yj2 ∈ {0, 1} j2 ∈ V2, (27)

t1j1j2 ∈ {0, 1} j1 ∈ V1, j2 ∈ V2. (28)

Soon after, Barros and Labbé [17] introduced a general version of the problem that
subsumes both the TUFLP and the TEUFLP. The authors considered fixed costs
associated with opening facilities at both levels as well as those for activating edges
between facilities of different levels. Fixed costs for opening edges between customers
and first-level facilities are not considered in the problem. We denote this variant
as the TUFLP-E. The authors discussed three variants of a MILP formulation for
the problem and studied the relationships between the corresponding LP relaxations.
The TUFLP-E of [17] is formulated as

(F1-TUFLP-E) maximize
∑

i∈I

∑

j1∈V1

∑

j2∈V2
cij1j2xij1j2 −

2∑

r=1

∑

jr∈Vr
fjryjr −

∑

j2∈V2

∑

j1∈V1
h1j1j2t

1
j1j2

subject to (1), (4), (5), (25), (26), (28)

t1j1j2 ≤ yj1 j1 ∈ V1, j2 ∈ V2, (29)
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or equivalently, exchanging constraints (25) and (29) by (2) and (3) when the fixed
costs are non-negative. They proved in [17] that using the sets of constraints (2) and
(3) yields a better LP bound. We also note that the authors formulated the problem
in the maximization form, perhaps for the first time for MLFLPs. The values of cij1j2
in this case actually correspond to profits, instead of transportation costs. Indeed,
as discussed by Cornuéjols et al. [30] for the single-level and by Ortiz-Astorquiza
et al. [102] for the multi-level case, the maximization and minimization versions of
the UFLP are equivalent from an optimization point of view. However, from an
algorithmic perspective, especially for approximation algorithms, this is not the case
as mentioned in Section 4.1.3. This version of the problem can be generalized to the
case of k levels, even including link activation costs between customers and the set
V1. We denote it as MUFLP-E, which is the representative problem of this category.

We next review the main contributions to MLFLPs that involve non-trivial net-
work design and tactical decisions. We divide this section into the uncapacitated
and capacitated cases.

5.1. Uncapacitated case

Barros and Labbé [17] seem to have been the first to study the general version of
the problem. They developed a branch-and-bound procedure using the corresponding
upper and lower bounds obtained from different Lagrangian relaxations of two of the
formulations discussed, and those obtained from an extension of the greedy heuristic
proposed for the UFLP. This method also benefits from the efficient solution of
a particular Lagrangian relaxation which coincides with a min-cut problem. The
authors presented comparative computational results with the previous special cases
of [47] and [110]. They observed that solving the proposed Lagrangian relaxations
provides an easier way to obtain better bounds than those yielded by the modified
dual ascent method for MLFLPs. However, this category of MLFLPs was put aside
for some years until very recently when Gendron et al. [49, 50] studied a more general
version of the problem of Chardaire et al. [25]. The MLFLP studied in [25] considers
only design costs in a two-level FLP where single assignment constraints between
levels of facilities are imposed. The problem addressed in [49] additionally includes
transportation costs c since it appears as a subproblem in a more sophisticated
MLFLP in the context of freight transportation [51]. We refer to this variant as the
TUFLP with edge costs and single assignment constraints (TUFLP-E-S) which can
be formulated as

(F1-TUFLP-E-S) minimize
∑

i∈I

∑

j1∈V1

∑

j2∈V2
cij1j2xij1j2 +

2∑

r=1

∑

jr∈Vr
fjryjr +

∑

j2∈V2

∑

j1∈V1
h1j1j2t

1
j1j2
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subject to
∑

j2∈V2

∑

j1∈V1
xij1j2 = 1 i ∈ I (30)

∑

j1∈V1
xij1j2 ≤ yj2 i ∈ I, j2 ∈ V2, (31)

∑

j2∈V2
xij1j2 ≤ yj1 i ∈ I, j1 ∈ V1, (32)

xij1j2 ≤ t1j1j2 i ∈ I, j1 ∈ V1, j2 ∈ V2, (33)
∑

j2∈V2
t1j1j2 ≤ 1 j1 ∈ V1, (34)

t1j1j2 ≤ yj1 j1 ∈ V1, j2 ∈ V2 (35)

xij1j2 ≥ 0 i ∈ I, j1 ∈ V1, j2 ∈ V2, (36)

yjr ∈ {0, 1} jr ∈ Vr, r = 1, 2. (37)

As noted in [49], if the fixed costs are non-negative, one can project out the
variables yj1 for j1 ∈ V1 based on the set of constraints (34). Thus, yj1 =

∑
j2∈V2 t

1
j1j2

and the fixed costs fj1 can be embedded within the new edge costs lj1j2 = h1j1j2 + fj2
for each j1 ∈ V1. Constraints (35) are actually redundant but allow relaxing the
integrality conditions on the yj2 variables in addition to improving the LP bound.
After projecting out the variables yj1 the objective function becomes

minimize
∑

i∈I

∑

j1∈V1

∑

j2∈V2
cij1j2xij1j2 +

∑

j2∈V2
fj2yj2 +

∑

j2∈V2

∑

j1∈V1
lj1j2t

1
j1j2

,

which coincides with that of the TEUFLP described in [47]. Also, when the set-up
costs on the edges h1j1j2 are zero, we obtain the TUFLP-S version of the problem.
However, in this case the single assignment constraints can be dropped under some
conditions on the costs cij1j2 [49, 102], yielding a class of instances for which the
TUFLP and the TUFLP-E are equivalent. In [49] a branch-and-bound procedure
is also developed based on specialized branching rules and a Lagrangian relaxation
that was not previously studied in [17, 25].

All the papers relating to MUFLP-E mentioned so far consider the two-level ver-
sion of the problem. Ortiz-Astorquiza et al. [101] recently introduced a general k-level
setting where all three types of costs are considered and cardinality constraints are
imposed at each level. This problem is denoted as MUpLP-E. In comparison with the
other two categories of MLFLP, little research has been carried out in this category,
especially in what regards the development of exact solution methods. These authors
developed an exact Benders-based algorithm decomposition scheme for the solution
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of large-scale instances. The algorithm exploits the structure of the extended F2-
MUFLP formulation for the MUpLP-E in which the subproblems can be efficiently
solved. The authors conducted an extensive computational study on the impact of
different variations of the Benders decomposition procedure, such as implementing
Pareto-optimal cuts or using alternative feasibility cuts. Their computational re-
sults show instances solved to optimality in less than a minute of CPU time with
up to 3000 customers, four levels of facilities and 250 potential sites. The authors
also tested the algorithm on some instances from [49] some of which were initially
introduced by Landete and Maŕın [76].

5.2. Capacitated case

The first articles to consider a TCFLP with fixed costs for opening edges are
[112, 113]. Tragantalerngsak et al. [112] developed several Lagrangian heuristics for
a two-level CFLP with single source constraints (single assignment in the TUFLP)
and capacities at the first-level facilities only. The MILP formulation described by
the authors resembles that of the TEUFLP of [47], where fixed costs on the edges
between facilities of different levels replace those of opening facilities in one level. In
a sequel paper [113], the same authors presented an exact algorithm for the problem
based on the previous Lagrangian relaxations. We refer to this problem as the
TECFLP-S. It can be formulated as

(TECFLP-S) minimize
∑

i∈I

∑

j1∈V1

∑

j2∈V2
cij1j2xij1j2+

∑

j1∈V1

∑

j2∈V2
hj1j2tj1j2 +

∑

j2∈V2
fj2yj2

subject to
∑

j1∈V1

∑

j2∈V2
xij1j2 = 1 i ∈ I (38)

∑

i∈I
dixij1j2 ≤ βj1 j1 ∈ V1, j2 ∈ V2 (39)

∑

j2∈V2
tj1j2 ≤ 1 j1 ∈ V1 (40)

xij1j2 ≤ tj1j2 j1 ∈ V1, j2 ∈ V2 (41)

tj1j2 ≤ yj2 (42)

xij1j2 , tj1,j2 , yj2 ∈ {0, 1} i ∈ I, j1 ∈ V1, j2 ∈ V2. (43)

Other related problems have also been studied. These are more general and typ-
ically include additional requirements. For example, Ignacio et al. [66] presented a
two-level capacitated facility location problem with edge costs (in E0 and E1) and
single-source constraints (TCFLP-E-S) in a computer network environment. There,
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both levels of facilities, routers and concentrators, have capacities and fixed costs for
opening facilities at the two levels are considered. The authors designed an exact
solution method based on a Lagrangian relaxation an a tabu search heuristic. An-
other example of a TCFLP-E arises in the context of a disaster relief facility location
system in [53]. Ghezavati et al. [53] considered a more general version of the problem
where capacities are also imposed on the edges and studied the problem under some
uncertain parameters. Finally, some related problems were addressed in [27, 51, 64].
Çinar and Yaman [27] introduced two variants of the so-called vendor location prob-
lem as special cases of capacitated MLFLPs. The work of Gendron and Semet [51]
was motivated by a freight transportation problem. It set the ground for the study
of different variants of the TUFLP which can be seen as a capacitated MLFLP.
The authors considered a multi-commodity two-level facility location problem with
single-source constraints, capacities in the arcs and modular transportation costs.
Hinojosa et al. [63, 64] studied multi-period TCFLP. Finally, a simple transforma-
tion of the capacitated connected facility location problem by adding an artificial
vertex connected to the highest level of facilities can also be viewed as a capacitaded
MLFLP with network and tactical decisions [55].

6. MLFLPs with network design decisions

The last category of MLFLPs that we review is concerned with non-trivial net-
work design decisions, but in which no tactical decisions are explicitly considered. We
call the MFLDP this “design-only” version of the problem, which can also be viewed
as a special case of the MUFLP-E. This problem is relevant to strategic supply chain
management. In such a scenario, only the design decisions are involved through the
fixed cost on facilities and edges and the allocation of customers is implicitly given by
the opening of the corresponding edge. MLFLPs belonging to this category, either for
two or k levels, have been studied by several authors [14, 25, 35, 44, 67]. Remarkably,
with the exception of [25], none of the above references presents an exact algorithm
and all date from the last decade; three of them develop approximation algorithms
with performance guarantee, while [14] presents a polyhedral study for a ILP for-
mulation. In particular, the latter paper provides three families of valid inequalities
and extends to the TFLDP non-trivial facet defining inequalities for the single-level
UFLP. Moreover, the authors study integrality conditions of the polytope associated
with the TFLDP, that is, they introduce conditions on the graph G = (V ∪ I, E)
so that the LP relaxation of the problem outputs an integral solution. They also
show how to determine whether a given graph G satisfies such conditions using a
polynomial time algorithm developed for the single-level case. For the two-level case,

30



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

we reproduce the version presented in [14] which uses the sets of arcs Ar ⊆ Vr×Vr+1

between levels of facilities, considering A0 = I, to introduce their ILP formulation:

(F1-TFLDP) minimize
∑

(i,j1)∈A0

h0ij1t
0
ij1

+
∑

(j1,j2)∈A1

h1j1j2t
1
j1j2

+
2∑

r=1

∑

jr∈Vr
fjryjr

∑

(i,j1)∈A0

t0ij1 = 1 i ∈ I (44)

t0ij1 ≤ yj1 (i, j1) ∈ A0, (45)
∑

(j1,j2)∈A1

t1j1j2 = yj1 j1 ∈ V1, (46)

t1j1j2 ≤ yj2 (j1, j2) ∈ A1, (47)

t0ij1 , t
1
j1j2
∈ {0, 1} (i, j1) ∈ A0, (j1, j2) ∈ A1, (48)

yjr ∈ {0, 1} r = 1, 2, jr ∈ Vr, (49)

where t0ij1 and h0ij1 are the decision variables and costs for opening a link between
customer i and first-level facility j1, respectively. We make two remarks on the
above formulation. First, it corresponds to a more general version in which arcs
are considered between levels of facilities instead of taking the sets Vr × Vr+1. This
slightly more general version of the problem could also be reproduced for the MUFLP-
E. Second, constraints (46) ensure the allocation of open facilities of the first level to
those of the second one, and also enforce single assignment for open facilities of the
first level. This is important because in this case the number of edges adjacent to an
open facility yields a capacitated version of the problem. This follows from the fact
that there are no flow or transportation variables, but only design-type variables. For
this reason we exclude the uncapacitated/capacitated subdivision from this category.

Fleischer et al. [44] developed a lnk |I|-approximation algorithm for the k-level
extension of the problem. The authors use general costs h, that is, they also consider
the non-metric case. Later, Drexl [35] presented a 3/2(3k − 1)-approximation algo-
rithm. They assumed that the costs h are induced by a metric and that the values of
fjr are non-negative. Kantor and Peleg [67] studied a similar version of the problem
in which edges need to be opened as well as facilities at each of the k levels, but only
in one level is there an associated fixed cost for opening facilities fjk . The authors
developed a (1 + 3β)(3β+1)k−1-approximation algorithm, where β ≥ 1 is a parameter
used to define the values of the costs h from the distances between vertices jr, jr+1

in the graph.
Finally, Chardaire et al. [25], mainly motivated from a telecommunications appli-

cation, presented two different MILP formulations for the two-level problem where
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the single-assignment constraints (coherent structure in the HFLP classification) are
modeled as ∑

j2∈V2
t1j1j2 ≤ 1 j1 ∈ V1.

Note that equations (46) are stronger since there are no capacities involved. Nev-
ertheless, the authors obtained lower bounds via a Lagrangian relaxation, thus im-
proving one of the formulations with a family of facet-defining inequalities. They also
developed a simulated annealing algorithm to improve the upper bounds returned
by the Lagrangian relaxation. The authors showed computational results solving
instances with up to 150 vertices at each of the two levels of facilities as well as at
the customers level. Mǐsković and Stanimirović [95] used the model of [25] to design
a metaheuristic and tested on the instances introduced by Landete and Maŕın [76]
as well as on instances modified from single-level FLPs available in the ORLIB [19].
The largest size instance tested was |I| = 2000, |V1| = 1100 and |V2| = 900.

7. Conclusions

We have identified the main characteristics of MLFLPs, an important class of
discrete location problems that has received increasing attention in the last two
decades. We have pointed out the main differences and similarities with well-known
related areas in an attempt to delimit the borders of this class of problems and
thus the scope of the survey. In the context of MLFLPs, we have identified three
main categories based on the types of decisions involved in the optimization process:
MLFLPs with tactical decisions, MLFLPs with network design and tactical decisions,
and MLFLPs with network design decisions only. These decisions are closely related
to the types of input costs to the problem. Using this classification scheme we have
presented a comprehensive review of the most relevant publications and we have
discussed the variations between problems along with formulations and algorithms.
We have also considered the uncapacitated/capacitated distinction to further identify
where most of the efforts in the area have been expended. We first observed that with
one exception [101], all papers concerned with the development of exact algorithms
(or polyhedral studies) refer to the special case where k = 2. Thus, all contributions
related to the most general versions of the problems arise from the approximate
algorithms context. In particular, a large number of papers have been published on
the development of approximation algorithms with performance guarantee for the
MUFLP. Notably, this same category of MLFLPs is the one that has received the
most attention in comparison with the other two.
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Some recent publications have concentrated on different variants and extensions of
the main MLFLPs. For instance, we have mentioned some articles in which uncertain
parameters are included, as well as dynamic facility location problem where facilities
can be opened and closed at each time period, and MLFLPs with service penalties
where customers may not to be serviced. In many cases, fundamental MLFLPs arise
as subproblems of these more general versions. Other sophisticated models in SCM
and HFLPs also present MLFLPs as subproblems. Therefore, efficient algorithms for
MLFLPs may help solve related problems. The fact that MLFLPs generalize well-
known single-level FLPs while retaining several of their mathematical properties can
be further exploited in the development of such algorithms. One important step
towards a more systematic growth of the field is the incorporation of a common
set of MLFLP instances, which would allow fairer algorithmic comparisons. Finally,
we consider that MLFLPs constitute a very promising research area, not only from
a theoretical and modeling point of view, but also in terms of devising efficient
algorithms.
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[43] Fischetti, M., Ljubić, I., Sinnl, M., 2017. Redesigning Benders Decomposition
for Large-Scale Facility Location. Management Science 63 (7), 2146–2162.

[44] Fleischer, R., Li, J., Tian, S., Zhu, H., 2006. Non-metric multicommodity and
multilevel facility location. Lecture Notes in Computer Science 4041, 138–148.

[45] Fortz, B., 2015. Location Problems in Telecommunications. Springer Interna-
tional Publishing, Cham, Switzerland, pp. 537–554.

[46] Gabor, A. F., van Ommeren, J.-K. C. W., 2010. A new approximation algo-
rithm for the multilevel facility location problem. Discrete Applied Mathemat-
ics 158 (5), 453–460.

[47] Gao, L.-l., Robinson, E. P. J., 1992. A dual-based optimization procedure
for the two-echelon uncapacitated facility location problem. Naval Research
Logistics 39 (2), 191–212.

[48] Gendron, B., Khuong, P.-V., Semet, F., 2015. Multilayer variable neighbor-
hood search for two-level uncapacitated facility location problems with single
assignment. Networks 66 (3), 214–234.

[49] Gendron, B., Khuong, P.-V., Semet, F., 2016. A Lagrangian-based branch-and-
bound algorithm for the two-level uncapacitated facility location problem with
single-assignment constraints. Transportation Science 50 (4), 1286–1299.

[50] Gendron, B., Khuong, P. V., Semet, F., 2017. Comparison of formulations for
the two-level uncapacitated facility location problem with single assignment
constraints. Computers and Operations Research 86, 86–93.

37



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[51] Gendron, B., Semet, F., 2009. Formulations and relaxations for a multi-echelon
capacitated location-distribution problem. Computers & Operations Research
36 (5), 1335–1355.

[52] Geoffrion, A. M., 1974. Multicommodity distribution system design by Benders
decomposition. Management Science 20 (5), 822–844.

[53] Ghezavati, V., Soltanzadeh, F., Hafezalkotob, A., 2015. Optimization of relia-
bility for a hierarchical facility location problem under disaster relief situations
by a chance-constrained programming and robust optimization. Proceedings of
the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability
229 (6), 542–555.

[54] Goldman, A. J., 1969. Optimal locations for centers in a network. Transporta-
tion Science 3 (4), 352–360.
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