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Abstract

Deep Shape Representations for 3D Object Recognition

Hamed Ghodrati Asbfroushani, Ph.D.

Concordia University, 2017

Deep learning is a rapidly growing discipline that models high-level features in data as multilay-

ered neural networks. The recent trend toward deep neural networks has been driven, in large part,

by a combination of affordable computing hardware, open source software, and the availability of

pre-trained networks on large-scale datasets.

In this thesis, we propose deep learning approaches to 3D shape recognition using a multi-

level feature learning paradigm. We start by comprehensively reviewing recent shape descriptors,

including hand-crafted descriptors that are mostly developed in the spectral geometry setting and

also the ones obtained via learning-based methods. Then, we introduce novel multi-level feature

learning approaches using spectral graph wavelets, bag-of-features and deep learning. Low-level

features are first extracted from a 3D shape using spectral graph wavelets. Mid-level features are

then generated via the bag-of-features model by employing locality-constrained linear coding as a

feature coding method, in conjunction with the biharmonic distance and intrinsic spatial pyramid

matching in a bid to effectively measure the spatial relationship between each pair of the bag-of-

feature descriptors.

For the task of 3D shape retrieval, high-level shape features are learned via a deep auto-encoder

on mid-level features. Then, we compare the deep learned descriptor of a query shape to the

descriptors of all shapes in the dataset using a dissimilarity measure for 3D shape retrieval. For the

task of 3D shape classification, mid-level features are represented as 2D images in order to be fed

into a pre-trained convolutional neural network to learn high-level features from the penultimate

fully-connected layer of the network. Finally, a multiclass support vector machine classifier is
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trained on these deep learned descriptors, and the classification accuracy is subsequently computed.

The proposed 3D shape retrieval and classification approaches are evaluated on three standard 3D

shape benchmarks through extensive experiments, and the results show compelling superiority of

our approaches over state-of-the-art methods.
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Introduction

In this chapter, we present the framework and motivation behind this work, followed by the prob-

lem statement, objectives of the study, literature review and thesis contributions.

1.1 Framework and Motivation

The availability of low-cost 3D digitization and acquisition devices, coupled with recent advance-

ments in consumer electronics and computation power, have led to an abundant increase of 3D

shape repositories that are easily accessible on-line. The continued growth of these large databases

has sparked the need to organize, search and retrieve the most relevant collections. The main

challenge in 3D shape analysis is to compute an invariant shape descriptor that captures well the

geometric and topological properties of a shape. Hence, this sheer volume of 3D objects publicly

available has led to the burgeoning design of a plethora of shape descriptors in the computer vision,

graphics and medical imaging literature. These compact descriptors have been the driving force

behind the development of efficient algorithms for nonrigid 3D shape retrieval and classification,

achieving state-of-the-art performance on the latest benchmarks contests [1–4].

In recent years, spectral geometric methods have been successfully applied to 3D shape retrieval

and classification, achieving state-of-the-art performance [5–13]. Most of these approaches are

based on the spectral analysis of the Laplace-Beltrami operator (LBO) [14–16], and usually rep-

resent a shape by a spectral signature, which is a concise and compact shape descriptor aimed at

facilitating the classification and retrieval tasks.

As a branch of the broader discipline of machine learning, deep learning has become a perva-

sive and wide reaching technology, growing at a breathtaking rate and underlying many modern
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applications, including internet search, healthcare, marketing, cyber-security, and speech recog-

nition [17]. The success of deep neural networks has been greatly accelerated by using graphics

processing units (GPUs), which have become the platform of choice for training large, complex

learning systems [3, 18–20]. The most popular deep learning models that have been successfully

applied to image data include deep convolutional neural networks, deep auto-encoders, deep belief

networks and deep Boltzmann machines [21–33]. Applying such models directly to 3D shapes,

particularly to mesh data, is however not straightforward. Fortunately, these technical challenges

are not insurmountable, and have been recently tackled using volumetric and view-based deep

learning approaches [18–20, 34]. Volumetric deep learning models encode a 3D shape as a 3D

tensor of real or binary numbers, while view-based methods encode a 3D shape as a collection

of its rendered views on 2D images. The key challenge with volumetric representations is how

to deal with the additional computational complexity resulting from the voxelization resolution

of 3D shapes. A major drawback of view-based methods is their sensitivity to consistent model

orientations, resulting in lower performance [4].

Alternatively, there is another type of 3D deep learning models that rely on extracting discrim-

inative features from 3D shapes in an effort to design a 2D global shape descriptor, which can

be used as an input to the deep neural network. In this thesis, we adopt such a strategy in a bid

to obtain 3D deep shape descriptors which later on are used for shape retrieval and classifica-

tion. More specifically, we introduce several multi-level feature learning approaches using spectral

graph wavelets, bag-of-features and deep learning models. In particular, we use SGWS as a local

descriptor due to its ability to capture different details provided at different levels from low to high

frequencies. We also use locality-constrained linear coding (LLC) as a feature coding scheme in

the BoF model due largely to the lower quantization error of LLC as well as its codewords locality

properly. In addition, we employ the biharmonic distance together with intrinsic spatial pyramid

matching (ISPM) to effectively measure the spatial relationship between the LLC codes. Unlike

the geodesic distance which is not globally shape-aware, the biharmonic distance is shape-aware,

isometry invariant, computationally efficient, robust to various shape deformations, and possesses

good discriminative capabilities [12, 35].

1.2 Problem Statement

In this study, we introduce high-level shape descriptors in order to deal with 3D object retrieval and

classification problems. Nonrigid shape retrieval and classification are among the most challenging

problems in 3D shape analysis.
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1.2.1 Shape Retrieval

Given a database of 3D shapes, the objective of 3D shape retrieval is to find a set of shapes that

are relevant to a query shape. The retrieval accuracy is usually evaluated by computing a pairwise

dissimilarity measure between 3D shapes in the dataset. A good retrieval algorithm should result

in few dissimilar shapes. A commonly used dissimilarity measure for content-based retrieval is the

�1-distance, also known as Manhattan or city-block metric, which quantifies the difference between

each pair of 3D shapes. The ranked list for each query shape is a set of other shapes in the dataset

ranked from best to worst according to their computed distance from the query shape. In order

to assess the retrieval performance several standard evaluation metrics are usually used including

the precision-recall curve, nearest neighbor (NN), first-tier (FT), second-tier (ST), E-measure (E),

discounted cumulative gain (DCG), and mean average precision (mAP). The definition of these

evaluation measures are provided in Subsection 1.5.5.

1.2.2 Shape Classification

Shape classification is all about labeling shapes in a dataset and organizing them into a known

number of classes so they can be found quickly and efficiently, and the goal is to assign new

shapes to one of these classes. In supervised learning tasks, the available data Z for classification

is usually split into two disjoint subsets: the training set Ztrain for learning, and the test set Ztest

for testing. The training and test sets are usually selected by randomly sampling a set of training

instances from Z for learning and using the rest of instances for testing. The performance of a

classifier is then assessed by applying it to test data with known target values and comparing the

predicted values with the known values.

1.3 Objectives

In this thesis, we propose multi-level feature learning approaches using spectral graph wavelets,

bag-of-features and deep learning models. The objective is to obtain high discriminative 3D shape

descriptors in order to outperform the state-of-the-art methods that are used for either 3D shape

retrieval and classification or both. Most of existing approaches are failed when it comes to dealing

with recent challenging benchmarks. However, the proposed approaches show better performance

in dealing with challenging datasets comparing to the state-of-the-art methods. The key factor that

contributes to the success of our 3D shape descriptors is the benefit from deep learning which is

used in the last stage of our feature learning frameworks to extract the most discriminative features.

More specifically, we use deep auto-encoder to extract high-level features that are used to design

a deep shape-aware descriptor on which retrieval test is performed. We also introduces a deep
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convolutional shape-aware (Deep-CSA) learning framework for 3D shape classification using a

pre-trained convolutional neural network. The aim is to beat the approaches based on hand-crafted

descriptors and those obtained by shallow models.

1.4 Literature Review

In recent years, numerous schemes have been proposed to construct shape descriptors in an effort

to capture the more discriminative geometric information in a 3D shape [5–13]. Inspired by the

success of some descriptors in image retrieval, some works introduced 3D shape descriptor such

as SIFT-based [36], Mesh-HOG [37], covariance descriptor [38]. Nevertheless, the overwhelm-

ing majority of these works use spectral descriptors, which represent a shape using a concise

and compact signature. A comprehensive overview on the available spectral descriptors can be

found in [39, 40]. These shape representations may be broadly categorized into local and global

descriptors. Local descriptors are defined on each point of the shape. Examples of local descrip-

tors include the global point signature [5], heat kernel signature (HKS) [6], scale-invariant heat

kernel signature (SIHKS) [7], wave kernel signature (WKS) [8], improved wave kernel signature

(IWKS) [41], and spectral graph wavelet signature (SGWS) [9].

Global descriptors, on the other hand, are defined on the entire shape. One of the simplest

global descriptors is Shape-DNA [42], which is defined as a truncated sequence of the LBO eigen-

values arranged in increasing order of magnitude. Gao et al. [43] introduced compact Shape-DNA

(cShape-DNA) as a variant of Shape-DNA, which is an isometry-invariant signature obtained by

applying the discrete Fourier transform to the area-normalized eigenvalues of the LBO. Chaud-

hari et al. [11] introduced a new version of the GPS signature by setting the LBO eigenfunctions

to unity. Ye et al. [12] proposed a global descriptor for nonrigid shape retrieval using a reduced

biharmonic distance matrix. A graph-theoretic approach has been introduced in [44] for 3D shape

classification using graph regularized sparse coding together with the biharmonic distance map.

Unlike the above methods, SD-GDM [45] proposed to compute a singular value decomposition

as spectrum of the geodesic distance matrix. However, compared to other spectral descriptors

developed based upon the eigensystem (eigenvalues and/or eigenfunctions) of LBO as spectrum,

SD-GDM relies on all-pairs geodesic distances, which are computationally prohibitive to obtain

even with the latest advances in fast geodesic distance computation [46].

On the other hand, the bag-of-features (BoF) model, which has shown significant levels of per-

formance in text and image retrieval, is also commonly used to construct global descriptors by

aggregating the local ones. In its simplest form, the BoF model quantizes each local descriptor

to its nearest cluster center using K-means clustering and then encodes each shape as a histogram

over cluster centers by counting the number of assignments per cluster. These cluster centers form
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a codebook whose elements are often referred to as codewords. Although the BoF paradigm has

been shown to provide significant levels of performance, it does not, however, take into consid-

eration the spatial relations between features, which may have an adverse effect not only on its

descriptive ability but also on its discriminative power. To sidestep this issue, various solutions

have been proposed including the spatially-sensitive bags-of-features (SS-BoF) [47], supervised

learning of BoF shape descriptors using sparse coding [48], and geodesic-aware bags-of-features

(GA-BoF) [49]. The SS-BoF, which is defined in terms of the heat kernel, can be represented by

a square matrix whose elements represent the frequency of appearance of nearby codewords in the

vocabulary. Similarly, the GA-BoF matrix is obtained by replacing the heat kernel in the SS-BoF

with a geodesic exponential kernel.

Although the geodesic distance has proven to be effective in geometry processing due in large

part to its isometry invariance property, it suffers, however, from several practical issues compared

to the (squared) biharmonic distance [35]. While the geodesic distance is sensitive to topological

noise and not globally shape-aware, the biharmonic distance is not only robust to noise and small

topological changes, but also globally shape-aware and smooth. Our work builds upon the BoF

framework to design a discriminative, shape-aware representation for 3D object classification and

retrieval using the biharmonic distance in conjunction with deep neural networks [50].

Another issue with BoF model is that the codebook is usually constructed in an unsupervised

manner using clustering, agnostic to the last step of the process which involves in pooling of the

local descriptors into a BoF. To tackle this issue, Litman et al. [48] proposed to replace clustering

with a dictionary (codebook) learning approach coupled with sparse coding as a feature coding

method. As a result, their learned BoFs have obtained in a supervised manner, being aware of

feature pooling which is the last stage of BoF paradigm.

The recent trend in 3D shape analysis is to use deep learning models to learn high-level features

of 3D shapes. Deep learning, which involves training neural networks on lots of data and then hav-

ing them make predictions about new data, has been making big waves over the past several years

due largely to its great success in computer vision, natural language processing and speech under-

standing. Deep learning models have recently been applied to 3D shape analysis to learn high-level

features from 3D shapes. Wu et al. [18] proposed a deep learning framework for volumetric shapes

via a convolutional deep belief network by representing a 3D shape as a probabilistic distribution

of binary variables on a 3D voxel grid. Brock et al. [51] proposed a voxel-based approach to

3D object classification using variational autoencoders and deep convolutional neural networks,

achieving improved classification performance on the ModelNet benchmark. Sedaghat et al. [52]

showed that forcing the convolutional neural network to produce the correct orientation during

training yields improved classification accuracy. The key challenge with volumetric representa-

tions is how to deal with the additional computational complexity resulting from the voxelization

5



resolution of 3D shapes. Zhu et al. [20] introduced a a view-based technique by projecting 3D

shapes into 2D images and then using an auto-encoder for feature learning. Su et al. [34] presented

a convolutional neural network architecture that combines information from multiple views of a

3D shape into a single and compact shape descriptor. Qi et al. [19] proposed a multiresolution

filtering strategy in order to improve the performance of multi-view convolutional neural networks

on 3D shape classification. Kanezaki et al. [53] introduced RotationNet, a CNN-based framework

that uses a set of multi-view images of a 3D object as input for 3D object classification and pose

estimation. View-based methods tend to suffer from a relatively long running time due primar-

ily to analyzing a large amount of redundant data provided by multi-view images. Also, a major

drawback of view-based methods is their sensitivity to consistent model orientations, resulting in

lower performance. Moreover, it is almost impossible in many real-world applications to set up

multiple cameras in order to project all required views. Fang et al. [54] introduced a deep learning

framework in which the heat kernel signature is fed to deep neural networks with target values

in a bid to obtain a 3D deep shape descriptor that demonstrated good performance in 3D shape

retrieval. Inspired by the Shape Google framework for 3D shape retrieval [47], Bu et al. [49] in-

troduced a deep learning based approach (3D-DL) for 3D shape classification and retrieval. The

3D-DL framework uses a 2D global shape descriptor, which is represented by a full matrix defined

in terms of the geodesic distance and eigenfunctions of the LBO. The geodesic distance, however,

has some major limitations, the most serious of which are the sensitivity to topological noise and

the lack of shape-awareness [35]. More recently, Bu et al. [55] presented a multi-modal feature

learning approach to 3D shape recognition using CNNs and convolutional deep belief networks.

This hybrid approach combines both view-based and geometry-based feature learning in an effort

to learn a more discriminative shape descriptor by fusing different modalities. Bai et al. [56] in-

troduced a real-time 3D shape search engine based on the projective images of 3D shapes. Xie et

al. [57] proposed a multi-metric deep neural network for 3D shape retrieval by learning non-linear

distance metrics from multiple types of shape features, and by enforcing the outputs of differ-

ent features to be as complementary as possible via the Hilbert-Schmid independence criterion.

Tabia et al. [58] proposed a 3D shape retrieval framework using queries of different modalities in-

cluding 3D models, images and sketches. The different features extracted from different modalities

are embedded into a common space using a CNN model. Chen et al. [59] introduced a multimodal

learning approach to view-based 3D object classification that three modalities of image features

including SIFT descriptor, Outline Fourier transform descriptor,and Zernike Moments descriptor

are combined using a support vector machine. A comprehensive review of deep learning advances

in 3D shape recognition can be found in [60].
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1.5 Background

A 3D shape is usually modeled as a triangle mesh M whose vertices are sampled from a Rieman-

nian manifold. A triangle mesh M may be defined as a graph G = (V , E) or G = (V , T ), where

V = {v1, . . . ,vm} is the set of vertices, E = {eij} is the set of edges, and T = {t1, . . . , tg} is the

set of triangles. Each edge eij = [vi,vj] connects a pair of vertices {vi,vj}. Two distinct vertices

vi,vj ∈ V are adjacent (denoted by vi ∼ vj or simply i ∼ j) if they are connected by an edge, i.e.

eij ∈ E .

1.5.1 Laplace-Beltrami Operator

Given a compact Riemannian manifold M, the space L2(M) of all smooth, square-integrable func-

tions on M is a Hilbert space endowed with inner product 〈f1, f2〉 =
∫
M
f1(x)f2(x) da(x), for

all f1, f2 ∈ L2(M), where da(x) (or simply dx) denotes the measure from the area element of

a Riemannian metric on M. Given a twice-differentiable, real-valued function f : M → R, the

Laplace-Beltrami operator (LBO) is defined as ΔMf = −div(∇Mf), where ∇Mf is the intrin-

sic gradient vector field and div is the divergence operator [14]. The LBO is a linear, positive

semi-definite operator acting on the space of real-valued functions defined on M, and it is a gener-

alization of the Laplace operator to non-Euclidean spaces.

Discretization. A real-valued function f : V → R defined on the mesh vertex set may be rep-

resented as an m-dimensional vector f = (f(i)) ∈ Rm, where the ith component f(i) denotes

the function value at the ith vertex in V . Using a mixed finite element/finite volume method on

triangle meshes [61], the value of ΔMf at a vertex vi (or simply i) can be approximated using the

cotangent weight scheme as follows:

ΔMf(i) ≈
1

ai

∑
j∼i

cotαij + cot βij

2

(
f(i)− f(j)

)
, (1.1)

where αij and βij are the angles ∠(vivk1vj) and ∠(vivk2vj) of two faces tα = {vi,vj,vk1}
and tβ = {vi,vj,vk2} that are adjacent to the edge [i, j], and ai is the area of the Voronoi cell

(shaded polygon) at vertex i, as shown in Figure 1.1. It should be noted that the cotangent weight

scheme is numerically consistent and preserves several important properties of the continuous

LBO, including symmetry and positive semi-definiteness.

Spectral analysis. The m × m matrix associated to the discrete approximation of the LBO is

given by L = D−1E, where D = diag(di) is a positive definite diagonal matrix (mass matrix), and

E = diag(
∑

k �=i cik)− (cij) is a sparse symmetric matrix (stiffness matrix). Each diagonal element
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(a) (b)

1

Figure 1.1: Triangular mesh representation (left); Cotangent scheme angles (right).

di is the area of the Voronoi cell at vertex i, and the weights cij are given by

cij =

⎧⎨
⎩
cotαij + cot βij

2
if i ∼ j

0 o.w.
(1.2)

where αij and βij are the opposite angles of two triangles that are adjacent to the edge [i, j].

The eigenvalues and eigenvectors of L can be found by solving the generalized eigenvalue

problem Eϕ� = λ�Dϕ� using for instance the Arnoldi method of ARPACK1, where λ� are the

eigenvalues and ϕ� are the unknown associated eigenfunctions (i.e. eigenvectors which can be

thought of as functions on the mesh vertices). We may sort the eigenvalues in ascending order as

0 = λ1 < λ2 ≤ · · · ≤ λm with associated orthonormal eigenfunctions ϕ1,ϕ2, . . . ,ϕm, where the

orthogonality of the eigenfunctions is defined in terms of the D-inner product, i.e.

〈ϕk,ϕ�〉D =
m∑
i=1

diϕk(i)ϕ�(i) = δk�, ∀k, � = 1, . . . ,m. (1.3)

We may rewrite the generalized eigenvalue problem in matrix form as EΦ = DΦΛ, where Λ is an

m×m diagonal matrix with the λ� on the diagonal, and Φ is an m×m orthogonal matrix whose

�-th column is the unit-norm eigenvector ϕ�. It should be noted that since the first eigenvalue λ1 is

zero, its associated eigenvector ϕ1 is an m-dimensional constant vector given by

ϕ1 =

(
1√
a
,
1√
a
, . . . ,

1√
a

)ᵀ

, (1.4)

where a = area(M) is the total area of the mesh.

1ARPACK (ARnoldi PACKage) is a MATLAB library for computing the eigenvalues and eigenvectors of large

matrices.
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1.5.2 Spectral Shape Signatures

In recent years, a great deal of 3D shape descriptors has been proposed using the spectral ana-

lysis (based on eigensystem i.e. eigenvalues and/or eigenfunctions) of the LBO such as Shape-

DNA [42], global point signature [5], heat kernel signature (HKS) [6], scale-invariant heat kernel

signature (SIHKS) [7], wave kernel signature (WKS) [8]. It is important to point out that all of

these 3D shape signatures are local descriptors, except Shape-DNA which is a global descriptor.

What follows is a terse review on these spectral shape signatures.

Shape-DNA. It is one of the early proposed 3D shape signatures which is a normalized sequence

of the first eigenvalues of the LBO. The simple representation (a vector of numbers) and scale

invariance are the main advantages of Shape-DNA. Despite its simplicity, the shapeDNA yet has a

comparable performance in 3D shape retrieval. However, the Shape-DNA cannot be used for local

or partial shape analysis as it is a global descriptor. The Eigenvalue Descriptor(EVD) [62], on the

other hand, is a sequence of the eigenvalues of the geodesic distance matrix. Both Shape-DNA and

EVD can be normalized by the second eigenvalue.

Global Point Signature. The global point signature (GPS) [5] at a surface point is a vector of

scaled eigenfunctions of the LBO. The GPS is a global feature in the sense that it cannot be used

for partial shape matching. It is defined in terms of the eigenvalues and eigenfunctions of ΔM as

follows:

GPS(x) =

(
ϕ2(x)√

λ2

,
ϕ3(x)√

λ3

, . . . ,
ϕi(x)√

λi

, . . .

)
(1.5)

GPS is invariant under isometric deformations of the shape, but it suffers for the problem of eigen-

functions switching whenever the associated eigenvalues are close to each other.

Heat Kernel Signature. The heat kernel pt(x, y) is an essential solution to the heat equation [63]

at point x at time t with initial distribution u0(x) = δ(x − y) at point y ∈ M, and it is defined in

terms of the eigenvalues and eigenfunctions of ΔM as follows:

pt(x, y) =
∞∑
i=1

e−λitϕi(x)ϕi(y) (1.6)

Intuitively, pt(x, y) describes the amount of heat that is propagated or transferred from point x to

point y in time t. In the same spirit, pt(x, x) describes the amount of heat that remains at point

x after time t. For each point x ∈ M, the Heat Kernel Signature (HKS) [6] is represented in the

discrete temporal domain by a n-dimensional feature vector

HKS(x) = (pt1(x, x), pt2(x, x), . . . , ptn(x, x)) (1.7)

where t1, t2, . . . , tn are different time-scales.
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Scale Invariant Heat Kernel Signature. Let M and M′ be a shape and its uniformly scaled

version by a factor of a, respectively. Denote by pατ (x, y) the heat kernel with scale logarithmically

sampled using some basis α at each point x. Thus, the heat kernel of the scaled shape becomes

p′(τ) = a−2p(τ +2 logα a). In order to remove the dependence on the multiplicative constant a−2,

the logarithm of the signal is taken and then differentiated with respect to the scale variable [7]:

d

dτ
log p′(τ) =

d

dτ
(−2 log a+ log p(τ + 2 logα a)

=
d
dτ
p(τ + 2 logα a)

p(τ + 2 logα a)
·

(1.8)

Let p′ =
d
dτ

p(τ)

p(τ)
=

−∑
i≥0 λiα

τ logαe−λiα
τ
ϕ2
i (x)

−∑
i≥0 e

−λiα
τ
ϕ2
i (x)

then a new function p̃ which transforms p̃′(τ) =

p̃(τ + 2 logα a) as a result of scaling is obtained. The Fourier transform of p̃ and its absolute value

are given by

F
[
p̃′
]
(ω) = H̃ ′(ω) = H̃(ω)e−jω2 logα a

|H̃ ′(ω)| = |H̃(ω)|.
(1.9)

Thus, the Scale-Invariant Heat Kernel Signature (SIHKS) is defined as

SIHKS(x) =
(
|H̃(ω1)|, |H̃(ω2)|, . . . , |H̃(ωn)|

)
. (1.10)

Wave Kernel Signature. The basic idea of the Wave Kernel Signature (WKS) [8] is to describe

a point x ∈ M by the average probabilities of quantum particles of different energy levels to be

measured in x. Assume a quantum particle with unknown position is on the surface. Then the wave

function of the particle is the Schrödinger equation solution, which can expressed in the spectral

domain as

ψE(x, t) =
∞∑
k=1

eiλktϕk(x)fE(λk) (1.11)

where E denotes the energy of the particle at time t = 0 and fE its initial distribution.

Since |ψE(x, t)|2 is the probability to measure the particle at a point x at time t, it follows that

the average probability (over time) to measure a particle in x is given by

PE(x) = lim
T→∞

1

T

∫ T

0

|ψE(x, t)|2 =
∞∑
k=1

ϕk(x)
2fE(λk)

2 (1.12)

Let E1, E2, . . . , En be n log-normal energy distributions. Then, each point x on the surface M is

associated with a wave kernel signature, which can represented by a n-dimensional feature vector

of average probabilities as follows:

WKS(x) = (Pe1(x), Pe2(x), · · · , Pen(x)) (1.13)

10



where ei = logEi is the logarithmic energy scale. The WKS represents the average probability

of measuring a quantum particle at a specific surface point. Unlike the HKS, the WKS separates

influences of different frequencies, treating all frequencies equally. In other words, HKS uses

low-pass filters, while WKS uses band-pass filters.

1.5.3 Deep Auto-Encoders

An auto-encoder is a neural network that learns to reproduce its input as its output. It is an un-

supervised learning algorithm that learns features from unlabeled data using backpropagation via

stochastic gradient descent, and has typically an input layer representing the original data, one hid-

den layer and an output layer. An auto-encoder is comprised of an encoder and a decoder, as shown

in Figure 1.2. The encoder, denoted by fθ, maps an input vector x ∈ Rd to a hidden representation

(referred to as code, activations or features) a ∈ Rr via a deterministic mapping

a = fθ(x) = σ(Wx+ b), (1.14)

parameterized by θ = {W,b}, where W ∈ Rr×d and b ∈ Rd are the encoder weight matrix

and bias vector, and σ is a nonlinear element-wise activation function such as the logistic sigmoid

or hyperbolic tangent. The decoder, denoted by gθ′ , maps back the hidden representation h to a

reconstruction x̂ of the original input x via a reverse mapping

x̂ = gθ′(a) = σ(W′a+ b′), (1.15)

parameterized by θ′ = {W′,b′}, where W′ ∈ Rd×r and b′ ∈ Rd are the decoder weight matrix

and bias vector, respectively. The encoding and decoding weight matrices W and W′ are usually

constrained to be of the form W′ = Wᵀ
, which are referred to as tied weights. Assuming the

tied weights case for simplicity, the parameters {W,b,b′} of the network are often optimized by

minimizing the following squared error cost function

L(W,b,b′) =
1

2

N∑
i=1

‖xi − x̂i‖22, (1.16)

where N is the number of samples in the training set, xi is the ith input sample and x̂i is its

reconstruction. To penalize large weight coefficients in an effort to avoid over-fitting the training

data, the following objective function is minimized instead

L(W,b,b′) =
1

2

N∑
i=1

‖xi − x̂i‖22 +
λ

2
‖W‖2F , (1.17)

where λ is a regularization parameter that determines the relative importance of the sum-of-squares

error term and the weight decay term. This parameter should typically be quite small. Note that

the features learned from the training data are encapsulated in W.
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Encoder Decoder

Input layer Output layer

Hidden layer

Figure 1.2: Auto-encoder architecture.

An auto-encoder with multiple hidden layers is referred to as a stacked or deep auto-encoder.

A stacked auto-encoder is a deep neural network consisting of multiple layers of stacked encoders

from several auto-encoders. This stacked network is pre-trained layer by layer in a unsupervised

fashion, where the output from the encoder of the first auto-encoder is the input of the second

auto-encoder, the output from the encoder of the second auto-encoder is the input to the third auto-

encoder, and so on. In other words, the hidden layer of the �-th auto-encoder acts as an input layer

to the (� + 1)-th auto-encoder. More formally, the encoding and decoding stages of an L-layer

deep auto-encoder having parameters Θ = {Θ� : � = 1, 2, ..., L}, with Θ� = {W�,W
′
�,b�,b

′
�},

can be formulated as follows:

a� = σ(W�a�−1 + b�)

â�−1 = σ(W′
�a� + b′

�),
(1.18)

where W� and b� (resp. W′
� and b′

�) are the encoder (resp. decoder) weight matrix and bias vector

of the �-th auto-encoder, a0 = x and â0 = x̂. After pre-training, the entire stacked auto-encoder

can be trained using backpropagation to fine-tune all the parameters of the network.

1.5.4 Convolutional Neural Networks

A Convolutional Neural Network (CNN) is a deep architecture inspired by the way humans process

visual information [21]. It makes use of feedforward artificial neural networks in which individual

neurons are tiled in such a way that they respond to overlapping regions in the visual field. CNNs

are comprised of multiple layers that can be categorized into three types: convolutional, subsam-

pling and fully-connected. A convolutional layer consists of a rectangular grid of neurons, and

applies a set of filters that process small local parts of the input where these filters are replicated

along the whole input space. Each neuron takes inputs from a rectangular section of the previous

layer; the weights for this rectangular section are the same for each neuron in the convolutional

layer. Thus, the convolutional layer is just an image convolution of the previous layer, where

the weights specify the convolution filter. A subsampling (pooling) layer takes small rectangular
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blocks from the convolutional layer and subsamples it with average or max pooling to produce a

single output from that block. This adds translation invariance and tolerance to minor differences

of positions of objects parts. Higher layers use more broad filters that work on lower resolution

inputs to process more complex parts of the input. Similar to a feedforward neural network, a fully

connected layer takes all neurons in the previous layer and connects them to each of its neurons.

CNNs can be trained using standard backpropagation. The CNN architecture shown in Figure 1.3

is composed of 5 layers: two convolutional layers (C1 and C2), two subsampling layers (S1 and

S2) and one fully connected layer. For classification tasks, an output layer is added after the fully

connected layer.

Figure 1.3: Basic architectures of a CNN.

More specifically, the input to a convolutional layer is an m × m × r image where m is the

height and width of the image and r is the number of channels, e.g. an RGB image has r = 3. The

convolutional layer will have k filters (or kernels) of size n × n × q where n is smaller than the

dimension of the image and q can either be the same as the number of channels r or smaller and

may vary for each kernel. The size of the filters gives rise to the locally connected structure which

are each convolved with the image to produce k feature maps of size m− n+ 1. Each map is then

subsampled typically with average or max pooling over p× p contiguous regions, where p ranges

between 2 for small images and is usually not more than 5 for larger inputs. Either before or after

the subsampling layer an additive bias and a sigmoidal nonlinear activation function is applied

to each feature map. After the convolutional layers there may be any number of fully connected

layers. The densely connected layers are identical to the layers in a standard multilayer neural

network.

1.5.5 Performance Evaluation Measures

In this section, we discuss in detail the measures that are commonly used to evaluate the perfor-

mance of nonrigid 3D shape retrieval and classification. We first discuss the evaluation metrics for
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3D shape retrieval which are precision-recall curve, nearest neighbor (NN), first-tier (FT), second-

tier (ST), E-measure (E), discounted cumulative gain (DCG), and mean average precision (mAP).

Precision-Recall Graph. A precision-recall graph demonstrates the behavior of precision and

recall in a ranked list of retrieved shapes. Assume the category that query shape belongs to has C

members including query shape itself and we retrieve top K matches. Recall is the ratio of shapes

in query’s category that are retrieved among top K matches, while precision is the ratio of top K

matches that belong to the query’s category. The perfect retrieval results must give the highest

precision (i.e. 100%) for all recall which may be illustrated by a horizonal line at the top of the

plot (i.e. precision = 1.0). Hence, a precision-recall graph that is shifted upwards and to the right

indicates superior performance.

Nearest Neighbor. The NN metric is the percentage of the closest matches that belong to the same

category of query’s, i.e. for each shape in the dataset, the second best result (obviously, the best

result is a match with query itself) is verified wether it is a member of the same category that the

query shape belongs to. The ideal score is definitely 100% and the higher score indicates the better

results.

First-Tier and Second-Tier. The FT metric is the percentage of the shapes belong to the query’s

category that are retrieved in the top C − 1 matches, where query’s category has C members. The

recall for ST metric is twice as big as for ST metric, i.e. the percentage of the shapes belong to

the query’s category that are retrieved in the top 2(C − 1) matches. Obviously, the ideal score

for both metrics are 100% and the higher values represents better results, while the higher score is

more likely to appear for ST metric as the members of query’s category have more chance to be

retrieved among top matches.

E-measures. This metric is obtained when precision and recall are calculated for the first 32

matches in the ranked list (i.e. K = 32). The E-measure is defined as:

E =
2

1
P

+ 1
R

, (1.19)

where P and R are precision and recall, respectively. The maximum value for this metric is 1.0 (or

equivalently 100% in terms of percentages) and the higher scores indicates the better results.

Discounted Cumulative Gain. This metric weighs relevant results on the top of ranked list more

than the relevant results at the bottom of the ranked list. The intuition is that the query results of

the first pages are more of interest to a user of a search engine than those of the later pages. This

metric have scores ranging from 0% to 100% and the higher score indicates the better retrieval

performance.
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Mean Average Precision. The mAP metric is defined as:

mAP =
∑
K

P (K)R(K), (1.20)

where precision and recall are calculated for all values of K. Intuitively, mAP is considered the

area below the precision-recall graph. A perfect retrieval algorithm has mAP = 100% and a higher

value indicates better results.

Confusion Matrix. The performance of a classifier is usually evaluated via the confusion matrix,

which displays the number of correct and incorrect predictions made by the classifier compared

with the actual classifications in the test set. The confusion matrix shows how the predictions are

made by the model. The rows correspond to the actual (true) class of the data (i.e., the labels in the

data), while the columns correspond to the predicted class (i.e., predictions made by the model).

When an instance is classified, it is the same as making a prediction that the instance is correctly

classified. The elements of the confusion matrix for binary (two-class) classification problem are

• TP (true positives) is the number of positive instances correctly classified

• FP (false positives) is the number of negative instances incorrectly classified as positive

• FN (false negatives) is the number of positive instances incorrectly classified as negative

• TN (true negatives) is the number of negative instances correctly classified

The value of each element in the confusion matrix is the number of predictions made with the class

corresponding to the column for instances (examples) with the correct value as represented by the

row. Thus, the diagonal elements show the number of correct classifications made for each class,

and the off-diagonal elements show the errors made.

Classification Accuracy. Another intuitively appealing measure is the classification accuracy,

which is a summary statistic that can be easily computed from the confusion matrix as the total

number of correctly classified instances (i.e. diagonal elements of confusion matrix) divided by

the total number of test instances. Alternatively, the accuracy of a classification model on a test set

may be defined as follows

Accuracy =
Number of correct classifications

Total number of test cases

=
|z : z ∈ Ztest ∧ ŷ(z) = y(z)|

|z : z ∈ Ztest|
,

(1.21)

where y(z) is the actual (true) label of z, and ŷ(z) is the label predicted by the classification

algorithm. A correct classification means that the learned model predicts the same class as the

original class of the test case.
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1.6 Overview and Contributions

The organization of this thesis is as follows

• Chapter 1 begins with the basic concepts which we refer to throughout the thesis, gives our

motivations and goals for this research, followed by the problem statement, the objective of

this study, a literature review, and a brief discussion of background context to the develop-

ment of our 3D shape analysis framework.

• In Chapter 2, we introduce a multi-level feature learning framework for 3D shape retrieval

using using spectral graph wavelets, bag-of-features, and deep learning [64]. The proposed

3D shape retrieval approach is evaluated on three standard 3D shape datasets through exten-

sive experiments, and the results show compelling superiority of our approach over state-of-

the-art methods.

• In Chapter 3, we propose a deep learning approach to 3D shape retrieval using a multi-level

feature learning paradigm [65]. Low-level features are first extracted from a 3D shape us-

ing spectral graph wavelets. Then, mid-level features are generated via the bag-of-features

model by employing locality-constrained linear coding as a feature coding method, in con-

junction with the biharmonic distance and intrinsic spatial pyramid matching in a bid to ef-

fectively measure the spatial relationship between each pair of the bag-of-feature descriptors.

Finally, high-level shape features are learned by applying a deep auto-encoder on mid-level

features. Extensive experiments on three standard 3D shape datasets demonstrate the much

better performance of the proposed framework in comparison with state-of-the-art methods,

and also a framework developed based on a shallow model.

• In Chapter 4, we present a deep learning approach to 3D shape classification using convo-

lutional neural networks [66] using the bag-of-features model in conjunction with intrinsic

spatial pyramid matching that leverages the spatial relationship between features. These 2D

images are then fed into a pre-trained convolutional neural network to learn deep convolu-

tional shape-aware descriptors from the penultimate fully-connected layer of the network.

Finally, a multiclass support vector machine classifier is trained on the deep descriptors, and

the classification accuracy is subsequently computed. The effectiveness of our approach is

demonstrated on three standard 3D shape benchmarks, yielding higher classification accu-

racy rates compared to existing methods.

• Chapter 5 presents a summary of the contributions of this proposal, limitations, and outlines

several directions for future research in this area of study.
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Deep Shape-Aware Descriptor for 3D Object

Retrieval

Deep learning has become a pervasive and wide reaching technology, growing at a breathtaking

rate and achieving remarkable results on a variety of fields, including computer vision, image and

speech recognition, and natural language processing. In this chapter, we propose a deep learning

approach for 3D shape retrieval using a multi-level feature learning methodology. We first ex-

tract low-level features or local descriptors from a 3D shape using spectral graph wavelets. Then,

we construct mid-level features from these local descriptors via the bag-of-features paradigm by

employing locality-constrained linear coding as a feature coding method, together with the bihar-

monic distance as a measure of the spatial relationship between each pair of bag-of-feature de-

scriptors. Finally, high-level shape features are learned via a deep auto-encoder, resulting in a deep

shape-aware descriptor that is compact, geometrically informative and efficient to compute. The

proposed 3D shape retrieval approach is evaluated on SHREC-2014 and SHREC-2015 datasets

through extensive experiments, and the results show compelling superiority of our approach over

state-of-the-art methods.

2.1 Introduction

In recent years, spectral geometry has been key in the development of efficient algorithms for

nonrigid 3D shape retrieval, achieving state-of-the-art performance on the latest shape retrieval

contests [1, 2]. Most spectral-geometric methods make use of a shape signature or descriptor,

which is a concise and compact representation of a shape, aimed at facilitating the retrieval task.
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These shape representations may be categorized into local and global descriptors. Local descrip-

tors (also known as point signatures) are usually defined on each point of the shape, while global

descriptors are defined on the entire 3D shape. Examples of local descriptors include the global

point signature (GPS) [5], heat kernel signature (HKS) [6], scale-invariant heat kernel signature

(SI-HKS) [7], wave kernel signature (WKS) [8], and spectral graph wavelet signature (SGWS) [9].

On the other hand, many global descriptors can be constructed from point signatures by integrating

over the entire shape. One of the simplest global descriptors is Shape-DNA [42], which is defined

as a truncated sequence of the Laplace-Beltrami operator (LBO) eigenvalues arranged in increas-

ing order of magnitude. Chaudhari et al. [11] presented a slightly modified version of the GPS

signature by setting the LBO eigenfunctions to unity. Ye et al. [12] proposed a global descriptor

for nonrigid shape retrieval using a reduced biharmonic distance matrix.

Another type of commonly-used global descriptors are constructed by aggregating the local de-

scriptors using the bag-of-features (BoF) paradigm. In its simplest form, the BoF model quantizes

each local descriptor to its nearest cluster center using K-means clustering and then encodes each

shape as a histogram over cluster centers by counting the number of assignments per cluster. These

cluster centers form a codebook whose elements are often referred to as codewords. Although the

BoF paradigm has been shown to provide significant levels of performance, it does not, however,

take into consideration the spatial relations between features, which may have an adverse effect not

only on its descriptive ability but also on its discriminative power. To account for the spatial rela-

tions between features, Bronstein et al. [47] introduced a generalization of a bag of features, called

spatially sensitive bags of features (SS-BoF). Litman et al. [48] proposed a supervised approach to

learn BoF shape descriptors using sparse coding.

Deep learning models have been recently used in 3D shape analysis to learn high-level features

of 3D shapes. The most popular deep learning models that have been successfully applied to

image data include deep convolutional neural networks, deep auto-encoders, deep belief networks

and deep Boltzmann machines [21–33]. Although a few studies [67, 68] proposed to apply deep

models directly to 3D data, many frameworks first represent a 3D shape by a 2D image and then

apply a deep architecture for feature learning. For this purpose, the more conventional way is

to capture the object by a set of 2D images from different views. Zhu et al. [20] introduced a a

view-based technique by projecting 3D shapes into 2D images and then using an auto-encoder for

feature learning. A major drawback of view-based methods is their sensitivity to consistent model

orientations, resulting in lower performance [3].

Another route to represent a 3D shape as a 2D image is to capture geometric and topological

properties of the model and then demonstrate it as a 2D signal. These graphical informative rep-

resentation are usually obtained by using global shape descriptors. For instance, Bu et al. [49]

presented a deep learning framework (3D-DL) for 3D shape classification and retrieval. 3D-DL
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extracts high-level features by applying deep belief networks (DBNs) on 2D global descriptor ob-

tained by the geodesic distance and eigenfunctions of the LBO. The main issue with geodesic

distance lies in its sensitivity to topological noise not to mention, it often fails to capture the global

properties of a shape compared to the (squared) biharmonic distance [35].

In this chapter, we adopt a similar strategy as [49] in the sense that we employ deep learn-

ing to 3D shape retrieval, but our approach differs in the way our deep shape descriptor is com-

puted. More specifically, we introduce a multi-level feature learning approach using spectral graph

wavelets, bag-of-features and deep auto-encoders. In particular, we use the spectral graph wavelet

signature as a local descriptor due is its ability to capture different details provided at different

levels from low to high frequencies. We also use locality-constrained linear coding (LLC) as a

feature coding scheme in the BoF model due largely to the lower quantization error of LLC as well

as its codewords locality properly. In addition, we employ the biharmonic distance to measure the

spatial relationship between the LLC codes. Unlike the geodesic distance which is not globally

shape-aware, the biharmonic distance is shape-ware, isometry invariant, computationally efficient,

robust to various shape deformations, and possesses good discriminative capabilities [12, 35]. The

main contributions of this chapter may be summarized as follows:

1. We present low-level shape descriptors using spectral graph wavelets.

2. We construct mid-level features using the BoF model in which we employ LLC as a feature

coding scheme. We then measure the spatial relationship between the LLC codes via the

biharmonic distance in order to generate shape-aware bag-of-features.

3. We employ a deep auto-encoder to learn high-level features that are used to design a deep

shape-aware descriptor for 3D shape retrieval tasks.

The rest of this chapter is structured as follows. In Section 2.2, we introduce a multi-level 3D

shape feature learning framework using deep learning, and we discuss in detail its major compo-

nents as well as its algorithmic steps. Section 2.3 presents the experimental results and Section 2.4

concludes the chapter.

2.2 Proposed Framework

In this section, we describe the main components and algorithmic steps of the proposed multi-level

feature learning framework. The approach consists of three major components: low-level features,

mid-level features and high-level features, as illustrated in Figure 2.1. In the low-level features

construction, we use spectral graph wavelets to generate local descriptors for each 3D shape in the

dataset. In the mid-level features step, we used the BoF model in conjunction with the biharmonic
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distance to construct shape-aware global descriptors. In the third step, high-level shape features

are learned using deep auto-encoders.

Dataset Low-Level Descriptors Mid-Level Features

SA-BoF
LLC

C
od

eb
oo

k

LLC

Codes

SGWS

High-Level Features

input 
layer

hidden 
layer

output 
layer

Auto-Encoder

Learned 

Features

Figure 2.1: Main components of the proposed feature learning method: low-level features, mid-

level features and high-level features.

2.2.1 Low-Level Features

Wavelets are useful in describing functions at different levels of resolution. Motivated by the

effectiveness of the multiresolution SGWS in 3D shape retrieval [9], we propose an improved

spectral graph wavelet signature by incorporating the vertex area into the signature. For a given

resolution parameter R, the improved SGWS at vertex j is a p-dimensional vector defined as

sj = {sQ(j) | Q = 1, . . . , R}, (2.1)

where sQ(j) is the shape signature at vertex j and resolution level Q, and is given by

sQ(j) = {Wδj(tq, j) | q = 1, . . . , Q} ∪ {Sδj(j)}. (2.2)

At each resolution level Q, the signature sQ(j) at vertex j is an (Q + 1)-dimensional vector con-

sisting of spectral graph wavelet coefficients Wδj(tq, j) given by

Wδj(tq, j) =
m∑
�=1

a2jg(tqλ�)ϕ
2
�(j), q = 1, . . . , Q (2.3)

and scaling function coefficients Sδj(j) given by

Sδj(j) =
m∑
�=1

a2jh(λ�)ϕ
2
�(j), (2.4)
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where g and h are the spectral graph wavelet generating kernel and scaling function, respectively.

The spectral graph wavelet generating kernel g acts as a band-pass filter, while h is used as a low-

pass filter to encode the low-frequency content of a function defined on the mesh vertices [9]. The

wavelet scales tq (tq > tq+1) are selected to be logarithmically equispaced between maximum and

minimum scales t1 and tQ, respectively. The dimension of sj can be expressed in terms of the

resolution parameter R as follows:

p =
(R + 1)(R + 2)

2
− 1. (2.5)

For example, at resolution R = 2, the spectral graph wavelet signature sj is a 5-dimensional vector

consisting of five elements (four elements of spectral graph wavelet function coefficients and one

element of scaling function coefficients).

For a p-dimensional signature si, we define a p ×m spectral graph wavelet signature matrix as

S = (s1, . . . , sm), where si is the signature at vertex i and m is the number of mesh vertices. In

our implementation, we used the cubic spline wavelet and the scaling functions given by

g(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
x2 if x < 1

−5 + 11x− 6x2 + x3 if 1 ≤ x ≤ 2

4x−2 if x > 2

(2.6)

and

h(x) = γ exp

(
−
(

x

0.6λmin

)4
)
, (2.7)

where λmin = λmax/20 and γ is set such that h(0) has the same value as the maximum value of g.

The maximum and minimum scales are set to t1 = 2/λmin and tQ = 2/λmax.

2.2.2 Mid-Level Features

In the second step of the proposed approach, we compute sparse codes for the local descriptors us-

ing the BoF model, which aggregates these descriptors in order to provide a simple representation

that may be used to facilitate comparison between 3D shapes. We then propose new shape de-

scriptors that are globally shape-ware, robust to topological noise and practical to compute. These

shape-aware descriptors are defined in terms of the biharmonic distance and the sparse codes.

Bag-of-Features Model

The BoF model consists of four main steps: feature extraction and description, codebook design,

feature coding and feature pooling. We model a 3D shape as a triangle mesh M with m vertices.

21



Feature extraction and description. In the BoF paradigm, a 3D shape M is represented as a

collection of m local descriptors of the same dimension p, where the order of different feature

vectors is of no importance. Local descriptors may be classified into two main categories: dense

and sparse. Dense descriptors are computed at each vertex of the mesh, while sparse descriptors

are computed by identifying a set of salient points using a feature detection algorithm. In our

approach, we represent the shape M by a p×m matrix S = (s1, . . . , sm) of spectral graph wavelet

signatures, where each p-dimensional feature vector si is a dense, local descriptor that encodes the

local structure around the i-th vertex of the mesh.

Codebook design. We construct a codebook (also called vocabulary or dictionary) offline by

applying the K-means algorithm to a representative collection of local descriptors. To this end,

we used the idea of intrinsic spatial partition [69] to select representative descriptors in a way that

ensures each partition of a shape participates in the codebook design procedure. We may represent

the codebook by a p × k vocabulary matrix V = (v1, . . . ,vk) of p-dimensional vectors vi called

codewords (also known as basis vectors or atoms), which are the centroids of the clusters.

Feature coding. Given a codebook, each local descriptor si may be mapped to a codeword in the

vocabulary space using feature coding techniques such hard-assignment, soft-assignment, sparse

coding and locality-constrained linear coding [70], to name just a few. While sparse coding has

shown promising results as a feature coding method in the BoF model [48], it uses, however,

sparsity constraint and has no priorities for the closer codewords to each local descriptor over the

further ones. Locality-constrained linear coding (LLC), on the other hand, employs locality con-

straint to enforce codebook locality instead of sparsity. As a result, LLC yields smaller coefficients

for codewords farther away from si. More precisely, the LLC code ui is obtained by solving the

following regularized least-squares problem

ui = arg min
1ᵀui=1

‖si −Vui‖22 + λ‖di � ui‖22, (2.8)

where � denotes the element-wise multiplication, di = exp(dist(si,V)/δ) measures the similarity

between the i-th descriptor and all the codewords with dist(si,V) = (‖si−v1‖2, . . . , ‖xi−vk‖2),
and δ is a parameter to adjust the weight decay speed for the locality adaptor.

It should be noted that the LLC code is not sparse in the sense of �0-norm, but it is sparse in the

sense that the codes have only a few elements with significant values. In practice, an approximated

LLC is employed for fast encoding by removing the regularization term (i.e. locality constraint)

from (2.8) and instead using the r nearest neighbors of si as a set of codewords [70], thereby reduc-

ing the computational complexity from O(k2) to O(k + r2), where k is the number of codewords

in the vocabulary and r � k.

Hence, each p-dimensional local descriptor si is encoded by a k-dimensional LLC code ui,

resulting in a k ×m matrix U = (u1, . . . ,um) which we refer to as the LLC codes matrix.
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Feature pooling. Each spectral graph wavelet signature is mapped to a certain codeword through

the clustering process and the shape is then represented by the histogram h of the codewords, which

is a k-dimensional vector given by

h = U1m = (hr)r=1,...,k (2.9)

where hr =
∑m

i=1 uri. That is, the histogram consists of the column-sums of the cluster assign-

ment matrix U. Other feature pooling methods include average- and max-pooling. In general, a

feature vector is given by h = P(U), where P is a predefined pooling function that aggregates the

information of different codewords into a single feature vector.

Shape-Aware Bag-of-Features

A major drawback of the BoF model is that it only considers the distribution of the codewords and

disregards all information about the spatial relations between features, and hence the descriptive

ability and discriminative power of the BoF paradigm may be negatively impacted. To circumvent

this limitation, various solutions have been recently proposed including the spatially sensitive bags

of features (SS-BoF) [47] and geodesic-aware bags of features (GA-BoF) [49]. The SS-BoF, which

is defined in terms of the heat kernel, can be represented by a square matrix whose elements

represent the frequency of appearance of nearby codewords in the vocabulary. Similarly, the GA-

BoF matrix is obtained by replacing the heat kernel in the SS-BoF with a geodesic exponential

kernel. Although the geodesic distance has proven to be effective in tackling nonrigid 3D shape

matching and retrieval [71, 72] due in large part to its isometry invariance property, it suffers,

however, from several disadvantages compared to the (squared) biharmonic distance [35]. While

the geodesic distance is not smooth, sensitive to topological noise and not globally shape-aware, the

biharmonic distance is not only robust to noise and small topological changes, but also globally

shape-aware and smooth. As shown in Figure 2.2, the level sets of the biharmonic distance are

much smoother than those of the geodesic distance. Notice that the source point is displayed as a

small green sphere, located in the vicinity of the mouth of the 3D face model. Both distances are

computed from the source point to all the remaining points of the 3D face model.

In addition to its isometry invariance, the biharmonic distance is practical to compute, and strikes

a balance between nearly geodesic distances for small distances and global shape-awareness for

large distances. Inspired by these nice properties, we define a shape-ware descriptor of a 3D shape

as a k × k matrix F given by

F = UKU
ᵀ
, (2.10)

where U is a k×m matrix of LLC codes, and K = (κij) is an m×m biharmonic distance kernel

matrix whose elements are defined in terms of the eigenvalues and eigenfunctions of the LBO as
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Figure 2.2: A 3D face model color-coded by the biharmonic (left) and geodesic distances (right).

Darker blue regions indicate smaller distances, while darker red regions indicate larger distances.

Level sets (isocontours) are displayed as white lines at equally spaced intervals of distance.

follows:

κij =
m∑
�=1

1

λ2
�

(ϕ�(i)−ϕ�(j))
2. (2.11)

We refer to F as a shape-aware bag-of-features (SA-BoF) matrix, which indicates the occurrence

distribution of the codewords and the spatial relationships between them. Hence, for each 3D

shape, the mid-level features are represented by a k × k matrix F containing global descriptors.

2.2.3 High-Level Features

In the third step of our framework, more discriminative 3D shape descriptors are extracted using

high-level features learned by performing a deep auto-encoder on the mid-level features. Unlike

images, a 3D mesh cannot be fed directly into a deep learning model. To tackle this issue, we use

the k × k SA-BoF matrix (viewed as an image) F or more precisely the k2-dimensional vector

x as an input to the deep auto-encoder, where x is obtained by stacking the columns of F one

underneath the other. The high-level features are then extracted from the output of the last hidden

layer of the deep auto-encoder, resulting in an rL-dimensional high-level feature vector aL, which

we refer to as a deep SA-BoF descriptor, where rL is the total number of neurons in the last hidden

layer, as illustrated in Figure 2.3.

2.2.4 Proposed Algorithm

The goal of 3D shape retrieval is to search and extract the most relevant shapes to a query object

from a dataset of 3D shapes. The retrieval accuracy is usually evaluated by computing a dissimi-

larity measure between pairs of 3D shapes in the dataset. A good retrieval algorithm should result

in few dissimilar shapes. A commonly used dissimilarity measure for content-based retrieval is the

�1-distance, which quantifies the difference between each pair of 3D shapes.
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Figure 2.3: Deep auto-encoder architecture. The hidden layer of the 1st auto-encoder (AE) is

trained to reconstruct the input data. Then, the hidden layer of the 2nd AE is trained to reconstruct

the hidden layer of the 1st AE, and so on.

As stated previously, our learning framework consists of three main components. In the first

step, we represent each 3D shape in the dataset by a spectral graph wavelet signature matrix,

which is a feature matrix whose columns are the local shape descriptors. More specifically, let D
be a dataset of n shapes modeled by triangle meshes M1, . . . ,Mn. We represent each mesh Mi

by a p × m spectral graph wavelet signature matrix Si, where m is the number of mesh vertices.

The spectral graph wavelet signatures are then encoded via LLC, resulting in a k ×m matrix Ui

whose columns are the k-dimensional LLC codes. In the second step, the k× k SA-BoF matrix Fi

is computed using the LLC codes matrix and the biharmonic distance kernel matrix, followed by

reshaping Fi into a k2-dimensional SA-BoF vector xi. In the third step, the SA-BoF vectors xi of

all n shapes in the dataset are arranged into a k2×n data matrix X = (x1, . . . ,xn) on which a deep

auto-encoder is performed, resulting in an rL × n matrix A = (a
(1)
L , . . . , a

(n)
L ) whose columns are

deep shape-ware global descriptors, where rL is the total number of units in the last hidden layer

of the network. Finally, we compare a query shape to all shapes in the dataset using �1-distance to

measure the dissimilarity between each pair for 3D shape retrieval. We summarize our multi-level

3D shape descriptor approach in Algorithm 1.

2.3 Experiments

To evaluate the efficacy and performance of our method on 3D shape shape retrieval tasks, we

conducted several experiments and comparisons.
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Algorithm 1 Deep Shape-Aware Framework

Input: Dataset D = {M1, . . . ,Mn} of 3D shapes and a query.

1: for i = 1 to n do
2: Compute the p×m SGWS matrix Si for each shape Mi

3: Compute the k ×m LLC codes matrix Ui

4: Compute the k × k SA-BoF matrix Fi, and reshape it into a k2-dimensional vector xi

5: end for
6: Arrange all the n SA-BoF vectors into a k2 × n data matrix X = (x1, . . . ,xn)

7: Apply deep auto-encoder on X to find the rL × n deep SA-BoF matrix A = (a
(1)
L , . . . , a

(n)
L )

8: Compute the �1-distance between the deep SA-BoF vector of the query and all deep SA-BoF

vectors in the dataset, and find the closest shape(s).

Output: Retrieved set of most relevant shapes to the query.

Datasets. We tested the proposed algorithm on two standard and publicly available 3D shape

benchmarks: SHREC 2014 and SHREC 2015. Sample shapes from these benchmarks are shown

in Figure 2.4. The SHREC-2014 benchmark contains two datasets: real and synthetic human mod-

els. The real SHREC-2014 dataset is made up of ‘real’ data, obtained by scanning real human

participants [5], and it consists of 400 shapes, made up of 40 human subjects in 10 different poses.

Half the human subjects are male, and half female. The poses of each subject are built by us-

ing a data-driven deformation technique, which can produce realistic deformations of articulated

meshes. The synthetic SHREC-2014 dataset was built using DAZ Studio and consists of 300 hu-

man models (adults and children) subdivided into 15 classes of 20 members each. Objects are

considered as part of the same class if they share the same body shape.

The SHREC-2015 benchmark is a dataset of 3D shapes consisting of 1200 watertight mesh

models from 50 classes [2], where each class contains 24 objects with distinct postures.

Implementation details. All the experiments were performed on a desktop computer with a CPU

Core i5 processor running at 3.4 GHz and 16 GB RAM, and the algorithms were implemented in

MATLAB R2016a (version 9.0). We use the first 201 eigenvalues and eigenvectors of the LBO to

compute the low-level descriptors and the biharmonic distance. The resolution level of SGWS is

set to R = 2, that is each local descriptor is of length 5 (i.e. p = 5). The number of vertices varies

from shape to shape, but it is set to approximately 1000 and 2200 for the shapes in the SHREC-

2015 and SHREC-2014 datasets, respectively. For the mid-level features, a codebook of size 5×48

(i.e. setting k = 48) is constructed using a representative collection containing 10 local descriptors

from each shape, and the LLC codes are computed using 5 nearest neighbors, yielding a SA-BoF

matrix of size 48× 48 for each shape in the dataset. Then, the mid-level features of all shapes are

reshaped into 482-dimensional vectors, resulting in a SA-BoF data matrix X of size 482×n, where

n is the total number of 3D shapes in the dataset. To compute high-level features, we use a deep

26



Figure 2.4: Sample shapes from real SHREC 2014 (top), synthetic SHREC 2014 (middle), and
SHREC 2015 (bottom).

auto-encoder consisting of an input layer of size 482, a hidden layer of size rL = 300, and an output

layer of size equal to the number of classes in each 3D shape dataset. This yields a deep SA-BoF
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matrix A of length 300 × n. It is important to note that the dimension of mid-level features was

reduced from 482 = 2304 to 300, which indicates the compactness of the deep SA-BoF descriptor.

The regularization parameter in the objective function of the deep auto-encoder is set to λ = 0.001.

Baseline methods. We compare the effectiveness of the proposed framework with several state-

of-the-art methods, including histograms of area projection transform (HAPT) [73], heat kernel

signature based on time serial (HKS-TS) [1, 2], spectral graph wavelet signature (SGWS) [9],

Euclidean distance based canonical forms (EDBCF) [74], supervised dictionary learning (SupDL-

train) [48], reduced biharmonic distance matrix (R-BiHDM) [12], and high-level feature learning

using deep belief networks (3D-DL) [49]. We also compare our deep SA-BoF with SA-BoF to

show the advantage of the deep network in improving the retrieval performance. It should be noted

that SA-BoF is a special case of deep SA-BoF, with the designed network having only two layers

and an identity activation function (i.e. σ(x) = x). For all baseline methods, we use the default

parameters when available.

2.3.1 Results

We evaluate the retrieval performance of the proposed approach in comparison with existing meth-

ods using several standard evaluation metrics, including the precision-recall curve, nearest neigh-

bor (NN), first-tier (FT), second-tier (ST), E-measure (E), discounted cumulative gain (DCG), and

mean average precision (mAP). The formal definitions of these metrics can be found in [75].

Results on SHREC 2015. For this dataset of 1200 shapes, we first compute the SA-BoF data

matrix X, which is of size 482 × 1200. Training the auto-encoder on the training dataset yields

learned features that form a deep SA-BoF data matrix A of size 300 × 1200. Then, a distance

matrix of size 1200 × 1200 is constructed by computing the �1-distance between each pair of the

300-dimensional deep feature vectors. Finally, a retrieval test on this distance matrix is conducted

and the scores for the evaluation metrics are computed. Table 3.7 shows the retrieval results of deep

SA-BoF and several baseline methods. As can be seen in the table, deep SA-BoF outperforms

all baseline methods on almost all the evaluation metrics, except HAPT [73] which achieves a

slightly higher NN value. Moreover, the performance gap between deep SA-BoF and HAPT is

significant in terms of the other evaluation metrics, indicating that the proposed approach performs

significantly better than the competitors. Note that using the deep auto-encoder to extract high-

level features improves the retrieval performance of SA-BoF by 12% and 5.1% in terms of mAP

and DCG, respectively. Overall, deep SA-BoF is consistently the best, delivering robust retrieval

performance.

We also use precision-recall graphs to evaluate the retrieval performance of the proposed ap-

proach in comparison with the baseline methods. A precision-recall graph is an informative graph
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that illustrates the tradeoff between precision as a function of recall, and it shows the retrieval per-

formance at each point in the ranking. If, for instance, the (τ + 1)-th shape retrieved is relevant,

then both precision and recall increase. However, if it is irrelevant then recall is the same as for

the top τ shapes, but precision decreases. Hence, a precision-recall graph that is shifted upwards

and to the right indicates superior performance. Figure 3.7 compares the proposed framework with

several baseline methods using precision-recall curves on the SHREC-2015 benchmark. As can

be seen, deep SA-BoF performs significantly better than the competitors. It is important to point

out that for fair comparison with SI-HKS and WKS, which also are local descriptors, we gener-

ated their corresponding global descriptors using our mid-level feature extraction strategy based

on LLC as feature coding method and the biharmonic distance as the kernel for feature pooling.

Table 2.1: Performance comparison results on the SHREC-2015 dataset. Boldface numbers indi-

cate the best retrieval performance.

Retrieval Evaluation Measures (%)

Method NN FT ST E DCG mAP

HAPT [73] 99.8 96.6 98.2 81.5 99.2 -

HKS-TS [2] 6.5 6.4 12.4 7.4 39.1 -

SGWS [9] 97.3 76.0 81.4 66.0 91.9 -

EDBCF [74] 97.8 79.1 88.4 70.8 94.3 -

SA-BoF 96.1 80.1 89.3 71.3 94.5 82.2

Deep SA-BoF 99.7 98.3 99.2 82.7 99.6 94.2

Results on SHREC 2014. For the real SHREC-2014 dataset, the SA-BoF data matrix X is of

size 482 × 400 and the deep SA-BoF data matrix A is of size 300 × 400. Hence, the resulting

distance matrix is of size 400 × 400. For the synthetic SHREC-2014 dataset, the SA-BoF data

matrix X is of size 482 × 300, the deep SA-BoF data matrix A is of size 300 × 300, and the dis-

tance matrix is of size of 300 × 300. Tables 3.9 and 3.10 compare the retrieval results of SA-BoF

and deep SA-BoF with baseline methods. As reported in Table 3.9, this difference on a noisy

data like the SHREC-2014 human real dataset grows by 54.3% in mAP and 38.2% in DCG which

is a significant improvement. From Table 3.10, we see that deep SA-BoF improves SA-BoF on

the synthetic SHREC-2014 dataset by 20.6% and 8.8% in terms of mAP and DCG, respectively.

This clearly indicates the importance of using high-level features in further improving the retrieval

results. Moreover, Table 3.9 indicates the proposed method improves the original SGWS signifi-

cantly e.g. it increases DCG from 48.8% to 93.2%, and mAP from 25.8% to 88.3%. SupDLtrain,

which is a supervised learning method, yields slightly better ST and E scores, while deep SA-

BoF significantly outperforms SupDLtrain in terms of the other scores on the real SHREC-2014
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Figure 2.5: Precision-recall graphs comparing the performance of the proposed method with other

state-of-the-art approaches on SHREC 2015.

dataset. 3DDL, which is a deep learning based approach, achieves a mediocre retrieval perfor-

mance on the real SHREC-2014 dataset. Moreover, deep SA-BoF performs the best among all the

baseline methods on the synthetic SHREC-2014 benchmark.

Figure 3.8 shows the performance comparison of the proposed method with various baseline

methods using the precision-recall graphs on the real and synthetic SHREC-2014 datasets. As can

be seen in the figure, the precision-recall graphs indicate the superiority of the proposed method.

Note that even for full recall, the precision is still higher than 0.7. Interestingly, Shape-DNA, which

is the simplest spectral descriptor, outperforms SI-HKS except on the real SHREC-2014 dataset.

In addition, WKS achieves better performance that SI-HKS, providing further evidence that WKS

outperforms HKS as reported in [8]. Moreover, SA-BoF yields better retrieval results than WKS

and SI-HKS on SHREC 2014, which strengthens our view that SGWS has a more discriminative

ability than WKS and SI-HKS. This is largely attributed to the fact that SGWS captures geometric

information at multiple scales.

As can be seen in Tables 3.9 and 3.10, deep SA-BoF performs 24.6% and 17.6% better than

HAPT in terms of mAP on the real and synthetic SHREC-2014 datasets, respectively. However,

HAPT performs practically at par with deep SA-BoF on SHREC 2015 in terms of almost all the
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Table 2.2: Performance comparison results on the real SHREC-2014 dataset. Boldface numbers

indicate the best retrieval performance.

Retrieval Evaluation Measures (%)

Method NN FT ST E DCG mAP

HAPT [73] 84.5 53.4 68.1 35.5 79.5 63.7

HKS-TS [2] 24.5 25.9 46.1 31.4 54.8 -

SGWS [9] 31.3 20.6 32.3 19.2 48.8 25.8

EDBCF [74] 1.0 1.2 4.0 4.3 27.9 -

SupDltrain [48] 79.3 72.7 91.4 43.2 89.1 79.1

R-BiHDM [12] 68.5 54.1 74.2 38.7 78.1 64.0

3D-DL [49] 22.5 19.3 37.4 26.2 50.4 -

SA-BoF 33.0 26.6 43.9 27.2 55.0 34.0

Deep SA-BoF 92.8 81.8 91.2 42.7 93.2 88.3

Table 2.3: Performance comparison results on the synthetic SHREC-2014 dataset. Boldface num-

bers indicate the best retrieval performance.

Retrieval Evaluation Measures (%)

Method NN FT ST E DCG mAP

HAPT [73] 97.0 73.3 92.7 65.5 93.6 81.7

HKS-TS [2] 46.7 47.6 74.3 50.4 72.9 -

SGWS [9] 99.3 83.2 97.1 70.6 97.1 90.2

EDBCF [74] 11.3 18.2 33.3 21.7 50.7 -

SupDltrain [48] 96.0 88.7 99.1 72.1 97.5 95.4

R-BiHDM [12] 79.3 57.2 76.0 53.3 83.6 64.2

3D-DL [49] 92.3 76.0 91.1 64.1 92.1 -

SA-BoF 91.0 70.8 91.7 65.5 90.7 78.7

Deep SA-BoF 99.3 98.4 99.3 73.9 99.5 99.3

evaluation measures, as shown in Table 3.7. This good performance of HAPT on SHREC 2015

may be due in large part to two key points. First, nearly half of all shapes in SHREC 2015 come

from SHREC 2011, in which HAPT was originally tested with a varying degree of success. Sec-

ond, the difference between the various categories in SHREC 2015 is quite noticeable compared to

the ones in SHREC 2014. In fact, even human observers may not easily distinguish between some

categories in SHREC 2014, particularly with the real SHREC-2014 benchmark.

The accuracy of the retrieval results using deep SA-BoF is further illustrated in Figures 3.10

and 3.11. Two queries (male and female) from the real SHREC-2014 dataset are featured in the

top-most row of these figures, followed by the top five retrieved shapes. The first query is the male

31



model number 1 (M1) as shown in Figure 3.10, while the second query is a female model number

9 (F9) as depicted in Figure 3.11. We compared out results to several baseline methods, including

SI-HKS, WKS, R-BiHDM and Shape-DNA. As can be seen in Figure 3.10, deep SA-BoF was

able to correctly retrieve all the relevant shapes from the query’s class (i.e. same shape in different

poses), while the other methods failed more than once in retrieving the relevant shapes.

Similarly, we can see in Figure 3.11 that our approach outperforms all baseline methods. This

better performance is largely attributed to the fact that deep learning models are able to ex-

tract/build better features than shallow models.

2.4 Conclusion

In this chapter, we presented a multi-level feature learning framework for 3D shape retrieval us-

ing deep learning. First, low-level local descriptors were obtained using spectral graph wavelets.

Then, mid-level features were extracted via the bag-of-features model by aggregating local de-

scriptors into global ones. We used locality-constrained linear coding as a feature coding method

and measured the spatial relationships between codewords using the biharmonic distance in a bid

to generate shape-aware bag-of-features as mid-level features. Finally, high-level features were

learned using a deep auto-encoder. The proposed approach achieves significantly better perfor-

mance than state-of-the-art methods.
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Figure 2.6: Precision-recall graphs comparing the performance of the proposed method with other
state-of-the-art approaches on the real SHREC-2014 (up) and the synthetic SHREC-2014 datasets
(down).
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Query

M1

Top five retrieved shapes
SI-HKS WKS R-BiHDM Shape-DNA SA-BoF Deep SA-BoF

F16 M5 F6 M5 M5 M1

M11 M5 F8 M6 M1 M1

M5 M3 F6 M11 M5 M1

M2 M1 M6 F16 F20 M1

M15 M17 F14 M10 M1 M1

Figure 2.7: Top five retrieved shapes (ranked top-to-bottom) using SI-HKS, WKS, R-BiHDM,

Shape-DNA, SA-BoF, and deep SA-BoF. The query shape is the male number 1 (M1) from the

real SHREC-2014 dataset. Boldface numbers indicate the correctly retrieved shapes. M# (resp.

F#) denotes the male (resp. female) model in class #.
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Query

F9

Top five retrieved shapes
SI-HKS WKS R-BiHDM Shape-DNA SA-BoF Deep SA-BoF

F9 F18 F1 F7 F9 F9

F14 F9 M15 F17 F18 F9

F18 F9 F5 F17 F18 F9

F4 F1 F19 F1 F9 F9

F7 F10 F12 F18 F1 F9

Figure 2.8: Top five retrieved shapes (ranked top-to-bottom) using SI-HKS, WKS, R-BiHDM,

Shape-DNA, SA-BoF, and deep SA-BoF. The query shape is the female number 9 (F9) from the

real SHREC-2014 dataset. Boldface numbers indicate the correctly retrieved shapes. M# (resp.

F#) denotes the male (resp. female) model in class #.
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Intrinsic Spatial Pyramid Matching for 3D Shape

Retrieval

The soaring popularity of deep learning in a wide variety of fields ranging from computer vision

and speech recognition to self-driving vehicles has sparked a flurry of research interest from both

academia and industry. In this chapter, we propose a deep learning approach to 3D shape retrieval

using a multi-level feature learning paradigm. Low-level features are first extracted from a 3D

shape using spectral graph wavelets. Then, mid-level features are generated via the bag-of-features

model by employing locality-constrained linear coding as a feature coding method, in conjunction

with the biharmonic distance and intrinsic spatial pyramid matching in a bid to effectively mea-

sure the spatial relationship between each pair of the bag-of-feature descriptors. Finally, high-level

shape features are learned by applying a deep auto-encoder on mid-level features. Extensive ex-

periments on SHREC-2014 and SHREC-2015 datasets demonstrate the much better performance

of the proposed framework in comparison with state-of-the-art methods.

3.1 Introduction

Deep learning has recently gained increasing popularity due largely to its competitive results in

many tasks most notably for machine learning, computer vision, and speech recognition [76].

In spite of improvements in hand-crafted descriptors and shallow representations, deep learning

frameworks [4, 18–20] often beat these conventional methods by a large margin. Deep learn-

ing models have recently been applied to 3D shape analysis to learn high-level features from 3D

shapes. Fang et al. [54] introduced a deep learning framework in which the heat kernel signature
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is fed to deep neural networks with target values in a bid to obtain a 3D deep shape descriptor that

demonstrated good performance in 3D shape retrieval. Inspired by the Shape Google framework

for 3D shape retrieval [47], Bu et al. [49] introduced a deep learning based approach (3D-DL) for

3D shape classification and retrieval. The 3D-DL framework uses a 2D global shape descriptor,

which is represented by a full matrix defined in terms of the geodesic distance and eigenfunctions

of the LBO. A major drawback of the geodesic distance is its sensitivity to topological noise as

well as its inability to capture the global features of a shape compared to the (squared) biharmonic

distance [35].

In this chapter, we propose a multi-level feature learning approach using spectral graph wavelets,

bag-of-features and deep auto-encoders. In particular, we use SGWS as a local descriptor due to

its ability to capture different details provided at different levels from low to high frequencies. We

also use locality-constrained linear coding (LLC) as a feature coding scheme in the BoF model

due largely to the lower quantization error of LLC as well as its codewords locality properly.

In addition, we employ the biharmonic distance together with intrinsic spatial pyramid matching

(ISPM) to effectively measure the spatial relationship between the LLC codes. Unlike the geodesic

distance which is not globally shape-aware, the biharmonic distance is shape-aware, isometry in-

variant, computationally efficient, robust to various shape deformations, and possesses good dis-

criminative capabilities [12, 35]. Our contributions are as follows:

1. We extract low-level features from 3D shapes using spectral graph wavelets.

2. We construct mid-level features using the BoF model in which we employ LLC as a feature

coding scheme. We then measure the spatial relationship between the LLC codes via the

biharmonic distance together with ISPM in order to generate shape-aware bag-of-features.

3. We apply a deep auto-encoder to learn high-level features that are used to design a deep

shape-aware descriptor.

The remainder of this chapter is organized as follows. In Section 3.2, we introduce a multi-

level 3D shape feature learning framework using deep learning, and we discuss in detail its major

components as well as it algorithmic steps. Section 3.3 presents the experimental results and

Section 3.4 concludes the chapter.

3.2 Method

In this section, we describe the main components and algorithmic steps of the proposed multi-level

feature learning framework. The approach consists of three major components: low-level features,

mid-level features and high-level features, as illustrated in Figure 4.1. In the low-level features
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construction, we use spectral graph wavelets to generate local descriptors for each 3D shape in the

dataset. In the mid-level features step, we used the BoF model in conjunction with the biharmonic

distance and intrinsic spatial pyramid matching to construct shape-aware global descriptors. In the

third step, high-level shape features are learned using deep auto-encoders.

Dataset Low-Level Descriptors Mid-Level Features

LLC

C
od

eb
oo

k

LLC

Codes

SGWS SA-BoF

+ISPMPPP

High-Level Features

input 
layer

hidden 
layer

output 
layer

Deep Auto-Encoder

Learned 

Features

Figure 3.1: Main components of the proposed feature learning method: low-level features, mid-

level features and high-level features.

3.2.1 Global Descriptors

A major drawback of the BoF model is that it only considers the distribution of the codewords and

disregards all information about the spatial relations between features, and hence the descriptive

ability and discriminative power of the BoF paradigm may be negatively impacted. To circumvent

this limitation, two major classes of approaches have been recently proposed.

The first class includes approaches define a global descriptor of a 3D shape as a k × k matrix F

given by

F = UKU
ᵀ
, (3.1)

where U is a k ×m matrix of sparse codes, and K = (κij) is a spatial relationship measurements

matrix, such as the heat kernel in the spatially sensitive bags of features (SS-BoF) approach [47] or

the geodesic exponential kernel in the geodesic-aware bags of features (GA-BoF) framework [49].

Although the geodesic distance has proven to be effective in tackling nonrigid 3D shape matching

and retrieval [71,72] due in large part to its isometry invariance property, it suffers, however, from

several disadvantages compared to the (squared) biharmonic distance [35]. While the geodesic

distance is not smooth, sensitive to topological noise and not globally shape-aware, the biharmonic

distance is not only robust to noise and small topological changes, but also globally shape-aware

and smooth.

In addition to its isometry invariance, the biharmonic distance is practical to compute, and strikes

a balance between nearly geodesic distances for small distances and global shape-awareness for
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large distances. Besides, employing biharmonic distance as a spatial relationship measurements

matrix avoids the parameter tuning which is necessary for heat kernel (time scale) and geodesic

exponential kernel (kernel width). Inspired by these nice properties, we define a shape-aware

descriptor of a 3D shape as a k × k matrix F by replacing K in (3.1) with an m ×m biharmonic

distance matrix whose elements are defined in terms of the eigenvalues and eigenfunctions of the

LBO as follows:

κij =
m∑
�=1

1

λ2
�

(ϕ�(i)−ϕ�(j))
2. (3.2)

In this case, we refer to F as a shape-aware bag-of-features (SA-BoF) matrix, which indicates

the occurrence distribution of the codewords and the spatial relationships between them. Hence,

for each 3D shape, the mid-level features are represented by a k × k matrix F containing global

descriptors.

On the other hand, the second class of approaches includes the intrinsic spatial pyramid match-

ing (ISPM) method [69], which considers the distribution of local descriptors in different spatial

patches by the intrinsic spatial partitions. Motivated by the invariance properties of the second

eigenfunction ϕ2 of the LBO, Li et al. [69] proposed to use the level sets (isocontours) of ϕ2 as

cuts to partition a surface. Examples of the level curves of ϕ2 are shown in Figure 3.2. Instead of

representing the whole shape by the codeword model without considering spatial layout of local

descriptors, each shape cut is represented by isocontours at resolution s according to its description

H which is the concatenation of s sub-histograms:

H = [h1,h2, . . . ,hi, . . . ,hs], (3.3)

where hi is the sub-histogram ordered in the ith position according to the intrinsic spatial partition

from one end to the other. Note that the isocontours sequence may begin from either end even

for the shapes from the same categories. This difference in isocontours sequence is shown in

Figure 3.2. For example, the heads of the first and third man in the first row are colored blue but

for the second and fourth one are colored red, whose orders are exactly the opposite. In order

to make sure that the semantic correspondent parts are considered in the comparison, an order-

insensitive strategy comparison method is used. First, a new histogram T is defined by making the

order of the sub-histogram inverted in H as follows:

T = [hs,hs−1, . . . ,hi, . . . ,h1]. (3.4)

Then, the difference between two shapes Ma and Mb is measured using the dissimilarity given

by

Bs(Ma,Mb) = min(As(HMa , HMb
),As(HMa , TMb

)), (3.5)
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Figure 3.2: Level curves of the second eigenfunction of the LBO. The isocontours sequence may

begin from either end even for the shapes from the same categories. The top two rows are some

samples from the SHREC-2014 dataset and the bottom two rows from the SHREC-2015 dataset.

where HMa and HMb
denote the histograms of Ma and Mb, respectively. In other words, there are

two possible matching schemes between two shapes based on their isocontours sequences, head-

to-head and head-to-end. The schemes with the minimum cost to be better matched are considered.

For each scheme, the dissimilarity measure As(·, ·) is defined as

As(HMa , HMb
) =

s∑
i=1

k∑
j=1

Ψ(hi
Ma

(j), hi
Mb
(j)), (3.6)

where Ψ(·, ·) can be any histogram comparison metric. The spatial pyramid divides an image into

a multi-level pyramid of increasingly fine subregions and computes a codebook descriptor for each

subregion. A sequence of histograms at resolutions {s = 2c, c = 0, . . . , C} is constructed such

that the surface at level c has 2c patches, for a total of 2C − 1 patches. Thus, the dissimilarity
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between the histograms of Mr and Ms is given by

DC(Mr,Ms) = BC(Mr,Ms)

+
C−1∑
c=0

1

2C−c
(Bc(Mr,Ms)− Bc+1(Mr,Ms))

=
1

2C
B0(Mr,Ms) +

C∑
c=1

1

2C−c+1
Bc(Mr,Ms).

The weight associated with each level is set to 1/2C−c, which is inversely proportional to the

cell width at that level. Intuitively, the matches found in larger cells are penalized because they

involve increasingly dissimilar features.

In order to measure the spatial relations between codewords, we propose instead of extracting

bag-of-features for each intrinsic spatial partition, and a k × k SA-BoF matrix F can be extracted

for each shape patch. It is worth noting that the matrix F is always symmetric, as depicted shown in

Figure 3.3. Therefore, it suffices to use either the upper or lower triangular part of F. Consequently,

the k × k global descriptor matrix (viewed as an image) F can be compactly represented by a q-

dimensional feature vector f , where q = k(k + 1)/2.

SS-BoF GA-BoF SA-BoF

Figure 3.3: The symmetry of spatially sensitive (left), geodesic-aware (middle), and biharmonic-

aware (right) bag-of-features matrices. These matrices are shown in the top row, whereas their

lower triangular parts are shown in the bottom row.

Hence, for any shape cut by isocontours of ϕ2 at resolution s, we obtain s feature vectors,

each of which is q-dimensional, as shown in Figure 3.4. We need to concatenate these s feature

vectors to form mid-level feature vectors, but the fact that the isocontours sequence may start from

either end can be problematic. Li et al. [69] defined two histograms and computed both possible
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matching schemes via (3.5). However, we cannot have two sets of features since mid-level features

are going to be fed into a deep auto-encoder. Alternatively, we concatenate these feature vectors

for each shape according to the histogram H = [f1, f2, . . . , f i, . . . , fs] model if in most cases the

minimum dissimilarity between the shape and other shapes obtained by this histogram model.

Otherwise, we use the histogram T = [fs, fs−1, . . . , f i, . . . , f1].

Figure 3.4: Combining intrinsic spatial pyramid matching (ISPM) and shape-aware bag-of-features

(SA-BoFs) are extracted for each intrinsic spatial partition.

3.2.2 High-Level Features

In the third step of our framework, more discriminative 3D shape descriptors are extracted using

high-level features learned by performing a deep auto-encoder on the mid-level features. Unlike

images, a 3D mesh cannot be fed directly into a deep learning model. To tackle this issue, we use

κ-dimensional vector x as an input to the deep auto-encoder, where x is obtained by concatenating

all SA-BoF vectors extracted from each shape patch that we refer to as SA-BoF+ISPM vector, and

κ = sq. The high-level features are then extracted from the output of the last hidden layer of the

deep auto-encoder, resulting in an rL-dimensional high-level feature vector aL, which we refer to

as a deep learned shape descriptor (DLSD), where rL is the total number of neurons in the last

hidden layer.

3.2.3 Algorithm

The goal of 3D shape retrieval is to search and extract the most relevant shapes to a query object

from a dataset of 3D shapes. The retrieval accuracy is usually evaluated by computing a dissimi-
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larity measure between pairs of 3D shapes in the dataset. A commonly used dissimilarity measure

for content-based retrieval is the �1-distance, which quantifies the difference between each pair of

3D shapes.

As stated previously, our learning framework consists of three main components. In the first

step, we represent each 3D shape in the dataset by a spectral graph wavelet signature matrix,

which is a feature matrix whose columns are the local shape descriptors. More specifically, let D
be a dataset of n shapes modeled by triangle meshes M1, . . . ,Mn. We represent each mesh Mi by

a p×m spectral graph wavelet signature matrix Si, where m is the number of mesh vertices. The

spectral graph wavelet signatures are then encoded via LLC, resulting in a k×m matrix Ui whose

columns are the k-dimensional LLC codes. In the second step, we cut each shape into s intrinsic

spatial partitions using the level sets (i.e. isocontours) of the second eigenfunction of LBO. The

k × k SA-BoF matrix Fij , where j = 1, ..., s, is computed for j-th intrinsic spatial partition

using the LLC codes matrix and the biharmonic distance kernel matrix, followed by shortening

Fij into a q-dimensional SA-BoF vector fij . Then, these s vectors are concatenated together to

form SA-BoF+ISPM vector xi. In the third step, SA-BoF+ISPM vectors xi of all n shapes in the

dataset are arranged into a κ × n data matrix X = (x1, . . . ,xn) on which a deep auto-encoder is

performed, resulting in an rL × n matrix A = (a
(1)
L , . . . , a

(n)
L ) whose columns are deep learned

shape descriptors, where rL is the total number of units in the last hidden layer of the network,

and κ = sq. Finally, we compare a query shape to all shapes in the dataset using �1-distance to

measure the dissimilarity between each pair for 3D shape retrieval. We summarize our multi-level

3D shape descriptor approach in Algorithm 3.

3.3 Experiments

To evaluate the efficacy and performance of our method on 3D shape retrieval tasks, we conducted

several experiments and comparisons.

Datasets. We tested the proposed algorithm on two standard and publicly available 3D shape

benchmarks: SHREC 2014 and SHREC 2015. The SHREC-2014 benchmark contains two

datasets: real and synthetic human models. The real SHREC-2014 dataset is made up of ‘real’

data, obtained by scanning real human participants [5], and it consists of 400 shapes, made up of

40 human subjects in 10 different poses. Half the human subjects are male, and half female. The

poses of each subject are built by using a data-driven deformation technique, which can produce

realistic deformations of articulated meshes. The synthetic SHREC-2014 dataset was built using

DAZ Studio and consists of 300 human models (adults and children) subdivided into 15 classes of

20 members each. Objects are considered as part of the same class if they share the same body

shape.
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Algorithm 2 Deep Learned Shape Descriptor (DLSD)

Input: Dataset D = {M1, . . . ,Mn} of 3D shapes and a query, and resolution parameter s.

1: for i = 1 to n do
2: Compute the p×m SGWS matrix Si for each shape Mi

3: Compute the k ×m LLC codes matrix Ui

4: Cut each shape into P intrinsic spatial partitions

5: for j = 1 to s do
6: Compute the q-dimensional SA-BoF vector fij for each shape partition j, where q =

k(k + 1)/2.

7: end for
8: Concatenate all SA-BoF vectors fij , and reshape them into a κ-dimensional SA-BoF+ISPM

vector xi, where κ = sq.

9: end for
10: Arrange all the n SA-BoF+ISPM vectors into a κ× n data matrix X = (x1, . . . ,xn)
11: Apply deep auto-encoder on X to find the rL × n deep learned shape descriptor (DLSD)

A = (a
(1)
L , . . . , a

(n)
L )

12: Compute the �1-distance between the DLSD vector of the query and all DLSD vectors in the

dataset, and find the closest shape(s).

Output: Retrieved set of most relevant shapes to the query.

The SHREC-2015 benchmark is a dataset of 3D shapes consisting of 1200 watertight mesh

models from 50 classes [2], where each class contains 24 objects with distinct postures.

Implementation Details. All the experiments were performed on a desktop computer with a

CPU Core i5 processor running at 3.4 GHz and 16 GB RAM, and the algorithms were implemented

in MATLAB R2016a (version 9.0). We use the first 201 eigenvalues and eigenvectors of the LBO

to compute the low-level descriptors and the biharmonic distance. The resolution level of SGWS

is set to R = 2, that is each local descriptor is of length 5 (i.e. p = 5). The number of vertices

varies from shape to shape, but it is set to approximately 1000 and 2200 for the shapes in the

SHREC-2015 and SHREC-2014 datasets, respectively. For the mid-level features, a codebook of

size 5× 48 (i.e. setting k = 48) is constructed using a representative collection containing 10 local

descriptors from each shape, and the LLC codes are computed using 5 nearest neighbors. Then,

the mid-level features of all shapes form a data matrix X of size κ× n, where κ = sq with s = 2,

q = k(k + 1)/2 = 1176, and n is the total number of 3D shapes in the dataset. To compute high-

level features, we use a deep auto-encoder consisting of an input layer of size equal to κ = 2352,

two hidden layers of sizes rL−1 = 1000 and rL = 300, and an output layer of size equal to the

number of classes in each 3D shape dataset. This yields a DLSD matrix A of length 300 × n.

It is important to note that the dimension of mid-level features was reduced from κ = 2352 to

300, which indicates the compactness of the DLSD. The regularization parameter in the objective

function of the deep auto-encoder is set to λ = 0.001.
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Baseline Methods. We compare the effectiveness of the proposed framework with several state-

of-the-art methods, including histograms of area projection transform (HAPT) [73], HKS-TS [1,2],

spectral graph wavelet signature (SGWS) [9], Euclidean distance based canonical forms (ED-

BCF) [74], supervised dictionary learning (supDLtrain) [48], reduced biharmonic distance matrix

(R-BiHDM) [12], and high-level feature learning using deep belief networks (3D-DL) [49]. We

also compare our DLSD approach using mid-level features as well as high-level features learned

by applying an auto-encoder with only one hidden layer as a shallow model (SLSD) to show the

advantage of the deep network in improving the retrieval performance. For all baseline methods,

we use the default parameters when available.

3.3.1 Results

We evaluate the retrieval performance of the proposed approach in comparison with existing meth-

ods using several standard evaluation metrics, including the precision-recall curve, nearest neigh-

bor (NN), first-tier (FT), second-tier (ST), E-measure (E), discounted cumulative gain (DCG), and

mean average precision (mAP).

Retrieval Performance on Mid-Level Features

We compare the retrieval performance of SA-BoF with SS-BoF and GA-BoF in order to evaluate

the improvement by using biharmonic distance as the spatial relationship measurement matrix

instead of heat kernel or geodesic exponential kernel. We also compare the retrieval performance of

SA-BoF+ISPM with the other three mid-level features to evaluate the improvement of combining

SA-BoF and ISPM.

Results on SHREC 2015. For this dataset of 1200 shapes, we first compute the SS-BoF, GA-

BoF, and SA-BoF, data matrices, which all are of size 1176 × 1200. Then, a distance matrix

of size 1200 × 1200 is constructed by computing the �1-distance between each pair of the 1176-

dimensional mid-level feature vectors. Finally, a retrieval test on this distance matrix is conducted

and the scores for the evaluation metrics are computed. It is important to point out that for fair

comparison with SS-BoF and GA-BoF, we generated their corresponding global descriptors using

our low-level feature extraction strategy based on SGWS and our mid-level feature extraction

strategy based on LLC as feature coding method and we only replace the biharmonic distance

as the spatial relationship measurement matrix by heat kernel and geodesic exponential kernel,

respectively. We also compute the SA-BoF+ISPM for different values of the resolution parameter

s, and the best results are obtained when s = 2, yielding a data matrix of size 2352 × 1200.

Nevertheless, the resulting distance matrix for these mid-level feature is still of size 1200× 1200.

Table 3.1 shows the retrieval results for all mid-level features. Aa can be seen, SA-BoF+ISPM
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outperforms the other methods. For example, the mAP and DCG for SS-BoF, GA-BoF, SA-BoF,

and SA-BoF+ISPM are 81.2% and 94.0%, 81.2% and 93.9%, 82.1% and 94.4%, and 84.2% and

95.4%, respectively. This table also indicates that SA-BoF outperforms SS-BoF and GA-BoF.

Table 3.1: Performance comparison results of ISPM and single partition mid-level features on the

SHREC-2015 dataset. Boldface numbers indicate the best retrieval performance.

Retrieval Evaluation Measures (%)

Method NN FT ST E DCG mAP

SS-BoF 96.2 79.2 88.3 70.5 94.0 81.2

GA-BoF 96.5 79.3 87.7 70.3 93.9 81.2

SA-BoF 96.0 80.1 89.3 71.3 94.4 82.1

SA-BoF+ISPM 97.4 82.8 90.6 73.1 95.4 84.2

We also use precision-recall graphs to evaluate the retrieval performance for different mid-level

features. A precision-recall graph is an informative graph that illustrates the tradeoff between pre-

cision as a function of recall, and it shows the retrieval performance at each point in the ranking.

If, for instance, the (τ + 1)-th shape retrieved is relevant, then both precision and recall increase.

However, if it is irrelevant then recall is the same as for the top τ shapes, but precision decreases.

Hence, a precision-recall graph that is shifted upwards and to the right indicates superior perfor-

mance. Figure 3.5 compares precision-recall curves of all mid-level features. As can be seen,

SA-BoF+ISPM outperforms the other methods significantly as there is a big performance gap be-

tween them. However, the performance gap between SA-BoF and SS-BoF or GA-BoF do not

seem significant. In order to assess if the retrieval performance is improved significantly or not

by replacing the heat kernel and geodesic exponential kernel with the biharmonic distance, we run

some statistical tests on NDCG values.

Paired-sample t-test. Denote X and Y two retrieval algorithms, where X is a new algorithm

and Y is a baseline. Given n queries, the evaluation scores (e.g. NDCG values) generated by

the algorithms X and Y may be represented as n-dimensional vectors x = (x1, . . . , xn) and y =

(y1, . . . , yn), where xi and yi are the scores of X and Y for query i. In order to show that algorithm

X significantly outperforms algorithm Y , a hypothesis test (also referred to as statistical test or

significance test) is usually conducted using as sample data the differences δi = xi − yi between

the matched pairs of scores for each query. This is an upper-tailed hypothesis test, where the null

hypothesis H0 is that there is no significant difference in performance between X and Y (i.e. the

mean of two paired samples are almost equal), and the alternative hypothesis is that X performs

significantly better than Y . After setting up the hypotheses, we choose the level of significance α,

which is the probability of making the mistake of rejecting H0 when it is true. In most of the cases,
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Figure 3.5: Precision-recall curves comparing the performance of ISPM and single partition mid-
level features on SHREC 2015.

significance level is 5%. Assuming n is large, we use the paired sample t-test

t =
δ̄

s/
√
n
, (3.7)

where δ̄ and s are the sample mean and sample standard deviation, respectively, from all the n

differences between paired scores. This test statistic follows a t-distribution with n− 1 degrees of

freedom. The value of the test statistic is then used to compute the p-value, which is the probability

of observing the given sample result under the assumption that the null hypothesis is true. If the

p-value is less than α, then we reject the null hypothesis.

Two-way ANOVA. In the case of several baseline methods, the performance of a new algorithm

can be analyzed using a two-way ANOVA with data consisting of observations yij , which corre-

spond to the score of method j for query i, where i = 1, . . . , n and j = 1, . . . ,m. Each observation

can be modeled as

yij = µ+ τi + βj + εij, (3.8)

where µ is the overall mean effect (true mean performance), τi is the effect of the ith query, βj
is the effect of the jth retrieval algorithm, and εij is Gaussian random error with zero mean and

variance σ2. In order to decide whether there is a significant mean difference between retrieval
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Table 3.2: Significance comparison results of ISPM and single partition mid-level features in terms

of DCG on the SHREC-2015 dataset.

Significance Tests

Comparing Methods p-value (t-test) f0 (two-way ANOVA) Significance

SA-BoF vs. GA-BoF 0.0057 7.66 high

SA-BoF vs. SS-BoF 2.42× 10−6 22.44 high

GA-BoF vs. SS-BoF 0.8316 0.05 low

SA-BoF+ISPM vs. SA-BoF 4.82× 10−5 16.64 high

SA-BoF+ISPM vs. GA-BoF 1.62× 10−7 28.43 high

SA-BoF+ISPM vs. SS-BoF 1.97× 10−8 31.96 high

algorithms, we compute the value of the F -test statistic given by

f0 =
MSB

MSE

, (3.9)

where MSB denotes the mean squares of the factor B (i.e. methods), and MSE denotes the mean

square error. Then, the value of the test statistic is compared to fα,m−1,(m−1)(n−1), which is the

percentage point of the F -distribution with m− 1 and (m− 1)(n− 1) degrees of freedom.

Table 3.2 shows the results of these statistical tests on mid-level features. Since we compare

each pair of methods (i.e. m = 2), we have fα,m−1,(m−1)(n−1) = fα,1,n−1. If f0 > fα,1,n−1, then

we reject the null hypothesis, i.e. there is a significant mean difference. The SHREC-2015 dataset

consists of n = 1200 shapes; so for α = 0.05, we have fα,1,n−1 = f0.05,1,1199 = 3.85. As can

be seen, SA-BoF improved GA-BoF and SS-BoF significantly, e.g. p-value = 0.0057 < 0.05

and f0 = 7.66 > 3.85 for the pair of SA-BoF and GA-BoF, and p-value = 2.42 × 10−6 < 0.05

and f0 = 22.44 > 3.85 for the pair of SA-BoF and SS-BoF. However, these results show that

GA-BoF was not able to outperform SS-BoF significantly, i.e. p-value = 0.8316 ≮ 0.05 and

f0 = 7.66 ≯ 3.85. Furthermore, these tests indicate that SA-BoF+ISPM improves the retrieval

performance of other mid-level features significantly. For instance, f0 = 16.64 for the pair of SA-

BoF+ISPM and SA-BoF, f0 = 28.43 for the pair of SA-BoF+ISPM and GA-BoF, and f0 = 31.96

for the pair of SA-BoF+ISPM and SS-BoF, all are larger than 3.85. Note that these results also

confirm that the performance gap between SA-BoF+ISPM and the other methods is bigger than the

one between SA-BoF and the others, e.g. f0 = 28.43 for the pair of SA-BoF+ISPM and GA-BoF,

while f0 = 7.66 for the pair of SA-BoF and GA-BoF.

Results on SHREC 2014. Following the setting of the previous experiment for the real SHREC-

2014 dataset of 400 shapes, the SS-BoF, GA-BoF, and SA-BoF data matrices are all of size 1176×
400. Hence, the resulting distance matrices is of size 400 × 400. We also compute the SA-
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BoF+ISPM for different values of the resolution parameter s, and the best results are obtained

when s = 2, resulting in a data matrix of size 2352× 400 and a distance matrix of size 400× 400.

Table 3.3 shows the retrieval results for all mid-level features. As can be seen, SA-BoF+ISPM

outperforms the other methods. For example, the mAP and DCG for SS-BoF, GA-BoF, SA-BoF,

and SA-BoF+ISPM are 30.6% and 52.4%, 32.8% and 54.1%, 34.0% and 55.0%, and 43.4% and

62.6%, respectively. This table also indicates that SA-BoF outperforms SS-BoF and GA-BoF.

Figure 3.6 compares precision-recall curves of all these mid-level features.

Table 3.3: Performance comparison results of ISPM and single partition mid-level features on the

real SHREC-2014 dataset. Boldface numbers indicate the best retrieval performance.

Retrieval Evaluation Measures (%)

Method NN FT ST E DCG mAP

SS-BoF 26.0 24.3 39.8 24.5 52.4 30.6

GA-BoF 31.8 25.6 42.5 26.2 54.1 32.8

SA-BoF 33.0 26.6 43.9 27.2 55.0 34.0

SA-BoF+ISPM 48.0 36.1 54.6 31.0 62.6 43.4

We can see the performance improvement by ISPM is the most significant compared to the

results for the other datasets. For example, NN for SA-BoF+ISPM is improved by 15%, which

is the highest improvement by ISPM among all evaluation metrics. The statistical tests provided

in Table 3.4 show that the gap between SA-BoF+ISPM and the other mid-level features is large.

For instance, f0 = 161.94 for the pair of SA-BoF+ISPM and SA-BoF, f0 = 182.33 for the pair of

SA-BoF+ISPM and GA-BoF, and f0 = 220.95 for the pair of SA-BoF+ISPM and SS-BoF all are

larger than f0.05,1,399 = 3.86. These tests also confirm that SA-BoF improved GA-BoF and SS-BoF

significantly, e.g. f0 = 11.63 > 3.86 for the pair of SA-BoF and GA-BoF, and f0 = 34.24 > 3.86

for the pair of SA-BoF and SS-BoF. Therefore, ISPM can come in handy, particularly when dealing

with challenging datasets such as the real SHREC-2014 benchmark.

For the synthetic SHREC-2014 dataset of 300 shapes, the SS-BoF, GA-BoF and SA-BoF data

matrices are all of size 1176×300. Hence, the resulting distance matrices are all of size 300×300.

We also compute the SA-BoF+ISPM for different values of the resolution parameter s, and the

best results are obtained when s = 2, yielding a data matrix of size 2352 × 300 and a distance

matrix of size 300 × 300. Table 3.5 shows the retrieval results for all mid-level features. As can

be seen, SA-BoF+ISPM outperforms the other methods. For example, the mAP and DCG for

SS-BoF, GA-BoF, SA-BoF, and SA-BoF+ISPM are 77.1% and 90.6%, 78.4% and 90.5%, 80.4%

and 91.7%, and 80.7% and 91.9%, respectively. This table also indicates that SA-BoF outperforms

SS-BoF and GA-BoF.
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Table 3.4: Significance comparison results of ISPM and single partition mid-level features in terms

of DCG on the real SHREC-2014 dataset.

Significance Tests

Comparing Methods p-value (t-test) f0 (two-way ANOVA) Significance

SA-BoF vs. GA-BoF 0.7× 10−3 11.63 high

SA-BoF vs. SS-BoF 1.01× 10−8 34.24 high

GA-BoF vs. SS-BoF 1.52× 10−6 23.83 high

SA-BoF+ISPM vs. SA-BoF 2.26× 10−31 161.94 high

SA-BoF+ISPM vs. GA-BoF 1.75× 10−34 182.33 high

SA-BoF+ISPM vs. SS-BoF 4.38× 10−40 220.95 high

Table 3.5: Performance comparison results of ISPM and single partition mid-level features on the

synthetic SHREC-2014 dataset. Boldface numbers indicate the best retrieval performance.

Retrieval Evaluation Measures (%)

Method NN FT ST E DCG mAP

SS-BoF 89.0 68.5 90.5 64.0 90.6 77.1

GA-BoF 90.3 70.6 91.6 65.4 90.5 78.4

SA-BoF 91.3 72.4 92.5 66.0 91.7 80.4

SA-BoF+ISPM 91.0 72.6 92.7 66.1 91.9 80.7

Figure 3.6 compares precision-recall curves of all these mid-level features. Although it can be

seen that SA-BoF+ISPM outperforms GA-BoF and SS-BoF significantly; it is not the case for SA-

BoF. The statistical tests provided in Table 3.6 indicate that there is no significant mean difference

between the retrieval performance of SA-BoF+ISPM and SA-BoF as p-value = 0.4441 ≮ 0.05

and f0 = 0.59 ≯ f0.05,1,399 = 3.86. This is due in part to the fact that the biharmonic distance

can measure the spatial relations quite well enough as the 3D shapes are more visible in this

dataset. Nevertheless, these statistical tests show that SA-BoF+ISPM outperforms GA-BoF and

SS-BoF significantly, e.g. f0 = 27.48 > 3.86 for the pair of SA-BoF+ISPM and GA-BoF, and

f0 = 15.14 > 3.86 for the pair of SA-BoF+ISPM and SS-BoF. Moreover, Table 3.6 shows that

SA-BoF improved GA-BoF and SS-BoF significantly, e.g. f0 = 38.92 > 3.86 for the pair of

SA-BoF and GA-BoF, and f0 = 16.71 > 3.86 for the pair of SA-BoF and SS-BoF.

In view of the superiority of SA-BoF+ISPM for all datasets, we choose it as the final mid-level

features data matrix X to feed into a deep auto-encoder in order to extract the high-level features.
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Figure 3.6: Precision-recall curves comparing the performance of ISPM and single partition mid-
level features on the synthetic SHREC-2014 (up) and the real SHREC-2014 datasets (down).

Retrieval Performance on High-Level Features

In this subsection, we evaluate the performance of the high-level features learned by performing

a deep auto-encoder on SA-BoF+ISPM that showed the highest performance on the retrieval tests
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Table 3.6: Significance comparison results of ISPM and single partition mid-level features in terms

of DCG on the synthetic SHREC-2014 dataset.

Significance Tests

Comparing Methods p-value (t-test) f0 (two-way ANOVA) Significance

SA-BoF vs. GA-BoF 1.51× 10−9 38.92 high

SA-BoF vs. SS-BoF 5.61× 10−5 16.71 high

GA-BoF vs. SS-BoF 0.8373 0.04 low

SA-BoF+ISPM vs. SA-BoF 0.4441 0.59 low

SA-BoF+ISPM vs. GA-BoF 3.00× 10−7 27.48 high

SA-BoF+ISPM vs. SS-BoF 1.00× 10−4 15.14 high

conducted in the previous subsection.

Results on SHREC 2015. For this dataset, the mid-level features data matrix X is SA-

BoF+ISPM, which is of size 2352 × 1200. Training the deep auto-encoder on the training dataset

yields learned features that form a deep learned shape descriptor (DLSD) data matrix A of size

300 × 1200. Hence, the resulting distance matrix is of size 1200 × 1200. Table 3.7 shows the

retrieval results of DLSD and several baseline methods. We also trained a shallow architecture

using the auto-encoder with only one hidden layer of size 300 that yields learned features, forming

a data matrix called shallow learned shape descriptor (SLSD) of size 300 × 1200. We include

the retrieval results for SLSD in order to evaluate the performance improvement by deep learning.

As can be seen in the table, DLSD outperforms all baseline methods on almost all the evaluation

metrics, except HAPT [73] which achieves a slightly higher NN value. Moreover, the performance

gap between DLSD and HAPT is significant in terms of the other evaluation metrics, indicating

that the proposed approach performs significantly better than the competitors.

Note that using the deep auto-encoder to extract high-level features improves the retrieval per-

formance of SA-BoF+ISPM by 10% and 4% in terms of mAP and DCG, respectively. DLSD

outperforms the shallow model SLSD, strongly suggesting that deep models can improve the re-

trieval results. Overall, DLSD is consistently the best, delivering robust retrieval performance.

Figure 3.7 compares the proposed framework with several baseline methods using precision-

recall curves on the SHREC-2015 benchmark. As can be seen, DLSD performs significantly bet-

ter than the competitors. It is important to point out that for fair comparison with SI-HKS and

WKS, which also are local descriptors, we generated their corresponding global descriptors using

our mid-level feature extraction strategy based on LLC as feature coding method and the bihar-

monic distance as the kernel for feature pooling combined with ISPM for s = 2. As illustrated

in the figure, the precision-recall graphs indicate the superiority of the proposed method. Inter-
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Table 3.7: Performance comparison results of the proposed method on the SHREC-2015 dataset.

Boldface numbers indicate the best retrieval performance.

Retrieval Evaluation Measures (%)

Method NN FT ST E DCG mAP

HAPT [73] 99.8 96.6 98.2 81.5 99.2 -

HKS-TS [2] 6.5 6.4 12.4 7.4 39.1 -

SGWS [9] 97.3 76.0 81.4 66.0 91.9 -

EDBCF [74] 97.8 79.1 88.4 70.8 94.3 -

SA-BoF+ISPM 97.4 82.8 90.6 73.1 95.4 84.2

SLSD 99.3 98.0 99.0 82.4 99.4 93.9

DLSD 99.3 98.6 99.3 82.9 99.4 94.2

estingly, Shape-DNA, which is the simplest spectral descriptor, outperforms SI-HKS. In addition,

SA-BoF+ISPM yields better retrieval results than WKS and SI-HKS.
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Figure 3.7: Precision-recall curves comparing the performance of the proposed method with other

state-of-the-art approaches on SHREC 2015.

In order to show that deep learning helps improve the retrieval performance significantly, we

run several statistical tests, and the results are listed in Table 3.8. As can be seen, both high-

level features DLSD and SLSD improved the retrieval performance significantly compared to

SA-BoF+ISPM, e.g. f0 = 246.58 > 3.85 for the pair of DLSD and SA-BoF+ISPM, and

f0 = 247.28 > 3.85 for the pair of SLSD and SA-BoF+ISPM. However, these tests demonstrate
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Table 3.8: Significance comparison results of the proposed method in terms of DCG on the

SHREC-2015 dataset.

Significance Tests

Comparing Methods p-value (t-test) f0 (two-way ANOVA) Significance

SA-BoF+ISPM vs. DLSD 1.12× 10−50 246.58 high

SA-BoF+ISPM vs. SLSD 8.42× 10−51 247.28 high

DLSD vs. SLSD 0.14 2.19 low

that high-level features extracted by a deep model (DLSD) do not outperform the ones extracted by

a shallow model (SLSD) significantly as p-value = 0.14 ≮ 0.05 and f0 = 2.19 ≯ 3.85. Therefore,

DLSD outperforms all baseline methods , with the exception of SLSD.

Results on SHREC 2014. For the real SHREC-2014 dataset, the mid-level features data matrix

X is SA-BoF+ISPM , which is of size 2352×400 and the DLSD data matrix A is of size 300×400.

Hence, the resulting distance matrices are both of size 400× 400. For the synthetic SHREC-2014

dataset, the SA-BoF+ISPM data matrix X of size 2352× 300 is the mid-level features data matrix

X, the DLSD data matrix A is of size 300 × 300, and the resulting distance matrices are both of

size of 300 × 300. We also extract SLSD by training an auto-encoder with only one hidden layer

of size 300. Tables 3.9 and 3.10 compare the retrieval results of SA-BoF+ISPM, SLSD and DLSD

with baseline methods.

Table 3.9: Performance comparison results of the proposed method on the real SHREC-2014

dataset. Boldface numbers indicate the best retrieval performance.

Retrieval Evaluation Measures (%)

Method NN FT ST E DCG mAP

HAPT [73] 84.5 53.4 68.1 35.5 79.5 63.7

HKS-TS [2] 24.5 25.9 46.1 31.4 54.8 -

SGWS [9] 31.3 20.6 32.3 19.2 48.8 25.8

EDBCF [74] 1.0 1.2 4.0 4.3 27.9 -

supDLtrain [48] 79.3 72.7 91.4 43.2 89.1 79.1

R-BiHDM [12] 68.5 54.1 74.2 38.7 78.1 64.0

3D-DL [49] 22.5 19.3 37.4 26.2 50.4 -

SA-BoF+ISPM 48.0 36.1 54.6 31.0 62.6 43.4

SLSD 84.0 69.6 81.2 38.5 86.7 77.7

DLSD 86.0 78.6 89.6 41.3 91.1 86.5

As reported in Table 3.9, the performance gap between DLSD and SA-BoF+ISPM on the chal-
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Table 3.10: Performance comparison results of the proposed method on the synthetic SHREC-2014

dataset. Boldface numbers indicate the best retrieval performance.

Retrieval Evaluation Measures (%)

Method NN FT ST E DCG mAP

HAPT [73] 97.0 73.3 92.7 65.5 93.6 81.7

HKS-TS [2] 46.7 47.6 74.3 50.4 72.9 -

SGWS [9] 99.3 83.2 97.1 70.6 97.1 90.2

EDBCF [74] 11.3 18.2 33.3 21.7 50.7 -

supDLtrain [48] 96.0 88.7 99.1 72.1 97.5 95.4

R-BiHDM [12] 79.3 57.2 76.0 53.3 83.6 64.2

3D-DL [49] 92.3 76.0 91.1 64.1 92.1 -

SA-BoF+ISPM 91.0 72.6 92.7 66.1 91.9 80.7

SLSD 97.0 93.0 98.8 72.4 98.2 96.5

DLSD 99.7 98.0 99.8 74.0 99.5 98.9

lenging, real SHREC-2014 benchmark grows by 43.1% in mAP and 28.5% in DCG, which is a

significant improvement. Likewise, SLSD is improved by 8.8% in mAP and 4.4% in DCG by

DLSD, indicating that deep learning models can further improve the retrieval results compared

to shallow ones. Moreover, Table 3.9 also indicates the proposed method improves the origi-

nal SGWS significantly e.g. it increases DCG from 48.8% to 91.1%, and mAP from 25.8% to

86.5%. The supDLtrain, which is a supervised learning method, yields slightly better ST and

E scores, while DLSD significantly outperforms supDLtrain in terms of the other scores on the

real SHREC-2014 dataset. 3DDL, which is a deep learning based approach, achieves a mediocre

retrieval performance on the real SHREC-2014 dataset.

The statistical tests provided in Table 3.11 indicate that DLSD outperforms SA-BoF+ISPM

and SLSD significantly, e.g. f0 = 781.3 > 3.85 for the pair of DLSD and SA-BoF+ISPM,

and f0 = 73 > 3.85 for the pair of DLSD and SLSD. As can be seen, the most significant

retrieval performance improvement by DLSD is occurred on this dataset, clearly indicating the

importance of using high-level features in further improving the retrieval results in dealing with a

challenging benchmark such as real SHREC 2014. From Table 3.10, we see that DLSD improves

SA-BoF+ISPM on the synthetic SHREC-2014 dataset by 18.2% and 7.6% in terms of mAP and

DCG, respectively. As the models in the synthetic dataset are more visible, the performance gap

between SLSD and DLSD is not as big as the one for the real dataset. However, the high-level

features learned by a deep architecture still achieve better results than the ones learned by a shallow

model. The statistical tests provided in Table 3.12 show that DLSD outperforms SA-BoF+ISPM

and SLSD significantly, e.g. f0 = 205.45 > 3.86 for the pair of DLSD and SA-BoF+ISPM, and
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f0 = 15.62 > 3.86 for the pair of DLSD and SLSD. Moreover, DLSD performs the best among all

the baseline methods on the synthetic SHREC-2014 benchmark.

Figure 3.8 shows the performance comparison of the proposed method with various baseline

methods using the precision-recall graphs on the real and synthetic SHREC-2014 datasets. As can

be seen in the figure, the precision-recall graphs indicate the superiority of the proposed method.

Note that even for full recall, the precision is still higher than 0.68. Shape-DNA outperforms SI-

HKS on the synthetic SHREC-2014 dataset. In addition, WKS achieves better performance than

SI-HKS on all three datasets, providing further evidence that WKS outperforms HKS as reported

in [8]. Moreover, SA-BoF+ISPM yields better retrieval results than WKS and SI-HKS on SHREC

2014, which strengthens our view that SGWS has a more discriminative ability than WKS and SI-

HKS. This is largely attributed to the fact that SGWS captures geometric information at multiple

scales. SLSD also outperforms all baseline methods and SA-BoF+ISPM, which is a powerful

testimony of higher discrimination power of high-level features learned even by a shallow model.

As illustrated in the figure, DLSD beats SLSD, which indicates the advantages of using a deep

learning approach.

Table 3.11: Significance comparison results of the proposed method in terms of DCG on the real

SHREC-2014 dataset.

Significance Tests

Comparing Methods p-value (t-test) f0 (two-way ANOVA) Significance

SA-BoF+ISPM vs. DLSD 4.84× 10−96 781.3 high

SA-BoF+ISPM vs. SLSD 2.57× 10−99 827.23 high

DLSD vs. SLSD 2.78× 10−16 73 high

The high-level features learned by our deep learning approach can be visualized using the t-

Distributed Stochastic Neighbor Embedding (t-SNE) [77], which is a dimensionality reduction

technique that is particularly well-suited for embedding high-dimensional data into a space of

Table 3.12: Significance comparison results of the proposed method in terms of DCG on the

synthetic SHREC-2014 dataset.

Significance Tests

Comparing Methods p-value (t-test) f0 (two-way ANOVA) Significance

SA-BoF+ISPM vs. DLSD 7.92× 10−36 205.45 high

SA-BoF+ISPM vs. SLSD 4.10× 10−31 170.29 high

DLSD vs. SLSD 9.66× 10−5 15.62 high
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Figure 3.8: Precision-recall curves comparing the performance of the proposed method with other

state-of-the-art approaches on the synthetic SHREC-2014 (up) and the real SHREC-2014 datasets

(down).

two or three dimensions. The two-dimensional plots (i.e. t-SNE embeddings) in Figure 4.8 were

generated by applying the t-SNE algorithm to DLSD and SA-BoF+ISPM for all datasets. The plots

in Figure 4.8 (d)-(f) show that the two-dimensional embeddings corresponding to DLSD are more

separable than the ones corresponding to SA-BoF+ISPM, as illustrated in Figure 4.8 (a)-(c).

The accuracy of the retrieval results using DLSD is further illustrated in Figures 3.10 and 3.11.
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(a) (b) (c)

(d) (e) (f)

Figure 3.9: Two-dimensional t-SNE feature visualization of SA-BoF+ISPM (top) and DLSD (bot-

tom) for the SHREC-2015 (left), synthetic SHREC-2014 (middle) and real SHREC-2014 datasets

(right).

Two queries (male and female) from the real SHREC-2014 dataset are featured in the top-most row

of these figures, followed by the top five retrieved shapes. The first query is the male model from

class 17 (M17) as shown in Figure 3.10, while the second query is a female model from class 17

(F17) as depicted in Figure 3.11. We compared out results to several baseline methods, including

SI-HKS, WKS, R-BiHDM and Shape-DNA. As can be seen in Figure 3.10, DLSD was able to

correctly retrieve all the relevant shapes from the query’s class (i.e. same shape in different poses),

while the other methods failed more than once in retrieving the relevant shapes.

Similarly, we can see in Figure 3.11 that our approach outperforms all baseline methods. This

better performance is largely attributed to the fact that deep learning models are able to ex-

tract/build better features than shallow models.

3.3.2 Runtime Analysis

In this subsection, we report the runtime performance comparison between our proposed approach

and the baseline methods both in the training and testing phases. The runtime for computing low-

and mid-level features depends in large part on the number of mesh vertices. The low-level local
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Query

M17
Top five retrieved shapes

SIHKS WKS R-BiHDM Shape-DNA SA-BoF+ISPM SLSD DLSD

M13 M7 M3 M9 M9 M17 M17

F8 M16 F6 M3 M16 M4 M17

M16 M17 M3 M4 M9 M17 M17

M4 M9 M13 M14 M17 M4 M17

M6 M19 F19 M16 M7 M17 M17

Figure 3.10: Top five retrieved shapes (ranked top-to-bottom) using SIHKS, WKS, R-BiHDM,

Shape-DNA, SA-BoF2, SLSD, and DLSD. The query shape is from the male class 17 (M17) from

the real SHREC-2014 dataset. Boldface numbers indicate the correctly retrieved shapes. M# (resp.

F#) denotes the male (resp. female) model in class #.

descriptors obtained via spectral graph wavelets take 0.133, 0.19 and 0.2 seconds on average to

be computed for each shape in the SHREC-2015, real SHREC-2014 and synthetic SHREC-2014

datasets, respectively. In the same vein, the mid-level features take 4.32, 5.26 and 5.38 seconds

on average to be computed for each shape in the SHREC-2015, real SHREC-2014 and synthetic
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Query

F17
Top five retrieved shapes

SIHKS WKS R-BiHDM Shape-DNA SA-BoF+ISPM SLSD DLSD

F1 F7 F8 F7 F17 F17 F17

F17 F17 M17 F7 F17 F17 F17

F6 F7 M18 F9 F7 F17 F17

F19 F6 M1 F9 F7 F17 F17

F14 F17 F13 F1 F15 F7 F17

Figure 3.11: Top five retrieved shapes (ranked top-to-bottom) using SIHKS, WKS, R-BiHDM,

Shape-DNA, SA-BoF2, SLSD, and DLSD. The query shape is from the female class 17 (F17)

from the real SHREC-2014 dataset. Boldface numbers indicate the correctly retrieved shapes. M#

(resp. F#) denotes the male (resp. female) model in class #.

SHREC-2014 datasets, respectively. Table 3.13 shows the runtime comparison between the pro-

posed algorithm and the baseline methods SS-BoF, GA-BoF and SA-BoF. As can been seen in the

table, the runtime results indicate that the use of the geodesic exponential kernel as a spatial rela-

tionship matrix yields the highest computational burden. It can also be seen that SA-BoF+ISPM
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outperforms SA-BoF and the other kernels, while it slightly increases the runtime. Since the same

number of local descriptors is used to construct the codebook related to each dataset, the runtimes

for the codebooks are quite similar: 51, 55 and 51 seconds for the SHREC-2015, real SHREC-2014

and synthetic SHREC-2014 datasets, respectively.

On the other hand, the training process takes between 9 and 10 hours for a deep model, and

between 2 and 3 hours for a shallow one. The test process, including distance measure, retrieval and

all scores’ computations, takes 42.80, 7.56 and 4.88 seconds for the SHREC-2015, real SHREC-

2014 and synthetic SHREC-2014 datasets, respectively. As can be seen in Table 3.13, the runtime

of performing the retrieval test on SHREC 2015 is higher than SHREC 2014 because of the large

size of the former dataset, resulting in longer computation time for the distance matrix as well as

the retrieval process.

Table 3.13: Runtime performance comparison.

Runtime

SHREC 2015 Real SHREC 2014 Synthetic SHREC 2014

SGWS 0.133 s 0.19 s 0.2 s

Codebook design 51 s 55 s 51 s

SA-BoF+ISPM 4.32 s 5.26 s 5.38 s

SA-BoF 4.28 s 5.22 s 5.22 s

GA-BoF 4.51 s 6.16 s 6.64 s

SS-BoF 4.33 s 4.89 s 4.86 s

Testing 42.80 s 7.56 s 4.88 s

Deep training 9-10 h

Shallow training 2-3 h

3.4 Conclusion

In this chapter, we proposed a multi-level feature learning paradigm for 3D shape retrieval using

deep learning in conjunction with intrinsic spatial pyramid matching. First, low-level local de-

scriptors were obtained using spectral graph wavelets. Then, mid-level features were extracted

via the bag-of-features model by aggregating local descriptors into global ones. We used locality-

constrained linear coding as a feature coding method and measured the spatial relationships be-

tween codewords using the biharmonic distance combined by intrinsic spatial pyramid matching

in a bid to generate shape-aware bag-of-features as mid-level features. Finally, high-level fea-

tures were learned using a deep auto-encoder. The proposed approach achieves significantly better

performance than state-of-the-art methods.
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4
Convolutional Shape-Aware Representation for 3D

Object Classification

Deep learning has recently emerged as one of the most popular and powerful paradigms for learn-

ing tasks. In this chapter, we present a deep learning approach to 3D shape classification using

convolutional neural networks. The proposed framework takes a multi-stage approach that first

represents each 3D shape in the dataset as a 2D image using the bag-of-features model in con-

junction with intrinsic spatial pyramid matching that leverages the spatial relationship between

features. These 2D images are then fed into a pre-trained convolutional neural network to learn

deep convolutional shape-aware descriptors from the penultimate fully-connected layer of the net-

work. Finally, a multiclass support vector machine classifier is trained on the deep descriptors,

and the classification accuracy is subsequently computed. The effectiveness of our approach is

demonstrated on three standard 3D shape benchmarks, yielding higher classification accuracy rates

compared to existing methods.

4.1 Introduction

The 3D shape classification problem is of paramount importance in many computer vision, geom-

etry processing, and computer graphics applications [19, 34, 50, 76, 78, 79]. Shape classification is

all about labeling shapes in a dataset and organizing them into a known number of classes so they

can be found quickly and efficiently, and the goal is to assign new shapes to one of these classes.

The growing interest in 3D shape classification is partly driven by the availability of large-scale

3D shape benchmarks, and also by the emergence of powerful deep learning algorithms [78].
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Deep learning has emerged in recent years as a very powerful way to hierarchically find abstract

patterns using large amounts of training data [76]. It has proved especially valuable for speech

recognition, computer vision, natural language processing, and geometry processing [18–20, 80].

The tremendous success of deep neural networks in image classification, for instance, is largely

attributed to open source software, inexpensive computing hardware, and the availability of large-

scale datasets. In particular, convolutional neural networks (CNNs) have achieved impressive clas-

sification accuracy on the challenging ImageNet dataset [30, 81, 82]. However, it is not straight-

forward to apply CNNs directly to 3D shapes, particularly mesh data that are usually modeled as

graphs. To mitigate this practical difficulty, several deep learning architectures have been recently

proposed to learn higher level representations of shapes by first representing a 3D shape as a 2D

image and then applying a deep learning model for feature learning. Kanezaki et al. [53] intro-

duced RotationNet, a CNN-based framework that uses a set of multi-view images of a 3D object as

input for 3D object classification and pose estimation. View-based methods tend to suffer from a

relatively long running time due primarily to analyzing a large amount of redundant data provided

by multi-view images. Also, a major drawback of view-based methods is their sensitivity to con-

sistent model orientations, resulting in lower performance. Bu et al. [49] proposed a deep belief

network approach for 3D shape recognition using a shape descriptor represented by a 2D image

defined in terms of the geodesic distance and eigenfunctions of the LBO. The geodesic distance,

however, has some major limitations, the most serious of which are the sensitivity to topological

noise and the lack of shape-awareness [35]. More recently, Bu et al. [55] presented a multi-modal

feature learning approach to 3D shape recognition using CNNs and convolutional deep belief net-

works. This hybrid approach combines both view-based and geometry-based feature learning in

an effort to learn a more discriminative shape descriptor by fusing different modalities.

This chapter introduces a deep convolutional shape-aware (Deep-CSA) learning framework for

3D shape classification using a pre-trained convolutional neural network. The proposed approach

is a multi-level feature learning paradigm consisting of three major steps. First, we represent each

3D shape in a dataset by a spectral graph wavelet signature, which is a local descriptor that has been

shown to effectively capture low and high frequency details of the shape [9]. Locality-constrained

linear coding (LLC) [83] is then employed as a feature coding method in the BoF model. In

contrast to other feature encoding techniques, LLC has a lower quantization error and enjoys a nice

locality properly of codewords. To take into consideration the occurrence distribution and spatial

relationship between the codewords, we use the biharmonic distance together with intrinsic spatial

pyramid matching to leverage the structural information in the LLC codes, resulting in mid-level

features that are shape-aware. The biharmonic distance strikes a balance between nearly geodesic

distances for small distances and global shape-awareness for large distances. Next, the mid-level

features are reshaped into a color image, which in turn is fed into a pre-trained CNN model in order
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to learn high-level feature descriptors from the penultimate fully-connected layer of the network.

This CNN model was trained on the challenging, large-scale ImageNet benchmark, and yields

high-quality features that facilitate transferability to other learning tasks. Finally, a multiclass

support vector machine classifier is trained on the learned descriptors, and the performance of

our approach is subsequently assessed using several evaluation metrics, including the confusion

matrix, average classification accuracy and standard deviation.

The remainder of this chapter is organized as follows. In Section 4.2, we introduce a deep

learning approach to 3D shape classification using the bag-of-features paradigm in conjunction

with intrinsic spatial pyramid matching that leverages the spatial relationship between features. We

also discuss in detail the major components of our multi-stage approach, and summarize its main

algorithmic steps. In Section 4.3, we present experimental results to demonstrate the competitive

performance of our approach on several 3D shape benchmarks. Finally, Section 4.4 concludes the

chapter.

4.2 Method

In this section, we describe the main components and algorithmic steps of the proposed multi-stage

feature learning framework for 3D shape classification. The flowchart of the learning process is

illustrated in Figure 4.1.

A 3D shape is usually modeled as a triangle mesh M whose vertices are sampled from a Rie-

mannian manifold. A triangle mesh M may be defined as a graph G = (V , E) or G = (V , T ),

where V = {v1, . . . ,vm} is the set of vertices, E = {eij} is the set of edges, and T is the set of

triangles. Each edge eij = [vi,vj] connects a pair of vertices {vi,vj} (or simply {i, j}).
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Figure 4.1: Main components of the proposed feature learning framework.

4.2.1 Convolutional Shape-Aware Features

In the third step of our framework, more discriminative 3D shape descriptors are extracted using

high-level features learned with a pre-trained CNN model on mid-level features. A CNN is a deep
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architecture that makes use of feedforward artificial neural networks in which individual neurons

are tiled in such a way that they respond to overlapping regions in the visual field [21].

A CNN is designed specifically for 2D image recognition, and is typically comprised of multiple

layers that can be broadly categorized into three main types: convolutional, pooling, and fully-

connected, as shown in Figure 4.1. A convolutional layer consists of a rectangular grid of neurons,

and applies a set of filters that process small local parts of the input where these filters are replicated

along the whole input space. A convolutional layer is usually followed by a non-linear layer or

activation function such as rectified linear unit (ReLU). A pooling layer takes small rectangular

blocks from the convolutional layer and subsamples it with average or max pooling to produce a

single output from that block. Similar to a feedforward neural network, a fully-connected layer

takes all neurons in the previous layer and connects them to each of its neurons. It should be noted

that all weights in all layers of a CNN are learned through training via backpropagation.

Unlike images, it is not straightforward to apply a deep learning architecture directly to a 3D

mesh. To circumvent this practical limitation, we reshape the κ-dimensional SA-BoF-ISPM vector

into an image of a specific size so that it can used as an input to a pre-trained CNN model. The

high-level features are then extracted from the penultimate fully-connected layer (i.e. the layer

preceding the softmax classification layer) with nL neurons, resulting in an nL-dimensional high-

level feature vector, which we refer to as a deep convolutional shape-aware (Deep-CSA) descriptor.

In other words, the Deep-CSA descriptor is the high-level representation of a 3D shape in our deep

learning framework.

4.2.2 Algorithm

Shape classification is a supervised learning method that assigns shapes in a dataset to target

classes, and the objective is to classify new shapes into one of the given classes via a machine

learning model whose parameters were optimized using a training set of data.

Our proposed algorithm consists of three main steps. In the first step, we represent each 3D

shape in a dataset by a 2D image of mid-level features that are shape-aware. More specifically,

let D be a dataset of n shapes modeled by triangle meshes M1, . . . ,Mn. Each mesh Mi in the

dataset is first represented by a p × m spectral graph wavelet signature matrix Si, where m is

the number of mesh vertices. The spectral graph wavelet signatures are then encoded via LLC,

resulting in a k ×m matrix Ui whose columns are the k-dimensional LLC codes. To capture the

spatial relations between LLC codes, we cut each shape into r intrinsic spatial partitions using the

level sets of the second eigenfunction of LBO, yielding a set of q-dimensional SA-BoF vectors

fij , where j = 1, ..., r and q = k(k + 1)/2. These r vectors are then concatenated to form the

SA-BoF-ISPM vector xi of length κ = qr.
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For simplicity, we set the resolution parameter to r = 2, i.e. the SA-BoF-ISPM vector xi be-

comes k(k+1)-dimensional. Hence, we reshape the SA-BoF-ISPM vector into a k×(k+1) matrix,

replicate it three times, and resize it into an RGB image of size 227×227×3 so that it can be used

as an input to the pre-trained VGG-F model [84]. VGG-F is a CNN model comprising of an input

layer (the input must be an image of size 227× 227× 3) and eight learnable layers, including five

convolutional layers, each followed by a rectified linear unit (ReLU) and a max pooling layer, and

then three fully-connected layers (fc1, fc2 and fc3), where fc3 is the softmax classification layer.

VGG-F was trained on the challenging ImageNet dataset, which has 1.2 million training images

categorized into 1000 classes. Moreover, the VGG-F model has successfully demonstrated to yield

high-quality generic features that not only produce state-of-the-art results on image classification,

but are also transferable to other learning tasks, and even to other modalities. So after discarding

the softmax classification layer, the pre-trained VGG-F model can be used as a feature extractor

for new datasets.

In the second step, we apply VGG-F on these n color images and fine-tune the parameters of the

network in an effort to extract high-level features from the penultimate fully-connected layer (i.e.

fc2 layer consisting of nL neurons) of the network, resulting in an nL × n matrix Z = (z1, . . . , zn)

whose columns are the Deep-CSA feature vectors (i.e. high-level feature vectors), each of which is

nL-dimensional. In the VGG-F model, the dimensions of the Deep-CSA descriptor is nL = 4096.

Finally, a one-vs-all multiclass linear SVM classifier is performed on Deep-CSA descriptors to

find the best hyperplane that separates all data points of one class from those of the other classes.

Given a training data of the form Ztrain = {(zi, yi)}, where zi ∈ RnL is the ith example (i.e. Deep-

CSA descriptor) and yi ∈ {1, . . . , C} is its ith class label, we aim at finding a learning model

that contains the optimized parameters from the SVM algorithm. Then, the trained SVM model is

applied to a test data Ztest, resulting in predicted labels ŷi of new data. These predicted labels are

subsequently compared to the labels of the test data to evaluate the classification accuracy of the

learning model.

The main algorithmic steps of our approach are summarized in Algorithm 3.

4.3 Experiments

In this section, extensive experiments are conducted to evaluate the performance of the proposed

3D shape classification approach on three standard benchmarks.

Datasets: We tested and analyzed the proposed algorithm on three standard and publicly avail-

able 3D shape benchmarks: SHREC-2015, real SHREC-2014 and synthetic SHREC-2014. The

SHREC-2015 benchmark is a dataset of 3D shapes consisting of 1200 watertight mesh models

from 50 classes [2], where each class contains 24 objects with distinct postures.
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Algorithm 3 Deep-CSA Classifier

Input: Dataset D = {M1, . . . ,Mn} of 3D shapes and number k of codebook bases.
Output: Vector ŷ containing predicted class labels.

1: for i = 1 to n do
2: Cut each shape into two intrinsic spatial partitions
3: for j = 1 to 2 do
4: Compute the q-dimensional SA-BoF vector fij for each shape partition j, where q =

k(k + 1)/2.
5: end for
6: Concatenate the SA-BoF vectors fij , and reshape them into a κ-dimensional SA-BoF-ISPM

vector xi, where κ = 2q = k(k + 1).
7: Reshape the SA-BoF-ISPM vector xi into a k × (k + 1) image, replicate it three times and

then resize it as a color image of size 227× 227× 3
8: Apply the pre-trained VGG-F model on the color image to find the nL-dimensional Deep-

CSA vector zi, where nL is the number of neurons in the penultimate fully-connected layer
of the network.

9: end for
10: Arrange all the n Deep-CSA vectors into a nL × n data matrix Z = (z1, . . . , zn)
11: Split Z into training and test sets.
12: Train a multi-class SVM classifier on the training set, and then find the predicted class labels

for the test set.

The real SHREC-2014 dataset is made up of ‘real’ data, obtained by scanning real human par-

ticipants [5], and it consists of 400 shapes, made up of 40 human subjects in 10 different poses.

Half of the human subjects are male, and half are female. The poses of each subject are built us-

ing a data-driven deformation technique, which can produce realistic deformations of articulated

meshes. The synthetic SHREC-2014 dataset was built using DAZ Studio and consists of 300 hu-

man models (adults and children) subdivided into 15 classes of 20 members each. Objects are

considered to belong to the same class if they share the same body shape.

Implementation details: All the experiments were conducted on a desktop computer with a

CPU Core i5 processor running at 3.4 GHz and 16 GB RAM, and the algorithms were implemented

in MATLAB. We used the first 201 eigenvalues and eigenvectors of the LBO to compute the low-

level descriptors (i.e. spectral graph wavelet signatures) and the biharmonic distance. The number

of vertices varies from shape to shape, but it is set to approximately 1000 and 2200 for the shapes

in SHREC-2015 and SHREC-2014, respectively. We set the number of codebook bases to k = 48,

resulting in a SA-BoF-ISPM vector of length κ = k(k + 1) = 2352. We then reshaped the SA-

BoF-ISPM vector into a 48×49 matrix, duplicated it three times, and resized it into an RGB image

of size 227×227×3. Next, we applied the pre-trained VGG-F model to these color images, and we

extracted high-level features from the penultimate fully-connected layer with nL = 4096 neurons,
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yielding a 4096×n matrix Z whose columns are the Deep-CSA descriptors, where n is the number

of shapes in the dataset.

Baseline methods: We compare the effectiveness of the proposed framework with several

state-of-the-art methods, including Shape-DNA [42], reduced biharmonic distance matrix (R-

BiHDM) [12], graph biharmonic distance map (GraphBDM) [44], scale-invariant heat kernel sig-

nature (SIHKS) [7], and wave kernel signature (WKS) [8]. We also compare our Deep-CSA ap-

proach to the shallow SA-BoF model with and without ISPM.

4.3.1 Results

The classification performance of our method is assessed by conducting a comprehensive compar-

ison with several baseline methods using various evaluation metrics.

SHREC-2015 results: For this dataset of 1200 shapes, the resulting Deep-CSA data matrix Z

is of size 4096 × 1200. We randomly selected 30% of shapes in this dataset to hold out for the

test set, and the remaining shapes for training. That is, the test data consists of 360 shapes. A

one-vs-all multiclass SVM is first trained on the Deep-CSA descriptors of the training data to learn

the model (i.e. classifier), which is subsequently used on the test data with known target values in

order to predict the class labels. Figure 4.2 displays the confusion matrix for SHREC-2015 on the

test data. This 50 × 50 confusion matrix shows how the predictions are made by the model. Its

rows correspond to the actual (true) class of the data (i.e. the labels in the data), while its columns

correspond to the predicted class (i.e. predictions made by the model). The value of each element

in the confusion matrix is the number of predictions made with the class corresponding to the

column for instances with the correct value as represented by the row. Thus, the diagonal elements

show the number of correct classifications made for each class, and the off-diagonal elements show

the errors made. As shown in Figure 4.2, the Deep-CSA approach was able to accurately classify

all shapes in the test data, except for five shapes that were misclassified by a false positive rate of

14%. For example, shape number 5 was misclassified as shape number 22, and this is largely due

to the fact that these shapes are highly similar to each other. Such a good performance strongly

suggests that Deep-CSA captures well the discriminative features of the shapes.

We compared the proposed Deep-CSA method to Shape-DNA, R-BiHDM, GraphBDM, SIHKS,

WKS, and also to the shallow SA-BoF and SA-BoF-ISPM models. It is important to point out that

for fair comparison with SI-HKS and WKS, which also are local descriptors, we generated their

corresponding global descriptors using our mid-level feature extraction strategy based on LLC as

feature coding method and the biharmonic distance as the kernel for feature pooling. Following

the common practice in classification tasks, we repeated the experimental process 10 times with

different randomly selected training and test data in an effort to obtain reliable results, and the ac-
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Figure 4.2: Confusion matrix for Deep-CSA on SHREC-2015.

Table 4.1: Classification accuracy results on SHREC-2015, real SHREC-2014 and synthetic

SHREC-2014. Boldface numbers indicate the best classification performance.

Average Accuracy (%)

Method SHREC-2015 Real SHREC-2014 Synthetic SHREC-2014

Shape-DNA [42] 70.42 ± 2.28 7.42 ± 1.59 56.78 ± 7.51

R-BiHDM [12] 74.40 ± 2.07 9.50 ± 2.73 56.11 ± 7.36

GraphBDM [44] 82.26 ± 2.29 18.75 ± 5.61 60.11 ± 3.90

SIHKS [7] 41.97 ± 1.73 4.17 ± 3.49 3.89 ± 3.28

WKS [8] 88.77 ± 0.36 16.75 ± 1.78 78.00 ± 3.58

SA-BoF 85.43 ± 1.79 38.00 ± 2.61 88.67 ± 3.04

SA-BoF-ISPM 91.91 ± 1.81 50.58 ± 3.62 88.89 ± 1.66

Deep-CSA 97.74 ± 0.59 83.50 ± 1.51 97.00 ± 1.39

curacy for each run was recorded. The classification accuracy results are summarized in Table 4.1,

which shows the average (and standard deviation) results of the baseline methods and the proposed
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framework. As can be seen, Deep-CSA outperforms all other methods including the shallow SA-

BoF-ISPM model. The average classification accuracy of Deep-CSA on the SHREC-2015 dataset

is 97.74%. The performance improvement is 5.83% over to the shallow SA-BoF-ISPM model,

which strongly suggests that deep models can substantially improve the classification results.

The superior performance of the Deep-CSA over the baselines may be attributed in large part

to the discriminative power of the high-level features learned by a deep model, coupled with the

robust shape representation provided by the shape-aware mid-level features. It is worth noting that

SA-BoF-ISPM outperforms all baseline methods, and also surpasses SA-BoF by 6.48%, indicating

the performance improvement by using ISPM in the mid-level feature extraction. This is also

confirmed by the error bars for Deep-CSA and baseline methods, as shown in Figure 4.3. As can

be seen, Deep-CSA achieves the highest accuracy rate, indicating its superiority over the baseline

methods. Moreover, it can be seen in Figure 4.3 and Table 4.1 that the standard deviations are

much smaller than the accuracy improvements, indicating that Deep-CSA is robust to random

selection of training and test data. Overall, Deep-CSA is consistently the best, delivering robust

classification results.
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Figure 4.3: Classification accuracy rates with error bars for Deep-CSA and baseline methods on

SHREC-2015.

Real SHREC-2014 results: For the real SHREC-2014 dataset of 400 shapes, we obtain a Deep-

CSA data matrix Z of size 4096 × 400. We randomly selected 30% of shapes in this dataset to

hold out for the test set, and the remaining shapes for training. That is, the test data consists of 120

shapes. First, we train a one-vs-all multiclass SVM on the training data to learn the classification
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model. Then, we use the resulting, trained model on the test data to predict the class labels.

Figure 4.4 displays the 40× 40 confusion matrix for real SHREC-2014 on the test data. Although

the real SHREC-2014 dataset is a challenging benchmark, Deep-CSA was still able to accurately

classify all shapes in the test data, except for a few shapes.
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Figure 4.4: Confusion matrix for Deep-CSA on real SHREC-2014.

Synthetic SHREC-2014 results: For the synthetic SHREC-2014 dataset of 300 shapes, the re-

sulting Deep-CSA data matrix is of size 4096× 300. We randomly selected 30% of shapes in this

dataset to hold out for the test set, and the remaining shapes for training. That is, the test data

consists of 90 shapes. Figure 4.6 displays the 15×15 confusion matrix for synthetic SHREC-2014

on the test data. As can be seen, Deep-CSA was able to accurately classify all shapes in the test

data, except for two shapes.

We repeated the experimental process 10 times with different randomly selected training and

test data in an effort to obtain reliable results, and the accuracy for each run was recorded. The

average accuracy results for the real and synthetic SHREC-2014 datasets are reported in Table 4.1.

As can be seen, Deep-CSA significantly outperforms the baseline methods with large performance
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Figure 4.5: Classification accuracy rates with error bars for Deep-CSA and baseline methods on

real SHREC-2014.

margins on the challenging, real SHREC-2014 benchmark. In part, this is due to the fact that the

pre-trained VGG-F model was trained on the large-scale ImageNet dataset, yielding robust features

that can be transferred to other learning tasks. The average classification accuracy of Deep-CSA

on the real SHREC-2014 dataset is 83.50%. The performance improvement is 32.92% compared

to the shallow SA-BoF-ISPM model, which strongly indicate the power of deep learning when

dealing with challenging datasets such as the real SHREC-2014 benchmark. Furthermore, SA-

BoF-ISPM outperforms all the baseline methods, and surpasses the shallow SA-BoF model by

a comfortable margin of 12.58%, showing that the performance gap between SA-BoF and SA-

BoF-ISPM may get even larger when dealing with challenging datasets. This is also confirmed

by the error bar plots for Deep-CSA and the baseline methods, as shown in Figure 4.5. As can

be seen, Deep-CSA gives the highest accuracy rate, which further proves its superiority over ex-

isting methods. Deep-CSA also outperforms the baseline methods on the synthetic SHREC-2014

dataset, yielding an average classification accuracy rate of 97%. The performance improvement is

8.11% compared to the shallow SA-BoF-ISPM model, which again demonstrates that deep learn-

ing models can substantially improve the classification results. However, SA-BoF-ISPM did not

significantly outperform SA-BoF for this dataset, which indicates that the biharmonic distance can

measure the spatial relations well enough for the 3D shapes in this dataset. Moreover, SA-BoF

yields better classification results than WKS and SI-HKS on SHREC 2014, further strengthening

our claim that SGWS has a more discriminative ability than WKS and SI-HKS thanks primarily
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Figure 4.6: Confusion matrix for Deep-CSA on synthetic SHREC-2014.

to the fact that SGWS captures geometric information at multiple scales. This better performance

is also evidenced by the error bar plots in Figure 4.7, where Deep-CSA achieves the best result,

indicating its superiority over the baseline methods.

Feature visualization: The high-level features learned by our deep learning approach can be

visualized using the t-Distributed Stochastic Neighbor Embedding (t-SNE) [77], which is a di-

mensionality reduction technique that is particularly well-suited for embedding high-dimensional

data into a space of two or three dimensions. The two-dimensional plots (i.e. t-SNE embeddings)

in Figure 4.8 were generated by running the t-SNE algorithm on Deep-CSA and SA-BoF-ISPM

features for the SHREC-2015, real SHREC-2014 and synthetic SHREC-2014 datasets. The plots

in Figure 4.8 show that the two-dimensional embeddings corresponding to Deep-CSA are more

separable than the ones corresponding to the shallow SA-BoF-ISPM model. Moreover, the Deep-

CSA features show very good clustering of classes. This suggests Deep-CSA is a good feature

descriptor for 3D object recognition tasks.

Discussion: It is important to point out that we also tested our Deep-CSA approach with a soft-
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Figure 4.7: Classification accuracy rates with error bars for Deep-CSA and baseline methods on

synthetic SHREC-2014.

max classifier instead of SVM, but the accuracy results were slightly lower, averaging 96.48%

for SHREC-2015, 82.75% for the real SHREC-2014, and 94.67% for the synthetic SHREC-2014.

With the use of the SVM classifier, the pre-trained VGG-F model is employed only as a feature

extractor, without any fine-tuning of the network.

As argued, the real SHREC-2014 dataset is challenging, and even human observers may not eas-

ily distinguish between some categories. Figures 4.9 and 4.10 depict visual comparisons between

Deep-CSA descriptors for sample shapes from real SHREC-2014. Figure 4.9 shows the Deep-CSA

descriptors for a male model with different poses, while Figure 4.9 displays the Deep-CSA descrip-

tors for a female model. As can be seen, Deep-CSA descriptors vary slightly within each category

for different poses. However, there is a notable difference between the Deep-CSA descriptors as-

sociated to the same poses for different human models. This further justifies the use of hierarchical

feature learning to learn robust features that can significantly improve the classification accuracy

results.

4.4 Conclusion

In this chapter, we proposed a deep convolutional shape-aware framework for 3D shape classifi-

cation using convolutional neural networks to hierarchically learn robust feature representations.

We first represented each 3D shape in the dataset by a spectral graph wavelet signature, which
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Figure 4.8: Two-dimensional t-SNE feature visualization of SA-BoF+ISPM (left column) and
Deep-CSA (right column) for SHREC-2015 (top row), real SHREC-2014 (middle row), and syn-
thetic SHREC-2014 (bottom row).

has been demonstrated to effectively capture low and high frequency details of the shape. We

then extracted mid-level features via the bag-of-features paradigm. More specifically, we used

locality-constrained linear coding as a feature coding method and measured the spatial relation-

ships between codewords via the biharmonic distance combined with intrinsic spatial pyramid

matching in a bid to generate shape-aware mid-level features. We employed a pre-trained deep

learning model to extract high-level feature representations from the penultimate fully-connected

layer of the network, resulting in Deep-CSA descriptors.

To assess the performance of our framework, we trained a multiclass support vector classifier on

the deep learned shape descriptors, and we showed via rigorous experimental evaluations on sev-

eral datasets that the proposed Deep-CSA approach outperforms existing methods by a relatively

large margin, particularly on the challenging real SHREC-2014 benchmark. We also demonstrated

through quantitative and qualitative comparisons with shallow models that using deep learning

significantly improves the classification accuracy rates.
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Figure 4.9: Deep-CSA descriptors learned by our approach for a male model with different poses.
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Figure 4.10: Deep-CSA descriptors learned by our approach for a female model with different
poses.
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Conclusions and Future Work

This thesis has presented two high-level shape descriptors namely deep SA-BoF and DLSD for the

task of 3D shape retrieval, and one high-level shape descriptor called Deep-CSA in order to classify

3D shapes. We have demonstrated through extensive experiments the much better performance of

the proposed methods in comparison with existing techniques in the literature. In Section 5.1, the

contributions made in each of the previous chapters and the concluding results drawn from the

associated research work are presented. Suggestions for future research directions related to this

thesis are also provided in Section 5.3.

5.1 Contributions of the Thesis

5.1.1 Shape-Aware Descriptor for 3D Object Retrieval

In Chapter 2, we presented a multi-level feature learning framework for 3D shape retrieval using

deep learning. First, low-level local descriptors were obtained using spectral graph wavelets. Then,

mid-level features were extracted via the bag-of-features model by aggregating local descriptors

into global ones. We used locality-constrained linear coding as a feature coding method and mea-

sured the spatial relationships between codewords using the biharmonic distance in a bid to gen-

erate shape-aware bag-of-features as mid-level features. Finally, high-level features were learned

using a deep auto-encoder. The proposed approach achieves significantly better performance than

state-of-the-art methods.

78



5.1.2 Intrinsic Spatial Pyramid Matching for 3D Shape Retrieval

In Chapter 3, we proposed a multi-level feature learning paradigm for 3D shape retrieval using

deep learning in conjunction with intrinsic spatial pyramid matching. Low-level local descriptors

were again obtained using spectral graph wavelets. Mid-level features were also extracted via the

bag-of-features model in which we employ the biharmonic distance together with intrinsic spatial

pyramid matching to even better measure the spatial relationship between the locality-constrained

linear codes. Finally, high-level features were learned using a deep auto-encoder. The proposed

approach achieves significantly better performance than state-of-the-art methods.

5.1.3 Convolutional Shape-Aware Representation for 3D Object Classification

In Chapter 4, we proposed a deep convolutional shape-aware framework for 3D shape classifi-

cation using convolutional neural networks to hierarchically learn robust feature representations.

The proposed framework took a multi-stage approach that first represents each 3D shape in the

dataset as a 2D image using the mid-level feature we extracted in Chapter 3 called SA-BoF-ISPM.

These 2D images were then fed into a pre-trained convolutional neural network to extract high-

level feature representations from the penultimate fully-connected layer of the network, resulting

in Deep-CSA descriptors. To assess the performance of our framework, we trained a multiclass

support vector classifier on the deep learned shape descriptors, and we showed via rigorous experi-

mental evaluations on several datasets that the proposed Deep-CSA approach outperforms existing

methods for 3D shape classification by a relatively large margin

5.2 Limitations

A key advantage of the proposed deep shape descriptors in this thesis is their ability to exploit dis-

criminative information by learning several hierarchical nonlinear mappings, resulting in improved

retrieval and classification performance. While deep learning models encode features more effi-

ciently than shallow models, they are, however, prone to over-fitting due largely to the added layers

of abstraction. In addition, the features learned by deep learning approaches are often not easily

interpretable as is the case with most neural networks. This lack of insight may be considered

one the main disadvantages of our deep shape descriptors compared to the traditional 3D shape

retrieval and classification methods. Another limitation of our 3D shape descriptors presented in

Chapters 2 and 3 is the computation time for learning the parameters of the model, albeit the use of

graphics processing units (GPUs) can help ward off this issue. Furthermore, we need to compute

the distances between all pairs of mid-level features concatenated based on both possible isocon-
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tours sequences (in Chapters 3 and 4) in order to find the right one that increases the computational

burden.

5.3 Future Work

Several interesting research directions, motivated by this thesis, are discussed below:

5.3.1 Apply Deep Learning Directly to 3D shapes

Unlike images, a 3D mesh cannot be fed directly into a deep learning model. To tackle this issue,

we used multi-level feature learning framework to be able to extract features learned by deep learn-

ing. Alternatively, some works proposed view-based deep learning approaches which represent a

3D shape using a set of 2D multi-view images as input for a deep model. View-based methods

tend to suffer from a relatively long running time due primarily to analyzing a large amount of

redundant data provided by multi-view images. Our multi-level feature learning approaches also

increase the computational burden by representing a 3D shape using mid-level features or a 2D ge-

ometric informative image on which a deep model can be applied. But is there any way to avoid all

these preprocessing by applying deep architectures directly to the 3D shapes? Fortunately, some

studies have proposed to apply deep models directly to graph-structured data [67, 85, 86] in very

recently. Inspired by this breakthrough, a future plan may be to develop a framework in order to

directly apply such deep architecture to 3D mesh models.

5.3.2 Pre-trained CNN Models on 3D Shapes

Although we are facing a dramatic substantial increases in the availability of 3D shape data thanks

to the recent advances in 3D scanning techniques, image domain still dominates the visual world.

This ubiquity can be best characterized when it comes to pre-trained deep models where all of them

have been trained using images as input and not 3D shapes. These models are usually trained using

tens of thousands of images in order to include all kind of patterns and textures during training so

that these pre-trained models can be used as a feature extractor later on without spending time

and effort on training. To the best of our knowledge, there is no pre-trained models trained using

3D shapes as input at the present time. We, therefore, adopted a transfer-learning strategy in

Chapter 4 to extract high-level features by applying a pre-trained CNN model trained using natural

images on mid-level features extracted from 3D shapes which were represented as 2D informative

graphical data. 3D shapes, however, are not very rich in terms of high-frequency details which

are presented via different patterns and textures in real scene images and if there is anything, very

often, those details are buried in noises. As a result, when the mid-level features which hold
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the geometric information of a 3D shape are represented as a 2D image do not show the typical

patterns and textures of natural images. In spite of the superiority of our Deep-CSA approach for

3D shape classification over state-of-the-art methods, we think this approach may be improved

by applying a pre-trained deep model trained on 3D shapes. This seems to come true especially

with recently introduced ShapeNetCore subset of ShapeNet [4] which contains about 51,300 3D

models. Another future direction, hence, is to obtain pre-trained models which are trained using

immense number of 3D shapes as input and then use them as feature extractors. As we suggested in

previous section that deep learning may be directly applied to 3D models, these pre-trained models,

therefore, may be also trained directly on 3D shapes without representing them as 2D images.

5.3.3 3D Shape Clustering

Unlike classification in which objects are assigned to predefined classes, clustering is different in

the sense that the number(and labels) of clusters or the cluster structure are not known in advance.

The core goal of 3D shape clustering is to organize a dataset of 3D shapes into homogeneous

subgroups or clusters in an unsupervised manner using a pre-defined similarity of dissimilarity

measure. These clusters are formed in such a way that objects in the same cluster are very sim-

ilar, while objects in different clusters are very dissimilar. In this thesis, we introduced several

high-level 3D shape descriptors on which either shape retrieval or classification has been tested,

yielding the much better performance compared to existing methods. Nevertheless, these 3D shape

descriptors can be used for other 3D shape analysis applications such as 3D shape clustering. The

K-means algorithm is arguably one of the most popular and effective clustering methods. In a

nutshell, K-means assigns each data point to the cluster having the nearest centroid. One future

work, therefore, is to apply the K-means algorithm on the deep SA-BoF, DLSD, and Deep-CSA

shape descriptors to assess their performance on 3D shape clustering.

5.3.4 Exploring New Deep Learning Models

Deep learning is a leading tool employed to address numerous problems in machine learning. The

reason that deep learning has been successfully applied to many fields, providing significant im-

provements is its growing advancements. Many improved deep models have been introduced in

very recent years. For instance, Variational Auto-Encoder [87] is a stochastic variational infer-

ence and learning algorithm. It uses stochastic gradient variational Bayes (SGVB) estimator to

efficiently learn the model parameters from large-scale datasets without involving in costly itera-

tive inference schemes. He et al. [88] proposed a modified deep convolutional neural network by

introducing a new pooling strategy called spatial pyramid pooling to be able to choose the size of

the input image. Diffusion-convolutional neural network (DCNN) [85] uses a diffusion process
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rather than the standard convolution operation by scanning a square of parameters across the in-

put. DCNN has been claimed to improve the accuracy, flexibility, and the speed. Replacing the

deep models used in this thesis by the new models can be another future research plan in order to

improve the performance of 3D shape retrieval and classification.

5.3.5 From Image Processing to Geometry Processing

Generally speaking, this thesis provides a bridge to borrow ideas from image processing for geom-

etry processing including wavelet framework for local shape descriptors’ design, bag-of-features

paradigm, the intrinsic global coordinate system, a pre-trained CNN model trained on images, and

shape classification and retrieval themselves. Abstractly, it generalizes methods in the Euclidean

space to the weighted graph space, resulting in a fruitful way to understand 3D shapes by extending

sophisticated methods in image domain via these tools. One future research direction, therefore,

could be to explore other tools to link these two fields such as covariance-based descriptors and

multimodal learning where both images and 3D shapes are used in learning process.
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