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Abstract

Overcomplete Dictionary and Deep Learning Approaches to Image and Video Analysis.

Kha Gia Quach, Ph.D.

Concordia University, 2017

Extracting useful information while ignoring others (e.g. noise, occlusion, lighting) is an essen-

tial and challenging data analyzing step for many computer vision tasks such as facial recognition,

scene reconstruction, event detection, image restoration, etc. Data analyzing of those tasks can be

formulated as a form of matrix decomposition or factorization to separate useful and/or fill in miss-

ing information based on sparsity and/or low-rankness of the data. There has been an increasing

number of non-convex approaches including conventional matrix norm optimizing and emerging

deep learning models. However, it is hard to optimize the ideal �0-norm or learn the deep models

directly and efficiently. Motivated from this challenging process, this thesis proposes two sets of

approaches: conventional and deep learning based.

For conventional approaches, this thesis proposes a novel online non-convex �p-norm based

Robust PCA (OLP-RPCA) approach for matrix decomposition, where 0 < p < 1. OLP-RPCA

is developed from the offline version LP-RPCA. A robust face recognition framework is also de-

veloped from Robust PCA and sparse coding approaches. More importantly, OLP-RPCA method

can achieve real-time performance on large-scale data without parallelizing or implementing on

a graphics processing unit. We mathematically and empirically show that our OLP-RPCA algo-

rithm is linear in both the sample dimension and the number of samples. The proposed OLP-RPCA

and LP-RPCA approaches are evaluated in various applications including Gaussian/non-Gaussian

image denoising, face modeling, real-time background subtraction and video inpainting and com-

pared against numerous state-of-the-art methods to demonstrate the robustness of the algorithms.
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In addition, this thesis proposes a novel Robust �p-norm Singular Value Decomposition (RP-SVD)

method for analyzing two-way functional data. The proposed RP-SVD is formulated as an �p-norm

based penalized loss minimization problem. The proposed RP-SVD method is evaluated in four

applications, i.e. noise and outlier removal, estimation of missing values, structure from motion

reconstruction and facial image reconstruction.

For deep learning based approaches, this thesis explores the idea of matrix decomposition via

Robust Deep Boltzmann Machines (RDBM), an alternative form of Robust Boltzmann Machines,

which aiming at dealing with noise and occlusion for face-related applications, particularly. This

thesis proposes an extension to texture modeling in the Deep Appearance Models (DAMs) by using

RDBM to enhance its robustness against noise and occlusion. The extended model can cope with

occlusion and extreme poses when modeling human faces in 2D image reconstruction. This thesis

also introduces new fitting algorithms with occlusion awareness through the mask obtained from

the RDBM reconstruction. The proposed approach is evaluated in various applications by using

challenging face datasets, i.e. Labeled Face Parts in the Wild (LFPW), Helen, EURECOM and AR

databases, to demonstrate its robustness and capabilities.
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Chapter 1

Introduction

Digital revolution opens a new era of digital data analysis that urges the need of efficient meth-

ods for analyzing and recovering information in large-scale datasets. Sparsity and low-rankness

are two popular properties being exploited to analyze and recover data for numerous applications

in signal processing, telecommunications, computer vision and machine learning areas. There are

many algorithms exploiting sparsity and low-rank properties of data or signals to efficiently recover

them from very few measurements [104]. Recently, matrix optimization problems, e.g. matrix

decomposition, matrix factorization, matrix completion, etc., have been using sparsity-based opti-

mization techniques developed for compressive sensing. More recently, the emerging deep learning

techniques have been developed to extract robust features from input data containing certain noise

and occlusion.

1.1 Challenges in Image and Video Analysis

This thesis considers two main tasks of Image and Video Analysis but not limited to, image

denoising and video background subtraction. Extracting and recovering information of user interest

from Image and Video poses numerous challenges. An image or a video may contain a variety of

objects, some of which may be of interest to users, while others may not be. For image denoising,

this thesis works on two types of images, pattern images and natural scene images. Pattern/texture

usually forms a certain kind of repeating structures that help to fill in missing regions/pixels in the
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images. Meanwhile, natural scene images are more complex and contain much background clutter

and/or having many unrelated contents, they even have low-resolution for web-based images. This

problem makes the pre-processing task become more difficult. For video background subtraction,

handling videos with large number of frames and processing videos in real-time are the main issues.

In addition, separating multiple foreground layers from the complex background layer makes this

task more challenging.

1.2 Research Hypothesis and the Goal of the Thesis

In the problem of matrix decomposition (additive matrix decomposition), given a matrix M ∈
Rm×n, it can be decomposed into two components, i.e. L, S ∈ Rm×n, where L is the low-rank

matrix and S is the sparse component. This problem, also known as Robust Principal Component

Analysis (RPCA) [17], [21] can be mathematically formulated as in Eqn. (1).

min
L,S

rank(L) + λ‖S‖0 s.t. L + S = M (1)

where ‖S‖0 computes the number of nonzero entries in matrix S and the parameter λ > 0 controls

the trade-off between the sparsity level and reconstruction fidelity.

Solving Eqn. (1) is difficult since it poses as a challenging NP-hard problem. Candès et al. [17]

presented the Principal Component Pursuit (PCP) method to solve Eqn. (1) using a tractable and

convex approximation to the objective function. In their method, the non-convex �0-norm and the

rank functions are approximated by a convex relaxation �1-norm and a nuclear norm respectively as

shown in Eqn. (2).

min
L,S

‖L‖∗ + λ‖S‖1 s.t. L + S = M (2)

where ‖ · ‖∗ denotes the nuclear norm, i.e. the sum of singular values of a matrix and ‖ · ‖1 denotes

the �1-norm, i.e. the sum of the absolute values of the matrix entries. In the last few years, two main

aspects in the RPCA literature have drawn huge attention: efficient incremental or online algorithms

(scalability) and non-convex surrogate for �0-norm (non-convexity).

Although there are numerous extensions of the �1-norm PCP approach [6, 82, 117, 142], a

mathematically critical difference still exists between the �0-norm and the �1-norm problems. The

�0-norm treats all nonzero coefficients in the same way while the �1-norm highly depends upon the
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magnitude of matrix elements. Thus, the solutions found in the �1-norm approximation are usually

not optimal with respect to the corresponding �0-norm problem. Some authors [16, 27, 108] suggest

that �p-norm (0 < p < 1) gives a better approximation to �0-norm than �1-norm. Although some

current �p-norm methods have been successfully presented (as shown in Table 1.1), there is no non-

convex algorithm deriving explicitly from the non-convex regularization: the �p-norm (p < 1) and

the �p-Schatten-norm (p < 1) used for the sparse and the low-rank matrix, respectively.

Furthermore, incremental algorithms, e.g. ReProCS [105], [106], [56] and OR-PCA [41], are

preferable to batch algorithms in some applications (e.g. video surveillance) due to the nature of

data generation and processing. However, most of the online algorithms are not fast enough to

analyze new coming large-scale data in real-time. Real-time implementation was made possible for

those algorithms thanks to the parallel processing power of a graphics processing unit (GPU) but not

due to an actual reduction of their complexities. Currently, there are only a few algorithms that can

handle both incremental and real-time processing (as shown in Table 1.1). Therefore, we propose a

novel real-time incremental �p-norm approach to solve Eqn. (1) efficiently. Our proposed approach

can simultaneously compute the �p-norm sparsity and provide an efficient online framework.

In addition, matrix decomposition techniques can separate unwanted information from the input

signals, particularly for facial images, we can decompose an occluded face image into occluded

regions and non-occluded face. However, it may not preserve the identity of the face well, since

conventional additive matrix decomposition only considers non-structural data in general. On the

other hand, generative models, e.g. Active Appearance Models [31], Deep Appearance Models

[100], etc., are commonly used to recover and extract features from signals, especially facial images,

but it may include noise or other unwanted information, i.e. occlusions and pose in face modeling.

Similar to conventional matrix decomposition introduced above, Robust Boltzmann Machines [119]

handle noise and occlusion using a mixture of two Gaussians: real-value and noise models.

ERoBM = EGRBM + ERBMmask
+ ENoise (3)

With this approach, we can model structural data, especially for facial images. The second part of

this thesis proposes to build a robust generative model that can separate unwanted factors as well as
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Table 1.1: Comparing the properties between our proposed online �p-norm RPCA (OLP-RPCA)
approach and other state-of-the-art low-rank minimization and RPCA methods, where � represents
unknown or not directly applicable properties.

OLP-

RPCA

RPCA
[17]

NC-
ADMM

[24]

NRPCA
[98]

IRNN
[86]

IRLS
[85]

pROST
[57]

MOG-
RPCA
[92]

Re-
ProCS
[106]

OR-
PCA
[41]

Non-convexity

Sparse matrix � � � � � � � � � �

Low-rank matrix � � � � � � � � � �

Scalability

Online � � � � � � � � � �

Real-time �(CPU) � � � � � �(GPU) � � �

recover missing regions while preserving identity information.

1.3 Overview of the Thesis

This thesis contains two main parts: 1 – conventional approaches in matrix decomposition and

factorization; 2 – deep learning approach. The first part presents a highly efficient online version of

non-convex Robust Principal Component Analysis (OLP-RPCA) for solving the problem in Eqn.

(1) approximately by using �p-norm. This online approach is developed from our derivation of the

non-convex objective function of RPCA problem (LP-RPCA). The Alternating Direction Method

of Multipliers (ADMM) is employed to find appropriate solutions to this problem. The second part

introduces an extension of Deep Appearance Models (DAM) [100], a generative model based on

Restricted Boltzmann Machines (RBM) [59], which incorporate Robust Deep Boltzmann Machines

(RDBM) to enhance the robustness of DAM to occlusion and extreme poses.

This thesis is organized as follows. In Chapter 2, it briefly introduces sparse coding, dictionary

learning and the �p-regularized problems. Then it provides an overview of matrix decomposition

and factorization approaches such as RPCA and SVD. Lastly, it reviews some basic ideas on re-

cent deep learning models such as Boltzmann Machines and its extended models. In Chapter 3, it

presents some ideas about solving the �p-norm based RPCA problem approximately and the solution

for �p-norm based SVD problem is formulated and analyzed. In addition, it introduces a robust face

recognition framework using both RPCA and dictionary learning approaches. In Chapter 4, it in-

troduces Robust Deep Appearance Models (RDAM) that can be used for eliminating occlusion and
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recovering pose in face modeling. In Chapter 5, some results of the �p-norm based RPCA and SVD

problems are presented and analyzed. In addition, we evaluate the performance of our proposed

framework RDAM in face modeling tasks using data in the wild and demonstrate its robustness in

model fitting steps. Some results of robust face recognition using low-rank and sparse representa-

tion are also presented in Chapter 5. Finally, Chapter 6 summarizes methodologies, contributions,

and results. Further possible work and challenges are discussed in Chapter 6.
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Chapter 2

Background and Literature Review

This chapter presents some backgrounds on sparse coding and dictionary learning problems.

Some literature review on common approaches for matrix decomposition and factorization: Ro-

bust Principal Component Analysis (RPCA) and Singular Value Decomposition (SVD) are also

introduced. In addition, a section on deep learning topic focusing on Boltzmann Machines will be

presented in this chapter.

2.1 From Sparse Coding to Overcomplete Dictionaries

In this section, compressive sensing is first introduced and then the �p-norm is defined and its

properties and optimization methods are analyzed. Next, other penalty functions are presented as

well. Finally, sparse representation and dictionary learning are briefly introduced.

2.1.1 Compressive Sensing

In the standard Compressive Sensing (CS) model, the core thing is to recover a signal x from

its observations y and the measurement matrix Φ defined as y = Φx + ε, where x ∈ Rn, y ∈

Rm is the observation vector, Φ ∈ Rm×n is a measurement matrix, ε ∈ Rm is a random noise

vector and m � n. This seemingly ill-posed problem, i.e. underdetermined linear systems with an

infinite number of solutions, can be solved reliably and efficiently by adding the constraint that the

initial signal x is sparse. The sparsity of the signal is measured in terms of the �0-norm ‖x‖0 :=
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card {j : xj �= 0}. Then the sparse coding problem (Section 2.1.3) solves the following non-convex

optimization problem:

min
x

‖x‖0 subject to Φx = y (4)

Unfortunately, the problem in Eqn. (4) is a NP-hard problem and it is computationally infeasible

to solve the problem in large-scale [97]. A common approach is to relax this non-convex problem

into a convex one using �1-norm. Then the desired signal x is found using the convex optimization

problem in Eqn. (5).

min
x

‖x‖1 subject to Φx = y (5)

Theoretical understanding of the conditions has been well-established for the �1-relaxation to

produce good and equivalent solutions to the �0-minimization in (4) with high probability [15].

However, there is a mathematically critical difference between the �0-norm and the �1-norm regular-

ized problems. While the �0-norm treats all nonzero coefficients in the same way, the �1-norm highly

depends upon the absolute magnitude of elements. The solutions found in the �1-norm approxima-

tion are usually sub-optimal with respect to the corresponding �0-norm problem [9] [37] [91]. Thus,

an alternative form to bridge the gap between �0 and �1-norm, which is �p-norm (0 < p < 1) has

been proposed.

min
x

‖x‖p subject to Φx = y (6)

Although the �p-norm retains the nature of the overall optimization problem as being non-

convex, numerous empirical experiments and theoretical analysis have shown that one can achieve

better solutions (i.e. sparser) with �p-norm. The remaining question is how this type of non-convex

relaxation helps solving other sparsity-related problems with large-scale data. Therefore, this thesis

aims at designing an iteratively procedure to efficiently solve �p-norm (0 < p < 1) based regular-

ization for two well-known problems: matrix decomposition and matrix factorization.
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2.1.2 �p-norm (0 < p < 1) Regularization

Definition and Properties

Given a vector x ∈ Rn, a general definition of �p-norm of x is given as

‖x‖p = (|x1|p + |x2|p + · · ·+ | xn|p)1/p (7)

We consider the unit balls in R2 as illustrated in Fig. 2.1 to show the properties of the �p-norm

with the values 0 < p < ∞. When p ≥ 1, it is a norm with the properties of a “length function”

(or a norm) which is a convex function and holds the triangle inequality. The particular cases of

p = 1, 2 and ∞ are widely used in many optimization procedures. This kind of norm regularization

often gives a non-sparse solution, except for p = 1 (�1-norm) which yields sparse results in certain

conditions.

When 0 < p < 1, it is only a quasi-norm [103], it does not satisfy the triangle inequality (the

inequality is actually reversed) but it induces a metric which is “concave”. The resulting optimiza-

tion problem involving �p-norm will be non-convex that is intractable, since it contains many strong

local minima. As p → 0, the solutions become more sparse, however, larger values of p give smooth

(or less sparse) solutions. Fig. 2.1 illustrates the reason for this. The curves in Fig. 2.1 approach

the x1, x2 axes as p → 0.

We notice that,

lim
p→0

|xi|p =
{
1, for xi �=0
0, for xi=0 (8)

Note that for p < 1, we consider here ‖ · ‖pp rather than ‖ · ‖p so that the above limit exists when

p → 0. This suggests that, by defining 00 = 0, the zero-“norm” or �0-“norm” (using the term norm

here is an abuse of terminology, as ‖ ·‖0 does not satisfy all of the properties of a norm) of x is equal

to

|x1|0 + |x2|0 + · · ·+ |xn|0 (9)

which is a special case of the generalized �p-norm. It provides a way to count the number of non-

zero entries in a vector x.
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Some variations appear in the naming of the norm: Lp-norm [45], �p-norm [70], �q optimization

[88] or p-norm [108], but those terms are referring to the same thing. To be consistent with the

existing �0, �1 and �2-norm terms, we use the term �p-norm throughout this thesis to refer �p-norm

in the case of 0 < p < 1.

Solving �0-norm minimization is a NP hard problem [97] which means that it cannot be solved

by any tractable algorithm in polynomial time (or in practice). Some works [15] showed that �0-

norm can be replaced by its nearest convex lower bound, the �1-norm, to obtain sparse results. We

consider �p minimization as a strategy lying between two extremes, the �0 and �1 minimization.

One extreme is impractical to solve but gives the optimal sparse solution, the latter can be solved

efficiently, but does not guarantee optimal solutions. Meanwhile, �p minimization has some benefits,

firstly, �p-norm approximates �0-norm better and yields more sparse results. Secondly, solving �p

minimization is as efficient as its convex vis-à-vis �1-norm.

�p-norm minimization has been used in different fields. It was first proposed in [77] to maximize

sparseness of arrays. Leahy and Jeffs [77] used an ad hoc simplex search algorithm, but it can only

converge to a local minimum. Bradley and Mangasarian [9] proposed an �p approximation method

called Feature Selection ConcaVe (FSV), which is used for feature/variable selection in machine

learning for the first time. Knight and Fu later presented some theoretical results in [72] supporting

the use of this �p-norm (also known as bridge estimators) for variable selection. Recently, other

works in compressive sensing and sparse approximation drew the attention back to this �p-norm

[22] [112]. Since then, many studies have provided some theoretical background guaranteeing the

use of �p-norm minimization in compressive sensing. We will discuss its theoretical development

in the next section.

Theoretical Analysis

In this section, we will briefly introduce all theoretical studies on �p-norm properties and benefits

when applied particularly in compressive sensing problems.

Chartrand [22] showed that using the �p-norm can give exact reconstruction with substantially

fewer measurements than using the �1 -norm. Later in [23], he demonstrated that with a fixed

number of measurements, the non-convex case can correct the corruption of a larger number of
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Figure 2.1: �p-norm with various values of p drawn in R2. When p → 0, the unit ball gets closer to
the x1 and x2 axes. [77]

entries. In terms of the restricted isometry property (RIP), Chartrand et al. [25] generalized the

result of Candès [13] to an �p variant and determined a sufficient condition for exact recovery from

perfect data via �p-minimization. An extensive study on exact recovery condition can be found in

[42].

Saab et al. [112] studied �p-minimization in terms of its stability and robustness. They stated

that �p-minimization (with p < 1) guarantees more stable and robust than �1-minimization depend-

ing on the restricted isometry constants and the noise level. Saab et al. [111] also studied the

stability of �p-minimization for the sparse and compressible signals when measurements contain

some additive noise and they gave the error bounds on the reconstruction error. Ince et al. [66] pro-

posed a sparse reconstruction method based on �p-minimization knowing part of the signal support

and they showed its stability and robustness.

Gribonval and Nielsen [55] considered a family of sparseness measures using �p-norm. With

such a sparseness measure, they provided conditions for getting a unique sparse representation of
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Table 2.1: Some popular non-convex penalty functions for sparsity regularization

Names Formulas Sub-gradients

�pp norm [108] gλ(xi) = λ |xi|p, 0 < p < 1
{∞ if xi=0,

λpx
p−1
i if xi>0

Logarithm [128] [16] gλ(xi) = λ log(|xi|+ ε), λsign(xi)
|xi|+ε

SCAD [37] gλ(xi) =

⎧⎨
⎩

λ|xi|, |xi|≤λ
−|xi|2+2γλ|xi|−λ2

2(γ−1)
, λ<|xi|≤γλ

(γ+1)λ2

2
, |xi|>γλ

{
λsign(xi), |xi|≤λ

γλsign(xi)−xi
γ−1

, λ<|xi|≤γλ

0, |xi|>γλ

MCP [136] gλ(xi) =

{
λ|xi|− |xi|

2

2γ
, |xi|≤γλ

1
2
γλ2, |xi|>γλ

{
λsign(xi)− xi

γ
, |xi|≤γλ

0, |xi|>γλ

ETP [43] gλ,γ(xi) =
λ

1−exp(−γ) (1− exp(−γ|xi|)) λ
1−exp(−γ) exp(−γ|xi|)

Capped �1 [138] gλ(xi) =
{
λ|xi|, |xi|<γ
λγ, |xi|≥γ

{
λsign(xi), |xi|<γ
[0, λ], |xi|=γ
0, |xi|≥γ

Geman’s [46] gλ(xi) =
λ|xi|
|xi|+γ

λγsign(xi)
(|xi|+γ)2

Laplace [123] gλ(xi) = λ
(
1− exp

(
− |xi|

γ

))
λ
γ exp

(
− |xi|

γ

)
Gaussian [95] gλ(x) = n−

∑n
i=1

(
exp

(
− x2i

2σ2

))
1
σ2

∑n
i=1

(
xi exp

(
− x2i

2σ2

))

a signal from a dictionary and for solving all non-convex problems. In the variable selection field,

Huang et al. [64], and Knight and Fu [72] studied asymptotic property (or the oracle property) of

non-convex penalized estimators (�p).

Other �p-like Non-convex Penalty Functions

Beside �p-norm that can approximate the �0-norm better than the �1-norm, many other non-

convex surrogate functions of �0-norm have been proposed, including �pp norm [108], Smoothly

Clipped Absolute Deviation (SCAD) [37], Logarithm [16], Minimax Concave Penalty (MCP) [136],

Exponential-Type Penalty (ETP) [43], Capped L1 [138], Geman’s [46], Laplace [123], and Gaussian

[95]. Most of them are proposed in the context of variable/feature selection where indeed emerged

the first use of non-convex penalty functions.

Rao et al. [108] proposed a slightly different version of �p-norm is called “p-norm-like diversity

measures”. We refer this as �pp norm to distinct it from conventional �p-norm. In variable selection,

another well-known non-convex penalty, the logaritm penalty, was also used for approximating the

�0-norm by Weston et al. [128]. While Candès et al. [16] proposed an optimization method for

this penalty in sparse signal approximation problems and showed its recovering capability though

experiments. In this log penalty, a small shifting quantity is added to avoid infinite value when the
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Figure 2.2: Illustration of some common convex and non-convex sparsity regularized functions [44]

parameter xi → 0 as formulated in Table 2.1. This penalty has an interesting probability interpreta-

tion based on Bayesian framework with priors being a t-Student type distribution [120].

Fan and Li [37] proposed a Smoothly Clipped Absolute Deviation (SCAD) penalty function for

variable selection. They highlighted three important properties of a good penalty function:

• sparsity – thresholding small coefficients to zero

• continuity – avoid instability in model selection

• unbiasedness – unbiased estimates for large coefficients

Based on these properties, Fan and Li [37] pointed out some drawbacks of the �1 penalty such as

creating noticeably large bias on large coefficients. Then, they proved that SCAD has all necessary

properties i.e. sparsity, continuity and unbiasedness.
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Zhang [136] proposed a Minimax Concave Penalty (MCP) that can be considered as a variant of

the SCAD penalty. The MCP has a bias controlling parameter γ, with larger values of γ, it provides

smoother and less computationally complex but larger bias and less accurate variable selection. The

MCP path converges to the �1 path as γ → ∞. In the same spirit of SCAD and MCP, Gao et al. [43]

proposed a non-convex penalty function which is called exponential-type penalty (ETP). The most

essential point of ETP is that it bridges the �0 and �1 via a positive parameter γ. When this parameter

approaches ∞ and 0, the limits of ETP are the �0 and �1 respectively. Using exponential helps to

smooth the gaps between �0 and �1 (as shown in Fig. 2.2). Related to the above MCP penalty,

Zhang [138] analyzed a multi-stage convex relaxation procedure with Capped-�1 regularization.

This procedure solved a non-convex problem using multiple stage refining strategy.

Geman and Yang [46] applied a new sparsity regularization, which is even and non-decreasing

on [0,∞], to a derivative operator of an image. Trzasko and Manduca [123] presented a homotopic

approximation of the �0-minimization problem and applied it to recover undersampled magnetic res-

onance images (MRI). Their proposed method only guaranteed to find a local minimum, however, it

allows accurate image reconstructions at higher undersampling rates than via �1-minimization. Mo-

himani [95] introduced a continous Gaussian-based penalty function. This function has a parameter

σ (variance of Gaussian) controlling the smoothness of the �0-norm approximation. A larger value

of σ gives smoother function gσ but far away from �0-norm; and a smaller value of σ brings gσ

closer to �0-norm behavior.

These non-convex penalties can be used to approximate the rank function of a matrix. For

examples, the Schatten p-norm [94], truncated nuclear norm [63] and log-det [39] [34].

�p-norm Optimization Algorithms

In this section, some optimization methods for solving �p-norm related objective functions are

reviewed. There are three main groups: iteratively reweighted approaches, DC programming and

alternation approach.

Iteratively Reweighted Approaches All methods in this category uses an iteratively update pro-

cedure which involves updating the solution and the weight vector/matrix at each iteration.
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FOcal Underdetermined System Solver (FOCUSS) The FOcal Underdetermined System

Solver (FOCUSS) was first named as Iterative Weighted Norm Minimization Algorithm [50] since

it uses an iteratively update procedure for the weight matrix. It can be considered as a premier

method in the group of iteratively reweighted approaches which we will introduce more details in

this section.

Gorodnitsky et al. [52] used the FOCUSS algorithm to find a sparse solution for the Magne-

toencephalography (MEG) problem, a reconstruction of the brain imaging. A detailed analysis,

generalized extension and theoretical foundation of the algorithm were given in [107] and [51].

In the sense of signal processing, the MEG reconstruction problem can be modeled as a linear

inverse problem with an under-determined linear system of equations,

y ≈ Ax (10)

where A ∈ Rm×n is a given matrix derived from the prior knowledge of the problem. y ∈ Rm×1

is the observed measurements. It is an under-determined problem (m � n) because the imaging

resolution is much higher than the number of measurements. As a result, the number of solutions is

infinite but sparse solutions are more suitable for the MEG problem because of the local nature of

the activity in the brain. This is a similar idea to compressive sensing which having the same goal

of finding sparse solutions from under-determined linear systems.

The basic FOCUSS algorithm [50] is briefly described here. In the noiseless case, observed

signal y can be exactly represented by few columns of the given matrix A. The minimum norm

(mn) or the minimum energy solution is given by

xmn = A+y (11)

where “+” denotes the Moore-Penrose pseudo-inverse. In fact, the solution xmn is the vector having

the smallest �2-norm and satisfying (10). As the result of norm minimization, the energy of xmn is

spread out all elements, however, we attempt to find the solution that has few k non-zero entries.

The sparse solution to (10) is needed for some problems such as sinusoid frequency estimation,

power spectrum estimation, Direction of Arrival (DOA) estimation, etc. [50].
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In general, the goal of the algorithm is to find the sparse solution of the following weighted

�2-norm optimization problem:

minx‖W−1x‖2 s.t. y = Ax (12)

and it is equivalent to finding x = Wq , where q is the solution to the problem:

minq‖q‖2 s.t. y = WAq (13)

The weight matrix W is adaptively estimated. With an initial solution x0, the iterations of the

basic FOCUSS algorithm are given by

Wk = diag(xk)

qk+1 = (A Wk)
+y

xk+1 = Wkqk+1

(14)

The above mentioned basic FOCUSS algorithm can be applied when the matrix A is known or

given but a FOCUSS-based dictionary learning algorithm was also proposed for the case of matrix

A being unknown. The dictionary learning algorithm was described in details in [74]. We briefly

introduce the algorithm here.

Given observed samples Y = (y1, · · · , yN ), we can find the solution A and X = (x1, · · · , xN )

using maximum a posteriori (MAP) estimation:

(ÂMAP , X̂MAP ) = argmax
A,X

P (A,X |Y) (15)
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We have,

P (A,X|Y) = P (Y|A,X)P (A,X)/P (Y) = cX (A ∈ (A))P (Y|A,X)P (X)/P (Y)

=
cX (A ∈ (A))

P (Y)

N∏
k=1

P (yk|A, xk)Pp(xk)

=
cX (A ∈ (A))

P (Y)

N∏
k=1

Pq(y − Axk)Pp(xk)

(16)

We assume that the distributions of the additive noise ν and the signal x are Gaussian with the

following form for Pp(x)

Pp(x) = Z−1
p e−γpdp(x), Zp =

∫
e−γpdp(x)dx (17)

where the function dp(x) is a �p-norm-like function and defined as:

dp(x) = ‖x‖pp =
n∑

i=1

|xi|p, 0 ≤ p ≤ 1 (18)

Similarly, we have another form for Pq(ν) with q = 2 and dp(ν) = ‖ν‖22. Given observed

vector y, we want to solve for y = Ax + v by minimizing the following:

(A, x) = argmin
A, X

〈dq(y − Ax) + λdp(x)〉 (19)

or equivalently,

(A, x) = argmin
A, X

〈
‖y − Ax‖22 + λ‖x‖pp

〉
(20)

where λ is the regularization parameter.

The algorithm contains one more major step, dictionary learning using gradient descent, to-

gether with sparse vector estimation step.

Sparse vector x selection step at each iteration k is given by,

Wk = diag(|xi|2−p)

xk = WkÂ
T
(
λkI + ÂWkÂ

T
)

yk

(21)
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The matrix A is updated by,

Σyx̂ =
1

N

∑
k

ykx̂Tk

Σx̂x̂ =
1

N

∑
k

x̂kx̂Tk

δÂ = ÂΣx̂x̂ − Σyx̂

Â ← Â− γ
(
δÂ− trace(ÂT δÂ)Â

)
(22)

where γ > 0 is a constant controlling the learning rate.

An improved FOCUSS-based dictionary learning algorithm was proposed in [96] on three as-

pects: adjusting the regularization parameter, normalizing learned matrix Â and avoiding local op-

tima. First, the authors suggested a heuristic method to update regularization parameter λk for each

observed vector yk to improve the quality of the solution. Second, the matrix Â is normalized to

‖Â‖F = 1 avoiding problems with large magnitude elements. Last but not least, the authors pro-

posed to reinitialize xk when the sparsity is too low. Since the optimization problem (20) is concave

(p < 1), the FOCUSS algorithm may converge to a local minima but a good initialization can bring

it to the global solution [96].

Iteratively Reweighted Least Square (IRLS) Chartrand et al. [27] considered iteratively

reweighted least squares (IRLS) approach for solving the following problem for the case of 0 <

p < 1

min
x

‖x‖p subject to Φx = y (23)

They proposed a regularized strategy for IRLS to improve sparsity of the recovery while FOCUSS

algorithm, mentioned earlier, can be considered as an unregularized version of IRLS.

Similar to (20) and (21), the �p objective function in (23) is approximated by a “weighted”

�2-norm. Thus, we have,

min
x

N∑
i=1

wix
2
i , s.t. y = Φx, (24)

As (24) is a first-order approximation to the �p objective function, the weights are updated from
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the previous x(k−1) iteration as wi = |x(n−1)
i |p−2 and the new iteration x(k) is given as:

x(k) = QkΦ
T (ΦQkΦ

T )−1y, (25)

where Qk is a diagonal matrix with entries 1/wi = |x(k−1)
i |2−p.

Chartrand et al. [27] suggested to regularize the weights by incorporating a small constant

ε ∈ (0, 1) as

wi =

((
x
(k−1)
i

)2
+ ε

)p/2−1

(26)

As shown in [27], this ε-regularized IRLS algorithm can converge to the global minimum of

(23). For ε-regularized IRLS, ε is initialized to 1 and x(0) initialized to the �2-norm minimizing

solution of y = Φx. Starting with such a large ε would eliminate unwanted local minima and brings

x to a nearby point where possibly contains the global solution. Then decreasing ε draws x toward

the global solution and eventually converges to it as ε → 0.

Iteratively Reweighted �1 (IRL1) Candès et al. [16] proposed an iteratively reweighted �1

minimization algorithm. The “weighted” �1 minimization problem is defined as,

min
x

N∑
i=1

wi|xi|, s.t. y = Φx, (27)

where wi are positive weights.

Similar to its “weighted” �2 counterpart, this problem can be solved using an iterative algorithm

to estimate x and then redefine the weights wi. The algorithm is as follows:

(1) Initialize k = 0, w
(0)
i = 1, i = 1, · · · , N

(2) Solve weighted �1-norm minimization problem in Eqn. (27) using soft-thresholding

(3) Update the weights w(k+1)
ij for each element of x

w
(k)
i =

1

(|x(k)i |+ ε)
(28)

18



(4) Increase k and go to step (2) until convergence or reaching a specified maximum number of

iterations kmax.

Candès et al. [16] established a connection between the log-sum penalty function and the

reweighted �1 minimization in which the reweighted �1 minimization gives the solution to the log-

sum problem

min
x

N∑
i=1

log(|xi|+ ε) s.t. y = Φx (29)

Since the log-sum penalty function can encourage more sparseness than �1 norm, reweighted �1

minimization can improve the recovery of sparse signals.

Like other iteratively reweighted approaches, a good initialization for the algorithm is important.

Therefore, the authors suggested to use the unweighted �1 solution as a starting point.

Iteratively Reweighted Nuclear Norm (IRNN) Lu et al. [84] proposed an Iteratively Reweighted

Nuclear Norm (IRNN) algorithm to solve the general low-rank minimization problem in Eqn. (30)

which is non-convex and non-smooth.

min
X

λ

r∑
i=1

g(σi(X)) + f(X) (30)

where σ(X) is the vector of singular values of X ∈ Rm×n, g denotes the regularized function and f

is the constrained or loss function. This problem can be considered as a general rank regularization

problem.

Based on the definition and properties of the supergradient of a concave function gλ [84], we

have

gλ(σi) ≤ gλ(σ
k
i ) + wk

i (σi − σk
i ) (31)

where

wk
i ∈ ∂gλ(σ

k
i ) (32)

and σi = σi(X), σk
i = σi(X

k). Since the supergradient of g is monotonically decreasing on [0,∞),

we also have

0 ≤ wk
1 ≤ wk

2 ≤ · · · ≤ wk
r (33)
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Using Eqn. (31), we minimize the following relaxed problem instead:

Xk+1 = argmin
X

r∑
i=1

gλ(σ
k
i ) + wk

i (σi − σk
i ) + f(X)

= argmin
X

m∑
i=1

wk
i σi + f(X)

(34)

Eqn. (34) gives us the weighted nuclear norm problem which is an extension of the previously

mentioned weighted �1-norm and weighted least square problems. Due to the non-convex penalty

function gλ, solving the weighted nuclear norm problem, a non-convex optimization problem, is

much more difficult than the weighted �1-norm problem. However, Lu et al. [84] proposed an

approach to go around this non-convex problem by linearizing f(X) at Xk:

f(X) ≈ f(Xk) +
〈
∇f(Xk),X − Xk

〉
+

μ

2
‖X − Xk‖2F (35)

where μ > L(f). Then, replacing this f(X) in Eqn. (34) with the formula in Eqn. (35), we turn it

into another problem having a closed form solution.

Xk+1 = argmin
X

m∑
i=1

wk
i σi + f(Xk) +

〈
∇f(Xk),X − Xk

〉
+

μ

2
‖X − Xk‖2F

= argmin
X

m∑
i=1

wk
i σi +

μ

2

∥∥∥∥X −
(

Xk − 1

μ
∇f(Xk)

)∥∥∥∥
2

F

(36)

The solution is then obtained by using weighted singular value thresholding.

In general, the algorithm iteratively updates wk
i , i = 1, · · · , r using Eqn. (32) and Xk+1 using

Eqn. (36). The whole procedure is as follows:

(1) Initialize k = 0,X(0), w
(0)
i = 1, i = 1, · · · , r

(2) Solve weighted nuclear norm minimization problem in Eqn. (36) using weighted singular

value thresholding

X(k+1) = USλw(Σ)V
T (37)

where Y =
(

Xk − 1
μ∇f(Xk)

)
and UΣVT is the SVD of Y. The shrinkage operator Sλw(Σ) =

diag
{
(Σii − λwi)+

}
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(3) Update the weights w(k+1)
i as

wk+1
i ∈ ∂gλ(σi(X

k+1)) (38)

(4) Increase k and go to step (2) until convergence or reaching a specified maximum iterations

kmax.

DC Programming/Multi-stage Convex Relaxation Gasso et al. [44] proposed to use a well-

known procedure in non-convex optimization, called Difference of Convex functions (DC) pro-

gramming, to solve the general problem (39).

x̂ � argmin
x

‖y − Φx‖22 + λ

n∑
i=1

g(xi) (39)

In practical term, they considered an equivalent variation of this problem by splitting xi into two

positive terms x+i and x−i so that xi = x+i − x−i

min
x+,x−∈Rn

1

2
‖y − Φ(x+ − x−)‖2 +

n∑
i=1

gλ(x
+
i + x−i )

s.t. x+i ≥ 0, x−i ≥ 0, ∀j = 1, · · · , n

(40)

where the vector x+ and x− contain elements x+i and x−i respectively.

We will briefly introduce the basic idea of DC programming. For more details about the algo-

rithm, theory and proof, one can refer [62] for a full review on DC programming. DC algorithm

considers solving the following general minimization problem:

min
x∈Rn

J(x) (41)

where J(.) is a non-convex (may be non-smooth) objective function. This function can be split into

two functions such that J(x) = J1(x)− J2(x). Then the minimization problem becomes as,

min
x∈Rn

J1(x)− J2(x) (42)
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where J1(·) and J2(·) are convex functions.

Then we have the dual of the above minimization problem given as,

min
z∈Rn

J∗
2 (z)− J∗

1 (z) (43)

where J∗
1 (·) and J∗

2 (·) are the conjugate function of J1(·) and J2(·), respectively. The conjugate

function of Jk(·), k = {1, 2} is defined as,

J∗
k (z) = sup

x∈Rn
{〈x, z〉 − Jk(x)} (44)

The DC programming then iteratively solves the primal (Eqn. (42)) and the dual (Eqn. (43)) prob-

lems. The simple version of DC algorithm is summarized as follows [44].

(1) Initialize estimation x0 ∈ dom J1 with dom J1 =
{

x ∈ Rd : J1(x) < ∞
}

(2) Solve dual problem to find zk ∈ ∂J2(x
t)

(3) Solve primal problem to find xk+1 ∈ ∂J∗
1 (z

t)

(4) Increase k and go to step 2 until convergence or reaching a specified maximum iterations

kmax.

To apply DC programming to the general non-convex optimization problem (40), Gasso et al.

[44] decomposed the regularization gλ(·) as the difference of two convex functions,

gλ(.) = gvex(.)− h(.) (45)

In this way, the objective function of the problem (40) will split into the difference of two

functions: J1 = 1
2‖y − Φ(x+ − x−)‖2 +

∑n
i=1 gvex(x

+
i + x−i ) and J2 =

∑n
i=1 h(x

+
i + x−i )

For non-convex penalty functions gλ(·), the decomposition still holds if gvex(·) and h(·) are con-

vex functions. Therefore, Gasso et al. [44] defined those functions explicitly based on �1 function
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as follows,

gvex(·) = λ| · |

h(·) = λ| · | − gλ(·)
(46)

Finally, at each iteration k, the DC algorithm minimizes the following problem,

min
x+,x−

1

2
‖y − Φ(x+ − x−)‖2 +

n∑
i=1

λ(x+i + x−i )−
n∑

i=1

zki (x
+
i + x−i )

s.t. x+i ≥ 0, x−i ≥ 0, ∀j = 1, · · · , d

(47)

where zki ∈ ∂h(x+k
i + x−k

i ). Moreover, we can compute the sub-gradient of h at any xi value for

each iteration.

Some penalty functions are differentiable such as SCAD then we can take the derivative. How-

ever, others are non-differentiable then we can apply some tricks, for examples, adding an ε term to

avoid the zero point (for log penalty) or setting z as any element of the sub-gradient (for MCP). For

convenience, we list all the sub-gradients of various penalties in Table 2.1.

Alternating Direction Method of Multipliers (ADMM) In general, the alternating direction

method of multipliers (ADMM) decomposes a complex problem, having two or more variables,

into smaller subproblems (usually easier) and solves them iteratively.

Chartrand and Wohlberg [26] proposed to use an efficient ADMM algorithm to solve the com-

pressive sensing problem which encourages both sparsity and group sparsity of the signals. This

sparse and group-sparse compressive sensing model is formulated as

min
x

α‖x‖1 + β
M∑
i=1

‖xi‖2 +
1

2
‖Φx − y‖22 (48)

An auxiliary variable W is introduced to split the main problem into solvable subproblems.

Using the method of multipliers, a dual variable (or Lagrange multiplier) Λ is also added to enforce
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the equality constraint for W and X:

min
W, X

α‖W‖1 + β
M∑
i=1

‖Wi‖2 +
1

2
‖W − X − Λ‖2F +

1

2
‖ΦX − Y‖2F (49)

With fixed W, solving X subproblem is quadratic which we have a closed form solution:

(I +ΦTΦ)X = W +ΦT Y (50)

With fixed X, we solve the following problem for W using soft thresholding.

min
W

α‖W‖1 + β

M∑
i=1

‖Wi‖2 +
1

2
‖W − X‖2F (51)

The solution of the above problem is given as

Wi = S1(s1(X
i, α), β) (52)

where Wi are rows of W. s1 and S1 are shrinkage mappings computed as s1(x, α)i =
xi
|xi| max {0, |xi| − α}

and S1(x, α) =
x

‖x‖2 max {0, ‖x‖2 − α}, respectively

In addition to the convex approach, Chartrand and and Wohlberg [26] generalized the problem

to take advantage of non-convex optimization. They formulate

min
W, X

αGα,p(W) + β

M∑
i=1

gβ,q(‖Wi‖2) +
1

2
‖W − X − Λ‖2F +

1

2
‖ΦX − Y‖2F (53)

where the generalize non-convex functions Gα,p and gβ,p enforcing sparsity and group-sparsity are

defined based on shrinkage operators as follows:

arg min
w∈Rn

αG(w) +
1

2
‖w − x‖22 = Sp(x, α) (54)

with G(w) =
∑N

i=1 g(wi) for some scalar function g. The function g is defined as:

arg min
w∈Rn

αg(‖w‖2) +
1

2
‖w − x‖22 = Sp(x, α) (55)
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2.1.3 Sparse Representation and Dictionary Learning

In this section, we first briefly introduce the basic idea of sparse representation and how it is

applied to classification problems. Then the idea leading to dictionary learning from sparse coding

and dictionary learning algorithms will be presented.

Sparse Representation/Coding

The idea of sparse coding is that a signal can be represented as a linear combination of basis

elements. The basis can be either orthogonal or bi-orthogonal which is computed by taking inner

products of the signals with the basis but those bases are limited in representing complex signal.

Therefore, overcomplete dictionaries which has more elements (or atoms) than the dimension of the

signal, were proposed as the basis.

Let’s denotes the overcomplete dictionary as B = [b1, · · ·bl] ∈ Rn×l, where l ≥ n and each

column of B is the dictionary’s atoms. To find the sparse coding of x ∈ Rn using atoms of B, one

can solve the following optimization problem:

α̂ = argmin
α′

‖α′‖0 subject to x = Bα′ (56)

Since we want to enforce sparsity of the representation, ‖α‖0 is used to find the sparsest solution

to the underdetermined linear system of equations x = Bα. However, similar to CS, the problem in

Eqn. (56) is an NP-hard problem and it cannot be solved in polynomial time. Then, one can solve

the following �1-minimization problem instead

α̂ = argmin
α′

‖α′‖1 subject to x = Bα′ (57)

The problem in Eq. (57) is the closest convex optimization problem in Eq. (56). This problem

(57) usually referred as Basis Pursuit. When B has incoherent columns (i.e. having uncorrelated

columns or being close to orthogonal), the solutions of (57) is unique and equal to a sufficiently

sparse solution of (56).
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Sparse Representation-based Classification

This sub-section briefly describes how sparse representation is used for recognition/classification.

Given a set of N training images for each of L classes, we can extract M -dimensional feature vec-

tors from these images. Let’s denotes Bk = [xk1, · · · ,xkj , · · · ,xkN ] as an M × N matrix of

feature vectors belong to the same k-th class, where xkj denote the features from the j-th training

image of the k-th class. Combining training samples from all classes to form a big matrix B as

B = [B1, · · · ,BL] ∈ RM×(N×L)

= [x11, · · · ,x1N |x21, · · · ,x2N | · · · · · · |xL1, · · · ,xLN ]

(58)

A testing image y ∈ RM of unknown class can be represented as a linear combination of the

training vector as

y =

L∑
i=1

M∑
j=1

αijxij = Bα (59)

where the coefficients α = [α11, · · · , α1N |α21, · · · , α2N | · · · · · · |αL1, · · · , αLN ]T with αij ∈ R. T

denotes the transpose operation.

Given enough training samples of each class, any new testing image y ∈ RM from the same

class k can be approximated by the training samples from that class. This means that most of the

coefficients are close to zero except the ones associated with the same class k. Thus, α is a sparse

vector and it can be computed by solving the following optimization problem:

α̂ = argmin
α′

‖α′‖1 subject to y = Bα′ (60)

or approximate α with Basis Pursuit DeNoising (BPDN)

α̂ = argmin
α′

‖α′‖1 subject to ‖y −Bα′‖2 ≤ ε (61)

when the observations are noisy as y = Bα′ + η. Based on the fact that the coefficients associated

with a single class k will have high values comparing to other parts of the estimated coefficients, α̂.

Thus, we set all the coefficients not associated with class k to zero to compute the residual error of
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class k as

rk(y) = ‖y −Bδk(α̂)‖ (62)

where δk(α̂) = [0 · · · 0 · · ·αk · · · 0 · · · 0]T with αj = 0; ∀j �= k Then, class(y) = argmin rk(y).

The testing image y is represented by a linear combination of all images in the dictionary B. The

purpose of computing residuals is to find the class k having the most influence in the sparse rep-

resentation. The smaller the residual the more influence class k has on the outcome, so it is more

likely that y has label of class k.

Dictionary Learning

The main idea is to learn a dictionary directly from the data instead of using a pre-determined

dictionary B. This usually gives better representation and provides improved results in many appli-

cations, e.g. image restoration and classification. This section will briefly present some well-known

algorithms for dictionary learning.

There have been several dictionary learning algorithms, such as the Method of Optimal Direc-

tions (MOD) [36] and the K-SVD algorithm [1]. Given a set of examples X = [x1, · · · ,xn], the

K-SVD and MOD algorithms aim at finding a dictionary B and a sparse coefficient matrix Γ that

minimize the following error,

(B̂, Γ̂) = arg min
Bi,Γi

‖X−BΓ‖2F subject to ‖γi‖0 ≤ T0 (63)

where γi is the i-th column of Γ and T0 denotes level of sparsity. The main iteration of K-SVD

and MOD algorithms contains two stages: sparse coding and dictionary updating. First, a column-

normalized dictionary B is initialized, then during sparse coding step the representation vector γi

for each sample xi is computed while fixing B,

min
γi

‖xi −Bγi‖22 s.t. ‖γi‖0 ≤ T0, ∀i = 1, · · · , n (64)

Any sparse coding algorithms such as Orthogonal Matching Pursuit (OMP) [122] and Basis Pursuit

(BP) [29] can be used to solve the above problem. During dictionary update step, MOD algorithm

27



updates all the atoms simultaneously by optimizing the Eqn. (65) with a closed form solution in

Eqn. (66).

argmin
B

‖X−BΓ‖2F (65)

with the solution as

B = XΓT (ΓΓT )−1 (66)

Meanwhile K-SVD performs dictionary updating atom-by-atom efficiently as in Eqn. (67).

‖X−BΓ‖2F = ‖X−
∑
j

bjγ
T
j ‖22 = ‖

⎛
⎝X−

∑
j �=j0

bjγ
T
j

⎞
⎠− bj0γ

T
j0‖

2
2 (67)

where γTj is the jth row of Γ. To update bj0 and γTj0 , we can pre-compute the first term
(
X−

∑
j �=j0

bjγ
T
j

)
in the above equation. The optimal solution bj0 and γTj0 are found by an SVD decomposition. The

convergence of the K-SVD algorithm is speedup significantly since only a subset of the columns of

the first term is taken into account.

2.1.4 Robust PCA: A Review

In this section we will take a look at an extension of PCA to a problem which is closely related

to low-rank approximation problem. Then, we will review some recent non-convex and online

approaches as applied to Robust PCA.

Ideas of RPCA

The basic idea of PCA is that given data points as column vectors of a matrix M ∈ Rn1×n2 ,

since data have low intrinsic dimensionality, the matrix should have low-rank

M = L0 + N0 (68)

Where L0 is low rank and N0 is small noise matrix.

Meanwhile the idea of Robust PCA [17] is that given a data matrix M, we know that it can be
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decomposed as

M = L0 + S0 (69)

Where L0 is low rank and S0 is sparse. From the above definitions, we know that both PCA and

robust PCA share a common idea of separation problem which decompose a data matrix M into a

low-rank matrix plus another matrix. Mathematically, PCA is formulated as M = L0+N0 whereas

robust PCA is defined as M = L0 + S0. They both have the low-rank matrix but the only difference

is the second term. Actually, because the nature of the data matrix M in PCA and robust PCA are

dissimilar, one is normal matrix while the other one is highly corrupted matrix. Therefore, their

main objectives are different, the goal of PCA is to find best rank-k approximation of M while

robust PCA focus on recovering from M the best low-rank matrix L0 and the sparse component

with entries having arbitrarily large magnitude.

Solution for Robust PCA: we know that we need to decompose the matrix M intro the low

rank and the sparse component. It seems impossible to solve if we think of the number of unknowns

in L0 and S0 comparing with the given measurements in M. However, it is surprising that this

decomposition problem can be solved simply by tractable convex optimization. Using the Principal

Component Pursuit (PCP) [17] a convex optimization problem, to solve

min
L,S

‖L‖∗ + λ‖S‖1 s.t. L + S = M (70)

With variables L, S ∈ Rn1×n2 and data M ∈ Rn1×n2 . Let ‖L‖� =
∑r

i=1 σi(L) is the nuclear norm

and ‖S‖1 =
∑

i,j |Si,j | is the �1-norm of matrix S seen as a vector. This optimization procedure

guaranteed to work in most case. Although the solution is not beautiful as PCA since we have to use

an optimization process, we have some efficient and scalable algorithms that can solve this problem

with a reasonable cost compare with the standard PCA.

Separation of Low-rank and sparse component : although having a solution to the problem,

there are something missing about the separation of low-rank and sparse component. The remaining

question is how to identify the low-rank and the sparse components. In other words, it only makes

sense when the role of each matrix is clear and the matrix M can perfectly separate as the low-

rank and the sparse components. Therefore, the solution is only meaningful when the low-rank
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component is not sparse, i.e. its singular vectors are reasonably spread out, and the sparse matrix

S0 does not have low-rank property, i.e. having uniform distributed sparsity pattern. As shown in

[17], PCP perfectly recovers the low-rank and the sparse components, if the two following condition

satisfy:

(1) Rank of L0 not too large: ≤ O( n
(logn)2

)

(2) S0 is reasonably sparse: ≤ O(n2) non-zero entries

Non-convex approaches

Non-convex regularization functions can be applied to both low-rank and sparse optimization

problems. Using this idea, a general Robust PCA objective function is presented in [24]. The opti-

mization problem is solved using the ADMM procedure. The method is called non-convex ADMM

(NCADMM). However, the non-convex regularization function g was not explicitly defined since it

was constructed from a generalization of a shrinkage operation (i.e. indirect approach). In this chap-

ter, we formulated a solution of an explicit non-convex function �p-norm (i.e. direct approach). Both

the solution and the non-convex penalty function can be written explicitly. In this way, we could

build an online framework efficiently and our method could also be used to solve other non-convex

penalty functions. Yang et al. [133] also adapted the ADMM on non-convex low-rank and sparse

problems where the objective function can be nonconvex, nonsmooth, or both. A more general op-

timization problem was considered in [133] with different choice of inducing low-rank and sparsity

but only the sparsity function is possibly non-convex. More recently, Tran et al. [121] developed

a generic Gauss-Newton framework which uses the ADMM for solving a class of nonconvex opti-

mization problems involving low-rank matrix variables. This framework can handle general smooth

non-convex cost function via its surrogate.

Sun et al. [116] proposed to use the capped trace norm and the capped �1-norm as surrogates

of the rank and the �0-norm in the RPCA problem. To solve this non-convex RPCA formulation,

they presented two algorithms: a Difference of Convex functions (DC) based method and a greedy-

based approach on sub-problems. Recently, Netrapalli et al. [98] presented a non-convex method for

Robust PCA problem (NRPCA). In this approach, the low-rank matrix L and sparse matrix S were
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obtained by alternating between the rank-k projection of the residuals M− S and hard thresholding

technique on M − L. This procedure runs until the matrix L reaches the target rank r or if the

remaining part (i.e. singular values) has small norm, in other words, the desired low-rank matrix L

is found. More recently, Yi et al. [135] proposed to reduce the computational complexity of a non-

convex optimization approach from O(r2d2 log(1/ε)) to O(rd2 log(1/ε)) for fully observed case,

and no more than O(r4d log d log(1/ε)), for the partially observed case (where r denoting rank and

d is the dimension, r < d).

Lu et al. [85] proposed to solve the joint non-convex low-rank and sparse minimization problem,

involving RPCA [17] and Low-Rank Representation (LRR) [81] problems, by using Iteratively

Reweighted Least Squares (IRLS). The authors first demonstrated the use of IRLS on LRR problem.

Subspace Segmentation via LRR (or LRR problem in short) aims at finding low-rank representations

Z of a set of data vectors X = [x1, x2, ..., xn] drawn from a union of k subspaces such that X =

XZ + E. The coefficient matrix Z = [z1, z2, ..., zn], that encodes the pairwise affinities between

data vectors and the data X itself is used as the “dictionary”. The matrix E represents noisy, or even

grossly corruption occurred in some data vectors. This formulation is a relaxed version (the equality

constraint) of the non-convex LRR problem. The underlying assumption on sparse component is

different from non-convex RPCA problem, i.e. E is “sample-specific” corruption (�2,p-norm is used

instead of �p-norm). Then, applying the IRLS algorithm solely to solve non-convex RPCA problem

would be difficult since the problem involves both the �p-Schatten-norm and the �p-norm. Thus, it

would be a non-trivial extension of the work in [85].

A Bayesian-based approach, named MOG-RPCA, is presented in [92] and [140] without ex-

plicitly forming �p-norm, but its Bayesian framework has certain properties of �p-norm.

Non-convex approximation can be applied on both components: low rank and sparse; a general

objective function is given as [24].

min
L,S

Gμ,p(σ(L)) + λGμ,p(S), subject to L + S = M (71)

where σ(L) is the vector of singular values of L.

Matrix Completion estimates missing values of a low-rank matrix from partial observations of
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its entries. To recover a low-rank matrix, the key idea is to exploit its low-rank or approximately

low-rank property by solving a matrix rank minimization problem. Given an incomplete matrix

M ∈ Rm×n, this problem can be formulated as follows:

min
X

rank(X)

s.t. Xij = Mij , (i, j) ∈ Ω

(72)

where X ∈ Rm×n and Ω is the set of all entries (i, j) such that Mi,j is known.

However, this rank minimization problem is NP-hard because of the non-convexity and the

combinational nature of the rank function. Thus, it is hard to solve it directly and efficiently. Nuclear

norm, i.e. the sum of singular values of a matrix, is the closest convex bound of the rank function of

matrices [109]. Therefore, we can apply the nuclear norm as a convex surrogate of the non-convex

matrix rank function which is similar to the case of �0-norm of vectors. Fazel [38] proposed to

use nuclear norm to approximate the rank function in the rank minimization problem for control

system. Candès et al. [14] presented a convex relaxation for Eqn. (72) which solves the following

minimization problem:

min
X

‖X‖∗

s.t. PΩ(X) = PΩ(M)

(73)

where ‖ · ‖∗ denotes the nuclear norm of a matrix. PΩ is the orthogonal projector onto the span of

matrices vanishing outside of Ω, in other word, the constraint only applies on non-missing entries

i.e. PΩ(X) = Xij if (i, j) ∈ Ω and 0 otherwise.

A more general problem can be formulated as in Eqn. (74):

min
X

λ

r∑
i=1

g(σi(X)) + f(X) (74)

where σ(X) is the vector of singular values of X ∈ Rm×n. Depending on the choice of the regular-

ized function g and the constrained or loss function f , various types of the low-rank and sparse min-

imization problem can be formulated. For example, when the squared loss f(X) = 1
2‖A(X)−b‖2F ,
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where b ∈ Rn and A is a linear operator, and g(x) = x as λ
∑r

i=1 σi(X) = λ‖X‖∗, then Eqn.

(74) is the nuclear norm minimization problem minX λ‖X‖∗ + f(X). Lu et al. [84] presented

the Iteratively Reweighted Nuclear Norm (IRNN) method to solve the Weighted Singular Value

Thresholding (WSVT) problem. The penalty functions described in Table 2.1 were used to enhance

low-rank matrix recovery.

Geng et al. [47] proposed a general matrix completion framework and applied difference of con-

vex functions (DC) programming and DC Algorithm (DCA), a non-convex optimization algorithm,

to recover effectively a corrupted image (up to 70 % missing entries). Hu et al. [63] employed

the truncated nuclear norm to approximate the rank of matrix better. The truncated nuclear norm

is given as the sum of the smallest min(m,n) − r singular values. In this way, r largest non-zero

singluar values will not affect the rank of the matrix. The authors proposed to use different opti-

mization algorithms to solve this truncated nuclear norm minimization problem including: ADMM,

Accelerated Proximal Gradient Line (APGL) and ADMM with Adaptive Penalty (ADMMAP).

Online Approaches

An online Robust PCA method efficiently estimates the sparse and low-rank matrices in an

incremental way. Thus, it has been employed in applications such as background subtraction and

subspace tracking. In these applications, low-rank components are modeled as a low dimensional

subspace that gradually changes over time. Although PCP was considered to be the state-of-the-art

method for video background subtraction, it has some limitations, including a high computational

cost, an offline processing with high memory demanding, and sensitivity to camera jitter. Some

incremental algorithms have been proposed to address those issues in PCP: ReProCS [105] and

its extensions [106], [56]. These methods reformulate PCP into a bilinear factorization form to

find the low dimensional subspaces in the presence of sparse outliers. A similar approach was also

developed by Mateos and Giannakis in [90]. Rodriguez et al. [110] proposed an incremental PCP

algorithm for video background modeling that is robust to translational and rotational jitter.

Feng et al. [41] proposed an online optimization method OR-PCA for solving the convex robust

PCA problem as in Eq. (2). The authors replaced the nuclear norm by an explicit factorization of the

low-rank matrix L having a rank upper bounded by r as ‖L‖∗ = inf{1
2‖U‖2F+ 1

2‖V‖2F : L = UV�},
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where U ∈ Rm×r and V ∈ Rn×r denote the basis of the low-dimensional subspace and the coef-

ficients of the samples w.r.t the basis. The paper does not mention how to find suitable value of r.

This overcomes the difficulty of the nuclear norm in considering each sample separately as in typical

online optimization problems. The problem (2) is then reformulated into the problem of learning the

basis U and the representation coefficients vi of each frame. Stochastic optimization algorithm was

presented in [41] for solving this new problem which is quite similar to an online dictionary learning

approach. Feng et al. [40] also proposed an online PCA aiming at finding sequentially Principal

Components (PCs). However, this paper focuses on a totally different interpretation of PCA-related

methods which is to find low-rank matrix decomposition instead. More recently, Lee et al. [78] pro-

posed a projection based RPCA for online and real-time processing. The proposed online algorithm

in this paper reduces computational complexity significantly, although the proposed algorithm has

negligible performance degradation compared to conventional schemes. Hong et al. [61] proposed

another online RPCA algorithm by using truncated nuclear norm as a tighter approximation of low

rank constraint with an efficient online alternating optimization algorithm.

There are some works that extended OR-PCA [41] for background subtraction/foreground de-

tection problem in various aspects such as adding continuous constraint Markov Random Field

(MRF) [67], multi-feature based OR-PCA scheme [69] and integrating of depth and color informa-

tion [68].

Another group of online RPCA approaches is based on subspace/manifold learning such as

GRASTA [58], GOSUS [131] and pROST [57, 115]. They leverage the assumption of having the

estimated signal lies on a Grassmannian, a manifold of fixed-dimensional subspace.

He et al. [58] proposed an incremental gradient descent method on Grassmannian manifold

called Grassmanian Robust Adaptive Subspace Tracking Algorithm (GRASTA) to solve the RPCA

problem in online manner. In its each iteration, GRASTA uses the gradient of the updated aug-

mented Lagrangian function after revealing a new sample to perform the gradient descent. Results

are encouraging for background modeling, but no theoretic guarantee of the algorithm convergence

for GRASTA is provided and the output rank must be a known prior.

The above shows that tackling both non-convexity and incremental algorithms for solving the

RPCA problem tends to be a potential direction with prominent results.
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Since incremental algorithms, e.g. GRASTA [58], GOSUS [131], OR-PCA [41] and pRost

[57, 115], are preferable to batch algorithms in some applications (e.g. video surveillance), this

thesis proposes a novel real-time incremental �p-norm approach in addition to the offline approach.

Currently, there is only few non-convex algorithm that can handle both incremental and real-time.

Most of the online algorithms are not fast enough to analyze new coming large-scale data in real-

time. Real-time implementation was made possible for those algorithms thanks to the parallel pro-

cessing power of a graphics processing unit (GPU) but not due to an actual reduction of their com-

plexities. The two approaches: offline and online are presented in section 3.2 and 3.3, respectively.

2.1.5 Singular Value Decomposition: A Review

The Singular Value Decomposition (SVD) has become one of the basic and most important

tools of modern numerical analysis, particularly numerical linear algebra. It has underpinned nu-

merous fundamental methods [71] such as Principal Component Analysis (PCA), Matrix Factoriza-

tion, Orthogonal Procrustes Analysis, Correspondence Analysis, etc. In the SVD, given a matrix

X ∈ Rm×n, where m represents the number of variables and n denotes the number of instances, the

decomposition matrices can be broken up into three components:

X = UΣV� (75)

where the left singular vectors Ui ∈ Rm and the right singular vectors Vi ∈ Rn (i = 1, · · · , r) are

orthonormal. Each has a unit length and every pair is orthogonal, i.e. U�U = I and V�V = I.

r denotes the rank of X, where r ≤ min(m,n). Σ ∈ Rr×r is a diagonal matrix containing the

square root of the eigenvalues from U or V in descending order. The problem defined in Eqn. (75)

is equivalent to the minimization of the cost function ε as follows:

ε(U,V) = ‖Xm×n − Um×rΣr×rV�
n×r)‖22 =

m∑
i=1

n∑
j=1

(xi,j − σuiv
�
j )

2 (76)

where the matrix Xm×n is defined as in Eqn. (75), σ is the singular value vector, and ui, vj are

the columns of the orthonormal matrices U and V, respectively. The SVD problem can be simply
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solved in a regular closed form using a �2-norm cost function. The �2-norm process however treats

all input data equally and doesn’t have ability to detect outliers or sparse components. Therefore,

SVD subspaces are sensitive to outliers and noisy values from given input data. Fig. 2.3 shows an

example of the limitations in SVD and other previous SVD extensions. When input data is free of

noise or outliers, SVD can generate a good subspace to represent the data distribution. However,

when the data contains some noise or outliers, this subspace contains a structure distortion; hence it

doesn’t represent well the data distribution. In addition, there is no mechanism to deal with missing

values in the regular SVD representation. The decomposed matrix X must be completely filled

with values for all d× n items; otherwise the problem is unsolvable. The SVD was established for

real square matrices in the 1870’s by Beltrami and Jordan and for general rectangular matrices by

Eckart and Young [71]. In this section, we review recent SVD studies. They can be divided into

two categories, i.e. batch and the incremental approaches.

Batch (Offline) SVD

Huang et al. [65] proposed a regularized SVD (RSVD) for dimension reduction and feature

extraction. RSVD was posed as a low-rank matrix approximation problem with a squared loss func-

tion on reconstruction errors and a quadratic penalty on the factorized solutions. However, RSVD

is also sensitive to outliers as showed in Fig. 2.3. Liu et al [83] presented a robust SVD (ROBSVD)

that can cope with outliers and impute missing values for microarray data. Bai et al. [3] proposed

Figure 2.3: (a) and (b) show principal directions obtained by using SVD, ROBSVD [83], RSVD
[65], and our proposed RP-SVD on the toy data set with outliers and noise. (c) Illustration of
common convex and non-convex regularized functions.
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a supervised SVD (SSVD), less sensitive to outliers, to improve the robustness of analyzing func-

tional Magnetic Resonance Imaging (fMRI) brain images. They proposed to supervise SVD by

imposing subspace constraints to find the best low-rank approximation. SSVD can be incorporated

into Independent Component Analysis (ICA) for dimension reduction to explore spatio-temporal

features in fMRI data. Zhang et al. [137] developed a robust regularized SVD (ROBRSVD) method

to lessen the effects of outliers. The authors proposed to solve the following problem:

min
u,v

{ρ(X − uv�) + Pλ(u, v)} (77)

where X ∈ Rm×n is the data matrix, u and v are m-dimensional and n-dimensional vectors respec-

tively. ρ(·) is a robust loss function, Pλ(u, v) is a two-way roughness penalty to ensure smoothness

for u and v, and λ is a vector of penalty parameters. This formulation is a generalized version of

RSVD and robust SVD. In other words, ROBRSVD is a robustified RSVD method using a robust

loss function instead of the non-robust squared-error loss as in [65]. It can also be considered as

smoothing of a robust SVD [83] method with the penalty term in Eqn. (77). Zhang et al. suggested

to iteratively impute the missing values by replacing it with values from the previous iteration, then

applying the iterative reweight least square (IRLS) algorithm to solve the problem in Eqn. (77).

Table 2.2 summarizes the properties of the above mentioned methods.

Incremental (Online) SVD

In some scenarios, due to the availability of data, the SVD of a data matrix must be updated as

new columns of the matrix become available. This has given rise to a class of incremental methods.

The goal of incremental methods is to compute the SVD of the matrix Xnew = [X C] by updating

the current SVD of the matrix X using the new columns C. These methods should update the SVD

in a more efficient manner so that the computational cost over all columns of the matrix may be

lower than that of the batch methods.

Similar to the batch methods, in numerous applications, only the dominant singular vectors cor-

responding the largest singular values of a matrix are needed. Thus, the incremental methods may
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Table 2.2: Comparing the properties between our proposed RP-SVD and ORP-SVD approaches and
other state-of-the-art SVD methods, where � denotes unknown or not directly applicable properties.

RP-SVD ORP-SVD SVD RSVD [65] ROBSVD [83] ROBRSVD [137]
Non-Convexity

Loss-function � � � � � �

Penalty function � � � � � �

Robustness

Outliers � � � � � �

Missing values � � � � � �

Scalability

Online � � � � � �

Real-time � � � � � �

produce a truncated SVD of the matrix instead of a full-rank SVD. This group of incremental meth-

ods is called low-rank incremental SVD methods which relax the conventional full-rank incremental

approach. The generic algorithm of the low-rank incremental SVD consists of two main steps: (1)

from a rank-k approximation X ≈ UΣV� and new columns C, perform updating the SVD of

[UΣV� C]; (2) keep only the rank-k dominant part U′Σ′V′� ≈ [UΣV� C]. There are several im-

plementations of a low-rank incremental SVD with various updating steps [4, 10, 11, 18, 19, 20, 79].

2.2 Deep Learning

This section will briefly introduce the Boltzmann Machines and related methods.

2.2.1 From Energy-Based Models (EBM) to Restricted Boltzmann Machines (RBM)

Energy-based models assign an energy value to each configuration of the variables of interest.

Model learning is to adjust that energy function to have desirable properties, such as having low

energy for desirable configurations. Energy-based probabilistic models define a probability distri-

bution via an energy function E, as follows:

p(x) =
e−E(x)

Z
(78)

where Z =
∑

x e
−E(x) is the partition function.
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Several training techniques for an energy-based model have been proposed in literature. A clas-

sical and widely used technique is the Maximum Likelihood Estimation (MLE) via (stochastic)

gradient descent. Given a set of observed data X = {x1, · · · , xN} which is assumed to be indepen-

dently and identically distributed (i.i.d) and a set of model parameters θ = {θ1, · · · , θM}, the MLE

approach finds the optimal θ by maximizing the log likelihood log p(X|θ).

θ� = argmax
θ

1

N

∑
xi∈X

log p(xi|θ) (79)

To increase the expressive power of the model, we may want to add some non-observed variables

on top of the observed variables x. So we consider an observed part x and a hidden part h. We can

then write:

p(x) =
∑
h

p(x, h) =
∑
h

e−E(x,h)

Z
(80)

Using similar formulation as in Eq. (78), the notation of free energy is defined as follows:

F(x) = − log
∑
h

e−E(x,h) (81)

This allows us to re-write, p(x) = e−F(x)

Z with Z =
∑

x e
−F(x).

The gradient w.r.t each θm is given by

∂ log p(x|θ1, · · · , θM )

∂θm
= ∂F(x)

∂θm
−
∑

x̃ p(x̃)
∂F(x̃)
∂θm

(82)

We refer the two terms in the above gradient as the positive and negative phase. The name

of the terms reflects their effect (positive or negative) on the probability density defined by the

model. Positive effect means that the probability of training data increases (as the corresponding

free energy reduces), while negative effect indicates that the probability of samples generated by

the model decreases. When the dimension of data becomes increasingly high, the second term

is analytically infeasible to compute due to the exponential possible configurations. Therefore, it

needs to be approximated by using a fixed number of samples, called negative particles (denoted as
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N ). Then, the gradient can be rewritten as:

∂ log p(x|θ1, · · · , θM )

∂θm
≈ ∂F(x)

∂θm
− 1

|N |
∑

x̃∈N
∂F(x̃)
∂θm

. (83)

where the elements x̃ of N should be sampled according to p. To sample these negative particles N ,

we use sampling methods, e.g. Markov Chain Monte Carlo (MCMC) methods, which are especially

well suited for models such as the Restricted Boltzmann Machines (RBM), a specific type of EBM.

2.2.2 RBM and Its Extensions

Boltzmann Machines (BM) [60] are an undirected graphical model with two layers of stochas-

tic units, i.e. visible units v and hidden units h, which represent the observed data and the conditional

representation of that data, respectively. All the units are connected by weighted undirected edges

to interpret the pairwise constraints between them. This makes them powerful enough to represent

complicated distributions. We can increase the modeling capacity of the BM by having more hidden

units. The BM is actually an energy-based model which defines the joint probability distribution

using an energy function. The energy function of the BM is given by

EBM (v, h) = −
∑
i

bivi −
∑
j

cjhj −
∑
i,j

Wi,jvihj −
∑
j,j′

Uj,j′hjh
′
j −

∑
i,i′

Vi,i′viv
′
i (84)

Maximum likelihood are usually used to learn BM. Due to an intractable partition function in BM,

the maximum likelihood gradient must be approximated using the Monte Carlo methods.

Restricted Boltzmann Machines (RBM) [59] is a simplified version of BM without visible-to-

visible and hidden-to-hidden connections. Similar to BM, the joint probability distribution of RBM

is specified by its energy function:

P (v = v, h = h) =
1

Z
exp(−E(v, h)) (85)
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where the energy function of RBM is defined as

ERBM (v, h) = −
∑
i

bivi −
∑
j

cjhj −
∑
i,j

Wi,jvihj (86)

and Z is the normalizing constant also known as the partition function Z =
∑

v

∑
h exp{−E(v, h)}.

Thanks to the specific structure of RBMs, the hidden units are conditionally independent given

the states of visible units. Using this property, we can write conditional probability as:

p(h|v) =
∏
j

p(hj |v)

p(v|h) =
∏
i

p(vi|h).
(87)

Using binary units (where vi and hj ∈ {0, 1}), we obtain from Eqns. (80) and (86) as follows.

p(hj = 1|v) = σ(aj +
∑
i

Wi,jvi)

p(vi = 1|h) = σ(bi +
∑
j

Wi,jhj)

(88)

The partial derivative of the energy function w.r.t the model parameters θ = {W, a, b} is given

by

∂E(v, h)

∂W
= −vhT (89)

∂E(v, h)

∂a
= −h (90)

∂E(v, h)

∂b
= −v (91)

Other Types of Restricted Boltzmann Machines

A set of BMs can be organized in several layers such that each BM is stacked on top of another

to capture more complicated correlations between features in the lower layer. This approach pro-

duces a deeper network called Deep Boltzmann Machines (DBM) [114]. Since all connections
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between units in two consecutive layers are undirected, each unit receives both bottom-up and top-

down information such that it better propagates uncertainty during the inference process. The joint

probability of a deep Boltzmann machine with one visible layer, v, and two hidden layers, h1, h2, h3

is given by:

P (v, h1, h2) =
1

θ
exp(−E(v, h1, h2; θ)) (92)

and the energy function of DBM is defined as (the bias parameters are ignored for simplicity):

EDBM (v, h1, h2) = −
∑
i,j

W 1
i,jvih

1
j −

∑
j,k

W 2
j,kh

1
jh

2
k (93)

Instead of using the visible binary units as in the RBM, Gaussian RBM (GRBM) [75] models

real-valued data by assuming the visible units have real values normally distributed with mean bi

and variance σ2
i . Its energy function is defined as:

EGRBM (v, h) = −1

2

∑
i

(vi − bi)
2

σ2
−
∑
j

cjhj −
∑
i,j

Wi,jvihj (94)

Denoising Gated Boltzmann Machines (DGBM) [118] and RoBM [119] were proposed to

estimate noise and learn features simultaneously by distinguishing corrupted and uncorrupted pixels

to find optimal latent representations. The energy function of RoBM is a combination of a binary

RBM, a GRBM, a Gaussian noise model and gating terms:

ERoBM (v, ṽ, s, h, g) =
1

2

∑
i

γ2i
σ2
i

si(vi − ṽi)
2 −

∑
i

disi −
∑
k

ekgk −
∑
i,k

Ui,ksigk

+
1

2

∑
i

(vi − bi)
2

σ2
i

−
∑
j

cjhj −
∑
i,j

Wijvihj +
1

2

∑
i

(ṽi − b̃i)

σ̃2
i

(95)

2.2.3 Sampling in RBM via Monte-Carlo Markov Chain (MCMC)

As mentioned in Section 2.2.1, we run a sampling Markov chain converging to the target distri-

bution to obtain samples of p(x). A sampling technique, i.e. Gibbs sampling, is done on the joint

of N random variables S = {s1, ..., sN} by performing a sequence of N sub-sampling steps of the

form si ∼ p(si|s−i) where s−i contains the N − 1 other random variables in S excluding si.
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In the setting of RBMs, S will be the set of visible and hidden units. One can perform block

Gibbs sampling such that visible units are sampled simultaneously given fixed values of the hidden

units and vice versa. Thus, a step in the Markov chain is taken as follows:

h(n+1) ∼ σ(Wv(n) + a) (96)

v(n+1) ∼ σ(Wh(n+1) + b), (97)

where v(n) and h(n) denote the set of all visible and hidden units at the n-th step of the Markov

chain, respectively. In other words, h(n+1)
j is randomly sample to be 1 or 0 with probability of

σ(aj +
∑

iWi,jv
(n)
i ), and similarly, v(n+1)

i is randomly sample to be 1or 0 with probability of

σ(bi +
∑

j Wi,jh
(n)
j ).

The Gibbs chain for k steps is illustrated in Fig. 2.4.

Figure 2.4: Gibbs sampling chain

As k → ∞, samples of (v(t), h(t)) are guaranteed to be accurate samples from target distribute

p(v, h). In theory, running one such chain to convergence for each parameter update in the learning

process would take very long time. Therefore, several algorithms have been developed for learning

RBMs, in order to efficiently sample from p(v, h) during the learning process.

2.2.4 Constrastive Divergence (CD-k)

Due to the problem of evaluating the partition function, Contrastive Divergence proposed by

Hinton [59] provides another way to estimate the gradient of the energy function without the need

to reach the equilibrium distribution. The main ideas of this technique to speed up the sampling

process are summarized as follows:

• Initialize the Markov chain with a training example, so that the chain will be already close to

having converged to its final distribution p
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• Run the Gibbs sampling for only k-steps (we have CD-k). In practice, k = 1 has been shown

to work surprisingly well.

2.3 Conclusions

This chapter provides an overview of the recent studies related to matrix decomposition and ma-

trix factorization and the ideas behind sparse coding leading to overcomplete dictionaries. �p-norm

has been extensively used and analyzed for sparse regularized optimization methods. �p-norm has

desirable properties and supporting theories to be a suitable surrogate of �0-norm. Thus, using this

�p-norm approach, we can improve the performance of many problems involving sparsity and/or

low-rank regularization in their objective function. However, the existing work along this direction

is in their early stage since the non-convexity of the �p-norm makes it difficult to optimize directly

and efficiently. Therefore, the aims of this thesis is to incorporate �p-norm regularization into two

well-known problems: matrix decomposition and matrix factorization and to solve these problems

efficiently on large-scale datasets. In addition, an overview of deep learning approach for face mod-

eling focusing on RBMs is briefly introduced to give a better connection with conventional approach

to matrix decomposition and matrix factorization problems. The next two chapters will present our

proposed �p-norm based approach for the matrix decomposition and factorization problems; and

our proposed deep learning based approach, respectively.
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Chapter 3

Matrix Decomposition and

Factorization: Conventional Approaches

This chapter will first present a robust face recognition (FR) framework using Robust Principal

Component Analysis and Sparse Representation. Then �p Robust Principal Component Analysis

approach, for matrix decomposition problem and �p Singular Value Decomposition approach for

matrix factorization problem are proposed and introduced in details.

3.1 Robust Principal Component Analysis: Low-rank and Sparse Rep-

resentation for Robust Face Recognition

First, our method will eliminate occlusions or corruption from face images in the training set.

For face images of p subjects, we form the matrix D = [D1,D2, · · · ,Dp] where the training data

matrix Di contains multi-factor face images of subject i. We then apply Low-rank (LR) matrix

decomposition [17] to obtain the LR components A = [A1,A2, · · · ,Ap] and sparse components

E = [E1,E2, · · · ,Ep] (See Fig. 3.1). Where A and E are obtained from the following minimiza-

tion problem.

min
Ai,Ei

‖Ai‖∗ + λ‖Ei‖1 s.t Di = Ai +Ei (98)
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where ‖ · ‖∗ denotes the nuclear norm (the sum of singular values of a matrix). ‖ · ‖1 denotes the

sum of absolute value of matrix or vector entries.

We apply inexact Augmented Lagrange multipliers (ALM) [17] [80] to solve LR decomposition

for each class iteratively. In ALM, the augmented Lagrangian function is defined as following:

L(Ai,Ei,Yi, μ) = ‖Ai‖∗ + λ‖Ei‖1 + 〈Yi,Di −Ai −Ei〉+
μ

2
‖Di −Ai −Ei‖2F (99)

where μ is a positive penalty constant, Yi is a Lagrange multiplier vector, and 〈A,B〉 = trace(ATB).

The details of the inexact ALM algorithm are shown in Algorithm 1.

Algorithm 1 Solve LR decomposition by inexact ALM [80]

1. Input: Training data matrix D and parameter λ. Initialize Y0, E0 = 0, μ0 > 0, ρ > 1 and
k = 0
2. for i = 1 to p do

3. while not converged do

// Update Ai

// by solving Ak+1
i = argminA L(Ai,E

k
i ,Y

k
i , μk)

(U, S, V ) = svd(Di −Ek
i + μ−1

k Yk
i );

Ak+1
i = USμ−1

k
[S]VT ; // Sε[x] = sign(x)(|x| − ε)

// Update Ei

//by solving Ek+1
i = argminE L(Ak+1

i ,Ei,Y
k
i , μk)

Ek+1
i = Sλμ−1

k
[Di −Ak+1

i + μ−1
k Yk

i ];

// Update multiplier Yi

Yk+1
i = Yk

i + μk(Di −Ak+1
i −Ek+1

i );
// Update μ
μk+1 = ρμk

k = k + 1
end while

end for

4. Output: A and E

The LR components contain the most common information among all faces of a person while

the sparse components store the variations or occlusion across faces of each subject as shown in

Fig. 3.1 (b) and (c). As a result, we eliminate the affecting factors in training images to have the LR

components A with better representation ability. However, we cannot apply LR directly to remove

those affecting factors from a test image in a similar way since it requires many images to form the
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Figure 3.1: LEFT: An example of Robust PCA for two subjects, RIGHT: Result of recovering step
(a) original testing image (b) neutral image in the training set (c) normalized testing images

data matrix D. Therefore, we use the SRC method [130] to represent a test image as follow:

y = y0 + e0 = [A,E]

[
α

αE

]
(100)

where y ∈ R
m×1 is the original testing image, y0 is the normalized testing image, e0 is the error or

occlusions. A and E are the sample dictionary and the occlusion dictionary respectively. α and αE

are the sparse coefficients corresponding to the two dictionaries A and E.

As we mentioned above, it is computationally expensive and ineffective if we simply use training

samples as the sample dictionary and an identity matrix as the occlusion dictionary since they are

not optimized in terms of size and representation ability. As a result, we suggest that a better

version for the sample and the occlusion dictionary can be learned by dictionary learning technique

[134] [102]. As an example, given a set of images X = [x1, x2, · · · , xn] ∈ R
m×n where the i-th

image is represented by an m-dimensional vector xi, the goal of dictionary learning is to find a

dictionary D = [d1, d2, · · · , dk] ∈ R
m×k such that each image can be represented as a sparse linear

combination of its atoms i.e. xi = Dαi, where αi is the sparse coefficients of the image xi. This

can be done using the following formulation:

{D̂, Λ̂} = argmin
D,Λ

‖X−DΛ‖2F + λ‖Λ‖1 (101)

s.t. dTj dj = 1, ∀j

where Λ = [α1, α2, · · · , αk]
T ∈ R

k×n(k ≤ n) and λ is the regularization parameter. ‖ · ‖F denotes

the Frobenius norm (l2-norm of a matrix).
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We cannot solve the above optimization problem simply using the K-SVD algorithm [1] since

we need to optimize both the dictionary D and the representation matrix Λ. Similar to many multi-

variable optimization problems, we solve the above problem by optimizing D and Λ alternatively.

The optimization procedures are described in Algorithm 2. We suggest that the sample dictionary

A and the occlusion dictionary E should be built respectively from the LR components A and the

sparse components E in the previous step. In this way, we can preserve structural information in

those components and improve the discrimination ability of the dictionaries as well. Since we work

on raw pixels, the feature dimension is usually large (e.g 165 × 120 = 19800). PCA subspace

learning is applied to reduce the feature dimension. This will greatly improve the performance of

our method. PCA subspace is usually learned from training data matrix D, however, we realized this

may not be efficient and robust when training data contains occlusion or corruptions. Therefore, we

learn PCA subspace from low-rank matrix A instead. In this way, it will reduce the effects caused by

occlusion or corruptions since PCA is often sensitive to noise and outliers. Two learned dictionaries

and testing images are then projected onto this reduced dimension subspace.

Algorithm 2 Algorithm for dictionary learning [134]

1. Input: Image data matrix X and parameter λ
2. Step 1: Initialize D randomly with unit l2-norm
for each column of D
3. Step 2: Fix D and solve Λ

Solve the following minization problem using convex optimization technique described in
[73]

JΛ = argminΛ{‖X−DΛ‖2F + λ‖Λ‖1}
4. Step 3: Fix Λ and update D

We update dj one by one while fixing all the other columns of D, i.e. dl, l �= j. We can find
the update by optimizing the following problem.

JD = argminD ‖X−DΛ‖2F s.t. dTj dj = 1, ∀j
We use Lagrange multiplier Y to convert the objective function. After that differentiating Jdj

w.r.t. dj , and set it to 0. We have
dj = YαT

j (αjα
T
j − λ)−1

dj = YαT
j /‖YαT

j ‖2
5. Step 4: Go back to step 2 until the values of JD and JΛ are converged or the maximum number
of iterations is reached. Finally, output D.
6. Output: D

Finally, we can remove the affecting factors (e.g. occlusion, illumination and expression) using

the learned sample and occlusion dictionaries (See Fig. 3.1). The reason why we need to eliminate
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these variations is to ensure that testing images are not too different from training model or training

images. In this way, they are normalized and they will not become outliers, thus it will enhance the

recognition rate.

The LR components of the testing image are obtained via the following minimization problem:

{Δ̂, Γ̂} = argmin
Δ,Γ

‖y −AΔ−EΓ‖22 + λ1‖Δ‖1 + λ2‖Γ‖1 (102)

where A ∈ R
m×(k×p) and E ∈ R

m×l (noted that two dictionaries A and E have different size

k �= l). Δ = [β1;β2; · · · ;βp]
T ∈ R

(k×p)×1 with βi ∈ R
k×1. Each βi is the sparse coefficients

associated with subject i. Γ = [γ1,γ2, · · · ,γl]
T ∈ R

l×1 are the best representation for occlusion

or variations in the testing image.

Eqn. (102) can be solved by l1-minimization algorithms such as Homotopy method [132]. After

obtaining sparse representation of the testing image, the normalized testing image is recovered by

ŷ0 = y − EΓ̂ and classification is based on SRC approach by computing the residuals for each

subject.

ei(y) = ‖ŷ0 −Aδi(Δ̂)‖2, for i = 1, · · · , N (103)

where δi(Δ̂) = [0 · · · 0 · · ·βi · · · 0 · · · 0]T with βj = 0; ∀j �= i Then, identity(y) = argmin ei(y).

The testing image y is represented by a linear combination of all images in the dictionary A. The

purpose of computing residuals is to find the subject i having the most influence in the sparse

representation. The smaller the residual the more influence subject i has on the outcome, so it is

more likely that y has identity of subject i. Moreover, Sparsity Concentration Index (SCI) was

proposed in [130] to identify the quality of test samples. The SCI of a coefficient vector Δ ∈ R
k×p

is defined as

SCI(Δ) =

p.max ‖δi(Δ)‖1
‖Δ‖1 − 1

p− 1
(104)

SCI has values from 0 to 1. The test image with a SCI value close to 1 can be represented by using

only dictionary atoms from a person. This gives us a different way to identify the label of the testing

image y by using l1-norm.

identity(y) = argmax
i

‖δi(Δ)‖1 (105)
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Figure 3.2: Steps in the training and testing phases

The identity of the test image y is considered as the person which has the highest value of the coef-

ficients associated with. Because of the fact that the coefficents Δ will have high values associated

with the atoms of A belonging to a person. In this way, we do not need to reconstruct the test im-

age from its corresponding sparse coefficients, thus it is more efficient than the common way done

in SRC. Dimension reduction using PCA is applied on learned dictionaries and testing images to

reduce computational cost. PCA bases are learned from the low-rank matrix A rather than the data

matrix D since A has less noise or corruptions than D.

In general, the training phase can be summarized into two main steps: low-rank decomposition

and building dictionaries. The testing phase can be summarized into two main steps: recovering

and classification. The method described in this section is quite different from the approaches in

[32] and [139] as shown in Fig. 3.2. Details of the training and testing algorithms are shown as

follows.
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Algorithm 3 Training phase

1. Input: Training data D = [D1,D2, · · · ,Dp] from p subjects
2. Step 1: Perform low-rank decomposition on D

for i = 1 to p do

minAi,Ei ‖Ai‖∗ + λ‖Ei‖1 s.t Di = Ai +Ei

end for

3. Step 2: Building dictionaries
Occlusion Dictionary Learning

Find a dictionary E ∈ R
m×l that provides the best representation for the sparse error E

{Ê, Γ̂} = argminE,Γ ‖E−EΓ‖2F + λ‖Γ‖1
Sample Dictionary Learning

for i = 1 to p do

Find a dictionary Ai ∈ R
m×k that provides the best representation for the low-rank matrix

Ai

{Âi, Δ̂} = argminAi,Δ ‖Ai −AiΔ‖2F + λ‖Δ‖1
end for

4. Output: A dictionary E and p dictionaries Ai i = 1 · · · p

Algorithm 4 Testing phase

1. Input: Learned dictionaries A = [A1,A2, · · · ,Ap] and E from p subjects, and the test image
y
2. Step 1: Recover the testing image y

Compute the sparse coefficient of y
{Δ̂, Γ̂} = argmin

Δ,Γ
‖y −AΔ−EΓ‖22 + λ1‖Δ‖1 + λ2‖Γ‖1

The recovered (without occlusion) face image is
ŷ0 = y −EΓ̂

3. Step 2: Compute the residuals and classify
ei(y) = ‖ŷ0 −Aδi(Δ)‖2, ∀i = 1, · · · , p

Output: Label of y = argmini{ei(y)}

3.2 Non-convex RPCA with �p Formulation

In our proposed approach (LP-RPCA), �p-norm is presented to replace the �1-norm since �p-

norm is known as a measure offering a better approximation of the �0-norm than the �1-norm [44]. It

is noted that the nuclear norm is a special form of the �1-norm on singular values of a matrix. Thus,

we can apply �p-norm regularization on both sparse and low-rank matrices. Besides that by using

the same penalty functions (and even the same p value) we can maintain the balance between low-

rankness and sparsity. The parameter λ will then control this trade-off rather than penalty functions.

The RPCA model in Eqn. (1) is approximated by a non-convex optimization problem:

min
L,S

(
‖σ(L)‖pp + λ‖S‖pp

)
s.t. L + S = M (106)
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where σ(L) denotes a vector of the singular values of the matrix L. In general, we denote the

�p-norm as a penalty function g(·) = | · |p, thus, our proposed objective function can be redefined

as follows:

min
L,S

⎛
⎝ d∑

j=1

g(σj) + λ

m×n∑
ij=1

g(sij)

⎞
⎠ s.t. L + S = M (107)

where σj denotes the jth singular value of the matrix L, sij denotes an element of S and d ≤ min{m,n}.

Although we only consider �p-norm in this thesis, the general form of RPCA in Eqn. (107) can also

be used with other penalty functions g. The penalty function g : R → R+ is assumed to be

continuous, concave and monotonically increasing on [0,∞).

Chen et al. [30] proved that the penalized �p minimization problem is strongly NP-hard for any

0 ≤ p < 1. However, a solution for Eqn. (107) can be derived using the properties of gradient (or

supergradient for nonsmooth points [8]) of a concave function. A vector v is a supergradient of a

concave function g at the point x ∈ Rn if g(x) + 〈v, y − x〉 ≥ g(y) holds for every y ∈ Rn. Thus,

the concave penalty function g can then be approximated as g (x) ≈ g (z) + 〈∇g (z) , x− z〉, where

z ∈ R is sufficiently close to x. ∇g (z) denotes the gradient of g at z (first-order Taylor expansion

is employed here). For the �p-norm function (g(·) = | · |p), its gradient at z equals to p|z|p−1.

The augmented Lagrangian form of the linearized problem in Eqn. (107) can be derived as

follows:

L(L, S,Y, μ) =

d∑
j=1

(
g(σk

j ) +
〈
∇g(σk

j ), (σj − σk
j )
〉)

+ λ

m×n∑
ij=1

(
g(skij) +

〈
∇g(skij), (sij − skij)

〉)

+ 〈Y,M − L − S〉+ μk

2
‖M − L − S‖2F

(108)

where Y is a Lagrangian multiplier (or dual variable) ensuring the equality constraint and μk is a

penalty parameter used as step size for Y and is updated as μk+1 = ρμk(ρ > 1). The matrices S and

L are iteratively solved in two following convex optimization sub-problems by alternating between
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fixing one and solving for the other.

Sk+1 = argmin
S

⎛
⎝λ

m×n∑
ij=1

wk
ij |sij |+

μk

2
‖Xk

S − S‖2F

⎞
⎠ (109a)

Lk+1 = argmin
L

⎛
⎝ d∑

j

vkj σj +
μk

2
‖Xk

L − L‖2F

⎞
⎠ (109b)

where Xk
S = M − Lk + Yk

μk and Xk
L = M − Sk+1 + Yk

μk . The weights are denoted as wk
ij =

∇g(skij) = p(|skij |+ ε)p−1 and vkj = ∇g(σk
j ) = p(σk

j + ε)p−1 where ε (0 < ε � 1) is a small

shifting quantity to avoid infinite values when the parameter vanishes. The matrices S and L are

solved in a similar way (first update the values of the matrices via soft-thresholding [16] and singular

value thresholding (SVT) [34], and then refine the corresponding weights). The soft-thresholding

operator is defined as

Sτ (x)i = max {|xi| − τ, 0} xi
|xi|

(110)

It is well known that SVT τ (X) has an explicit expression as

SVT τ (X) = U [diag{(Σ− τ)+}]V� (111)

where the singular value decomposition (SVD) of X is UΣV� and (x)+ = max(x, 0).

Remark: Our approach can effectively isolate the weights or thresholds that are used implicitly

in the generalized shrinkage/thresholding operator in [24]. Although the thresholds |x|p−1 in [24]

and our weights p|x|p−1 are similar, the latter can achieve much better results as shown in Section

5.2.

This baseline framework can only handle the input data altogether as one big matrix without

the ability to handle incremental input separately. We will formulate an online framework from

this baseline procedure for the incremental data processing (i.e. decomposing the matrix as it is

generated column-by-column) in the next section 3.3.

From our experiments, μ only influences the convergence rate while ε is a fixed number (floating-

point relative accuracy). Thus, λ and p are the two parameters to be tuned. However, we found that

there is an empirical relation between λ and p which is formulated as λ = 1/((p/2)×
√
(max(m,n))).
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Therefore, only parameter p needs to be chosen, its value depends on applications.

All procedures are summarized in Algorithm 5.

Algorithm 5 Non-convex Robust PCA
1. Input: Observation matrix M

2. Initialize: k = 0, μ(0) > 0, w(0)
ij = 1, v(0)j = 1, Y(0) = M

σ1(M) ;
3. while not converged do

(I) Sparse optimization (Solving Eqn. (109a))
(a) Find the value of S by soft thresholding:

Sk+1 = S λ

μk
×wk

(
M− Lk + Yk

μk

)
;

(b) Update the weights for each ij = 1, · · · ,m× n:
wk+1
ij = p(|sk+1

ij |+ ε)p−1;
(II) Low-rank approximation (Solving Eqn. (109b))

(a) Find the value of L by weighted SVT:
Lk+1 = SVT vk

μk

(
M− Sk+1 + Yk

μk

)
;

(b) Update the weights for each j = 1, · · · , d:
vk+1
j = p(σk+1

j + ε)p−1;
(III) Update the parameters Y and μ:

(a) Yk+1 = Yk + μk
(
M− Lk+1 − Sk+1

)
;

(b) μk+1 = ρμk;
(b) k ← k + 1;

end while

4. Output: L = Lk+1,S = Sk+1

3.3 Online Approach to Non-convex RPCA with �p Formulation

In this section, we first develop our online approach (OLP-RPCA) from the offline framework

(LP-RPCA) and describe how to use the idea of an online ADMM [126] to solve our non-convex

LP-RPCA problem. Secondly, we present a new adaptive online SVT operator. Then, we show

that the computational complexity of OLP-RPCA is linear in both the sample dimension m and the

number of samples n.

3.3.1 Online Optimization Method

Our aim is to decompose an input video frame-by-frame, i.e. matrix column-by-column, instead

of decomposing the whole big matrix every time a new frame (column) becomes available. In this

way we can deal with incremental frames effectively. Given a sample mt at time t, we find a new
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decomposition as mt = lt + st, where mt, lt, st ∈ Rm to solve the matrix decomposition problem

formulated in Eqn. (112).

min
lt,st

n∑
t=1

(g(σ(Lt)) + λg(st)) s.t. L+ S = M (112)

where L = [l1 l2 · · · ln], Lt = [l1, · · · , lt], S = [s1 s2 · · · sn] and M = [m1 m2 · · ·mn]. Our

non-convex OLP-RPCA problem can be solved by a modified version of Algorithm 5 following

the idea of an online ADMM (OADMM) in [126]. Instead of having a loop until converged, at

each iteration for the t-th frame/column, the online algorithm consists of just one pass through the

following update steps:

Step 1: Obtain a new column lt+1 of the low-rank matrix from the new frame mt

lt+1 = argmin
l

⎛
⎝ d∑

j

vtjσj +
μ

2
‖xt

l − l‖22 +
η

2
‖l − lt‖22

⎞
⎠ (113)

where μ > 0, η ≥ 0 are the constants. μ can be updated at each iteration but we found that it is

better when μ is fixed. xtl = mt − st +
yt
μ and the weights are denoted as vtj = p(σt

j + ε)p−1 with

σt
j are the singular values of the matrix Lt.

Step 2: Obtain a new column st+1 of the sparse matrix from the new frame mt

st+1 = argmin
s

λwt|s|+
μ

2
‖mt − lt+1 +

yt
μ

− s‖22 (114)

where the weight values for the sparse vector st are defined as wt = p(|st|+ ε)p−1.

Step 3: Update the dual variable y

yt+1 = yt + μ (mt − lt+1 − st+1) (115)

The update step for the sparse matrix (Step 2) is simply applying soft-thresholding operator defined

as Eqn. (110) in Section 3.2, since it is separable for each column vector. However, the update step

of the low-rank matrix (Step 1) is more complicated because of computing the singular values of a

matrix involving in SVT operator on a vector xt (defined as SVT τ,X(xt) = U [diag{(Σ− τ)+}]V�,

where the singular value decomposition (SVD) of [X|xt] is UΣtV
� and X is the matrix in previous
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step). Thus, we propose an adaptive online SVT operator which incorporates an incremental SVD

method to update the decomposition incrementally. This operator will be described in details in the

next section.

3.3.2 Adaptive Online SVT Operator

We first employ an incremental SVD (ISVD) method described in [10] to find the singular

values of the new matrix without performing a full SVD and then apply a thresholding operator on

this new result. The ISVD method is described briefly in the following.

Given that an existing rank-r SVD of the current matrix Xt ∈ Rm×t (t ≤ n), where n is the

number of columns of the full matrix X ∈ Rm×n, at step t is UΣtV
� (where U ∈ Rm×r, V ∈ Rt×r,

Σt ∈ Rr×r and r ≤ min(m, t)), the SVD of the new matrix adding c columns is derived as follows:

[
U J

]⎡⎢⎣ Σt L

0 K

⎤
⎥⎦
⎡
⎢⎣ V 0

0 I

⎤
⎥⎦
�

=

[
U

(
I − UU�)C/K

]⎡⎢⎣ Σt U�C

0 K

⎤
⎥⎦
⎡
⎢⎣ V 0

0 I

⎤
⎥⎦
�

=

[
UΣtV

� C

]
=

[
Xt C

]

(116)

where the matrix C ∈ Rm×c contains new data columns and the product matrix JK is a QR-

decomposition of
(
I − UU�)C. The ISVD algorithm updates the decomposition by diagonalizing

Q =

⎡
⎢⎣ Σt L

0 K

⎤
⎥⎦ =

⎡
⎢⎣ Σt U�C

0 K

⎤
⎥⎦ where Q is decomposed as U′ΣQV′�. Then the new SVD is

U′′Σ′′V′′� =

[
UΣtV

� C

]
=

[
Xt C

]
(117)

The updated matrices are obtained by matrix multiplication (or subspace rotation) as follows:

U′′ =
[

U J

]
U′;Σ′′ = ΣQ;V′′ =

⎡
⎢⎣ V 0

0 I

⎤
⎥⎦V′ (118)

Note that in some cases the resulting SVD will have rank r rather than rank r + 1 singular values,
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Eqn. (118) can be replaced with the truncated forms:

U′′ = UU′;Σ′′ = ΣQ;V′′ = VV′ (119)

The basic idea of ISVD algorithm is to replace the full SVD decomposition into a series of much

smaller SVD decompositions for the new columns. However, this is not an efficient way when the

dimension of the inner matrix Q is large. There is another issue with the ISVD algorithm: the

computational costs will increase column-by-column. This is because it takes O((m+ t)(r + c)2)

time to process a new column and t will increase when new columns are updated. The overall cost to

obtain the decomposition of the full matrix X will be O(mnr2) (See section 3.3.3 for more detailed

analysis). Therefore, to reduce the computational costs, we propose a modified ISVD involving two

costliest steps: matrix multiplication and diagonalizing.

Firstly, we observe that instead of performing the costly matrix multiplication of big matrices

U,V with smaller ones U′ and V′ as in Eqn. (118), we can keep matrices U′ and V′, then update

them together with U and V. Thus, this can reduce the complexity of the baseline ISVD since it

only performs the matrix multiplication steps on the small matrices. We form an extended SVD of

the current matrix Xt at step t as follows:

Xt = UU′ΣtV
′�V� (120)

where UU′, VV′, U, and U′ (but not V′ or V) are orthonormal. Then, we apply the same derivation

as in Eqn. (116) as follows:

[
UU′ J

]⎡⎢⎣ Σt L

0 K

⎤
⎥⎦
⎡
⎢⎣ VV′ 0

0 I

⎤
⎥⎦
�

(121)

Similarly, the matrix Q is diagonalized as AΣ′
QB . Two large outer matrices U and V are now

updated by appending columns and rows, respectively. Only the span of the left and right subspaces

are maintained in these two matrices while subspace rotations are deferred to the smaller matrices

U′ and V′ instead of multiplying U,V each time. There are two cases depending on whether the
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rank r increases or not. To simplify, we consider the case of adding a new column, i.e. c = 1, thus

the matrix C will now become a vector c.

If the rank increases, then for the matrices U and U′,

Unew = [U j] = [U (c − UU�c)/k];U′
new =

[
U′ 0
0 1

]
A (122)

where k = ‖c − UU�c‖. The matrices V and V′ are updated simply as,

Vnew =
[

V 0
0 1

]
;V′

new =
[

V′ 0
0 1

]
B (123)

If the rank does not increase, then only U′
new = U′A while U is the same and the matrices V

and V′ are computed as,

V′
new = V′W;V′+

new = W+V′+;Vnew =
[

V
V′+W

]
(124)

where W+ = (I + w�w/(1 − ww�))W� and V′+ is the pseudo-inverse which is computed and

updated as

V′+
new = B� [V′+ 0

0 1

]
(125)

This procedure reduces the complexity of the update steps and eliminates the numerical error.

Secondly, we observe that it would be redundant to use the full decomposition (UΣtV
�) of

the previous column t to update the new columns since SVT operator (SVT τ (Xt)) would discard

those singular values lower than τ and their corresponding singular vectors. Therefore, a good

strategy is to use partial SVD instead of the full one, i.e. we only consider those singular values

exceeding threshold τ and their associated singular vectors. We will have the reduced input for

ISVD as ŨΣ̃tṼ
�, where Ũ ∈ Rm×k, Ṽ ∈ Rt×k, Σ̃t ∈ Rk×k and k is the number of singular

values higher than threshold τ . If k is small compared to the matrix dimension min(m, t) and the

approximated rank r, then ISVD update can be computed efficiently with this partial SVD input

because the size of the matrix Q will be smaller and less computation time is needed to decompose

it. In some situations, the strategy of using only partial SVD might not be helpful to accelerate the
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computation of ISVD. It is when k is not small compared to the matrix dimension min(m, t) and the

approximated rank r. Therefore, we introduce the second point of accelerating the baseline ISVD.

The ISVD algorithm [10] requires an initial decomposition of the current matrix Xt as UΣtV
�.

To obtain this initial decomposition, we suggest to run the offline LP-RPCA algorithm (Algorithm

5) for the first N training frames. This initialization strategy would work efficiently when the input

video (or matrix) is truly low-rank, e.g. a video with static background. However, if the input video

has dynamic background, e.g. water flow and trees, we can decrease the regularized parameter

η gradually. This strategy will allow the new low-rank column lt+1 to change from the previous

column lt (See Eq. (113)).

The online LP-RPCA procedure is summarized in Algorithm 6.

Algorithm 6 Online Non-convex Robust PCA
1. Input: Given a set of frames mt, 1 ≤ t ≤ n

2. Initialize: w
(1)
i = 1, v(1)j = 1, y1 =

m1
|m1| ;

3. for t = 1 to n do

(I) Low-rank approximation

(a) Find the value of Lt by online SVT:
lt+1 = SVT vt∗(μ)−1

(
mt − st +

yt
μ

)
;

(b) Update the weights for each j = 1, · · · , d:
vt+1
j = p(σt+1

j + ε)p−1;
(II) Sparse optimization

(a) Find the value of St by soft thresholding:
st+1 = Sλ

μ
∗wt

(
mt − lt+1 +

yt
μ

)
;

(b) Update the weights for each i = 1, · · · ,m:
wt+1
i = p(|st+1|+ ε)p−1;

(III) Update the parameter y:

(a) yt+1 = yt + μ (mt+1 − lt+1 − st+1);
end for

4. Output: L = Ln,S = Sn

3.3.3 Complexity Analysis

In our online algorithm, the costliest step is the updating step of low-rank matrix which involves

an ISVD method as described above. Thus, we will describe and analyze the complexity of this

step.

For the baseline ISVD [10], the costs of its three main steps (QR-decomposition, diagonalization
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and matrix multiplication) are O(m(r + c)2), O((r + c)3) and O((m + t)(r + c)2), respectively.

Thus, the complexity of the whole update procedure for the new columns is O((m + t)(r + c)2).

For c = 1, this procedure is applied n times to compute the SVD of the full matrix M ∈ Rm×n. As

a result, the overall complexity is O(mnr2 + n2r2) = O(mnr2) (m > n).

For the modified ISVD, considering c = 1, the computational cost of the QR-decomposition,

the diagonalization of Q and the costly matrix multiplication can be reduced to O(mk), O(k2), and

O(k3) with the modified Gram-Schmidt algorithm, sparse diagonalizations and the above decom-

position, respectively [10]. As a result, each update step has the complexity of O(mk+ k3) and the

overall complexity is O(mnk) to perform SVD on the entire matrix M incrementally (comparing

to the matrix size, the desired rank k is relatively small).

In comparison, batch (or offline) RPCA performs a full SVD and then a thresholding operation

for updating the low-rank matrix L in each iteration. The complexity of the offline SVD step is

O(m2n+mn2 + n3) [49]. For OR-PCA [41], the computational cost is O(mr2) in each iteration.

Thus, the overall complexity of OR-PCA will be O(mnr2) while the overall cost of our OLP-

RPCA is O(mnk) (in some applications such as background subtraction k is much smaller than the

estimated rank of the matrix r), which is linear in both the sample dimension and the number of

samples. Compared to the batch version, it is substantially faster than O(m2n) when k � m and

m > n.

3.3.4 Remarks

An efficient online OLP-RPCA is proposed to solve the matrix decomposition problem incre-

mentally. This online method is developed from a new LP-RPCA approach via �p-norm regulariza-

tion on both low-rank and sparse components. This chapter has mathematically provided the com-

plexity analysis for the OLP-RPCA method. The convergence analysis of the LP-RPCA method

will be presented in Appendix A. The work in this section and its corresponding experimental re-

sults have been published in the Computer Vision and Image Understanding Journal 2017. The

next section will present our proposed �p Singular Value Decomposition for matrix factorization

problem.
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3.4 Matrix Factorization: �p Singular Value Decomposition

Given a matrix X ∈ Rd×n that contains missing values, noise and outliers, this work aims to

introduce a novel RP-SVD approach using �p-norm, where 0 < p < 1, to further enhance the

robustness of SVD to deal with outliers and noise. The Singular Value Decomposition problem can

be then formulated by minimizing the reconstruction error as follows:

min
U,Σ,V

‖M � (X − UΣV�)‖p

s.t., U�U = I,V�V = I

(126)

where the left singular vectors Ui ∈ Rd and the right singular vectors Vi ∈ Rn (i = 1, · · · , r) are

orthonormal. Each has a unit length and every pair is orthogonal, i.e. U�U = I and V�V = I.

r denotes the rank of X, where r ≤ min(d, n). Σ ∈ Rr×r is a diagonal matrix containing the

square root of the eigenvalues from U or V in descending order. Far apart from the conventional

SVD method, our proposed RP-SVD approach presented in Eqn. (126) allows to decompose an

input matrix X containing missing values and outliers denoted by the weight matrix M, where

M(i, j) > 0 if the data point Xi,j exists, otherwise M(i, j) = 0. � denotes the component-wise

multiplication.

Generally, Eqn. (126) is a non-convex problem. When p = 1, the proposed SVD-�1 reformula-

tion can be redefined as in Eqn. (127) in the form of trace norm regularization,

min
U,Σ,V,E

‖M � (X − E)‖1 + λ‖E‖∗

s.t., E = UΣV�,U�U = I,V�V = I

(127)

where the parameter λ controls the trade-off between trace norm regularization and reconstruction

fidelity. Let E = UΣV� = LR, where L is an orthogonal matrix, i.e. L�L = I. Then, the problem

in Eqn. (127) can be solved in the following form [141].

min
L,R,E

‖M � (X − E)‖1 + λ‖R‖∗

s.t., E = LR,L�L = I

(128)
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where ‖E‖∗ = ‖LR‖∗ = ‖R‖∗ since L is orthogonal. In order to solve the problem in Eqn. (128),

the corresponding augmented Lagrangian function can be found and then the Alternating Direction

Method of Multipliers method can be employed to find the optimal values for three matrices L,R,E.

In this thesis, we propose RP-SVD using �p-norm to further enhance the robustness of SVD

when dealing with outliers and noise. The objective function is reformulated as follows:

min
L,R,E

‖M � (X − E)‖p + λ‖σ(R)‖p

s.t., E = LR,L�L = I

(129)

which is equivalent to

min
L,R,E

∑
i,j

g (Mi,j(Xi,j − Ei,j)) + λ
∑
j

g (σj(R))

s.t., E = LR,L�L = I

(130)

where g(·) = |·|p. The corresponding augmented Lagrangian function can be formulated as follows,

Lβ(L,R,E,Y) �
∑
i,j

g
(

Mi,j(Xi,j − Ek
i,j)
)
+
〈
∇g

(
Mi,j(Xi,j − Ek

i,j)
)
,Mi,j

(
Ek
i,j − Ei,j

)〉

+ λ
∑
j

g
(
σj(R

k)
)
+
〈
∇g

(
σj(R

k)
)
, σj(R)− σj(R

k)
〉
+ < Y,E − LR > +

β

2
‖E − LR‖2F

(131)

where Y is the Lagrange multipliers ensuring the linear constraints, β > 0 is the penalty parameter

for the violation of the linear constraints. The problem defined in Eqn. (130) can be solved using

ADMM approach to minimize the variables by iteratively solving the following convex optimization

sub-problems: ⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Lk+1 = argminL Lβ(L,Rk,Ek,Yk)

Rk+1 = argminR Lβ(L
k+1,R,Ek,Yk)

Ek+1 = argminE Lβ(L
k+1,Rk+1,E,Yk)

Yk+1 = Yk + β(Ek+1 − Lk+1Rk+1)
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3.4.1 Non-convex Optimization Method

Given Rk and Ek, find Lk+1

By fixing Rk and Ek in the iteration k, Lk+1 can be updated by solving the sub-problem as

follows:

min
L

β

2
‖(Ek + β−1Yk)− LRk)‖2F s.t. L�L = I

This optimization problem is known as the orthogonal Procrustes problem [53]. The global optimal

solution can be found by first applying SVD as [U′, S′,V′] = svd((Ek +β−1Yk)Rk�). Then, Lk+1

can be updated as follows [141],

Lk+1 ← U′V′�

Given Lk+1 and Ek, find Rk+1

In the second step, given Lk+1 and Ek, Rk+1 can be found using the following formula,

min
R

λ
∑
j

vkj σj+ < Yk,Ek − Lk+1R > +
β

2
‖Ek − Lk+1R‖2F (132)

where vkj = ∇g(σj(R
k)) and σj is the j-th singular values of the matrix Rk. Since Lk+1 is orthog-

onal, Eqn. (132) can be rewritten as,

min
R

λβ−1
∑
j

vkj σj +
1

2
‖R − Lk+1�(Ek + β−1Yk)‖2F (133)

Based on Theorem 1 in [34], the solution of (133) is given by the weighted singular value thresh-

olding (WSVT). In WSVT, the SVD is first employed, [U′, S′,V′] = svd(Lk+1�(Ek + β−1Yk)),

the optimal values of Rk+1 can be then updated by shrinking the diagonal matrix S′ via the soft-

thresholding (shrinkage) operator Tτ [x]:

Rk+1 ← U′Tλβ−1vkj
[S′]V′� (134)
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where the weights vkj are updated at each iteration as vkj = p(σk
j +ε)p−1(0 < ε � 1). The shrinkage

operator is defined as follows,

Tτ [x] = max(|x| − τ, 0)(sgn)(x) (135)

where (sgn)(x) is the sign function.

Given Lk+1 and Rk+1, find Ek+1

Given Lk+1 and Rk+1, Ek+1 can be updated using the shrinkage technique in [141],

min
E

∑
i,j

Wk
i,j(Mi,j(Xi,j − Ei,j)) +

β

2
‖E − (Lk+1Rk+1 − β−1Yk)‖2F

where Wk
i,j = ∇g

(
Mk

i,j(Xi,j − Ek
i,j)
)
= p(Mk

i,j(Xi,j − Ek
i,j) + ε)p−1. Therefore, the observed

M � E and missing values M � E in E can be updated as follows,

⎧⎪⎨
⎪⎩

M � E ← M � (X − Tβ−1W[X −
(
Lk+1Rk+1 − β−1Yk

)
])

M � E ← M � (Lk+1Rk+1 − β−1Yk)
(136)

where M is the complement of M.

3.4.2 Online Robust �p-norm SVD

This section describes how to extend our RP-SVD method to work online with the aims of reduc-

ing the complexity of the conventional SVD in terms of processing storage and computational time.

Online Robust �p-norm SVD (ORP-SVD) factorizes an input matrix column-by-column instead of

processing the whole matrix at once. Given a new column ct at time t, the singular value decom-

position of the new matrix [Xt−1 | ct] is defined as et = Ltrt, where Lt and rt are the decomposed

matrix and vector at time t, respectively. The above decomposition is repeated until all columns of

the input matrix X are processed. The final decomposition LnRn (where Rn = [r1, r2, · · · , rn] )

will be an approximated solution of the matrix decomposition problem formulated in Eqn. (130).

We extended the ADMM approach in Section 3.4.1 to solve the problem (130) incrementally.
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Instead of having a loop until converge, at each iteration for the new column ct, the online algorithm

consists of just one pass through the following update steps:

Step 1: Obtain a new vector rt ∈ Rr from the existing matrices Lt−1 and et−1

rt = argmin
r

λβ−1
∑
j

vt−1
j σj +

1

2
‖r− L�

t−1(et−1 + β−1yt−1)‖2F (137)

where the weights are denoted as vt−1
j = p(σt−1

j + ε)p−1 with σt−1
j are the singular values of the

matrix Rt−1.

Step 2: Obtain a new column et ∈ Rm from the new data column ct and vector rt

et = argmin
e

m∑
i

Wi
(t−1)(M

i
t(X

i
t − ei)) +

β

2
‖e − (Lt−1rt − β−1yt−1)‖2F (138)

where the weight values for the frame Xt−1 are defined as Wt−1 = p(Mt(Xt−1 − et−1) + ε)p−1.

Step 3: Obtain an updated matrix Lt ∈ Rm×r from the new vectors rt and et as,

Lt ← U′V′�

where [U′, S′,V′] = svd((et + β−1yt−1)r
�
t ) and yt−1 ∈ Rm.

Step 4: Update the dual variable Yt as follows,

yt = yt−1 + μ (et − Ltrt)

The update step for each column et of the matrix E is simply to apply the soft-thresholding

operator as in Eqn. (136) since it is separable for each column vector. However, the update step of

the matrix V is more complicated because of computing the singular values of a matrix involving in

SVT operator. To solve this problem, we employ the incremental SVD (ISVD) method described in

[10] to find the singular values of the new matrix without performing a full SVD and then apply a

thresholding operator on this matrix.
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3.4.3 Remarks

A RP-SVD method for analyzing two-way functional data is proposed. This chapter also de-

scribes an online version of the method (ORP-SVD) to employ online processing data. This ORP-

SVD is able to achieve real-time performance without parallelizing or implementing on a graphics

processing unit. The work in this section and its corresponding experimental results have been

published in the NIPS workshop 2015.

3.5 Conclusion

First, this chapter has identified the problems resisting the performance of the low-rank approx-

imation and the sparse representation methods in face recognition. The problems are related to the

testing stage and that the sparse components were not properly used. This chapter presented a new

framework to make a better use of sparse components resulted from low-rank decomposition in the

training phase. Using the information captured from the training stage, we successfully improve

the testing stage of the recognition process. Later, this chapter has proposed an efficient online LP-

RPCA to solve the matrix decomposition problem incrementally. This online method is developed

from a new LP-RPCA approach via p-norm regularization on both low-rank and sparse components.

In addition, this chapter presents a novel Robust �p-norm (0 < p < 1) Singular Value Decompo-

sition (RP-SVD) approach to solve the SVD problem approximately using �p-norm solution. Far

apart from the conventional SVD approaches, our proposed RP-SVD method is able to deal with

input matrices containing missing values and can find optimal solutions for the matrix completion

problems. In addition, it can also find optimal subspaces that are robust to noise and outliers.
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Chapter 4

Deep Learning Approach to Image

Analysis

In Section 3.1, we proposed a novel face recognition (FR) method based on learning low-rank

matrix and sparse variation representation to improve the performance of FR under various affecting

conditions. The main idea of this system is to learn a sample dictionary (i.e. subject identity infor-

mation) and an occlusion dictionary (i.e. corrupted or contiguous occlusion and other variations), so

that we can effectively eliminate those occlusions or corruption in both training and testing images.

This system has provided some improvements on the face recognition performance compared to

other approaches. However, it suffers from the limitation of RPCA which may not well generalize

and preserve the identity of faces after removing occlusion. Moreover, well-aligned training images

for each subject are required to build good dictionaries.

Thus, this chapter presents a robust generative model, called Robust Deep Appearance Models

(RDAMs), that can separate unwanted factors while preserving identity information. The structure

of RDAMs consists of two main components, i.e. the shape model and the texture model. Section

4.2 presents the shape modeling steps using DBM. The robust texture modeling using RDBM is

introduced in section 4.3. Finally, our proposed robust fitting algorithms are presented in section

4.4.
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Figure 4.1: The diagram of our RDAMs approach. The blue layers present the shape model with
a visible layer s and two hidden layers h1 and h2. The red layers denote the texture model with
three visible units ã, a and m, and three hidden layers gm, g1a and g2a. The green layer denotes the
appearance model consisting of a hidden layer h3

4.1 Overall Structure of RDAMs

Similar to DAMs [100], the structure of RDAMs also consists of two main components, i.e. the

shape model and the texture model. Far apart from the texture model of DAMs, our texture model

consists of a visible layer with three gating components: a, ã, and m, a binary RBM for the mask

variable m and a Gaussian DBM with the real-valued input variable a. The motivation for using this

gating term is to improve modeling and fitting of the DAMs by eliminating the effects of missing,

occluded or corrupted pixels. The schematic diagram of our proposed method is given in Fig. 4.1.

4.2 Shape Modeling

An n-point shape s = [x1, y1, · · · , xn, yn]T is modeled using a DBM with a visible layer and

two hidden layers. Given a shape s, the energy of the configuration {s,h1,h2} of the corresponding
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layers in facial shape modeling is formulated as follows:

EDBMs
(s,h1,h2; θs) =

1

2

∑
i

(si − bsi)
2

σ2
si

−
∑
i,j

W 1
ijsih

1
j −

∑
j,l

W 2
jlh

1
jh

2
l (139)

where θs = {W1,W2, σs, bs} are the shape model parameters. The bias terms of hidden units in

two layers in Eqn. (139) are ignored to simplify the equation. The probability distribution of the

configuration {s,h1,h2} is computed as:

P (s; θs) =
∑
h1,h2

exp
(
−EDBMs

(
s,h1,h2; θs

))
Z(θs)

(140)

where Z(θs) is the normalization constant. This shape model is pre-trained using one-step con-

trastive divergence (CD) learning.

4.3 Texture Modeling

Inspired by both RoBM [119] and DBM [114], we propose a new texture model approach named

Robust Deep Boltzmann Machines. Our approach uses a DBM to model “clean” data a instead of

a Gaussian RBM. There are good reasons for using DBM here. Firstly, it can efficiently capture

variations and structures in the input data. Secondly, DBM can deal with ambiguous inputs more

robustly due to its top-down feedback.

4.3.1 Robust Deep Boltzmann Machines

Given a shape-free image ã, the energy function of the configuration {a, ã,m,gm,g1
a,g

2
a} in

facial texture modeling is optimized as follows:

ERDBMg
(a, ã,m,gm,g1

a,g
2
a; θa) =

∑
i

γ2
i mi(ai − ãi)

2

2σ2
gi

−
∑
i,k

Uikmigmk +
∑
i

(ãi − b̃gi)
2

2σ̃2
gi

+
∑
i

(ai − bgi)
2

2σ2
gi

−
∑
i,j

V 1
ijaig

1
aj −

∑
j,l

V 2
jlg

1
ajg

2
al

(141)
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Figure 4.2: LEFT: Examples of automatically detected masks from the shape-free images. Top
row: shape-free images. Bottom row: detected binary masks using the technique in section 4.3.3,
RIGHT: An illustration in pose stretching detection: (a) Source image (b) Target warped shape-free
image

where θa = {V1,V2,U, σg, bg, σ̃g, b̃g} are the texture model parameters. It is noted that all the

bias terms in Eqn. (141) are ignored for simplicity. The probability distribution of the configuration

{a, ã,m,gm,g1
a,g

2
a} is computed as follow:

P (ã; θa) =
∑
g1
a,g

2
a

exp
(
−ERDBMg

(
a, ã,m,gm,g1

a,g
2
a; θa

))
Z(θa)

(142)

Given the input variables ã, the states of all layers can be inferred by computing the posterior

probability of the latent variables, i.e. p(a,m,gm,g1
a,g

2
a|ã). Therefore, the sampling can be divided

into two folds, i.e. one for the visible units and one for the hidden units. For the visible variables a

and m, the conditional distributions can be sampled as,

p(a,m|gm,g1
a, ã) = p(a|m,g1

a, ã)p(m|gm,g1
a, ã) (143)

For the hidden variables gm,g1
a,g

2
a, the conditional distributions can be sampled as follows,

p(gm,g1
a,g

2
a|a,m, ã) = p(gm|m)p(g1

a|a,g2
a)p(g

2
a|g1

a) (144)

The sampling process can be applied on each unit separately since the distribution is factorial.

Section 4.3.2 will discuss the learning procedure of this texture model.

4.3.2 Model Learning for RDBM

To pre-train our presented RDBM model, the DBM, which models “clean” faces, is first trained

with some “clean” images and then the parameters in the RDBM model are optimized to maximize

the log likelihood as follows,

θ∗a = argmax
θa

logP (ã; θa) (145)
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The optimal parameter values can then be obtained using a gradient descent procedure given by,

∂

∂θa
E [logP (ã; θa)] = EPdata

[
∂ERDBMg

∂θa

]
− EPmodel

[
∂ERDBMg

∂θa

]
(146)

where EPdata [·] and EPmodel [·] are the expectations respecting to data distribution and distribution es-

timated by the RDBM. The two terms can be approximated using mean-field inference and Markov

Chain Monte Carlo (MCMC) based stochastic approximation, respectively.

In our method, pre-training the parameters of the DBM on “clean” data first will make the

process of learning the texture model faster and much easier. Similarly, we also propose to first

learn the parameters of the binary RBM (to represent the mask m) on pre-defined and extracted

masks (as shown in Fig.4.2-LEFT) instead of randomizing the parameters. Then, the next question

is how to generate the training masks from the training set. An automatic technique is presented to

extract such training masks for the binary RBM in the next section 4.3.3.

4.3.3 Learning Binary Mask RBM

This section aims to generate masks from the training images having poses and occlusions, e.g.

sunglasses and scarves. We consider learning three types of binary mask, i.e. sunglasses, scarves

and pose stretching. A binary RBM is learned to represent each type of mask. We will focus on the

last type, i.e. pose stretching since it is the hardest.

In 2D texture model, warping faces with a large pose (e.g. larger than ±45◦) will likely cause

stretching effects on half of the faces since the same pixel values are copied over a large region (see

Fig. 4.2-RIGHT). Therefore, we propose a technique that can detect such stretching regions during

warping process. The main idea is to count the number of unique pixels in the source triangle that are

mapped to the pixels in the target triangle. As we know, a source pixel can be mapped to multiple

target pixels due to interpolation. The degree of a target triangle being stretched is equivalent to

p = (n0
N ), where p = 1 means there is no stretching, n0 and N are the number of unique pixels and

the total number of pixels in the corresponding source triangle, respectively. Finally, we can use the

detected regions as a mask to pre-train the above robust texture model.
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4.4 Model Fitting in RDAMs

With the trained shape and texture models, the process of finding an optimal shape of a new

image I can be formulated as finding an optimal shape s that maximizes the probability of the

shape-free image as s∗ = argmaxs P (I(W(rD, s))|s; θ).

During the fitting steps, the states of hidden units g1
a are estimated by clamping both the cur-

rent shape s and the warped texture ã to the model. The Gibbs sampling method is then applied

to find the optimal estimated “clean” texture a of the testing face given the current shape s. Let

a = σgV
1g1

a + bg be the mean of the Gaussian distribution, we have P (I(W (rD, s))|g1
a; θ) =

N (a, σ2
gI) where I is the identity matrix. The maximum likelihood can then be estimated as

s∗ = argmaxsN (I(W(rD, s))|a, σ2
gI) = argmins

1
σ2
g
‖I(W(rD, s))− a‖2.

This brings us to the non-linear least squares problem solved in image alignment. Notice that a

is the reconstructed “clean” texture while I(W (rD, s)) is the warped texture from the input image.

If the input image contains occlusion or corruption, it is clear that the above square error will not

reflect the goodness of the current shape s. Thus, solely using �2-norm may limit the performance

of shape fitting and reconstruction of the models. Since our proposed model can generate a mask of

corrupted pixels, we propose to incorporate the mask m into the original objective function as:

s∗ = argmin
s

‖m� (I(W(rD, s))− a) ‖2 (147)

where � is the component-wise multiplication. There are four main types of analytic shape fitting

approaches: forward additive, forward compositional, inverse compositional and bi-directional. The

modified forward additive, forward compositional and inverse compositional algorithms are intro-

duced in sections 4.4.1, 4.4.2 and 4.4.3, respectively.

4.4.1 Forward Additive Algorithm

Forward Additive algorithm, also known as Lucas-Kanade algorithm, was first proposed for

image alignment by Lucas and Kanade [87]. The idea of the algorithm is to find the best warp

parameters that minimize the sum of squares error between a fixed template image and an input

image I when warped. The warp parameters are iteratively updated by adding Δs each time, thus,

the algorithm is considered as an additive approach. Using this idea, we solve the problem in Eqn.
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(147) by linearizing it and then solve it iteratively with respect to an increment of the parameters

Δs. Then we minimize the following:

Δs = argmin
Δs

‖m� (I(W(rD, s)) + JIΔs− a) ‖2 (148)

where JI = ∇I ∂W
∂s is the Jacobian matrix of the image I .

The first step is to optimize Eqn. (148) with respect to Δs and then update s → s + Δs. This

gives us the following:

Δs = H−1JT
I (m� (I(W(rD, s))− a)) (149)

where the Hessian matrices H are given by

H = (m � JI)
T (m � JI) (150)

In general, the computations of Hessian and Jacobian matrices are the costliest steps and they need

to be re-computed at each iteration. Thus, the Lucas-Kanade algorithm is slow. The modified

Forward Additive algorithm with the use of a mask m is summarized in Algorithm 7.

Algorithm 7 − Forward Additive

1. Pre-compute: the gradient, the Jacobian and the Hessian matrices need to be recomputed at each
iteration.
2. At each iteration:

(I) Perform warping operator W to obtain warped texture I(W(rD, s))
(II) Compute the texture reconstruction error (m � (I(W(rD, s))− a))
(III) Compute ∇I ∂W

∂s (m � (I(W(rD, s))− a))
(IV) Compute the Hessian matrix using Eqn. (150)
(IV) Compute Δs using Eqn. (149)
(IV) Update new shape as s → s+Δs

4.4.2 Forward Compositional Algorithm

For computing the warp parameters, the forward additive or Lucas-Kanade algorithm estimates

a small offset from the current warp parameters. In the compositional algorithms, the composition

of an incremental warp and the current warp is computed instead. Applying to our problem in Eqn.

(147), we have the following minimization problem:

Δs = argmin
Δs

‖m� (I(W(W(rD,Δs), s))− a) ‖2 (151)

The forward compositional algorithm can be used to solve the problem in Eqn. (151) by first

linearizing the image I around s. An update Δs is found using least-squares, and s is updated from
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s ← s ◦Δs, where ◦ denotes the composition of two warps. Noting that the algorithm is processed

with occluded/missing data being ignored while computing the residual error. The linearization

applied to the test image side via first order Taylor expansion gives us:

Δs = argmin
Δs

‖m� (I(W(W(rD, 0), s)) + JIΔs− a) ‖2 (152)

When s = 0, we have an identity warp, i.e. W(rD, 0) = rD. The key difference between

forward additive and forward compositional is that the Jacobian ∂W
∂s is computed at (rD, 0). Thus,

it is a constant and can be pre-computed. Not having to compute the Jacobian ∂W
∂s in each iteration

reduces the computational cost despite that the compositional update step is costlier.

Algorithm 8 − Forward Compositional

1. Pre-compute: The Jacobian ∂W
∂s at (rD; 0)

2. At each iteration:

(I) Perform warping operator W to obtain warped texture I(W(rD, s))
(II) Compute the texture reconstruction error (m � (I(W(rD, s))− a))
(III) Compute ∇I ∂W

∂s (m � (I(W(rD, s))− a))
(IV) Compute Δs using Eqn. (149)
(V) Update the shape parameters by composing the warp operator s → s ◦Δs−1

4.4.3 Inverse Compositional Algorithm

The inverse compositional algorithm is a modification of the forward compositional algorithm

where the roles of the model image and testing image are reversed. The inverse compositional

algorithm tries to minimize the incremental warp computed with respect to the model image a

instead of with respect to I(W(rD, s)). Changing the roles of I(W(rD, s)) and a in Eqn. (152)

gives us

Δs = argmin
Δs

‖m � (I(W(rD, s))− a(W(rD,Δs))) ‖2 (153)

with respect to Δs and then updating the parameters as s ← s ◦Δs−1, where ◦ denotes the composi-

tion of two warps. The solution of the least squares problem above is Δs = H−1JTa (m� (I(W(rD, s))− a))

where Ja = ∇a∂W
∂s is the Jacobian matrix of the model image a. The Hessian matrices H are then

given by H = (m � Ja)
T (m � Ja).
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Algorithm 9 − Inverse Compositional

1. Pre-compute: The gradient ∇a, the Jacobian ∂W
∂s at (rD; 0), the steepest descent SD = ∇a∂W

∂s , the
Hessian matrix H = SDTSD
2. At each iteration:

(I) Perform warping operator W to obtain warped texture I(W(rD, s))
(II) Compute the texture reconstruction error (m � (I(W(rD, s))− a))
(III) Compute ∇a∂W

∂s (m � (I(W(rD, s))− a))
(IV) Compute Δs using Eqn. (153)
(V) Update the shape parameters by composing the warp operator s → s ◦Δs−1

4.5 Conclusion

In this chapter, the novel Robust Deep Appearance Models have been proposed to deal with

large variations in the wild such as occlusions and poses. Moreover, the proposed fitting algorithms

fit well with the new texture model such that it can make use of the occlusion mask generated by

the proposed model.
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Chapter 5

Experimental Results

This chapter compares our robust face recognition framework with other sparse representation

based approaches. We also compare our LP-RPCA, OLP-RPCA, and RP-SVD methods against

state-of-the-art algorithms in the problem of matrix decomposition and factorization. Finally, the

proposed RDAMs approach is compared with the previous DAMs model to show our remarkable

reconstruction results even when faces are occluded or having extreme poses.

5.1 Robust Face Recognition via Sparse and Low-rank Representa-

tion

This section presents experimental results to show the performance of the robust face recogni-

tion framework using RPCA and dictionary learning compared to other recent methods. All experi-

ments are conducted using the two well-known databases: AR and Extended Yale B.

5.1.1 Datasets

We mainly test our approach using images in AR [89] and Extended Yale B (EYB) [48] face

databases. AR database contains 100 subjects (50 male and 50 female) and each subject has 26 im-

ages (14 normal images with different lighting and expression, six occluded images with sunglasses

and six for scarf). On the other hand, the EYB database contains images of 38 persons taken at 64

different illumination conditions and at 9 distinct viewpoints for each illumination condition except
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the first 10 subjects only have one (frontal) viewpoint for each illumination.

5.1.2 Face Recognition with Standard Databases

The purpose of this experiment is to evaluate the recognition performance of our method. We

compare our method with two representative methods including: SRC [130] and LR [28]. Since

GSRC [134] is based on Gabor feature, we did not include it in our comparisons. Our goal is to

compare with non-feature based methods only. We test those methods with real face disguises and

small illumination variations on the AR database and illumination variations on the EYB database.

We report the average recognition rates of a 5-fold Cross-validation.

AR Databases

Most of prior works use this database for evaluation their methods with occluded (sunglasses

or scarf) images. We set up three scenarios similar to what is done in [28] where both neutral and

corrupted images are used for training and testing. The three scenarios are called sunglasses, scarf

and sunglasses + scarf. We added a fourth scenario which is illumination + expression. The size of

original images is 165 × 120. PCA is applied to reduce their dimensionality to r = 500.

Sunglasses: We use a training set of 7 non-occluded images from session 1 and one randomly

selected occluded (by sunglasses) images for each person. The algorithms are tested with a testing

set of 7 non-occluded images from session 2 and 5 remaining occluded (by sunglasses) images for

each person. In total, we train with 8 images and test with 12 images.

Scarf: Similar to the previous case, we also use a training set of 7 non-occluded images from

session 1 and one randomly selected occluded (by scarf) images for each person. The algorithms

are tested with a testing set of 7 non-occluded images from session 2 and 5 remaining occluded (by

scarf) images for each person. In total, we train with 8 images and test with 12 images.

Sunglasses + scarf (Mixed): We also use a training set of 7 non-occluded images from session

1 and two randomly selected occluded images (one with sunglasses and one with scarf) for each

person. The algorithms are tested with a testing set of 7 non-occluded images from session 2 and

10 remaining occluded (sunglasses or scarf) images for each person. In total, we train with nine

images and test with 17 images.
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Illumination + expression: We use a training set of 7 randomly selected non-occluded images

for each person and a testing set of 7 randomly selected non-occluded images for each person. In

total, we train with 7 images and test with 7 images.

The recognition rates compared with other methods are shown in Table 5.1

Table 5.1: Recognition rates of our method and other methods on the AR database

Dim 500
Illumination

+ expression
Sunglasses Scarf Mixed

SRC [130] 97.29 % 87.53% 77.33% 78.27%
LR[28] 98.08% 88.15% 78% 79.31%
LR+SI[28] 97.91% 88.2% 77.83% 80.87%
LRR*[139] - - 87.3% 83.4% 82.4%
SSRC [32] 98.8 % 94.22% 89.25 % 90.57%
Ours 99.09% 93.95% 91.72% 91.27%

In all experiments, the recognition rates of our method are higher than the SSRC [32], LR [28]

and SRC [130]. Moreover, the results of our method drop less significantly than other methods

as more and more difficult testing images are used. For example, our method only drops about

2 - 5% (i.e. from 99.09 % to 93.95% and 93.95% to 91.72%) in the first three scenarios while

other methods decrease from 4 - 10% in those three scenarios. This shows that our method is more

robust to occlusions than others. Images occluded by scarf (40% occlusion) are more difficult to

recognize than images occluded by sunglasses (20% occlusion). Therefore, the recognition rate of

the experiment with scarf should be the lowest. The experiment with a mix of sunglasses and scarf

should be the average of the sunglasses and scarf scenarios. However, when we mix images with

sunglasses or scarf in the training and testing set, the results of our method in this scenario is the

lowest among the four scenarios. This is because our method is based on an occlusion dictionary. It

is more difficult to sparsely represent testing images over a mixed occlusion dictionary.

We did re-implement all the methods in Table 5.1 except the method in [139]. Compared to

[139], the results as quoted in their paper are much lower than ours even they used higher dimen-

sional inputs (2200). With regard to [32] our results are either comparable (for sunglasses) or better

(for the other cases). Finally, from this experiment, it is worth noticing that LR [28] method with

incoherence structural does not help improving the recognition rate much. It is totally different from

what is claimed in [28].
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Figure 5.1: Comparison recognition rates between SSRC and our method under different scenarios
on the AR database

We also did a quick comparison with the two latest works [139] and [32]. Compared to [139],

our results are better (for sunglasses) or comparable (for the other cases). With regard to [32] the

results as quoted in their paper are either similar to or better than ours.

YaleB

The extended Yale B (EYB) database is a commonly used database. We set up the experiment on

EYB database similar to what is done in [28]. Only frontal images taken under varying illumination

conditions are used for training and testing. The database is randomly split into two halves, one for

training and one for testing. Each half contains 32 images for each subject.

Table 5.2: Recognition rates of our method, LR, SRC and GSRC on the Extended YaleB database

Our method LR [28] SRC [130] SSRC [32]

97.47% 95.05% 95.03% 96.67%

Again, the recognition rate of our method is the highest among all methods under comparisons.

Since the training and testing images which are used here only contain illumination variations, it is

similar to the case of illumination and expression in the AR database. However, the changing of

illumination in EYB database is much more severe than in AR database. Moreover, EYB database

contains several bad images (i.e. completely dark) due to image aquisition process. Therefore,

in general, the recognition rates on EYB are not as high as on the AR database. The basic SRC
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method [130] has the lowest rate of 94.25% while LR method [28] could improve not much over

this. Compared to [32], our results are better since our method is more robust to corruptions in this

database.

5.1.3 Computational Time

Besides having good recognition rate, computational time is another crucial aspect for face

recognition in real applications. Since the running time on testing phase is more important than on

training phase, we only record the average time per one testing sample on the EYB database using a

computer with Intel Core i7 3.4GHz and 8 GB RAM. All methods are re-implemented with Matlab

2012a.

Table 5.3: Average running time (seconds) of different methods on the AR and Extended YaleB
database

Methods SRC [130] SSRC [32] Our method

A
R Time (s) 0.18 0.16 0.07

Dict’s size 800 100 + 800 800 + 40

Y
a
le

B Time (s) 0.23 0.22 0.10
Dict’s size 1216 38 + 1216 1216 + 40

From the Table 5.3, we can see that our method is faster than other methods under comparisons.

Because all the methods used the same testing samples in each database, the computation time only

depends on the size of dictionaries the methods used. Both SRC and LR methods use a sample

dictionary with the size equal to the number of training samples. As a result, the running time of

those two methods are close. Although our method uses two dictionaries i.e. the sample dictionary

and occlusion dictionary, the learned dictionaries have the size considerably smaller than the other

two methods. Therefore, the average running time of our method is less than others.

We conducted another experiment to show the effect of the size of the occlusion dictionary.

Increasing the size of the dictionary could help improving the recognition rate, but more time is

needed for testing. This is because one need to find the best representation over a bigger dictionary

with more variables to optimize. The results are showed in Fig. 5.2.
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Figure 5.2: Relationship between recognition rate, testing time and the size of dictionary on the AR
database

5.2 Matrix Decomposition: LP-RPCA and OLP-RPCA

In this section, we evaluate our proposed method in numerous applications, i.e. matrix decom-

position on synthetic data, face modeling, online background subtraction and video inpainting.

In these experiments, the competing methods include various Robust PCA methods: �1-based

representative methods, e.g. RPCA via inexact Augmented Lagrange Multiplier (ALM) Method

[80], BRPCA [33], VBRPCA [2], PRMF (parallelized) [127] ; �p-based representative non-convex

methods, e.g. NCADMM [24], pRost [57], NRPCA [98]; and online representative algorithms,

e.g. OR-PCA [41], GRASTA [58], GOSUS [131], OPRMF [127]. All methods have Matlab codes

available online, except for the NCADMM [24] method, which we re-implemented by ourselves.

All the experiments were run on a system of Core i7@2.5GHz CPU,16.00GB RAM.

5.2.1 Evaluations on Synthetic Data

We conducted four experiments using synthetic data to evaluate the performance of our method

(LP-RPCA) with different types of noise. First, we randomly generated a low-rank matrix L� ∈ R400×400

with a rank r = 20. The matrix L� is computed as L� = ABT where two random matrices

A,B ∈ R400×r drawn from N (0, 1). Then, we added the matrix L� and a sparse noisy matrix

S� ∈ R400×400 together to form an input matrix M. We used different types of randomly gener-

ated sparse matrix S� in each experiment including: (1) no noise (Gaussian noise with N (0, 0)) (2)

10% of uniform noise ranged within [−10, 10] (3) Gaussian noise with N (0, 1) (4) mixture of 20%
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uniform noise and 80% Gaussian noise N (0, 0.01). Finally, the matrix M was used as input for all

competing methods to recover the original low-rank matrices L� and the sparse matrices S�. Each

experiment was run 20 times (with different generated matrices) to record the averaging results.

We evaluated the performance of all methods using three criteria: (1) relative error (RE):

‖(L̂,Ŝ)−(L�,S�)‖F
‖(L�,S�)‖F+1 where (L̂, Ŝ) and (L�,S�) denote the reconstructed matrices and the ground truth

matrices, respectively. (2) estimated rank (ER): the rank of L̂ is computed based on SVD of L̂ as

the number of eigenvalues greater than T , where T = 400× eps(‖L̂‖2) (eps is the floating-point

relative accuracy). (3) computational time (t): average running time in seconds on each matrix.

All methods were run with the best parameters and the average results in each experiment are

reported in Table 5.4. Except for RPCA, we chose λ = 1√
(400)

= 0.05 and for LP-RPCA, the

parameter λ is set as λ = 1

((p/2)∗
√

(400))
(we empirically determined this formula) and the parameter

p is chosen as described in the next section. The proposed LP-RPCA achieves better reconstruction

results in terms of RE comparing with the other methods. Particularly, the advantage of LP-RPCA

tends to be in the cases of impulsive noise, Gaussian noise and mixture noise. Because the �p-norm

allows the hypothesis that the underlying noise is sparse to be violated (e.g. Gaussian and mixture

noise) as compared to the �1-norm, this helps LP-RPCA handle Gaussian noise and mixture noise

well enough. It is worth noting that although LP-RPCA does not perform as good as pRost in

the noiseless case, it shows that our linearization scheme for �p-norm (i.e. the first-order Taylor

expansion) brings the reconstruction result closer to the perfect reconstruction (i.e. the ideal �0

case) than the �1-norm. On the other hand, LP-RPCA always predicts the rank correctly. Since

NRPCA and pRost methods require the rank to be provided before running the algorithms, ER does

not apply to those two methods.

Selection of the parameter p

In this section, we show how the value of p affects the convergence properties and the recon-

struction errors. The sketch of the convergence proof of our method is given in the Appendix. Here,

we only show empirically the convergence properties of the LP-RPCA algorithm by using synthetic

data. Theorem 1 (see Appendix A) shows that the objective function is monotonically decreasing.

When a suitable parameter p is chosen, LP-RPCA algorithm converges fast and leads to an accurate
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Figure 5.3: LEFT: Objective function value and relative error (RE) of LP-RPCA algorithm on
the synthetic data while varying p. (a) Shows the convergence curves of LP-RPCA algorithm.
(b) Shows the performance (RE) of of LP-RPCA algorithm. RIGHT: Illustration of successfully
recovered cases for varying ranks and sparsity, computed by RPCA and LP-RPCA. Given a pair
(r, q), the white region represents all the 10 folds are successfully recovered, and black means all
folds are failed.

solution. Fig. 5.3-LEFT: (a) shows the objective function value for varying p = 0.1, 0.5 and 0.9.

We also plotted the graph (see Fig. 5.3-LEFT (b)) illustrating how the performance in terms of RE

changes while varying p, where p ∈ [0.1, 1]. From Fig. 5.3-LEFT (a) and (b), we can observe that a

large value of p will lead to faster convergence, while a small value of p will lead to more accurate

solution. Thus, p should not be too large nor too small. We empirically observe that p = 0.1 is a

suitable value for synthetic data.

Phase Transition in rank and sparsity

The aim of this experiment is to demonstrate the recovery ability of our LP-RPCA method on

various rank of matrices corrupted with different sparsity errors. We randomly generated a low-rank

matrix L� ∈ Rm×n with a rank r. We considered m = n = 400 in this experiment. The matrix L�

was computed as L� = ABT where two random matrices A,B ∈ Rn×r drawn from N (0, 1/n).

Then, for the sparse error matrix S� ∈ Rm×n, the values of its entries were drawn from a Bernoulli

distribution with a probability 1 − q for zero values and a probability q/2 for ±1 values. Finally,

we added the matrix L� and a sparse noisy matrix S� together to form an input matrix M and then

decomposed M using Algorithm 1. For each experiment, i.e. each pair of (r, q), the algorithm

was run 10 times (with different randomly generated matrices) to record the averaging results. An

experiment is marked as being successful if the recovered L̂ satisfies ‖L̂−L�‖F
‖L�‖F ≤ 10−3. We chose

50 values of r ∈ [0.01, 0.5] × n and 50 values of q ∈ [0.01, 0.5] to compare with the original
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RPCA method. The results are shown in Fig. 5.3-RIGHT. A larger white region in Fig. 5.3-

RIGHT (b) means that our method can handle matrices with lower sparsity (i.e. less zero values)

and higher rank. In other words, our LP-RPCA is more tolerant to the violation of the assumption

that decomposed matrices are low-rank and sparse than RPCA. This is gained from the �p-norm that

we used in our objective function.

5.2.2 Face Modeling

This experiment evaluates LP-RPCA in the face modeling application to remove unwanted fac-

tors, e.g. noise, shadows, darkness, etc., and produce better looking images. We used the extended

Yale B face database, which consists of 64 face images (in different lighting conditions) per subject

with the size of 64 × 64. For each subject, we created a data matrix M ∈ R4096×64. Each column

of the matrix M is a face image of the corresponding subject. We then decompose the matrix as

M = L + S where each column of L is a reconstructed face without the shadows. Fig. 5.4 shows

typical reconstructed faces of the subject No. 13 from all methods. The average Peak Signal-to-

Noise Ratio (PSNR) values between the normal frontal face and the reconstructed faces are shown

for each method in Fig. 5.4. We chose the best parameters (p and λ) in the same way as described in

the synthetic data evaluation section. Our proposed method and others are able to remove shadows

and dark areas from the faces. However, our method performs better in the last two rows (types) in

the way that it does not create any artificial effects on the faces. In addition to qualitative evaluation,

we computed the average PSNR metric to provide a better insight for quantitative evaluation of the

reconstructed faces. We chose the first face image of this subject without having any lighting con-

dition, i.e. normal or standard illumination, as the reference image for calculating the PSNR. Our

proposed method achieves the highest PSNR value among all competing methods. This shows that

face reconstructed from our method is closer to the reference face image. Thus LP-RPCA method

successfully eliminates shadows or lighting conditions from face images. Moreover, we can apply

OLP-RPCA to reconstruct new images without running LP-RPCA method on the whole training

data matrix M again. This is one of the potential applications of our online approach.
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Org RPCA NCADMM BRPCA VBRPCA NSA pRost LP-RPCA

PSNR 58.9194 57.3234 59.742 59.812 59.3575 59.1468 60.7302

Figure 5.4: Columns from left to right: original face images of subject No. 13, reconstructed
faces using �1-RPCA, non-convex ADMM (NCADMM), BRPCA, VBRPCA, NSA, pRost and our
method (LP-RPCA). Rows from top to bottom: typical types of illumination.

5.2.3 Online Background Subtraction via OLP-RPCA

In this section, we evaluate our method on the online background subtraction. This application

involves the detection of foreground and background in a video from a surveillance camera cap-

turing moving objects in a frame-by-frame manner. Our method and other methods were tested on

three types of real sequences: baseline and intermittent object motion from CDW-2014 dataset [54].

We also compared with other offline algorithms which process the whole video at every step. All

benchmark results for both offline and online methods are shown in Fig. 5.5 and Table 5.5 with

the average F-measures of the illustrated frames. We down-sampled all frames to 160 × 120 and

used the same subspace dimension (rank r = 2) for all requiring methods (i.e. pRost, GRASTA,

OR-PCA and OPRMF). Our offline and online methods both achieve the best F-measures for base-

line and intermittent object motion categories. Although the precision of our methods is not as

high as other methods, we have the highest recall rate. In other words, our methods capture more

foreground pixels with a good accuracy (See Fig. 5.5) and result in a balanced F-measure.

From Tables 5.5 and 5.6, we can see that our online method processes each video frame in

the shortest time (0.003s± 6e-4 and 0.001s± 2e-5) despite the length of the input videos ranging

from 1000 to 2000 frames. To empirically verify the complexity analysis in Section 3.3.3, we
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Original Ground truth OLP-RPCA OR-PCA GRASTA RPCA NRPCA

F-measure 0.85288 0.77077 0.72558 0.75249 0.77299

Figure 5.5: From top to bottom: the “highway”, “office”, “pedestrians” and “PETS2006”’ video
frames No. 690, 900, 630 and 880, respectively. From left to right: original frames, ground truth and
foreground estimated by OLP-RPCA (online version), OR-PCA, GRASTA, RPCA and NRPCA.

Table 5.5: Average results of the background subtraction on baseline videos (“highway”, “office”,
“pedestrians” and “PETS2006”) (more than 1000 frames per video with the size of 160 × 120) in
the dataset CDW 2014 [54]. TPF - Time per frame (second)

Methods Recall Precision FMeasure TPF (s)

Offline processing

RPCA (Lin et al. 2010) 0.699 0.856 0.739 0.16
PRMF (Wang et al. 2012) 0.827 0.772 0.793 0.014

VBRPCA (Babacan et al. 2012) 0.753 0.855 0.779 0.23
pROST (Hage et al. 2014) 0.792 0.809 0.785 4.065

NRPCA (Netrapalli et al. 2014) 0.688 0.782 0.702 0.035
LP-RPCA 0.845 0.793 0.81 0.139

Online processing

OR-PCA (Feng et al. 2013) 0.693 0.942 0.791 0.007
GRASTA (He et al. 2012) 0.637 0.857 0.728 0.032
GOSUS (Xu et al. 2013) 0.784 0.399 0.492 1.298

OPRMF (Wang et al. 2012) 0.736 0.762 0.739 3.937
OLP-RPCA 0.898 0.829 0.858 0.003

conduct another experiment. In this experiment, we evaluated the complexity of online methods

under various data scaling (see Fig. 5.6) on the video “PETS2006”. The results show that the

complexity of OLP-RPCA is linear in both the sample dimension and the number of samples since

the processing time for each frame increases linearly as bigger frame size is processed.
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Table 5.6: Average results of the background subtraction on intermittent object motion videos
(“abandonedBox”, “parking”, “sofa”, “streetLight”, “tramstop”, “winterDriveway”) in the dataset
CDW 2014 [54]

Methods Recall Precision FMeasure TPF (s)

Offline processing

RPCA [80] 0.391 0.72 0.474 0.185
PRMF [127] 0.482 0.505 0.436 0.008

VBRPCA [2] 0.506 0.62 0.504 0.068
pROST [57] 0.551 0.393 0.381 0.212
LP-RPCA 0.655 0.351 0.349 0.068

Online processing

OR-PCA [41] 0.655 0.351 0.349 0.068
GRASTA [58] 0.319 0.448 0.341 0.017
GOSUS [131] 0.444 0.3 0.307 0.175
OLP-RPCA 0.739 0.379 0.428 0.001

5.2.4 Video Inpainting via OLP-RPCA

In this section, we apply our OLP-RPCA method to video inpainting. Fig. 5.7-LEFT shows

the results of applying our method on the video “jumping girl” taken from [129]. Video inpainting

first needs a mask for the object being removed. This mask is usually created manually. In this

experiment, we want to remove the moving (or jumping) girl in the video. Thus, to create the mask

for inpainting, we used the foreground (i.e. moving objects) detected by our OLP-RPCA (see Fig.

5.5 for an example). However, the foreground may include some unwanted parts of the standing

girl since her hands are moving. Thus, we used the provided mask of the waving girl from [129]

to exclude the unwanted moving parts from the foreground. After having the correct mask, video

inpainting finds suitable information to fill the masked areas. The background image (i.e. the low-

rank matrix) obtained from OLP-RPCA method is used to fill the missing regions in each incoming

frame. Thus, unwanted moving objects can be removed completely without leaving any artifact in

the recovered regions. This experiment shows another potential application of our online approach.

Furthermore, we use the horizontal slices (or xt projection) [99] from the sequence to analyze

and compare the input and the inpainted sequence (See Fig. 5.7-RIGHT). A horizontal slice (i.e. a

row in the xt projection) is the projection along the x-axis of a frame and all slices are stacked to

form the xt projection. As we can see that Fig. 5.7-RIGHT (a) shows the low-rank property of the

input video (i.e. a large green area). We used this property to remove the jumping girl (highlighted
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Figure 5.6: Processing time per frame TPF (seconds in log scale) of the online methods for several
image scalings. Scaling is relative to 720× 576 videos having 1200 frames.

Figure 5.7: LEFT: Video inpainting application using the video “jumping girl” from [129]. Our
OLP-RPCA method removes the moving girl while keeping the other girl and background without
any artifact. RIGHT: (a) shows the xt projection of the input video with the position of the jumping
girl (red) and the waving girl (blue) highlighted. (b) shows the xt projection of the inpainted video
without any trace of the jumping girl.

in red) from the video while keeping the standing girl (highlighted in blue) (see Fig. 5.7-RIGHT

(b)). In addition, a highlight video (“Video inpainting demo.mp4”) attached in the supplementary

material will emphasize the advantages of our method.

5.2.5 Image Denoising

This section aims at demonstrating the strength of our method (LP-RPCA) on image denoising.

Two common types of noise are investigated: impulsive and Gaussian noise. We used three testing
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facade512 building512 woven512

lena512 man512 peppers512

Figure 5.8: 1st row: our three testing images (“facade512”, “building512” and “woven512”), 2nd

row: three standard testing images (“lena512”, “man512” and “pepper512”)

Figure 5.9: Illustration of noisy and denoised images: 1st row are text and Gaussian noise (pσ =
0.95) added images, 2nd row are denoised images using K-SVD, 3rd row are denoised images using
our method (LP-RPCA).

90



0.4 0.5 0.6 0.7 0.8 0.9

28

30

32

34

36

38

40

42

44

p
σ

P
S

N
R

 (
d

B
)

facade512

 

 
K−SVD

l
0
 based

RPCA

Ours

0.4 0.5 0.6 0.7 0.8 0.9

18

20

22

24

26

28

30

p
σ

P
S

N
R

 (
d

B
)

building512.png

 

 

K−SVD

l
0
 based

RPCA

Ours

0.4 0.5 0.6 0.7 0.8 0.9

23

24

25

26

27

28

29

30

p
σ

P
S

N
R

 (
d

B
)

woven512.png

 

 
K−SVD

l
0
 based

RPCA

Ours

0.4 0.5 0.6 0.7 0.8 0.9

23

24

25

26

27

p
σ

P
S

N
R

 (
d

B
)

lena512.png

 

 
K−SVD

l
0
 based

RPCA

Ours

0.4 0.5 0.6 0.7 0.8 0.9

23

24

25

26

p
σ

P
S

N
R

 (
d

B
)

man512.tiff

 

 
K−SVD

l
0
 based

RPCA

Ours

0.4 0.5 0.6 0.7 0.8 0.9

23

24

25

26

27

p
σ

P
S

N
R

 (
d

B
)

peppers512.tiff

 

 
K−SVD

l
0
 based

RPCA

Ours

Figure 5.10: PSNR results for image denoising. Gaussian noise, taken up to 95% of the pixels in
the testing image, was added. There are big differences in terms of PSNR in the first three images.

images (“facade512”, “building512” and “woven512”), which show certain repeating patterns, to-

gether with three standard testing images (“lena512”, “man512” and “pepper512”) (see Fig. 5.8).

All testing images have the size of 512 × 512. Our method successfully removes the text as well as

the Gaussian noise added to all the testing images as shown in Fig. 5.9. The denoised results of the

last three images are not as good as the first three due to the difference in image structures.

To show the influence of image structures on denoising algorithms, we conduct another exper-

iment by adding various percentages of Gaussian noise to the testing images. We compared our

method with two dictionary-based denoising methods: K-SVD based dictionary learning method

[35], the �0-norm based dictionary learning method [5] and the low-rank approach: the �1 Robust

PCA using ALM [80]. The PSNR values for all the methods are shown in Fig. 5.10. For the

RPCA-based approaches, the matrix M, which is the entire image, will be decomposed into a clean

image L and noise S. K-SVD and the �0-norm based dictionary learning method give higher PSNR

results compared to two other RPCA approaches in the standard testing images. On the contrary,

two RPCA approaches yield better PSNR results when denoising the images with patterns. This
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shows that RPCA can denoise well on certain types of images (i.e. repeated pattern images) that

have the low-rank properties. Our method improves the results of the original �1 RPCA and brings

PSNR closer to the results of those dictionary based methods.

5.3 Matrix Factorization: RP-SVD

In this section, we will evaluated our proposed RP-SVD method on synthetic data and real-world

data, i.e. face images and 3D structure from motion.

5.3.1 Synthetic Data

In this experiment, an input matrix X0 ∈ R400×500 is randomly generated. Elements X0i,j

are drawn from an uniform distribution between [−1, 1] independently. Some elements are then

randomly selected as missing values by setting the corresponding entries in the mask matrix M to

zeros. The missing ratio is set to 20% of the number of entries. In addition, in order to simulate

outliers and/or noise, uniformly distributed noise over [−5, 5] are added to 10% of the observed

elements in X0 and Gaussian noise with σ = 0.01 are also added to all elements, respectively,

to form a new matrix X. The comparison algorithms, i.e. SVD (Matlab), ROBSVD [83], RSVD

[65], ROBRSVD [137] and our proposed RP-SVD, factorize the noisy/outlier matrix X into sub-

spaces. Then, the reconstructed matrices X̂ are computed. The reconstruction errors are measured

as OER�1 = ‖X0 − X̂‖1/(m × n). Table 5.7 shows the average errors and processing time (in

second) on 500 different matrices X. We also perform two experiments with various missing data

and outlier ratios. First, the missing data ratios are set from 10% to 90%. The average �1-norm er-

rors (OER�1) over observed entries are recorded with the outlier ratios fixed at 20% of the observed

entries. The first experiment is repeated 100 times for each level of missing data. Then, the missing

data ratios are fixed to be 30%, and the outlier ratio is varied from 10% to 25%. Similarly, we repeat

100 times for each outlier ratio level. The results (the average �1-norm errors in log scale) of two

experiments are shown in Fig. 5.11 (a).
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Table 5.7: Evaluation Results on Synthetic Data.

Methods
X0 X0 + noise X0 + outlier X0 + noise + outlier

OER�1 Time OER�1 Time OER�1 Time OER�1 Time

SVD 1.6e-15 0.022 0.005 0.041 0.5 0.04 0.5 0.04(±1.3e-16) (±6.4e-6) (±3e-3) (±3.3e-4)

ROBSVD [83] 0.088 0.34 0.088 0.36 0.137 0.23 0.14 0.25(±3e-3) (±3e-3) (±2e-3) (±2e-3)

RSVD [65] 0.305 667.3 0.305 694 0.55 728 0.55 613(±8e-3) (±9e-3) (±6e-3) (±4e-3)

ROBRSVD [137] 0.3 884 0.302 677 0.33 795.4 0.33 771.4(±8e-3) (±9e-3) (±8e-3) (±8e-3)

RP-SVD
9e-9 1.53 0.005 3.11 8.11e-8 2.37 0.005 3.13(±1.9e-9) (±3.4e-5) (±1.6e-8) (±2.8e-5)

5.3.2 Eigenfaces

One of the classical applications of SVD is facial images analyzing using eigenfaces. The

eigenface discovers the underlying low K-dimensional subspace best describing the training data.

In this experiment, we aim at showing the robustness of our RP-SVD method in reconstructing

eigenface decomposition in the presence of outliers. A set of 30 randomly selected 64 × 64 face

images from the Extended Yale B face database [48] are used as training set (i.e. a 4096 × 30

training data matrix). A 32 × 32 outlier image (i.e. an image of a football) is added to a random

training image at a random location. The comparison methods, i.e. SVD, ROBSVD, RSVD and

RP-SVD, are then applied to reconstruct the occluded facial image with K = 10. We repeat this

procedure for 100 times. Fig. 5.11 (b) shows the resulting reconstructed facial images using those

methods and the average PSNR also reported in this figure. Our method achieves the best PSNR

value (52.79).

5.3.3 Structure from Motion

This experiment evaluates the proposed method in a real-world application named Structure

from Motion. The standard Dinosaur sequence 1 containing projections of 195 points tracked over

36 views, was used in this experiment. Each tracked point is located in at least 16 views but their

locations in other views are unknown. Thus, the measurement matrix has 74.26% of its elements

missing and the originally measured tracks are illustrated in Fig. 5.12 (a). Fig. 5.12 (b), (c) and (d)
1available from http://www.robots.ox.ac.uk/˜vgg/data/data-mview.html
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Figure 5.11: Experiments with outlier and missing data. (a) the average errors on synthetic data
with varying missing data and outlier ratios. (b) An experiment on Extended Yale-B face database.

Figure 5.12: The experiment on the Dinosaur sequence reconstruction (a) shows the original tracks
in the measurement matrix. (b) (c) and (d) show the recovered tracks using the Damped Newton
[12], Damped Wiberg [101] and our RP-SVD method. (e) plots 3D reconstruct cloud points

shows the result obtained by Damped Newton [12] method, Damped Wiberg method [101] and our

RP-SVD method, respectively. We should have close and circular tracks from Dinosaur sequence

since the images of Dinosaur was captured while rotating on a table. Our method achieves the best
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reconstructions with the completely closed circular tracks. Fig. 5.12 (e) illustrates 3D reconstructed

points from tracked points in the Dinosaur sequence.

5.4 Robust Deep Appearance Models

In this section, we evaluate the performance of our proposed framework in face modeling tasks

using data “in the wild” (sections 5.4.3 and 5.4.4).

5.4.1 Databases

The LFPW [7] database consists of 1400 images but only about 1000 images are available (811

for training and 224 for testing). For each image, we have 68 landmark points provided by 300-W

competition [113].

The Helen [76] database contains about 2300 high-resolution images (2000 for training and

330 for testing). 68 landmark points are annotated for all faces. The facial images contain different

poses, expressions and occlusions.

The AR database [89] contains 134 people (75 males and 59 females) and each subject has 26

frontal images (14 normal images with different lighting and expressions, six occluded images with

sunglasses and six for scarves).

The EURECOM database [93] consists of facial images of 52 people (38 males and 14 fe-

males). Each person has different expressions, lighting and occlusion conditions. We only use

images wearing sunglasses in our experiments.

5.4.2 RDAMs: Model Training

RDAMs are trained in two steps: pre-train each layer and train the whole model. The training

set includes 1000 clean and 200 posed images from LFPW and Helen, 534 clean, 95 sunglasses,

and 95 scarf images from 95 subjects in AR, 104 images from 52 subjects in EURECOM. For

the pre-training steps, we first train shape DBM using all shapes. Then, we train RDBM by first

separately training GRBM with clean images and learning binary mask RBM with masks generated

from occluded and posed images in AR, EURECOM or LFPW. After that, we can train the RDBM
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with pre-initialized weights of GRBM and mask RBM. The joint layer is later trained with all

training images. Finally, the whole model is trained to update its weights. Each step above is

trained using Contrastive Divergence learning in 600 epochs on a system of Xeon@3.6GHz CPU,

32.00GB RAM. The computational costs (without parallel processing) are as follows. The training

time is 14.2 hours. Fitting on average is 17.4s. Reconstructing faces on average is 1.53s.

5.4.3 Facial Occlusion Removal

In this section, we demonstrate the ability of RDAMs to handle extreme cases of occlusions

such as sunglasses or scarves. First, RDAMs is pre-trained using 1000 “clean” training images from

LFPW and Helen database, 534 “clean” training images of 95 subjects (45 males and 50 females)

from AR databases. Then, two texture models were trained using 95 images with sunglasses and

95 images with scarves, respectively. As shown in Fig. 5.13, RDAMs can remove those occlusions

successfully without leaving any severe artifact comparing with the baseline AAMs method and

the state-of-the-art DAMs method. We measure the reconstruction quality in terms of Root Mean

Square Error (RMSE) on LFPW, Helen, AR and EURECOM databases in different ways.

In AR database, we choose two subsets of 210 images with sunglasses and 210 images with

scarves from 38 subjects not in the training set, i.e. 30 males and eight females. The correspond-

ing normal face images, i.e. frontal and without occlusions, of the same person are used as the

references to compute the RMSE. In LFPW and Helen databases, we select a subset of 23 images

with sunglasses and 100 images with some occlusions around the mouth. A mask is used to ignore

occluded/corrupted pixels in the testing images so that we have an unbiased metrics.

The average masked-RMSEs of AAMs, DAMs and our RDAMs are shown in Table 5.8. The

average unmasked-RMSEs are also reported for reference (i.e. the numbers inside the brackets).

Table 5.8: The average RMSEs of reconstructed images using different methods on LFPW and AR
databases with sunglasses (SG) and scarf (SF)

Methods AAMs [124] DAMs [100] RDAMs

LFPW 12.91 (18.98) 11.15 (14.98) 8.58 (23.98)
AR - SG 56.55 55.48 41.67

AR - SF 63.16 60.96 47.65
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Figure 5.13: Reconstruction results on images with occlusions (i.e. sunglasses or scarves) in LFPW,
Helen and AR databases. The first row: input images, the second row: shape-free images, from the
third to fifth rows: reconstructed results using AAMs, DAMs and RDAMs, respectively.

(a) (b)

Figure 5.14: (a) Facial pose recovery results on images from LFPW and Helen databases. The first
row is the input images. The second row is the shape-free images. From the third to fifth rows
are AAMs, DAMs and RDAMs reconstruction, respectively. (b) Example faces with significant
variations, i.e. occlusions and poses, and the modeling results. From top to bottom: original images,
shape free images, reconstructed faces using DAMs and reconstructed faces using our RDAMs
approach.

Our RDAMs achieve the best reconstruction results compared against AAMs and DAMs. Note

that the unmasked-RMSE is always higher than masked-RMSE since some corrupted pixels are

recovered during reconstruction. Since our RDAMs can recover more corrupted/occluded pixels, it

makes the un-masked RMSE higher than the ones from AAMs and DAMs.
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5.4.4 Facial Pose Recovery

This section illustrates the capability of RDAMs to deal with facial poses. Using the same

pre-trained model presented in Section 5.4.3, the texture model was trained using 280 images with

different pose variations from LFPW and Helen databases. The reconstruction results of facial

images with different poses are presented in Fig. 5.14a. In this experiment, our RDAMs also

achieve the best reconstruction results comparing to AAMs and DAMs especially in the cases of

extreme poses (more than 45◦). Our proposed RDAMs method can handle those extreme poses in a

more natural way. From Fig. 5.14a, RDAMs give reconstructed faces that look more similar to the

original faces while DAMs or AAMs make the face look younger or change its identity.

5.4.5 Model Fitting

The aim of this experiment is to evaluate the performance of different model fitting algorithms

that are described in section 4.4. and to show that the use of mask could help improve model fitting

rather than to compete with other works on the problem of face alignment. Our model fitting aims

at finding the shape parameters that best minimize the reconstruction error. The best reconstruction

error could result from shape parameters corresponding to the ground truth shape if the testing

image was in the training set of the model. The initial shape is the mean shape placed inside the

face’s bounding box.

We evaluated our model fitting algorithms incorporating a corrupted pixel mask with the base-

line fitting methods without using the mask on the LFPW and the AR databases. Three model

fitting algorithms (i.e. Forward Additive (FA), Inverse Compositional (IC) and Forward Composi-

tional (FC)) are compared on two types of occlusions including sunglasses (SG) and scarf (SF). The

average errors are reported in Table 5.10.

We also compare our results with Active Orientation Models [125] and the method in [124] in

the following modeling fitting experiment. We evaluated model fitting using AR database. The

average errors are showed in Table 5.9. RDAMs achieve comparable performance compared to

other methods.
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Table 5.9: The average MSE between estimated shape and ground truth shape (68 landmark points).
Tested on about 300 images (23 images from LFPW database and 268 images from AR database)

Method SG SF

Initialization 0.195 0.211
RDAMs with FC 0.1672 0.0756
Fast-SIC [124] 0.1218 0.0756

AOMs [125] 0.1705 0.0962

Table 5.10: The average MSE between estimated shape and ground truth shape (68 landmark
points). Tested on about 300 images (23 images from LFPW database and 268 images from AR
database)

Type Method Initial With Mask Without Maks

SG
FA 0.0406 0.0353 0.0361
IC 0.0406 0.038 0.039
FC 0.0406 0.0372 0.0373

SF
FA 0.0874 0.0873 0.0849

IC 0.0874 0.0853 0.0864
FC 0.0874 0.0873 0.0849

5.5 Conclusion

The experiments show that �p-norm can help to improve the results of matrix decomposition

without sacrificing too much computational cost and the online version (OLP-RPCA) can be effi-

ciently employed for online background subtraction and video inpainting in real-time. In addition,

it is able to achieve real-time performance without parallelizing or implementing on a graphics pro-

cessing unit. The proposed RP-SVD method is evaluated in various applications, i.e. noise and

outlier removal, estimation of missing values, structure from motion reconstruction and facial im-

age reconstruction. This chapter shows that RP-SVD method can achieve better results compared

to the state-of-the-art SVD and its extensions, i.e. ROBSVD, RSVD and ROBRSVD. The proposed

RDAMs are evaluated on occlusion removal and pose correction to show the robustness of the model

against large occlusions and poses.
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Chapter 6

Conclusion and Future Work

This chapter draws some conclusions, summarize the thesis’ contributions and provide discus-

sions on future directions related to the topics in this thesis.

6.1 Conclusions

In this thesis, two sets of approaches: conventional matrix decomposition and deep learning-

based for image and video analysis are proposed.

For conventional approaches, this thesis first proposes a novel face recognition framework to

make a better use of sparse components resulted from a low-rank matrix decomposition via Robust

PCA in the training phase. Using the information captured from the training stage, we have success-

fully improved the testing stage of the face recognition process with the combination of low-rank

approximation and sparse representation methods. We have presented experimental results showing

the performance of our approach compared to other recent sparse representation based methods. All

experiments are conducted using the two well-known databases: AR and Extended Yale B. Matrix

decomposition approach, i.e. Robust PCA technique, has shown its potential in the face recognition

framework. To further apply this technique in other applications, this thesis proposes the novel of-

fline and online non-convex �p-norm based Robust PCA (LP-RPCA and OLP-RPCA) approaches

for matrix decomposition, where 0 < p < 1. The proposed OLP-RPCA and LP-RPCA approaches
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have demonstrated the robustness and efficiency in various applications including real-time back-

ground subtraction, video inpainting, Gaussian/non-Gaussian image denoising and face modeling.

In addition, a novel Robust �p-norm Singular Value Decomposition (RP-SVD) method for matrix

factorization is proposed. The proposed RP-SVD is formulated as an �p-norm based penalized loss

minimization problem where a robust loss function is employed to measure the reconstruction er-

ror of a low-rank matrix approximation of the data. The ADMM is then used to find appropriate

solutions to this problem. The proposed method achieves better performance in face image recon-

struction compared to the state-of-the-art SVD and its extensions, i.e. Robust SVD, Regularized

SVD and Robust Regularized SVD, in various scenarios and the proposed method can also estimate

missing values for structure from motion reconstruction.

For deep learning based approaches, this thesis proposes a novel Robust Deep Appearance Mod-

els to deal with large variations in the wild such as occlusions and poses. The main idea of the pro-

posed model is to exploit the ability of RDBM to decompose and reconstruct a face with occlusion.

Comparing with the previous DAMs model, the proposed approach can produce remarkable recon-

struction results even when faces are occluded or having extreme poses. Moreover, the proposed

fitting algorithms fit well with the new texture model such that it can make use of the occlusion

mask generated by the proposed model. Experimental results in occlusion removal, pose correction

and model fitting have shown the robustness of the model against large occlusions and poses.

6.2 Future Directions

Overall, the contributions in this thesis are major advancements in the direction of extracting

useful features for image and video analysis problems with matrix decomposition and factoriza-

tion approaches. This section provides future directions and discusses some open issues in image

and video analysis and deep learning based framework. The aim of this thesis and the proposed

directions is to improve the presented framework to achieve the ultimate goal of efficiency and

robustness.
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Video background subtraction with moving camera: there is an increasing demand for pro-

cessing data captured by portable/handheld cameras since they are becoming more popular in dif-

ferent scenarios, e.g. police equipped with handheld devices. It would be beneficial to develop a

more robust real-time OLP-RPCA that can handle dynamic background changes, i.e. in the case

of moving cameras. Another direction is to incorporate ORP-SVD into OLP-RPCA to improve the

performance of OLP-RPCA

Extracting and localizing facial micro-expression: Micro-expression is a special kind of fa-

cial expression which happens extremely rapid and brief. This type of expression is usually un-

controllable and reveals true emotion of a person. Thus, there are several applications using facial

micro-expression such as medical studies/diagnosis, national safety and police interrogation. Matrix

decomposition via OLP-RPCA can tackle this problem efficiently and provide better pre-processed

features for later tasks, i.e. recognition/classification emotions.

Deep learning based matrix decomposition: The conventional matrix decomposition methods

are linear methods because the low-rankness and sparsity are based on linear latent variable model.

Therefore, separating matrices in which the data are from nonlinear latent variable model may not

be effective. To handle the non-linear problem, Robust Deep Boltzmann Machines (RDBMs) were

proposed for face modeling in Chapter 4. However, it only models occlusion or noise using a

binary mask RBM while conventional matrix decomposition can separate facial features and occlu-

sion/noise into two different matrices. One possible approach is to model occlusion or noise using a

Gaussian RBM so that we can model occlusion or noise directly instead of just borrowing the idea

of matrix decomposition for texture modeling.
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Appendix A

Convergence Analysis

In this section, we will first show that our cost function is monotonically decreasing and that the

generated sub-sequences eventually reach an accumulation point. Finally, any accumulation point

of the sequence is a stationary point of the problem (107). We can express the problem (107) as

follows.

min
L, S, L + S = M

F(L, S) (154)

where F(L, S) is defined as

F(L, S) =

d∑
j=1

g(σj) + λ
m×n∑
ij=1

g(|sij |) +
μ

2
‖M − L − S‖2F (155)

The Lagrangian function of Eqn. (154) is the same as defined in Eqn. (108). We denote

f(L, S) = μ
2‖M − L − S‖2F . The loss function is a smooth, convex function.

Proposition 1 Given X,Z ∈ Rm×n For any X′,Z′ ∈ Rm×n it holds f(X′,Z′) ≥ f(X,Z) +

〈∇Xf(X,Z),X′ −X〉+ 〈∇Zf(X,Z),Z′ − Z〉

Proposition 2 For any Lk+1 and Lk generated by Algorithm 1, it holds Uk+1Vk+1� ≤ UkVk�

Theorem 1 Let
{
Lk,Sk

}
be the sequence generated in Algorithm 5. Then F(Lk,Sk) is mono-

tonically decreasing i.e. F(Lk, Sk) − F(Lk+1, Sk+1) ≥ 0; the sequence
{
Lk,Sk

}
is bounded and

has at least one accumulation point.

Proof : Following from the fact that {Lk+1,Sk+1} is the local optimal solution to (109a) and

(109b), respectively. We know that the Karush-Kuhn-Tucker (KKT) condition is satisfied, i.e. Lk+1
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minimizes L(Lk+1, Sk+1,Yk, μk), similarly for Sk+1, we have:

0 ∈ ∇SL(Lk+1, Sk+1,Yk, μk) (156)

0 ∈ ∇LL(Lk+1, Sk+1,Yk, μk) (157)

Taking partial derivative of the Lagrangian function in (108), we have ∇LL(Lk+1, Sk+1,Yk, μk) =

∂Lk+1

∂L
and ∇SL(Lk+1, Sk+1,Yk, μk) = ∂Lk+1

∂S

∂Lk+1

∂Lij
=
∑
l

vkl uk+1
il vk+1

jl +
∂Lf(L

k+1, Sk+1)

∂Lij
− Yk

ij (158)

where Lk+1 = Uk+1ΣVk+1� is SVD of the matrix Lk+1.

∂Lk+1

∂Sij
= λwk

ij∂|sk+1
ij |+ ∂Sf(L

k+1, Sk+1)

∂Sij
− Yk

ij (159)

This means that

∂Lf(L
k+1, Sk+1)

∂Lij
= Yk

ij −
∑
l

vkl uk+1
il vk+1

jl = Jk+1
Lij

(160a)

∂Sf(L
k+1, Sk+1)

∂Sij
= Yk

ij − λwk
ijc

k+1
ij = Jk+1

Sij
(160b)

where ck+1
ij denotes the sign of (sk+1

ij ). JL and JS are the gradient matrices.

From the above, we can form the objective function difference as follows:

F(Lk, Sk)− F(Lk+1, Sk+1)

=
d∑
j

(
g(σk

j )− g(σk+1
j )

)
+ λ

m×n∑
ij

(
g(|skij |)− g(|sk+1

ij |)
)
+ f(Lk, Sk)− f(Lk+1, Sk+1)

≥
d∑
j

vkj
(
σk
j − σk+1

j

)
+ λ

m×n∑
ij

wk
ij

(
|skij | − |sk+1

ij |
)
+
〈

Jk+1
Lij

,Lk − Lk+1
〉
+
〈

Jk+1
Sij

, Sk − Sk+1
〉

= λ
m×n∑
ij

(
wk

ij

((
|skij | − ck+1

ij skij
)
−
(
|sk+1

ij | − ck+1
ij sk+1

ij

)))
+
〈

Yk,Lk + Sk
〉
−
〈

Yk,Lk+1 + Sk+1
〉

+
m×n∑
ij

d∑
l

vkl σ
k+1
l

(
d∑
l

uk+1
il vk+1

jl vk+1
jl uk+1

il − 1

)
+

m×n∑
ij

d∑
l

vkl σ
k
l

(
1−

d∑
l

uk+1
il vk+1

jl vk
jlu

k
il

)
≥ 0

(161)

The last inequality follows from the facts that

• (Lk + Sk = M) and (Lk+1 + Sk+1 = M)

⇒
〈
Yk,Lk + Sk

〉
−
〈
Yk,Lk+1 + Sk+1

〉
= 0

119



•
∑m×n

ij wk
ij(|skij | − ck+1skij) ≥ 0

•
∑m×n

ij wk
ij(|sk+1

ij | − ck+1sk+1
ij ) = 0

•
∑m×n

ij

∑d
l v

k
l σ

k+1
l

(∑d
l uk+1

il vk+1
jl vk+1

jl uk+1
il − 1

)
= 0

•
∑m×n

ij

∑d
l v

k
l σ

k
l

(
1−

∑d
l uk+1

il vk+1
jl vkjlu

k
il

)
≥ 0 (Follows from Proposition 2)

We conclude that F(Lk, Sk) − F(Lk+1, Sk+1) ≥ 0. This shows that the sequence F(Lk,Sk) is

monotonically decreasing. Then we have

‖Lk‖Sp =
∑
j

g(σk
j ) ≤

∑
j

g(σk
j ) + λ

∑
ij

g(|skij |) = F(Lk, Sk) ≤ F(L1, S1) � D

‖Sk‖p =
∑
ij

g(|skij |) ≤
∑
j

g(σk
j ) + λ

∑
ij

g(|skij |) = F(Lk, Sk) ≤ F(L1, S1) � D

(162)

Thus, the sequence
{
Lk,Sk

}
is bounded. Furthermore, F(Lk,Sk) is monotonically decreasing

(Theorem 1) and F(Lk, Sk) ≥ 0. As a result, by applying the theorem of Bolzano-Weierstrass, we

can conclude the existence of an accumulation point. �

Theorem 2 Let G = (L, S,Y) and {Gk}∞k=1 be generated by LP-RPCA. Assume that lim
k→∞

{Gk+1−

Gk} = 0. Then, any accumulation point of {Gk}∞k=1 is a stationary point.

Proof : Theorem 1 shows that the sequence
{
Lk,Sk

}
is bounded. Thus, there exists an accumu-

lation point
{
L̂, Ŝ

}
and a subsequence

{
Lkj ,Skj

}
, where lim

j→∞
Lkj → L̂ and lim

j→∞
Skj → Ŝ. From

Eqns. (160a) and (160b), we have

∂Lf(L
kj+1, Skj+1)

∂Lij
− Y

kj

ij +
∑
l

v
kj

l u
kj+1
il v

kj+1
jl = 0

∂Sf(L
kj+1, Skj+1)

∂Sij
− Y

kj

ij + λw
kj

ij c
kj+1
ij = 0

(163)

From the above, we can conclude that
{

Lkj , Skj
}

also converges to any
{

L̃, S̃
}

when j → ∞.

From the fact that lim
k→∞

‖Lk − Lk+1‖F = 0 and lim
k→∞

‖Sk − Sk+1‖F = 0, we can conclude that

‖L̂ − L̃‖F = lim
k→∞

‖Lkj − Lkj+1‖F = 0 and ‖Ŝ − S̃‖F = lim
k→∞

‖Skj − Skj+1‖F = 0. This means
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that L̂ = L̃ and Ŝ = S̃. With j → ∞, we can rewritten Eqn. (163) as

∂Lf(L̂, Ŝ)

∂Lij
− Ŷij +

∑
l

v̂lûilv̂jl = 0

∂Sf(L̂, Ŝ)

∂Sij
− Ŷij + λŵij ĉij = 0

(164)

As a result,
{
L̂, Ŝ

}
is a stationary point that satisfies the the Karush-Kuhn-Tucker (KKT) con-

ditions of (107). �

Remark Although it is difficult to guarantee the algorithm convergence to a global minimum,

experiments and examples suggest that the proposed method has a strong convergence behavior

(See Fig. 5.3 - LEFT). We provide a simple proof of convergence of LP-RPCA to show that any

accumulation point of the iteration sequence generated by the algorithm is a stationary point that

satisfies the KKT conditions. This result provides an insight about the behavior of the proposed

algorithm.
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