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Abstract— This paper presents a fault-tolerant aircraft control 

(FTAC) scheme against actuator faults. Firstly, the upper bounds 

of the norms of the unknown functions are introduced, which 

contain actuator faults and model uncertainties. Subsequently, 

self-constructing fuzzy neural networks (SCFNNs) with adaptive 

laws are capable of obtaining the bounds. The bound estimation 

can reduce the computational burden with a lower amount of rules 

and weights, rather than the dynamic matrix approximation. 

Moreover, with the aid of SCFNNs, a multivariable sliding mode 

control (SMC) is developed to guarantee the finite-time stability of 

the handicapped aircraft. As compared to the existing intelligent 

FTAC techniques, the proposed method has twofold merits: fault 

accommodation can be promptly accomplished and decoupled 

difficulties can be overcome. Finally, simulation results from the 

nonlinear longitudinal Boeing 747 aircraft model illustrate the 

capability of the presented FTAC scheme. 

Index Terms—Fault-tolerant aircraft control; actuator faults; 

self-constructing fuzzy neural network; finite-time stability; 

multivariable sliding mode control.  

I. INTRODUCTION 

ITH a high degree of integrating automation 

technologies, aerospace engineering systems have become 

increasingly vulnerable to anomalies caused by structure 

impairments, actuator/sensor faults, or other subsystem 

malfunctions. Each of the in-flight failures can alter aircraft 

characteristics, further undermining safety. Without any 

appropriate reactions engaged in a timely fashion, even a 

relatively minor error may develop into catastrophes. 

 Fault-tolerant aircraft control (FTAC) designs to maintain 

flight safety can be essentially classified into passive and active 

approaches [1-3]. Within a passive FTAC context, one flight 

controller is usually developed with consideration for both 

normal and faulty cases. The resulting control thereby makes 

the closed-loop system invulnerable to the anticipated faults 

without any control structure or parameter adjustment. This 

type of FTAC provides accommodation for faults from a 

“passive” viewpoint. On the other hand, the principle of active 

FTAC is to reconfigure the flight controller in response to the 

knowledge of the current state of the aircraft. Thus, the term 

“active” implies that corrective actions are triggered to handle 

the identified system/component malfunctions. 

The past decades have witnessed the development of various 

FTAC technologies. 1) With respect to passive FTAC, the 

eigenvalue assignment technique [4] and multi-objective 

optimization approach [5, 6] are exploited for preserving the 

asymptotic stability of the handicapped aircraft and an 

acceptable level of performance. However, feasible solutions 

may not be found if excessive quantities of fault scenarios are 

prescribed in the design phase of passive FTAC. 2) Active 

FTAC systems are developed based on a variety of control 

technologies. To mention a few, model predictive control (MPC) 

[7], backstepping control [8, 9], adaptive control [10-14], 

sliding mode control (SMC) [15-17], and linear parameter 

varying (LPV) control [18] techniques are exploited to 

reconfigure the control corresponding to in-flight faults. Within 

an active FTAC scheme, the accuracy of fault detection and 

diagnosis (FDD) and switching time of reconfigured control 

have a predominant impact on fault tolerant performance [2, 3].  

Additionally, by resorting to fuzzy techniques, several results 

in the literature are available not only to improve the safety of 

other engineering systems [19, 20], but also to advance the state 

of the art of FTAC designs. In [21], a fuzzy model reference 

learning control technique is deployed to counteract the effects 

of aileron stuck failures. Moreover, an expert supervisory 

mechanism enables the flight safety without explicit FDD 

results. A sequential adaptive fuzzy inference system (SAFIS), 

which can update the rules, is adopted to approximate the 

aircraft dynamics [22]. As a consequence, the SAFIS-aided 

FTAC allows the aircraft to successfully land in spite of 

actuator failures. As reported in [23], fuzzy logic systems (FLSs) 

are employed to estimate amplitudes of actuator gain and bias 

faults. Then, the resulting adaptive controller attempts to 

guarantee the asymptotic stability of the near-space vehicle 

(NSV) subject to actuator malfunctions. The use of a Takagi-

Sugeno (T-S) fuzzy model is established to describe the NSV 

dynamics [24-26]. An adaptive control approach is applied to 

alleviate adverse impacts of actuator faults [24, 26], while an 

adaptive observer is developed to identify sensor faults [25]. In 

[27], type-2 fuzzy logic control and SMC methods are 

combined to cope with aircraft actuator faults. The basic idea 

in [27] is to separate the FTAC into the pitch, roll, yaw, and 

altitude channels. More recently, the findings in [28, 29] show 

that the unknown nonlinear functions can be estimated by FLSs, 

while the asymptotic stability of the faulty aircraft can be 

maintained using SMC techniques. 
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Although extensive design activities are conducted for 

aircraft safety, there are some difficulties that need to be 

addressed. 1) Model variations and FDD accuracy are well 

recognized as two important factors affecting FTAC 

performance [2, 3]. Any real continuous functions on a compact 

set can be approximated to an arbitrary accuracy using a FLS. 

Hence, a FLS has potential for estimating aircraft dynamics and 

aircraft faults. The adaptation capability of FLS with only 

output weights being updated is limited due to the fact that the 

regressors are fixed [23, 28-31]. By taking advantage of neural 

networks (NNs) [32], self-constructing fuzzy systems are 

capable of updating fuzzy rules under system operating 

conditions [22, 33, 34]. Nevertheless, the computational cost is 

substantially increased as the quantity of rules and weights 

increases. As aforementioned, determining how to exploit a 

fuzzy system with a high level of adaptation capability and a 

low level of computation burden is very challenging for FTAC 

design. 2) Time available for fault recovery depends solely on 

fault nature and flight conditions [2, 3]. In flight, the time frame 

of faulty aircraft developing into an irreversible state is 

typically a few seconds. More specifically, actuator 

malfunctions can quickly drive the faulty aircraft out of control 

without prompt reactions exposed. Thus, for preventing aircraft 

breakup, fault accommodation must be accomplished in a 

timely manner. However, the existing FTAC based on fuzzy 

strategies can only guarantee the asymptotic stability of the 

handicapped aircraft [24, 26-29]. 3) In most of FTAC systems 

based on both fuzzy and SMC techniques, the design problem 

is often formulated as the decoupled problem with m single-

input structures. By contrast, aircraft aerodynamics exhibits 

strong couplings. For instance, in addition to contributing to 

rolling maneuvers, ailerons can affect pitching and yawing 

motions. Thus, accounting for multivariable situations may be 

more appropriate for FTAC design rather than the decoupled 

treatment. 

In an attempt to overcome the discussed difficulties, this 

paper presents new developments in the integration of self-

constructing fuzzy neural network (SCFNN) and multivariable 

SMC methods into a FTAC system against actuator faults. 

Since the proposed FTAC can actively counteract actuator 

faults, it can be seen as an active FTAC scheme. The major 

contributions are briefly outlined by three aspects.  

1) SCFNNs, which can be continuously running to update both 

the structures and parameters, are incorporated into adaptive 

techniques. Consequently, the upper bounds of the norms of 

unknown functions including actuator fault amplitudes and 

model uncertainties can be captured. When comparing to 

the previous studies [23, 27-29], the proposed algorithm 

with the learning property in response to actuator faults can 

achieve superior approximation performance and facilitate 

fault accommodation. Furthermore, estimating the bounds 

helps in reducing the computational burden with a lower 

amount of rules and weights, as opposed to approximating 

the overall dynamics [22, 33, 34]. 

2) A SMC approach is deployed in the proposed FTAC 

scheme. The trajectory of the faulty system can be steered 

to the equilibrium within finite time as long as the sliding 

surface is reached. Thus, the resulting FTAC can ensure the 

finite-time stability of the aircraft, even under conditions 

involving actuator faults and model uncertainties. This 

feature sets this study apart from the similar works [24, 26-

29], based on which the stability of post-fault aircraft is 

asymptotically guaranteed. Hence, the integration of finite-

time SMC allows the developed scheme to improve flight 

safety.  

3) The FTAC based on SCFNNs and SMC is designed for 

multivariable situations. The so-called multivariable SMC 

is formed by vector expression, which is successfully 

incorporated in the FTAC design. In contrast to [27], the 

decoupled issue can be avoided in the proposed algorithm 

by incorporating the multivariable SMC approach. 

Therefore, the proposed design becomes more proper for the 

cases where strong couplings are inherent to aircraft 

aerodynamics. 

The remainder of this paper is arranged as follows. Aircraft 

longitudinal model and actuator fault model are presented in 

Section II. The principle of SCFNN is described in Section III. 

A FTAC scheme is developed to counteract actuator failures 

within finite time in Section IV, where the SCFNNs and the 

multivariable SMC are integrated. In Section V, the 

performance of the proposed FTAC scheme is evaluated 

through simulation studies based on a longitudinal model of 

Boeing 747 aircraft. Section VI includes a discussion of the 

conclusions. 

TABLE I 

NOMENCLATURE 

Symbols Interpretations 

𝑐̅, 𝑆𝑟, and 𝑞̅ Mean chord length, reference surface area, and 

dynamic pressure 

𝑐7 = 1 𝐼𝑦𝑦⁄   Inertial coefficient 

𝑧𝑒𝑛𝑔  𝑧-axis engine position 

𝑥̅𝑐𝑔 and 𝑧𝑐̅𝑔 Center of gravity positions 

𝑉, 𝛼, and 𝑞 True airspeed, angle of attack (AOA), and pitch 

angular rate 

𝛿𝑖𝑒 and 𝛿𝑜𝑒  Inner elevator deflection and outer elevator deflection 

𝛿𝑠 and 𝑇 Stabilizer deflection and thrust 

𝑚 and 𝑔  Total mass and gravity acceleration 

𝐶𝐿  Total lift coefficient 

𝐶𝐿0  Lift coefficient for the rigid aircraft at zero stabilizer 

angle 

𝐾𝛼  Effective factor of the elevator 

𝐶𝑚  Pitch moment coefficient 

𝐶𝑚0  Pitch moment coefficient for the rigid aircraft at zero 

stabilizer angle 

𝐶𝐷𝑀𝑎𝑐ℎ  Drag coefficient at a fixed Mach number 

 

II. AIRCRAFT LONGITUDINAL MODEL 

A. Aircraft Dynamics 

Even though the analysis and the design approaches are not 

limited to a specific type of aircraft in this work, it is 

advantageous to work with a specific aircraft system to explain 

the concepts and to validate the design procedure. The Boeing 

747 series 100/200, as one of the most popular and widely used 

wide-body commercial jet airliners, is used as an example in 
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this research to illustrate the FTAC design procedure. 

According to [35], the body-axes longitudinal motion of the 

Boeing 747 without considering flexible effects can be 

represented as: 

 

𝑞̇ = 𝑐7𝑀𝑦,                                     (1) 

𝑉̇ =
𝐹𝑥 cos𝛼+𝐹𝑧 sin𝛼

𝑚
.                               (2) 

 

The body-axis aerodynamic forces and moments are described 

as: 

 

𝐹𝑥 = −𝑞̅𝑆𝑟(𝐶𝐷 cos 𝛼 − 𝐶𝐿 sin 𝛼) + 𝑇 −𝑚𝑔 sin 𝜃,               (3) 

𝐹𝑧 = −𝑞̅𝑆𝑟(𝐶𝐷 sin 𝛼 + 𝐶𝐿 cos𝛼) − 0.0436𝑇 +𝑚𝑔 cos𝜃,    (4) 

𝑀𝑦 = 𝑞̅𝑆𝑟𝑐̅ [𝐶𝑚 −
1

𝑐̅
(𝐶𝐷 sin 𝛼 + 𝐶𝐿 cos𝛼)𝑥̅𝑐𝑔  

−
1

𝑐̅
(𝐶𝐷 cos𝛼 − 𝐶𝐿 sin 𝛼)𝑧𝑐̅𝑔 +

𝑐𝛼̇̅

𝑉
(𝐶𝑚𝛼̇ −

𝑥̅𝑐𝑔

𝑐̅
𝐶𝐿𝛼̇ cos 𝛼)]  

+𝑧𝑒𝑛𝑔𝑇.                                                                          (5) 

 

The aerodynamic coefficients for the longitudinal motion can 

be expressed as: 

 

𝐶𝐿 = 𝐶𝐿0 +
𝑐̅

2𝑉
(1.45 − 1.8𝑥̅𝑐𝑔)

𝑑𝐶𝐿

𝑑𝑞
𝑞  

+𝐾𝛼 (
𝑑𝐶𝐿

𝑑𝛿𝑖𝑒
𝛿𝑖𝑒 +

𝑑𝐶𝐿

𝑑𝛿𝑜𝑒
𝛿𝑜𝑒),                          (6) 

𝐶𝐷 = 𝐶𝐷𝑀𝑎𝑐ℎ,                                        (7) 

𝐶𝑚 = 𝐶𝑚0 +
𝑐̅

2𝑉

𝑑𝐶𝑚

𝑑𝑞
𝑞 + 𝐾𝛼

𝑑𝐶𝑚

𝑑𝛿𝑠
𝛿𝑠 + 𝐾𝛼 (

𝑑𝐶𝑚

𝑑𝛿𝑖𝑒
𝛿𝑖𝑒 +

𝑑𝐶𝑚

𝑑𝛿𝑜𝑒
𝛿𝑜𝑒). 

                                                                                                (8) 

 

Furthermore, the aerodynamic coefficients can be 

approximated as polynomial functions of AOA and velocity 

over the flight regime [36]: 

 

𝐶𝐷𝑀𝑎𝑐ℎ = 𝜅20𝛼
2 + 𝜅10𝛼 + 𝜅01𝑉 + 𝜅00,                  (9) 

𝑑𝐶𝐿

𝑑𝛿𝑖𝑒
=

𝑑𝐶𝐿

𝑑𝛿𝑜𝑒
= 𝜏02𝑉

2 + 𝜏01𝑉 + 𝜏00,                   (10) 

𝐶𝐿0 = 𝜂10𝛼 + 𝜂01𝑉 + 𝜂00,                          (11) 

𝐶𝑚0 = 𝜉20𝛼
2 + 𝜉10𝛼 + 𝜉01𝑉 + 𝜉00,                    (12) 

𝑑𝐶𝑚

𝑑𝛿𝑖𝑒
=

𝑑𝐶𝑚

𝑑𝛿𝑜𝑒
= 𝜁02𝑉

2 + 𝜁01𝑉 + 𝜁00,                   (13) 

 

where 

 

{
 
 

 
 
𝜅20 = 3.27, 𝜅10 = 3.48 × 10

−2, 𝜅01 = 4.45 × 10
−5, 𝜅00 = 9.92 × 10

−3

𝜏02 = −0.72 × 10
−7, 𝜏01 = 2.13 × 10

−5, 𝜏00 = 1.61 × 10
−3

𝜂10 = 5.15, 𝜂01 = 1.21 × 10
−3, 𝜂00 = 6.15 × 10

−3

𝜉20 = 2.39, 𝜉10 = −1.46, 𝜉01 = −3.20 × 10
−4, 𝜉00 = 0.12

𝜁02 = 2.18 × 10
−7, 𝜁01 = −0.58 × 10

−4, 𝜁00 = −0.88 × 10
−2

 

            (14) 

 

    Remark 1: From Eq. (6), it is known that the lift coefficient 

𝐶𝐿 is based on the effects of the pitch angular rate, the elevator 

deflections, and the basic component 𝐶𝐿0, respectively. Eq. (7) 

indicates that the drag coefficient 𝐶𝐷 greatly relies on the effect 

of the Mach number. As can be observed from Eq. (8), the 

essential factors affecting the pitch moment coefficient 𝐶𝑚 

contain the pitch angular rate, the inner elevator deflection, the 

outer elevator deflection, the stabilizer deflection, and the basic 

component 𝐶𝑚0, respectively.  

Substituting Eqs. (3)-(8) into Eqs. (1)-(2) gives: 

 

𝑞̇ =
𝑐7𝑞̅𝑆𝑟𝑐̅

2𝑉
[𝑐̅
𝑑𝐶𝑚

𝑑𝑞
−(1.45 − 1.8𝑥̅𝑐𝑔)(𝑥̅𝑐𝑔 cos𝛼 + 𝑧𝑐̅𝑔 sin 𝛼)]𝑞    

+𝑐7𝑞̅𝑆𝑟𝑐̅𝐶𝑚0 + 𝑐7𝑞̅𝑆𝑟[𝐶𝐷𝑀𝑎𝑐ℎ(𝑧𝑐̅𝑔 cos 𝛼 − 𝑥̅𝑐𝑔 sin 𝛼)  

 −𝐶𝐿0(𝑥̅𝑐𝑔 cos 𝛼 + 𝑧𝑐̅𝑔 sin 𝛼)] 

+𝑐7𝑞̅𝑆𝑟𝐾𝛼 [𝑐̅
𝑑𝐶𝑚

𝑑𝛿𝑖𝑒
− (𝑥̅𝑐𝑔 cos𝛼 + 𝑧𝑐̅𝑔 sin 𝛼)𝑐̅

𝑑𝐶𝐿

𝑑𝛿𝑖𝑒
] 𝛿𝑖𝑒  

+𝑐7𝑞̅𝑆𝑟𝐾𝛼 [𝑐̅
𝑑𝐶𝑚

𝑑𝛿𝑜𝑒
− (𝑥̅𝑐𝑔 cos𝛼 + 𝑧𝑐̅𝑔 sin 𝛼)𝑐̅

𝑑𝐶𝐿

𝑑𝛿𝑜𝑒
] 𝛿𝑜𝑒  

+𝑐7𝑞̅𝑆𝑟𝐾𝛼𝑐̅
𝑑𝐶𝑚

𝑑𝛿𝑠
𝛿𝑠 + 𝑐7𝑧𝑒𝑛𝑔𝑇,                                          (15) 

𝑉̇ = −𝑔 sin 𝛾 −
𝑞̅𝑆𝑟

𝑚
𝐶𝐷𝑀𝑎𝑐ℎ +

4(cos𝛼−0.0436sin𝛼)

𝑚
𝑇.         (16) 

    

The aircraft parameters cannot be obtained precisely, leading 

to the challenges for flight control design. In common practice, 

there exist additive parameter perturbations (Δ∗) to the nominal 

values: 

 

{
  
 

  
 
𝑚 = 𝑚0(1 + Δ𝑚)

𝑆𝑟 = 𝑆𝑟0(1 + Δ𝑆𝑟)

𝐼𝑦𝑦 = 𝐼𝑦𝑦0 (1 + Δ𝐼𝑦𝑦)

𝑐̅ = 𝑐0̅(1 + Δ𝑐̅)

𝑞̅ = 𝑞̅0(1 + Δ𝑞̅)

.                        (17) 

 

    By defining 𝒙 = [𝑞, 𝑉]𝑇  and 𝒖 = [𝛿𝑖𝑒 , 𝛿𝑜𝑒 , 𝛿𝑠]
𝑇 , the 

longitudinal motion equations can be simplified as: 

 

𝒙̇ = 𝒇(𝒙) + 𝒈(𝒙)𝒖  

= (𝒇0(𝒙) + 𝜟𝑓) + (𝒈0(𝒙) + 𝜟𝑔)𝒖,                   (18) 

 

where 𝒇(𝒙) ∈ 𝓡2  and 𝒈(𝒙) ∈ 𝓡2×3  are smooth nonlinear 

functions of 𝒙. 𝒇0(𝒙) and 𝒈0(𝒙) stand for the nominal terms of 

𝒇(𝒙) and 𝒈(𝒙), while 𝜟𝑓  and 𝜟𝑔  denote the uncertain terms 

(modeling errors/uncertainties) of 𝒇(𝒙) and 𝒈(𝒙), respectively. 

    Remark 2: Linearized models based on small perturbation 

theory are often used at the flight control design stage. Even 

though the control design is relatively simple using the 

linearized model, the performance may be greatly degraded 

when the resulting control is engaged in a realistic environment. 

Furthermore, LPV [18] and T-S fuzzy [22-26] modelling 

techniques are recently applied to approximate aircraft 

nonlinear dynamics. The basic idea is to linearize the aircraft 

model at specific operating points and establish the relationship 

between these points. Nonetheless, model approximation 

accuracy and computational burden are recognized as major 

challenges. In this study, the nonlinear model as Eq. (18) is 

established to describe the nonlinear aircraft characteristics. 

Due to the lack of modeling technologies and experimental data, 

aerodynamic coefficients and relevant parameters cannot be 
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obtained precisely. By considering this fact, model uncertainty 

is included as well in Eq. (18). 

B. Actuator Fault Model 

Actuators that can generate appropriate forces and moments 

are key components in any aircraft. Desired maneuvers can be 

completed if actuation systems work under a normal condition. 

On the contrary, poor performance and even instability are 

induced by actuator malfunctions. Gain fault appearing on an 

actuator is thought as a multiplicative-type fault, which 

deteriorates actuator effectiveness. Actuator bias fault as an 

additive-type fault creates a specific drift from the true 

amplitude. Since both gain fault and bias fault are concerned in 

this study, the model of actuator faults is represented as: 

 

𝒖𝐹 = 𝚲𝒖 + 𝝉,                                  (19) 

 

where 𝚲 = diag{𝜆1, 𝜆2, 𝜆3} is used to describe the gain fault 

and 𝝉 = [𝜏1, 𝜏2, 𝜏3]
𝑇 denotes the bias fault, respectively. Note 

that 0 < 𝜆𝑖 ≤ 1 for 𝑖 = 1,2,3. 

    Remark 3: It is reported that the leakage of hydraulic fluid 

can be the root cause of degrading the actuator effectiveness 

[37]. Therefore, 𝝀 = diag{𝜆1, 𝜆2, 𝜆3} in Eq. (19) can be seen as 

the indicators of actuators effectiveness, where 0 < 𝜆1, 𝜆2, 𝜆3 ≤
1. In addition, a flight actuation system consists of an actuator 

controller, an actuator, and embedded sensors. The sensor fault 

in an actuator system can attribute to actuator bias faults. If the 

amplitude sensor encounters a bias fault, the measured 

amplitude is the actual amplitude plus the bias value. The 

sensed amplitude is mandated to follow the referenced signal. 

However, the actual value of the actuator amplitude is deviated 

from the one as required by the flight control. Hence, 𝝉 =
[𝜏1, 𝜏2, 𝜏3]

𝑇  in Eq. (19) can represent bias faults of the inner 

elevator, outer elevator, and stabilizer, respectively. 

Therefore, the corresponding expression for the aircraft 

longitudinal motion can be further represented upon Eq. (18) by 

taking into consideration of the actuator faults as follows: 

 

𝒙̇ = (𝒇0(𝒙) + 𝚫𝑓) + (𝒈0(𝒙) + 𝚫𝑔)(𝚲𝒖 + 𝝉).       (20) 

 

Assumption 1: It is assumed that the following inequalities 

hold: 

 

‖𝚫𝑓 + (𝒈0 + 𝚫𝑔)𝝉‖ ≤ 𝜌1,                     (21) 

‖𝒈0(𝚲 − 𝑰)𝒈0
+ + 𝚫𝑔𝚲𝒈0

+‖ ≤ 𝜌2 < 1,            (22) 

 

where 𝒈0
+ is the pseudo inverse of 𝒈0, 𝜌1 and 𝜌2 are unknown 

positive parameters, respectively. 

Remark 4: The term 𝚫𝑓 + (𝒈0 + 𝚫𝑔)𝝉  is pertinent to the 

model uncertainties and the bias faults of actuators. A close 

look at 𝒈0(𝚲 − 𝑰)𝒈0
+ + 𝚫𝑔𝚲𝒈0

+  reveals that this term is 

associated with the uncertainty of control input matrix and the 

gain faults of actuators. The condition, ‖𝒈0(𝚲 − 𝑰)𝒈0
+ +

𝚫𝑔𝚲𝒈0
+‖ < 1 , implies that 𝒈0𝒖  dominates the function 

𝒈0(𝚲 − 𝑰)𝒖 + 𝚫𝑔𝚲𝒖. This condition, in turn, ensures that the 

configured actuation systems possess adequate authority to 

counteract the considered faults. 

C. Problem Statement 

Even though the aircraft encounters actuator faults and model 

uncertainties, a FTAC system based on SCFNNs and 

multivariable SMC with adaptation techniques is proposed in 

this paper such that: 1) aircraft states can track the reference 

signals; and 2) the stability of the closed-loop system can be 

guaranteed within finite time. 

 

III. SELF-CONSTRUCTING FUZZY NEURAL NETWORKS 

SCFNN possesses the learning ability of NNs to tune the 

shape of the fuzzy membership functions and the output 

weights. In this study, the purpose of SCFNNs is to capture 

online the upper bounds (𝜌1 and 𝜌2) of the norms of unknown 

terms. It should be emphasized that the estimation process of 𝜌1 

and 𝜌2 is time varying. 

A. SCFNN Architecture 

The SCFNN, sketched in Fig. 1, is comprised of four layers. 

Layer 1 receives the input variables. The membership values 

are calculated in Layer 2 such that the degree to which an input 

value associates with a fuzzy set can be determined. 

Precondition matching is carried out in Layer 3. The 

preconditions of the fuzzy rules are specified by the links before 

Layer 3, while the consequences are described by the 

succeeding links. Layer 4 is regarded as the output layer.  

 

Fig. 1. Illustration of SCFNNs. 

The rule base is:  

 

IF 𝑧𝑖 is 𝐴𝑖
𝑙, THEN 𝜌1(𝒛) = 𝑊𝑙,                     (23) 

 

where 𝑖 = 1,2,⋯ ,𝑚 , 𝑙 = 1,2,⋯ ,𝑁 , 𝜌1: 𝑈𝒛 ∈ 𝓡
𝑚 → ℛ , 𝐴𝑖

𝑙 

denotes the membership value of the ith input variable in the 

rule 𝑙, and 𝑊𝑙 is the output action strength related to the rule 𝑙. 

The fuzzy basis function (FBF), 𝜙𝑙, is represented as: 

 

𝜙𝑙 = exp {−
(𝒛−𝒄𝑙)

𝑇(𝒛−𝒄𝑙)

𝚺𝑙
2 },                        (24) 

 

where 𝒄 = [𝒄1
𝑇 , 𝒄2

𝑇 , ⋯ , 𝒄𝑁
𝑇 ]𝑇 ∈ 𝓡𝑚𝑁 , 𝒄𝑙 = [𝑐𝑙,1, 𝑐𝑙,2, ⋯ , 𝑐𝑙,𝑚]

𝑇
, 

𝝈 = [𝝈1
𝑇 , 𝝈2

𝑇 , ⋯ , 𝝈𝑁
𝑇 ]𝑇 ∈ 𝓡𝑚𝑁 , 𝝈𝑙 = [𝜎𝑙,1, 𝜎𝑙,2, ⋯ , 𝜎𝑙,𝑚]

𝑇
, 𝚺𝑙 =

diag{𝜎𝑙,1, 𝜎𝑙,2, ⋯ , 𝜎𝑙,𝑚} ∈ 𝓡
𝑚×𝑚 , and 𝑙 = 1,2,⋯ ,𝑁 , 

respectively. 𝒄  and 𝝈  denote the FBF center vector and the 

width vector, respectively. 

For ease of notation, the output weight matrix 𝑾 and the 

regressor vector 𝝓 are specified as: 
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𝑾 = [𝑊1,𝑊2, ⋯ ,𝑊𝑁]
𝑇 ∈ 𝓡𝑁×1,                    (25) 

𝝓 = [𝜙1, 𝜙2, ⋯ , 𝜙𝑁]
𝑇 ∈ 𝓡𝑁×1.                     (26) 

 

The SCFNN output with N fuzzy rules are thereby described 

in a vector form: 

 

𝜌1(𝒛) = 𝑾
𝑇𝝓(𝒛; 𝒄, 𝝈) = 𝑾̂𝑇𝝓̂(𝒛; 𝒄̂, 𝝈̂) + 𝜀1,        (27) 

 

where 𝑾̂ and 𝝓̂ are the estimates of 𝑾 and 𝝓, and 𝜀1  stands 

for the approximation error.  

By adopting the SCFNN, 𝜌2  can be approximated in a 

manner nearly identical to that described for 𝜌1:  

 

𝜌2(𝒚) = 𝑿
𝑇𝝍(𝒚; 𝒑, 𝒒) = 𝑿̂𝑇𝝍̂(𝒚; 𝒑̂, 𝒒̂) + 𝜀2,       (28) 

 

where 𝑿 = [𝑋1, 𝑋2, ⋯ , 𝑋𝑁]
𝑇 ∈ 𝓡𝑁×1  and 𝝍 =

[𝜓1, 𝜓2, ⋯ , 𝜓𝑁]
𝑇 ∈ 𝓡𝑁×1 denote the output weighting matrix 

and regressor vector, 𝜀2  specifies the approximation error, 𝒑 

and 𝒒 represent the FBF center vector and the width vector, 

respectively. 

Assumption 2: With respect to the SCFNN of 𝜌1 , all 

parameters are bounded on 𝑈𝒛, and 

 

{

|𝑊𝑙| ≤ 𝑊̅

𝑐𝑖 ≤ |𝑐𝑙,𝑖| ≤ 𝑐𝑖

0 < 𝜎𝑖 ≤ |𝜎𝑙,𝑖| ≤ 𝜎𝑖

.                           (29) 

 

Focusing on the SCFNN of 𝜌2 , all the parameters are 

bounded on 𝑈𝒚, and  

 

{

|𝑋𝑙| ≤ 𝑋̅

𝑝𝑖 ≤ |𝑝𝑙,𝑖| ≤ 𝑝𝑖

0 < 𝑞𝑖 ≤ |𝑞𝑙,𝑖| ≤ 𝑞𝑖

.                           (30) 

 

B. Self-Constructing Mechanism 

    The approximation error in general depends on the number 

of fuzzy rules (N in this paper). A small number N usually 

results in low accuracy. In contrast, the reduction of the 

approximation error becomes negligible if the number N is 

adequately large. The role of self-constructing mechanism is to 

generate or delete rules in terms of the novelty of correction 

observation 𝒛(𝑡)  to the existing FBFs. With considerations 

analogous to [34, 38], a new rule is created when the distance 

between a new input signal and the current clusters is too far, 

while a redundant rule is removed when the fuzzy rule is 

insignificant. Note that the SCFNN starts with no fuzzy rule. 

Hence, 𝒄𝑙(0) = ∅ , 𝝈𝑙(0) = ∅ , 𝑾𝑙(0) = ∅ , and 𝑁(0) = 0 , 

respectively. The system model presented in this study is 

continuous. However, the SCFNN needs sampled data to 

accomplish self-constructing. Thus, “ 𝑡 − 1 ” represents the 

previous sampling interval in the sequel [30, 31]. Without loss 

of generality, suppose that there exist 𝑁(𝑡 − 1)  FBFs to be 

adjusted before the current input 𝒛(𝑡)  arrives, i.e., 𝒄𝑖 =

[𝑐𝑖
1, 𝑐𝑖

2, ⋯ , 𝑐𝑖
𝑁(𝑡−1)]

𝑇
,  𝝈𝑖 = [𝜎𝑖

1, 𝜎𝑖
2, ⋯ , 𝜎𝑖

𝑁(𝑡−1)]
𝑇

, 𝑖 =

1, 2,⋯ ,𝑚, and 𝑙 = 1, 2,⋯ ,𝑁(𝑡 − 1). 

Define a measure between 𝒛(𝑡) and the existing FBFs as: 

 

𝑑𝑙 = −
(𝒛(𝑡)−𝒄𝑙(𝑡−1))

𝑇
(𝒛(𝑡)−𝒄𝑙(𝑡−1))

𝚺𝑙
2(𝑡−1)

,                     (31) 

 

where 𝒄𝑙(𝑡 − 1) = [𝑐1
𝑙(𝑡−1), 𝑐2

𝑙(𝑡−1), ⋯ , 𝑐𝑚
𝑙(𝑡−1)]

𝑇
,  𝚺𝑙(𝑡 − 1) =

diag{𝜎1
𝑙(𝑡−1), 𝜎2

𝑙(𝑡−1), ⋯ , 𝜎𝑚
𝑙(𝑡−1)} , and 𝑙 = 1, 2,⋯ ,𝑁(𝑡 − 1) , 

respectively. The following is to present the criteria of rule 

generation and removal. 

1) Rule Generation 

    Find the nearest fuzzy rule as: 

 

𝑑min = min
𝑙=1,2,⋯,𝑁(𝑡−1)

𝑑𝑙.                        (32) 

 

A new FBF is required: 

 

{
 

 
𝒄𝑁(𝑡) = 𝒛(𝑡)

𝝈𝑁(𝑡) = 𝝈ini
𝑾𝑁(𝑡) = 0

𝑁(𝑡) = 𝑁(𝑡 − 1) + 1

,                        (33) 

 

from the condition: 

 

𝑑min > 𝑑𝑡ℎ,                                      (34) 

 

where 𝑑𝑡ℎ  is a predefined threshold to be chosen as 𝑑𝑡ℎ =
ln(1 𝜖1⁄ ), 𝝈ini represents the initial width of the generated FBF, 

and 0 < 𝜖1 ≤ 1, respectively. 

2) Rule Removal 

    Find the redundant FBFs as: 

 

𝐽𝑟 = {𝑙
°}, 𝑑𝑙° < 𝑑0.                             (35) 

 

If the following condition satisfies: 

 

𝐽𝑟 ≠ ∅,                                        (36) 

 

the redundant fuzzy rule is eliminated: 

 

{
 

 
𝒄𝑙° = ∅

𝝈𝑙° = ∅

𝑾𝑙° = ∅

𝑁(𝑡) = 𝑁(𝑡) − |𝐽𝑟|

,                      (37) 

 

where 𝑑0 = ln(1 𝜖0⁄ ) is a pre-specified threshold under which 

the fuzzy rule is determined inappropriate and 0 < 𝜖0 ≤ 1 , 

respectively. 

For the sake of brevity, the self-constructing mechanism to 

produce or delete rules in terms of the novelty of correction 

observation 𝒚(𝑡) to the existing FBFs is omitted herein. 

Remark 5: The past few years have witnessed the 

development of learning approaches. A self-learning fuzzy 

logic system with reinforcement learning techniques can 

capture the desirability of states and adjust the fuzzy rules 

accordingly. One of the main hurdles is that the determination 

of fuzzy rules greatly relies on pure experiments [39, 40]. A 
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radial basis function NN is integrated into a reinforcement 

learning paradigm for state value function approximation. One 

of the major challenges is “curse of dimensionality”, which may 

limit wider applications to higher dimensional problems [41]. 

A self-organizing learning mechanism parameter is developed 

to adjust parameters. Nevertheless, the approximation accuracy 

decreases if inadequate fuzzy rules are prescribed [42]. In 

opposition to the aforementioned methods, the SCFNN is able 

to accomplish self-construction by properly creating and 

removing fuzzy rules, and to achieve accurate approximation. 

Moreover, fault identification plays an important role in an 

active FTAC system, affecting the fault-tolerance performance. 

Hence, SCFNN is integrated in the developed FTAC scheme, 

in order to accurately capture the upper bounds of the norms of 

the unknown terms. 

 

IV. FAULT-TOLERANT AIRCRAFT CONTROL DESIGN 

A. An Overview of the Developed FTAC Scheme 

As depicted in Fig. 2, the FTAC system described here is 

mainly compounded by SCFNNs and finite-time fault-tolerant 

control, respectively. Within the proposed context, the SCFNNs 

with adaptive techniques serve to obtain online the values of 𝜌̂1 

and 𝜌̂2 . Based on the multivariable SMC approach and the 

SCFNN outputs, the FTAC law can thereby ensure the finite-

time stability of the closed-loop system under unfavorable fault 

situations. It is worth mentioning that the FTAC is adapted in 

response to the information provided by the SCFNNs. In this 

sense, actuator faults can be accommodated in an active manner. 

 
Fig. 2. Block diagram of the designed FTAC scheme. 

B. Analysis of SCFNN Approximation 

    The upper bounds 𝜌1  and 𝜌2  are identified online by the 

SCFNNs, as indicated in Eqs. (27) and (28). The estimates, 𝜌̂1 

and 𝜌̂2, are pivotal in the FTAC law design. A necessary step 

toward integrating the SCFNNs into the FTAC is the analysis 

of SCFNN approximation.  

To proceed with the analysis, define the estimation errors as: 

𝑾̃ = 𝑾− 𝑾̂ , 𝝓̃ = 𝝓 − 𝝓̂ , 𝒄̃ = 𝒄 − 𝒄̂ , and 𝝈̃ = 𝝈 − 𝝈̂ , 

respectively. In accordance with Eq. (27) and Taylor series 

expansion, one can obtain: 

 

 𝜀1 = 𝑾
𝑇𝝓− 𝑾̂𝑇𝝓̂  

   = (𝑾𝑇𝝓−𝑾𝑇𝝓̂ − 𝑾̂𝑇𝝓+ 𝑾̂𝑇𝝓̂)  

    +(𝑾𝑇𝝓̂ − 𝑾̂𝑇𝝓̂) + (𝑾̂𝑇𝝓− 𝑾̂𝑇𝝓̂) 

= 𝑾̃𝑇𝝓̂ + 𝑾̂𝑇𝝓̃ + 𝑾̃𝑇𝝓̃  

= 𝑾̃𝑇𝝓̂ + 𝑾̂𝑇(𝝓𝒄
′ 𝒄̃ + 𝝓𝝈

′ 𝝈̃ + 𝒉(𝒛; 𝒄̃, 𝝈̃)) + 𝑾̃𝑇𝝓̃  

= 𝑾̃𝑇𝝓̂ + 𝑾̂𝑇𝝓𝒄
′ 𝒄̃ + 𝑾̂𝑇𝝓𝝈

′ 𝝈̃ + 𝑾̂𝑇𝒉(𝒛; 𝒄̃, 𝝈̃) + 𝑾̃𝑇𝝓̃⏟              
𝜀1
∗

,   

  (38) 

where 

 

𝝓𝒄
′ =

𝜕𝝓

𝜕𝒄
= diag(𝝓𝒄1

𝑇 , 𝝓𝒄2
𝑇 , ⋯ ,𝝓𝒄𝑁

𝑇 ) ∈ 𝓡𝑁×𝑚𝑁,        (39) 

𝝓𝝈
′ =

𝜕𝝓

𝜕𝝈
= diag(𝝓𝝈1

𝑇 , 𝝓𝝈2
𝑇 , ⋯ ,𝝓𝝈𝑁

𝑇 ) ∈ 𝓡𝑁×𝑚𝑁,      (40) 

𝝓𝒄𝑙
𝑇 =

𝜕𝝓𝑙

𝜕𝒄𝑙
𝑇 = [𝜙1,𝑐𝑙 , 𝜙2,𝑐𝑙 , ⋯ , 𝜙𝑚,𝑐𝑙]      

 = 2𝝓̂𝑙 [
𝑧1−𝑐𝑙̂,1

𝜎̂𝑙,1
2 ,

𝑧2−𝑐𝑙̂,2

𝜎̂𝑙,2
2 , ⋯ ,

𝑧𝑚−𝑐𝑙̂,𝑚

𝜎̂𝑙,𝑚
2 ],                     (41) 

 𝝓𝝈𝑙
𝑇 =

𝜕𝝓𝑙

𝜕𝝈𝑙
𝑇 = [𝜙1,𝜎𝑙 , 𝜙2,𝜎𝑙 , ⋯ , 𝜙𝑚,𝜎𝑙]  

 = 2𝝓̂𝑙 [
(𝑧1−𝑐𝑙̂,1)

2

𝜎̂𝑙,1
3 ,

(𝑧2−𝑐𝑙̂,2)
2

𝜎̂𝑙,2
3 , ⋯ ,

(𝑧𝑚−𝑐𝑙̂,𝑚)
2

𝜎̂𝑙,𝑚
3 ],         (42) 

 

and 𝒉(𝒛; 𝒄̃, 𝝈̃) = 𝝓 − 𝝓̂ − 𝝓𝒄
′ 𝒄̃ − 𝝓𝝈

′ 𝝈̃ represents a high order 

term. 

In Eq. (38), 𝜀1
∗ = 𝑾̂𝑇𝒉(𝒛; 𝒄̃, 𝝈̃) + 𝑾̃𝑇𝝓̃  is thought as the 

residual approximation error. The analysis of 𝜀1
∗  is then 

conducted as: 

 

(𝜀1
∗)𝑇𝜀1

∗ = [𝑾̂𝑇(𝝓̃ − 𝝓𝒄
′ 𝒄̃ − 𝝓𝝈

′ 𝝈̃) + 𝑾̃𝑇𝝓̃]
𝑇
[𝑾̂𝑇(𝝓̃ − 𝝓𝒄

′ 𝒄̃

− 𝝓𝝈
′ 𝝈̃) + 𝑾̃𝑇𝝓̃] 

= 𝝓̃𝑇𝑾̂𝑾̂𝑇𝝓̃ + 𝒄̃𝑇(𝝓𝒄
′ )𝑇𝑾̂𝑾̂𝑇𝝓𝒄

′ 𝒄̃ + 𝝈̃𝑇(𝝓𝝈
′ )𝑇𝑾̂𝑾̂𝑇𝝓𝝈

′ 𝝈̃  

−2𝒄̃𝑇(𝝓𝒄
′ )𝑇𝑾̂𝑾𝑇𝝓̃ − 2𝝈̃𝑇(𝝓𝝈

′ )𝑇𝑾̂𝑾𝑇𝝓̃  

+2𝝈̃𝑇(𝝓𝝈
′ )𝑇𝑾̂𝑾̂𝑇𝝓𝒄

′ 𝒄̃ + 𝝓̃𝑇𝑾̃𝑾̃𝑇𝝓̃ + 2𝝓̃𝑇𝑾̂𝑾̃𝑇𝝓̃.      

                                                                                  (43) 

Moreover, the following inequalities hold: 

 

{
 
 

 
 2𝝓̃

𝑇𝑾̂𝑾̃𝑇𝝓̃ ≤ 𝝓̃𝑇𝑾̂𝑾̂𝑇𝝓̃ + 𝝓̃𝑇𝑾̃𝑾̃𝑇𝝓̃

2𝝈̃𝑇(𝝓𝝈
′ )𝑇𝑾̂𝑾̂𝑇𝝓𝒄

′ 𝒄̃ ≤ 𝒄̃𝑇(𝝓𝒄
′ )𝑇𝑾̂𝑾̂𝑇𝝓𝒄

′ 𝒄̃ + 𝝈̃𝑇(𝝓𝝈
′ )𝑇𝑾̂𝑾̂𝑇𝝓𝝈

′ 𝝈̃

−2𝒄̃𝑇(𝝓𝒄
′ )𝑇𝑾̂𝑾𝑇𝝓̃ ≤ 𝒄̃𝑇(𝝓𝒄

′ )𝑇𝑾̂𝑾̂𝑇𝝓𝒄
′ 𝒄̃ + 𝝓̃𝑇𝑾𝑾𝑇𝝓̃

−2𝝈̃𝑇(𝝓𝝈
′ )𝑇𝑾̂𝑾𝑇𝝓̃ ≤ 𝝈̃𝑇(𝝓𝝈

′ )𝑇𝑾̂𝑾̂𝑇𝝓𝝈
′ 𝝈̃ + 𝝓̃𝑇𝑾𝑾𝑇𝝓̃

 .    

   (44) 

Hence, applying (44) to Eq. (43) results in: 

 

(𝜀1
∗)𝑇𝜀1

∗ ≤ 3𝒄̃𝑇(𝝓𝒄
′ )𝑇𝑾̂𝑾̂𝑇𝝓𝒄

′ 𝒄̃ + 3𝝈̃𝑇(𝝓𝝈
′ )𝑇𝑾̂𝑾̂𝑇𝝓𝝈

′ 𝝈̃ 

+2𝝓̃𝑇𝑾̃𝑾̃𝑇𝝓̃ + 2𝝓̃𝑇𝑾̂𝑾̂𝑇𝝓̃ + 2𝝓̃𝑇𝑾𝑾𝑇𝝓̃.   

(45) 

Given that 0 < ‖𝝓̃‖ ≤ 1 and 𝑑0 >
(𝒛−𝒄𝑙)

𝑇(𝒛−𝒄𝑙)

𝚺𝑙
2 , 𝑙 = 1,2,⋯ ,𝑁, 

the terms of the right hand side of (45) are individually analyzed: 

 

𝜆𝑚𝑎𝑥[(𝝓𝒄
′ )𝑇𝑾̂𝑾̂𝑇𝝓𝒄

′ ]     

≤ 𝑊̅2𝜆𝑚𝑎𝑥[𝝓𝒄1𝝓𝒄1
𝑇 , 𝝓𝒄2𝝓𝒄2

𝑇 , ⋯ ,𝝓𝒄𝑁𝝓𝒄𝑁
𝑇 ] ≤

2𝑑0𝑊̅
2

𝜎2
,     (46) 

𝜆𝑚𝑎𝑥[(𝝓𝝈
′ )𝑇𝑾̂𝑾̂𝑇𝝓𝝈

′ ]    

≤ 𝑊̅2𝜆𝑚𝑎𝑥[𝝓𝝈1𝝓𝝈1
𝑇 , 𝝓𝝈2𝝓𝝈2

𝑇 , ⋯ ,𝝓𝝈𝑁𝝓𝝈𝑁
𝑇 ] ≤

2𝑑0
2𝑊̅2

𝜎2
,   (47) 

2𝝓̃𝑇𝑾̃𝑾̃𝑇𝝓̃ ≤ 2trace(𝑾̃𝑾̃𝑇),                  (48) 

2𝝓̃𝑇𝑾̂𝑾̂𝑇𝝓̃ + 2𝝓̃𝑇𝑾𝑾𝑇𝝓̃ ≤ 4𝑊̅2.               (49) 

 

    In consequence, one can achieve: 

 

(𝜀1
∗)𝑇𝜀1

∗ ≤
6𝑑0𝑊̅

2

𝜎2
+
6𝑑0
2𝑊̅2

𝜎2
+ 2trace(𝑾̃𝑾̃𝑇) + 4𝑊̅2 < ∞,  

(50) 
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which implies that the residual approximation error is bounded. 

By performing the similar analysis, it can be achieved that 

𝜀2
∗ = 𝑿̂𝑇𝒉(𝒛; 𝒑̃, 𝒒̃) + 𝑿̃𝑇𝝍̃ is bounded as well, where 𝑿̃ = 𝑿 −

𝑿̂, 𝝍̃ = 𝝍 − 𝝍̂, 𝒑̃ = 𝒑 − 𝒑̂, 𝒒̃ = 𝒒 − 𝒒̂, and 𝒉(𝒛; 𝒑̃, 𝒒̃) denotes 

a high order term, respectively. 

C. The Proposed FTAC Algorithm 

Define the error vector as: 𝒆 = 𝒙 − 𝒙𝑑, where 𝒙𝑑 represents 

the command vector. In order to achieve a sliding mode 

throughout the entire system response, the sliding manifold is 

established as: 

 

𝑺 = 𝒆 + 𝜇 ∫ (‖𝒆‖𝑟𝒆 ‖𝒆‖⁄ )𝑑𝜏
𝑡

0
,                  (51) 

 

where 𝜇 is a positive constant and 0 < 𝑟 < 1, respectively. The 

goal of FTAC pursued in this study is to steer the tracking error 

vector 𝒆 to the origin along 𝑺 = 0 in finite time, under actuator 

faults and model uncertainties. The following Theorem 1 

constitutes the main result of FTAC design. 

Theorem 1: Given the faulty model of aircraft in Eq. (20), the 

FTAC law is constructed as: 

 

𝒖 = −𝒈0
+ [𝑭 + (𝜌̂1 + 𝜌̂2‖𝑭‖ + 𝜂)

𝑺

‖𝑺‖
],            (52) 

 

where 𝑭 = 𝒇0 − 𝒙̇𝑑 + 𝜇(‖𝒆‖
𝑟𝒆 ‖𝒆‖⁄ ) , 𝜂 ≥

(𝜌̂1𝜌̂2+𝜌̂1𝜀2
∗+𝜀1

∗)+(𝜌̂2𝜌2+𝜌̂2𝜀2
∗+𝜀2

∗)‖𝑭‖

1−𝜌̂2−𝜀2
∗ + 𝜀𝜂 , 𝜌̂1 = 𝑾̂

𝑇𝝓̂, 𝜌̂2 = 𝑿̂
𝑇𝝍̂, 

and 𝜀𝜂 > 0, respectively. Moreover, the adaptation laws are 

formed as:  

 

𝑾̇̂ = 𝝓̂,                                          (53) 

𝑐̇̂𝑙,𝑖 = 𝜙𝑖,𝑐𝑙𝑊̂𝑙
𝑇,                                     (54) 

𝜎̇̂𝑙,𝑖 = 𝜙𝑖,𝜎𝑙𝑊̂𝑙
𝑇,                                    (55) 

𝑿̇̂ = 𝜌̂1𝝍̂ + 𝝍̂‖𝑭‖ + 𝜌̂2𝝍̂‖𝑭‖ + 𝜂𝝍̂,                  (56) 

𝑝̇̂𝑙,𝑖 = 𝜓𝑖,𝑝𝑙𝑋̂𝑙
𝑇‖𝑭‖ + 𝜌̂1𝜓𝑖,𝑝𝑙𝑋̂𝑙

𝑇 + 𝜌̂2𝜓𝑖,𝑝𝑙𝑋̂𝑙
𝑇‖𝑭‖ + 𝜂𝜓𝑖,𝑝𝑙𝑋̂𝑙

𝑇,  

        (57) 

𝑞̇̂𝑙,𝑖 = 𝜓𝑖,𝑞𝑙𝑋̂𝑙
𝑇‖𝑭‖ + 𝜌̂1𝜓𝑖,𝑞𝑙𝑋̂𝑙

𝑇 + 𝜌̂2𝜓𝑖,𝑞𝑙𝑋̂𝑙
𝑇‖𝑭‖ + 𝜂𝜓𝑖,𝑞𝑙𝑋̂𝑙

𝑇,  

        (58) 

 

where 𝑖 = 1,2,⋯ ,𝑚  and 𝑙 = 1,2,⋯ ,𝑁 . Therefore, the 

designed FTAC law ensures that the tracking error 𝒆 can be 

enforced to the origin along 𝑺 = 0 in finite time even if subject 

to actuator malfunctions and model uncertainties. 

Proof:  

    Choose a Lyapunov function candidate as: 

 

𝑉 = ‖𝑺‖⏟
𝑉0

+
1

2
trace(𝑾̃𝑇𝑾̃) +

1

2
𝒄̃𝑇𝒄̃ +

1

2
𝝈̃𝑇𝝈̃⏟                    

𝑉1

  

     +
1

2
trace(𝑿̃𝑇𝑿̃) +

1

2
𝒑̃𝑇𝒑̃ +

1

2
𝒒̃𝑇𝒒̃⏟                  

𝑉2

.                          (59) 

 

    For simplicity, the proof procedure is divided into four steps. 

𝑉0, 𝑉1, and 𝑉2 are differentiated in sequence. At the last step, 

the results of the first three steps are combined. 

Step 1) Differentiating 𝑉0 gives: 

 𝑉̇0 =
𝑺𝑇

‖𝑺‖
𝑺̇  

=
𝑺𝑇

‖𝑺‖
[(𝒇0 + 𝒈0𝒖) + (𝚫𝑓 + (𝒈0 + 𝚫𝑔)𝚼)  

+(𝒈0(𝚲 − 𝑰) + 𝚫𝑔𝚲)𝒖 + 𝜇(‖𝒆‖
𝑟𝒆 ‖𝒆‖⁄ ) − 𝒙̇𝑑]  

≤ (𝜌1 − 𝜌̂1 + 𝜌̂1𝜌2) + (𝜌2 − 𝜌̂2 + 𝜌̂2𝜌2)‖𝑭‖ + (−𝜂 + 𝜂𝜌2)  
= (𝜌1 − 𝜌̂1)⏟      

𝑇𝑒𝑟𝑚 1

+ 𝜌̂1𝜌2 + (𝜌2 − 𝜌̂2 + 𝜌̂2𝜌2)‖𝑭‖ + 𝜂𝜌2⏟                      
𝑇𝑒𝑟𝑚 2

−𝜂⏟
𝑇𝑒𝑟𝑚 3

. 

     (60) 

Step 2) Differentiating 𝑉1 renders: 

 

 𝑉̇1 = −𝑾̃
𝑇𝑾̇̂ − 𝒄̃𝑇 𝒄̇̂ − 𝝈̃𝑇 𝝈̇̂  

= −𝑾̃𝑇𝝓̂ − 𝒄̃𝑇(𝝓𝒄
′ )𝑇𝑾̂ − 𝝈̃𝑇(𝝓𝝈

′ )𝑇𝑾̂.                   (61) 

 

In addition, the first term of right hand side of (60) plus 𝑉̇1 is: 

 

𝑇𝑒𝑟𝑚 1 + 𝑉̇1 ≤ 𝜀1
∗.                              (62) 

 

Step 3) Differentiating 𝑉2 leads to: 

 

𝑉̇2 = −𝑿̃
𝑇𝑿̇̂ − 𝒑̃𝑇𝒑̇̂ − 𝒒̃𝑇 𝒒̇̂  

  = −𝑿̃𝑇𝜌̂1𝝍̂ − 𝑿̃
𝑇𝝍̂‖𝑭‖ − 𝑿̃𝑇𝜌̂2𝝍̂‖𝑭‖ − 𝑿̃

𝑇𝜂𝝍̂  

−𝒑̃𝑇(𝝓𝒑
′ )
𝑇
𝑿̂‖𝑭‖ − 𝒑̃𝑇𝜌̂1(𝝓𝒑

′ )
𝑇
𝑿̂  

−𝒑̃𝑇𝜌̂2(𝝓𝒑
′ )
𝑇
𝑿̂‖𝑭‖ − 𝒑̃𝑇𝜂(𝝓𝒑

′ )
𝑇
𝑿̂  

         −𝒒̃𝑇(𝝓𝒒
′ )
𝑇
𝑿̂‖𝑭‖ − 𝒒̃𝑇𝜌̂1(𝝓𝒒

′ )
𝑇
𝑿̂  

         −𝒒̃𝑇𝜌̂2(𝝓𝒒
′ )
𝑇
𝑿̂‖𝑭‖ − 𝒒̃𝑇𝜂(𝝓𝒒

′ )
𝑇
𝑿̂  

    = −𝜌̂1(𝑿̃
𝑇𝝍̂ + 𝑿̂𝑇𝝓𝒑

′ 𝒑̃ + 𝑿̂𝑇𝝓𝒒
′ 𝒒̃)  

        −(𝑿̃𝑇𝝍̂ + 𝑿̂𝑇𝝓𝒑
′ 𝒑̃ + 𝑿̂𝑇𝝓𝒒

′ 𝒒̃)‖𝑭‖  

         −𝜌̂2(𝑿̃
𝑇𝝍̂ + 𝑿̂𝑇𝝓𝒑

′ 𝒑̃ + 𝑿̂𝑇𝝓𝒒
′ 𝒒̃)‖𝑭‖  

         −𝜂(𝑿̃𝑇𝝍̂ + 𝑿̂𝑇𝝓𝒑
′ 𝒑̃ + 𝑿̂𝑇𝝓𝒒

′ 𝒒̃).                                    (63) 

 

Since 𝜀2 = 𝜌2 − 𝜌̂2 = 𝑿̃
𝑇𝝍̂ + 𝑿̂𝑇𝝓𝒑

′ 𝒑̃ + 𝑿̂𝑇𝝓𝒒
′ 𝒒̃ + 𝜀2

∗, 

 

𝑉̇2 ≤ −𝜌̂1(𝜌2 − 𝜌̂2 − 𝜀2
∗) − (𝜌2 − 𝜌̂2 − 𝜀2

∗)‖𝑭‖  

−𝜌̂2(𝜌2 − 𝜌̂2 − 𝜀2
∗)‖𝑭‖ − 𝜂(𝜌2 − 𝜌̂2 − 𝜀2

∗).    (64) 

 

Consequently, the second term of right hand side of (60) plus 

𝑉̇2 can render: 

 

𝑇𝑒𝑟𝑚 2 + 𝑉̇2 ≤ (𝜌̂1𝜌2 − 𝜌̂1𝜌2 + 𝜌̂1𝜌̂2 + 𝜌̂1𝜀2
∗) + 𝜀2

∗‖𝑭‖  

+(−𝜌̂2𝜌2 + 𝜌̂2𝜌̂2 + 𝜌̂2𝜌2 + 𝜌̂2𝜀2
∗)‖𝑭‖  

+(𝜂𝜌2 − 𝜂𝜌2 + 𝜂𝜌̂2 + 𝜂𝜀2
∗)  

= (𝜌̂1𝜌̂2 + 𝜌̂1𝜀2
∗) + 𝜀2

∗‖𝑭‖  

+(𝜌̂2𝜌2 + 𝜌̂2𝜀2
∗)‖𝑭‖ + (𝜂𝜌̂2 + 𝜂𝜀2

∗).          (65) 

 

Step 4) By recalling the results in (60), (62), and (65), 𝑉̇ can 

be further bounded as: 

 

𝑉̇ = 𝑉̇0 + 𝑉̇1 + 𝑉̇2   

 ≤ −𝜂 + (𝜌̂1𝜌̂2 + 𝜌̂1𝜀2
∗ + 𝜀1

∗)  
+(𝜌̂2𝜌2 + 𝜌̂2𝜀2

∗ + 𝜀2
∗)‖𝑭‖ + 𝜂(𝜌̂2 + 𝜀2

∗).                (66) 

 

If 𝜀𝜂 > 0 and the condition: 

 

𝜂 ≥
(𝜌̂1𝜌̂2+𝜌̂1𝜀2

∗+𝜀1
∗)+(𝜌̂2𝜌2+𝜌̂2𝜀2

∗+𝜀2
∗)‖𝑭‖

1−𝜌̂2−𝜀2
∗ + 𝜀𝜂,              (67) 
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holds, the following inequality: 
 

𝑉̇ = 𝑉̇0 + 𝑉̇1 + 𝑉̇2 ≤ −𝜀𝜂,                      (68) 
 

can be guaranteed.  

    According to [43], the condition (68) implies that the values 

of 𝑉 and 𝑺 will converge to zero in finite time 𝑡𝑓, i.e., 𝑉(𝑡𝑓) =

0. One can obtain that 𝑡𝑓 ≤ 𝑡0 +
𝑉(𝑡0)

𝜀𝜂
. In addition, since the 

value of 𝑉 is bounded, 𝑾̃, 𝒄̃, 𝝈̃, 𝑿̃, 𝒑̃, and 𝒒̃ are all bounded. 

This completes the proof.                                                         ■ 

    Remark 6: As indicated in Eq. (52), the FTAC law is 

designed to compensate for the detrimental impact arising from 

actuator faults and model uncertainties. Notice that the 

estimates of 𝑾, 𝝓, 𝑿, and 𝝍 can be gained by resorting to the 

adaptation algorithms. Thus, the values of 𝜌1  and 𝜌2  can be 

adapted in response to the up-to-date knowledge from SCFNNs.  

Remark 7: The typical SMC design can be divided into two 

steps. In the first step, a sliding manifold is established, such 

that the system trajectory along the manifold acquires the 

desired specifications. In the second step, the goal pursued is to 

guarantee that the system trajectory can reach the manifold in 

finite time. As can be observed from Eq. (51), the sliding 

manifold is established by vector expression, which can be 

named multivariable design [44]. The resulting FTAC law, as 

shown in Eq. (52), is integrated by multivariable design as well. 

In most of the existing sliding mode based FTAC approaches, 

the design problem is typically formulated as the problems 

involving single input control channel. In contrast, the approach 

of this work yields a multivariable design to be considered in 

FTAC, avoiding decoupled issues. 

Remark 8: Focusing on the FTAC strategy (52), there are 

four important design parameters (𝜇, 𝜌̂1, 𝜌̂2, 𝜂 ). To be more 

specific, 𝜌̂1 and 𝜌̂2 can be obtained by the adaptive laws (53)-

(58). The design parameter 𝜇 in the sliding manifold is closely 

related to the sliding speed when 𝑺 = 0 . The parameter 𝜂 

affects the convergence rate of reaching sliding surface (from 

𝑺 ≠ 0  to 𝑺 = 0 ). However, if 𝜂  is too large, chattering 

phenomena will be induced. In the existing literature, to the best 

of the authors' knowledge, there is no systematic method to 

choose the values of the parameters. In this study, the values are 

selected by the extensive tests and trials. 

V. NUMERICAL SIMULATIONS 

A. Simulation Scenarios 

    The trimming flight conditions of the aircraft are: 𝛼trim =
0.928° , 𝑞trim = 0 , 𝑉trim = 230 m/s , ℎtrim = 7000 m , 

𝜃trim = 0.928° , 𝛿𝑒,trim = 0 , 𝛿𝑠,trim = 0.733° , and 𝑇trim =
41631 N , respectively.  𝜇 = 15  and 𝜂 = 2 . The estimated 

values of 𝜌1 and 𝜌2 are illustrated in Fig. 6. 

The factors involving the model uncertainties, actuator faults, 

and noises in measurement channels are taken into 

consideration in the simulations.  

• Factor 1: The mass of the aircraft is perturbed by 20% of its 

nominal value. The perturbation corresponding to 𝐼𝑦𝑦  is 

20% of the nominal value. The maximal 20% mismatch is 

present in 𝑐̅, 𝑞̅, and 𝑆𝑟.  

• Factor 2: The gain and bias faults in the elevator and the 

thrust are: 

 

𝜆1 = {
1, 0 ≤ 𝑡 < 7
0,          𝑡 ≥ 7

, 𝜎1 = {
0, 0 ≤ 𝑡 < 7
6,          𝑡 ≥ 7

,                 (69) 

𝜆2 = {
1, 0 ≤ 𝑡 < 7
0.5,       𝑡 ≥ 7

, 𝜎2 = {
0, 0 ≤ 𝑡 < 7
2,          𝑡 ≥ 7

.                 (70) 

 

• Factor 3: The white noise with a mean of 0 and covariance 

of 0.01 is injected into each of measurement channels. 

Furthermore, in order to quantitatively evaluate the tracking 

performance, define: 

 

{
 

 𝑒𝜃 = √
1

𝑡1−𝑡0
∫ |𝜃 − 𝜃𝑑|

2𝑡1
𝑡0

𝑑𝜏

𝑒𝑉 = √
1

𝑡1−𝑡0
∫ |𝑉 − 𝑉𝑑|

2𝑡1
𝑡0

𝑑𝜏

,                     (71) 

 

where [𝑡0, 𝑡1] covers the time frame of the overall simulation, 

𝜃𝑑 and 𝑉𝑑 denote the reference signals of the pitch angle and 

the velocity, respectively. 

TABLE II 

THE SIMULATION SCENARIOS 

 Scenario I Scenario II 

Factor 1 √ √ 

Factor 2 √ √ 

Factor 3  √ 

Comparison √  

 

    Two simulation scenarios are conducted, as indicated in 

Table II. In Scenario I, three FTAC schemes have been selected 

in the revised simulation studies. They are: 1) FLS based FTAC 

with predefined fuzzy rules; 2) self-learning based FTAC with 

weights being updated; and 3) SCFNN based FTAC with both 

weights and regressors being adapted. In Scenario II, 

measurement noises are involved, further examining the 

performance of the developed SCFNN based FTAC. 
 

B. Simulation Results of Scenario I and Evaluation 

The results demonstrate the use of the designed algorithm in 

conditions where the aircraft is experiencing the model 

mismatch and actuator faults. It is shown in Fig. 3 that the three 

FTAC systems can ensure the safety of the aircraft in the event 

of actuator faults and model uncertainties. The closed-loop 

behavior remains satisfactory although the tracking error 

exhibits a slightly worse transient behavior. As can be seen 

from Fig. 3, the SCFNN based FTAC outperforms the 

comparing FTAC schemes, since both weights and regressors 

can be appropriately adapted in the developed scheme. Fig. 4 

highlights how the actuators are managed during the course of 

fault accommodation. The configured actuators are governed 

more promptly by the proposed system (the SCFNN based 

FTAC) in comparison of the other two FTAC schemes.  

Moreover, the quantitative performance metrics are listed in 

Table III. The defined indices achieved by the FLS based FTAC, 
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the self-learning based FTAC, and the SCFNN based FTAC are 

0.387, 0.435, and 0.144, respectively. The enhanced rate from 

the FLS based FTAC to the SCFNN based FTAC is 62.79% 

(from 0.387 to 0.144), while the improved percentage from the 

self-learning FTAC to the SCFNN based FTAC is 66.90% 

(from 0.435 to 0.144). Focusing on the indices of overshoot and 

settling time, the SCFNN based FTAC can achieve superior 

performance over that of the comparing FTAC schemes. The 

quantitative analysis confirms that the presented scheme with 

adaptation of weights and regressor vectors can not only ensure 

the safety of the post-fault aircraft, but also preserve a 

satisfactory degree of tracking performance. 

 
Fig. 3. The profiles of the pitch angle in Scenario I. 

 
Fig. 4. The responses of the actuators in Scenario I.  

The fuzzy rules number N is displayed in Fig. 5. Both the 

SCFNN based FTAC and self-learning based FTAC can adjust 

the fuzzy rules. By contrast, the FLS based FTAC is running 

without any fuzzy rules adjustment. The interesting finding 

from Fig. 5 is that the SCFNN based FTAC possessing compact 

fuzzy rules can respond effectively to the faults. As a result, the 

satisfactory performance of fault accommodation can be 

achieved with the aid of updating weights and regressor vectors. 

It is interesting to see from Fig. 6 that the estimated values of 

𝜌1  and 𝜌2  respond appropriately by adopting the adaptation 

mechanism after occurrence of the actuator faults. Figs. 7-10 

show that the parameter boundedness of 𝑐𝑖̅, 𝑐𝑖, 𝜎̅𝑖, and 𝜎𝑖 can be 

guaranteed. 

TABLE III 

THE PERFORMANCE INDICES 

 Settling time Overshoot 𝑒𝜃  

SCFNN based FTAC 1.80s 0 0.144 

Self-learning based 

FTAC 
2.32s 0 0.435 

FLS based FTAC 1.85s 13.90% 0.387 

 
Fig. 5. The number of fuzzy rules.  

 
Fig. 6. The values of 𝜌̂1 and 𝜌̂2 obtained by SCFNNs.  

 
Fig. 7. Center bounds 𝑐𝑖̅ and 𝑐𝑖 of the first SCFNN. 

 
Fig. 8. Center bounds 𝑐𝑖̅ and 𝑐𝑖 of the second SCFNN. 

 
Fig. 9. Width bounds 𝜎𝑖 and 𝜎𝑖 of the first SCFNN. 
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Fig. 10. Width bounds 𝜎𝑖 and 𝜎𝑖 of the second SCFNN. 

C. Simulation Results of Scenario II and Evaluation  

The robustness of the designed FTAC scheme on sensor 

noises is examined. Based on Fig. 11, the presented SCFNN-

FTAC can still preserve an acceptable level of tracking 

performance when model variation, actuator malfunctions, and 

noisy measurements are involved simultaneously. It is depicted 

in Fig. 12 that the peak value of the tracking error of pitch angle 

is nearly 0.26°. Since the noisy measurements are used for 

feedback, the tracking error can only converge to a small 

vicinity of zero. On the other hand, graceful performance 

degradation is an option in FTAC design without inducing 

overload to fault-free actuators. As can be observed from Fig. 

13, the actuators, which are affected by unfavorable conditions 

of faults and sensor noises, can still be governed to counteract 

malfunctions. The values of of 𝜌̂1 and 𝜌̂2 are displayed in Fig. 

14. It is shown that 𝜌̂1 and 𝜌̂2 can be adapted in response to the 

unfavorable situation of Scenario II, such that the FTAC law 

can react correspondingly. 

 
Fig. 11. The response of the pitch angle in Scenario II. 

 
Fig. 12. Tracking error of pitch angle in Scenario II. 

 
Fig. 13. Actuators deflections in Scenario II. 

 
Fig. 14. The values of 𝜌̂1 and 𝜌̂2 in Scenario II. 

VI. CONCLUSIONS AND FUTURE WORKS 

Actuator malfunctions and aircraft model uncertainties have 

a detrimental impact on aircraft flight safety. To better address 

these difficulties, self-constructing fuzzy neural networks 

(SCFNNs) and multivariable sliding mode control (SMC) with 

adaptive techniques are exploited to enable integration into a 

fault-tolerant aircraft control (FTAC) system. The presented 

strategy has three benefits. 1) By introducing the upper bounds 

of the unknown function norms, the SCFNNs assisted by 

adaptive algorithms are exploited to approximate the 

information of actuator faults and model uncertainties; 2) The 

finite-time stability of the faulty aircraft can be ensured and an 

acceptable level of tracking performance can be preserved; and 

3) The SMC method is presented under multivariable situations, 

instead of the decoupled single-input and single-output method. 

Numerical simulations show that the proposed scheme is able 

to deal with scenarios involving actuator faults and model 

uncertainties. 

Although the presented scheme is capable of tolerating flight 

actuator faults, issues of sensor fault accommodation have not 

yet been addressed in the design. Investigation of these factors 

which may affect the performance of the FTAC system is one 

of our future works. In addition, experimental testbed 

development and experimental validation of the proposed 

algorithm are also our current and future research works. 
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