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IEEE

Abstract—This paper presents the development of a
non-linear model predictive controller (NMPC) applied to
a closed grinding circuit system in the cement industry.
A Markov chain model is used to characterize the cement
grinding circuit by modeling the ball mill and the centrifugal
dust separator. The probability matrices of the Markovian
model are obtained through a combination of comminution
principles and experimental data obtained from the parti-
cle size distribution (PSD) of cement samples at specific
stages of the system. The NMPC is designed as a supervi-
sory controller in order to manage distributed controllers
(DCs) installed in the process. Both the model and the
controller are validated online through the implementation
of the proposed approach in the supervisory control and
data acquisition (SCADA) system of an industrial plant. The
results show a significant improvement in the performance
of the grinding circuit in comparison to the operation of the
system without the proposed controller.

Index Terms—Grinding circuit, Markov chain, NMPC

I. INTRODUCTION

The cement manufacturing process is composed by three
main stages: i) raw materials extraction, ii) blending and clink-
erization, and iii) grinding and distribution. Cement manufac-
turing is highly energy demanding, and is dependent on the
availability of natural resources. Typically, the consumption
in a modern cement plant is between 110 and 120 kWh per
ton of produced cement [1]. The grinding stage represents
about 40% of the total electrical energy consumption of the
cement manufacturing. Therefore, the industry is continuously
focusing on reducing the consumption of natural resources and
energy at the manufacturing and operational stages [2].

Cement grinding is responsible for the fineness character-
istics of the final product, typically measured by two qual-
ity variables: specific surface or Blaine

(
cm2/g

)
, and the

percentage of material passing the sieve No. 325 (PPS325).
It is necessary to develop innovative tools for an enhanced
operation of the cement grinding circuit, which allow the
minimization of the final product variability, while reducing
the energy consumption at this stage.

Many contributions have been made in the control of grind-
ing circuits. For instance, reference [3] proposes a dynamical
model of the grinding process to tune the PID controllers
involved in the cement milling by the loop shaping method.
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The authors of [4] present a modeling procedure of process
variables (PV) to design a linear model predictive controller
(MPC) for the operation of a grinding circuit of a cement plant.
The modeling procedure is based on the step-response analysis
of certain operation variables of the process. The proposed
approach is compared with a knowledge-based fuzzy control
system, offering better results in the handling of uncertainties,
and also presenting less variation in the manipulated variables
(MVs). Reference [5] proposes a fuzzy approach to control the
process, based on operation rules of the grinding circuit. Refer-
ence [6] proposes an intelligence-based supervisory control for
a grinding circuit, which combines an artificial neural network-
based soft-sensor, a fuzzy logic-based dynamic adjustor, and
an expert-based overload diagnosis and adjustment module.
This automatic system adjusts the set-points of DCs in the
grinding circuit eliminating the need of operators.

In [7] a non-linear model of the grinding circuit for pre-
dicting the flow rates of the materials is proposed in order to
design an NMPC. Simulation results validate the performance
of the controller. Reference [8] presents a framework for mod-
eling hybrid systems and for developing hybrid predictive con-
trollers. This approach is tested in two simulated applications,
crushing circuits and flotation. The results are compared with
conventional MPC controllers, which show better performance
of the hybrid controller. Reference [9] proposes a grinding
particle size prediction algorithm using neural networks, and
a data-driven optimization control approach to guarantee safe
operation and overload fault prevention of a hematite grinding
process. The proposed control system is tested in a hardware-
in-the-loop experimental system used to demonstrate optimal
operation of the grinding process.

The majority of papers in this research field present
simulation-based results. Few authors provide experimental
results obtained with advanced controllers applied to actual
industrial grinding circuits. Lepore et al. [10], [11] used a
distributed reduced-order model for the design of an NMPC
applied to a cement mill circuit. The control variable is the
PSD of the cement product resulting from the manipulation of
the fresh-feed flow rate and the separator speed. The objective
function is selected to perform a classic DMC control strategy,
essentially adjusting the bias between measured and predicted
outputs assumed to be caused by step disturbances, which is
not necessarily true in industrial grinding circuits. The present
research proposes a Markovian model to deal with this issue.

In the present work an implementation of an NMPC system
of a cement grinding circuit in an operating industrial plant,
based on a stochastic model of the process, is demonstrated.
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This paper presents the modeling of a closed grinding circuit
system and the design of a predictive supervisory control
strategy installed in the SCADA system of the grinding circuit
of the cement plant. A hidden Markov chain model mimics
the dynamics of the cement mill and the dust separator.
With the help of this model, an NMPC control system was
designed and applied to the closed-loop grinding circuit. The
probability matrices of the Markovian model are obtained from
a combination of comminution principles and experimental
data obtained from the PSD of the product streams at specific
stages of the system. The NMPC manipulates the set points of
DCs installed in the process. The model and the controller are
validated online through the implementation of the proposed
approach in the SCADA system. The results show significant
improvements in the grinding circuit stability and productivity.
Prior to the implementation of the proposed controller, the set
points of the DCs of the grinding circuit system were operated
manually.

II. GRINDING CIRCUIT OPERATION

The grinding is mostly performed in closed circuits where
a horizontal ball cement mill is fed with raw materials. The
fresh flow feed is composed of clinker, gypsum and other
components like limestone, pozzolans, and fly ash. The milled
product is fed via a recycle elevator to a dynamic separator.
The high fineness stream of the separator constitutes the final
circuit product and is sent to the storage and dispatch silos,
while the coarse material returns back to the cement mill to be
ground again. Fig. 1 shows the grinding circuit layout of the
industrial cement plant under study. The elements identified
in the cement grinding circuit are:

• G20 is the ball mill;
• G24 is the dust collector of the ball mill;
• G31 is the bucket elevator;
• G35 is the centrifugal separator; and
• G39 is the dust collector of the separator.
The grinding circuit is operated from a control panel through

a SCADA system. The operators manipulate four variables:
• Fresh feed flow (tph). This set point changes the speed

of the conveyors and the dosage of the storage silos
containing the raw material, in a coordinated way.

• G24 speed (rpm). This control signal has a direct impact
on the residence time of the mill. The speed of this dust
collector is kept constant most of the times.

• G35 speed (rpm). The rotor speed of the separator is
responsible for producing centrifugal forces in the cement
particles, which in combination with the particles weight
and the drag forces produced by the dust collector G39,
completes the classification process.

• G39 speed (rpm). The cement fineness depends on the
speed of this dust collector. Therefore, G35 and G39
speeds are the variables that are to be manipulated in
order to stabilize the material flows in the grinding circuit
to obtain desired cement fineness.

Fig. 2 shows the open-loop operation of the grinding circuit
during two days of January-2015. The MVs managed from the
SCADA system can be seen to have a direct influence on the

Fig. 1. Grinding circuit layout of an industrial cement plant

dynamics of the system. Speed changes in the G35 and G39
units produce instantaneous changes in the reject flow, while
a step change in the fresh feed flow produces a response in
the reject flow with a characteristic time constant of eight
minutes, which is the mill residence time. The reject flow
presents a high variation range, which is responsible also for
high fineness variations of the final product. The objective of
the present work was to develop a control strategy to stabilize
the reject flow signal and to maximize the productivity, while
keeping the cement fineness variability within the limits set
by the product specifications.
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Fig. 2. Grinding circuit operation during forty eight hours

III. MODELING OF THE GRINDING CIRCUIT

Modeling of an industrial milling system is a complicated
task due to the multivariable character of the process, the
high degree of load disturbances, the incomplete or missing
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information about some key process characteristics such as
clinker hardness, the moisture of the raw material, grinding
media condition, separator efficiency and the PSD of different
streams. Therefore, for designing a model-based control of a
cement mill, a modeling procedure with a stochastic behavior
is needed. The Markov chain approach is ideally suited for this
purpose, where the probability of a data set within a defined
state space is easily obtained from experimental data.

A Markov chain of a random process with finite state space
(S = {s1, . . . , sk}) is defined as [12]:

P (Xk+1 = sj | X0 = s10 , X1 = si1 , . . . , Xk = si )
= P (Xk+1 = sj | Xk = si ) = Pij

(1)

where P ∈ Rk×k is the transition matrix. The transition
probability Pij is the conditional probability of being in state
sj given that the previous state is si.

For a Markov chain with state space {s1, . . . , sk}, an initial
state vector x(0), and transition matrix P, the evolution is:

x(k) = x(0)Pk (2)

The grinding circuit is modeled with the use of Markov
chains, considering the methodology presented in [13]. Fig.
3 shows a block diagram of the model to be developed.
The grinding circuit model describes a finite state space,
S = {s1, . . . , s42}, where si represents a computational sieve
with a defined cement fineness. The PSD of the fresh feed
material is coarser than other flows in the grinding circuit. The
differences in the sieve sizes used in the PSD streams of the
grinding circuit, e.g. the fines stream is finer than other streams
in the grinding circuit, are solved by defining the PSD data
over the same set of sieves. The set of computational sieves
cover the entire range of particle sizes in the PSD, from the
smallest in the final product to the largest in the fresh feed.
The following definition of computational sieves was used for
all particle streams:

xmi = xmmin + γ 2
i−2
2 (3)

where,
xmi − Computational sieves set (µm)
xmmin − Smallest computational sieve (i = 1)
i − Number of the sieve, i = 1, 2, . . . , 42
γ − Free parameter,

The state vector of the model corresponds to the PSD of the
material flow in three different stages of the grinding circuit:
the mill output flow

(
f1 ∈ R42

)
, reject flow

(
f2 ∈ R42

)
, and

fines flow
(
f3 ∈ R42

)
; the PSD of the material streams are cal-

culated through two probability matrices, the grinding matrix(
G ∈ R42×42

)
, and the classification matrix

(
C ∈ R42×42

)
.

The initial state vector
(
f0 ∈ R42

)
represents the PSD of the

fresh feed.
The conditional probabilities of the matrices G and C are

obtained through a combination of data analysis of measured
PSDs of the streams in the grinding circuit and comminution
principles. The green dots in Figs. 1 and 3 represent sam-
pling points, where samples of the material flowing through

Fig. 3. Block diagram of the Markovian model of the grinding circuit

the grinding circuit are taken to be analyzed by a particle
sizing instrument, model MASTERSIZER 3000. Fig. 4 shows
representative PSD of the streams of the grinding circuit at
the sampling points. The difference in particle size between
the different streams can be clearly appreciated.
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Fig. 4. PSD of the grinding circuit streams

A. Estimation of the grinding matrix
The grinding forces produce clinker particles to fracture

with some probability. Once the particle is broken, it does
not belong to the original fraction (source sievej) and their
pieces are distributed among fractions of smaller size (receptor
sievei). The amount of ground material and the way the
particles are propagated between smaller size fractions are
determined through the selection and distribution functions
[14]. The selection function describes the breakage rate of a
particle; its units are 1/second. This function is a representation
of the grinding principles and relates the size of a particle
subject to a given grinding force with the specific energy
required to form a new particle surface. The selection function
can be written as follows:

s(x) = α

(
x

xmax

)β
(4)

where,
x - Original particle size before fracture
xmax - Largest computational sieve of the PSD (µm)
α - Grinding constant
β - Grinding constant
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The result of multiplying s(x) with an observation period
∆t in seconds defines the probability of a clinker particle to
fracture. Therefore,

P (x) = ∆t s(x) (5)

Ground particles propagate among smaller size fractions
according to the distribution law, represented by the parameter
bij . The subindex i represents the recepting fraction, while
the subindex j denotes the source fraction. The proportion
of material that is transferred to the i-fraction is (bijsj∆t).
The sum of the parameters bij has to be 1, which means that
the amount of ground material from fraction xmj is exactly
equal to the amount of material distributed among the smaller
fractions

(∑j−1
i=1 bij = 1

)
. The values of bij are assumed to

have the same probability for j = 1, 2, . . . , 42, i.e. equal
probabibilties for the original particle of size x to break into
particles of any of the smaller computational sieve classes.

The grinding matrix is a special case of transition matrix. It
is derived by considering that the grinding process occurs in
fundamental steps that represent breakage events [15]. One of
those events corresponds to a unique transition of a Markov
chain, and a repetitive process of this chain represents the
transitions of state vector (f0 → f1) in a period of time. The
grinding matrix is defined as follows [16]:

G =


1 b12s2∆t b13s3∆t . . . b1nsn∆t
0 1− s2∆t b23s3∆t . . . b2nsn∆t
0 0 1− s3∆t . . . b3nsn∆t

. . . . . . . . .
. . . . . .

0 0 0 . . . 1− sn∆t

 (6)

The grinding matrix is an upper triangular matrix. The
main diagonal elements define the probabilities of the particles
of remaining in their original fractions. The elements of the
upper right of the matrix represent the distribution function
and define the probability of transition of a particle from the
source (column) to the recepting fraction (row). The elements
of the lower left of the matrix are zeros, which denotes that
this model does not allow agglomeration of the particles, i.e.
source fractions can not become larger.

A grinding event is represented by:

[f0]k+1 = [G] [f0]k (7)

[f1] = [G]
k

[f0]0 (8)

where,
[f1] - State vector of the separator feed flow
[f0]k - Fresh feed vector after the k-th transtition

[G]
k - Result of k transitions of the grinding matrix

[f0]0 - Initial state vector of the fresh feed.

The number of transitions of the Markov chain, k, is directly
related with the residence time in the ball mill, since every
transition of the Markov chain was determined experimentally
to last one second. The higher the residence time, the higher
the number of transitions will be, and in consequence the
stream leaving the mill will be finer.

The set of unknown parameters of the grinding matrix
(α, β, k) are found by using parameter estimation and data
adjustment. Eq. (8) is used to optimize the error between the
estimation given by the Markovian model and a data set of
experimental PSD of the stream f1.

The experimental data used for the parameters estimation of
the model consists of 21 samples of the four material streams
of the grinding circuit: fresh feed, mill output, reject flow, and
fines flow. For every sample it was determined experimentally
the following information:

• PSD
• Percentage of material passing the sieve No. 325
• Specific surface (Blaine) [cm2/g]

Every sample was taken directly from the process and ana-
lyzed in the lab. Before taking any sample, a specific operating
condition was set. For instance, the operating conditions as
well as the lab results of five different samples are shown in
Table I.

TABLE I
OPERATING CONDITIONS OF THE GRINDING CIRCUIT FOR THE

SAMPLES USED FOR PARAMETER ESTIMATION

Test Manipulated variables Lab results
Feeding G35 (rpm) G39 (rpm) PPS45 Blaine

1 70.2 176 1113 5.4 4305
5 73.0 182 1138 4.1 4147
9 69.3 187 1113 2.7 4772

17 80.0 194 1164 6.6 3574

B. Estimation of the classification matrix
The classification matrix calculates from f1 the amount of

material that returns to the grinding circuit, f2 (reject flow) and
the amount of material that goes to the silos, f3 (fines flow).
The classification matrix is represented through a diagonal
matrix, C. Every element of the main diagonal ci represents
the probability of the fraction i to become the final product.
The classification matrix is the result of discretizing the grade
efficiency curve (GEC) of the separator [13]. The size of C is
determined by the number of elements of the state vector f1.

C =


c1 0 . . . 0
0 c2 . . . 0

. . . . . .
. . . . . .

0 0 . . . c42

 (9)

The grade efficiency curve can be calculated from the PSD
data from the streams of the grinding circuit by using the
following expression:

GEC =
f3i
f1i

f1i − f2i
f3i − f2i

(10)

where f1i, f2i, f3i represent the probability of a particle
having the size xi in the fresh feed, reject flow, and fines
flow, respectively.

On the other hand, the Tromp curve, also called separation
curve or selectivity curve, is typically used as a measure of the
separator efficiency. The Tromp curve is defined as the inverse
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Fig. 5. Experimental Tromp curves for 21 different operating conditions

of the GEC; it models the probability of a particle entering the
separator of becoming the final product. Since the separation
process allows the modification of the separator rotor speed
(G35), and the dust collector (G39) speed, the GEC will not be
a static curve, and the C matrix depends on these two MVs.
To handle the non-static behavior of C, a neural network is
designed to fit the data set from the experiments. Fig. 5 shows
the experimental Tromp Curves of the 21 experimental data set
used for the parameters estimation of the G and C matrices.

The PSD of f2 and f3 are calculated as follows:

[f2] = ([I]− [C]) [f1] (11)
[f3] = [C] [f1] (12)

where,
[f2] − State vector of the reject flow
[f3]k − State vector of the fines flow

C. Model validation
Combining the submodels developed in the preceding sec-

tions the equation modeling the complete grinding circuit can
now be written as follows:

f1(k + 1)
f2(k + 1)
f3(k + 1)

=

 0 I−C 0
G 0 0
G C 0

 f1(k) + u3(k)
f2(k)
f3(k)

 (13)

It should be noticed that the C matrix is not constant and
it rather depends on the MVs.

Fig. 6 shows the PSDs estimation of the grinding circuit
streams by using Eq. (13). The mean squared error of the
estimation of the mill output flow, f1, is 0.0113. The remaining
two streams are calculated with the classification matrix C.
The estimation errors of the reject flow and fines flow are:
errorf2 = 0.042, and errorf2 = 0.142.

IV. CONTROLLER DESIGN

The grinding circuit at the cement plant has DCs, which are
manipulated from the SCADA system. Therefore, the control
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Fig. 6. (a) Mill output flow (f1) estimation by using the grinding matrix
(b) Grinding circuit streams estimation by the Markovian model

strategy to be developed needs to manage the DCs in order to
operate the grinding circuit. In this research work, the NMPC
algorithm is selected due to its ability to focus on process
variables (reject flow, Blaine, etc.) and its inherent possibility
of sending set-points to process control loops.

A. Nonlinear model predictive control
NMPC is characterized by the use of nonlinear system

models to predict and optimize the future system behavior
[17]. Additionally, the method allows incorporating nonlinear
constraints on the MVs, process variables (PVs), and states of
the system. It is also possible to use cost functions different
from the classic quadratic, since the optimization is performed
over a finite-length horizon (N). A generalized nonlinear
discrete-time model of a system is defined as:

xk+1 = f (xk,uk) (14)

where f : Rn × Um → Rn assigns xk+1 ∈ Rn at the next
time instant to each pair of state vector xk ∈ Rn and control
signal vector uk ∈ Rm.

The main objective is to control the state xk of the system
towards a reference trajectory rk and to keep the system state
close to this reference [18]. An equilibrium point of the closed-
loop system is defined by:

x∗
k+1 = f (xk, µ(xk)) (15)

where µ(·) is the control law obtained with the NMPC
algorithm.

A set of finite control sequences is obtained after the
optimization process: u0,u1, . . . ,uN−1 for N ∈ N being
the optimization horizon. Therefore, given an initial value
x0 ∈ Rn and a control sequence u(·) ∈ UK a trajectory of
Eq. (14) is obtained iteratively via:

uxk+1 = f (uxk,uk) (16)

where uxk is the predicted state of the system when the
optimized control sequence u(·) is applied.
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One of the strengths of MPC is its ability to manage
constraints in its structure. It is necessary to define valid
numerical sets for the states of the system, x ∈ Xxmax

xmin
∈ Rn

and the control signals, u ∈ Uumax
umin

∈ Rm.

B. NMPC design
The NMPC processes a data set of measurements from

the grinding circuit in order to predict the system behavior
through the Markovian model represented by Eq (13). Once
the NMPC algorithm finds the optimal control vector, u∗ =[
u∗1 u∗2 u∗3

]T
=

[
G35∗speed G39∗speed B0∗tph

]T
,

this information is sent to the DCs.
The NMPC algorithm runs in an OPC (formally known as

Object Linking and Embedding for Process Control) client
software, for this particular case we have selected MATLAB,
which interchanges information with the SCADA system to
write the control vector as set points of the MVs. An OPC-UA
communication network is used for this purpose. Fig. 7 shows
the NMPC architecture for controlling the grinding circuit.

Fig. 7. The NMPC architecture for a centralized grinding circuit con-
troller

Selecting the cost function for the NMPC could be a
challenging task. In the development of this application it
is required to control the cement fineness through a user-
configurable set point of the Blaine. Therefore, the Blaine
needs to be included in the cost function of the optimal control
problem (OCP). The Blaine is not measured online and needs
a tool for predicting its value, which is developed by using
the following equation [13]:

Blaine =
n∑
i=1

6f3i
ρ (xi+1 − xi)

ln
xi+1

xi
(17)

where,
xi − Lower size boundary of fraction i
xi+1 − Upper size boundary of fraction i

In consequence, the OCP is defined as follows:

min

JN (f0,u(·)) =
∑N−1
k=0

∣∣∣∣[ Reject flow (B2)
Blaine

]
− r

∣∣∣∣
s.t.

[uF]k+1 =

 f1(k + 1)
f2(k + 1)
f3(k + 1)

 = g ([uF]k , uk)

[F]k ∈ Xxmax
xmin

⊂ X

uk ∈ Uumax
umin

⊂ U
(18)

where | · | represents the norm of a matrix, [uF] is the
prediction matrix of the state vectors when the calculated
control signal U = {u(1), u(1), . . . , u(N), } is applied;
r =

[
B2ref Blaineref

]T
is the reference vector contain-

ing the desired reject flow in tph, and the desired cement
fineness

(
cm2/g

)
; and N is the prediction horizon.

The MVs constraints are set according to the grinding circuit
operating rules, adapted from the panelists working at the
cement plant, which are:

170 ≤ u1 ≤ 200
1000 ≤ u2 ≤ 1100

80 ≤ u3 ≤ ∞
(19)

The MVs u1 and u2 of the control vector u are restricted
to be integer, while u3 is continuous. Problems of this type
are named mixed-integer nonlinear programming (MINLP).
The mixed-integer linear, and nonlinear programming package
of TOMLAB for MATLAB was used for solving the OCP.
TOMLAB implements a branch-and-bound algorithm search-
ing a tree whose nodes correspond to nonlinearly constrained
continuous optimization problems. The method avoids the use
of penalty functions. Global convergence is enforced through
the use of a trust region and a filter that accepts a trial point
whenever the objective or the constraint violation is improved
compared to all previous iterations.

V. CONTROLLER IMPLEMENTATION AND OPERATION

A list of steps for implementing the NMPC algorithm is
shown in Algorithm 1. The workstation running the NMPC
algorithm operates as an OPC client to communicate bi-
directionally with the SCADA system with a sampling time of
one minute. Fig. 8 shows the industrial network configuration
of the system. The OPC software used for the communication
is the Matrikon OPC Tunneller, which allows a transpar-
ent communication between the Pregrinding SCADA server,
Grinding SCADA server, and the NMPC control server.

Fig. 9 shows the block diagram of the SCADA tags involved
in the NMPC algorithm computation. It can be seen (from Fig.
9) that the system implementation allows two operating modes:
manual mode, and automatic mode. The manual mode consists
of the classic operation of the grinding circuit performed by
the operators by applying rules acquired by training and also
by experience. The automatic mode initiates the NMPC to take
the control of the grinding circuit.
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Fig. 8. Network configuration of the system

Fig. 9. SCADA tags map of the NMPC implementation

Algorithm 1: NMPC algorithm for automatic operation of
the grinding circuit

1: Define a vector of references:
r =

[
B2ref Blaineref

]T
2: Take system measurements:

Zk =
[
B0 B2 Blaine∗

]T
∗Laboratory tests of the fineness are performed every two hours

3: Solve the OCP of Eq. (18)

4: Define the control law µ (Zk) = u∗(1) �

Fig. 10 shows results of the grinding circuit operation in
manual and automatic mode. The dashed vertical red line
indicates the instant of time when the NMPC is turned on.
The reject flow reference (B2ref ) is set to 85 tph, and after
four hours of operation of the grinding circuit a step change
to a new reference of 75 tph is applied for a period of four
hours. Finally, the reference for B2 is set back to 85 tph. The
reject flow shows a stable behavior with low steady-state error,
when the grinding circuit is operated by the NMPC, which is
not the case when the system is operated manually.

During the manual operation of the grinding circuit, the
energy consumption as well as the cement fineness are not

optimal. The energy consumption of the grinding circuit is
highly related with the circulating load (CL). The CL defines
the number of times a raw particle passes through the grinding
circuit before becoming cement, and is calculated as follows:

CL =
B0 +B2

B0
(20)

where B0 represents the fresh feed flow in tph, and B2

represents the reject flow in tph.
Typically, a good practice in operating the grinding circuit

is performed by keeping 2.0 ≤ CL ≤ 2.5. Fig. 11 shows the
CL and the Blaine of the grinding circuit prior and during the
operation of the NMPC. The cement fineness variation is low
and is kept close to the reference value of 4100

(
cm2

g

)
. The

CL is also kept close to 2.0, which means a reduced energy
consumption than the manual operation of the grinding circuit.

VI. SYSTEM LIMITATIONS

The Markovian model was estimated with experimental
data obtained from laboratory tests of three streams of the
grinding circuit. The Markovian model assumes that there are
no substantial variations in the composition of the fresh feed,
i.e. added percentages of pozzolana, gypsum, etc., are kept
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Fig. 10. MVs and B2 response prior and after the operation of the NMPC in the grinding circuit
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Fig. 11. CL and Blaine responses prior and during the operation of the
grinding circuit with the NMPC algorithm

fixed. In the event of a substantial change in the product recipe;
for instance, gypsum lack or pozzolana percentage variation
greater than 10%, the grinding circuit model fails to correctly
predict the system behavior.

Fig. 12 shows the events of failure just described. Around
12h00 there is a gypsum lack, and thirty minutes later there
is a substantial variation of the percentage of pozzolana in
the feeding. The proposed control system is unable to keep
a stable operation of grinding circuit while the non-modeled
events are present. To avoid harmful calculations of the NMPC
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Fig. 12. Control system operation under non-modeled scenarios

algorithm, although the OCP constraints protect the systems
integrity, when the estimated value of the reject flow in tph
differs from the measured B2 for five consecutive samples
causing a mean squared error greater than 1, manual control
is set. Afterwards, the operator has to acknowledge an alarm
and correct the system failure before turning on the NMPC.

The industry also has developed solutions for similar prob-
lems as the one solved in this paper. Reference [19] shows
a detailed survey of industrial MPC technology, from which
we have extracted some features of the most known MPC
technologies in the market, to establish a comparison with the
proposed solution by the authors, as shown in Table II.
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TABLE II
SYSTEM COMPARISON WITH COMMERCIAL PRODUCTS

Name Manufacturer Modelization Optmization
method

Aspentech Aspentech Multivariate
step response

Linear
programming

RMCPT Honeywell Multivariable
ARX model

Quadratic
programming

Connoisseur Sim Sciences Recursive
ARX model

Quadratic
programminc

3dMPC ABB State-space Not available
NMPC Authors Markov chain MINLP

VII. CONCLUSIONS

This paper presents the design and implementation of a
supervisory control strategy, based on the NMPC algorithm,
to operate a grinding circuit in cement industry. Significant
performance improvement is achieved with the use of the
proposed control strategy over the manual operation of the
grinding circuit. The control system keeps the material flows
stabilized, as well as the cement fineness, and the CL within a
recommended operating range to reduce energy consumption.
The energy savings reached in the cement plant were directly
reflected in the montly energy bills, with reductions up to
$7K. Although the reduction suggests a good result, it also
reflects that the prior operation of the grinding circuit (manual
operation) was far from optimal.

The proposed controller keeps the mill feed (B0) above
the configurable constraint of 80 tph, which represented an
increase in the productivity of the final product.

The control system was implemented to interact with the
already existing SCADA system by using the OPC communi-
cation standard. For all the operational tests, there was not any
packet loss during the bidirectional communication. The OPC
communication network can also be used for other purposes,
such as data storage of PV and MV in a remote database.
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1988 and 2001, respectively. Dr. Garza is cur-
rently an Associate Professor with the Mecha-
tronics and Automation Department at Tec-
nológico de Monterrey, Monterrey, NL, México.
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