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ABSTRACT 

Integrated NDE Methods Using Data Fusion-For Bridge Condition Assessment 

 

Marwa Hussein Ahmed, Ph.D. 

Concordia University, 2017 

Bridge management system (BMS) is an effective mean for managing bridges throughout 

their design life. BMS requires accurate collection of data pertinent to bridge conditions. Non 

Destructive Evaluation methods (NDE) are automated accurate tools used in BMS to supplement 

visual inspection. This research provides overview of current practices in bridge inspection and 

in-depth study of thirteen NDE methods for condition assessment of concrete bridges and eleven 

for structural steel bridges. The unique characteristics, advantages and limitations of each 

method are identified along with feedback on their use in practice. Comparative study of current 

practices in bridge condition rating, with emphasis on the United States and Canada is also 

performed. The study includes 4 main criteria: inspection levels, inspection principles, inspection 

frequencies and numerical ratings for 4 provinces and states in North America and 5 countries 

outside North America. Considerable work has been carried out using a number of sensing 

technologies for condition assessment of civil infrastructure. Fewer efforts, however, have been 

directed for integrating the use of these technologies. This research presents a newly developed 

method for automated condition assessment and rating of concrete bridge decks. The method 

integrates the use of ground penetrating radar (GPR) and infrared thermography (IR) 

technologies. It utilizes data fusion at pixel and feature levels to improve the accuracy of 

detecting defects and, accordingly, that of condition assessment. Dynamic Bayesian Network 
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(DBN) is utilized at the decision level of data fusion to overcome cited limitations of Markov 

chain type models in predicting bridge conditions based on prior inspection results. Pixel level 

image fusion is applied to assess the condition of a bridge deck in Montreal, Canada using GPR 

and IR inspection results.  GPR data are displayed as 3D from 24 scans equally spaced by 0.33m 

to interpret a section of the bridge deck surface. The GPR data is fused with IR images using 

wavelet transform technique. Four scenarios based on image processing are studied and their 

application before and after data fusion is assessed in relation to accuracy of the employed fusion 

process. Analysis of the results showed that bridge condition assessment can be improved with 

image fusion and, accordingly, support inspectors in interpretation of the results obtained. The 

results also indicate that predicted bridge deck condition using the developed method is very 

close to the actual condition assessment and rating reported by independent inspection.  

The developed method was also applied and validated using three case studies of 

reinforced concrete bridge decks. Data and measurements of multiple NDE methods are 

extracted from Iowa, Highway research board project, 2011. The method utilizes data collected 

from ground penetrating radar (GPR), impact echo (IE), Half-cell potential (HCP) and electrical 

resistivity (ER). The analysis results of the three cases indicate that each level of data fusion has 

its unique advantage. The power of pixel level fusion lies in combining the location of bridge 

deck deterioration in one map as it appears in the fused image. While, feature fusion works in 

identification of specific types of defects, such as corrosion, delamination and deterioration. The 

main findings of this research recommend utilization of data fusion within two levels as a new 

method to facilitate and enhance the capabilities of inspectors in interpretation of the results 

obtained.  To demonstrate the use of the developed method and its model at the decision level of 

data fusion an additional case study of a bridge deck in New Jersey, USA is selected. 
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Measurements of NDE methods for years 2008 and 2013 for that bridge deck are used as input to 

the developed method. The developed method is expected to improve current practice in 

forecasting bridge deck deterioration and in estimating the frequency of inspection. The results 

generated from the developed method demonstrate its comprehensive and relatively more 

accurate diagnostics of defects. 
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CHAPTER 1  

1. INTRODUCTION 

1.1. PROBLEM STATEMENT 

Bridges play a vital role in road infrastructure network. The United States (US) has 

614,387 bridges and 9.1% of bridges are rated structurally deficient (ASCE 2017). Average age 

of bridges in the USA is 43 years and more than one in eight (13.6%) are functionally obsolete 

(ASCE 2017). According to Canada statistics, Bridges and overpasses accounted for 8% of total 

public assets in 2007. Bridges are the second highest of five assets; they account for 72% in 

Québec and 66% in Nova Scotia. Ontario ranked as the third among provinces in terms of having 

old bridges. In 2007, Bridges in Ontario accounted for 7% of its public infrastructure, while in 

Alberta, bridges are accounted for 9% of total public infrastructure (Statistics Canada 2009). 

Bridges are subjected to excessive deteriorations and corrosions due to harsh environment, heavy 

transport, increasing traffic and aging. It has been reported that the number and size of vehicles 

in constructed bridges have significantly increased than the forecasted design (Gattulli and 

Chiaramonte 2005, Amleh and Mirza 2004). Moreover, concrete Bridges are usually suffering 

from cracks due to concrete shrinkage and are subjected to chloride content. This deterioration 

can be increased with freezing and thawing cycles during the winter. The damage in bridge 

elements lead to a reduction in serviceability and load carrying capacity. As a result of bridges’ 

deteriorations, the American Society of Civil Engineers infrastructure report card reported in 

June 2013 that one in nine nation’s bridges are rated as structurally deficient, more than 66,000 

in total. Moreover, bridges in Canada have a mean service life of 43 years, which means that 
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Canadian bridges have passed 57% of their design life (Statistics Canada 2009). However, the 

current funding used for rehabilitation and replacement of deteriorated bridges is not adequate to 

fulfill the target needs (Aboudabus and alkass 2010, Gattulli and Chiaramonte 2005, Gucunski 

and Nazarian 2010). The Federal Highway Administration (FHWA) estimates that they would 

need to invest $20.5 billion annually to eliminate bridges’ deficiencies by 2028. However, only 

$12.8 billion is currently being spent. Therefore, the main Challenge for local governments is to 

increase investment in bridge maintenance by $8 billion (ASCE 2013).  

Bridge management System (BMS) is the process of making decisions on structure needs 

and preparing a corrective action at a proper time; these include maintenance, repair, 

rehabilitation and replacement actions. All bridge management decisions require inspection data 

to identify current condition and needs. The decision makers can avoid the worst consequences 

of underestimating the degree of deterioration and avoid the costly consequences of 

overestimating the degree of deterioration. It also helps to select the appropriate solution. 

However, BMS often faces imbalance between the need for repairs or replacements and many 

challenges due to incorporating of multi objectives: structural safety, serviceability, optimum 

maintenance and economic considerations. The main goal of BMS is to gain the maximum 

performance with minimum cost and this can be achieved by efficient techniques and 

technologies that can be automatically updated. Consequently, the service life of bridges can be 

increased within effective cost (Rens et al. 2005, Steart et al. 2002, Wang et al. 2007). Thus, 

inspection process and condition assessment are considered main components of BMS.  

Bridge condition assessment is conducted to determine load rating capacity for bridge 

components. The main components of bridges are deck, superstructure and substructure. Each 

component has different role in bridge structure with specified relative importance. Bridge 
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condition assessment defines the structural importance of each bridge element. The identification 

of current condition of each element provides with early warning of necessary maintenance. 

Condition rating is performed using the inspection data; these collected data are converted to a 

rating to assess bridge condition (Xia and Brownjohn 2004, Yehia et al. 2007). The main 

difficulty in bridge condition assessment is the large number of bridges in the network, which 

requires regular inspection.  

Non Destructive Evaluation (NDE) methods are inspection tools that do not affect the 

integrity of the member under evaluation. The member remains in service while being tested. 

(NDE) technologies are considered advanced methods as these methods usually use automated 

and speedy data acquisition systems. Also, the software used to process the NDE data is 

considered reliable and provides better accuracy. NDE methods are used to supplement visual 

inspection.  

Research efforts were made using single NDE method to detect defects, crack, 

delamination and voids in concrete bridges such as impact echo.  Ground Penetrating Radar 

(GPR) is capable of detecting deterioration, location of voids, mapping of reinforcement location 

and depth of cover of steel bars. Infrared thermography is used to detect delamination. Some 

research efforts have been made within the area of condition assessment using different 

technologies. Robotic systems were developed and used for inspection of bridges and tunnels, 

using multiple sensing technologies, including digital imaging and impact acoustics methods 

(Balaguer et al. 2014, Laa et al. 2014). Gucunski et al. (2010) studied the performance of NDT 

technologies in detection of reinforced concrete deck deterioration. They evaluated the 

performance of ground penetrating radar, galvanostatic pulse measurements, impact echo, 

infrared and ultrasonic surface waves. Recently, Laa et al. (2014) worked on  developing 
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robotics assisted bridge inspection tool (RABIT). The technologies used in RABIT system are: 

electrical resistivity, impact echo, ground penetrating radar and ultrasonic surface waves. RABIT 

integrates measurements from multiple technologies.  The outputs from RABIT are deterioration 

maps for each individual technology for detecting locations and severity of damages in bridge 

deck. To the best of authors’ knowledge, the algorithms and the methodology for integration and 

fusion of data captured by multiple technologies in the RABIT are briefly referred to in a 

conference paper (Laa et al. 2014)   without any detailed description.  

It is expected that using multiple sensing technologies can provide better condition 

assessment than that based on the use of one sensing technology. This can be attributed to the 

fact that each of such technologies has its capabilities and limitations. As well, when large 

amount of data of multiple sensors are fused, it can provide output that is more comprehensive 

and thus be of more help to decision makers. The simplest way to deal with a multi sensor 

problem is to combine all observations in a single group sensor. Data fusion can also be done by 

dealing with each sensor independently and then fuse all information together (Hoseini and 

Ashraf 2013).  

Multi sensor data fusion is a technique used to combine features extracted from 

measurements taken from different sources to enrich the captured inspection. The main purpose 

of combining data from multiple sources is to improve the accuracy of diagnostics; in a manner 

that mimic medical diagnostic which utilizes the results of different tests.              

Data fusion can be done within three levels: pixel level image fusion, feature level and 

decision level. Pixel level fusion is a form of integration of pixels from different images acquired 

from different sources. Feature level involves first the extraction of features from the images 

captured by multiple sensing technologies and then fusing these features into a single feature. 
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Decision level fusion involves fusion of information obtained from the feature level and done by 

many techniques such as Bayesian Networks (BNS) and Dynamic Bayesian Networks (DBNs) 

(Hall and Llinas 1997, Naidu and Roal 2008).  

According to the literature review, there is no application of data fusion in bridge 

condition assessment. In this research, data fusion method is developed using pixel and feature 

levels. The main objective of using pixel image fusion is to assess bridge condition using 

multiple sensor data. The application of pixel image fusion and feature fusion in bridge condition 

assessment is considered a novel technique as, with the use of multiple sensors, it can interpret 

condition assessment results more accurately with less cost and interruption for traffic. However, 

there may be higher initial cost involved to acquire condition assessment using different 

technologies. The total cost is expected to be reduced in view of reduction of labor hours and 

reduction in time required to carry the scanning in compare to manual methods. However, no 

detailed cost comparison is fully conducted in this research. The main objective of using data 

fusion in this research is to improve the accuracy of condition assessment. 

Currently, there is lack of tools that inspectors can use to fuse data. The current research 

is focusing on using pixel and feature levels of data fusion as a tool to assess the condition of 

reinforced concrete bridge decks. Wavelets transform and Bayesian Networks techniques have 

been utilized to apply data fusion method.  

The developed method of this research has been validated using three case studies. 

Deterioration maps of NDE methods are extracted from Iowa, highway research project, 2011. 

Results analysis and recommendation with the main findings of this research are provided based 

on the three case studies of bridge decks located in Iowa, United States.  
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The current research is extended to incorporate the decision fusion level by integrating 

the fused measurements of NDE methods with Bridge Management System (BMS). 

Deterioration models are used in Bridge Management System (BMS) to predict the future 

conditions and performances of bridges. Therefore, the effective maintenance of bridge structure 

relies on the quality, accuracy of deterioration models that are used to predict bridge 

performance and service life (Agrawal et al. 2010, Cesare et al. 1992, Robelin et al. 2007). 

Currently, there are two major types of deterioration models: Deterministic Models and 

stochastic models. Deterministic models describe relationships between factors affecting bridge 

deterioration. However, it ignores random errors in prediction. Stochastic models deal with 

deterioration process as random variables that incorporate uncertainty. Markov models are the 

most widely used deterioration models used to predict the condition of infrastructure facilities. It 

covers two limitations of deterministic models as it incorporates uncertainty and account for the 

current facility condition. Markov Chain Model forecasts bridge condition rating based on the 

concept of defining states of bridge condition from one to another during transition period. 

Markov approach is a discrete time stochastic process that takes number of possible discrete 

states. It has been suggested that integrating NDE methods into Markov model will reduce its 

limitation (Frangopol et al. 2004). Also, the accuracy of Transition Matrix increases the accuracy 

of Markov-deterioration   model (Madanat et al. 1995, Roelfstra et al. 2004). 

Another type of stochastic model available is Bayesian Networks (BNs). According to 

Weber et al. (2010), BN has the capability of modeling complex system. It makes prediction and 

diagnostics. It computes the probability of event occurrence. It updates beliefs based on new 

evidence. It integrates qualitative information and the quantitative ones. BN merges experience, 

past knowledge, impacting factors and measurements. So far, according to the literature review, 
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BN has limited applications in maintenance and in bridge deterioration modeling. Dynamics 

Bayesian Network (DBN) is a class of BNs, which represent stochastic process.  These DBNs 

are expected to alleviate the main limitations of current Markov model. To demonstrate the use 

of the developed method and its model at the decision level of data fusion an additional case 

study of a bridge deck in New Jersey, USA is used. The developed method is expected to 

improve current practice in forecasting bridge deck deterioration and in estimating the frequency 

of inspection. 

1.2. RESEARCH OBJECTIVE  

The main objectives of this research can be summarized as follows: 

 

1- Identify and study NDE methods for concrete and steel bridges. This is done by 

conducting  a comparative study of current practice in bridge condition assessment 

 

2- Develop a generic methodology to assess Bridge condition based on integrated 

multiple sensing technologies. 

 

3- Develop a generic deterioration model and integrate NDE methods with the 

developed deterioration model to predict remaining service life for concrete bridge 

decks and predict inspection frequency.  

 

 

1.3. RESEARCH METHODOLOGY 

  This research provides a comparative study of current practices in bridge condition 

rating worldwide, with emphasis on the United States and Canada. The study includes 4 main 
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criteria: inspection levels, inspection principles, inspection frequencies and numerical ratings 

for 4 provinces in North America: Alberta, Ontario, Quebec and state of Oregon and 5 countries 

outside North America: United Kingdom, Denmark, Portugal, Sweden and Australia. The 

limitations of current practices are discussed and recommendations for improved inspection are 

provided. In this research, NDE methods used for concrete bridges are studied and classified 

based on the physical principal of the method to Acoustic, Electrical, Electrochemical, 

Magnetic, Electromagnetic and Sonar methods. NDE methods used for steel bridges are 

classified as Acoustic, Imaging, Coating, Magnetic, and Laser. The limitations, advantages and 

applicability of each method are presented.  

The developed data fusion method consists mainly of two main steps. At first, data from 

inspection of multiple NDE methods are processed based on the physical principal of each 

method. The second step is image processing techniques that are applied on the images of NDE 

methods. Image processing techniques are used to enhance contrast of images and to rescale 

these images. Data fusion method is applied within two levels: pixel level and feature level 

fusion.  

In pixel level fusion, the method utilizes image fusion to generate new and improved 

image from those captured by multiple sensing technologies. These images can be observed with 

much better details when fused. So, the main objective of image fusion is to obtain a unique 

image with enhanced information and resolution that better represents the condition state of the 

scanned bridge deck. It is the technique of combining data using the advantages of image 

processing. Image fusion has been employed using wavelet transform technique. The captured 

images during the inspection are rescaled to ensure that all images have the same coordinate 

system to fuse pixels of these images. In order to apply wavelet transform decomposition fusion, 
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the scaled images of NDE methods are decomposed. These decompositions are fused to develop 

the new fused image. This new image is then used to extract features that depict the conditions of 

the scanned bridge deck. 

In the feature fusion level, the developed method utilizes captured inspection images 

from multiple sensing technologies along with image processing algorithms. The features 

extracted from the processed images are then fused using feature level data fusion; employing 

Bayesian Networks.  

Data fusion method is applied utilizing measurements that are collected using Infrared 

thermography camera and ground penetrating Radar from previous study (Salam et al. 2014). 

These measurements were acquired during the inspection process on June, 2014 to assess the 

condition of a bridge deck in Montreal. Detailed description of these two technologies and data 

processing are included in the methodology. 

The sensing technologies utilized and applied later to three case studies for bridge decks 

in Iowa, US are Ground Penetrating Radar (GPR), impact echo (IE), Half Cell Potential (HCP) 

and Electrical Resistivity (ER). A detailed description of these technologies and data processing 

is included in the highway research project report 2011, Iowa, US. 

The research method is extended to incorporate the decision fusion level. Deterioration 

model for bridge deck is developed and integrated with inspection measurements of multiple 

sensing technologies using Dynamic Bayesian Networks (DBNs). The deterioration model 

incorporates deterioration factors extracted from the literature review.  

1.4. THESIS PROPOSAL OVERVIEW  
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The first chapter introduces the problem statement, the main objective, and the research 

methodology. The second chapter contains a comprehensive literature review of current practice 

in bridge condition assessment in North America and outside North America, NDE evaluation 

methods for concrete and steel bridges, data fusion and current practice deterioration models. 

The proposed method is elaborated chapter three with its application on a case study of bridge 

deck in Montreal, QC. The fourth Chapter provides the impact of image processing technique on 

the accuracy of image fusion. It includes the analysis of the results for bridge deck in Montreal 

based on four scenarios. The fifth chapter includes three case studies for bridge deck in Iowa, 

US. The analysis of results is included with conclusion and recommendation of the use for data 

fusion within two levels. The sixth chapter includes the decision level of data fusion and the 

integration of the developed deterioration model with bridge management system. The seventh 

chapter presents the conclusion, along with the expected contributions, limitations and future 

work. 
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CHAPTER 2  

2. LITERATURE REVIEW 

2.1. OVERVIEW  

The literature review consists of five sections, as shown in Figure 2.1. Section 2.2 

contains a literature review of current practice in bridge condition assessment in North America 

and outside North America. Section 2.3 reviews the literature related to NDE methods for 

condition assessment for steel and concrete bridges. Section 2.4 reviews the literature related to 

data fusion. Section 2.5 reviews the literature related to deterioration modeling. Section 2.6 

identifies the research gaps addressed in the current study.  

 

 

.  

 

 

 

 

 

 

 

 

 

Figure 2.1:  An overview of the literature review sections. 
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2.2. CURRENT PRACTICE IN BRIDGE CONDITION ASSESSMENT 

Structural health monitoring, inspection process and condition assessment are considered 

main components of BMS. This section presents a detailed comparative study of current 

practices of bridge condition assessment in different countries.  

2.2.1. Current Practice In Bridge Condition Assessment  In North America 

According to Federal Bridge Inspection Standard (FBIS), the levels of service 

deficiencies are based on comparisons of the actual load capacity of bridge with the level of 

service. The evaluation of bridge condition deficiency (BCD) includes an assessment of the 

condition of each of the three primary elements of the bridge: Super structure (SPD), 

Substructure (SBD) and bridge deck (BDD) as illustrated in Eq. (2.1) 

After the total deficiency is established for all bridges, costs associated with replacement and 

rehabilitation should be determined (FHWA 2012, Branco and de Brito 2004). 

 

BCD= SPD+ SBD+ BDD……………………………………………………………………..(2.1)  

 

Condition ratings for each element of the bridge are assigned every two years and are 

then aggregated into overall condition ratings for super, sub structure and deck, the ratings are 

numerical values from 0 to 9. Bridges are considered structurally deficient if any of deck, 

substructure or superstructure is equal or less than 4 (poor). If the structural evaluation is equal 

or less than 2, then the bridge is having high priority for replacement ( FHWA 2012, Branco and 

de Brito 2004). According to the manual for maintenance inspection, AASHTO describes two 

basic load rating procedures: (1) the allowable stress, (2) Load rating, LR. In the United States, 

bridges are periodically rated according to their structural capacity. The rating can actually 

increase with time in bridges inspected regularly with maintenance programs, where traffic 

police check the live load limits. 
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2.2.1.1.     Bridge Condition Assessment In Alberta  

According to Bridge Inspection Manual of Alberta Transportation, the condition rating 

system in Alberta consists of a numerical rating range of 1 to 9 (BIM 2004; Branco and de Brito 

2004). This rating applies to all inspection elements as well as the general rating for each 

category. The rating is representative of the condition of the element and the ability of the 

element to function as originally designed. Bridge can be rated 9 if it is in excellent condition. 

Additionally, the rating of the element also reflects any safety concerns and maintenance 

priority. The rating of an element is determined by the rating of the worst item within the group. 

The inspector should describe, and explain the condition, why the post has a low rating and 

where it is located.  

The rating of the element is visual inspection and based on what the inspector can see. 

The inspector should be able to see enough of the element to be comfortable assigning a rating. If 

the element is inaccessible or is not visible for the inspector to assign a rating, the element is 

rated ‘N’. If a particular element does not apply to the structure being inspected, the element is 

rated ‘X’. In situations where an element does not exist but is required in the judgment of the 

inspector, the element is rated ‘X’ with a comment provided in the ‘Explanation of Condition’ 

section, which illustrates within a maintenance recommendation (BIM 2004). The general rating 

for each category is determined by the ratings assigned to critical load carrying elements or 

members of the structure. The general rating must also reflect any safety concerns related to the 

function of the structure. The general rating is not an average of the element ratings as the 

general rating cannot be higher than the lowest critical element rating. 

 

All bridges are to be inspected in accordance with the following intervals to ensure an 

appropriate level of safety: major Bridges, Standard Bridges, in highways with numbers less than 
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500 or greater than or equal to 900 are within 21 months interval. Major Bridges, Standard 

Bridges in highways with numbers equal to or greater than 500 but less than 900 are within 39 

months interval. Major Bridges in parks that carry pedestrian traffic only are inspected within 57 

months interval. All new bridge structures are to be inspected immediately after construction is 

complete and within 24 months after completion. All bridge structures are to be inspected 

immediately after any significant maintenance or rehabilitation is completed. The inspector may 

specify shorter intervals depending on the age, traffic characteristics and known deficiencies 

(BIM 2004; Branco and de Brito, 2004). 

A certified bridge inspector on a routine basis, which is known as Level 1 inspection, 

inspects most major bridges, standard bridges. However, certain major bridges or components of 

standard bridges require inspection with specialized knowledge, tools and equipment. Almost all 

bridges will require specialized inspections, which are known as Level 2 inspections. Specialized 

inspection includes ultrasonic tests on steel bridges, CSE tests on deck concrete, coring test. 

Level 2 inspections are essential for high load and overload damage, or when critical or 

significant deficiencies are determined (BIM 2004; Branco and de Brito, 2004). Level 1 is a 

general inspection, which requires completion of the BIM report and use of basic tools and 

equipment. Certified bridge inspectors must undertake this level of inspection. Level 1 

inspections are general visual inspections conducted using standard tools and equipment. This 

level must be performed at time intervals not exceeding those specified by department policy. 

Level 1 inspection rate the worst part of each element and do not take the overall element 

condition into account. 

Level 2 inspection is an in-depth inspection, which requires completion of the BIM 

report, and use of specialized tools, techniques, and equipment. Level 2 inspections are 
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quantitative inspections conducted using specialized tools. This level of inspection gathers 

detailed information on the condition of a particular bridge. In Alberta, concrete deck inspections 

are currently performed on approximately 120 bridge sites per year throughout Alberta on a 4 to 

5 year inspection cycle. Additional Level 2 deck inspections might be completed as part of a 

bridge assessment that identified in a previous Level 1 inspection. The quantified condition data 

that are collected provide information on the element and this condition can be monitored over 

time. The condition rating for Level 2 inspections are grouped together into categories. 

Therefore, ratings from 9-7 are grouped as very good condition ratings, and then ratings 6 and 5 

are grouped as adequate ratings. Ratings of 4 and 3 are grouped as ratings that are the most 

critical and give priority of the element. Ratings of 2 and 1 are grouped as these ratings are 

required immediate maintenance or repair. The inspector should rate the general condition and 

not only the worst case. The inspector should note that if the damage is significant to the 

structural capacity. 

Level 1 rating should be used to reflect the worst damage to the element. A rating of 5 or 

higher is for elements that are functioning as designed. For a rating of 5, an element may have 

minor structural flaws, but these flaws should not impact the structural capacity of the member. 

A rating of 4 is a low maintenance priority, and these elements would generally be scheduled for 

repair in more than 3 years. A rating of 3 is a medium priority for maintenance, as repairs would 

typically be scheduled from 6 months to 3 years away. A rating of 2 is a high priority for 

maintenance and repairs would likely be less than 6 months away. A rating of 1 requires urgent 

and immediate action. 

Chloride test is a field test to determine  chloride content of concrete.  It is most often 

performed on a deck because bridge deck is  commonly exposed to the de-icing salt. This test is 
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performed in level 2 inspection. Chloride testing is destructive because holes are drilled into the 

component that is being tested. This testing is also time-consuming as the samples must be 

extracted and tested. The destructive and time-consuming nature of the test means that only a 

limited number of samples can be gathered and tested. Copper Sulfate Electrode (CSE) test is a 

repeatable, non-destructive field test. Alberta Transportation remains one of the few agencies 

that use CSE testing as a predictive tool for preventative maintenance programs. CSE testing, 

also known as half-cell testing, is used to determine the potential of corrosion in reinforcing 

steel, but they do not indicate a corrosion rate. Test results from one year to another are 

compared to assess the advancement of corrosion and predict the future deck condition. The CSE 

data are used to develop prediction models and to determine the ideal time to rehabilitate a deck. 

CSE data is also used to evaluate the effectiveness of various rehabilitation methods. CSE testing 

is quick, and cost-effective. The limitation of CSE testing is that the readings can become higher, 

lower suddenly, as the ground connection may be broken, the voltmeter connections may have 

worked loose, or the grounding wire may be broken. In this case, inspector should stop and 

verify the validity of the ground connection or check if the deck is not wet enough for accurate 

results. 

2.2.1.2.    Bridge Condition Assessment in State of Oregon, USA 

The Oregon department of transportation (ODOT) considers the routine inspection report 

to be the primary tool for reporting the condition of a structure. The routine inspection report is a 

summary of condition assessment data that is generated via a number of more detailed types of 

inspections. A routine Bridge Inspection is a regularly scheduled inspection that generally 

consists of visual observations that are needed to determine the functional condition of the 

bridge, and recommend any repairs or other services that may be needed. Standard routine 
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inspection frequency is two years. However, the National Bridge Inspection System (NBIS) 

requires inspections be performed annually when conditions rating of bridge is 3 or less or the 

bridge has an operating load rating factor of less than 1.0 for any of the legal load types (ODOT 

2012). In depth evaluation of bridge is needed to supplement the visual inspection. The bridge 

inspector may employ either nondestructive testing techniques or destructive techniques such as 

chipping, drilling and core drilling which are the most common in-depth exploratory methods. 

Nondestructive methods need expertise that is required to interpret the results in the field. The 

steps for in-depth evaluation of a concrete structure are as follows: 

1. Visual inspection with the last inspection report in-hand. 

2. Revision of engineering data, design, construction documentation, operation and maintenance 

records. 

3. Revision of inspections reports and then, mapping of various deficiencies. 

4. Monitoring and using nondestructive evaluation methods. 

The steel location and depth of cover can be determined non-destructively using a device 

called a pachometer. This device measures variations in magnetic flux caused by the presence of 

steel. If the size of reinforcement is known, the amount of concrete cover can be determined. In 

general, these devices can measure cover to within ¼ inch at 0 to 3 inch from the surface. The 

accuracy of the devices is dependent on the amount of reinforcing steel that is present in the 

concrete. The more congested the reinforcing, the less accurate the device becomes. In some 

cases, when other bars interfere, the device cannot identify either location or depth of cover. 

Other techniques, such as ground-penetrating radar (GPR) or x-ray, can be used for locating steel 

rebar when the pachometer fails to provide the necessary information. By comparing GPR and x-
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ray, x-ray is more accurate in locating steel. The corrosion of steel rebar can be determined by 

using the CSE methods (ODOT 2012). 

The state of Oregano uses destructive in depth testing such as chloride content test, depth 

of carbonation and core test to determine the compressive strength of concrete. Hammer 

sounding and chain dragging are used to determine delamination in concrete. While these 

methods are not expensive, they are time consuming to perform. Petrographic analysis is a 

detailed examination of concrete to determine the formation and composition of the concrete and 

to classify its type, condition, and serviceability. Petrographic examination helps determine some 

of the freeze-thaw, sulfate attack and alkali-aggregate reactivity. Petrographic examination is a 

highly specialized practice requiring skilled and well-trained technicians. The most common 

defects encountered in steel superstructures include corrosion, fatigue cracking, heat damage, 

and overload damage. One of the primary methods to mitigate corrosion is painting with an 

acceptable coating. Dye penetrate and ultrasonic are used as nondestructive evaluation methods 

for fracture critical members bridge inspection (ODOT 2012; FHWA 2012). 

2.2.1.3.    Bridge Condition Assessment in Quebec 

Bridges in Quebec are managed by MTQ (Manuel d’entretien des structures). Bridge 

condition inspections in Quebec include visual examination, which can be used to document and 

record the severity and overall condition of bridges. A photographic record of this information is 

essential. Some testing can supplement observations and measurements. Some of the techniques 

that can be used during ordinary inspections are acoustic impact (hammer sounding, chain 

dragging) for detection of delamination, debonding, voids, and other defects underneath the 

surface; rebound hammer to evaluate the concrete strength and quality on a comparative basis. 

NDE methods are used for advanced inspection. However, these methods still need more 
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development regarding data interpretation. Using combination of visual inspection, half-cell 

potential, acoustic methods and coring are the most widely used techniques in bridge inspection 

practice. There are currently three types of bridge inspection practice in Quebec. These are as 

follows: 

-  Routine inspection:  It is a visual inspection and is done once a year where defects are 

observed and recorded. Routine inspection provide inspector with general knowledge about the 

condition of the bridge. 

- General Inspection: This type of inspection is more accurate and is performed by an engineer or 

technician who has been trained by a regional bridge engineer. However, it remains a visual 

examination that is supplemented by hammer sounding, general dimension measurements and 

crack measurements. The frequency of this inspection varies from 3 to 6 years depending on the 

bridge type; concrete bridges are inspected every 5 years. 

- Special inspection: This type of inspection usually follows the general inspection where 

significant deterioration is found and when the inspector has difficulties to assess the condition. 

This type of inspection is carried out as requested and can be done with the help of a structural 

engineer. The bridge condition-rating index in Quebec ranges from 1 to 6, where 1 is the lowest 

value and 6 is the highest: 1-critical, 2-defective, 3-mediocre, 4-acceptable, 5-good, 6-excellent 

and for elements that don’t exist, the index value is 0. 

2.2.1.4.   Bridge Condition Assessment in Ontario 

Ontario Structure Inspection Management Systems (OSIMS) was developed to store and 

manage the inspection data that is collected during the detailed structure inspections. OSIM is 

capable of creating, updating and storing inspection-rating data for structures owned and 

maintained by the ministry of Transportation. The data are stored in database and then can be 
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used to generate reports on condition rating. The general information for a structure is obtained 

from Ontario Structure Inventory System (OSIS). In the past, inspectors relied on their 

background and experience in reporting bridge condition.  

OSIM sets standard for detailed routine inspection and condition rating for structures and 

their components (OSIM, 2000; Branco and de Brito, 2004). In order to classify defects, severity 

level should be illustrated. As an example, severity is considered light when delamination area 

measured is less than 150mm in any direction; medium when delamination area is between 

150mm to 300mm; severe when delamination area is within 300 mm to 600 mm and very severe 

when area is more than 600mm. The defects are divided into material defects and performance 

defects. OSIM presents the material defects that are found in concrete and steel bridges and it is 

related to building materials regardless of any consequences to the structure. Performance 

defects are problem that may impact the structure as a whole.  

The material and performance condition rating are numerical systems in which a number 

from 1 to 6 is assigned to each component of the structure. Number 0 is assigned to a component 

when it doesn’t exist and number 9 is assigned to a component that is not visible at the time of 

inspection. In some cases, performance defect exists as a result of defects in design or 

construction. The lowest performance condition rating of primary component should be the 

performance condition rating of the structure (OSIM 2000; Branco and de Brito 2004). 

The inspection system in Ontario is classified into general inspection, detailed inspection 

and condition survey. General inspections are based on visual inspections; routine general 

inspection can talk place daily, monthly or annually for bridges within span over 6 m. Non 

routine general inspection is performed when inspection is needed for specific problem. Detailed 

Inspection can be routine or non-routine inspection and should be done by using measurement 
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tools, tabs, camera and thermometers. Inspectors should review all previous inspection reports, 

details and all records. The inspectors should take sketches and photographs. Condition Survey 

inspection requires measurements and documents of all areas of defects and deterioration. It 

requires access to all area of the structure. Routine condition survey can be done every 5 years on 

selected number of structure and it incorporates the load carrying capacity assessment. For 

bridge deck, condition assessment can be done using GPR and thermograph. A comparative 

study of current practice of bridge condition assessment in North America is illustrated in Table 

2-1. 

 

 Table 2-1: Current Practice of Bridge Condition Assessment in North America 
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Level2 

(Specialize

d 

Inspection) 

In depth 
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- 
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c 
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skilled and 
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technicians. 
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should be 

well trained; 
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2.2.2. Current Practice In Bridge Condition Assessment Outside North America 

2.2.2.1. Bridge Condition Assessment In United Kingdom 

In United Kingdom, bridges are subjected to general inspection every 2 years and to more 

detailed inspection every 6-10 years. These inspections are visual inspection that record only 

damage or deterioration that are seen. Defects that have main concern are inspected within 

special inspection, such as half -cell potential and cores sampling are examined to check the 
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presence of alkali reaction. Special inspection measures the depth of concrete cover, carbonation, 

chloride, sulfate contents. The condition of each element is given a rating on scale of 1 to 5 at the 

time of inspection. Each element is given a location factor based on its structural importance. 

The overall condition rating of bridge is given using the Eq. (2.2) 

   







 





Ns

SfEfs
F3

Np

SfEfp
F2F1-100BCI ……………………………………… (2.2) 

where Efp is element factor from 1 to 10 of primary element, Efs is element factor of secondary 

elements, Sf = The extent of damage / Severity factor 1- 10, Np is the number of primary 

elements, Ns is the number of secondary elements and F1, F2 and F3 are the severity factors. 

Superstructure and substructure are both divided into a number of elements and receive score of 

1 to 8. The element rating percentage can be calculated from Eq2. The overall condition rating 

for substructure and superstructure is taken as the lowest element rating. Bridge condition 

assessment in UK has some shortcoming as there is little use of nondestructive evaluation 

methods and there is no relationship between bridge age and maintenance cost. Current practice 

with countries outside North America are illustrated in Table 2-2. 

Table 2-2 : Current Practice of Bridge Condition Assessment outside North America 

 

 

Current 

Practice 

Inspection 

Levels 

Inspection 

Principle 

Inspection 

Frequency 

Numerical Rating 

UK 

General 

Inspection 

 

 

Principal 

Inspection 

Visual Inspection 

 

 

 

 

In depth 

inspection 

2 years 

 

 

 

 

6-10years 

range of 1 to 5, overall 

condition rating is taken as 

the lowest element 

 

 

Half-cell potential test 
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Denmar

k 

-Routine 

superficial 

Inspection 

 

-Principal 

Inspection 

 

 

 

 

-Technical 

Inspection 

Visual Inspection 

 

 

 

Visual Inspection 

 

 

More 

investigation 

 

In depth 

Inspection using 

load carrying 

capacity  

- Annually 

 

 

 

-3 years 

 

 

 

 

 

Final condition rating is 

based on bearing capacity 

and importance of each 

element. 

Portuga

l 

-Ordinary 

Inspection 

 

 

 

 

Principal 

inspection 

-Visual 

Inspection 

 

 

 

 

-Visual inspection 

and simple use of 

nondestructive 

methods 

3 to 6 years 

 

 

 

 

 

3 years 

1-7 defect rating 

1-The defect degree doesn’t 

increase. 

2-doesnot require 

intervention 

3-getting evolving 

4-require not urgently 

intervention 

5-doesnot influence 

structure  

6-doesnot impair structural 

safety 

7-it reduces safety 

coefficient 

Sweden 

-Regular 

Inspection 

 

 

-Superficial 

Inspection 

 

 

-General 

Inspection 

 

-Major 

Inspection 

Visual Inspection 

 

 

 

Visual Inspection 

 

 

 

Done by well-

trained inspector 

 

Complete 

examination 

Quick monthly 

 

 

Each 1 year 

 

 

 

 

3 years 

 

 

6 years 

-Degree of urgency 0 to 2 

0-no action required 

1-The same within 1 year 

2-action require within 3 

years 

 

-Defect Rating 0 to 3 

0-gurantee for next 10 

years,1-gurantee for next 3-

10 years, 2-same before 

3years,3-defective function 

found, Ultrasound and 

radiography. 
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Australi

a 

-Level1 

Inspection 

 

-Level2 

Inspection 

 

-Level3 

Inspection 

-Visual 

Inspection 

 

 

-Visual 

Inspection 

 

 

In-depth 

Inspection 

 Ground Penetrating Radar 

and impact echo are used to 

determine voids .Ultrasonic 

Pulse Velocity is used to 

determine cracks, concrete 

strength, location of 

reinforcement can be 

measured using GPR. Half-

cell potential used to detect 

steel corrosion and rebound 

hammer for concrete 

strength. Steel brides 

deterioration can be 

determined by using Eddy 

current, Dye penetrates 

Radiographic and ultrasonic 

testing. Concrete cover can 

be measured also using 

cover meter. 

 

 

2.3. NON DESTRUCTIVE EVALUATION METHODS FOR BRIDGE CONDITION 

ASSESSMENT 

All inspections are completed according to National Bridge Inspection Standard, (NBIS), 

All inspectors should be certified through (NBI). Bridges are inspected twice a year to detect 

damage at early stage and reduce the problem of costly maintenance and repair of existing 

bridges. Therefore, Bridge inspection is a critical role that provides safe highway system. 

Moreover, Periodic inspection is essential to prevent bridge failures, and then the current state of 

bridge components are reported with much detail. In addition, inspection process identifies and 

assesses bridge deficiencies and repair requirements with good estimates of deteriorated 

quantities. Therefore, it ensures an accurate bridge record with detailed reports describing 

specific details of damage. Hence, the main goal of inspection is to determine the degree of 

repair needed and decides whether more testing is required.  
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Visual inspection has limited capacity, damage can exist inside the structure and not 

visible. Although, signs of damage such as cracks, delamination, spalls, chemical deterioration 

and corrosion are sometimes visible, they do not indicate the correlation between actual bridge 

condition and the real structural reliability. Therefore, engineers and inspectors should know the 

actual condition of damage and its impact on structural reliability (Frangopol et al. 2008, Catbas 

and Aktan 2002). The bridge inspector is responsible to the public; the main responsibility of 

inspector is to maintain public confidence by reviewing and evaluating inspection reports. 

Moreover, Inspection team are responsible for critical basic tasks; planning inspection, 

performing inspection, preparing report, identifying items for repairs and following up the 

critical damage. 

Planning inspection ensures safe and efficient inspection, it includes determination of 

inspection type, specify a qualified team leader, development of a schedule which specify the 

inspection duration. Planning achieves a successful preparation as bridge inspection should be 

well prepared by organizing the proper tools and equipment and reviewing the bridge files. 

Hence, reviewing the bridge structure file and records is the key factor of an efficient 

preparation. These revisions involve inspection history, specifications, rating records, permit 

loads and maintenance history. 

Structural health monitoring is an effective part for maintenance, repair and replacement 

of bridges. Data extracted from monitoring is related to structural reliability, which should be 

used efficiently to detect damage by using the change of structure characteristics. Structural 

health monitoring helps to detect deterioration, damage and estimate the remaining service of 

life. Moreover, it provides the base of optimum maintenance; it ensures the structural integrity, 

safety and determines condition of structure. Also, structural health monitoring is used not only 
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for damage detection but it ensures continuous reliability assessments. Nevertheless, structural 

health monitoring is complex due to different type of bridge material and surrounding 

environments. The integration of structural health monitoring data into condition assessment 

improves the accuracy of forecasting future condition of bridges. 

2.3.1. Non Destructive Evaluation Methods For Concrete Bridges  

Non Destructive Evaluation methods (NDE) are advanced inspections that do not affect 

the integrity of the member under evaluation. The member is still in service while being tested. 

Therefore, inspectors should understand and trained for various NDE methods. Advanced 

inspection methods are becoming more effective tool that supplement the visual inspection with 

more accurate data and detect bridge defects. These defects are resulted from Chloride attack that 

cause rebar to corrode rapidly and deicing salts are collected down from deck in any cracks or 

joints. Improper pouring, curing methods, water loss during curing, settlement, shrinkage and 

freeze-thaw damage are causing cracks (Ferraro 2003). Formation of large cracks impact the 

strength and durability of concrete. Chemical affects concrete and causes damage that are severe, 

Sulphate ions, Alkali-Aggregate Reaction, Alkali-Silica Reaction are the most common chemical 

attack. Shrinkage and honeycombing are resulted from improper vibration, poor formwork and 

poor mix. Honeycombing reduces concrete strength, increase porosity and reduce durability 

(Ferraro 2003). NDE methods assess the extent of rebar corrosion and predict the remaining 

service of life. NDE methods aid with crack detection, especially internal cracks that are not 

visible. Monitoring cracks is important for assessing the overall health of structure and determine 

maintenance needed. Currently, incorporating the results from NDE into bridge management 

system rating is considered a significant point that researcher should focus on. Bridge deck 

condition should be assessed at all stages. NDE methods are used to identify deterioration at 
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specific time. Figure 2.2 is extracted from Iowa report for highway research project 2011. It 

shows bridge deck deterioration at different times versus NDE methods.  

 

Figure 2.2: Bridge Deck Deterioration Vs NDE Methods (Iowa 2011) 

As illustrated in Figure 2.3, NDE for concrete bridges are classified based on the physical 

principal of the method to Acoustic, Electrical, Electrochemical, Magnetic, Electromagnetic and 

sonar methods. 
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Magnetic Flux 

Exclusion

 

 

Figure 2.3: Non-Destructive Evaluation Methods for Concrete Bridges 

 

2.3.1.1.Acoustic Methods 

(I) Ultrasonic Velocity Measurements: The speed of ultrasonic pulses that travel in a solid 

medium depends on the density of the material. Ultrasonic testing is used to obtain the properties 

of materials by measuring the time of travel of stress waves through a solid medium. The time of 

travel of a stress wave can then be used to obtain the speed of sound of a given material (Boyd 

and Ferraro 2005, FHWA 2012). This method is used to evaluate concrete bridge deck. It detects 

areas with cracks, delamination and Concrete strength. Elastic waves are generated then detected 

by an array or pair of receiver and recorder. Bridge decks can be evaluated using computer based 

monitoring, using an automated mobile for data acquisition. This system works directly, and 

covering recording for large areas. Variation in the wave velocity is an indication of existence of 

delamination (FHWA 2012).  
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(II) Ultrasonic Pulse Echo: This method uses ultrasonic stress waves to detect objects. Waves 

are generated by piezoelectric material with high –amplitude pulse that has high voltage. The 

echo wave coming from the flaw is described by its transit time from the transmitter to the flaw 

and back to the receiver. The basic concern is on measuring the transit time of ultrasonic waves 

traveling through a material and being reflected to the surface of tested medium. This reflection 

is based on the transit time or velocity (SHRP2 2009, SHRP2 2013). This technique can be used 

to detect the presence of internal flaws; as when waves interface with defect, a small part of the 

released energy is reflected back to the surface. Regions with deterioration or cracking will have 

lower velocity. 

(III) Impact Echo: This method produces low frequency stress waves into concrete structure. 

Hence these waves are reflected when it faces internal flaws. The reflected waves are received by 

a transducer; the piezoelectric material in the transducer converts stress waves into voltage time 

signal. Also, velocity of stress wave and the resulted displacement, can be measured (Carino 

2001, Gassman and Tawhed 2004, Yehia et al. 2007, SHRP2 2009, FHWA 2012, SHRP2 2013, 

Boyd and Ferraro 2005). Impact echo can successfully be used to assess the distribution of 

damage by analyzing the vibration, monitoring the resulted stress waves and locate flaws, cracks, 

voids and delamination, wave velocity is an indication of concrete deterioration level. This 

method can detect concrete damage and thickness of a material such as concrete or asphalt 

pavement. The effective use of the impact-echo system requires that the user have a basic 

understanding of the properties of stress waves (Gassman and Tawhed 2004, Yehia et al. 2007, 

SHRP 2 2009, FHWA 2012, SHRP 2 2013, Ferraro 2003). Impact-echo testing can be performed 

within short duration of the testing procedure. This allows inspectors to accurately assess 

structures condition. The method is used most successfully to identify and quantify suspected 
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problems within a structure, in quality control and in maintenance programs such as routine 

evaluation of bridge decks to detect delamination. Impact-echo may also be used to determine 

the location of steel reinforcing and can be applied to evaluate the corrosion of reinforcing bars. 

Concrete structures can be tested using impact echo at lower cost. With Impact echo test,  no 

damage is done to the concrete and highway workers spend less time in temporary work zones, 

reducing the chance of injury and minimizing time for the traveling public ( Ferraro 2003). 

(IV) Ultrasonic Surface Waves: This test is part of spectral analysis of surface waves (SASW) 

used to evaluate material properties. It uses wave’s dispersal. The propagation velocity is a 

function of frequency and wave length. Surface wave velocity is related to concrete modulus; 

when material is uniform and identical, the velocity of surface wave does not vary with 

frequency. Surface waves are elastic waves that travel along the free surface, waves of different 

wave length travel with different velocities. Therefore, information about subsurface can be 

obtained by measuring of phase velocity versus frequency relationship. Variation in wave 

velocity is an indication of presence of delamination (SHRP2 2009, SHRP2 2013). 

 (V) Acoustic Emission: This method is used to detect stress waves or sound energy that is 

released by the mechanical deformation of the material. The sound energy does not come from 

external sources. It comes from the material (Kaiser and Karbhari 2002). Portable AE sensors are 

available for the continuous monitoring of known flaws. Transducers are used to detect acoustic 

emissions, as they are not in the range of human hearing. There are two types of acoustic 

emission signals: continuous signals and burst signals. A continuous emission is produced by 

rapidly occurring emission events such as plastic deformation. A burst emission is a discrete 

signal related to an individual emission event occurring in a material, such as a crack in concrete. 

There are two types of sources: primary and secondary. Primary sources are released within the 
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material as a result of cracks growth. The secondary sources are external from the material; 

including traffic noise and joint friction (Fu, G. 2005, Indot 2010). The emission is received by 

the sensor and transformed into a signal, then analyzed by acoustic emission instrumentation, 

resulting in information about the material that generated the emission (Ferraro, 2003).  

 Fast results of acoustic emission testing requires massive data calculations due to the 

extensive output from acoustic emission signals. Acoustic emission testing can provide 

indication of crack formation and propagation. Early use of acoustic emission testing is very 

useful. However, the first acoustic emission signals acquired contains large amounts of noise 

signals. This made it difficult, as researchers are unable to develop AE as a quantitative 

technique. The measurement of the acoustic emission count rate is one of the easiest and most 

applicable methods of analyzing acoustic emission data. Acoustic emission count indicates the 

occurrence of acoustic emission and gives a rough estimate of the rate and amount of emission.  

 The most common application of acoustic emission is detection of the presence of 

discontinuities or cracks, and their location, in concrete specimens and structures (Nair and Cai 

2010). The applied load test is one of the application of acoustic emission where known force or 

stress is applied to an object under test and then analyzing the object’s reaction by means of 

acoustic emission monitoring. Damaged area due to cracking can be identified by the acoustic 

emission source location. Most highway bridge inspection is performed via visual inspection. 

When deficiencies are observed, the action taken usually involves increased inspection of the 

defective area. Given that the rate of deterioration is usually unknown, the frequency of 

inspection is increased without a reasonable forecast of the behavior of the defect. Acoustic 

emission testing utilizes the induced stress waves that are released when microstructural damage 

occurs. Portable AE sensors are available for the continuous monitoring of known flaws. 
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Research to date has provided a reasonable scientific base upon which to build an application of 

acoustic emission as part of a bridge management program. This technique could be best utilized 

by implementing a continuous monitoring system with an array of sensors on newly constructed 

bridges. The technology is available for instrumentation configured with portable data 

acquisition and transfer systems, making it possible for engineers to continuously monitor bridge 

condition. Engineers could use the information gained via AE systems to decrease the frequency 

of inspection on sound structures and monitor profound AE events to determine the need for 

essential inspections (Ferraro 2003, Nair and Cai 2010).  

2.3.1.2.Electrochemical Methods 

(I) Electrical Resistivity: Low resistivity indicates high water content. The level of water 

content of a structure determines the resistivity of an element to the flow of electrons; low 

resistivity indicates high water content. The resistivity can be measured using electrodes placed 

into the deck, then passing current through outer electrodes and measuring voltage between inner 

electrodes (McCann and Forde 2001). This method is used to describe corrosion of concrete, 

chloride contents, water and salts. High moisture decreases the concrete electrical resistivity, 

which consequently increases corrosion rate of concrete. Chlorides influence concrete resistivity, 

as it occurs ionic current flow between anode and cathode, consequently concrete permeability 

increases and concrete resistivity decreases. Corrosion rate is correlated with concrete resistivity. 

So, the calculated resistivity is an indication of corrosion rate (Amleh and Mirza 2004, SHRP2 

2009, FHWA 2012, SHRP2 2013). 

 (II) Half- Cell Potential: Half-cell potential is a widely used method, commonly known as CSE 

Copper Sulfate Electrode, to identify active corrosion in steel reinforced and pre-stressed 

concrete structures. Half-cell potentials of reinforcing bars are calculated by contacting CSE to 

the concrete surface, and then voltage is registered. High values of potentials are indication of 
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corrosion activity. The test should be done on free concrete surface to make the measurements 

more realistic. The basic principal is based on when a metal is submerged into an electrolyte; the 

positive ions will resolve oxidation leads to surplus of negative charges. The positive metal ion 

will accumulate at metal liquid.  Anions from electrolytic solution in concrete are attracted to the 

positive charge side. So, if two different metals are submerged into an electrolyte and connected 

electrically by a wire, galvanic element can be created. The more negative values are indication 

of corrosion activity (Amleh and Mirza 2004, SHRP2 2009, FHWA 2012, SHRP2 2013).  

(III) Galvanostatic Pulse Measurements (GPM): GPM is electrochemical method used for 

rapid assessment of corrosion in concrete bridges. Measurements can be done when concrete is 

wet. The test is based on polarization of rebar using small current pulse (SHRP2 2009, SHRP2 

2013). 

 

2.3.1.3.Magnetic Methods 

(I) Magnetic Field Disturbance (MFD): MFD is used to evaluate fatigue damage in steel 

reinforcement inside reinforced or prestressed concrete. The system of MFD monitors the 

magnetic field across bottom and sides of the beam. Therefore, any fracture produces a 

distinguished magnetic signal (FHWA 2012).  

(II) Magnetic Flux Exclusion: This method can be used to identify bar location and concrete 

depth. It has many application in bridge deck, where magnetic field sensors are attached. The 

presence of any magnetic field is an indication of defects or corrosion. 

2.3.1.4. Electromagnetic Methods 

Ground Penetrating Radar (GPR): It is a rapid method. It produces electromagnetic waves 

from transmitting antenna into the structure at a velocity can be determined from structure 

properties. These waves spread out, reflected back to a receiving antenna if they face objects that 
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have different properties. The signal responses are different for various interfaces due to the 

changing of two electrical properties. Therefore, the reflection of these waves at objects with the 

material is analyzed to determine the location and depth of this interface. When pulses reflect 

back, the time delay is related to location of these interfaces that determine the properties of 

materials. It has the ability to obtain subsurface information and rapidly covering large area with 

minimum interruption to traffic. Experimental results indicate that there is an agreement between 

GPR results and other method like chain dragging and core samples test. GPR measures signal 

responses caused by variations in electrical properties of materials (Maser and Roddis 1990, 

Maser 1996, Yehia et al. 2007, SHRP2 2009, Gucunski et al. 2006; FHWA 2012, SHRP2 2013). 

2.3.1.5. Imaging Methods 

 (I) Radiography: It is performed with the use of radiographs, where concrete is subjected to 

radiation. Images are generated with X-Ray or Gamma Ray radiographic (FHWA 2012).  

Radiography is the NDE technique that employs the use of radiographs for material inspection. 

X-rays are a form of electromagnetic radiation with a relatively short wavelength.  This 

extremely short wavelength enables X-rays or gamma rays to penetrate through most materials. 

Structural radiography is very similar to the X-ray technique. The limitation of radiography as an 

NDE technique is that both sides of the material to be tested must be accessible for inspection. 

Therefore, structural elements like slabs and foundation walls are not typically accessible for 

testing with radiography (Ferraro 2003). Radiation testing is the most powerful methods used in 

nondestructive testing today; however, it has several limitations that prevent it from becoming 

the most widely used NDE technique. Radiation testing techniques are the most expensive NDE 

methods. Radiation testing presents many safety concerns that are not easily addressed in the 

field and it is not always practical to use radiographic testing due to public safety (Ferraro 2003) 
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(II) Infrared Thermography: In this method, image of surface temperature can be determined 

to detect the delamination based on the uniformity of heat flow. This technique assesses the 

material defects by monitoring its reaction to thermal loading. The heat conduction of material is 

influenced by delamination existence (Maser and Roddis 1990, Yehia et al. 2007, SHRP2 2009, 

FHWA 2012, SHRP2 2013). In this method, image of surface temperature can be determined to 

detect the defect and delamination based on the uniformity of heat flow. This technique assesses 

the material defects by monitoring its reaction to thermal loading. Therefore, with no internal 

defect, heat flow through concrete is uniform. Surface with internal defects appears in the image 

with higher temperature and other parts are cooler; the change in heat flow creates a temperature 

difference between areas with defect and areas without defects (Maser and Roddis 1990, Yehia 

et al. 2007, SHRP 2 2009, FHWA 2012; SHRP 2 2013). This method characterizes the properties 

of a material by monitoring its response to thermal loading, which is commonly used to describe 

the transfer of energy from a heat source to a solid object. This technique is currently being used 

on an array of structures and materials. Recently, IR has been used for the nondestructive 

examination of concrete structures and structural repairs (Ferraro 2003, Andrew et al. 2005). 

Current applications of IRT include the evaluation of concrete and composite structures for 

delamination, coating thickness. IRT was proven to be effective NDE technique for the 

inspection. 

The advantages, limitations and application of each method are illustrated in  

Table 2-3. This research identifies the limitations and advantages of each method based on the 

integration of information from current practice and previous research work. Infrared 

thermography, digital imaging, GPR, IE and acoustic emission are defined in the literature.   
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Electrical resistivity, HCP, ultrasonic velocity, ultrasonic pulse velocity, pulse echo and 

ultrasonic surface waves are defined and utilized based on the current practice.
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Table 2-3: Benefits and Limitation of NDE Methods, Concrete Bridges 
A

C
O

U
S

T
IC

 

TEST CURRENT 

PRACTICE 

ADVANTAGES LIMITATION 

Ultrasonic 

Velocity 

Measureme

nts 

Evaluation of material 

damage from various 

causes: Freeze -thaw, 

alkali silica. 

 Measurements of 

vertical cracks depth 

and determine concrete 

quality control. 

Bridge decks can be evaluated 

using computer based monitoring, 

using an automated mobile for data 

acquisition. This system works 

directly, and covering recording 

for large areas 

Complicated for layered systems; decks with 

overlay. Experience is required to understand 

results and used as supplemented tool to detect 

concrete deterioration such as delamination 

(FHWA, 2012). 

Pulse 

Velocity 

Evaluates relative 

quality and uniformity, 

internal abnormalities 

of concrete. Provides 

information about the 

interior member of 

concrete. 

Provides a digital output that can 

be used by a computer to 

characterize defects and material 

properties. It is nonhazardous 

operation with volumetric 

scanning ability. Electronic 

operation with high sensitivity. 

 Just can be used as supplemented tool. 

 Access for both sides is needed. Does not provide 

information about depth of defects (Amleh and 

Mirza 2004, Rens and Kim 2007, FHWA 2012). 

Impact Echo 

Used to detect defects, 

cracks, delamination, 

voids, distribution of 

damage, concrete 

compressive strength, 

debonding in plain, 

reinforced and post-

tensioned concrete.   

Can be used for quality 

control and in 

Can detect delaminated area in 

bridge deck with high accuracy, 

measurements are reliable. 

Moderate expensive. It needs 

access to one side of an element 

and detects depth of defect with 

high accuracy. It is not affected 

by steel presence and requires 

minimum surface preparation 

(Yehia et al. 2007). 

For decks with asphalt concrete overlay, detection 

is possible when asphalt concrete temperature is 

low, the material is not viscous. The method does 

not provide deep penetration into bridge deck. 

Acoustic Knowledge is required in its use. 

Boundary effects should be taken into 

consideration, this boundary produces reflections, 

and this is common when used IE for other 

element than bridge deck surface such as girders 

and piers (Gassman and Tawhed 2004, Yehia et 
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maintenance programs 

such as routine 

evaluation of bridge 

decks. Impact-echo 

may also be used to 

determine the location 

of steel reinforcing and 

evaluate the corrosion 

of reinforcing bars. 

There is no damage is done to the 

concrete and highway workers as 

it spend less time in temporary 

work zones, reducing the chance 

of injury and minimizing time for 

the traveling public. 

al. 2007, SHRP2 2009, FHWA 2012, SHRP2 

2013). 

 Interpretation of results needs training with 

specialized program. Expensive for large areas as 

many points have to be tested (Gucunski 2006). 

Ultrasonic 

Pulse Echo 

Thickness 

measurements, 

assessing defects in 

concrete elements, 

deboning of 

reinforcement bars, 

shallow cracking and 

delamination. It can 

detect also material 

interfaces between 

steel and concrete. 

It permits the detection of small 

flaws. High accuracy to 

determine the position of internal 

flaws, estimating their size and 

shape. Operation is automated. 

 It requires very close spacing between test points 

to develop images of the tested medium which 

making it time consuming. Data quality depends 

on coupling of sensor units which is difficult for 

rough surfaces. Very shallow flaws cannot be 

detected because it works under low frequency 

(SHRP2 2009, SHRP2 2013). 

Ultrasonic 

Surface 

Waves 

It evaluates concrete 

damage from freeze-

thaw cause. It is used 

for material quality 

control, concrete 

strength and indirect 

assessment of 

delamination.  

It detects vertical cracks with a 

good accuracy, can be considered 

moderate expensive and 

repeatable test.  

 Cannot provide reliable values. Considered a 

supplemental tool for deterioration detection. 

Experience is required for interpreting results. It is 

more complicated with asphalt concrete overlay 

(SHRP2 2009, SHRP 2, 2013) 
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Acoustic 

Emission 

Detecting the presence 

of discontinuities or 

cracks, and their 

location with 

Continuous monitoring 

(Nair and Cai, 2010). 

Proved to be a highly sensitive 

indicator of crack formation and 

propagation. Early use of AE 

proved to be valuable. 

 

 The first results require massive data calculations 

due to the extensive output from test signals with 

more noise signals. Difficult to be used as 

quantitative technique. 

E
L

E
C

T
R

O
C

H
E

M
IC

A
L

 

Half-Cell 

Potential 

Used to identify the 

probability of active 

corrosion in steel of 

reinforcement concrete 

structure 

Economical test, fast, equipment 

set up and data analysis can be 

done quickly, don’t require 

experience and easy to use 

Measurements are not reliable when concrete is 

wet (Amleh and Mirza 2004, SHRP2 2009, 

FHWA 2012, SHRP2 2013). 

Galvan 

static  Pulse 

Measureme

nts 

Used for rapid 

assessment, determines 

corrosion. 

It covers the limitation of 

electrical resistivity.  

Measurements are reliable and it 

is economic test. 

Pre-wetting is essential, a high electrical 

resistivity of concrete cover leads to unstable 

measurement and first reading should be taken 

after few moments (SHRP2 2009, SHRP2 2013). 

M
A

G
N

E
T

IC
 

Magnetic 

Field 

Disturbance 

Determine 

discontinuity and 

fatigue damage in 

steel, such as fracture 

in a rebar. Produces a 

unique magnetic field 

(FHWA 2012). 

-It is a quick method and 

accurate. Interpretation of results 

requires moderate skills 

-Water with chloride leads to inaccurate reading 

-Cannot detect rebar corrosion. 

     

Radiograph

y 

It evaluates hidden 

flaws. Images for 

concrete are generated 

with radiation. Used to 

map defects in bridge 

deck, corrosion and 

flaws.  

 

  It can be installed in a van. Very 

good for inspection.  Radiation 

testing is the most powerful 

methods that used in 

nondestructive testing 

Penetration depth is only about 8 inch, training 

should be needed (FHWA 2012). Both sides of 

the material to be tested and must be accessible 

for inspection.  Expensive and it is not practical to 

use in the field due to public safety. 
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Infrared 

Thermograp

hy 

Used to detect concrete 

defects such as cracks, 

delamination, 

subsurface voids in 

concrete structure 

- It has been applied to 

asphalt decks to 

characterizes the 

properties of a material 

by monitoring its 

response to thermal 

loading This technique 

is currently being used 

on an array of 

structures and 

materials  

It produces an image for concrete 

and covers greater area. 

It is fully developed with a 

camera technique, can detect 

delamination directly with 

medium cost technique. 

Minimum traffic disruption, so it 

can be used in high-traffic 

volume areas. Results are easy to 

interpret with colour coded 

image. It is a fast method carried 

on a vehicle with real-time results 

possible.  IRT was proven to be 

effective as a qualitative NDT 

(Maser and Roddis 1990, Yehia et 

al.  2007). 

Various bridge conditions influence thermo 

graphic readings and complicate the 

identifications of delamination affected by 

atmospheric conditions of wind speed, moisture, 

season of year and time of day (Maser and Roddis 

1990, Yehia et al.  2007).  

 Deep flaws are difficult to be detected. The 

method is complicated by many issues; shadow 

and other factors, snow, ice and sensitive to any 

defects. It provides only good location accuracy 

with no information about depth  layer , so other 

test should be done for depth details. 

E
L

E
C

T
R

O
M

A
G

N
E

T
IC

 

Ground 

Penetrating 

Radar(GPR) 

It is capable of 

detecting moisture and 

chlorides associated 

with deterioration, 

location of voids. 

 Mapping of 

reinforcement location 

and depth of cover. 

locating of steel bars. 

Cracks detection, 

delamination are still 

qualitative 

comparisons 

It has ability to obtain subsurface 

information rapidly and covering 

large areas with minimum 

interface to traffic. It has 

sensitivity and can be done 

anywhere then provide records 

hence signals can be processed 

immediately. Possess high 

capabilities in detections of 

different flaws (Maser and Roddis 

1990, Maser 1996, Yehia et al. 

2007, Gucunski et al.  2010). 

Can be used as quality assurance 

tool. Can produce contour maps 

for subsurface features. 

Equipment is light and portable. 

 

Produces a complex signal which is not straight 

forward.  GPR defect resolution is dependent on 

the antenna size and coupling (ground or air). 

Data analysis depends on experience and may be 

subjective. Claims about the capability have 

sometimes stated       because of unrealistic 

expectations and disappointment in results.  

(Maser and Roddis 1990, Maser 1996, Yehia et al.  

2007, Gucunski  et al. 2010) 

Data can be negatively influenced by cold and 

de-icing conditions. It cannot provide 

information about compressive strength of 

concrete and presence of corrosion. It is not cost 

effective; results should be validated by other 

NDE methods, interpretation of images needs 

training. 
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2.3.2. Non Destructive Evaluation Methods For Steel Bridges  

Advanced inspection method help inspectors to evaluate member that are not accessible 

in steel bridges.  Figure 2.4 illustrates the NDE methods used for steel bridges. The methods are 

classified as Acoustic, Imaging, Coating, Magnetic, and Laser. The advantages, limitations and 

application of various methods used in steel ridges are illustrated in Table 2-4 
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Figure 2.4 : NDE Methods for Steel Bridges 

 

2.3.2.1. Acoustic 

 (I) Acoustic Emission: 

In this method, areas with delamination generate mechanical waves motion, structure 

produces an acoustic sound range between 20kHZ and 1MHZ when it is subjected to certain 

load; velocity of propagating cracks can be monitored with monitoring system. Ultrasonic 

microphone is used to be sensitive to the sound comes from parts with defects. Therefore, flaws, 
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cracks, deformation, corrosion and friction can be detected ( SHRP 2 2009, Shiotani et al. 2009; 

FHWA 2012) .  

(II) Ultrasonic Testing: 

This method uses high frequency sound into the material to produce images. It helps 

inspector to measure steel thickness and provides more information about cross sections (SHRP 

2 2009, Shiotani et al. 2009, FHWA 2012). 

2.3.2.2.Laser 

  Laser System: 

 The test is non-contact laser scanner; the scanner directs a laser to areas to be measured in 

bridges and record the travel time from to reach the structure surface; then a full three-

dimensional coordinates for measurements are obtained. The measured areas are taken from laser 

measurements and another two positions from mechanical scanners. The system is capable of 

obtaining large measurements with high accuracy and provides 3D modeling of bridge structure 

(SHRP 2 2009, FHWA 2012). 

2.3.2.3.Coating 

 (I) Smart Coating: 

The National Science Foundation for advanced technology has developed this method. 

Special paints are used to outline the fatigue on steel structure. Scientist in Japan has developed 

special kind of paint that send electrical signals that are associated with any vibration in the 

bridge; the higher the vibration, the greater the electrical signals, giving an alert of fatigue 

existence. Thus, with this method engineers have the ability to monitor fatigue in a much easier 

way (SHRP 2 2009, FHWA 2012). 
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(II) Dye Penetrant: 

Special penetrant is sprayed over steel bridge; the surface should be cleaned and dye 

penetrant can be applied; the dye is drawn into the defects or opening. When penetrant is dried, 

the developer draws the dye out and determines the surface with flaw. In this method, inspector 

should pay attention to dwell time, which is the amount of time that the penetrant is allowed to 

be on the surface. This time is influenced by many factors, such as, temperature of member, 

humidity, size and shape of surface flaws (SHRP 2 2009, FHWA 2012).  

2.3.2.4.Magnetic 

Magnetic Particles: 

This test is useful for detecting holes, crakes, voids and surface flaws. The member under 

evaluation is magnetized, and then filled with iron, which is attracted by the magnetized member 

forming a pattern; any cracks or defects in the member cause irregularities in the magnetic field 

(SHRP 2 2009, FHWA 2012). 

2.3.2.5. Imaging 

 (I) Radiography Testing: 

This test is used to locate subsurface cracks, voids. Inspector should have access for both 

sides; one for radiation with X ray or gamma and the other side for film. These rays are passed 

through the member and absorbed by different flaws; consequently, the deficiencies appear as 

shadow on the film (SHRP 2 2009, FHWA 2012, SHRP 2 2013) 

(II) Computed Tomography: 

This test uses X ray and gamma radiation to produce 2-D and 3-D cross sectional image 

of internal defects in steel member. This image is processed and reconstructed by a computer 

(Rens and Kim 2007, SHRP 2 2009, FHWA 2012).  
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(III) Infrared Camera: 

 This test is used to detect delaminated areas; it is designed for steel deck overlays. Heat 

flow is different in defected areas; so, the system uses thermal camera to take images for bridge 

deck. It automatically captures full video data, where data can be stored in system database 

(SHRP 2 2009). 

(IV) Robotic Inspection: 

Advanced system with high-resolution video camera attached to the bridge. This system 

allows inspector to visually monitor the bridge by remote tele scanning. This method has been 

applied successfully in California department of transportation. Moreover, In 2008, Texas 

transportation institute and Texas department of transportation gave permission for Robot 

assisted search for bridge inspection to use robots in the process of inspection. This method can 

be extended to be used for concrete bridges as well (FHWA 2012). 

This research identifies the limitations and advantages of each method based on the 

integration of information from current practice and previous research work. Imaging methods 

such as Radiography, computed tomography and acoustic emission are methods identified in the 

previous research. Smart coating, dye penetrate and ultrasonic testing are methods that are 

identified and utilized by the current practice. 

 

 



 
47 
 
 

Table 2-4   : Benefits and Limitation of NDE Method, Steel Bridges: 
A

C
O

U
S

T
IC

 

TEST CURRENT 

BRACTICE 

ADVANTAGES LIMITATION 

Acoustic 

Emission 

Testing 

It detects flaws and 

fatigue growth rate. 

It is used for detection 

of fatigue cracks in 

fracture critical 

members, corrosion 

and weld defects. 

Ultrasonic microphone 

is used to be sensitive 

to the sound comes 

from parts with defects 

Recording, real time analysis of waves 

allowing automatic acquisition unit. The 

system can be directly connected to 

computer with low/ medium cost. Portable 

devices can be used to monitor areas with 

cracks (SHRP 2 2009, Shiotani et al. 2009, 

FHWA 2012). The whole structure can be 

monitored from a few locations. Test can be 

done while bridge is in service. 

Test cannot be repeated once it is 

completed. 

Expensive, need additional cost for an 

operator. Other test should be used to 

determine the exact nature of defects. 

Background noise is similar to sound from 

flaws. Emissions can be very weak signals 

and difficult to detects due to noise. 

Difficulty in estimating structural integrity 

(SHRP 2 2009, Shiotani et al. 2009, 

FHWA 2012). 

Ultrasonic 

Testing 

Many applications in 

inspection; detect 

cracks, voids, 

corrosion; identify 

fatigue and porosity 

(SHRP 2 2009, 

Shiotani et al. 2009, 

FHWA 2012). 

- It is more accurate method with 

reasonable results; this method uses high 

frequency sound into the material to 

produce images. . It helps inspector to 

measure steel thickness and provides 

more information about cross sections 

(SHRP 2 2009, Shiotani et al. 2009, 

FHWA 2012). 

It provides inaccurate reading for 

complicated geometry member. Flaws that 

are parallel to sound waves cannot be 

detected. The method needs skilled 

operator. Portable ultrasonic associated 

with many uncertainties as the method still 

new (SHRP 2 2009, Shiotani et al. 2009, 

FHWA 2012). 
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Laser 

System 

It measures the 

deflection of bridge 

girders in the field. It 

is capable of 

measuring complicated 

movements and 

deformation in bridges 

in structural lab. Used 

for bridge load testing 

(SHRP2 2009, FHWA 

2012). 

It is a mobile system with high resolution 

and large volume measurements (SHRP 2 

2009, FHWA 2012). It allows for data 

collection to enable accurate measurements. 

Minimum disruption for traffic. The 

measured areas are taken from laser 

measurements and another two positions 

from mechanical scanners. The system is 

capable of obtaining large measurements 

with high accuracy and provides 3D 

modeling of bridge structure (SHRP2 2009, 

FHWA 2012). 

- Equipment is costly, some instrumental 

errors, influence of weather conditions.   

Collecting and interpreting data require 

trained persons. Should be used with other 

technique to increase the accuracy. 

C
O

A
T

IN
G

 

Smart 

Coating 

It allows inspector to 

determine vibration 

and future fatigue 

(SHRP 2 2009, FHWA 

2012). 

-Easier to measure vibration than strain 

gauges (SHRP 2 2009, FHWA 2012). The 

higher the vibration, the greater the electrical 

signals, giving an alert of fatigue crack 

existence. In this way, engineers have the 

ability to monitor fatigue cracks initiation in 

a much easier way  

 

 Surface should be cleaned before the test 

for more accurate results 

Dye 

Penetrant 

It defines the extent 

and size of surface law 

(SHRP 2 2009, FHWA 

2012). 

-Cost effective and it doesn’t require 

extensive training from inspector (SHRP 2 

2009, FHWA 2012).  It is simple with no 

special equipment. 

Sensitive, can detect very small 

discontinuities. 

When penetrant has dried, the developer 

draws the dye out and determines the surface 

with flaw 

 It doesn’t detect depth of cracks and the 

subsurface flaws. Many factors affecting 

on dwell time such as, temperature of 

member, Humidity, material type, 

penetrant removal, size and shape of 

discontinuity (SHRP2 2009, FHWA 

2012). A temperature is required to get an 

acceptable results,(40 degree Fahrenheit). 
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Magnetic 

Field 

Disturbanc

e 

It determines 

subsurface cracks and 

holes. It Identifies 

corrosion rate in bridge 

components (SHRP2 

2009, FHWA 2012).  

-It is an effective method, with high 

sensitivity, small and not expensive (SHRP2 

2009, FHWA 2012). 

 

 -Applicable only for member composed 

of aeromagnetic material. Small 

deficiencies are hard to be detected. 

-Unpainted surface should be clean to 

maximize the sensitivity of testing unit 

(SHRP2 2009, FHWA 2012). 

IM
A

G
IN

G
 

Radiograp

hy 

It locates subsurface 

cracks, voids and for 

full penetration groove 

welds during 

fabrication and 

construction (SHRP2 

2009, FHWA 2012, 

SHRP2 2013).  

It can be used successfully in bridge 

assessment. It can be integrated with other 

techniques. These rays are passed through 

the member and absorbed by different flaws. 

Consequently, the deficiencies appear as 

shadow on the film (SHRP2 2009, FHWA 

2012, SHRP2 2013). 

Strict safety with using the equipment is 

required. Requires access from both sides 

of tested member. It faces transportation 

difficulties. Inspector should have high 

skills to interpret results. Expensive, It 

cannot be used to detect corrosion(SHRP2 

2009, FHWA 2012, SHRP2 2013). 

Computed 

Tomograph

y 

It locates deficiencies 

for steel member and 

concrete (Rens and 

Kim 2007, SHRP2 

2009). 

- Very effective method (Rens and Kim 

2007, SHRP 2 2009, FHWA 2012).  This 

test uses X ray and gamma radiation to 

produce 2-D and 3-D cross sectional image 

of internal defects in steel member. This 

image is processed and reconstructed by a 

computer (Rens and Kim 2007, SHRP 2 

2009, FHWA 2012).  

- Expensive, Public Safety issues . 

. 

Robotic 

Inspection 

 Condition assessment 

and inspection process 

in general (FHWA 

2012). 

It allows inspector to see elevated bridge 

from the ground. The system is controlled by 

remote control. It reduces traffic delay, 

increase safety of inspector. and also used 

for concrete bridge. 

Sensitive to environmental conditions.  

This method need to be extended for 

concrete bridges as well (FHWA 

2012). 

 

Infrared 

Camera 

It detects delamination 

for steel deck and bar 

concrete(SHRP2 2009) 

The system has automated data collection 

and storage. It has a system data base. 

Presentation of data is easy (SHRP 2  2009). 

 For thin material surface. It depends on 

the environment condition. Measurements 

are near surface (SHRP 2 2009). 



50 | P a g e  
 

 

2.4. DATA FUSION  

Multi sensor data fusion is a technique to combine images taken from different imaging 

system and thus increase the acquired data. The main purpose of combining data from multiple 

sources is to improve the accuracy of information acquired and the measurements. It includes 

data processing and statistical estimation. There are many statistical advantages gained by 

combining data, as the quantity of data can be collected, observed and measured. 

Data fusion can be done within three levels: pixel level image fusion, feature level and 

decision level. Pixel level is the integration of pixels from different images; images that will be 

fused acquired from different sources. These images must be matched into same coordinate 

system to compute pixel between two images (Wang et al. 2010). Naidu and Roal 2008 

introduced pixel level image fusion by generating a combined image that contains additional 

information than the single image. The authors concluded that performance of image fusion 

could be estimated more precisely when the true image is available.  

Feature level involves extraction of features from sensor. These features can be extracted 

from different sensors, combined into single feature. Feature level uses different algorithms to 

recognize objects for extraction from all data sources. Decision level involves fusion of sensor 

information and can be done by many techniques such as Bayesian inference or Bayesian 

Networks (BNs) (Hall and Llinas 1997, Naidu and Roal  2008).  

The observations from multiple technologies can achieve better estimation performance 

than a single sensor. When large amount of data are fused, it can help in the decision-making. 

The simplest way to deal with a multi sensor estimation problem is to combine all observations 

in a single group sensor. Data fusion can be done also by dealing with each sensor independently 
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and then combine all information from each one (Hoseni and Ashraf 2013). The main purpose of 

data fusion technique is to reduce the probabilities of errors when collecting and using data for 

specific assessment (Casstanedo 2013).  Data fusion levels reviewed and defined by Casstanedo 

(2013) are as follows: 

Level 0: fusion at the signal and pixel levels of raw data 

Level 1: It deals with processed data, features, correlations and clustering. 

Level 2: Setting relationships between objects and gives assessment for the situation. 

Level 3: It is an assessment level, it gives decisions about future prediction. It includes 

risk prediction 

Level 4: improves previous levels and achieves resource management. 

Shahandashti et al. (2011) showed that experimental results with fusion method improve 

detection of construction material location. It also improves the reliability of information. Data 

fusion techniques need to be integrated in many applications in construction engineering field. 

However, different fusion assessment levels are not well defined and understood. Shahi et al. 

(2014) developed a frame work for multi sensor data fusion to track the progress of construction 

activity. The authors used 3D imaging with ultra wideband positioning. 

Some researchers made efforts in condition assessment using single method to detect 

defects, crack, delamination and voids in concrete bridges such as impact echo (Gucunski et al. 

2011, Chong et al. 2003, Olson et al. 2011, Tawhed and Gassman 2002). Ground Penetrating 

Radar (GPR) is capable of detecting moisture and chlorides associated with deterioration, 

location of voids, mapping of reinforcement location, depth of cover and locating of steel bars 

(Maser 1996, Dinh and Zayed 2014, Shin and Grivas 2003, Barnes et al. 2008, Parrillo et al. 

2006). Infrared thermography is used to detect delamination (Abdel-Qader et al. 2008, Clark et 
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al. 2003). Digital imaging can detect cracks (Adhikari et al. 2013, Ahikari et al. 2012, Abdel-

Qader et al. 2006). Some research efforts have been made within the area of condition 

assessment using different technologies (Yaghi and Moselhi 2014). Yaghi 2014 integrated the 

deterioration maps of GPR and IR for bridge deck in Montreal, Qc, Canada. The author 

approximately utilized superimposing to combine total defected areas extracted from the two 

technologies. There are many robotic systems developed for inspection purposes; these systems 

are designed for bridge inspection purposes and tunnel as well. Balaguer et al. (2014) focused on 

the advantages of using robotic platforms for construction. The authors used robot to perform 

inspection for tunnel and data is processed after images are collected. The system uses an impact 

acoustics method for the inspection procedure called ROBINSPECT; it is an integrated robotic 

system consists of three subsystems: a mobile report, an automated crane arm and an industrial 

quality robot manipulator. Robot improves and overcomes the problems of manual inspection 

procedures (Balaguer et al. 2014). 

Helmerich et al. (2006) illustrated results of bridge deck assessment using combination of 

NDE methods such as radar and ultrasound. The authors used data fusion to merge different 

images taken by single NDE using the sum of maximum amplitude without enough details about 

the methodology followed for data fusion. Utilizing NDE method in bridge condition assessment  

is still not common in many countries (Helmerich et al. 2006). So, the authors developed NDE 

methods tool box that can be used for all types of bridges.  

Czarnecki et al. (2010) worked on a case study for bridge deck assessment. The 

inspection data was collected using radar and HCP combined with petrographic examination. 

The authors confirmed that corrosion is the major cause of deterioration. They defined the 

service life for bridge deck by the time it takes to reach to corrosion threshold. Radar results 
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detect small defects that cannot be seen by traditional methods such as chain drag. So, 

integration of radar and HCP data and then verified by core results is more reliable assessment.  

Kurz et al. (2012) reviewed the methods of data fusion; they emphasized on the 

efficiency of data fusion if it is performed with less cost. The authors believed that combination 

of different NDE results is reliable for more accurate condition assessment for reinforced 

concrete structures. The authors developed BetoScan inspection system to integrate NDE data 

for accurate bridge deck assessment. The system includes different sensors that generate 

condition maps. Moreover, the authors developed a multi sensors robot called OSSCAR. It 

integrates sensors information, such as eddy current, ultrasound and radar. However, the authors 

did not provide the reader any details of the method followed to perform this integration.  

Manh La et al. (2014) focused on automated multi-sensor non-destructive evaluation 

techniques (NDE). NDE technologies provide high efficiency inspection and evaluation. The 

authors analyzed a bridge deck data, which is collected by a novel robotic system with NDE 

technologies. The authors applied image stitching algorithm and bridge deck viewer software. 

Impact echo and ultrasonic surface waves are integrated within Robot system. However, authors 

did not provide a technique for NDE sensors fusion. Kenh oh et al. (2009) developed bridge 

inspection robot system which is not fully automated; it is semi-automated type. The robot 

system developed is composed of a specially designed car. This robotic system is developed for 

automatic and manual inspection.  

Gucunski et al. (2010) studied the performance of NDT technologies in detection of 

reinforced concrete deck deterioration. They evaluated the performance of ground penetrating 

radar, galvanostatic pulse measurements, impact echo, infrared and ultrasonic surface waves. 

Currently, Laa et al. (2014) are working on program of developing robotics assisted bridge 
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inspection tool (RABIT). The technologies used in RABIT system are: electrical resistivity, 

impact echo, ground penetrating radar and ultrasonic surface waves. RABIT integrates 

measurements from multiple technologies.  The outputs from RABIT are deterioration maps for 

each individual technology for detecting locations and severity of damages in bridge deck. To 

the best of the author knowledge, the algorithms and the methodology for integration and fusion 

of data captured by multiple technologies in the RABIT are briefly referred to in a conference 

paper (Laa et al. 2014)   without any detailed description.  

Since measurements from different sensors are often with degree of uncertainties, there is 

a need to better interpret results from sensors. The most important is to fuse large amount of 

data. The determination of the most informative data sources can achieve an efficient and timely 

decision. Zhag and Ji (2006) fused information into Dynamic Bayesian Networks; the fusion 

system is able to select sensors and produce decisions with reasonable time. The authors 

concluded that uncertainty of sensors reading can measure the degree of belief (Zhag and Ji 

2006). 

To obtain data from different sensors, multiple sensors can be arranged and configured. 

There are many types of sensors fusion: complementary type, competitive type, and cooperative 

sensor type. In complementary type, sensors don’t depend on each other; one sensor views one 

part of region and another sensor views different part of another region. Therefore, sensors can 

be combined to establish a complete picture, as they are independent. In the competitive type, 

each sensor deliver measurements for the same feature or fusion of measurements from a single 

sensor obtained at different instants. In the cooperative sensor type, data provided by two 

independent sensors are used to derive information with more than one type. The actual fusion of 

data can be based on statistical or probabilistic models such as Bayesian-Networks (Mitani and 
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Matsumoto 2006). Data fusion technique can be applied to more areas to achieve large-scale 

knowledge bases. It helps to solve the conflicting variables extracted from different sources and 

trying to find the accurate values (Dong et al. 2014, Carvalho et al. 2009). 

Knowledge fusion identifies subject based on information that extracted from different sources. 

Knowledge fusion involves three steps:1- identify the part of data that indicate a value, 2-linking 

any entity that depends on knowledge base, 3- linking any relation that is related to knowledge 

base. Dong et al. (2014) identified and solved the problem of knowledge fusion by using data 

fusion techniques.  

 Figure 2.5 illustrates the main three levels of data fusion technique. 
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Decision 

Level 

Fusion

Removing 

Noise

  

Figure 2.5  : Data Fusion Levels (Pajares and Manuel de la Cruz 2004, Naidu and Raol 2008, 

Simone et al. 2002, Wang et al. 2010, Matsumoto et al. 2012). 
 

Research on data fusion is limited. Shahandashti et al. (2010) focused on the benefit of 

data fusion as it improves the confidence and reliability of measurements. The authors confirmed 

that the main challenge in the data fusion is not associated with the cost, but it is related to the 

algorithms used to process such captured data. The authors concluded that a gap exists between 
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research and industry practice because the level of fusion are not well defined. Thus, there is a 

need to apply data fusion in different areas in civil engineering. Shahi et al. (2014) developed 

framework focusing on the highest level of data fusion for automated progress tracking of 

construction activity. Although the authors implemented data fusion framework at the highest 

level to help in decision making, they had to utilize specific design code. 

Simone et al. (2002) applied data fusion using different methods through different case 

studies. The application of data fusion was done using: 1-multi sensors by using data from 

different sensors, 2-multi temporal using data from same sensors but recorded at different time, 

3-multi frequency using data of the same sensor with different spectral bands, 4- multi resolution 

image fusion using data recorded by the same sensor at different heights. 

Hoseini and Ashraf (2013) made a comparison of the computational complexity of 

different methods of data fusion. Naidu and Raol (2008) evaluated image fusion using three 

methods: wavelet transform, principal component analysis (PCA), and simple average method. 

The authors demonstrated that wavelets provide better performance with high level of 

decomposition.  Wang et al. (2010) applied image fusion using weight fusion based on high-pass 

filter and Hue Intensity Saturation (HIS) transformation implemented in MATLAB with ease. 

Dong et al. (2014) studied data fusion and showed how to get knowledge fusion from data 

fusion.  

Aside from the work cited above, there is limited research available that focuses on the 

application of image fusion for bridge condition assessment. Huang et al. (2010) applied data 

fusion in freeway infrastructure safety assessment including pavements, bridges and tunnels.  

They emphasized on the advantages of fusion methods, but did not provide detailed description 
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of the method used in data fusion and, even the numerical example they presented lacked many 

details.  

Some researchers applied data fusion for testing reinforced concrete structures. Zhang et 

al. (2012) used impact echo to detect delamination. They applied data fusion to increase the 

results accuracy by using multiple source receiver arrays. The experiment was done on 

reinforced concrete slab. The authors focused their observations on the spatial variations of 

Impact Echo (IE) signals for different source location. The ratio between spectral amplitude at 

the delamination echo Frequency and the bottom echo frequency was considered an important 

parameter for data fusion in that application. They confirmed that fusing the data of multiple 

NDE methods improve and enhance results interpretation. Maierhofer et al. (2004) also applied 

data fusion to accurately identify the location of concrete cover of tendon ducts by fusing 

measurements of radar, ultrasonic and impact echo. Their study recommended that future 

research should investigate different algorithm of fusion for different applications.  

Su et al. (2009) used feature level of data fusion to detect delamination in composite 

structure. The authors studied three basic data fusion scheme: disjunctive, conjunctive and 

compromise fusion for two sensors. Their study evaluated the capability of these methods to 

identify delamination. Sun et al. (2016) proposed framework to compute the composite structure 

health index using data collected by sensors. The authors focused on the decision level data 

fusion for maintenance planning.  

This research suggests use of two levels of data fusion, Pixel level fusion and Feature level 

fusion, for bridge deck condition assessment. Two levels are considered to gain benefits of both 

levels and to increase the confidence when presenting the assessment results. Pixel level fusion 

provides one single fused image that incorporates inspection data captured by multiple 
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technologies, and results from the fusion node an overall assessment of the condition in the form 

of  % good, % poor and/or % serious areas.  Feature fusion is used to fuse features extracted 

from multiple images. In addition, decision level data fusion can be used for forecasting future 

condition which add more complexity to the proposed method 

2.5. DETERIORATION MODELS 

Deterioration models are used in Bridge Management System (BMS) to predict the future 

conditions and performances of bridges. Large number of historical data is required for 

deterioration modeling. The deterioration models are influenced by: 1-Bridge age, 2-Bridge type, 

3-Bridge environment, 4-Material properties, 5-Bridge design, 6-Bridge loading and 7-Bridge 

Capacity. Bridge deterioration rate is a decrease in condition rating per year. Bridge age and 

daily traffic load are the most critical factors that cause bridge deterioration. Bridge service life 

can be determined by defining the correlation between bridge age and condition rating. 

Therefore, the effective maintenance of bridge structure relies on the quality, accuracy of 

deterioration models that are used to predict bridge performance and service life (Agrawal et al. 

2010, Cesare et al. 1992, Robelin et al. 2007).  

Currently, there are two major types of deterioration models: 

(i) Deterministic Models:  

Deterministic models describe relationships between factors affecting bridge deterioration. 

However, it ignores random errors in prediction. Some of the limitations of deterministic 

deterioration models are as follows: 

1- Deterministic models neglect uncertainty 
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2- They predict the average condition of a group (of bridges) without focusing on 

individual facility. These models provide less focus on current condition and the 

history of the facility. 

3- It is always difficult to estimate the impact of maintenance actions on 

deterioration when deterministic deterioration models are used. 

4- These models neglect the interaction between bridge components. 

 

(ii) Stochastic Models: 

Stochastic models deal with deterioration process as random variables that incorporate 

uncertainty. Markov models are the most widely used deterioration models used to predict 

the condition of infrastructure facilities. It covers two limitations of deterministic models as it 

incorporates uncertainty and account for the current facility condition. Markov model has the 

following limitations: 

1- Markov models assume discrete transition time intervals. 

2- Future condition of a facility depends only on current facility condition and not on a 

history of the facility, which is unrealistic. 

3- Markov models assume that the condition of a bridge can stay the same or reduced to 

avoid the complexity to consider the treatment process and its impact. 

4- Markov models cannot determine the interaction between different components of 

bridges. 

5- In these models, transition probabilities require update when new information is 

available. 
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Markov Chain Model is the most widely stochastic model. It forecasts bridge condition rating 

based on the concept of defining states of bridge condition from one to another during transition 

period. Markov approach is a discrete time stochastic process that takes number of possible 

discrete states. This can be presented as transition between certain states. The conditional 

probability that means an element can transfer from one condition, i, to condition, j, through a 

period of time is defined as Pij in Eq. (2.3) 

Pij= P{ Xt+1 = J\X(t)= i}………………………………………………………… (2.3) 
 

These probabilities are presented in a matrix called the transition probability matrix (TPM). As 

an example, if bridge has five condition states, this yields 5*5 matrix in Eq. (2.4) 

P= [ P11      P12      P13     P14      P15              P11      P12      P13     P14      P15 

       P21      P22      P23     P24      P25               0          P22       P23   P24       P25 

       P31      P32      P33     P34      P35   =          0              0        P33   P34     P35              (2.4) 

        

       P41      P42      P43     P44      P45                 0             0         0      P44      P45 

       P51      P52      P53     P54      P55                0            0            0        0       P55 

Each element in TPM represents the probability of transition from one state to another for one 

inspection period. The sum of each raw of the TPM is equal to 1 based on the probability theory. 

With no repair work, bridge components will be deteriorated. So, condition rating is increasing 

to higher numbers or remain with no change during one inspection period. Pij is null if I >j  
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Markov approach assumes that bridge condition rating would not be increased by more than one 

state within one year. Probability of increasing to more than one state within one year is assumed 

zero. 

Then, the condition state vector, Ct =[ C1(t)    C2(t)     C3(t)       C4(t)        C5(t) ]………  (2.5) 
 

where Ct is the percentage of bridge components in condition rating i where i= 1, 2, 3, 4, 5 after t 

years. The condition state matrix after zero years is known as C0, the initial condition. 

C0 = [ 1  0   0   0   0  ]……………………………………………………………………… (2.6) 
 

Determine condition state matrix after t time with multiplication of initial condition state matrix 

by t power of TPM and using Chapman- Kolmogorov formula  

C(t) = C(0)   *  TPM power t ………………………………………………………………( 2.7) 
 

Markov Model assumes that future condition depends mainly on current condition. Markov 

model can be defined by assessing the transition probabilities between all possible condition 

states. Transition probability does not depend on the state history (Frangopol et al. 2004).  

Frangopol et al. (2004) has the following concerns regarding Markov-Model: 

- Condition state in Markov model is discrete which makes it suitable for visual inspection. 

- Researchers should focus on how to integrate Markov-Model to NDE, then to BMS. 

- Markov assumption has no memory. 

- Great concerns should be focused on the accuracy of transition matrix. 

- Network level optimization can be enhanced by using a finite state Markov Model. 

Frangopol et al. (2004) has the following guidelines and recommendations for a future concerns: 
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-Life cycle performance and reliability index is concerned with the physical condition of a 

structure. 

- Markov-Model cannot be used to assess reliability of structure such as stress and strength, it is 

highly recommended to integrate structural assessment with deterioration models. 

- Deterioration Models should address condition and reliability. 

- Deterioration model is developed to achieve balance between three objectives; reliability, 

condition and cost. 

Madanat et al. (1995) used data of condition that obtained from facility inspection. These 

data used to develop facility deterioration model. Discrete condition rating is commonly used for 

simplicity. Authors focused on the utilization of condition rating to predict deterioration models. 

The authors in their research, integrated incremental models that predict changes in condition 

that were added to previous condition to estimate the new condition. In this way, deterioration 

models incorporate different variables (Madanat et al. 1995).  

The authors focused on Markov model because it is the most widely deterioration model 

incorporated to BMS. Transition probability specifies the probability of condition change of a 

facility from one state to another state in a unit time. Therefore, authors incorporated Ordered 

probit model to be used to construct an incremental discrete deterioration model. Incremental 

deterioration model predict deterioration of facility over period of time. The advantage of this 

method is that it provides  specific and accurate transition probability.  

The incremental data model is equal to the difference between condition states observed 

in two inspections. Drop in condition rating is an indication of deterioration process. So, the 
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transition probability from state i to state  j is the probability of changing the condition state i to 

be equal to j (Madanat et al. 1995). 

Roelfstra, et al. (2004) incorporated various parameters in Markov-model. The model uses 

quantitative parameters related to concrete deterioration. The authors used condition state vector 

as follows: 

- Condition state 1: defined as having free chloride ion less than 0.2%  

- Conditions 2, 3, 4 and 5 are defined in terms of reinforcement section loss. 

- (i) Condition 2: in term  of section loss that lead to corrosion crack 

- (ii) Condition 3: in terms of less between 50 mm and 10% of total cross section 

- (iii) Condition 4: more than 10% section loss 

- (iV) Condition 5:more than 25% section loss (Roelfstra et al. 2004) 

The authors determined condition evolution in three steps: 

1- Chloride penetration is simulated for each concrete cover. 

2- Probabilities of corrosion initiation were determines as a function of time 

3- Results of condition evolution used to set as quality for bridge element 

The results of condition evolution can be incorporated to enhance the prediction of transition 

matrix (Roelfstra et al. 2004). 

Morcous et al. (2000) provided a model that has the ability to consider incorporating various 

factors affecting deterioration process, account for bridge maintenance history, and take into 

consideration the effect of past conditions. The authors introduced a generic Case Based 

Reasoning (CBR) framework. The design of this framework includes the four main aspects: 

1- Case representation 
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2- Case accumulation 

3- Case retrieval  

4- Case adaption 

The framework is built on top of Object-Oriented Data Base-Management system. The module 

performs the followings: 

1- This module stores time dependent defined for each domain along with their relationship 

2- The retrieval knowledge base module stores the attributes that belong to each domain. 

3- The adaption knowledge base stores the domain knowledge from domain experts. 

4- Case template module stores the structures of some cases that are common and can be 

used as templates for new cases. 

5- Module to store data and describe case contents. 

Case description incorporates all factors that affect bridge deterioration process. There are 

two types of knowledge in the developed framework; retrieval knowledge and adaptation 

knowledge. Retrieval knowledge stands for the knowledge about attributes; name, groups and 

types. It describes different techniques used to measure similarity among attribute values. These 

techniques are different according to attribute type. The four attributes are continuous, grouped, 

enumerated and hierarchical. Adaption knowledge stands for the knowledge acquired from 

experts to be used for the retrieval case solution. The authors provided cases from transportation 

agencies (MTO and MTQ) to validate their approach.  

Another type of stochastic models available are Bayesian Networks (BNs). These models 

consist of a graphs that includes nodes and arcs. The arcs connecting two nodes represent the 

dependences relationships between random variables nodes. BNs has many application in 

medicine diagnostics and in engineering predictions (Murphy 2002, Jha 2006, Straub 2009). Few 
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researchers have applied BNs in deterioration modeling. By using BN, dependencies among 

variables is easy to interpret. Variables are considered independent if there is no edge connecting 

those variables.  

According to Weber et al. (2012), BN has the capability of modeling complex system. It 

makes prediction and diagnostics. It computes the probability of event occurrence. It updates 

beliefs based on new evidence. It integrates qualitative information and the quantitative ones. BN 

merges experience, past knowledge, impacting factors and measurements. So far, according to 

the literature review, BN has limited applications in maintenance and in bridge deterioration 

modeling.  

Dynamics Bayesian Network (DBN) is a class of BNs which represent stochastic process.  

DBN consists of sequence of slices. Each slice consists of BN nodes. These slices are connected 

by direct arc from slice at time T1 to slice at time T2. DBN provides computational framework 

that allows accurate and efficient prediction of deterioration based on observations and 

deterioration parameters (Faddoul et al. 2013, Straub 2009). Modeling bridge deterioration as 

DBNs is expected to cover the main limitations of current Markov model. 

2.6. BAYESIAN NETWORK THEORY 

The main advantage of BN is the graphical presentation and presenting joint probability 

distribution between random variables. BN includes table of conditional probabilities for each 

variables relating to its parents, each node represents probability distribution of a variable that 

can be continuous or discrete state. The conditional probability table represents the dependence 

relationships. 

For two events A and B, according to Bayes theory in Eq. (2.8): 



66 
 

P(AB) = P(A)* P(BA)/P(B)………………………………………………………….(2.8) 
 

P(A) is the prior probability of A. P(AB) is the posterior probability, it is the conditional 

probability of A given B, so it depends on the value of variable B. P(BA) is the conditional 

probability of B given A. The component P(BA)/P(B) is defined as the Bayes factor.  

In Bayesian network, the dependencies between variables are quantified by conditional 

probability table CPT for each variable node given its parents. Therefore, the arrows in the 

network represent causal connection. Using BNs enable determining the joint probability 

distribution of variables (JPD) as illustrated below: 

If xi is some values of variables Xi and Pai is the values of parents of xi, then JPD can be 

determined using the product rule as in Eq. (2.9) 

P(xi,…….,xn) = i P( xi Pai)………..……………………………………………………. (2.9) 
 

BN automate Bayesian updating based on observation of each node. Once an observation 

of one node is available, the whole network will be automatically updated. In order to calculate 

the conditional probabilities, it is preferred to use discrete nodes to make calculation much 

easier.  

BNs are developed in 3 stages: 

1- Define the random variables and the relationship between them. 

2- Determine the conditional probability distribution of each child node given its parents. 

3- Define joint distribution of the variables. 

BN includes qualitative parts which are graphs and nodes connected through linking the 

variables. The variables that are preceding the link are the parents’ nodes; variables following 

the links are the childs nodes. So, parents for node Xi can be presented as Pa (Xi).  
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BN also includes quantitative parts that include estimating the conditional probabilities 

between parents and child nodes. BN estimates all the possible hypotheses, the Bayes rule is 

employed to calculate the hypotheses. Conditional probability is the probability of variable’s 

state given some combination of parents’ states (Najardardottir et al. 2005). BNs are usually 

used because it helps to integrate theory and expert knowledge. It allows reasoning with 

uncertainty. Najardardottir et al. (2005) developed a model to define the probability of 

deterioration mechanism of bridge deck. So, the user can define which mechanism is most 

likely causing deterioration. The authors used BNs to model their frame work, the model was 

tested on two case studies. The authors recommended the use of BNs for the assessment of 

bridges.  

Discrete random variables are the most widely used applications to determine the 

conditional probabilities. For each child variable, a conditional probability table needs to be 

defined by linking condition states of child node to the parent. Conditional probabilities define 

the strength of the link between child and its parents. It presents the importance and the 

contribution of each parent variable in developing the condition of their child variable.  

2.6.1 Dynamic Bayesian Networks 

Dynamic Bayesian networks are a special class of BNs to analyze problems of bridge 

deterioration with time variation. It consists of a sequence of time slices (T1, T+1, ………..,  T+n 

). In each slice, there are one or more BN nodes. Time slices are connected with direct link, 

these links present probabilistic dependences.  

 In DBNs, bridge deterioration can be predicted from past experience. The knowledge from 

experts are used to build CPT directly. According to Wang et al. (2012), this task is performed 

through 5 steps as follows:    
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1- Experts Selection 

2- Experts Training 

3- Questions preparation 

4- Expert Judgement 

5- Results Verification 

CPT can be determined directly from visual inspection or from NDE methods. In DBN 

discrete units of time is modeled. Each unit is defined as time slice. These time slices are 

connected through links. The probabilities associated with links connecting the time slices are 

defined as transition probabilities. In DBN, the basic network is repeated over time.  

DBNs utilize the advantages of Markov model process and allow taking into consideration the 

prior probability distribution of random variables that do not have a direct impact on the 

deterioration process such as deterioration factors.  

According to Rafiq et al. (2014), deterioration of bridge element leads to reducing level 

of service and bridge safety level. In current practice, deterioration models are presented by 

Markov stochastic process. For simplicity in existing BMS, discrete time stochastic process is 

employed to model bridge deterioration at T+1 by prior knowledge about deterioration at T1. 

Rafiq et al. (2014) applied DBN model for modeling the deterioration of masonry arch bridge. 

The authors utilized DBN to address the interdependent between main element and sub 

element.  

Wang et al. (2012) focused and studied BN. Wang et al. (2012) used dynamic Bayesian 

Networks for prediction of structural reliability of steel bridge element. The authors developed 

an approach that is able to update information from the observed measurements, and then 

corrosion process is modeled. Straub (2009) proposed DBN to model deterioration. The model 
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proposed by the author updates variables based on information from inspection. Faddoul et al. 

(2013) presented DBN for maintenance action of roads. The authors extended Markov decision 

process to take into account the available information and improve the existing inspection, 

maintenance and rehabilitations action for roads using DBNs.  

 

2.7. FINDINGS OF LITERATURE REVIEW AND IDENTIFICATION OF THE 

CURRENT RESEARCH GAPS  

The current practice for bridge condition assessment and inspection in Alberta has some 

limitations. For example, their Level 1 inspection is visual and the rating is subjective, it depends 

on the inspector’s experience. In Level 2 inspection, the overall rating might not be accurate as 

the areas that are not visible cannot be accurately assessed. In Level 2 inspection, chloride test is 

used to determine the chloride content in concrete. This test is time consuming and destructive 

test. When CSE test is used in level 2, the inspector should stop when reading is getting so high 

or low and verify the validity of the ground connection or check if the deck is not wet enough for 

accurate results. CSE test can determine the presence of corrosion but cannot determine the 

corrosion rate. 

The state of Oregon still rely on destructive methods where samples should be taken in 

specific positions from the bridge to perform in depth inspection,  such as chloride content test, 

depth of carbonation and core test. Hammer sounding and chain dragging are time consuming. 

Pachometer that used for depth of cover measurements sometimes fail to give accurate 

information. Petrographic examination is a highly specialized practice requiring skilled and well 

trained technicians. 
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The current practice in Quebec has some shortcomings. The condition rating values 

cannot be used to evaluate the structural capacity of the element. These values are used for 

general condition of the structure and for evaluation of deterioration. Also, the special inspection 

is not clearly defined and the system that is followed for reporting is not provided. Inspectors and 

engineer should be well trained; they should increase their knowledge regarding the material 

behaviour. General inspection is still visual inspection without condition evaluation for specific 

elements. Special inspections should include in-depth condition evaluation. Inspection system 

outside North America is based on number of visits to the bridge at fixed time interval, which is 

called periodic; the other type of inspection that is not based on interval is called non periodic 

inspection. The general system of inspection is classified  as superficial inspection that is usually 

done every one year; it is visual inspection with portable support measurements. Thorough 

inspection, which is called detailed inspection, is usually done within period equal to a multiple 

of the superficial inspection; it is checkup of the structure with detailed visual inspection and is 

usually done by inspector with more experience. Special inspection is usually not periodic 

inspection; it is done based on specific defects that was detected; this inspection is usually done 

using specialized equipment and test with the use of NDE methods. Bridge condition assessment 

in other countries is almost the same. Bridge inspection levels are classified according to 

inspection interval where the inspection intensity varies with inspection interval. There are three 

levels of inspection that are defined based on the interval: Short interval check of safety, medium 

interval of maintenance needs and long intervals, in depth assessment. Identifications of repairs 

needed are identified during the inspection within medium interval. There is less use on non-

destructive evaluation methods in the special inspection. However, MRWA Australian manual is 

incorporating the use of many NDE methods. 
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Subjective condition assessment reduces the accuracy of forecasting bridge condition. 

Integration of NDE technologies for evaluating and tracking condition of bridges over their life 

cycle is essential. So, this research identified and analyzed advantages, limitations and 

applications of each NDE method for concrete and steel bridges. These methods are illustrated 

based on current practice and their applicability to bridge condition assessment.  

This research highlights the currently used NDE methods for bridge condition 

assessments in Canada and the USA. In Alberta, Ultrasonic testing is used to detect cracks, 

voids, corrosion, and to identify fatigue crack in steel bridges. For reinforced concrete bridges, 

half-cell potential is used to identify steel corrosion. In Ontario, digital imaging is used for 

general inspection of steel and concrete bridges. The use of imaging reduces traffic delay and 

enhances safety of inspector. For concrete bridges, GPR and Infrared thermography are used. 

GPR has many applications for its high capabilities in detections of flaws, cracks and in locating 

steel bars. It provides rapid test with minimum interruption to traffic. Infrared thermography is 

used to detect concrete defects such as cracks, delamination, and subsurface voids. It is fast with 

medium cost and minimum traffic disruption. In Quebec, Half–Cell potential and acoustic 

methods are frequently used. In United States, X-ray is used to map defects in concrete bridge 

decks. Dye penetrate is sometimes used to detect small discontinuities in steel bridges. It is cost 

effective and simple to use.  

The main challenge of using NDE methods is the integration of results from multiple 

sources. Therefore, integration of different methods is recommended to reduce the limitation of 

each technology. Based on the literature review performed, there is no detailed methods on  

application of data fusion in bridge condition assessment. There is little application of data 

fusion in different areas. The application of pixel image fusion and feature levels in bridge 
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condition assessment is considered a novel technique as, with the use of multiple sensors, it can 

interpret condition assessment results more accurately with less cost and interruption for traffic. 

However, there may be higher initial cost involved to acquire condition assessment using 

different technologies. The total cost is expected to be reduced in view of reduction of labor 

hours and reduction in time required to carry the scanning in compare to manual methods. 

This research focuses on those gaps with the goal of allowing inspectors and engineers to 

assess bridge conditions based on fusing data from multiple technologies. This research, provide 

a generic method for data fusion within pixel level image fusion and feature level fusion.  

In addition, the literature review highlights researchers’ efforts to determine an accurate 

transition probability matrix in current practice deterioration models. Researchers agree that 

incorporating different variables is a key point to increase the accuracy of Markov-deterioration 

model. Moreover, integrating NDE assessment into Markov model will reduce its limitation and 

hence can be more accurate. DBN provides computational framework that allows accurate and 

efficient prediction of deterioration based on observations and deterioration parameters (Faddoul 

et al 2013, Straub 2009). Modeling bridge deterioration as DBNs is expected to cover the main 

limitations of currently used Markov deterioration model. 
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CHAPTER 3 

3. RESEARCH METHODOLOGY AND IMPLEMENTATION 

3.1. OVERVIEW 

The research method provides a comparative study of NDE methods for fourteen methods 

for concrete and ten methods for steel bridges. Figure 3.1 illustrates  the steps undertaken in this 

research to assess bridge condition based on fusing data from multiple technologies. Wavelet 

Transform technique is utilized to fuse images from multiple NDE methods within pixel fusion 

level. Bayesian network is utilized to fuse features from different sources.  Image processing 

technique was implemented on images before and after fusion. The deteriorated areas are 

measured from the resulted fused image. Moreover, the research method assesses the impact of 

image processing techniques on image fusion accuracy.  

In addition, the proposed research method incorporates decision level of data fusion and 

integrates NDE methods with deterioration modeling. This integration will reduce the limitation 

of current practice Markov deterioration model by incorporating different variables. In this 

chapter, the proposed research method will be explained in detail.  
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 Figure 3.1 : Basic Flow Chart of Research Method 
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3.2.  PIXEL LEVEL FUSION 

Image fusion is used as a method to generate new and improved image from those 

captured by multiple technologies. In remote sensing fields, images from sensors have low 

resolution which makes small objects difficult to be detected. These images can be observed with 

much better details when fused. So, the main objective of image fusion is to obtain a unique 

image with enhanced information and resolution that better represents the condition state of the 

scanned bridge deck. It is the technique of combining data using the advantages of image 

processing (Pajares and Manuel de la Cruz 2004; Matsumoto et al. 2012; Simone et al. 2002; 

Naidu and Raol 2008; Wang et al. 2010).  Figure 3.2 illustrates the basic components and data 

processing of the developed pixel fusion method. The developed method consists mainly of two 

main steps. In the first, images captured from multiple technologies are processed based on the 

physical principal of each NDE method.  The second step is the image fusion, which includes 

image registration and wavelet, transform technique; the processed captured images from 

multiple technologies are registered and rescaled within same size and type to ensure that both 

have the same coordinate system to fuse pixels of these images. In order to apply wavelet 

transform decomposition fusion, the scaled images of multiple technologies are decomposed. 

These decompositions are fused to develop the new fused image. This new image is then used to 

extract features that depict the conditions of the scanned bridge deck. 

Pixel level fusion is focusing on information integration in pixels of different images to 

enrich the data that can be extracted from the fused image. Images from both technologies are 

processed to reduce the influence of noises and enhance the contrast using imaging processing 

techniques. The traditional and simple way for pixel fusion is to take the average of image pixel 

by pixel as illustrated in Eq. (3.1). 
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𝐈𝐅(𝐗, 𝐘)

=
𝑰𝟏(𝒙, 𝒚) + 𝑰𝟐(𝒙, 𝒚)

2
                               (𝟑. 𝟏)                                                                                                   

where 𝐼1(𝑥, 𝑦) and 𝐼2(𝑥, 𝑦) indicate image 1 and 2 respectively. 
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        Figure 3.2 : Basic Flow Chart of Pixel Image Fusion 

 



77 
 

3.2.1. Image Fusion Using Wavelet Transform 

Wavelet transform is a good tool to know the location of the low and high frequency 

areas. Wavelet transform is based on small waves called wavelets. It deals with images as matrix, 

Wavelet transform (WT) in two dimensions Ф(x,y). As illustrated in Figure 3.3, the original 

image matrix is decomposed into four sub images: ФLL (x,y), ѱLH  (x,y),   ѱHL (x,y) and ѱHH 

(x,y)  (Pajares and Manuel de la Cruz 2004;  Ryan 2004; Walker 2006; Toufik and Mokhtar 

2012). The four sub images are determined using Eqs. (3.2) to (3.5). ФLL (x,y) is a sub image 

from the original image with low path filter to rows and low path filter to colums. ѱLH  (x,y) is a 

sub image from the original image with low path filter to rows and high path filter to columns. ѱ-

HL (x,y) is a sub image with high path filter to rows and low path filter to columns. ѱHH (x,y) is a 

sub image with high path filter to rows and high path filter to columns 

ФLL (x,y)= Ф(x) Ф(y) (3.2) 

 ѱLH  (x,y)= Ф(x) ѱ(y) (3.3) 

ѱHL (x,y)= ѱ(x) Ф(y) (3.4) 

ѱHH (x,y)= ѱ(x) ѱ(y) (3.5) 

Wavelet fusion manages images with different resolutions and allows for image 

decomposition (Pajares and Manuel de la Cruz 2004). The main task of this method is to 

generate new coefficient for fused image based on to the decomposed coefficients of multiple 

images. As stated earlier, images are scaled before fusion to ensure that both have the same 

coordinate system to fuse pixels of these images. Fusing data at pixel level requires that images 

be within the same scale (Simone et al. 2002), this step will ensure alignment of two images 

taken from different sources. This is considered very important preprocessing step to ensure that 
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information from each image refers to the same location.  Since images from different sensors 

have different resolution and scale, image resampling should be achieved before fusion. 

According to the literature, images are resampled to a commonly used size of pixel spacing 512 

pixels X 512 pixels (Pajares and Manuel de la Cruz 2004) .     

The Wavelet approach is used for image fusion because it manages images having 

different resolutions (Pajares and Manuel de la Cruz 2004). It decomposes images to 

coefficients, which  are then combined in the fusion process based on the maximum coefficient 

of the decomposed images. The Wavelet approach for image processing provides a multi 

resolution decomposition of an image which results in improved quality image representation 

(Naidu and   Raol 2008; Simone et al. 2002; Wang et al. 2010). An example of the image 

decomposition and fusion is included in the Appendix II.  

As illustrated in Figure 3.3, the important step in image fusion based on wavelet technique is the 

coefficient combination. This combination is achieved by processing the image. This processing 

includes decomposing the image from one level into four frequency band Low-Low (L-L), Low-

High (L-H), High-Low (H-L), High-High (H-H). 

So, for N decomposition levels, the number of frequency bands M can be calculated from 

the equation M=3N+1 (Pajares and Manuel de la Cruz 2004).    

As illustrated in Figure 3.4 , wavelet filters the 2D image in vertical and horizontal directions. 

The input image I(X,Y) is first filtered by low path filter L and a high path filter H in the 

horizontal direction and then down sampled by a factor of two to create the coefficient matrices 

IL(X,Y), IH(X,Y). The low path and high path filters are then employed in the vertical direction 
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on images IL(X,Y) and IH(X,Y) to create sub images ILL (X,Y), ILH (X,Y), IHL (X,Y), and 

IHH(X,Y)  (Pajares and Manuel de la Cruz 2004). 

          

Accordingly, the ILL represents the smoothed version of the original fused image and  IHL, 

ILH are detailed sub images. Summation of all matrices is carried out to construct image I(x,y) 

(Naidu and  Raol 2008; Simone et al. 2002; Wang et al. 2010). In wavelet, images I1(x,y) , 

I2(x,y) are decomposed using wavelet. Max coefficients from both images are combined using 

fusion rule Ф. In this process, the fused image is obtained using Eq. (3.6). This is illustrated in 

Figure 3.5, where DWT is termed to Discrete Wavelet Transform. An example is illustrated in 

Appendix II. 

 

IF(x,y)=[Ф{WT(I1(x,y)),WT(I2(x,y)}] (3.6) 

The described Wavelet transform is applied within MATLAB. MATLAB has great 

computing power for matrix and it has image processing toolbox (Wang et al. 2010). This 

toolbox improves the efficiency of final outputs. Pixel image fusion method was developed by 

using the wavelet transform techniques for image fusion and image processing techniques before 

and after the fusion process. The final fused image is obtained through the inverse discrete 

wavelet transform process IDWT. 
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   Figure 3.3: Flow Chart of Pixel Image Fusion Using Wavelet Transform 
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Figure 3.5: The main Steps of Applying Discrete Wavelet Transform Using MATLAB 

 

3.2.2. Feature Extraction From Fused Images 

Image processing refers to different techniques that are applied to an image. The most 

effective image processing techniques are threshold, edge detection, background subtraction and 

image segmentation (Moselhi and Shehab-Eldeen 2000; Moselhi and Shehab-Eldeen 1999; 

Adhikari et al. 2014; Adhikari et al. 2013).  Figure 3.6 illustrates the main techniques used for 

feature extraction  

Histogram Equalization is a technique to enhance the contrast of images. It is a method to stretch 

the histogram of an image.  
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Figure 3.6: Image processing techniques Used For Feature Extraction 

 

(i) Threshold Technique 

The threshold technique is used to separate objects from the background of the image based on 

the differences in the image intensity. The intensity threshold is determined using the Eqs. (3.7) 

and (3.8). 

Threshold= α Imean + β Imax                                                                      (3.7) 

α + β =1                                                                                                          (3.8) 

α and β represent weight assigned to the mean intensity (Imean) and the max intensity (Imax) of 

the original image. Threshold help to make image segmentation where the different parameters 

of objects can be identified, analyzed and measured. 
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(ii) Edge Detection 

Edge detection is performed by measuring the change in the intensity between pixels. It 

characterizes the edge of features to be extracted. This operation is based on detecting the 

boundary points that appear when there is a change in the image intensity 

(iii) Back Ground Subtraction 

Background subtraction helps to isolate objects from background of an image; it takes off the 

background noises. This method helps to show the region of interest 

(iv) Image Segmentation 

Segmentation, on the other hand, refers to the division of an image into a number of regions that 

are uniform in some characteristics. The simple method of segmenting an image is to threshold it 

and then considers each connected region as an object. Once the image is segmented, the 

different parameters of the identified objects can be measured and analyzed including areas, 

width, length and diameter (Adhikari et al. 2014; Adhikari et al. 2013). 

 

3.3. FEATURE FUSION LEVEL 

The developed method of feature fusion utilizes captured inspection images from multiple 

sensing technologies along with image processing algorithms. The features extracted from the 

processed images are then fused using feature level data fusion; employing Bayesian Networks. 

The main components of the developed method are shown in Figure 3.7.  
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Figure 3.7: Feature fusion method with Bayesian Networks (BNs) 

 

Bayesian network (BN) is an origin of classical Bayesian inference theory. Bayesian 

Network can update and integrate new data directly. It handles different type of data from 

different sources. The main advantage of BN is its ability to calculate probabilities of events 

based on new observed evidence. These probabilities are updated with observations. According 
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to the literature review, Bayesian Networks are considered suitable techniques for performing 

multi sensor data fusion (Zhang and Ji 2006).  

When building BNs, the prior probability of parent nodes should be specified and defined first. 

Nodes that represent variables are connected through link between them. These links represent 

probabilistic dependence. The conditional probabilities between nodes can be estimated to define 

the strong relationship between child and the parent nodes. 

According to the literature (Cowell and Dawid 2006; Mihajlovic and Petkovic 2001; Cowell and 

Dawid 1999), the Bayesian Networks are formulated mathematically as follows: 

G = (V, E), where V= set of nodes and E are arrows connecting those nodes. The probability 

distribution of any child node is defined as P( Xi  Pa( Xi)), where Pa(Xi) is the parent of node Xi. 

So, for a set of variables, the joint probability distribution of the nodes’ values is the product of 

the distribution of each node given its parents as illustrated in Eq (3.9) 

P(X1, ……., Xn) = i  ( Xi Pa(Xi))                                                                                   (3.9)                     

As an example, if we have three variables X1, X2 and X3. The joint probability distribution of the 

network connecting those variables are presented as in Eq (3.10).  

P{X1, X2, X3} = P{X1} P{X2X1} P{X3X1}                                                                        (3.10) 

where P{X2X1} and P{X3X1} are conditional probabilities for X2 and X3 respectively given X1 

and P{X1} is prior probability, as shown in Figure 3.8.  

An example of simple Bayesian Network is illustrated in Figure 3.8. S1 and S2 are 

measurements of NDE1 and NDE 2 respectively. The states of node S1 are defined as defected 

and non-defected. The states of node S2 are defined as no corrosion, moderate corrosion and 
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serious corrosion. The states of the fusion node are defined as non-defected, moderate defected 

and serious defected. The states of the parent nodes S1 and S2 are combined through 

combination of different scenarios. These scenarios are organized in conditional probability table 

(CPT) of the fusion node S3 as shown in Figure 3.8. For example, if S1 contributed defected 

%areas and S2 contributed serious % corrosion areas, then the %serious defected areas for the 

fusion node are the summation  of  %S1 + %S2 assigned in the CPT of the fusion node.  

X2 X3

X1

 

a) Bayesian Networks (BNs) for Three Variables X1, X2 and X3 

 

b) Conditional Probability Table For Parent Nodes S1 and S2 
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c) Conditional Probability Table For Fusion Node 

   Figure 3.8: Building Conditional Probability Table Using Bayesian Network 
 

In this method, Bayesian network is utilized for feature fusions. These features are 

measurements of defected areas in a bridge deck inspected using multiple technologies. Each 

image is processed individually and then defected areas are extracted from images. The features 

extracted from each technology are fused. Condition rating for bridge deck is assigned based on 

the total defected areas calculated from each image and calculated for the total bridge deck 

section. 

In the developed method, Bayesian network is modeled by applying the following steps: 

1- Preprocessing for several numbers of images acquired from multiple NDE methods. 

2- Images from each sensor are processed using edge detection and threshold so that images             

can be segmented and defected areas can be measured for each image. 
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3- Observations from multiple technologies are defined as parent nodes. Prior probability 

distribution of observations should be estimated and calculated from images. 

4- Fusion node is the child node given the observation of parents’ nodes. Conditional 

probability distribution of fusion node should be estimated.  

5- The fusion of observation node is a parent of bridge condition ratings. The probability of the 5 

condition ratings are the outcomes. These 5 condition ratings are child nodes of the parent node, 

the fusion node.  

6- Conditional probabilities distribution of condition rating nodes, given the values of fusion 

nodes, should be estimated based on the current practice bridge condition rating. These five 

condition ratings are defined based on Minnesota department of transportation.  

7- Results are interpreted based on the probability distribution of the resulted condition rating 

 

The data fusion method is extended to incorporate the decision level of data fusion. A 

model is developed for bridge deterioration using integrated multiple NDE methods to improve 

the accuracy of forecasting bridge condition. The method covers the limitation of current practice 

deterioration models. It utilizes Dynamic Bayesian Networks (DBNs) technique and incorporate 

deterioration factors. 
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3.4. DECISION LEVEL: BRIDGE DECK DETERIORATION WITH DBNs AND NDE 

METHODS 

The bridge deterioration model utilizes the inspection measurements acquired during bridge 

inspection. It includes the measurements from multiple NDE methods that usually used in the 

advanced inspection. These measurements are combined and their outputs are used to determine 

bridge deck condition rating. NDE measurements are used to detect bridge deck defected area. 

Bridge deck condition rating is assigned based on the percentage of the defected area. According 

to Minnesota department of transportation (2013), there are five condition states used to assign 

bridge deck condition rating. These five condition states are defined as follows: 

Condition state 1: deck shows little or no deterioration 

Condition State 2: combined deterioration of deck areas are less than 2%. 

Condition State 3: combined deterioration of deck areas are between 2% and 10%. 

Condition State 4: combined deterioration of deck areas are between 10% and 25%. 

Condition state 5: combined deterioration of deck area are more than 25%. 

Many attributes are impacting bridge deck deterioration. These factors are; bridge age, bridge 

design, environmental factors and excessive loading. The impact of these factors are stochastic. 

This impact is incorporated in the developed deterioration model. 
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The basic Bayesian network is modeled as illustrated in Figure 6.1. F1, F2,.….. Fn are the 

deterioration factors impacting the bridge deck.  Factors nodes are parents’ variables contributing 

their impact to the condition states of the bridge deck. The bridge deck condition contributes the 

information to impact and cause the inspection measurements using NDE methods. Accordingly, 

the multiple measurements from NDE methods that are collected after the bridge deck inspection 

are child nodes of the bridge deck condition. These NDE measurements are considered parents 

nodes contributing and causing the information to their child node, which is the bridge deck 

condition rating. Bridge deck condition is assigned based on the combined defected area. The 

qualitative part of the basic Bayesian network is illustrated Figure 3.9. The quantitative part is 

defined using conditional probability table (CPT) between each parent node and its child node. 

CPT measures the strength of the relationship between them. In this research, the CPT is defined 

by varying the impact and occurrence of factors on bridge deck condition. CPT between bridge 

deck condition rating and NDE measurements is defined by varying the measured areas through 

five states, each state has specific range of % of the measured defected area.  
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NDE Measurements at T1
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Figure 3.9: Bayesian Network for bridge deck deterioration modeling 

The bridge deck condition state and the bridge deck condition rating are variables 

changing over the time. So, the basic Bayesian network is modeled as dynamic Bayesian 

network (DBN) through time slices. Each time slice includes the basic Bayesian network at 

specific time. Direct arrow is linking nodes of bridge deck condition at different times. The 

probabilities associated with links connecting the nodes of bridge deck condition at different 

time slices are defined as transition probabilities. As illustrated in Figure 3.10. The basic 

Bayesian network is repeated over the time. The bridge deck condition and condition rating are 

variables changing over the time T1, T2,….Tn. Temporary arc is used to link the change of 

bridge condition rating over the time to build the transition probabilities of the bridge condition.  
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The arc linking bridge deck condition at different times ensures that current bridge condition T2 

depends on previous history of bride deck condition at T1. Modeling bridge deck deterioration in 

this way incorporates the maintenance action and deterioration factors in previous time units. 

Incorporating the stochastic impact of deterioration factors at each time unit helps accurately 

forecast bridge deck condition. In the developed model, the experience, past knowledge, 

measurements from different sources of NDE and deterioration factors are combined. The model 

can be updated with new information from NDE measurements. It will be updated, if more NDE 

methods are incorporated and their results are fused. More extra factors can be incorporated as 

well. 

 

F1 F2

Bridge Deck Condition at T1

F3 Fn

NDE1 NDE2 NDE n

Bridge Condition Rating at T1

F1 F2

Bridge Deck Condition at T2

F3 Fn

NDE1 NDE2 NDE n

Bridge Condition Rating at T2

F1 F2

Bridge Deck Condition at T3

F3 Fn

NDE1 NDE2 NDE n

Bridge Condition Rating at T3

 

 

Figure 3.10: DBNs Model for bridge deterioration 
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3.5. APPLICATION OF PIXEL IMAGE FUSION WITHIN CASE STUDY 

3.5.1. GROUND PENETRATING RADAR (GPR) 

 

Ground penetration radar (GPR) uses electromagnetic waves that penetrate into the 

surface through different layers. These layers are with different dielectric material properties. 

The velocity of waves penetrating these different layers varies based on the material properties.    

When electromagnetic waves faces an interface between layers of materials with different 

properties, part of the waves reflect back and the remaining waves continues to the next layer. 

GPR measures the time that the waves take to travel through deck material and reflect back (Shin 

and Grivas  2003).  From a given velocity and measured time that waves take to penetrate layers, 

distances of different layers can be measured.  

The amplitude of the reflected waves is considered a basic principle to assess bridge deck 

condition using GPR (Shin and Grivas 2003). The amplitude of the reflected waves indicates 

changes in the material of the bridge deck and presences of two different materials located within 

bridge deck such as voids, cracks and rebar corrosion (Maser 1996; Shin and Grivas 2003). 

Therefore, GPR evaluates the reflection of electromagnetic waves at the interface between two 

materials with different dielectric constant. The penetration of waves into the subsurface is a 

function of the deck material properties (Dinh and Zayed 2014; Gucunski et al. 2010). 

GPR data can be displayed in B scan (2D) or C scan (3D) format. Each 2D scan contains 

series of reflected waves that vary in amplitude.  The vertical axis in B scans display the depth 

and the horizontal axis display the distance that is scanned by radar antenna. Series or parallel 
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2D scan image of GPR spaced within equal constant distance can be converted to C scan or 3D 

Image to map the condition of the bridge deck.  

For simplicity of GPR data processing and results interpretation, amplitude color range is 

assigned to the amplitude variation on the bridge deck.   

3.5.2. INFRARED-THERMOGRAGHY (IR) 

A thermal imaging records the intensity of radiation in the infrared part of the 

electromagnetic spectrum and converts it into visible image temperature of colors increase from 

the violet to red part. So, it is the way to convert pixel to a temperature measure. IR is used to 

locate possible delamination of concrete through the monitoring of temperature variation on a 

concrete surface using infrared camera. The results of IR images provide inspectors images of 

concrete defects instead of sounding tests. Areas with high temperature present delaminated area 

of concrete. Areas with low temperature present areas with good conditions. 

3.5.3. FUSING IR IMAGES AND GPR SCANS 

Measurements are taken using Infrared thermography camera and ground penetrating 

Radar ( Yaghi 2014). These measurements were acquired during the inspection process on June, 

2014 to assess the condition of a concrete bridge deck in Montreal. The section of the deck, 

which is considered in this study, is of 7 m width and 11 m length. 77 infrared camera images 

were taken for this section and 24 paths within GPR scan.  

The asphalt layer was removed from the inspected area. The inspected area was divided 

into grid with 77 square areas of dimension of 1m X 1m each. Regular images were taken to 

cover the same inspected area. Captured inspection images from IR is processed based on the 

physical principal of IR. The IR camera used in the inspection was Therma CAM S60 from 
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FLIR. Images are processed using software FLIR. Figure 3.11 illustrates the grid and locations of 

77 IR images.  Figure 3.12 illustrates the GPR scans acquired in the same bridge deck surface.                    

Bridge deck was mapped by 24 scans equally spaced by 0.3048 m as illustrated in Figure 

3.12. GPR with pushing cart provided from GSSI with antenna of 1.5 GHZ was used to do the 

scan of the bridge deck. Scans are made starting from 0.4572 m from each side.  The 

electromagnetic waves are generated by the control unit and transferred to the GPR antenna and 

finally to the bridge deck. The waves are reflected back to the antenna when facing different 

material in the bridge deck or facing deterioration and defects, then transferred back to the 

control unit to be processed and results of scans are interpreted.                              

 

 

 

 

 

 

 

 

                                                                                         

                     

        Figure 3.11 : IR images on the grid                                    

                                                                                                Figure 3.12: GPR 24 Passes 
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The proposed method can be applied for each image individually or for the total bridge 

deck. Each IR image is processed thermally to highlight the deteriorated areas with the high 

temperature. Image processing techniques such as histogram equalization is applied to enhance 

the contrast of the image. Edge detection and segmentation are applied to define objects in the 

image and then deteriorated areas are measured from the total area of the image. Image 

registration has been applied for both images from GPR and IR to ensure that both images are 

having the same coordinates when applied. Therefore, image registration is performed when 

images of GPR and IR are rescaled to be within same scale and size to fuse pixel of these 

images. The data fusion method applied to fuse IR and GPR are illustrated in Figure 3.13 and 

Figure 3.14. 

For more illustration, IR image # 28 from total number of 77 images is used as an 

example; the deteriorated area is calculated as 0.12 m square in a total of 1 m square area. For IR 

image #28 location, there are three GPR passes. GPR B scans are processed to map deterioration 

of concrete bridge deck by converting B scan to C scan. Figure 3.15 shows the 3D GPR image 

implemented using RADAN7 software which, after processing, represents the GPR deck 

condition at the surface of same location of IR image. The 3D image of GPR was developed 

from 3 paths of GPR B scans spaced with 0.33 m. Image processing techniques are applied as 

well on the GPR 3D image. This image was processed by applying colors table # 28 to 

amplitudes variations. The dark red color represents the deteriorated area and blue represents the 

good area with less deterioration as illustrated in Figure 3.16. When utilizing image processing 

techniques such as edge detection, threshold and image segmentation, the deteriorated areas are 

measured from the total image area. The deteriorated area from GPR data is calculated as 0.16 m 

square from 1 m square. This deteriorated area was measured from the processed image as 
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shown in Figure 3.16.  Figure 3.17 illustrates the processed IR image; the light area presents the 

deteriorated area with high temperature where the dark area presents areas with less 

deterioration. Wavelet transform technique is applied to fuse IR image and GPR scan using 

MATLAB software. Figure 3.18 shows the fused image of IR#28 and GPR processed surface 

image. The output of image fusion is one image that includes all the deteriorated areas from both 

sensors, GPR and IR. The location of defected area on the fused image can be the same location 

for the both technologies. If the defected areas that captured by the two sensors in the fused 

image are not within same location, total defected areas will be calculated as sum of both IR and 

GPR areas. So, fusing the defected areas from IR and GPR is complementary. The calculated 

total defective area for IR and GPR in the fused image is 0.15 m square. As illustrated in Figure 

3.18, the deteriorated area is measured as sum of the high temperature area which appears as 

white from IR and red area from GPR. 
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               Figure 3.13 : Basic Flow Chart of fusing GPR and IR 
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Figure 3.14: The main steps of IR and GPR Decomposition 

 

Figure 3.15: GPR 3D Image in the location of image # 28  
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Figure 3.16: Processing GPR 2D surface in location of Image 28 

 

  

Figure 3.17: IR 28 (Yaghi 2014)         Figure 3.18 : Fused Image IR+GPR 

 

3.5.4. IMAGE FUSION FOR INSPECTED BRIDGE DECK 

As stated earlier, a 77 square meter section of the concrete bridge located in Laval, 

Montreal was inspected with IR and GPR. GPR images were collected from 24 GPR 2D scans, 

and were preprocessed, before fusion. Figures 3.19 and 3.20 illustrate the total bridge surface for 

IR and GPR respectively before fusion. It was observed that total deteriorated areas in the bridge 

are 13 meter square with IR and 15.3 meter square from GPR. In this research, Image fusion was 

done using wavelet decomposition in MATLAB software. The deteriorated areas were calculated 

after highlighting the defective areas, as it is the combination of the area with the high 
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temperature from IR images and the more light areas from the colors that was assigned to the 

GPR amplitude. As explained earlier, there are 30 color tables that can be assigned to the GPR 

amplitude. For the total section surface, grey level color was assigned to GPR amplitude to 

represent the more defective areas. The very dark grey is an indication of good areas; the more 

light grey is an indication of the areas with more deterioration. In Figure 3.19, the discontinuities 

that appear at the edge of the Infrared images are a result of stitching the individual 77 images 

each of 1m*1m to represent the entire inspected area, 7m*11m. These discontinuities are 

neglected while measuring the defected areas. 

The fused image is presented in Figure 3.21. In this research, the contrast of images can 

be enhanced using image normalization or histogram equalization techniques. The fused image is 

normalized in Figure 3.22. It is observed that the total deteriorated areas were 21 meter square, 

which represents around 25 percent from the total tested deck area (77meter square). The 

deteriorated areas are measured from Figure 3.23 using image segmentation technique. These 

deteriorated areas are shown as the lighter areas in the bridge deck surface. Light areas are the 

combination of the deteriorated areas from IR and GPR. The repeated features in the upper left 

hand corner for IR images in the fused image are information about the temperature of the 

image. These features are included in the fused image, but have not been considered as defected 

areas. 
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Figure 3.19: IR surface before fusion        Figure 3.20: GPR surface before fusion 
 

  

Figure 3.21 : The fused image                Figure 3.22: The normalized fused image 
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Figure 3.23: Extraction of defected areas from the fused image 
 

3.6. APPLICATION Of FEATURE FUSION WITHIN THE CASE STUDY 

Measurements were taken using Infrared thermography camera and Ground Penetrating Radar 

(Yaghi 2014). These measurements were acquired during the inspection process on June 2014 to 

assess the condition of a bridge deck in Montreal, Quebec, Canada. The section that assessed is 7 

m width and 11 m length. 77 infrared camera images were taken for this section, The asphalt 

layer was removed from the inspected area. The inspected area was divided into grid with 77 

square areas of dimension of 1m X 1m each. Regular images were taken to cover the same 

inspected area. The IR camera used in the inspection was Therma CAM S60 from FLIR. Pieces 

from wood were used to define the edges of 77 squares areas. Images were processed using 

software FLIR.  
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Bridge deck was scanned by 24 scans equally spaced by one foot. GPR with pushing cart 

provided from GSSI with antenna 1.5 GHZ was used to do the scan on bridge deck. Scans were 

made starting from 1.5 feet from each side.  Figure 3.24 illustrates the basic steps for feature 

fusion using two sensing technologies GPR and IR. 

Deterioration areas were mapped from both GPR images and IR images. It was observed that 

total deteriorated areas in the bridge are 13 meter square with using only IR images and 15.3 

meter square from GPR scans. The deteriorated areas were extracted and measured for each 

image individually. Accordingly, 77 measurements values from IR are fused with 77 

measurements values from GPR. Measurements of features that extracted from each image data 

of IR and GPR can be modeled to fuse data within feature level. Bayesian network is used to 

model two networks: network1 and network2. Table 3.1 illustrates the defected areas extracted 

from GPR and IR. Condition rating is assigned to each individual image based on the defected 

area measured from each image. These defected areas are extracted after applying image 

processing techniques that help to extract the defected areas in the bridge deck.  
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Figure 3.24: The basic steps of feature fusion using IR and GPR 
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Table 3-1: Deteriorated areas extracted from GPR Scans located with 77 IR Images 
 

 

IR Area Calibration % Defected Area GPR Area Calibration % Defected Area IR(X1) Condition Rating GPR Condition Rating

IR1 0 0 0 GPR1 25057 0.225789592 22.57895923 IR1 1 GPR1 4

IR2 7428 0.0967188 9.671875 GPR2 40458 0.364568597 36.45685965 IR2 3 GPR2 5

IR3 8309 0.1081901 10.81901042 GPR3 27258 0.245622888 24.5622888 IR3 4 GPR3 4

IR4 11610 0.1511719 15.1171875 GPR4 27687 0.249488624 24.94886236 IR4 4 GPR4 5

IR5 7234 0.0941927 9.419270833 GPR5 20297 0.182897049 18.28970489 IR5 3 GPR5 4

IR6 5033 0.0655339 6.553385417 GPR6 29751 0.268087407 26.80874071 IR6 3 GPR6 5

IR7 11540 0.1502604 15.02604167 GPR7 36620 0.329984231 32.99842307 IR7 4 GPR7 5

IR8 4859 0.0632682 6.326822917 GPR8 38889 0.350430277 35.04302771 IR8 3 GPR8 5

IR9 6566 0.0854948 8.549479167 GPR9 37632 0.339103402 33.91034017 IR9 3 GPR9 5

IR10 8149 0.1061068 10.61067708 GPR10 22842 0.205830142 20.58301419 IR10 4 GPR10 4

IR11 8310 0.1082031 10.8203125 GPR11 34858 0.314106781 31.41067808 IR11 4 GPR11 5

IR12 3421 0.0445443 4.454427083 GPR12 41897 0.377535481 37.7535481 IR12 3 GPR12 5

IR13 15094 0.1965365 19.65364583 GPR13 37310 0.336201847 33.62018473 IR13 4 GPR13 5

IR14 0 0 0 GPR14 25195 0.227033116 22.70331156 IR14 1 GPR14 4

IR15 11087 0.144362 14.43619792 GPR15 25195 0.227033116 22.70331156 IR15 4 GPR15 4

IR16 3554 0.046276 4.627604167 GPR16 39139 0.352683037 35.26830367 IR16 3 GPR16 5

IR17 16558 0.215599 21.55989583 GPR17 44759 0.403325073 40.33250732 IR17 4 GPR17 5

IR18 9818 0.1278385 12.78385417 GPR18 32506 0.292912818 29.29128182 IR18 4 GPR18 5

IR19 16842 0.2192969 21.9296875 GPR19 23490 0.211669295 21.16692949 IR19 4 GPR19 4

IR20 9335 0.1215495 12.15494792 GPR20 28174 0.253876999 25.38769993 IR20 4 GPR20 5

IR21 13955 0.1817057 18.17057292 GPR21 36123 0.325505745 32.55057445 IR21 4 GPR21 5

IR22 14513 0.1889714 18.89713542 GPR22 37562 0.338472629 33.8472629 IR22 4 GPR22 5

IR23 22471 0.2925911 29.25911458 GPR23 25844 0.23288128 23.28812796 IR23 5 GPR23 4

IR24 6338 0.082526 8.252604167 GPR24 23101 0.208164001 20.81640009 IR24 3 GPR24 4

IR25 30139 0.3924349 39.24348958 GPR25 31199 0.281135391 28.11353909 IR25 5 GPR25 5

IR26 19742 0.2570573 25.70572917 GPR26 45317 0.408353233 40.83532327 IR26 5 GPR26 5

IR27 1562 0.0203385 2.033854167 GPR27 40015 0.360576706 36.05767065 IR27 2 GPR27 5

IR28 14380 0.1872396 18.72395833 GPR28 25195 0.227033116 22.70331156 IR28 4 GPR28 4

IR29 10277 0.1338151 13.38151042 GPR29 26601 0.239702636 23.97026357 IR29 4 GPR29 4

IR30 9465 0.1232422 12.32421875 GPR30 41281 0.371984681 37.19846812 IR30 4 GPR30 5

IR31 12932 0.1683854 16.83854167 GPR31 44569 0.401612976 40.16129759 IR31 4 GPR31 5

IR32 13539 0.1762891 17.62890625 GPR32 31850 0.287001577 28.70015769 IR32 4 GPR32 5

IR33 11094 0.1444531 14.4453125 GPR33 19832 0.178706916 17.8706916 IR33 4 GPR33 4

IR34 11466 0.1492969 14.9296875 GPR34 27451 0.247362018 24.73620185 IR34 4 GPR34 4

IR35 5066 0.0659635 6.596354167 GPR35 35338 0.318432079 31.84320793 IR35 3 GPR35 5

IR36 11263 0.1466536 14.66536458 GPR36 38738 0.34906961 34.90696103 IR36 4 GPR36 5

IR37 12046 0.156849 15.68489583 GPR37 25879 0.233196666 23.31966659 IR37 4 GPR37 4

IR38 19580 0.2549479 25.49479167 GPR38 22450 0.202297815 20.22978148 IR38 5 GPR38 4

IR39 14952 0.1946875 19.46875 GPR39 29049 0.261761658 26.1761658 IR39 4 GPR39 5

IR40 19806 0.2578906 25.7890625 GPR40 41281 0.371984681 37.19846812 IR40 5 GPR40 5

IR41 3682 0.0479427 4.794270833 GPR41 40408 0.364118045 36.41180446 IR41 3 GPR41 5

IR42 3313 0.043138 4.313802083 GPR42 25137 0.226510475 22.65104753 IR42 3 GPR42 4

IR43 33566 0.4370573 43.70572917 GPR43 25195 0.227033116 22.70331156 IR43 5 GPR43 4

IR44 3359 0.043737 4.373697917 GPR44 38988 0.35132237 35.13223699 IR44 3 GPR44 5

IR45 14588 0.1899479 18.99479167 GPR45 33459 0.301500338 30.15003379 IR45 4 GPR45 5

IR46 7095 0.0923828 9.23828125 GPR46 29312 0.264131561 26.41315612 IR46 3 GPR46 5

IR47 6992 0.0910417 9.104166667 GPR47 22180 0.199864834 19.98648344 IR47 3 GPR47 4

IR48 3713 0.0483464 4.834635417 GPR48 28965 0.261004731 26.10047308 IR48 3 GPR48 5

IR49 9017 0.1174089 11.74088542 GPR49 38109 0.343401667 34.3401667 IR49 4 GPR49 5

IR50 10906 0.1420052 14.20052083 GPR50 39370 0.354764587 35.47645866 IR50 4 GPR50 5

IR51 6444 0.0839063 8.390625 GPR51 28805 0.259562965 25.95629646 IR51 3 GPR51 5

IR52 5037 0.0655859 6.55859375 GPR52 23908 0.215435909 21.5435909 IR52 3 GPR52 4

IR53 7057 0.091888 9.188802083 GPR53 26947 0.242820455 24.28204551 IR53 3 GPR53 4

IR54 5201 0.0677214 6.772135417 GPR54 38281 0.344951566 34.49515657 IR54 3 GPR54 5

IR55 4424 0.0576042 5.760416667 GPR55 40846 0.368064879 36.80648795 IR55 3 GPR55 5

IR56 8906 0.1159635 11.59635417 GPR56 25195 0.227033116 22.70331156 IR56 4 GPR56 4

IR57 10697 0.1392839 13.92838542 GPR57 25195 0.227033116 22.70331156 IR57 4 GPR57 4

IR58 6646 0.0865365 8.653645833 GPR58 38517 0.347078171 34.70781708 IR58 3 GPR58 5

IR59 11064 0.1440625 14.40625 GPR59 44160 0.397927461 39.79274611 IR59 4 GPR59 5

IR60 8553 0.1113672 11.13671875 GPR60 31309 0.282126605 28.21266051 IR60 4 GPR60 5

IR61 4459 0.0580599 5.805989583 GPR61 20262 0.182581663 18.25816625 IR61 3 GPR61 4

IR62 314360 0.1573714 15.73713636 GPR62 25771 0.232223474 23.22234738 IR62 4 GPR62 4

IR63 672618 0.3367184 33.67184496 GPR63 38317 0.345275963 34.52759631 IR63 5 GPR63 5

IR64 7205 0.0938151 9.381510417 GPR64 36071 0.325037171 32.50371705 IR64 3 GPR64 5

IR65 6863 0.089362 8.936197917 GPR65 29450 0.265375084 26.53750845 IR65 3 GPR65 5

IR66 8222 0.1070573 10.70572917 GPR66 20262 0.182581663 18.25816625 IR66 4 GPR66 4

IR67 10752 0.14 14 GPR67 24024 0.216481189 21.64811895 IR67 4 GPR67 4

IR68 7626 0.0992969 9.9296875 GPR68 40328 0.363397162 36.33971615 IR68 3 GPR68 5

IR69 6838 0.0890365 8.903645833 GPR69 38718 0.34888939 34.88893895 IR69 3 GPR69 5

IR70 16571 0.2157682 21.57682292 GPR70 25195 0.227033116 22.70331156 IR70 4 GPR70 4

IR71 7493 0.0975651 9.756510417 GPR71 25195 0.227033116 22.70331156 IR71 3 GPR71 4

IR72 6272 0.0816667 8.166666667 GPR72 38718 0.34888939 34.88893895 IR72 3 GPR72 5

IR73 7329 0.0954297 9.54296875 GPR73 46549 0.419454832 41.94548322 IR73 3 GPR73 5

IR74 23287 0.3032161 30.32161458 GPR74 28467 0.256517234 25.65172336 IR74 5 GPR74 5

IR75 14879 0.193737 19.37369792 GPR75 23101 0.208164001 20.81640009 IR75 4 GPR75 4

IR76 9982 0.129974 12.99739583 GPR76 29371 0.264663212 26.46632124 IR76 4 GPR76 4

IR77 275550 0.1379427 13.79427384 GPR77 38406 0.346077945 34.60779455 IR77 4 GPR77 5

10.363426 13.45899452 2460180 22.16877675 0.287906192
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3.6.1. FEATURE FUSION NETWORK 1 

As stated earlier, Bayesian network is employed for feature fusion. Two networks are 

considered in this research. Bayesian network 1 is shown in Figure 3.25 and is modeled by 

applying the following steps: 

1- Pre-processing of IR observations from the 77 images. These images are equalized to 

enhance the image contrast. 

2- IR images are processed using edge detection and threshold techniques so that images 

can be segmented and defected areas can be measured for each image.      

3- GPR 2D scans are interpreted as 3D to present the plan view and map deterioration of the 

bridge deck.   

4- The mapped bridge deterioration is processed using image processing techniques to 

calculate the defected areas based on the variation of the amplitude of the reflected waves.  

5- The defected areas for each IR images and GPR maps are measured. 77 measurements 

values of the defected areas for each sensor are obtained.  

6- IR and GPR measurements are defined as parent nodes. Conditional probability table for 

each sensor is estimated based on the 77 values for each.  

7- Fusion node is the child node for IR and GPR observation parents’ nodes. Conditional 

probability table is defined based on the parents’ nodes values. Each parent is contributing 

information to the fusion child node. 

8- Fusion observation node is a parent of five condition rating states. The probability of the 

five condition ratings is the outcomes of the fusion node. The conditional probability tables of 
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the condition rating are defined based on the current practice (Minnesota department of 

transportation 2013) that considers the total defected areas of the bridge deck.  

Condition rating is calculated according to Minnesota department of transportation (2013). This 

condition rating is calculated based on the calculated defective area as follows: 

- Condition rating 1: There is no defective area  

- Condition rating 2: The combined defective area is less than 2% from total inspected area 

- Condition rating 3: The combined defective area is less than 10% from total inspected 

area 

- Condition rating 4: The combined defective area is  more than 10% and less than 25% 

- Condition rating 5: The combined defective area is more than 25% 

9- The final results are interpreted based on the probability of the percentage for the resulted 

condition rating. 

 

Figure 3.25: Bayesian Network1 for case1 
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The results in Network1 illustrated in Figure 3.26 indicate the probability of the assigned 

condition rating for bridge deck. These final results are interpreted based on the 77 observations 

values from IR and GPR. Condition rating 4 has a false percentage of 60.30% and true 

percentage of 39.7%. These false and true percentages represent the probability of not 

occurrence and occurrence respectively for condition rating 4. Condition rating 5 has a true value 

of 56.56% and false value of 43.44%. These results show that bridge deck condition is between 

condition rating 4 and condition rating 5 with higher true probability to be within condition 

rating 5. Condition ratings 1, 2 and 3 have high probabilities of false values as 97.40%, 98.70% 

and 62.34% respectively, which means that condition ratings 1, 2 and 3 are not representing the 

condition of the tested bridge deck section. The condition probability of the fusion measurements 

node has 26.57% defected areas and 73.43% not defected areas from the total tested area.  

  

  

  

  

GPR Measurements

71.20% not defected
28.80% defected

IR Measurements

86.50% not defected
13.50% defected

Condition Rating 1
Mean: 0.013 Dev: 0.080
Value: 0.013 

97.40% False
2.60% True

Condition rating 2

98.70% False
1.30% True

Condition Rating3
Mean: 0.029 Dev: 0.024
Value: 0.029 

62.34% False
37.66% True

Condition Rating 4
Mean: 0.098 Dev: 0.059
Value: 0.098 

60.30% False
39.70% True

Condition Rating 5
Mean: 0.408 Dev: 0.248
Value: 0.408 

43.44% False
56.56% True

Fusion Measurement

26.57%  defected
73.43% not defec...
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Figure 3.26: Feature Fusion results Network 1 

 

3.6.2. FEATURE FUSION NETWORK 2 

Network 2 is modeled as shown in Figure 3.27 and by applying the following steps: 

Steps 1,2,3,4 and 5 are the same as Network 1 

6- Condition ratings 1, 2, 3, 4 and 5 for IR are modeled as parents’ nodes for IR observations 

node. From the analysis of the 77 individual images of IR only, the condition rating of bridge 

deck has a probability to be in condition 1, 2, 3, 4 and 5.  

7- Only condition ratings of 4 and 5 for GPR are modeled as parents’ nodes for GPR 

observations node for this fusion network. This is because, from the analysis of the 77 individual 

maps of GPR only, it is observed that the condition rating of bridge deck has a higher probability 

to be in between condition rating 4 and 5. The parents’ nodes for GPR observation node are 

condition rating 4 and 5, assumed only for this case. However, for the general cases, condition 

rating 1, 2, 3, 4 and 5 are modeled as parents’ nodes.  

8- Fusion observation node is the child of GPR and IR measurements. 

9-Final condition rating is assigned based on the total fused defected area.  
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Figure 3.27: Feature Fusion Bayesian Network 2  
 

The final results in network 2, as shown in Figure 3.28, indicate probability of total 

defected area for the bridge deck, presented as fusion measurements node, is 26.72%. Condition 

rating 4 that is based on GPR only has a false percentage of 70 % and true percentage of 30%. 

Condition rating 5 that is based on GPR only has a true value of 61% and false value of 39%. 

Thus, results show that bridge condition based on GPR only has high probability to be condition 

rating 5. Condition ratings 1, 2, 3 and 5 based on IR have high probabilities false values as 

97.40%, 98.70%, 62.34% and 91.00% respectively, which means that condition ratings 1, 2, 3 

and 5 based only on IR (single sensor) are not representing the condition of the tested bridge 

deck section. So, for the selected bridge, bridge condition rating based on IR only has high 

probability to be condition rating 4. The condition probability of the fusion measurements node 

has 26.57 % defected areas and 73.43% not defected areas from the total tested area. So, 

condition rating 5 is the most probable for the fusion measurements.  

 

GPR Measurements

IR

Measurements

Fusion Measurement

IR1 IR2 IR3 IR4 IR 5

GPR 4
GPR5



112 
 

  

  

  

  

  

Figure 3.28: Feature Fusion Results Network 2 
 

3.7.  ANALYSIS OF RESULTS  

The results show that image fusion of GPR and IR can be used to improve the accuracy of 

condition assessment and rating of concrete bridge decks. The final results present the defected 

areas generated by the developed fusion-based method. The same area with the dimension of 7 m 

X 11 m was inspected using the hammer sound test and visual inspection during June 2014 

inspection. The defected area from hammer sound test and visual inspection is presented in 

Figure 3.29.   

IR Measurements

85.62%  not defected
14.38%  defected

GPR Measurements

71.20% not defected
28.80% defected

IR1

97.40% False
2.60% True

IR2

98.70% false
1.30% True

IR3

62.34% False
37.66% True

IR4

50.65% False
49.35% True

IR 5

91.00% False
9.00% True

GPR 4

70.00% False
30.00% True

GPR5

39.00% False
61.00% True

Fusion Measurement

26.72%  defected
73.28% not defec...
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With the two networks considered in this study, feature fusion was done  to assess bridge deck 

condition. Network 1 presents the probability of occurrence of bridge deck condition rating. All 

the probabilities of occurrence and not occurrence of condition ratings will help the inspectors to 

assign bridge condition based on fusing the measurements from two technologies (GPR and IR 

measurements). Network 2 fuses the condition rating resulted from each technology. The 

outcome is the percentage of the defected area from the total tested bridge deck. This final 

percentage helps to assign the final condition rating 

The results show that image fusion of GPR and IR can be used to improve the accuracy of 

condition assessment and rating of concrete bridge decks. Table 3-2 compares results obtained 

from five assessments: 1- IR results, 2- GPR results, 3-pixel fusion of IR and GPR results, 4- 

feature fusion of IR and GPR results and 5- Hammer sound results with visual inspection, which 

is referred to as actual. Table 3-2 also presents the percentage of the defected area to the 

inspected area. The results are analyzed to illustrate the difference between fusing multiple 

technologies and using traditional methods such as hammer sound and visual inspection. 

Hammer sound is a simple technique for detecting delamination of concrete bridge deck. It is 

based on the sound effect when a hammer or chain is dragged over the surface of concrete bridge 

deck. The area with no delamination, the sound will be clear. The area with delamination, the 

sound will be hollow because of voids. During the inspection, the delaminated areas on this 

section were obtained as 8.54 meter square and 13.6 meter square for hammer sound and visual 

inspection respectively. As illustrated in Figure 3.29, green and grey colors are for hammer 

sound and visual inspection respectively. In Table 3-2, condition rating is calculated according to 

Minnesota department of transportation (p2013).  

This condition rating is calculated based on the calculated defective area as follows: 
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- Condition rating 1: There is no defective area  

- Condition rating 2: The combined defective area is less than 2% from total inspected area 

- Condition rating 3: The combined defective area is less than 10% from total inspected 

area 

- Condition rating 4: The combined defective area is  more than 10% and less than 25% 

- Condition rating 5: The combined defective area is more than 25% 

 

The percentage errors are calculated as difference between actual inspections, which 

represents the visual inspection plus hammer sound, and the other methods used: IR as single 

sensor, GPR as single sensor and the fusion of GPR and IR as multiple sensors. The results 

as shown in Table 3-2 illustrates that fusion method is very close to the actual case. Thus, 

method 4, which is the actual condition using hammer sound and visual inspection at the 

inspected area, is assigned condition rating of 5. 

 

The scope of this research is to address the condition rating based on the measured 

defected area on the bridge deck as per the state of Minnesota. This does not specifically 

address deck strength against different types of loads applied on the bridge. 
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Figure 3.29: Defected areas from visual inspection and hammer sound test  

 

Table 3-2: Comparison of Fusion result with other Assessment results 
 

Assessment 
Deteriorated 

Area 

Percentage of 

Defective area 

from total 

Condition 

Rating 

Error 

Percentage 

1-  IR results  13 m 2 17 % 4 (more than 

10% ) 

40% 

2- GPR results 16  m 2 20.7 % 4 (less than 

25%) 

27% 

3- Feature  

IR+GPR  

20.57 m 2 26.72 % 5 (more than 

25%) 

5% 

4- Pixel Fusion 21 m 2 27.27% 5   

5- Hammer 

Sound  

+Visual 

Inspection 

8.5 m 2 

         + 

13.6 m 2 

= 22 m 2 

11.1 % 

+ 

4(more than 

10% ) 
Actual 

condition 

17.6 % 

= 28.6 m 2 

4 (more than 

10%) 
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CHAPTER 4 

4. THE IMPACT OF IMAGE PROCESSING TECHNIQUES ON THE 

FUSION ACCURACY 

4.1. OVERVIEW 

This chapter presents the analysis undertaken to assess the impact of image processing 

techniques such as normalization or histogram equalization, background subtraction, edge 

detection and image segmentation on the image fusion accuracy. These techniques are utilized in 

the developed data fusion-based method to enhance the contrast of images and extract the 

feature. These features are the deteriorated areas. Histogram equalization technique enhances the 

contrast of images. Background subtraction, edge detection and image segmentation are utilized 

to extract features from images. The capability of these techniques are experimented within four 

scenarios to study their impact. These four scenarios are defined based on applying image 

processing whether after or before image fusion. Scenario 1, does not apply image processing 

before or after fusion, Scenario 2 applies image processing before fusion and not after fusion. 

Scenario 3 applies image processing before and after fusion, scenario 4 applies image processing 

after fusion and not before. The results were analyzed based on these four scenarios. Deteriorated 

areas are measured from the fused images for all four scenarios. 

4.2. SCENARIOS 

In this chapter, background subtraction and equalization are experimented to study their 

impact on the accuracy of the developed data fusion technique as described in the following four 

scenarios. The actual condition results from the inspection using hammer sound and visual 

inspection are used as a reference to make the comparison between different scenarios and, 

accordingly, select the most accurate scenario. 
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4.2.1. SCENARIO I 

In this scenario, no image processing techniques are applied to IR and GPR images 

before fusion or after fusion as illustrated in Figure 4.1. The deteriorated areas are extracted from 

the fused image and calculated as 14 meter square, which represents 19% of the total surface 

area. The deteriorated areas are extracted and interpreted based on IR and GPR as shown in the 

fused image in Figure 4.2. The resulted fused image in this scenario is having the major 

deteriorated areas that appears from IR results and with little appearance of GPR results. This is 

because of the lack of processing for GPR scans that are with low resolution and few numbers of 

pixels. 

 
 

   Figure 4.1: IR images and GPR surface before fusion with no image processing 
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Figure 4.2: The defective areas in the fused image without image processing 

 

4.2.2. SCENARIO 2 

In this scenario, image-processing techniques such as equalization and background 

subtraction are applied on IR images and GPR surface before fusion. These are shown in Figures 

4.3 and 4.4.  The image processing techniques have not been applied after fusion on the resulted 

fused image. The deteriorated areas are extracted from the fused image and calculated as 16.5 

meter square, which represents 22% of the total surface area. The deteriorated areas are extracted 

and interpreted based on IR and GPR as shown in the fused image in Figure 4.5. The resulted 

fused image in this scenario is having the major deteriorated areas that appears from IR results 

and the appearance of GPR results are increasing in this scenario than scenario 1. In the fused 

image, some new areas are illustrated with deterioration. However, these areas were dark when 

single IR sensor was used to assess bridge condition.  
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 (a) Equalized IR Images                  (b) IR Images with Background Subtraction 

Figure 4.3: IR images before image fusion with image processing techniques  

 

 

    
 

 

(a) Equalized GPR                             (b) Background Subtraction     
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    (c) GPR Segmentation 

 

Figure 4.4: GPR images before image fusion with image processing techniques 

 

 

Figure 4.5: The fused image without image processing in Scenario 2 
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4.2.3. SCENARIO 3 

In this scenario, image processing techniques such as equalization and background 

subtraction are applied on IR images and GPR plane view scans before and after fusion as shown 

in Figure 4.6. The deteriorated areas are extracted from the fused image and calculated as 21 

meter square, which represents 27% of the total surface area. The deteriorated areas are extracted 

and interpreted based on IR and GPR as shown in the fused image. The resulted fused image in 

this scenario lead to much higher accuracy in predicting the deteriorated areas and accordingly 

the condition rating of the inspected concrete deck as shown in Table 4-1. In this scenario, it is 

very clear to determine the impact of applying image processing techniques before and after 

fusion. These techniques detect the boundaries of objects to be measured which facilitate and add 

more enhancements to interpretation of results for image fusion than in scenarios 1 and 2. Image 

processing techniques are used till the image can be enhanced and features can be detected and 

measured. 

4.2.4. SCENARIO 4 

In this scenario, no image processing techniques are applied on IR images and GPR 

surface before fusion. These techniques have been applied after fusion on the resulted fused 

image as shown in Figure 4.7. The deteriorated areas are extracted from the fused image and 

calculated as 17 meter square, which represents 22% of the total surface area. The deteriorated 

areas are extracted and interpreted based on IR and GPR as shown in the fused image in Figure 

4.7. The resulted fused image is processed using equalization, background subtraction and 

segmentation. The resulted deteriorated areas from this scenario are almost the same of scenario 

2.  
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(a) Equalized    Image                          (b)   Background Subtraction    

 

 
 

(c) Segmented Image      

 

Figure 4.6: The fused Image in Scenario 3 
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(a) Equalized Image                             (b) Back ground Subtraction                         

 

 
 

(c) Segmented Image 

Figure 4.7: The fused image with image processing techniques, Scenario 4 
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The results generated from the four scenarios are summarized in Table 4-1. It is observed 

that scenario 3 where the fused image of IR and GPR are obtained by applying image processing 

techniques before and after fusion,  yielded the best estimate of defected areas, i.e. the closest to 

actual condition defined by visual inspection combined with the field tests referred to earlier in 

the chapter 3. 

Table 4-1: The Impact of Image Processing Techniques on Image Fusion Accuracy 

 

Scenarios 
Deteriorated 

Area 

Percentage 

of Defective 

area from 

total 

Image Processing 

Condition Rating 
Before 

Fusion 

After  

Fusion 

1-  14 meter square 19% No No 4 (more than 10% ) 

2-  16.5 meter square 22% Yes No 4 (less than 25%) 

3-  21 meter square 27% Yes Yes 5 (more than 25%) 

4-  17 meter square 22% No Yes 4(more than 10% ) 
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CHAPTER 5 

5. TWO-LEVELS DATA FUSION METHOD FOR BRIDGE CONDITION 

ASSESSMENT 

5.1. OVERVIEW 

This chapter presents a new two-tier method that utilizes the pixel and feature levels data 

fusion of multiple NDE methods for bridge condition assessment of reinforced concrete bridge 

decks. Wavelets transform and Bayesian networks techniques have been employed to apply pixel 

level and feature level respectively. Data and measurements of NDE methods are extracted from 

Iowa, Highway research project 2011 report for three case studies. The method utilizes data 

collected from ground penetrating radar (GPR), impact echo (IE), Half-cell potential (HCP) and 

electrical resistivity (ER) for the three bridge decks in Iowa, united states. First, the method is 

proposed and  then, it is applied in this chapter for bridge deck condition assessment. The 

method can be used for the whole bridge assessment as well.  

5.2.THE USE OF DATA FUSION IN BRIDGE CONDITION ASSESSMENT 

As stated earlier, the developed data fusion method consists mainly of two main steps as 

illustrated in Figure 5.1. In the first, data from inspection of multiple NDE methods are 

processed based on the physical principal of each method. Then, deterioration maps of each NDE 

methods are developed for each method. In the current chapter, data processing step and 

deterioration maps of bridge decks are extracted from Iowa highway research project report 

2011. The second step is the use of image processing techniques that are applied on the 

deterioration maps of NDE methods. Image processing techniques are used to enhance contrast 

of deterioration maps and to rescale these maps. Data fusion method is applied within two levels: 

pixel level fusion and feature level fusion.  
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In pixel level fusion, the method utilizes image fusion to generate new and improved image 

from those captured by multiple sensing technologies. These images can be observed with much 

better details when fused. So, the main objective of image fusion is to obtain a unique image 

with enhanced information and resolution that better represents the condition state of the scanned 

bridge deck. Pixel level image fusion has been employed using wavelet transform technique as 

illustrated in Figure 5.1; the extracted deterioration maps are rescaled to ensure that all maps 

have the same coordinate system to fuse pixels of these maps. In order to apply wavelet 

transform decomposition fusion, the scaled maps of NDE methods are decomposed. These 

decompositions are fused to develop the new fused image of new map. This new image is then 

used to extract features that depict the conditions of the scanned bridge deck. 

In the feature fusion level, the developed method utilizes deterioration maps of bridge decks in 

Iowa, United States high way research project report from multiple sensing technologies along 

with image processing algorithms. The features extracted from the maps are then fused using 

feature level data fusion; employing Bayesian Networks. The sensing technologies utilized in 

this research and applied later to three case studies are Ground Penetrating Radar (GPR), impact 

echo (IE), Half Cell Potential (HCP) and Electrical Resistivity (ER). A detailed description of 

these technologies and data processing is included in the highway research project report (2011), 

Iowa, US. A brief description of these technologies is included subsequently to provide 

continuity. 
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Case 1 Case 2 Case 3

Deterioration Maps

GPR IE ER HCP

Image Processing

Wavelets TransformBayesian Networks

Pixel Fusion LevelFeature Fusion 

Level

Highway research Project 

report, 2011

Iowa, US

Highway research Project 

report, 2011

Iowa, US

 Results Analysis

Image FusionImage Fusion Feature 

Extraction

 Feature 

Extraction

Data 

Fusion 

Levels

Data 

Fusion 

Levels

 

a) Two Levels of Data Fusion 
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Feature Extraction with Image ProcessingFeature Extraction with Image Processing

GPRGPR
HCPHCP IEIE

% good, %poor, % 

Serious areas

% good, %poor, % 

Serious areas

% low , %moderate, 

% highs corrosions  

areas

% low , %moderate, 

% highs corrosions  

areas

% low , %moderate, 

% Serious 

delamination  areas

% low , %moderate, 

% Serious 

delamination  areas

Examples for combination 

of scenarios to generate 

conditional probabilities for 

the fusion node

Examples for combination 

of scenarios to generate 

conditional probabilities for 

the fusion node

Directly used 

for 

probabilities 
of parents 

node 

Directly used 

for 

probabilities 
of parents 

node 

If HCP good, GPR 

poor and IE moderate 

delamination then 

good area detected is 

from HCP

If HCP good, GPR 

poor and IE moderate 

delamination then 

good area detected is 

from HCP

If HCP good, GPR 

poor and IE good then 

good area detected is 

from HCP and IE

If HCP good, GPR 

poor and IE good then 

good area detected is 

from HCP and IE

If HCP good,  GPR 

poor and IE serious, 

then good area 

detected is from HCP

If HCP good,  GPR 

poor and IE serious, 

then good area 

detected is from HCP

If HCP good, GPR 

good, IE moderate 

delamination, then the 

good area detected is 

from HCP and GPR

If HCP good, GPR 

good, IE moderate 

delamination, then the 

good area detected is 

from HCP and GPR

Assign the 

generated 

values(%areas) in 

Conditional 

probability table of 

fusion node

Assign the 

generated 

values(%areas) in 

Conditional 

probability table of 

fusion node

And so on

Till all  

values 

generated

And so on

Till all  

values 

generated

 

b) Conditional probability table using Feature Fusion 

Figure 5.1: Basic chart for data fusion method with case studies from Iowa, US, (2011) Report 
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5.2.1. Half Cell Potential (HCP) 

It is defined as coper sulfate reference electrode (CSE) that is placed on the surface of 

concrete at the location of steel reinforcement.  As illustrated in Figure 5.2, the CSE is connected 

to the end of high input impedance voltmeter connected to the data device. The negative end of 

voltmeter is connected to reinforced steel. A hole should be drilled into the concrete to expose 

the steel. A moist sponge should be placed between HCP and the concrete to improve the 

electrical coupling between the deck and instrument during the survey. Corrosion potential are 

measured. Contour map is used to map area of corrosion. Measurements should be taken in a 

grid to facilitate the drawing of corrosion map.  

Coper Sulfate 

Electrode

(CSE)

Voltmeter

Steel

++

--

 

Figure 5.2: Basics of HCP procedures 

 

According to highway research project report (2011) for Iowa bridges in United States, 

HCP measures the electrical potential between reinforcement and reference electrode CSE. As 

illustrated in Figure 5.3, the test is done by moving the electrode from one point to another or 

using a wheel. Potential map can be created with more negative potential indicating higher 
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probability of corrosion. Data collected using a Proceq™ data logger and rolling, half-cell probe. 

A hammer drill used to prepare a hole in the concrete 

 

 

Figure 5.3: HCP procedures (Iowa, 2011) 

 

5.2.2. Impact Echo (IE) 

It uses stress waves generated on the surface of concrete. The waves generated on the surface 

of concrete are reflected by internal defects or discontinuities in the material such as 

delamination, voids, and cracks. To detects these defects, the emitted waves are recorded by 

displacement or transducer placed near the impact point on the surface of structure. The depth of 

defect is determined by analyzing the recorded signal and its characteristics. So, the basic 

principle of impact echo involves impacting concrete structure with a mechanical impactor to 

measure the reflected wave energy with transducer. As illustrated in Figure 5.4 , the conventional 

impact echo method relies on the followings steps: 



131 
 

1- A hammer is used to generate an impact on the surface of concrete structure 

2- Transducer is placed near the impact point to collect the stress waves which propagate 

inside the structure. Signal analysis is performed on echo signal to determine the 

structural condition of concrete.  

3- Echo signal is performed through spectral analysis 

4- For voids and delamination detection, a formula is proposed: 

𝑑 =
B∗v

2f
 ……………………………………….(5.1) 

𝑑 is the depth of voids or defects, B is the shape factor, constant = 0.96 for plate 

structure wave, V is the wave velocity, f is the frequency of  echo signal spectrum. 

 

 

Figure 5.4: Basic principle of Impact Echo (IE) 
 

According to Highway research project report (2011), IE determines delamination at 

different stages. It is based on generating stress waves on the deck surface. It detects the location 

of reflection of waves because of defects existence. The reflected waves are recorded by 

transducer. It detects the depth of defects by knowing the velocity of waves and frequency. As 

illustrated in Figure 5.5, the test was done on different points on a grid usually 2ft spacing. 

Device was mounted on a robotic stepper, for automated data acquisition.  

ImpactorSensor
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Figure 5.5: Data Acquisition Procedures using IE (Iowa 2011) 
 

Based on the equation, different grades are assigned to the tested section of the deck. In 

case of good condition, a peak corresponding to the full depth of the deck can be observed. In 

case of delaminated condition or poor condition, reflection of waves occurs at shallower depth 

than deck thickness. In case of severe condition, reflection of waves occurs at depth larger than 

deck thickness.  

5.2.3. Electrical Resistivity (ER) 

Electrical Resistivity (ER) measures concrete resistivity properties by Wenner method. It 

is commonly used because of low cost and ease of implementation. The method uses four points 

wenner resistivity apparatus developed to measure resistivity, the method uses four equally 

spaced probes. Corrosion rate depends on the electrical resistance of concrete that control 

movement of ions through concrete depending on Eq.  (5.2): 

𝜌 = 2𝜋𝑎𝑅………………………………………………(5.2) 
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𝜌 is the resistivity in units, 𝑎 is the spacing between probes, 𝑅 is the actual measured 

resistance. High concrete resistivity decreases the current flow that causes corrosion. The results 

from ER are interpreted based on the following guidelines: 

≥ 20 KΩ-Cm     Low corrosion  

10-20 KΩ-Cm      Low to moderate corrosion 

5-10 KΩ-Cm       High corrosion rate 

≤ 5 KΩ-Cm        Very high corrosion rate. 

5.3. CASE STUDY OF BRIDGE DECK O1 

The bridge is located in Iowa, USA. All the information, data, and measurements were 

extracted from Iowa Highway research project report (Iowa report, 2011). The deck is 180 inch * 

28inch, constructed in 1957.  The bridge deck was repaired with dense low-slump concrete in 

1983 and had some epoxy injection in 1999. Deterioration maps were extracted directly from 

Iowa report, 2011. The actual raw data collected is not provided in the report. 

The following NDE Methods used for the bridge inspection: 

a- GPR , ground coupled antenna and air coupled 

b- Impact Echo, device mounted on a robotic stepper TM 

c- Rolling half cell potential measurements device 

d- A wenner resistivity probe for electrical measurements 

e- Portable seismic property analyzer (PSPA) to conduct ultrasonic surface waves 

GPR data is obtained from ground coupled (GC) 1.5 GH mounted in a cart.  GPR scans are 

collected by GSSI SIR-20 acquisition system. Impact echo data collection is performed in 

longitudinal lines spaced 2 ft. GPR detects bridge deterioration resulted from indirect 
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delamination and corrosion. Half Cell Potential (HCP) detects corrosion and IE detects 

delamination. 

According to Iowa high way research project, (2011) deterioration map of GPR shows, as 

shown in Figure 5.6, good areas as green colors with little deterioration. Poor areas with 

moderate deterioration are illustrated with yellow color. Serious areas with high deterioration are 

illustrated with red color. As illustrated in Figure 5.7, deterioration map of HCP shows good 

areas with little corrosion as blue color. Serious areas with high corrosion are illustrated as red 

and yellow colors.  Deterioration map of IE shows, as shown in Figure 5.8, good areas with no or 

little delamination as blue and green colors. Serious areas with high delamination are illustrated 

as red colors. Deterioration maps of GPR, Half Cell Potential and Impact Echo are fused using 

pixel level image fusion based on Wavelet Transform technique implemented on MATLAB 

explained earlier in the methodology section. Figure 5.9 shows the result of the fused image. Red 

areas indicate serious deterioration, Yellow indicates poor areas and green with blue indicates 

good areas.  

 

Figure 5.6: Deterioration map of GPR in Case 1 (Iowa report 2011) 

 

               Figure 5.7: Deterioration map of HCP in Case 1 (Iowa report 2011) 
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Figure 5.8: Deterioration map of IE in Case 1 (Iowa report 2011) 
 

 

Figure 5.9: The Fused image of GPR, HCP and IE 
 

Features are extracted from the fused image using image-processing techniques explained 

earlier. These features are the serious areas, poor areas and good areas with respect to the bridge 

deck condition.  The extracted good areas illustrated in Table 5-1. Table 5-2 illustrates the results 

of the extracted good, poor and serious areas from the fused image. 

Table 5-1: The extracted good areas from the fused image 
 

Green_ Fused Image 

Area 

Sq.(pixel) 

Total Area 

Sq.(Pixel) Width (pixel) 

Length 

(Pixel) 

1 286 134496 144 934 

2 147 134496 144 934 

3 1206 134496 144 934 

4 1648 134496 144 934 

5 815 134496 144 934 

6 5810 134496 144 934 

7 1091 134496 144 934 

8 932 134496 144 934 

9 6481 134496 144 934 

10 6266 134496 144 934 

11 4084 134496 144 934 

12 8938 134496 144 934 

13 891 134496 144 934 

14 3274 134496 144 934 
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15 8984 134496 144 934 

16 243 134496 144 934 

17 630 134496 144 934 

18 6002 134496 144 934 

19 5224 134496 144 934 

20 232 134496 144 934 

21 299 134496 144 934 

Total Green Area 63483 47.2006602 %of Good areas 

  

Table 5-2: The percentage of areas extracted from the fused image 
 

Areas Percentage 

Good Areas 47.2% 

Poor Areas 40.77% 

Serious Areas 12.0263% 

To apply feature level fusion, features are extracted from each deterioration map of GPR, 

Impact Echo (IE), Half Cell Potential (HCP). The extracted features from each method are the 

good, poor and serious areas. Table 5-3 illustrates the areas extracted from each individual 

technology. These features are fused using Bayesian Networks (BNs). Figure 5.10 shows the 

BNs of the three technologies as parent nodes to the fusion measurement node. Conditional 

probabilities tables are built for each parent node based on the measured good, poor and serious 

areas for each technology. Figure 5.11 shows the final results of the fusion measurement node 

which present the final result after the features extracted from each individual technology are 

fused. Table 5-4 shows comparison of the fusion results and areas extracted using single 

technologies.  

Table 5-3: Features extracted from each individual technology 
 

Areas HCP  GPR  IE 

Good Areas 16.94% 42.73% 36.23% 

Poor Areas 72.807% 43.7% 50.41% 

Serious Areas 10.253% 13.572% 13.3% 
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Figure 5.10: Bayesian Network (BN) for three technologies: GPR, IE and HCP 
 

 

Figure 5.11: Final results of the feature fusion using BNs 
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Table 5-4: Summary of fusion results 
 

Areas HCP  GPR  IE Pixel Fusion Feature 

Fusion 

Good Areas 16.94% 42.73% 36.23% 47.2% 49.65% 

Poor Areas 72.807% 43.7% 50.41% 40.77% 43.71% 

Serious Areas 10.253% 13.572% 13.3% 12.0263% 6.63% 

 

As observed in Table 5-4, good areas are areas that are not defected. Poor areas are 

moderate defected areas. Serious areas are defected areas. Each technology detects specific type 

of defect. Therefore, results of HCP, GPR and IE are given equal weight when utilized in pixel 

or feature fusion. Serious areas predicted by GPR and IE are close to each other. IE detects more 

poor areas than GPR. IE is able to detect direct delamination than GPR. Consequently, GPR 

detects % good areas more than IE. HCP detects serious areas (10.25%) that are less than GPR 

and IE. HCP detects more poor areas with a possibility of corrosion existence. The good area that 

is detected by HCP is the area with no corrosion. So, it is less than GPR and IE.  

Table 5-4 also presents the results from pixel fusion and feature fusion. Pixel Fusion 

fuses all areas in one image and captures the advantages of using the three technologies in one 

image. The interpretation of poor and serious areas from pixel fusion results provides more 

confident to the inspectors than using single technology. 

The results of good and poor areas of feature fusion are close to the results of pixel 

fusion. However, the serious areas obtained from feature fusion are not close to the pixel fusion 

results and also lower than serious areas detected by single technologies. In this case, feature 

fusion level does not work properly because total serious and poor areas have not  been merged 

for different types of defects. These types of defects are moderate and serious areas of 

deterioration, corrosion and delamination. This issue will be taken into consideration within the 
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following two case studies. The pixel fusion provides one deterioration map combining all the 

good, poor and serious areas captured by the three technologies. It indicates the locations and % 

of good, poor and serious areas. Each technology has its own advantages and detects specific 

type of defect. In pixel fusion, the final fused image shows all captured defected areas. So, in 

pixel fusion information from different sources are complementary. 

On the other hand, the feature fusion provides only the % of good, poor and serious areas. 

In feature fusion, the parents’ nodes contribute their information, the percentages of good, poor 

and serious areas to the fusion node. The Conditional probabilities of the fusion node are built 

based on different scenarios that specify whether good, poor and serious areas coming from all 

technology or only some of them. Conditional probabilities are designed to incorporate 

uncertainties. For example, in case if GPR detects and contributed % serious deterioration areas 

to the fusion node, IE detects and contributed %moderate delamination to the fusion node and 

HCP detects and contributed % good areas to the fusion node, then the fusion node will interpret 

the percentage of good areas that comes only from HCP. All conditional probabilities are 

assigned this way in the conditional probability table of the fusion node. So, information from 

different sources in feature fusion are not complementary, it incorporates uncertainties. Thus, 

pixel fusion helps bridge engineers and inspectors better interpret the inspection results and 

identify the defected areas accurately. However, incorporating two levels of data fusion is 

recommended to increase the confident of engineers when interpreting the results of the bridge 

deck condition assessment.   

5.4. CASE STUDY OF BRIDGE DECK O2 

The deck on bridge O2 was originally constructed in 1936 with 63 ft. long and 24 ft wide. 

It was reconstructed in 1960 with 63 ft long and 48 ft wide. Similar to case study 1, all the 
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information, data, and measurements for this bridge deck are obtained from Iowa, Highway 

research board project (2011). 

The following NDE methods were used for the bridge inspection: 

a- Ground Penetrating radar (GPR), ground coupled antenna and air coupled 

b- Impact Echo (IE), device mounted on a robotic stepper TM 

c- Rolling half-cell potential (HCP) measurements device 

d- Electrical Resistivity (ER), a wenner resistivity probe for electrical measurements  

The deteriorations map of GPR, IE, HCP and ER are extracted directly from Iowa, 

Highway research board project 2011 as illustrated in Figures 5.12, 5.13 and 5.14. To apply pixel 

level fusion, deterioration maps of GPR, IE, HCP and ER are fused using Wavelet transform 

technique. The result of pixel level fusion is one deterioration map. Good, poor and serious areas 

are measured from the fused image. Figure 5.15 illustrates the fused image with good areas 

shown in green and blue colors, red areas shown in serious areas and the other areas considered 

poor areas shown in yellow colors. According to Iowa report 2011, coring was taken outside the 

area indicated by the arrow in Figure 5.15. The area indicated by the arrow represents the 

repaired area. The locations of cores are done during the assessment of the bridge deck to verify 

the results of using single technologies. These locations were indicated on the original 

deterioration maps extracted from the report and accordingly appeared in the fused image.  
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Figure 5.12: Deterioration map of GPR (Iowa report 2011) 

 

Figure 5.13: Deterioration map of IE (Iowa report 2011) 
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Figure 5.14: Deterioration map of HCP (Iowa report 2011) 

 

Figure 5.15: The Fused image of GPR, IE, HCP and ER 

 

Table 5-5 illustrates presents the extracted poor areas from the fused image, the poor 

areas are shown with the yellow color in Fig. 5.15. The poor areas are extracted and measured 

using image processing techniques. Table 5-6 illustrates the final results of the measured good, 

poor and serious areas. 
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Table 5-5: The Extracted Poor Areas from the Fused Image 
 

Yellow Area 

Sq.(pixel) 

Area 

Sq. 

(pixel) 

Width  

(pixel) 

Height 

(pixel) 

Total 

Area 

Sq.(pixel) 

1 1133 419 319 133661 

2 451 419 319 133661 

3 646 419 319 133661 

4 755 419 319 133661 

5 115 419 319 133661 

6 604 419 319 133661 

7 515 419 319 133661 

8 995 419 319 133661 

9 1320 419 319 133661 

10 2319 419 319 133661 

11 712 419 319 133661 

12 685 419 319 133661 

13 60413 419 319 133661 

Total Yellow 

Areas 70663 

% 

Yellow   36.522329 

 

Table 5-6: Final results of pixel level image fusion 

 

 

Condition 

 

Percentage 

 

    Area Color 

 

Good Areas 

 

47.1327% 

 

Green 

 

Poor Areas 

 

36.5223% 

 

Yellow 

 

Serious Areas 

 

16.345% 

 

Red 

 

For feature level fusion, deterioration maps from GPR, IE, HCP and ER are used. Areas 

from IE, ER and HCP are also extracted and measured. All the extracted features are fused with 
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the use of Bayesian Networks (BNs) technique. Features extracted and measured from GPR 

deterioration map are good, poor and serious deteriorated areas. Good, moderate delamination 

and serious delamination areas are the features extracted from IE deterioration map. Low 

corrosion, moderate corrosion and high corrosion areas are the features extracted from HCP and 

ER deterioration maps. Features extracted from multiple technologies GPR, IE, HCP and ER are 

the information used to build the probabilities in the parents nodes of Bayesian Networks (BNs).    

Figure 5.16 illustrates the developed Bayesian network to fuse features of GPR, IE, HCP 

and ER. In Figure 5.16, nodes of HCP, ER, GPR and IE are parents of fusion measurements 

node. Bridge condition rating is the child node of the fusion measurements node.  

Figure 5.17 illustrates the feature network with the probability distribution of each node. 

The percentage of areas extracted from each technology is considered for the probability 

distribution of each parent node. Therefore, HCP node shows probability distributions for low 

corrosion of 20.32%, moderate corrosion of 54.246% and high corrosion of 25.427%. ER node 

shows probability distributions for no corrosion of 17.3%, low corrosion of 63.93% and high 

corrosion of 18.77%. For GPR node probability distributions are serious condition of 11.9%, 

poor condition of 27.2% and good area of 60.9%. Probability distributions of Impact Echo are 

serious delamination of 9.36%, moderate delamination of 14.07% and good condition of 76.57%. 

The result of the fusion measurement node, as illustrated in Figure 5.17, are 27.949% moderate 

corrosion, 9.477% high corrosion, 0.86% serious delamination, 1.918 % areas with moderate 

delamination, 1.377% serious deterioration, 7.197% poor and 51.221% good.  
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Figure 5.16: Feature Fusion Bayesian network of HCP, ER, GPR and IE 

 

Figure 5.17: Feature Fusion Network with all nodes’ distribution 
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This section provides more details on how the feature fusion works. The feature fusion 

node has 4 parents’ nodes: HCP, ER, GPR and IE. The conditional probabilities tables of this 

node are built based on combination of different events and scenarios as it incorporates the 

uncertainties.  From Table 5-7 to Table 5-11, the conditional probability tables (CPT) are 

generated based on combination of scenarios for parents’ states. CPT values are generated and 

assigned based on occurrence and non-occurrence of parents’ states.  If one state of one parent 

occurred, then the state value of this parent will be assigned. If all states of parents HCP, ER, 

GPR and IE occur, then the states values from each parent will be added and assigned in the 

CPT. If non of the parents states occurred, then 0 value is assigned in CPT. States of HCP, ER, 

GPR and IE are extracted directly from the defected areas depicted in their respective 

deterioration maps.  

Table 5-7 presents one of these scenarios; it shows the conditional probabilities of the 

fusion measurements node in the case when HCP measures low corrosion and ER node with no 

corrosion. As an example, shown in Table 5-7, if IE contributes information of the serious 

delamination only  and GPR only contributes value of serious deterioration, then the value 

assigned for the serious delamination is 9.36%, contributed only from impact echo. The 

percentage 9.36% is the serious delamination area extracted from IE deterioration map. If GPR 

contributes serious deterioration and IE contributes delamination existence, then the value 

assigned for the delamination existence is 14.07% contributed only from IE. Another example in 

the table, when HCP and ER contribute low corrosion, GPR contributes serious deterioration and 

IE contributes serious delamination,  the value assigned for good areas are coming only from 

HCP and ER equal to 78%. Therefore, conditional probabilities are the outcomes of information 



147 
 

contributed from parent nodes, GPR, IE, HCP and ER. The other values of probabilities included 

in CPT are assigned in the same way. 

Table 5-7: The probabilities of fusion with HCP low corrosion and ER with no corrosion 
 

HCP Low corrosion 

ER Good/_no corrosion 

GPR Serious Poor Good 

IE Serious 

delamination 

(SD) 

Delamination 

exist (DE) 

Good 

(G) 

S.D D.E G S.D D.E G 

Moderate 

corrosion 

0 0 0 0 0 0 0 0 0 

High 

corrosion 

0 0 0 0 0 0 0 0 0 

Serious 

delamination 

0.0936 0 0 0.093 0 0 0.09 0 0 

Delamination 

exist 

0 0.1407 0 0 0.14 0 0 0.14 0 

Serious 

deterioration 

0.119 0.119 0.119 0 0 0 0 0 0 

Poor 0 0 0 0.272 0.27 .27 0 0 0 

Good 0.7874 0.7403 0.881 0.6344 0.58 0.7 0.9 0.8 1 

 

 

Table 5-8 presents the conditional probabilities of the fusion measurements node with 

HCP measures low corrosion and ER detects low corrosion. As an example, if GPR contributes 

serious deterioration to the fusion node and IE only contributes good (no delamination) areas, 

then the assigned value to the serious deterioration defect is 0.119, comes from the GPR. Other 

values are assigned in the same way.  
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Table 5-8: The probabilities of fusion with HCP Low corrosion and ER with Low corrosion 
 

HCP Low corrosion 

ER Low corrosion 

GPR Serious Poor Good 

IE Serious 

Delamination 

(S.D) 

Delamination 

Exist (D.E) 

Good 

(G) 

S.D D.E G S.D D.E G 

Moderate 

corrosion 

0 0 0 0 0 0 0 0 0 

High 

corrosion 

0 0 0 0 0 0 0 0 0 

Serious 

delamination 

0.09 0 0 0.09 0 0 0.09 0 0 

Delamination 

exist 

0 0.147 0 0 0.14 0 0 0.14 0 

Serious 

deterioration 

0.119 0.119 0.119 0 0 0 0 0 0 

Poor 0 0 0 0.27 0.27 0.27 0 0 0 

Good 0.7874 0.734 0.881 0.63 0.58 0.7 0.9 0.8 1 

 

Table 5-9 presents these probabilities when HCP measures low corrosion and ER 

measures high corrosion. Table 5-9 shows that if IE considers serious delamination only and 

GPR only considers poor condition, then high corrosion value is assigned 0.1877, this value is 

the high corrosion contributed only from ER node, as shown in Figure 5.17, however no 

contribution comes from HCP as it is contributing by low corrosion. 
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Table 5-9: The probabilities of fusion with HCP Low corrosion and ER with High corrosion 
 

HCP Low corrosion 

ER High corrosion 

GPR Serious Poor Good 

IE S.D D.E G S.D D.E G S.D D.E G 

Moderate 

corrosion 

0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

High 

corrosion 

0.1877 0.1877 0.187 0.1877 0.187 0.1877 0.1877 0.1877 0.18

77 

Serious 

delaminatio

n 

0.0936 0.1407 0.0 0.0936 0.0 0.0 0.0936 0.0 0.0 

Delaminatio

n exist 

0.0 0.0 0.0 0.0 0.1407 0.0 0.0 0.1407 0.0 

Serious 

deterioration 

0.119 0.119 0.119 0.0 0.0 0.0 0.0 0.0 0.0 

Poor 0.0 0.0 0.0 0.272 0.272 0.272 0.0 0.0 0.0 

Good 0.5997 0.5526 0.693 0.4467 0.3996 0.5403 0.7187 0.6716 0.81

23 

 

Table 5-10: The probabilities of fusion with HCP Moderate corrosion and ER with No corrosion 
 

HCP Moderate corrosion 

ER Good_No corrosion 

GPR Serious Poor Good 

IE S.D D.E G S.E D.E G S.D D.E G 

Moderate 

corrosion 

0.5424 0.5424 0.542

46 

0.542 0.54 0.54 0.5 0.54 0.54 

High 

corrosion 

0.0 0.0 0.0 0.0 0 0 0 0 0 

Serious 

delaminatio

0.0936 0.0 0.0 0.0936 0 0 0.093 0 0 
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n 

Delaminatio

n exist 

0.0 0.1407 0.0 0.0 0.14 0 0.0 0.14 0 

Serious 

deterioration 

0.119 0.119 0.119 0.0 0 0 0.0 0. 0. 

Poor 0.0 0.0 0.0 0.272 0.27 0.2 0.0 0 0 

Good 0.244 0.197 0.338 0.0919 0.04 0.18 0.363 0.31 0.45 

 

Table 5-11: The probabilities of fusion with HCP Moderate corrosion and ER with Low 

corrosion 

HCP Moderate corrosion 

ER Low corrosion 

GPR Serious Poor Good 

IE S.D D.E G S.D D.E G S.D D.E G 

Moderate 

corrosion 

0.397 0.3973 0.397 0.3973 0.39 0.39 0.397 0.39 0.39 

High 

corrosion 

0.137 0.1375 0.137 0.1375 0.137 0.13 0.137 0.137 0.13

7 

Serious 

delaminatio

n 

0.0685 0.0 0.0 0.0685 0.0 0.0 0.068 0.0 0.0 

Delaminatio

n exist 

0.0 0.1030 0.0 0.0 0.103 0.0 0.0 0.10 0.0 

Serious 

deterioration 

0.0871 0.0871 0.087

1 

0.0 0 0 0 0 0 

Poor 0.0 0.0 0.0 0.199 0.19 0.19 0.0 0.0 0.0 

Good 0.3093 0.2748 0.377 0.197 0.162 0.2 0.396 0.36 0.46 

 

Table 5-12 presents final results of the measured deteriorated areas detected by single 

technologies of HCP, ER, GPR and IE. Each technology detects specific type of defects. Table 

5-12 also shows the results from pixel level fusion and the feature level fusion.  

Table 5-12:   Final  results of pixel level fusion and feature level for bridge deck O2 
 

 

HCP 

Low Corrosion 20.327% Blue _Green 

Moderate Corrosion 54.246% Yellow 

High corrosion 25.427% Red 

 Low or No corrosion 17.3% Grey, purple 

Moderate corrosion 63.93% Blue, green 

High corrosion 18.77% Red, Yellow 
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ER  

 

 

GPR 

Good  60.9% Green 

Poor Deterioration 72.2% Yellow 

Serious Deterioration 11.9% Red 

 

IE 

No Delamination 76.57% Blue  Green 

Delamination Exist 14.07% Yellow 

Serious Delamination 9.36% Red 

 

Pixel Level Fusion 

Good areas 47.13% Green 

Poor areas 36.52% Yellow 

Serious 16.345% Red 

 

 ∑ Yellow     37.057%       

Feature Level Fusion 

    ∑  Red   12.765%  

 

Good 51.221% Green 

Moderate corrosion 27.949% Yellow 

Delamination Exist 1.92% Yellow 

Poor 7.197% Yellow 

High corrosion 9.47% Red 

Serious delamination 1.918% Red 

Serious Deterioration 1.377% Red 

 

As observed from Table 5-12, HCP detects the percentages of low corrosion, moderate 

corrosion and high corrosion as 20.327%, 54.246% and 25.427% respectively. ER detects the 

percentage of low corrosion, moderate corrosion and high corrosion as 17.3%, 63.93%, and 

18.77% respectively. IE detects the percentage of low delamination, moderate delamination and 

serious delamination as 76.57%, 14.07% and 9.36% respectively. GPR detects the percentage of 

low, moderate and serious deterioration as 60.9%, 27.2% and 11.9% respectively.  

Pixel fusion combines all single deterioration maps in one map. It combines all common 

good, poor and serious areas as it appears on the fused single image. Pixel Fusion results indicate 

good, poor and serious areas as 47.1327%, 36.522% and 16.345% respectively.  

Feature fusion combines all good areas in one, it takes the advantages of using all 

technologies to predict the results. It merges the different types of defects individually. To obtain 
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moderate defected areas from the feature fusion, the moderate corrosion of 27.949% is added to 

poor areas of 7.197 % and delamination existence of 1.92%, which gives 37.05% poor/defected 

areas. For the serious defected areas, the high corrosion of 9.47% is added to serious 

delamination of 1.918% and serious deterioration of 1.377%, which gives a total of 12.77% area. 

In this case, the pixel fusion and feature fusion results are very close.  

As shown in Figure 5.16, condition rating is a child node of the fusion measurements node. It 

represents the probability of the condition rating based on the combined defected areas. In this 

case, condition rating 3 is within higher probability to be assigned to the bridge deck.   

5.5.CASE STUDY OF BRIDGE DECK O3 

For case study 3, all the information, data, measurements are taken from Iowa, Highway 

research board project 2011. The deck is designed in November 1969 and constructed in 1971 

with 123 ft long and 44 ft wide.  

The NDE methods used for the bridge inspection are: 

a- Ground Penetrating radar (GPR) , ground coupled antenna and air coupled 

b- Impact Echo (IE), device mounted on a robotic stepper TM 

c- Rolling Half Cell Potential (HCP) measurements device 

Deterioration maps of GPR, IE and HCP are extracted directly from Iowa, Highway research 

board project 2011. The maps are presented in Figures 5.18, 5.19 and 5.20. 



153 
 

 

Figure 5.18: Deterioration map of GPR (Iowa report 2011) 

 
 

Figure 5.19: Deterioration map of IE (Iowa report 2011) 

 

 

Figure 5.20: Deterioration map of HCP (Iowa report 2011) 
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As explained earlier, to apply pixel level fusion, deterioration maps of GPR, IE, and HCP 

are fused using Wavelet transform technique. Figure 5.21 illustrates the fused image. The 

numbers indicated in the fused image indicate the location of cores that are taken to verify the 

results of single technologies. The locations of these cores are illustrated in the original 

deterioration maps of GPR, HCP and IE, extracted from Iowa report. Table 5-13 presents the 

extracted good areas from the fused image; the good areas are shown with the green mixed with 

blue colors in Figure` 5.21. The good areas are extracted and measured using image processing 

techniques explained earlier. The extracted serious areas from the fused image are shown with 

the red color in Figure. 5.21. Table 5-13 presents the final results of the measured good, poor and 

serious areas. 

 

Figure 5.21: The Fused image of GPR, IE, and HCP  
 

Table 5-13: Extracted Green Areas from the Fused Image 
 

Green 

Area 

(Sq.Pixel) 

Width 

(Pixel) 

Height 

(Pixel) 

Total 

Area 

(Sq.Pixel) 

1 308 939 301 282639 

2 986 939 301 282639 

3 436 939 301 282639 

4 893 939 301 282639 

5 245 939 301 282639 

6 466 939 301 282639 

7 507 939 301 282639 
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8 5491 939 301 282639 

9 3659 939 301 282639 

10 2202 939 301 282639 

11 3788 939 301 282639 

12 1200 939 301 282639 

13 1631 939 301 282639 

14 479 939 301 282639 

15 552 939 301 282639 

16 3710 939 301 282639 

17 1210 939 301 282639 

18 3266 939 301 282639 

19 9462 939 301 282639 

20 605 939 301 282639 

21 697 939 301 282639 

22 3967 939 301 282639 

23 1358 939 301 282639 

24 839 939 301 282639 

25 19795 939 301 282639 

Sum 

Green 67752 %green Fusion   23.97121 

 

Table 5-14: Final results of pixel level image fusion 
 

 

Condition 

 

Percentage 

 

Color 

 

Good Areas 

 

23.971% 

 

Green 

 

Poor Areas 

 

60.61% 

 

Yellow 

 

Serious Areas 

 

15.418% 

 

Red 

 

 

For feature level fusion, features are extracted from each deterioration maps of GPR, IE, 

GPR and ER. The good areas extracted from GPR deterioration map are mixed with some poor 

areas. These areas are extracted with the use of image processing techniques. The good, poor and 
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serious areas in the GPR deterioration map are shown with green, yellow and red colors 

respectively.  

Similar to the other case studies, the feature fusion of all the extracted features is done 

with the use of Bayesian Networks (BNs) technique. Figure 5.22 shows the developed Bayesian 

network to fuse features of GPR, IE, and HCP. In Figure 5.22, nodes of HCP, GPR and IE are 

parents of fusion measurements node. Bridge condition rating is the child node of the fusion 

measurements node.  

Figure 5.23 shows the feature network with the probability distribution of each node. It 

shows HCP node has probability distributions of low corrosion of 8.6%, moderate corrosion of 

67.49% and high corrosion of 23.8247%. GPR node probability distributions are serious 

condition of 6.955%, poor condition of 57.098% and good area of 35.95%. Probability 

distributions of Impact Echo are serious delamination of 18.312%, area where delamination exist 

of 57.68825% and good condition of 23.999%. The result of the fusion measurement node, as 

illustrated in Figure 5.23, are 26.392% moderate corrosion, 6.235% high corrosion, 3.357% 

serious delamination, 23.93 % areas with moderate delamination, 5.069% serious deterioration, 

18.911% poor and 16.107% good.  
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Figure 5.22: Feature Fusion Bayesian network of HCP, ER, GPR and IE 

 

 

Figure 5.23: Feature Fusion Network with all nodes’ Distribution 



158 
 

 

Table 5-15 recaps the results of the measured deteriorated areas detected by single technologies 

of HCP, GPR and IE. It shows the features extracted from pixel level fusion and the feature level 

fusion.  

Table 5-15: The results of pixel level fusion and feature level 
 

 

HCP 

Low Corrosion 8.68% Blue Green 

Moderate Corrosion 67.49% Yellow 

High corrosion 23.825% Red 

 

GPR 

Good  35.95% Green 

Poor Deterioration 57.098% Yellow 

Serious Deterioration 7% Red 

 

IE 

No Delamination 23.99% Blue Green 

Delamination Exist 57.688% Yellow 

Serious Delamination 18.31% Red 

 

Pixel Level Fusion 

Good  23.971% Green 

Poor  60.61% Yellow 

Serious 15.418% Red 

 

∑ Yellow     %69.233       

Feature Level Fusion 

    ∑  Red   % 14.662  

 

Good 16.107% Green 

Moderate corrosion 26.392% Yellow 

Moderate Delamination 29.93% Yellow 

Poor 18.911% Yellow 

High corrosion 6.235% Red 

Serious delamination 3.357% Red 

Serious Deterioration 5.07% Red 

 

Table 5-15 presents the results of each individual technology. Each technology detects 

specific type of defects. HCP detects the percentages of low corrosion, moderate corrosion and 

high corrosion as 8.68%, 67.49% and 23.825% respectively. IE detects the percentage of low 

delamination, moderate delamination and serious delamination as 23.99%, 57.688% and 18.31% 

respectively. GPR detects the percentage of low, moderate and serious deterioration areas as 
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35.95%, 57.098% and 7% respectively. Pixel Fusion results indicate good, poor and serious areas 

as 23.971%, 60.61% and 15.418% respectively.  

Feature fusion combines all good areas in one value. It takes the advantages of using all 

technologies to predict results. It merges different types of defects individually. From analysis 

the moderate defected areas resulted from the feature fusion is summation of moderate corrosion 

(26.39%), poor areas (18.911%), and moderate delamination (29.93%), which is equal to 

69.233%. The serious defected areas are obtained by combining the high corrosion (6.235%) 

areas, serious delamination areas (3.357%) and serious deterioration (5.07%) areas, which is in 

total of 14.662%.  

5.6.COMPARISON OF CORE SAMPLES RESULTS WITH THE PIXEL FUSION 

5.6.1. Results From Core Samples For Bridge Deck O1:  

Core samples have been taken from bride deck O1 to verify the results obtained from 

nondestructive evaluation methods. These samples have been taken at different locations during 

the assessment of the bridge deck (Iowa Highway research board project 2011.).  Figure 5.24 

shows the location of four core samples. 

 

Figure: 5.24 Core Samples for bridge Deck O1  #1 #2 #3 

#4 
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The developed fusion method has previously been shown to provide results that are in 

good agreement with results obtained from the traditional inspections. In this section, results 

from core samples’ tests of the selected bridges are compared with the results from the 

developed fusion method.  

The results from core sample #1 show a zone with significant deterioration. This zone has 

high moisture content and chloride content. Core sample #2 shows epoxy filled delamination. 

Core sample # 3 shows delamination and degradation. Core sample #4 shows sound concrete. 

The results obtained from core samples are qualitatively compared with the results of the fused 

image for bridge deck O1 in Figure 5.9.  In the fused image of bridge deck O1, core samples #1 

and #2 are located in the serious area. Core sample #3 is located in the poor area. Core sample #4 

is located in the good area. The results of the fused image is in agreement with the core samples.  

5.6.2. Results From Core Samples For Bridge Deck O2:  

Core samples have been taken from bridge deck O2 to verify the results obtained from 

Nondestructive evaluation methods (Iowa Highway research board project 2011). These samples 

have been taken at different locations as illustrated in the fused image of bridge deck O2 in 

Figure 5.25.  
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Figure 5.25 Core Samples Location in the fused image of Bridge Deck O2 

According to Iowa Highway research board project 2011 report, the results of core 

sample #1 and #2 showed delamination and corroded steel. Core sample #3 showed high steel 

corrosion and is described as deteriorated in the Iowa report, 2011. Core sample #4 is sound 

concrete. As shown in Figure 5.25, the core sample #1 is located in poor areas in the fused 

image. Core Sample #2 is located in serious area. Core sample # 3 is located in between poor and 

serious areas. Core sample #4 is located in good areas. The result of the fused image is in 

agreement with the core samples.  

5.6.3. Results From Core Samples For Bridge Deck O3:  

Core samples have been taken from bridge deck O3 to verify the results obtained from 

nondestructive evaluation methods. These samples have been taken at different locations as 

illustrated in the fused image of bridge deck O3 in Figure 5.26. 

#1 

#3 

#4 
#2 
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Figure 5.26: Core Samples Location in the fused image of Bridge Deck O3. 

According to Iowa Highway research board project 2011 report, the results of core sample 

#1 is sound concrete. Core sample #2 showed big size of defects. Core sample #3 and #4 are fair 

but having some defects such as cavity and a hole filled with water. As shown in Figure 5.26, the 

core sample #1 is located in good areas in the fused image. Core Samples #2 and #3 are located 

between good and serious area. Core sample #4 is located between good and poor areas. The 

result of the fused image is in agreement with the core samples. 

5.7. COMPARISON OF CORE SAMPLES RESULTS WITH THE FEATURE 

FUSION:  

Feature level data fusion is mainly based on extracting features from single technologies 

and then fuses these features. Features extracted from HCP and ER maps are low, moderate and 

high corrosion. GPR map shows deterioration resulted from indirect delamination and corrosion. 

Features extracted from GPR are good, poor and serious deterioration areas. Deteriorated areas 

from features extracted from IE are good, moderate  and serious delamination areas.  

#1 #2 #3 #4 



163 
 

The results of core samples for bridge deck O2 have been compared with the results of 

the feature extracted from each individual technology and the results obtained from the feature 

level data fusion as shown in Table 5-16.  The core samples information are extracted from Iowa, 

2011 report. Core 1 shows moderate corrosion, poor deterioration and existence of delamination. 

Core 2 shows high corrosion and poor deterioration. Core 3 shows high steel corrosion and is 

described as deteriorated in the report. As per the feature fusion results related to corrosion, Core 

3 includes serious steel corrosion. Also, after reviewing the deterioration maps of GPR and IE, it 

is found that core 3 is located in the fair areas of both technologies GPE and IE. However, it is 

located in serious areas of HCP map. As shown in Figure 5.25, the pixel fusion image, Core 3 is 

located between poor and serious areas. 

Core 4 shows sound concrete. As illustrated in Table 5-16, the results obtained from core 

samples are focusing on specific locations. However, results extracted from each technology and 

results obtained from the feature level data fusion are for the whole deck surface. Table 5-16 

shows that the feature fusion level interprets the % high, % moderate and % low of delamination, 

corrosion and deterioration. Feature fusion also represents the total serious areas as sum of % 

high delamination plus % high corrosion plus % high deterioration. It represents total poor area 

as sum of % moderate delamination plus % moderate corrosion plus % moderate deterioration.  

Table 5-16 compares the results of feature fusion with the core samples results analysis. 

It shows that total serious defects are coming mainly from  high corrosion, as indicated in core 

samples 3 and 4 tests. Poor areas are coming from moderate corrosion.  Serious delamination 

value is low in feature fusion, the same as indicated in core sample 1 test. 
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Table 5-16: Comparing the results of feature extracted with the core samples for bridge deck O2 

 

Diagnostic /Inspection Methods_ Single technologies/All Bridge Deck surface 

Core No 

IE_ Delamination 

 

HCP_ Corrosion GPR_ Deterioration ER_ Corrosion 

Serious Moderate Good High Moderate low Serious Poor  Good High Moderate Low 

 

9.36% 

 

 

14.07% 

 

 

76.57%  

 

25.427% 

 

 

54.246% 

 

 

20.327% 

 

 

11.9% 

 

27.2

% 

 

60.9% 

 

18.77

% 

 

63.93% 

 

17.3% 

 

Feature Fusion Results/ All Bridge Deck surface 

 

Feature Fusion_ Delamination 

 

Feature Fusion_ Corrosion Feature Fusion_ 

Deterioration 

Total Feature Fusion 

High Moderate low High Moderate Low High Moderat

e 

Low Serious Poor Good 

0.86% 1.92% 51.22% 9.47% 27.949% 51.22% 1.377

% 

7.2% 51.22

% 

11.707

% 

37.069

% 

51.22% 

Core Test Remarks 

Core  Location # 1 Core Location #2 Core Location #3 Core Location #4 

Moderate Corrosion, Poor,  

Existence of delamination 

High Corrosion, Moderate 

Deterioration 

High Corrosion Sound Concrete 
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5.8.  SUMARRY OF RESULTS INTERPRETATION FOR TWO LEVELS DATA 

FUSION 

Tables 5-4, 5-12 and 5-15 present the advantages of each level of data fusion. It shows the 

capabilities of each level to interpret the final results. Tables 5-4, 5-12 and 5-15 are organized 

based on the three case studies of Iowa, US. As illustrated in Table 5-4, In case 1, the feature 

fusion level interprets the % of good, % poor and % serious areas extracted from multiple 

technologies. In Tables 5-12 and 5-15 for cases 2 and 3 respectively, the feature fusion level 

interprets the % of good, % moderate deterioration, % moderate corrosion, % high corrosion, % 

serious delamination and % serious deterioration extracted from multiple technologies.  

In addition, the pixel level fusion shows and interprets the locations and % of good, poor 

and serious areas captured from multiple technologies.  Pixel fusion is integration of pixels, the 

fused image combines all defected, moderate defected and good areas in one image. These areas 

are calculated after fusion. Image processing techniques are utilized to extract these features. 

Also, extracting these features depends on colors of different regions. In this research, pixel 

fusion level is used to identify location of defected areas without identifying specific types of 

defect. In this research, feature level fusion is used to identify specific type of defect such as 

corrosion, delamination and deterioration. Pixel and feature levels of data fusion are 

independent. Both levels are used to interpret the final results of bridge deck condition 

assessment. Two levels of data fusion complement one another; they can be considered by the 

bridge inspectors to assess bridge condition. It will increase their confidence. It provides 

engineers and inspectors by a new tool to interpret the result based on different technologies. 

Incorporating two levels of data fusion is recommended in bridge condition assessment to get the 

benefit from the two levels. Pixel and feature levels of data fusion are complementing one 
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another. Each level has its own advantages; the pixel level indicates the locations and % of good, 

poor and serious areas. On the other hand, feature level assesses bridge deck conditions by 

providing only the % of good, poor and serious areas. However, the feature level fusion has the 

advantage to interpret the % of total poor areas to moderate deterioration, moderate delamination 

and moderate corrosion. It interprets the % of total serious areas as high corrosion, serious 

delamination and serious deterioration. Future condition of bridge decks can be predicted by 

developing deterioration model and assessing bridge condition in future by incorporating the 

third level of data fusion, the decision level. 

5.9. NORTH RIVER BRIDGE DECK 

This chapter include another case study is extracted from North River bridge deck report. 

North River Bridge currently owned and maintained by the County of Peterborough. The bridge 

is located in the Township of Havelock-Belmont-Methuen, County of Peterborough, Ontario. 

The existing North River Bridge structure, built in 1966, it is a single span, rigid frame concrete 

bridge with a concrete deck and asphalt wearing surface width of 8.33 m, deck length of 10.36 

m. Span length 9.1m and width of 7.3m from curb to curb. 

The bridge deck Inspection in 2014 was prepared by G.D. Jewell Engineering Inc with 

lab test completed by Golder Associates Ltd. The detailed inspection was studied on September 

2014. The concrete cover with average depth of 75mm. The concrete deck was in poor condition, 

it was delaminated with cracks. 

The chloride content was evaluated using 4 core samples taken from the bridge deck. The 

results indicated that corrosion exists at different locations of the bridge deck. The chloride 

content was 0.311% exceeding the chloride limit threshold (0.05%). The Corrosion Potential 
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Survey conducted on the deck riding surface resulted in approximately 93% of the deck. Half-

cell potential readings ranged with minimum -0.309V, average -0.438V and maximum -0.530V. 

On January 2015, Ainley Graham and Associates limited retained Multiview lnc to perform field 

test using Ground Penetrating Radar (GPR). They provided a comparison between half cell 

potential (HCP) and GPR. The road map was collected over 12 profiles distributed over the 

bridge deck. Data was acquired by 2 passes per lane with three ground coupled operating at 1000 

MHz antennas. The data collected indicated GPR signal amplitude attenuation, the results 

showed % of deteriorated areas. 

 

The report followed ASTM D6087-08 that is using threshold of 6-8db. Areas located 

within signal amplitude attenuation above of 6-8db are considered deteriorated. GPR report 

concluded that areas in HCP of -0.450V correlate with the areas in GPR of 6db signal 

attenuation. According to the North River bridge deck report 6db was taken as indication of 

deterioration threshold. Areas located above 6db is considered deteriorated. 70% of the bridge 

deck was deteriorated based on GPR.  

In this research, feature network is built using measurements of GPR and HCP extracted 

from the report as indicated in Figure 5.27. Feature fusion is applied using the proposed data 

fusion method utilizing Bayesian Networks (BNs). The results from feature fusion is interpreted 

by two method.  Feature fusion 1 shows % good, moderate defected and serious defected areas. 

Feature fusion 2 shows % no corrosion, % no deterioration, moderate corrosion, high corrosion 

and serious deterioration. 

Table 5.17 provides a summary of results using feature fusion method and results from single 

technologies GPR and HCP. Table 5.17 shows the results from core samples. 
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Figure 5.27: Feature Fusion Network for North River Bridge Deck 

The results of core samples indicate high corrosion at different locations of bridge deck. 

The results of feature Fusion 1 and 2 are matching with the core sample results. It indicates 

serious areas (65%-70%). Feature fusion 1 and 2 utilize the advantages of both technologies. The 

final serious areas are three times of the moderate area and not equal to it as indicated by HCP. 

The final good area ranges between (3% to 9%) and not 30% as indicated from GPR. 
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Table 5-17: Summary of Results For North River  Bridge Deck 

 

  

HCP 

No Corrosion 7.1% 

Moderate Corrosion 47.7% 

High corrosion 45.2% 

  

GPR 

No deterioration  30% 

Deterioration 70% 

  

Feature Fusion 1 

Good 2.85% 

Moderate Defected 25.30% 

Serious Defected 71.85% 

  

  

Feature Fusion 2 

No corrosion 0.50% 

No Deterioration 8.85% 

Moderate corrosion 22.38% 

High Corrosion 20.09% 

Serious Deterioration 48.19% 

Core Tests 

C1 C2 C3 C4 C5 C6 

0.508V 0.465V 0.506V 0.511V 0.494V 0.399V 

High moderate High High High moderate 
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CHAPTER 6 

6. DECISION LEVEL DATA FUSION 

6.1. OVERVIEW 

Deterioration models are required and used in Bridge Management System (BMS) to 

predict the condition and performance of bridges. Effective maintenance of bridge structure 

relies on the accuracy of deterioration models used to predict bridge performance. Markov 

Model is a deterioration forecasting model that is widely used in BMS. However, research 

showed that Markov Model has many shortcomings. This chapter provides a review of bridge 

deterioration modeling with emphasis on accuracy improvement of the generated transition 

probability matrix used in the model. Dynamic Bayesian Network (DBN) technique is utilized to 

predict the future conditions of bridge decks. Variables such as, factors affecting deterioration 

process and inspection measurements from Non-Destructive Evaluation (NDE) methods are 

incorporated to increase the accuracy of the developed deterioration model. The impact of these 

factors is extracted from the literature and the DBN model is developed. Measurements of NDE 

for years 2008 and 2013 for a case of a bridge deck are used to apply the model. The developed 

method is expected to improve current practice in forecasting bridge deck deterioration and in 

estimating the frequency of inspection. In this chapter, the fused measurements from multiple 

NDE methods are integrated with deterioration modeling. This integration extends data fusion 

method to the decision level. This chapter illustrates the computational framework for three 

levels of data fusion. 

 

6.2. APPLICATION OF DBNs MODEL 

Factors affecting bridge deterioration are incorporated in Dynamic Bayesian network 
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model. The impact of these factors are extracted from the literature review. Huang (2010) 

identified 11 attributes that extracted from the inventory data of decks record from BMS. The 

author analyzed five factors that have great impact on transferring bridge deck condition from 

state 1 to state 2, A12. These factors are: District, Design Load, ADT (Vehicle/Day), 

Environment, and Degree of Skew. The author analyzed  five factors that have great impact on 

transferring bridge deck condition from state 2 to state 3, A23. These five factors are: Design 

Load, Deck Length (m), Deck Area (m2), Environment, and Number of Spans. Huang (2010) 

listed the 11 factors that did impact the bridge deck deterioration. Table 6-1 illustrates the impact 

of factors on the transition of bridge deck condition from state 1 to state 2 (A12), from state 2 to 

state 3 (A23) and from state 3 to sate 4 (A34). 

Table 6-1: The impact of factors on the transition of bridge deck condition (Huang 2010). 

 

Factors(A12) 

P-

value Factors (A23) 

P-

value Factors (A34) 

P-

value Factors (A45) 

District 0.0014 Design Load 0.0211 Design Load 0.0211 Design Load 

Design Load 0.0001 Deck Length 0.0158 Environment 0.0158 Environment 

ADT 0.0158 Deck area 0.0019 Deck Length 0.0019 Deck Length 

Environment 0.0005 Environment 0.0053 Deck area 0.0053 Deck area 

Degree of 

Skew 0.05 

Number of 

Spans 0.0149 Number of Spans 0.0149 Number of Spans 

    

Maintenance 

History 

 

Maintenance 

History 

    

Age 

 

Age 

    

Previous 

Condition 

 

Previous 

Condition 

 

 

Measurements for years 2008 and 2013 of GPR for a bridge deck are used in this study. 

This data were extracted from condition mapping of bridge deck in years 2008 and 2013 (Kien 

and Zayed 2014). The % of delamination for years 2008 and 2013 are calculated using generic 
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model of Martin (2013). The amplitude values for years 2008 and 2013 of bridge deck are shown 

in Table 6-2. The amplitude values are extracted approximately from the deterioration mapping 

of previous research efforts for years 2008 and 2013 (Kien and Zayed  2014). Table 6-2 shows % 

of delaminated areas that are calculated using the generic model. Percentage (%) of delamination 

is calculated in the following steps because of lack of the raw data:  

1- Dinh et al. (2014) plotted two deterioration mapping for years 2008 and 2013. These 

deterioration mapping were built based on GPR signal attenuation. Amplitude values for the 

bridge deck are obtained from the deterioration maps. 

2- Dinh et al. (2014) plotted the results based on the rebar reflection amplitude and related the 

deterioration of bridge deck with this reflection. 

3- The GPR amplitude ranges that appears as values of GPR in the literature (Dinh et al. 

2014) are utilized to apply  generic linear model (Martin 2013) to get % of delamination in the 

bridge deck for each year. 

4- Martin (2013) indicated that the model can be used for bridge deck with moderate 

corrosion and with threshold -1.6dB) by using Eqs (6.1), (6.2) and (6.3) 

𝑌 = 7.051725 ∗ X + 1.78044                                                                   (6.1)  

        𝑌 = % 𝐷𝑒𝑙𝑎𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛                                                                             (6.2)   

    X= Skew * Mean GPR Amplitude                                                              (6.3) 

5- In this way, % delamination for each year (2008 and 20013 of the case study) are obtained. 
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Table 6-2: Amplitude values of Bridge Deck  
 

2008 2013 2008 2013 
 

-9 -7 -7 -4 
 

-7 -7 -6 -5 
 

-10 -8 -9 -9 
 

-11 -9 -12 -13 
 

-16 -11 -14 -10 
 

-16 -11 -17 -8 
 

-17 -13 -18 -13 
 

-18 -18 -16 -14 
 

-10 -10 -7 -16 
 

-11 -14   
 

-25.667 -22.222   Mean 

-0.0608 -0.1694   SKEW 

1.56151 3.7651   Mean *SKEW 

12.7105 28.1357   %Delamination 

 

Figure 6.1 illustrates the basic network that consists of factors impacting on the transition 

of bridge deck condition. NDE measurements are child node of A12, A23, A34 and A45. From 

NDE measurements at different times, condition assessment nodes are determined with different 

time. Figure 6.1 is considered the qualitative part of the network as it shows the relationship 

between different nodes. The relationship between nodes is quantified by defining the 

conditional probability table 
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a) Dynamic Bayesian Networks  

 

b) An example of building CPT in BNs 

 

Figure 6.1: Dynamic Bayesian Network of Bridge Deck Deterioration Model 
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The relationship between nodes is quantified by defining the conditional probability 

table. Factors that are impacting transition of bridge deck condition at different states are defined 

in BNs as illustrated in Figure 6.1. States of each factor are defined based on their respective P 

value. P values of each factor are extracted from previous study (Huang 2010). Table 6-3 defines 

false and true states for each factor. These states are defined in BN for each factor node. Figure 

6.1 illustrates an example of values generated in CPT based on factors impact, in case if F1 

contributed %trues occurrence and F2 contributed %true occurrence, then the true value of 

occurrence for the two factors are summation of  true values from the two factors %F1+%F2 that 

assigned in the CPT of fusion node S3. 

 

Table 6-3: The Defined Factors’ States  

 

 

 

 

 

 

 

 

 

Table 6-4 shows 32 conditional probabilities on node A12. Table 6-4 utilized to define 

the relationship between the factors and bridge state transition from state 1 to state 2 (A12). It 

measures the true and false percentage of A12 occurrence with high and the low impact of the 

Factors False 

 

True 

District 14% 86% 

Design Load 01% 99% 

ADT 30% 70% 

Environment 05% 95% 

Degree of Skew 50% 

 

50% 

Deck Length 30% 70% 

Deck area 19% 81% 

Number of Spans 25% 75% 

Maintenance History 15% 85% 

Age 15% 85% 

Previous Condition 10% 90% 
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factors. As shown in Table 6-4, the factors impacting A12 are District, Design Load, ADT, 

Environment and Degree of Skew. The 32 probabilities are generated based on varying the 

impact of the factors. For example, the first conditional probability is generated based on the low 

or false impact of factors District, Design Load, ADT, Environment and Degree of Skew. So, the 

first conditional probability is assigned true and false percentage values of 0% and 100% 

respectively. The second conditional probability is generated based on the false value of factors 

District, Design Load, ADT, Environment and the true value of the factor Degree of skew. The 

second conditional probability is assigned true and false percentage values of 50% and 50% 

respectively because Degree of skew factor is one of the significant factors with high impact 

comparing to the other factors. The other 30 conditional probabilities are assigned in the same 

way. Table 6-5 defines the conditional probability table of 32 conditional probabilities that 

measure the strength of the relationship between factors Deck Length, Deck area, Number of 

Spans, Environment, Design Load and node A23.   
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Table 6-4: Conditional probability table of transition from state 1 to state 2 (A12) 

 

Table 6-5 shows the relationship between factors and A34 through different probabilities 

and varying of incorporating the impact of the factors. It measures the true and false percentage 

of A34 occurrence with the high and the low impact of the factors. For example, the first 

conditional probability is generated based on the low or false impact of factors Deck Length, 

Deck area, Number of Spans, Environment and Design Load. So, the first conditional probability 

is assigned true and false percentage values of 0% and 100% respectively. The second 

District Design Load ADT Environment Degree Skew FALSE TRUE

FALSE 100 0

TRUE 50 50

FALSE 95 5

TRUE 75 25

FALSE 70 30

TRUE 20 80

FALSE 65 35

TRUE 15 85

FALSE 99 1

TRUE 51 49

FALSE 94 6

TRUE 44 56

FALSE 49.286 50.714

TRUE 19 81

FALSE 64 36

TRUE 14.286 85.714

FALSE 86 14

TRUE 64 36

FALSE 19 81

TRUE 31 69

FALSE 44 56

TRUE 80 20

FALSE 51 49

TRUE 1 99

FALSE 85 15

TRUE 35 65

FALSE 80 20

TRUE 30 70

FALSE 55 45

TRUE 5 95

FALSE 50 50

TRUE 0 100

FALSE

TRUE

TRUE

FALSE

TRUE

FALSE

TRUE

FALSE

TRUE

FALSE

TRUE

FALSE

TRUE

FALSE

TRUE

FALSE

TRUE

FALSE

TRUE

FALSE

FALSE

TRUE

FALSE

TRUE

FALSE

TRUE

FALSE

TRUE

FALSE

TRUE
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conditional probability is generated based on the false value of factors District, Design Load, 

ADT, Environment and the true value of the factor Design load. So, the second conditional 

probability is assigned true and false percentage values of 28% and 72% respectively. 

Table 6-5: Conditional Probability table of transition from state 2 to state 3 (A23) 

 

 

Deck Length Deck Area Number Spans Environment Design Load FALSE TRUE

FALSE 100 0

TRUE 72 28

FALSE 86 14

TRUE 58 42

FALSE 77 23

TRUE 49 51

FALSE 63 37

TRUE 35 65

FALSE 90 10

TRUE 37 63

FALSE 76 24

TRUE 48 52

FALSE 67 33

TRUE 39 61

FALSE 53 47

TRUE 25 75

FALSE 75 25

TRUE 47 53

FALSE 61 39

TRUE 33 67

FALSE 52 48

TRUE 24 76

FALSE 38 62

TRUE 10 90

FALSE 65 35

TRUE 37 63

FALSE 51 49

TRUE 23 77

FALSE 42 58

TRUE 14 86
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Table 6-6 shows the conditional probabilities of GPR measurements at year 2008. Table 

6-6 measures the strength of transition for condition states between A12, A23, A34 and A45 and 

the probability of existence of defected areas. For example, the first conditional probability is 

generated based on the true occurrence of A12, A23, A34 and A45. So, the first conditional 

probability is assigned 0 value if there is no area defected. The first conditional probability is 

assigned 0.25 if the defected area is less than 2%, less than 10%, more than 10% and more than 

25 %. The second conditional probability is generated based on the true occurrence of A12, A23, 

A34 and the false occurrence of   A45. So, the second conditional probability is assigned 0 value 

if there is no area defected or the area defected is more than 25%.  It is assigned a value of 0.1 if 

the defected area is less than 2%. It is assigned a value of 0.45 when the defected area is less or 

more than 10%. 

Table 6-6: Conditional Probabilities of node NDE measurements 

 

 

A12

A23

A34

A45 TRUE FALSE TRUE FALSE TRUE FALSE

No Area Defected 0 0 0 0 0 0

Area Defected Less 2% 0.25 0.1 0.1 0.5 0 0

Area Defected Less 10% 0.25 0.45 0.45 0.5 0.3333 0

Area Defected More 10% 0.25 0.45 0 0 0.3333 0.5

Area Defected More 25% 0.25 0 0.45 0 0.33333 0.5

TRUE FALSE TRUE

TRUE

TRUE
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As illustrated in Figure 6.2, the dynamic Bayesian network of the basic network at 

different times T0, T1 in  2008 and T2 in  2013 is built. The basic Bayesian network is repeated 

within the time and at each time slice the networks are connected thorough temporary arcs. 

Modeling deterioration this way ensures that future condition depends mainly on current 

condition, previous condition and related factors.  

 

 

Figure 6.2: Dynamic Bayesian Network for Bridge Deck assessment 
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The results of the developed DBNs show the probability of condition states at different 

times. As illustrated in Figure 6.3, the vertical axis represents the probability of different 

condition states and the horizontal axis represents the time steps. The spacing between time steps 

is 5 years. From time t0 to time t1, the bridge deck falls under condition state 1. From time t1 to 

time t2 (year 2008) and from time t2 (year 2008) to t3 (year 2013), the bridge deck fall under 

condition state 3. After 5 years (year 2018), the bridge deck will fall under condition state 5.  

 

Figure 6.3: The results of bridge deck Condition 

 

The results show also the probability of the existence of the defected areas measured by 

NDE at different time steps. As illustrated in Figure 6.4, from t0 to t1, the defected area is falling 

under the category of “no area defected”.  From t0 to t2, the defected area is falling under the 

category of “area defected less more than zero and less than 2%”. From t1 to t4, the defected area 

is falling under the category of “area defected is more than 10% and less than 25%”. From t3 to 

t4, the defected area is falling under the category of “area defected is more than 25%”.  
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Figure 6.4: The NDE Measurements with 5 Time Steps 
 

6.3. PREDICTION OF BRIDGE CONDITION USING MARKOV MODEL 

Markov Model is used to predict the future condition of the bridge deck for the same case 

study. So, condition state C0 at time 0 is taken at year 1978. In order to predict the future 

condition of the deck at different times, every 5 years, Eq. (6.4) is applied, where t is the number 

of transactions: 

C (t) = C (0)  *  TPM power t …………………………………………………………...(6.4) 

The condition state vector C(t) = [ C1(t)    C2(t)     C3(t)       C4(t)        C5(t) ]…………(6.5) 

C(0) = [ 1     0      0       0      0 ]   

TPM: Transition Probability Matrix for five condition states: 

P= [ P11      P12      P13     P14      P15            P11      P12      P13     P14     P15 

       P21      P22      P23     P24      P25            0          P22       P23   P24       P25 
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       P31      P32      P33     P34      P35   =       0             0        P33   P34      P35 …… …(6.6) 

      P41      P42      P43     P44      P45              0             0           0    P44      P45 

       P51      P52      P53     P54      P55             0             0            0        0      P55 

 

p11      1-p11        0          0           0                0.513       0.487       0               0               0 

    0            p22       1-p22    0          0                 0            0.492      0.507           0               0  

=  0             0            p33     1-p33     0       =       0               0              0.5           0.5            0 

    0              0            0         p44      1-p44           0               0                  0            0.513       0.487          

     0            0             0           0          p55              0               0                  0              0               1 

 

TPM in Markov model is calculated based on the true values of nodes A12, A23, A34 and A45. 

The summation of probabilities in each row equals 1. P12 is the probability of transition between 

condition state 1 and condition state 2. P12 is calculated as the average of the 32 true values of 

node A12, which is equal to 48.7 as presented in Table 6-4. P11 is calculated as 1- P12. P23 is 

calculated as the average of the 32 true values of node A23 which is equal to 0.507. P22 is 

calculated as 1-P23. 

Year 1993 means 15 years after the initial condition and the time interval between inspection 

measurements are 5 years. So, the number of transactions are 3. Condition states at year 1993 

are: 

Condition States =   [0.135005697          0.368965323        0.274562808        0.220489737        

0]  

   

At year 2008, 30 years after the initial condition  and the number of transactions are 6, condition 

states are: 

Condition States = [0.018227   0.093755   0.23468386   0.3171046   0.3345]  



184 
 

At year 2023, 45 years after the initial condition with  time interval between inspection 

measurements of 5 years and  thus the number of transactions are 9, condition states are: 

Condition States= [0.0024607   0.01756      0.0698756      0.16798167     0.708455 ]  

The results of the probabilities of the five condition states at different years are summarized in 

Table 6-7. 

Table 6-7: Probability of bridge condition states at different transactions 
 

Years 1978 1993 2008 2023 

Condition 1 1 0.135 0.01823 0.0024 

Condition 2 0 0.3689 0.09375 0.0175 

Condition 3 0 0.27456 0.2347 0.06988 

Condition 4 0 0.22049 0.3171 0.1679 

Condition 5 0 0 0.3345 0.70846 

 

6.4. COMPARING THE RESULTS OF DBNs AND MARKOV MODEL 

Table 6-8 compares the final results of modeling bridge deterioration using Dynamic 

Bayesian Networks and Markov model techniques. Although, transition probabilities matrices 

for Markov model were built using some of the information from Bayesian networks, it doesn’t 

consider the impact of the deterioration factors. Also, it doesn’t take into consideration the 

previous condition of the structure. It is very clear from the result of Markov model that it 

doesn’t consider the impact of maintenance action. So, at years 1993 and 1998, the bridge was 

deteriorated faster to reach condition 2. Starting from year 2008, the bridge deteriorated faster to 

reach condition 5. In the DBNs model, factors impacting bridge deterioration are incorporated. It 

is very clear from the results that bridge deck will start to deteriorate and reach condition state 5 

at year 2018. 
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Table 6-8: The Results Comparison between Markov and DBNs models 

 

 

Years Markov Model DBNs Model 

1993 2 1 

1998 2 1 

2003 3 3 

2008 5 3 

2013 5 3 

2018 5 5 

2023 5 5 

 

 

 

As a summary, this chapter provides a method to predict bridge deck condition states 

using Dynamic Bayesian Networks. The model is built using limited inspection records for two 

years at 2008 and 2013. The model incorporates the impact of deterioration factors extracted 

from the literature. Modeling bridge deck deterioration this way ensures that future condition 

depends mainly on current condition, previous condition and factors impacting bridge deck 

deterioration. The model circumvents the limitations of current practice which is based on 

traditional Markov model. The final results of Dynamic Bayesian Networks are compared with 

the results of Markov model. These results show that incorporating deterioration factors improve 

the forecasting accuracy and its impact on forecasting inspection frequency and maintenance 

action required. The main contribution of the developed model lies in building an advanced 

deterioration modeling for bridge deck by using measurements of NDE methods and 

incorporating related factors. The model is generic and it can be updated when new observations 

are incorporated.   
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6.5. COMPUTATIONAL FRAMEWORK FOR THREE LEVELS DATA FUSION 

This section presents the computational framework for pixel, feature and decision levels of 

data fusion. It shows the computer software that are utilized to perform each level. As illustrated 

in Figure 6.5, multiple NDE measurements are main inputs of framework. These inputs are raw 

data processed based on the physical principal of each technology such as RADAN®7 

Geophysical Survey  Systems, Inc. (GSSI) for GPR and FLIR Tool, ThermaCam  S60, FLIR 

System Inc for IR. After that, these inputs are processed also using image processing techniques, 

which are implemented using ImageJ 1.45s and MATLAB version R2012a software. Image 

fusion is implemented using Wavelet transform technique in MATLAB. Features are extracted 

from the fused image to calculate percentages of good, poor and serious areas. The second level 

of data fusion is the feature fusion utilizing Bayesian Networks (BNs) that is implemented using 

AgenaRisk7 and BayesiaLab5 software. The main output from pixel level is % of total defected 

areas. The % of total defected areas is used to assign bridge deck condition rating in accordance 

with condition rating of Minnesota department of transportation. This step is done manually in 

pixel level. However, in feature levels of data fusion, condition rating for bridge deck is assigned 

based on the % of defected measured areas. This step is performed automatically by 

incorporating condition rating node in BNs. Both levels are used to interpret the final results of 

bridge deck condition. 

Figure 6.6 illustrates the computational framework for decision level data fusion 

implemented using Dynamic Bayesian Networks (DBNs). Condition rating at different times T1 

and T2 are considered the main inputs for the framework using BayesiaLab5 and GeNIe 2. 

Software.  The main output from the decision level of data fusion is the deterioration curve to 

forecast the future condition of bridge deck.  
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Figure 6.5: Computational Framework for Pixel and Feature Levels Data Fusion 
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Figure 6.6: Computational Framework for Decision Level Data Fusion 
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CHAPTER 7 

7. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

7.1. SUMARRY AND CONCLUSIONS 

Subjective condition assessment reduces the accuracy of forecasting bridge condition. 

Integration of NDE technologies for evaluating and tracking condition of bridges over their life 

cycle is essential. This research identified and analyzed advantages, limitations and applications 

of  NDE methods used in Canada and the USA for condition assessment of concrete and steel 

bridges. These methods are selected based on current practice and their applicability to bridge 

condition assessment. The main challenge of using NDE methods is the interpretation and 

integration of results. Therefore, integration of different methods is recommended to reduce the 

limitation of each technology. 

The purpose of this research is to assess bridge condition based on fusing data from NDE 

evaluation methods. A comprehensive literature review was undertaken. Based on the literature 

review, the gap of current research is identified. The literature review confirmed that 

incorporating multiple technologies would lead to better results interpretation and quantitative 

condition assessment.  

Data fusion method is developed for condition assessment of concrete decks of bridges.   

The method is used to assign bridge condition rating more accurately. The application of the data 

fusion method developed in this study is considered new in the problem of bridge condition 

assessment. The method utilizes data fusion of processed images captured by multiple 

technologies in order to improve the accuracy of the generated assessment and rating of these 

concrete bridge decks.  
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This study reveals that image processing using techniques such as image segmentation, 

edge detection of captured GPR and IR images, prior to fusion, can improve the accuracy of 

condition assessment and rating of bridge decks. The method is applied on a case bridge deck in 

Montreal. GPR data was interpreted by determining the surface from 24 scans spaced by 0.33m. 

These 2D scans are converted to 3D GPR data. The results of GPR surface was interpreted by the 

amplitude reflections. Areas of low amplitude waves usually indicate uniform material while 

those of high amplitude indicate important changes and deterioration of concrete.  

Pixel level image fusion was performed using wavelet transform technique. In wavelet 

transform, images of IR and GPR surface data are decomposed. In this research, the impact of 

image processing techniques on the accuracy of the developed method is analyzed through four 

scenarios. In scenario1, no image processing was used before or after fusion. In scenario 2, 

image processing was applied before fusion and in scenario 3, image processing was applied 

before and after fusion. In scenario 4, image processing was applied only after fusion. The results 

show that image processing has effective impact on the accuracy of image fusion as it enhances 

feature extraction.  It is observed that scenario 3 improves the prediction of condition rating of 

bridge deck as it accurately detects the percentage of the defected areas.  Finally, the fusion 

results are compared with the results from 1-IR single sensor, 2-GPR single sensor, Hammer 

sound results and visual inspection as used in current practice. The results show that combining 

deteriorated areas from both sensors are more accurate and close to the actual condition and it 

helps engineers and inspectors with better identification of the health of the structure.  

Thus, the developed method based on data fusion can be used for condition assessment and 

rating of concrete bridge decks. The method utilizes data fusion of processed images captured by 

GPR and IR in order to improve the accuracy of the generated assessment and rating of concrete 
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bridge decks. This study also reveals that image processing techniques such as image 

segmentation, edge detection of captured GPR and IR images, prior to fusion, improves feature 

extraction of the defective areas. Feature level fusion was employed using Bayesian Network. 

Deteriorated areas were extracted from 77 maps for GPR and IR images. Two networks were 

modeled to assign bridge condition rating based on the fused measurements. The fusion results 

were compared with results from single sensors (IR and GPR) and with Hammer sound and 

visual inspection results, as used in current practice.  

The results show that using multiple sensing technologies can provide better condition 

assessment than that based on the use of one sensing technology. This can be attributed to the 

fact that each of such technologies has its capabilities and limitations. As well, when large 

amount of data of multiple sensors are fused, it can provide more comprehensive output and thus 

be of more help to decision makers.  

The proposed method is further applied in three case studies. For all three cases, all 

deterioration maps of NDE methods are extracted from Highway research project of Iowa, US, 

2011. The data fusion method has been applied within pixel and features level fusion using these 

three case studies. The final results show that the developed method can enhance the result 

interpretation and thus provides accurate decision regarding bridge deck condition. The major 

findings of the results’ analysis can be summarized as follows: 

1- Each single technology detects specific type of defects based on its physical principal. 

 

2- Percentage of defected areas for the same bridge deck detected by each single technology 

varies from one technology to another based on the type of the detected defects. 
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3- Pixel fusion combines and fuse all deterioration in one single image. Its power lies in 

combining the location of bridge deck deterioration in one map as it appears in the fused 

image. As this image is the results of using multiple technologies, it can help inspectors 

and engineers in this field to assess condition of bridge deck by more ease. 

4- Feature Fusion has the power to fuse the % of good, poor and serious areas extracted 

from multiple technologies. However, the results from feature fusion related to serious 

areas extracted from the different technologies did not match with the pixel fusion in case 

of one bridge deck. Feature fusion works better when it is used to detect and assess 

specific   types of defects; corrosion, delamination and deterioration.  

5- Pixel and feature fusion are completing one another. So, it is recommended to use data 

fusion method for bridge condition assessment within its two levels. 

6- Condition rating is assigned based on the combined serious defected areas extracted from 

the pixel fusion or feature fusion.  Condition rating can be determined also by stochastic 

value if it is incorporated as child node of the fusion measurements in the feature fusion 

network.  

Finally, a method to predict bridge deck condition states using Dynamic Bayesian 

Networks is provided in this research and is considered to be the decision level of data fusion 

method. The method used limited inspection records for two years: 2008 and 2013. The method 

incorporates the impact of deterioration factors. The bridge deck deterioration model developed 

ensures that future condition depends mainly on current condition, previous condition and factors 

causing bridge deck deterioration. The method circumvents the limitations of current practice 

which is based on traditional Markov model. The final results of Dynamic Bayesian Networks 

are compared with the results of Markov model. It is observed that incorporating deterioration 
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factors improve the forecasting accuracy and it can help with  forecasting inspection frequency 

and maintenance action required. The main contribution of the decision level data fusion method 

lies in building an advanced deterioration modeling for bridge deck by using measurements of 

NDE methods and incorporating related factors. The model is generic and thus, it can be updated 

when new observations are incorporated.   

7.2. EXPECTED CONTRIBUTIONS 

1- Conduct in-depth study of NDE methods for steel and concrete bridges. 

2- Apply data fusion to assess bridge condition 

 Apply pixel and feature levels fusion 

 Assess the impact of image processing techniques on data fusion accuracy. 

  Interpret GPR 2D scan as 3D 

3- Integrate NDE measurements with current practice deterioration model. 

 Increase the accuracy of deterioration model with incorporating variables 

 Building generic advanced deterioration model for bridge deck 

4- Provide guidelines with the use of data fusion methodology 

 Main findings from case studies 

 

7.3. LIMITATIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH 

1- Deterioration model is tested using only one case study. It is recommended for future 

research to apply the model using different case studies. 

2- Captured inspection images for Iowa case studies and North river bridge deck are not 

available. It is recommended for future research to apply the method using the captured 

inspection images. 
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3- No detailed cost comparison provided with the method. Future research can expand the 

method by conducting cost comparison between data fusion method and other assessment 

methods. 

4- Factors considered to develop the deterioration model are extracted from the literature 

review. Future research can extend the decision level by studying the impact of 

deterioration factors of bridges. 

 

5-  The data fusion method in this research focus mainly on concrete bridge deck. It is 

recommended for future research to apply the developed method on steel bridges.  
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APPENDIX I 

North River Bridge Deck 
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Fusion Measurements Node_Case O1 
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Fusion Measurements Node_Case O2 
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Fusion Measurements Node_Case O3 
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