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Abstract: This paper addresses the control problem of air-breathing hypersonic vehicles subject to 

input nonlinearities, aerodynamic uncertainties and flexible modes. An adaptive backstepping 

controller and a dynamic inverse controller are developed for the altitude subsystem and the velocity 

subsystem, respectively, where the former eliminates the problem of “explosion of terms” inherent in 

backstepping control. Moreover, a modified smooth inverse of the dead-zone is proposed to 

compensate for the dead-zone effects and reduce the computational burden. Based on this smooth 

inverse, an input nonlinear pre-compensator is designed to handle input saturation and dead-zone 

nonlinearities, which leads to a simpler control design for the altitude subsystem subject to these two 

input nonlinearities. It is proved that the proposed controllers can guarantee that all closed-loop signals 

are bounded and the tracking errors converge to an arbitrarily small residual set. Simulation results are 

carried out to demonstrate the effectiveness of the proposed control scheme. 
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I.  Introduction 

Air-breathing hypersonic vehicles (AHVs) have received tremendous attention in recent years, since 

such vehicles have been viewed as the next critical step toward achieving the reliable and cost-efficient 

access to space and possessing the ability of prompt global strike. The emergence of AHVs benefits a 

lot from the state-of-the-art technologies, such as ram/scramjet propulsion, high temperature material, 

thermal protection system, etc. Despite the progress of these advanced technologies, the design of the 

control schemes for AHVs is still an open problem, owing to the significant flexible effects aroused by 

their slender geometry and light structure, and the input nonlinearities such as input saturation and 

dead-zone. 
During the past decades, the problem of longitudinal control design for AHVs has been extensively 



investigated. Schmidt [1, 2] proposed a multivariable and classic linear control for the linearized 

longitudinal model of the vehicles developed by Chavez and Schmidt [3, 4]. Later, some similar works 

have also been presented in [5-7]. However, to guarantee a desirable control performance, these control 

schemes developed based on a linearized model are always designed by combining the gain scheduling 

technique, which inevitably requires massive texting and offline analysis. To remedy this, extensive 

efforts have been devoted to developing control algorithms directly for nonlinear models of AHVs. For 

instance, in [8], a state-feedback controller was designed by incorporating feedback linearization and 

disturbance observer-based control. Wu et al. [9] proposed a robust backstepping control approach for a 

flexible AHV in the presence of aerodynamic uncertainties. Liu et al. [10] presented an output feedback 

controller by means of the immersion and invariance technique to provide asymptotically stable 

estimates of the unmeasurable states. However, it is notable that the control schemes in [8-10] do not 

fully consider the input nonlinearities of input saturation and dead-zone simultaneously. 

From a practical viewpoint, the aerodynamic control surfaces of AHVs are always subject to input 

saturation [11] and dead-zone [12] due to their physical properties. These two inevitable constraints, as 

dominant input nonlinearities, often limit system performance severely, and may result in undesirable 

inaccuracy or lead to instability. With this in mind, the control design of AHVs with explicit 

consideration of these input nonlinearities has attracted a great interest over the past years. Xu et al. [13] 

proposed fault-tolerant control algorithms for tracking control of AHVs, in which command filters were 

introduced to deal with input saturation issue. Almost simultaneously, a similar result was presented in 

[14]. Later, inspired by [15], an auxiliary system was constructed in [16] to systematically account for the 

non-symmetric input saturation constraint. Recently, Bu et al. [17] developed a novel auxiliary system 

which was integrated in the adaptive neural control scheme to handle the physical constraint on actuator.  

Zhou et al. [18] introduced a mean-value theorem to overcome the obstacle generated from input 

saturation by combining adaptive backstepping control method. Regarding the dead-zone issue, Xu [19] 

incorporated the Nussbaum gain into the robust adaptive neural control to account for dead-zone 

nonlinearity. Despite the recent progress, it is noticed that most of the aforementioned works are focused 

on either input saturation or dead-zone separately. Actually, these two kinds of input nonlinearities 

always occur simultaneously, which poses significant challenges for the control design of AHVs. At 

present, some researches on integrating dead-zone with saturation have been presented in [20-22] for the 

nonlinear systems, under the assumption that the parameters of dead-zone are known. Yet, this 



assumption is not always satisfied in practice, thus making these control schemes not applicable to our 

work. In view of this, it is necessary to further explore new methodologies for the control design of 

AHVs with dead-zone and saturation nonlinearities. On the other hand, due to the characteristics of the 

AHVs, the dynamic model is also subject to aerodynamic uncertainties [23, 24] and flexible modes [25] 

in practice, which may lead to control performance degradation. Hence, the development of tracking 

control schemes that are not only robust against aerodynamic uncertainties and flexible modes, but also 

able to handle input saturation and dead-zone nonlinearities is an imperative to achieve high precision 

tracking control of AHVs. 

Motivated by the above observation, an adaptive control scheme is proposed for AHVs in the presence 

of input nonlinearities, aerodynamic uncertainties and flexible modes. Specifically, by viewing 

aerodynamic uncertainties and flexible modes integrally as lumped disturbances, an adaptive 

backstepping controller and a dynamic inverse controller are designed for the altitude subsystem and the 

velocity subsystem, respectively. Then, nonlinear disturbance observers (NDO) separated from the 

controllers design are constructed for each subsystem to estimate the lumped disturbances. Aiming at the 

altitude subsystem, dynamic surface control (DSC) technique is introduced to eliminate the problem of 

“explosion of terms” inherent in traditional backstepping approaches, which greatly reduces the 

computational burden and simplifies the controller structure. Moreover, a modified smooth inverse 

structure is proposed to compensate the dead-zone effects. By employing this smooth inverse, only 

slopes of dead-zone are required to be estimated, thus leading to a reduction of the computational burden. 

An input nonlinear pre-compensator is constructed to handle input saturation and dead-zone 

nonlinearities, which significantly simplifies the control design for the altitude subsystem. Based on this 

pre-compensator, an auxiliary system is designed to address the input saturation issue.  

The rest of this paper is organized as follows. Section II presents the vehicle model, while Section   

III presents an input nonlinear pre-compensator for the input nonlinearities. The derivation of the control 

scheme is presented in Section IV. Then, the closed-loop stability analysis is given in Section V and 

followed by Section VI in which numerical simulations are performed to validate the effectiveness of the 

proposed control scheme. Finally, this paper is concluded in Section VII. 

.  Model Description 

A. Vehicle Model 

The flexible model of the longitudinal dynamics of AHVs used in this study is developed by Fiorentini 



et al. [25], and can be formulated as  
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where i  and i  denote damping ratio and national frequency for the flexible states i , respectively, 

and m is the vehicle mass. This model is composed of five rigid-body state variables V , h , , , Q

which represent velocity, altitude, flight path angle (FPA), angle of attack (AOA), and pitch rate 

respectively, and six flexible states 1 1 2 2 3 3[ , , , , , ]T, , , , ]1 2 2 3 32 2 3
T  corresponding to the first three bending 

modes of the fuselage. To cancel the lift generated by the elevator deflection, a canard is added to be 

ganged with the elevator by choosing c ec ek , where e  denotes the elevator deflection, c  

denotes the canard deflection, and eck  represents the interconnection gain between the elevator 

deflection and the canard deflection, i.e.,  /e c
ec L Lk C C . Therefore, the control inputs are selected as 

[ , ]T
eu , where  represents the fuel equivalence ratio. The outputs to be controlled are selected as 

[ , ]Ty V h .  

To facilitate the control design, a simplified model has been derived in [26] for control design and 

analysis, which retains the relevant dynamic characteristics of the simulation model. The approximations 

of lift, drag, thrust, pitching moment, and generalized forces are given as follows: 
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where [ , ]T
c e , and q , S  and c  represent the dynamic pressure, the reference area, and the 

reference length, respectively. The coefficients are obtained using curve-fitted approximations, which are 

presented as 
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In contrast to [26], the lift, drag, thrust, and moment coefficients presented above depend explicitly on 

the flexible modes. To facilitate the design, the dynamic equations of the AHVs are transformed into a 

strict feedback form. Without loss of generality, the aerodynamic uncertainties and flexible modes are 

regarded as lumped disturbances. As a result, the strict feedback equations are expressed as   
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where  
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and Vd , Qd  and d  are lumped disturbances including aerodynamic uncertainties and flexible modes.  

B. Input Nonlinearities 

In this paper, input nonlinearity ( )e v  encompasses non-symmetric saturation and dead-zone. That is, 

the control signal v  is constrained by the saturation values maxe  and mine , and the dead-zone values 

rb  and lb , as shown in Fig. 1. In view of Fig. 1, the input nonlinearity ( )e v  can be expressed as 
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Fig. 1 Non-symmetric saturation and dead-zone model 
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where lb , 1lb , rb , 1rb , lm  and rm  are unknown positive constants. It should be pointed out that 

neither the break-points lb  and rb  nor the slopes lm  and rm  are required to be equal. The 

parameters maxe  and mine  represent the maximum and the minimum allowable elevator deflection 

angles, respectively.  

To facilitate the control law derivation and stability analysis, the following assumptions are made. 

Assumption 1 [9], [27]: The functions ig and if ( , ,i V Q ) are bounded, and there exist positive 

known constants ig and if  satisfying 0i ig g  and 0i if f . 

Assumption 2: The lumped disturbances are slowly time-varying, and there exist small positive 

constants 
idM , , ,i V Q , which satisfy 

ii dd Mdd Mi d . 

Assumption 3: The parameters lm  and rm  satisfy l l lm m m  and r r rm m m  respectively, 

where lm , rm , rm  and lm  are known positive constants. In addition, lb  and rb  are bounded 

positive constants. 



Lemma 1 [28]: For any variable s  and constant 0b , the following inequality always holds 

0 tanhs s s b b , where 0.2758 . 

 .  Input Nonlinear Pre-Compensator Design 

According to the definition of input nonlinearities in (6), the nonlinear characteristics of the actuator 

are relatively complex and are difficult to directly deal with. With this in mind, in this section, an input 

nonlinear pre-compensator will be constructed to address these nonlinearities issue, as shown in Fig. 2.   

Remark 1: The constraint values, i.e., minp  and maxp , in the pre-compensator structure are 

associated with the unknown slopes lm  and rm . Thus, these values are not selected equally with mine  

and maxe . The selection of minp  and maxp  will be illustrated in the subsequent analysis, and the 

inverse structure of dead-zone will also be presented. 
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Fig. 2 Input nonlinear pre-compensator structure  

By simple transformation, the actual control input ( )e v  can be depicted as  

 ( ) ( ) ( ) ( )e v a t v t d t   (7) 

where  
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Invoking Assumption 3, it is easy to deduce that ( )d t  is bounded. To facilitate the subsequent control 

design, we define a new variable, i.e., ( ) ( ) ( )u t a t v t , which can be further described as 
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Inspired by [29], the smooth inverse structure of ( )u t  can be proposed as follows: 
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where l  and r  are smooth continuous functions defined as 
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where 0 0e  is a free design parameter chosen by designers. Further, to estimate the unknown 

parameters, we parameterize ( )u t  as 

 ( ) ( )Tu t t   (12) 

where [ , ]T
l rm m , and [ ( ) ( ), ( ) ( )]T

l rv v t v v t  with 
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As  is unknown and  is unavailable, we define an auxiliary control input ( )du t  as  

 ˆˆ( ) ( )T
du t t   (13) 

where ˆ  denotes estimation of , i.e.,     

 
T

T

ˆ ˆ ˆ[ , ]
ˆ [ ( ( )) ( ), ( ( )) ( )]

l r

l r

m m
v t v t v t v t

  (14) 

Remark 2: The key idea of compensating dead-zone effects is to employ a smooth dead-zone inverse, 

and then design adaptive controllers to estimate the unknown parameters, i.e., lm , l lm b , rm  and r rm b , 

as shown in [29, 30]. However, in contrast to these existing methods, only lm  and rm  are required to 

be estimated, thus significantly reducing the computational burden.  

Then, the corresponding control input ( )v t  is given by  

 ( ) ( )
( ) ( ( )) ( ) ( )

ˆ ˆ
d d

d l d r d
l r

u t u t
v t I u t u u

m m
  (15) 

The resulting error between u  and du  is  

 ˆˆ( ) ( ) ( ) ( )T T
du t u t t t   (16) 

Through straightforward and equivalent derivation, we obtain  

 ˆˆ( ) ( ) ( )( ) ( )T
d nu t u t t d t   (17) 

where ˆ( ) ( ) ( )T T
nd t t t . In view of (12) and (13), the bound of ( )nd t  can be obtained as 
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where we have used that 1vv e e . Note that the upper bound of ( )nd t  is a function with respect to 

the parameters of dead-zone. Based on the preceding manipulation, the actual control input ( )e v  can 

be presented as    

 ˆ( ) ( )T
e d Nv u t dNdN   (19) 

where ( ) ( )N nd d t d t , and ˆ̂ . From (7) and (18), there exists a positive constant D  such 

that Nd D . 

Remark 3: As shown in Fig. 2, ( )cu t  denotes the nominal control input to be designed for the 

altitude subsystem. The auxiliary control input ( )du t  is obtained by limiting the magnitude of ( )cu t , 

thus guaranteeing that the actual control input ( )e v  always satisfies the saturation constraint. Then, the 

modified smooth inverse is employed to convert ( )du t  to the control input ( )v t  for the purpose of 

compensating the dead-zone effects. Additionally, the new variable ( )u t  introduced in this section is 

only used to analyze the modified smooth inverse. 

Remark 4: Apart from du , the remaining terms on the right-hand side of (19) are obviously unknown, 

which makes the selection of constraint values, i.e., minp  and maxp , in pre-compensator structure a 

challenging problem. Given this, the detailed procedure for selecting these constraint values is presented 

as follows according to (7) and (15). Regarding the case of ( ) 0v t , by simple computing, it can be 

obtained that the inequality ( ) ( ) ( )e t a t v t  always holds, which is pivotal for the subsequent analysis. 

Invoking Assumption 3, the upper bound of ( )v t  can be chosen as maxe rm . Then, according to (15), 

the maximum of maxp  can be selected as maxe r rm m  to guarantee that ( )v t  complies with constraint 

max( ) e rv t m , thereby meeting the saturation constraint of the actual input ( )e v . Note that the 

selection procedure for the case of ( ) 0v t  is similar with the above discussion, thus it is omitted here. 

.  Nonlinear Controller Design 

The starting point is to divide the vehicle model into two functional subsystems, i.e., velocity 



subsystem and altitude subsystem for (4). Then, the corresponding controllers are elaborately designed 

for these two subsystems. More specifically, the DSC technique is employed for the altitude subsystem 

subject to dead-zone and input saturation. Applying the nonlinear dynamic inversion technique, a robust 

controller is designed for the velocity subsystem.  

A. Controller Design for the Velocity Subsystem 

According to (4), the dynamics of velocity tracking error, i.e. refV V V fV V VVV , can be calculated as  

 V V V refV f g d V fd VV f g df g dV V VVVV ff gf   (20) 

where refV  is the reference signal possessing a bounded first-order derivative. To dispose of the lumped 

disturbance Vd , an NDO is constructed as  

 
( )

ˆ
V V V V V V V

V V V

p l p l f g

d p

p lV V VVl pV VV   (21) 

where ˆ
Vd  is the estimation of Vd  and Vl  is the NDO gain, which is determined by V

Vl V
. 

Defining the estimation error as ˆ
V V Ve d d , the time derivative of Ve  is computed as  

 V V V Ve l e dVdVV V Ve lV V VVl eV VV   (22) 

To simplify the design procedure, we borrow a conclusion from [31] without proof, that is, the estimation 

error Ve  is bounded, and it is bounded by 
Vd VM l . In practical terms, due to the physical limitation, the 

engine could not always provide sufficient thrust to maintain the favorable tracking performance when 

the control input becomes saturated. To address this issue, we introduce an auxiliary system to generate 

certain compensating signal for weakening the negative effects caused by saturation constraint. The 

auxiliary system can be described as [32] 

 ( )V V V ck gV kk   (23) 

where c  is the nominal control law and k is a positive definite design parameter. Defining 

V Vz V VVV  as the modified velocity tracking error, the derivative of Vz  can be calculated as  

 V V V c V ref Vz f g d V k VV kV fz f gV VVf gfVVV   (24) 

Consider a quadratic form   

 21
2V Vz   (25) 



Its derivative is given by  

 ( )V V V V c V ref Vz f g d V kkf(V z (V (   (26) 

In accordance with (22)-(24), by applying nonlinear dynamic inversion technique, the nominal control 

input c  is designed as  

 1 ˆ( )c V V V V V ref Vg k z f d V kk   (27)  

Note that the value of Vg  is nonzero owing to Assumption 1. Substituting (27) into (26), we can obtain  

 V V V V Vk z z ekV k zVV   (28) 

where Vk  is a positive gain parameter.  

B. Controller Design for the Altitude Subsystem

From (4), the altitude tracking error is defined as 

 refh h h fh h hhh   (29) 

where refh  is the reference signal, which has the bounded derivative. For the cruising phase, the flight 

path angle  is close to zero, which implies sin . Given this, the flight path angle command can 

be selected as  

 h r
d

k h h
V
h hh

  (30) 

where hk  is a positive constant. If the flight path angle  accurately tracks the desired reference 

signal d , then it follows from (29) and (30) that  

 hh k hh k hhh k h   (31) 

which apparently guarantees that hh  converges to zero. Therefore, the altitude subsystem controller can 

be designed to steer  to track the desired reference signal d  to accomplish the altitude tracking 

mission. 

Step 1: In the beginning, the dynamics of the FPA tracking error can be expressed as 

 dd   (32)  

Recalling (4), the first-order derivative of the tracking error is computed as 

 df g d ddff g df g ddf g dgf g df ggfff g   (33) 

To ensure the completion of the following control design, another NDO is designed, similar to (21), to 



estimate the lumped disturbance d . In view of the conclusion in [31], the estimation error i.e., 

ˆe d d , is bounded by /dM l , where d̂  is the estimation of d  and l  denotes the NDO gain. 

Since the function of g  is nonzero according to Assumption 1, to derive 00 , the following virtual 

control signal is chosen as: 

 1 ˆ( )c dg k f d̂ )   (34) 

Obviously, the derivative of the virtual control signal will become increasingly complicated as the system 

order increases. To remedy this, we introduce the dynamic surface control [33], capable of eliminating 

the problem of “explosion of terms” inherent in backstepping control. Let the virtual control signal, i.e., 

c , pass through a first-order filter to generate d  and its derivative dd  as  

 d d cd dd dddd   (35) 

Next, the dynamics of the FPA tracking error  can be further calculated as  

 k e g ykk e g yk e g yk e g yee g ye gekkk   (36) 

where  is AOA tracking error described as dd , y  represents the virtual variable estimation 

error defined as d cy , and k  denotes the control gain for the FPA tracking error. Choose a 

quadratic form as  

 2 21 1
2 2

L y212 y22 y
2

2   (37) 

Differentiating L  with respect to time and substituting (33) and (34) result in  

 2 ( )d cL k e g y yL kk 2 ( )2 (e g y ye g (2 (e g y ye ge g2 e g y yge ge g2222   (38) 

Step 2: By simple calculation, we can get the time derivative of the AOA tracking error as 

 ( ) dQ f g d ) dQ f g d( )Q ( ))Q (Q f(Q (Q (   (39) 

The estimation of d  is expressed as d̂ , which has been derived in Step 1. Similarly, the virtual 

control law cQ  can be designed as  

 ˆ( )
cc d uQ k f g d̂ ) uf d( dd)( )( ) d)(((   (40) 

where 
cu  will be defined at a later stage. Then, applying DSC technique, the estimation of cQ  can be 

derived from  

 Q d d cQ Q QQ Q Qd dd dQQdd   (41) 



where dQ  is the estimation of cQ  and Q  denotes the time constant. As a consequence, the time 

derivative of the AOA tracking error can be rewritten as  

 u Qk e z yk e zuk ek ek e ze zekkkk   (42) 

where Q d cy Q Q , k  is constant parameter to be designed later, and uz  will be defined at the next 

step. Define a quadratic form as  

 2 21 1
2 2 QL y212

Qy22

2
2   (43) 

Taking the time derivative of L  and substituting (42) yield  

 2 ( )u Q d cL k e z y Q Q )L kk 2 e z y2 (u Q (ee z yz2 (Q (e zee2 e   (44) 

Step 3: The first-order derivative of QQ  can be computed as    

 ( )Q Q e Q dQ f g v d Qdg v d Q( ) dQ v dd( ) Q( )f gQ QQ f gf gf   (45)  

Recalling the expression of ( )e v  in (19), equation (45) can be rewritten as  

 ˆ ( )T
Q Q d Q Q N Q dQ f g u g t g d d Qˆ T

dd d Qˆ T
dQ tˆ ( )T g d dQ N QQ NQ Nf g u gf g uQ Q d QQ dQ d ( )T ( )Q ff g   (46) 

To handle input saturation, another auxiliary system is constructed as follows:  

 ( )
c c cu u u Q d ck g u uk uu ukk u   (47) 

where 
cu  is the state of the auxiliary system, and cu  is the nominal control input. Similarly, the 

estimation of Qd  can be derived by constructing a relevant NDO and the estimation error i.e., Qe  is 

bounded by /
Qd QM l . Combining (46) and (47), the modified error, i.e., 

cu d uz Q Q , satisfies  

 ˆ
c c

T
u Q Q c Q N Q Q d u uz f g u g d g d Q kd Q kd QQ dQQ dz f gu QQf gfQQQ   (48) 

Finally, the nominal control input is designed as  

1 ˆˆ[ tanh( ) ]
c c

Q
c Q Q u u u Q Q Q d

g Q
u g k z k f g D d QˆQ

] (49)

where D̂  is the estimation of D  and Qk  is a positive constant. Notice that Qg  is nonzero in the 

cruising phase. For the uncertain parameters D  and , the adaptive laws are chosen as  
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where D , Dl ,  and l  are positive constants, which are designed by projectors later. 0D  and 

0  are also design parameters, which can be chosen to be zero when one does not obtain precisely 

prior knowledge on them. Proj( )) in (50) denotes the projection operator that is used here to modulate 

the estimations within the admissible ranges. The projection has the following form: 

   

ˆ0, 0 ,
ˆProj( ) 0

,

L
i i

u
i i

if p p
p p

otherwise
  (51) 

Define a quadratic form as 

 2 21 1 1
2 2 2

T
Q u DL z D1 DD

2DD   (52) 

where ˆ̂  and ˆD D D̂D D DDD . From (48)-(50) and (52), the first-order derivative of QL  can be 

calculated as  

 2 ˆˆ ˆtanh( ) ( )Q u T
Q Q u u Q u Q u Q N D

g z
L k z z e z g D l z g d DDz g d DDD

2 ˆ ug zQL k z z e z g D l2 h( )u
QQ

gQ z g dz g dQ NQQ N)k z z e z g Dk z z e2 tanh( )Q Q QQ Q Q tanh( ) (( D̂ˆT ( )T ( )))( )((   (53) 

Remark 5: At the above steps, the first-order filters are introduced to filter virtual control signals cx  

( ,x Q ) and obtain dx  as well as dxdx . Then dx  and dxdx  are used to replace cx  and cxcx  at the next 

step, respectively. As a result, the explosion of complexity problem is successfully avoided and the 

controller constructed is significantly simplified. 

Remark 6: By constructing the input nonlinear pre-compensator illustrated in Fig. 2, the input 

saturation can be dealt with through some common control approaches used for saturated systems, thus 

enhancing the flexibility in accounting for input nonlinearities and simplifying the control design. 

.  Stability Analysis 

The goal pursued in this section is to evaluate the stability properties of the resulting closed-loop 

system. To investigate system stability, we begin with introducing the following Lyapunov candidate 

function for the overall system: 

 V QL L L L   (54) 

Differentiating L  and using (28), (38), (44) and (53) lead to 
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As shown in (55), cc  and cQQ  are the derivatives of c and cQ , respectively. By using tedious but 

straightforward calculations, we can get continuous functions  and Q  such that    

 
c

c QQ
c

QQ
  (56) 

Then, in accordance with the definition of first-order filters, we have  
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y
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Substituting (56) and (57) into (55) and invoking Lemma 1 yield  
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For the above consequence, we have the following useful properties:   
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Employing Young’s inequality and incorporating (59) into (58), the derivative of L  can be further 

computed as   
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where is an arbitrarily small positive constant. M is defined as 2
0

1 ( )
2 DM l D D  

2 2 2
0 0
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QV d ddT

V Q

M MM
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l l l
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Theorem 1: Consider the AHV (4) with uncertain lumped disturbances and input nonlinearities 



described by (6) satisfying Assumptions 2 and 3. Under the control laws (27) and (49), and parameter 

updated laws (50), for any bounded initial condition, there exist design parameters ik , , , ,i V Q , 

such that the error variables, i.e., , , ,Vz h,h ,,  and uz  are bounded. Moreover, the output tracking 

errors Vz  and  remain within the compact set  defined by  

: , ,V Vz z E EE,E ,VV  

where 2( (0) )E L M a  with a  defined in (62). 

Proof : Consider the set 2 2 2 2 2 2: 2 , ,T
V i DA z Q y D p i Q22222 22 ,222222 22 22 22 22 22 2 22222 . Note that the 

set A is a compact set, there exist maximum values of x , ,i Q  on the set A. These maximum values 

are denoted as iM , ,i Q . From the preceding analysis, let 0 0a , the control parameters involved 

in the proposed control scheme can be selected as following to guarantee the system stability:    
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Substituting (61) into (60) and rearranging yield 

 0L a L ML a La La0   (62) 

where 0 0min , , D Da a l l . Let 0a M p , it follows that 0L 0L  on L p . Therefore, 

L p  is an invariant set. Furthermore, integrating (62) and through straightforward calculations, we 

have 
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Next, in accordance with (25), (32), (54) and (63), we obtain  
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As a consequence, Vz  and  are uniformly ultimately bounded. Meanwhile, the tracking errors can 



converge to an arbitrarily small neighborhood around zero with the appropriate choice of the control 

parameters.  

Remark 7:  The procedure for choosing the control law gains can be summarized as the following steps: 

Step 1: Choose the time constants  and Q  according to the equation (61) and they should be 

chosen small values. The NDO gains, i.e., vl , Ql  and l , should be set no more than one third of the 

frequency of the first vibration mode 1 to avoid exciting the flexible dynamics. 

Step 2: Choose the control law gains ik  , , ,i V Q , according to the equation (61), while they 

shouldn’t be selected too large due to the bounded control input. Therefore, one should balance the 

tracking performance and the control input to select appropriate values.  

Step 3: The positive parameters D , Dl ,  and l  should be chosen and modulated in accordance 

with the magnitude of relevant variables.    

 .  Simulation Results 

In this section, simulation results are presented to illustrate the effectiveness of the proposed scheme. 

The initial values of the reference commands are chosen as (0) 7850V ft s  and (0) 86000h ft , 

while the final values are taken as ( ) 9850V ft s  and ( ) 96000h ft . The references of refV and 

refh  are generated by filtering corresponding step commands with second-order pre-filters, which are 

chosen with same natural frequency of 0.03 /rad s  and same damping factor of 0.95. The initial values 

of AOA and pitch angle are all set as 3.5 , and elevator deflection and fuel equivalence ratio are chosen 

as 0. Furthermore, the admissible ranges of states and inputs are illustrated in Table 1. 

Table 1. The permissible ranges of states and inputs. 

Variable Min value Max value 

Velocity (ft/s) 7000 10000 
Altitude (ft) 80000 120000 

AOA (deg) -6 6 

FPA (deg) -3 3 

Pitch rate (deg/s) -10 10 

Elevator deflection (deg) -20 20 

Fuel-to-air ratio   0.05 1.2 

The detailed coefficients of the system can be acquired in [25]. Based on the engineering experience, 



the dead-zone parameters are chosen as 0.02lb , 0.03rb , 0.95lm , and 1.05rm , whereas the 

bounded values of slopes are selected as 0.9l rm m , and 1.1l rm m . 

To verify the proposed controllers more effectively, simulation results are divided into the following 

two representative cases:  

A. Simulation for the AHV Without Input Constraint 

Simulation on the longitudinal model of AHVs with no input constraint is presented first to test the 

good tracking performance of the proposed controller. The performance of the modified smooth inverse 

structure (noted as SIS) proposed in this paper is compared to the traditional smooth dead-zone inverse 

structure (noted as SDIS) in [29] and the conventional backstepping control (noted as CBC) scheme 

without handling the dead-zone. The control parameters used in the subsequent simulations were 

judiciously selected by trial and error for achieving a good tracking performance. The main control 

parameters of the three control schemes are presented in Table 2.  

Simulation results under the aforementioned three control schemes are presented in Figs. 3 and 4. To 

be specific, the tracking errors of altitude and velocity are shown in Fig. 3. As shown in Fig. 3(a), it can 

be seen that the tracking errors of altitude under both SIS and SDIS schemes exhibit a good convergence 

trend to a small neighborhood around zero in the presence of dead-zone, aerodynamic uncertainties and 

flexible modes, whereas the tracking error under CBC scheme is unsatisfactory due to the large steady 

error. Meanwhile, from Fig. 3, it is obvious that the SIS scheme shows better tracking performance in 

terms of the magnitude of tracking errors when compared to SDIS scheme. Furthermore, as illustrated in 

Remark 2, there exist fewer uncertain parameters to be estimated under the SIS scheme, which also 

embodies the superiority of the proposed control scheme. In addition, control inputs under these control 

schemes are demonstrated in Fig. 4. By inspecting these figures, we may notice that the control inputs 

e  are smooth and bounded, but the upper bound of 20  is exceeded by all algorithms. In view of this, 

the input constraint should be further explicitly considered during the design procedure.  

 

 

 



Table 2. Control parameters for simulation. 

Control schemes Control parameters 

Proposed control scheme  
3Vk , 2hk , 2.2k , 2.5k , 3Qk , 0.1i , 5 , 1D , 1l ,

1Dl , 0 [0.9,1.0]T , 0 0.01D , 5Vl , 5Ql , 2l  

Control scheme in [29] 
5Vk , 2hk , 2k , 2k , 3Qk , 0.1i , 6 , 1D , 1l ,

1Dl , 0 [0.9, 0.01,1, 0.01]T , 0 0.02D , 4Vl , 6Ql , 5l  

Conventional back- 

stepping control 
3Vk , 2hk , 3k , 3k , 3Qk , 0.1i , 4Vl , 8Ql , 6l  
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                     (a)                                         (b) 

Fig. 3 Time reponses of tracking errors: (a) Altitude tracking error, (b) Velocity tracking error. 
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 Fig. 4 Time responses of the control inputs: (a) Fuel equivalence ratio, (b) Elevator deflection. 

B. Simulation for the AHV With Input Constraint and Dead-Zone 

In this scenario, a severe case in which the actuator of the elevator not only suffers from dead-zone but 

also input constraint is considered. For comparison, in addition to the proposed controller (noted as SIS), 

the control scheme employed in [20] is also presented here, in which the input saturation and dead-zone 

nonlinearities are regarded as an input saturation by applying the right inverse of dead-zone (RIOD). 

Simulation results under the SIS and the RIOD schemes are illustrated in Figs. 5-13. More specifically, 



the tracking responses of altitude and velocity are depicted in Fig. 5, whereas the corresponding tracking 

errors are demonstrated in Fig. 6. As can be seen from Fig. 6, the SIS scheme exhibits the better tracking 

performance in terms of the magnitude of tracking errors when compared to the RIOD scheme, although 

the latter scheme is implemented with the known parameters of dead-zone. Further, to illustrate the 

tracking performance , a performance index function is introduced and defined as 2
0

tE e d , where t 

denotes the simulation time and e represents the tracking errors, i.e., hh  and VV . The comparison results 

are provided in Fig. 8. Obviously, the proposed SIS scheme generates the less error energy compared to 

the RIOD scheme. The control inputs under the both schemes are plotted in Fig. 7. It is apparent that all 

control inputs are constrained in the available ranges. By selecting appropriate constraint values 

according to the Remark 4, the response of the nominal control input cu  is indicated in Fig. 9. 

Meanwhile, these restrictions, i.e., minp  and maxp , guarantee that the elevator deflection always 

ranges within its bound, as shown in Fig. 7. Moreover, Fig. 11 records other significant states of the 

AHVs, that is, AOA, FPA, and pitch rate. It can be seen that all these states are within the admissible 

ranges illustrated in Table 1, and they are almost coincident with corresponding virtual control signals. 

Estimation results of the NDOs are given in Fig. 12 ( 1Vd , 1Qd  and 1d  denote the estimation of Vd , 

Qd  and d  respectively), while the flexible states are demonstrated in Fig. 10. Additionally, the 

representative parameters LC and ,TC  have been selected separately to implement the aerodynamic 

parameter perturbation analysis under the SIS scheme. The simulation results are shown in Fig. 13. It is 

clearly indicated that, in spite of the existing of perturbations, the vehicle still sustains a desirable 

tracking performance under the proposed control scheme. 

0 50 100 150 200 250 300 350 400
8.4

8.6

8.8

9

9.2

9.4

9.6

9.8
x 10

4

Time (sec)

A
lti

tu
de

 tr
ac

ki
ng

 (f
t)

 

 

reference
SIS
RIOD

0.5 1
8.5998

8.6
8.6002

x 10
4

 

 

  
0 50 100 150 200 250 300 350 400

7500

8000

8500

9000

9500

10000

Time (sec)

V
el

oc
ity

 tr
ac

ki
ng

 (f
t/s

)

 

 

reference
SIS
RIOD0.5 1

7850

7851

 

 

 
      (a)                                               (b) 

  Fig. 5 Tracking responses: (a) Altitude tracking, (b) Velocity tracking. 
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   Fig. 6 Time responses of tracking errors.    Fig. 7 Time responses of the control inputs. 
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  Fig. 8 Error energy: (a) Altitude error energy, (b) Velocity error energy. 
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Fig. 9 The response of nominal control input cu .    Fig. 10 Time responses of the flexible states. 
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  Fig. 11 Time reponses of system states: (a) Angle of attack, (b) Fight path angle, (c) Pitch rate. 
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     Fig. 12 Results of lumped disturbances estimation: (a) Vd , (b) Qd , (c) d . 
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  Fig. 13 Aerodynamic parameter perturbation analysis: (a) Altitude error energy, (b) Velocity 

error energy. 

Summarizing all of the simulation cases, it is noticed that the proposed scheme accomplishes the 

expected mission successfully, despite the presence of input nonlinearities, aerodynamic uncertainties 

and flexible modes, and shows superior performance compared to other schemes. Moreover, the 



flexibility in selecting control parameters can be used to obtain the desired performance while satisfying 

the constraints on the control magnitude. 

VII.  Conclusion 

This paper has investigated the longitudinal flight control problem of AHVs with input nonlinearities, 

aerodynamic uncertainties and flexible modes. An adaptive backstepping controller and a dynamic 

inverse controller have been designed for the altitude subsystem and velocity subsystem, respectively. 

The proposed dynamic surface control scheme is free of the problem of “explosion of terms”, thus    

significantly reducing the computational burden. In particular, a modified smooth inverse has been 

developed in this work. The utilization of this modified inverse not only compensates dead-zone effects 

but also relieves the computational burden. As another highlight of this paper, an input nonlinear 

pre-compensator has been proposed to handle input saturation and dead-zone. As such, this 

pre-compensator also simplifies the control design for the altitude subsystem subject to these two types 

of input nonlinearities. The simulations results have illustrated the effectiveness of the proposed control 

scheme. In view of the input nonlinearities, one would focus on the integration of hysteresis and 

saturation based on the adaptive backstepping control to obtain the preferable control performances in 

the future work. 
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