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Abstract

New methods andmodels for the ongoing commissioning of HVAC systems in commercial

and institutional buildings.

Nunzio Cotrufo, Ph.D.
Concordia University, 2007

The performance of the HVAC systems in buildings tends to decrease after few years of
operation. Equipment drsensors degradation lead to remarkable wastes of energy and money, as
well asto the increase djuilding occupats thermal discomfort. HVAC ongoing commissioning
(OCx), the continuation of HYAC commissioning well into the occupancy and operation ffhase o
a building life, has been recognized as a-effgictive strategy to reduce energy wastes, equipment
degradation and thermal discomfdBuilding Automation Systems (BAS) collect and store huge
amount of data for the purpose of building systems cofithalse data represent a golden mine of
information that can be used for tB¢€x of the building HVAC systems.

This research work develops and validates new methods and models to be used for the OCx
of HVAC systems using BAS measurements from commonly ladtabnsorsA Fault Detection
and Identification (FD&I) method for chillers operation, and several virtual sensor models for
variables of interest in Air Hatidg Units (AHUSs) are presented.

A FD&I methodbased on Principal Components Analysis (PG49 leendeveloped and
usedto detect abnormal operation conditionsan existing chiller operatioand identify the
responsible variabe The proposed FD&l method has been trained using measurements from
summer 2009, and thersed to detect abnormabservationgrom the following seven summer
seasons (201R016). When the detectedbnormalobservations were replaced with artificially
generatd fault-free data, the proposed FD&lethoddid not detect any abnormal value along
those artificially faultyfree variablesIn summer 2016 théuilding operators changed several
HVAC system operation set points, the FD&| method was effective in detecting almost 100% of
the observations and properly identifying those variables whose set point was changed.

For twodifferent operation modes of an AHU several virtual outdoor air flow meters have
been developed arttie predictions have been compared against-$kiomn measurements using
uncertainty analysis and statistical indices. Three models have been invesiigatethe heat



recovery coilwasoff. Results showed that the model with the simplest mathematical formulation
was the most accurate, with the lowest value of uncertainty. \&heat recovery coil at the fresh

air intake was on, two virtual flow meters leaveen developed to predict the outdoor air flow rate
without the need of additional sensors. Both the models predicted the outdoor air ratio with good
statistical indicesthe Mean Absolute ErrdMAE) was0.015 for model and 0.016 for moded.

Three methods for the virtual measurement and/or calibration of air temperature and
relative humidity have been developed for different AHU operation mddese methodsare
different in terms oMmodelling strategy, information needed and technical knowledgeeddar
implementationkor instance @sults from the correction of the faulty measurements of the outdoor
air temperature along a 24 hours period using Method A shangdh virtual calibration
capability: MAE = 0.2C andthe Coefficient of VariationCV-RMSE = 1.7%.

A new definition ofvirtual sensoris proposedat the end othis research work. From a
review of publications on virtual sensors for building application, the two most recurrent reason
for the implementation of virtual sensor mod@ssts and practical issudsve been highlighted

and integrated into the proposed new definition.
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1.INTRODUCTION

1.1.Problem Statement

The energy consumption is significantly growing all around the world. The International
Energy Agency (IEA) reported a continuous increase in the yearly energy consumption during the
last45 yeargmore than 50% since 1971yhile the CQ doubled(IEA 2016) This trend does not
seem to change in the next yedise building sector is responsilfter a big portionof the world
energy consumption, and the portion of energy consumption due to the building sector is growing
faster than othersThe Department of Energy of the United States of Amergtamated thatni
2010 buildings were accountable for 41% of the primary energy consumption, more than industry
and transportatiofU.S. Department of Energy 201%) Canada 27% of the secondary energy use
and 23% of the Green House Gas (GHG) esmoss in 2013 wre due to buildings(Natural
Resources Canada®). Inthedeveloped countries most of the energy usetddding operation
is used for heating and coolingVAC systems are estimated to accountrfarstof the energy
end use in the building secte¥7% in the U.S. an89% in Canad#Natural Resources Canada
2016; U.S. Department of Energy 201R)vestments and rearchon the energy efficiency in
buildings thus, should be stratedic havea great impact on the buildings energy consumption
trendin the next decadesmprovements in buildingreergy efficiency would reducecosts and
pollution due to improper, neefficient building operation.

The recommissioning of existing HVAC installations has proved to be an extremely cost
effective strategy to identify and fix energy wastes and reset the sysem me et t he occ
needsAlthough this practice is gainjnmore and more popularity, the savings from HVAE re
commissioning do not persist over tirflEA 2010) Few years after recommissioning, HVAC
systems ath equipment decrease their performance, faults in operation start to rise, and occupants
complains augmer{Roth et al.2008) The recent, remarkable augment of technology content in
HVAC systems allows for more sophisticated control strategies but, at the same time, exposes
building systems to a higher level @k to fail. Components and equipment degradation, sensors
miscalibration and improper control strategiesl schedules are such of failur€se occurrence
of thoseso calledsoftfailures is not easy to detect, and it may remain undetected for a laang tim
before being fixed, producing noticeable waste of energy, increase of costs and pollution, as well

as thermal discomfort for occupan(slaves 1999) A new, nonstop monitoring strategy,
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implemented on eeal timebasis, aros@ the lasttwo decads. This approach is named Ongoing
Commissioning (OCx), and is considered highly effectmeHVAC monitoring, performance
analysis and efficiency maintenar(€®th et al. 2008Y0Cx uses HVAC trend data from Building
Automation Systems (BAS) to continuoudhge control algorithms, in order to detect and
diagnostic fault,andmonitoringequipmenefficiency and degradatiomhus, large buildings with
modern BAS are ideal candidates for OCx implementatiange amount of datare available

from BAS, which represent anvaluable source of information about the state @peration of
building and building systems. The extraction and interpretation of those information for
maintenance purpose can be tedious, time demaraligeven impasble to be performed by
humansalthough they may havdgh technical skills.

In this context, there is a need foathematicamethodso be implemented in order:t9
benchmark equipment performance levels, ii) detect anomalies in measurements and iii) assist
building operators in maintaining the desired level of system perfagn&Cxmethodsshould
account for several issues, likiee availability andthe quality of data,the costfor additional
devicesneeded for OCx implementatipand building o p e r atéclonicadksiowledge. This
research aims to develoyggw methods for the Ongoingaghmissioning of HVAC systemssing
measurements commonly available from BAM&athematicaimethods could be integrated in the
HVAC control code, taking advantage of the high capability of nowadays commonly installed

BASSs, at noaddtional costs.

1.2.Scope of the thesis

This thesis focus on the use of BAS trend data to derive valuable information on the
operation of HVAC systems. BAS trend datntainuseful information about the state and the
operation of HVAC systems. The chaltge is to extract those information and use them to improve
systems operation and maintenance strat®tathematical methods are needediébect faults
and unexpected events in equipment operation, and provide building operators with useful
information toaddress inspection and maintenance tasks.
Thisthesishas fourmaingoalstowards the main topics of the Ongoing Commissioning of HVAC

systems



1. a new method for the fault detection and identification in chillers operation;

2. the development ofiew virtud flow meter models for the virtual measurement of the
outdoor air flow rate into an AHU under different operation modes;

3. the development dd series of methods for the development of virtual sensor models for
the virtual measurement of variables or theuwal recalibration of faulty sensorsf air
properties at the AHU mixing box inlets and outlet;

4. a new definition oWirtual sensor$or building application.

1.3.0Overview of the thesis

The literature review fromchapter 2 introduces to the different forms of building
commissioning available tools for the automatic monitoring of buildings. A review of publications
on the main topics of this thesis are presentehchmarking model® section 2.3and virtual
sensordn section 2.4 The literature review chapter concludes with the main objectif/éise
present research worlkhe methodologyresented irchapter3 starts with an overview of the
Knowledge Discovery in Databases (KDD), followed by the methodology osedé¢h objective.
The chapter concludes with the uncertainty analysis strategy used in this thesis to quantify and
interpret the results uncertain@hapter 3is not intended to be exhaustigéthe methodology
used in this work Detailed description omethods and models development for each thesis
objective is givenn the further chapter3he case study used for this research vimgresented
in chapter 4

The fault detection and diagnosis method for chillers is presented in chapter 5, while the
virtual flow metermodels,and themethods for thevirtual measurement and calibratiGir
temperature and relative humidity gueesentedn chapter 6 and chapter iespectively. The
discussion on a new definition wirtual sensordor building applicatioris addresseth chapter
8. Results are discussed at the end of each chapter.

Finally, the conclusions from chapter 9 recall the main contributions of the present research

work and propospotential further works and developments.



2.LITERATURE REVIEW

This chapter presents a review of the literature on the main topics related to the Ongoing
Commissioning of HVAC systems. First, the existing forms of HVAC commissioning are
presented. Following the methods for the HVAC ongoing commissioning are revied/eeeds

for further research are identified.

2.1.The commissioning process

The commissioning process intends to verify that the building systems and facilities meet
the Owner Project Requirement (OPR). ASHRAE published commissioning guid@BIidRAE
2005a)in which several forms of commissioning are identified: Initial commissioning, Re
commissioning, Retro commissioning, Continuous Commissiningnd Ongoing
Commissioning. While Initial, Reand Retro commissioning aperformed once, Continuous
Commissioninfand Ongoi ng c owalhiitoste Oaupanoygandgperafion Phase
to verify that a project continues to meet c
(ASHRAE 2005a) Continuous Commissionifigs performed periodicallye.g.several time per
year, during the entire building life. Ongoing Commissioning goes more in deep, verifying
operation and performance ideally with hourly or shorter time steps.
Initial commissioning takes place at the early stage of building design, going through the
construction phase and the ymecupancy phase. Inspections and design documents reviews are
performed by the commissioning team. Initial commissioning intends to verify that all taesys
are properly installed and work as expected. The goal is the delivery of a building which meet the
OPR.
Re-commissioning and Retro commissioningire commissioning on existing building. While
Re-commissioning refers to buildings that have been alreatymissioned in the pass, Retro
commissioning is performed on buildeighever commissioned before. For both, a re
commissioning team of energy managers and experts performs in situ inspections, reviews of
design documents and operation records-cétemissoning intends to ensure that the current
buil ding occupantds needs ar e -costimprovdmgntslareai | di n
investigated in order to improve system operation and control strategiesniR@ssioning may
be part of a bigger retrafiproject. Retro commissioning review the whole of the installed

equipment and verify the way the work together. Non optimal design and installations are

4



identified and resolved, along with probl ems
Re-commissioning, retro commissioning aims to adapt systems operation to meet the current
occupant s needs.

Continuous Commissioning has been first promoted in 1993 by the Texas A&M University. It
starts from the idea that a program of continuous operand maintenance (O&M) of the
building system operation would allowed to better identify wastes and develop corrective actions
(Claridge et al. 2000)The main target of CTis to maintain the desired engrgerformance

through the timehrough periodical verification of the system and equipn{ieint 1999) In the

A&M first case, CC used longterm measurements of electricity, chilled water and heating water
consumption at a one hour time step. Data quality was checked weekly, and data analysis was
performed monthly by humans, resulting in a monthly energy capsamreport, which showed

trends and savings. The use of a continuously implemented approach makes correct operations to
persist and, in the A&M case, it resulted in an averaging saving of 28% for cooling and 54% for
heating energy consumption. The O&Mopedures implemented at A&M University require
technical knowledge and system experience. It is performed by engineers and experts, and the
building operator participation is desired in order to make them autonomous for(fCi@nege

et al. 2004)

Ongoing Commissioning(OCx) is commissioning implemented on a fstap time basis through

the building useful life(ASHRAE 2005a) The measurements collected from the Building
Automation System (BAS) are used to verify the compliance of the equipment with the expected
performance levels. The amount of data collected from BAS is huge, and the compliarce to th
expected performance levels has to be verified each time new measurements come to be available
(e.g.one hour, or few minutes). Potentially the measurements from BAS allow for the verification

of each single HVAC component. Because of the huge amoinfbahation to be reviewed, and

the analysis to be run with a high frequency, the OCx commissioning cannot be performed by
humans without computational suppoMeasurements validation, benchmarking compliance,
equipment fault detection and diagnostics] antomated reports generation can be provided by
dedicated tool that helps building operators to monitor system and equipment performance levels

and identify opportunities to improve saving strategies.



2.2.Analysis tools
HVAC control strategies inmodern buildings are implemented through BA&hich

collectthe needed measurements and use them to accommodate needs according to the control
codes.The BAS collecs, and eventually stose huge amount of data from building system
operation. Those dateepresent an evaluable source of information on the system current
operation. Several tools have been developed which use trend data from BAS to perform Fault
Detection and Diagnosis (FDD) on HVAC operation. The most common FDD strategies are
performed comaring the current values against-petnts or benchmarks. A review of the

available analysis tools is presented in this section.

2.2.1.Automated diagnostic tools

Automated diagnostic tools which perform Fault Detection and Diagnosis (AFDD) on BAS
trenddata are often developed in the form of -axidto the BAS. AFDD automate the process of
collecting measurements, evaluate performance indices (Pl), detecting faults and identifying their
origin.
The Pacific Northwest National Laboratory, in collaboratiath Honeywell and the University
of Colorado, developed\Whole Building Diagnostician (WBD) tool to automate the process of
fault detection in AHU economizers and central plants operéBoaimbley et al. 1998WBD
provides automated data acquisition and achievement directly from BAS. The economizer module,
named OAE, requires for measurements of the air temperatures, along with the fans modulation
and the valvesgsition signals, to detect faults in operation. Faults are detected through a decision
tree which implements engineering rules of proper operation. A user interface uses color coding
to display faults when detected. The tool provide additional informadibelp in fault diagnosis.
The central plant module, WBE, uses measurements from the BAS along with neural networks to
predict the whole building electrical and thermal consumption, and the HVAC equipment energy
consumption. Fault diagnosis in WBE modate manual. No dedicated sensors are installed from
WBD implementation, all required points are commonly recorded by BAS for control.
PACRAT (Performance and Continuous Recommissioning Analysis tool) was developed by
Facility Dynamics Engineering and commialized in 1999FacilityDynamics Engineering.d.)
It is addressed to AHU, chillers, hydronic system, whole building energy and zones distribution.

PACRAT allows for a large variety of raw data visualization techniques: time seriés3R,



daily profile, load duration, aggregate. Fault detection and diagnosimanded to thermal and
electric energy baselingSantos and Brightbill 2000PACRAT verifies the whole building
consumption through comparisagainst reference buildings, based on performance metrics. At
equipment level, metrics are plotted to support building operators in fault detection. The
commissioning of the economizer operation is performed by PACRAT using measurements of the
air temperaire and humidity. Sensor faults and lack of calibration are highlighted if the tool
identifies a thermodynamically inconsistent status of the system. At both building and equipment
level, PACRAT use performance baselines of thermal and electric enengygiine energy data

by time of the week, air temperature and relative humidity. Energy wastes are quantified from the
deviation between measuremte and modelled baselines.

ABCAT (Automated Building Commissioning Analysis Tool) iseaniautomated tool desloped

by the Texas A&T University to monitor the energy consumption at the whole building level
(Bynum et al. 2012)ABCAT consists of a simplified, first principle based building calibrated
model, used to predict the whole building, cooling and heating egerggumption under given
weather conditions. Faults detection is carried out manually by users comparing energy
consumption predictions to measurements. ABCAT support the detection phase providing
statistical indices and plots. If thresholds are previodisiyned, ABCAT performs automated fault
detection looking at the magnitude and persistence of the difference beh&asarements and
predictions.

DABO™ (Diagnostic Agent for Building Operators) has been developed by the Intelligent
Building Group of theCanmetENERGY Research Center. DAB(Qrovides automated analysis

and report of trend data from building BAShoiniére 2008)Data analysis is perford by three
modules: the building energy agent, the FDD agent and the Corldéged Maintenance agent.

The FDD tool uses data from BAS to perform HVAC analysis at i) component level (hourly), ii)
system (hourly, daily and weekly) and iii) building levBlesigned for big institutional and
commercial buildings, DAB®' uses more than 800 rules to automate human analysis of Pls and
reference values. Spoint Pls account for the difference between a sensor output and
correspondent sgtoint.

CITE -AHU is anautomated commissioning tool for-diandling units, developed in 2003 by the

US National Institute of Standard Technologynd the FrenclScientifique et Technique du
Batimentcenter(Castro and Vae#iejad 2005)CITE-AHU performs automated functional tests



before occupancy, and continuous commissioning during the system life. The AHU Performance
Assessment Rules (APAR) identify different AHU operation modes based on 28 rules, control
signal and measurements from available sensors from BAS. Five AHU opearaites are
distinguished: i) heating, ii) cooling with outdoor air, iii) mechanical cooling and 100% outdoor
air, iv) mechanical cooling with minimum outdoor air, and v) undefined case. A set of expert rules
verify the system operation based on mass aadygrconservation equations. Faults are identified
from detecting unexpected operation modes. Although this tool is said to be automated, expert
knowledge is required for configuration and rules customizing. After GAAE) configuration,
functional testingand continuous commissioning can be implemented. Data can be analyzed daily,
weekly, or monthly. Once a fault is detected, temperature and control signal plots are provided
through the tool interface to thusers for diagnosis validation.

VPACC (VAV Box Performance Assessment Control Charts) consists of a set of algorithms
developed by the NIST for the FDD of VAV boxgxchein and Bushby 2009)he algorithms are

based on a statistical process control namedulative sum charfor each monitoredariable,

the expected value and variation range are defined. Faults are flagged when the cumulative sum of
process deviations from the expected value is exceeded. A setd#fpred process errors is then

used to interpret the detected deviation andribae the fault. Target VAV monitored variables

are, for instance, the space air temperature in relation to heating and cooling set points, the air flow
rate, and the differential air temperature. VPACC uses measurements from few points: air
temperature, @mpers position, and air flow ratEarough the collaboration with manufacturers,
VPACC has been integrated into BAS control codes, in order to execute the FDD algorithms along
with the normal control logic. The AFDD tool has access to the BAS measurearahtsventual

fault alarms and work orders are displayed on the BAS interface and included in reports.
VOLTTRON Lite ™ has been developed by tiRacific Northwest National Laboratory to
perform AFDD on AHU(Lutes et al. 2014)t includes seven proactive tests, perforrmecdaily

or weekly frequencyto verify the correct operation of system sensors and components. Automated
changes or simulated operating conditions are produced, and outputs are compapstted
values. The expected outputs derive from thermodynbasedrules. An air temperature
adjustable tolerance threshold 6fiZC is used to evaluate measured and expected outputs during
tests. Required inputs are variables commonly measured by fBASIVAC control: air

temperature at mixed, return, supply and outdoor condition, outdoor and mixed dampers signal,



heating and cooling coil valves signal. Because the implementation of proactive tests during
occupancy can af f thasetests should pearumtowdt ef occupandy dimet Tests
are performed in givensequene, and the outcome froatest may be used as hypothesis for the
following one
2.2.2.Building Automation Dashboards

Automated commissioning tools often provide dsgerface to easier understand the
system operation. Usanterfaces, also known as building automation dashboards, aim to inform
customers and make them aware of the building ongoing operation. A suryesmger by
ShadpourndKilcoyne (2015)on a large number of HVAC professionals reported the features
that should be integrated in a dashboard.thhse main features are: i) redahe energy costs, ii)
fault detection and diagnosis, and iii) facilities control. Depending on the available functions,

building automation dashboards havemeategorized in four levels:

)] Level 0, the simplest one, inclas static values from historic data and simulations. At
this level the target are the overall systems energy consumption and costs. Those
information are mainly used by designers and project managers to make decisions on a
master planning and life cycleuvel;

i) Level 1, in addition to all the functionalities from level 0, display real time energy data.
Building Automation Dashboards from level 1 intend to increase awareness in
occupants, displaying the building performance level, as well as cost and energy
meters Strategies consist of comparing yearly or monthly cost and energy use values
to previous records. Displayed data can concern the whole building as well as systems
and equipment energy use;

iii) A level 2 dashboard, in addition to the previously listed featuallows to customize
performance indicators and functions for specific equipment and components, as well
as display energy use and trend plots. The target is support users in fault detection and
diagnosis;

iv) Level 3 is the most advanced version of BuigAutomation Dashboard. At this level
dashboards integrate software for AFDD, which use trend data from BAS collected at
a short time stepe(g. hourly or each few minutes). Integrated AFDD software

automatically detect and diagnosis the origin of an ahab operation, monitor



performance indices trends, compare measured values to benchmarks, prioritize

maintenance interventions and quantify potential savings.

EnteliWEB is a facility management tool intended to support owners and energy managers to
analsis and interpret data from BA®eltacontrolsn.d). Visualization tools aim to support the
analysis of the system performance, helping in identifying low performance situations and
opportunities for operation optimization. EnteliwWEBproduced and commercialized by DElta
Controls, and allows to visualize energy profile and consumption data from HVAC and lighting.
Visualization techniques include bar and pie charts, as well as plot line graphs.

A contributeto HVAC performance visualization is givéy Abdelalimet al.(2017) The
authors proposed the use of Sankey diagrams to visualize energy, mass and costs flows through
HVAC systems in order to support the building operators in better understating the system
performance and idemyiihg opportunities for improvement. The proposed approach consists of
using trend past data from BAS along with first principles to derive energy, mass and cost values.
Those values are then used to build the Sankey diagram. As an example, the Sankey based
approach was applied to the HVAC system from a university campus, and allowed to effectively

identify the opportunity to optimize the heat recovery systerpaet.

2.3.Benchmarking models

Many monitoring strategies and fault detection methods hase pposed in the last
decades for the purpose of the commissioning of buildings. Although they varies in terms of
application level (whole building, building systems, equipment, components, etc.) and source of
information (questionnaires, utility billsend data from BAS, etc.) all of them implement some
sort of comparison between i) an observed value which is representative of the actual behavior of
the building/system, and ii) a benchmark which represents the expected performance of the
building/systen.

Existing models can be classified within few categories: grey and black box models (also
known as datdriven methods), and white box models (also known as first principle based
models).

Black boxmodels refer to a category of models developed thrteaghing machine approaches.

Correlation functions between regressors and predictions are not kBaek.boxmodels work
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primarily on experience, on how the system performed in the past. No engineering knowledge is
used in model architecture.

White boxmodels are based on the knowledge of the physical principles involved in the observed
phenomena. White box models usually implement mass and energy balance equations.

Grey boxmodels combine data fitting techniques with physical knowlédgand Wen 2014)

A great variety of datariven models have been developed for the benchmarking of HVAC
equipment. Data@riven models require for a reduced amount of information, time and technical
knowledge compared tavhite box models. Supervised datliven models use vailable
measurements to predict some indices representative of the performance of the equipment to be
benchmarked g.g. COP for chillers). Nosrsupervised datdriven models explore data and
benchmark the equipment throughiaternal representation of thperformance pattern. In this
latter case the model does not predict any variable, the benchmark consists of the representation
of the performance pattern discovered within the data set. The most popular supervised models are
classification models, regresa models, artificial neural networks, and fuzzy logic. Examples of
nonsupervised models are clustering models. Once the benchmarking model is developed, its
prediction (if the model is supervised), or the data internal patter (if the modelssipervsed),
is compared to the actual values from measurements. If the comparison does not satisfy some
threshold condition, an abnormal operationagfled and a fault is detected.

In the following sections a literature review on the existing benchmarkiogdels is
presented, for both system and equipment levels, focusing in particular on the inverde\(daja

models.

2.3.1.Building signature

When all the building systems are working as expected, for instance just after Initial, Re or Retro
commissionig, a building energy signature can be used to benchmark the building energy
consumption with respect to some parameday. putdoor air temperature, square meter of floor,
etc.). Example of building signature are tBeergy Use Indices (EUI) or Utility Go Indices

(UCI), used to compare a building to a similar sample of other buildifigsmpson and Moore

2011) At the building level, the utility bills are a valid source of information to build the energy
consumption profiles through the previous years, and thus quantify the energy save due to the

building Re or Retro commissioning.
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The use ofcalibrated modelss another strategy of building benchmarkigfficiency
Valuation Organization. 2007Building and/or building system models are calibrated in order to
minimize thedifference between predicted and measured performance over a given time period
(e.g.daily, weekly, monthly or yearly). Calibrated simulations can reach high levels of accuracy,
but theyare time demanding arréquire technical knowledge of building systeand physical
principles €.g.thermodynamics). For this reason simplified approaches are often préféaraxs
et al. 2001) The Lawrence Berkeley National Laboratory produced a guideline for energy
performance signature in small commercial buildif@sanderson and Lin 2016)he guideline
proposes dop-Downapproachin which the energy use per square meter (EUI) and the Energy
Star Rating are used as reference to calibrate the building energy model. Monthly bills are collected
and used to estimate the monthly energy consumpli@nd data from the BS were used by
Mihai (2014)to calibrate the model of a researcimtee in Montreal, QCA bottomup approach
is proposed by Zibin which uses trend data from the BAS to calibrate building n{ddeis
2014) Calibration starts ahe HVAC component level, moving up to equipment, system, and
building levels progressively. Trend data pre-processed andsed as input to the model, while
the model outputs are compared to the actual system outputs which are derived from trend
measurerants.

Datadriven models for building signature have the advantage to require for an extremely
reduced amount of information and technical knowledge if compared to calibrated models. At the
same time data driven models provide more reliable informatian thdex based building
signature methods as the EUI or the UCI. The most wide spreadrdata modelling approach
for building signature use regression models to link the building energy consumption or cost to
input variables€.g.weather conditionsExample of regression based building signature models
are given inCrawford et al.(1991) Hadley (1993) and Fels (1986) These studies will be
introduced m detail in the next section.

Other examples of building signature strategies based ordda¢sm models are given in
Dong et al(2005) Chung et al(2006) andLee and Rajagopalan (200&) Dong et al(2005)a
support vector machine (SVM) based model is used to take into account tlreeaomcorrelation
between weather data and building rgrlyeconsumption. Four years monthly bills are used along
with weather data (outdoor dbulb temperature, relative humidity and global radiation) to

benchmark the energy performance of four building€Hhang et al(2006)the EUI is evaluated
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from nine inputs: building age, indoor air temperaturepsatt, type of equipment and lighting
system detailgand occupancy related parameters. Given those inputs, the authors presented a table
of EUIl benchmarking values. A similar approach is proposdeeeéand Rajagopalan (200&)
labelling program was developed in Singapore with the intent of ranking buildings based on the
annual energy performance. The benchmarkireegy used data from surveys on a great number
of commercial buildings. A new index was proposed for the energy efficiency of each building
system, and the whole building index was finally calculated as the sum of every system index.

In Yanet al.(2017)a whole building benchmarking approach based on Gaussian Process
(GP) regression is presented. The GP regression model predicts the whole buildgy ener
consumption accounting for the uncertainty of the output. Larger inputs uncertainties would lead
to a larger output uncertainty (in this case the whole building energy consumption). The whole
building benchmark is used for the fault detection and ferevaluation of the impact of each
single input variable on the whole building energy consumpiesults from bth fault detection
and estimation of variablegripact are affected byhe considered uncertainty: the larger is the
benchmarking uncertaintyhe less sensitive would be the fault detection strategy, and the lower
would be the impact of each single considered input (the variables) on the whole building energy

consumption.

2.3.2.Inverse models for HYAC systems and equipment

A wide range of inerse (datalriven) models has been proposed in the last decades for the

benchmarking of HVAC systems and equipm@dtipamula and Brambley 200%&ad 2005b)

A study onmodek development for HYAGquipmenbenchmarking ipresentedn Reddy et al.

(2003) The author presented foomodels of the centrifugal chiller COP profile. In this study the
author investigated few key aspects to be considered in HVAC equipment modelling: i) the model
inputs, ii) the eventual physical meaning of the model coefficients, iii) the size and tiypedata

set used for training the model (training data set), and, for the case of regression models, iv) the
regression technique.

Fault Detection and Diagnosis (FDD) strategies have been developed for HVAC
components, mainly chillers, coupling daiaven models and with identification proceduresy(
classification rules). Il€omstock, Braun, and Groll (200thle authors presented a FDD strategy
for chillers based on few dathiven models which prict a set of five Performance Indices (PIs).

Predicted PIs are compared to the observed ones to detect eventual faults. The residual between
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the predicted and observed Pls values is used with a set of classification rules to diagnose the fault.
A similar FDD strategy is presented @ui and Wang (2005Based on five chiller components

Pls, the authors presented an effectivdtfalassifier which consists of a set of rules linking
residuals from predicted PlIs to goentified common faults in chillers.

From the different datdriven models available in the literature, fafrthemare here
presentedas the most common andegtive for HVAC equipment benchmarking: i) regression
models, ii) Artificial Neural Network (ANN), iii) Support Vector Machine (SVM), and models
based on the Principal Component Analysis (Hi2&ed models).

2.3.2.1.Regression models

Regression models are the most investigated models for HYAC benchmarking. The
literature proposes a wide variety of regression models aimed to characterize systems and
equipment energy performance under observed conditfegls. (1986)presented PRISM, a
univariate linear regression model which links the energy consumption to the outdoor air
temperature. The main issue in modelling HVAC systems and equipment is tHmezon
correlation among the parameters involved. A modelling pireewas proposed Irawford et
al. (1991)which consists of a segmedténear model. The entire range of variation of the input
was split in several intervals in which the system response could be approximated by a linear
function. The extreme point of the intervals in which the input values btrarggknown as change
points. Hadley (1993)showed that includinga daytype index improves the benchmarking
capability. The dayype index is a factor which gives information on the general weather condition
of the considered day.

In Katipamula et al(1998)the authors investigate the effectiveness of Multiple Linear
Regression (MLR) modslfor benchmarking the energy consumption of HVAC systems. MLR
are remarkably better than single variable regression models because the thermal load is function
of weather conditions, system characteristics, building usage, etc. The authors also iadestigat
the most appropriate time resolution for HVAC thermal load prediction (monthly, daily, hourly,
and subhourly). Reddy and Claridge (1994pserved that the prediction capability of MLR for
HVAC benchmarking can be impreg using Principal Components (PCs) based regression
models when the intagorrelation among regressors is high.

The use of notinear regression models for the benchmarking of HVAC equipment has

been investigated bylonfet and Zmeureanu (201Zour multivariate models, two linear (ML)
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and two nodinear (MP), were proposed which predict the electrical powerti{ipuand the
Coefficient Of Performance (COP) of a chiller ¢e§.12.4).

E=| t + Y +| tY eq.2.1
COP = t———+1 'Y +1 {Y eq.2.2
E=f +1 i +1 +1 1Y +1 Y +7 1Y eq.2.3
COP 3 f + 1 +1 1Y + Y + fY eq.2.4

wheriei,b,b ajmre thairegression coefficien@z is the thermal load at the evaporator,
Qedesignis the design thermal loa@ignosis the supply condenser water temperature, Taads the

outdoor air temperature.

Although both models predicting the electrical power input (€gs.and 2.3) showed good
accuracy, the nehnear model (eq2.3) predictions were slightly more accurate (RMISE =

4.0% against CMRMSE = 6.5% from the linear model). For the COP, thelm@ar model (eq.

2.4) showed again good prediction capability (RWISE = 4%), while accucy for the linear
model(eq. 2.2)varied (CVV\RMSE between 2.8% and 11.5%) depending on the training data set.
The superiority of nofinear regression models over the linear ones, thus, is not obMouget

and Zmeureanu (2011nvestigated the impact of the training data set on the model accuracy.
Along with the development of a linear model for chiller benchmarking, the authors investigated
the impact of the training data set size on the model prediction accuracy. Moreodiffdvent
training techniques were considered: i) #fugmented windowand ii) thesliding window When

the augmented window technique was used, models showed good prediction accuracy if trained
along data sets of last 14 days (CARMES < 6%).n thecase of the sliding windotechnique,
results showed thdarge training data sets decrease the prediction accuracy of the model. The
models trained with a 14 days sliding window data set-BBNSE between 4.8% and 8.8%)
performed slightly better than thosedels trained with a 21 days slightly window data set-(CV
RMSE between 4.5% and 30.7%).
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2.3.2.2 Artificial Neural Networks

Artificial Neural Networks (ANNs) model the relationship between inputs and outputs
using compositions of basic functions. Besawf their high capability in modelling ndinear
correlations, in the last decades ANNs have been investigated for HYAC modétetgr and
Chow 1998) There are two main techniques to identify an ANNforward modelingand ii)
inverse modeling

Theforward modellingiechnique is a classical supervised i@y problem, in which the
system to be modelled and the ANN argoarallel. The error between the ANN model outputs
and the observed actual values are used to refine the model coefficients and thus train the model.
In theinverse modellingpproach the real system to be modelled and the ANN model are in series.
The goal is to map the inverse of the system to be modelled, thus the system output is used as input
to the ANN model. The ANN model output is compared to the system input, andahis eised
to refine the ANN model.

ANN basednodekwereused to predict the cooling and heating load to estimate the energy
savings due to a building retrofiKrarti et al. 1998ndYokoyama et al2009) Reslts showed
good prediction capabilitieZmeureanu (20022)evebped and compared three different models
to predict the COP of an existing rooftop units: a General Regression Neural Network (GRNN), a
Back-propagation Neural Network (BNN), and a Multiple Linear Regression analysis (MLR). The
GRNN model showed to perforbetter than the otherl Kusiak and Xu (20123 dynamic neural
network was used for predictive control of an HVAC system. The predictive control strategy wa
feed by the ANN outputs, havigyo objective functions: the minimization of energy consumption

and the room temperature gtint. The proposed model allowed for up to 30% of energy savings.

2.3.2.3.Support Vector Machines

Support Vector Machines (SVMs) are machine learning models used for supervised
learning (classification and regressi¢@prtes and Vapnik 19955VMs identify a discriminant
function to split data in categories, performing a linear classification. SVM performinijnean
classification are namagernel trick SVM based models (hyperplanes) are then used to classify
new data in the same categories. If data are not labelled, SVM models implement unsupervised
|l earning, | ooking for natur al clustering 1in

been ecently used for prediction and forecasting in HVAC systems.
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A SVM based model was used to predict the thermal load and power input of a chiller
(Kusiak and Li 201Q) Compared against three other prediction models based on multilayer
perceptron, random forest and boosting tree, SVM based model showed a higher prediction
accuracy. Compared to ANNs, SVM based models proved to perform better when used to predict
the cooling thermal loa@Li et al. 2009and2009b) Also, SVM algorithms require less parameters
than ANNs, and thus are easier to design. SVM enable to magéhear relationships, and thus
recently become a topic of interest in HYAC modelling. For instance, SVM was used to model the
nonlinear correlation among air temperature, humidity and €@centration in an AHU served
environmenta(Kusiak, Li, and Zheng 2010Prediction accuracy was improved coupling SVMs
with ARIMA basedtime series modeldNie et al. 2012ndKavoustFard and Kavousiard 2013)
and evolutionary algorithm@iong 2009) SVM have beemsedfor the prediction of thenergy
consumptionn HVAC systems For instancelL.e Cam et al. (2017)sed SVM to forecast the
electrical consumption of the supply and return fans at the AHU of an existing building up to six
hours in the future.

Although SVM based models are promgiin HVAC benchmarking, this family of
algorithms has not been exploited enough(ietCam 2016)

2.3.2.4 PCAbased models

The Principal Compnents Analysis (PCA) is a multivariate technique which transforms a
data set of inter-correlated variables into another data sek ofdependent new variables, the
Principal Components (PCs), whe¢pek. Draper and Smith (1981introduced the use of PCA for
the identification of new candidate regressors, other than the variables fromardatdi set, to
predict a dependent variable. PCA is an effective technique to overcome the presence of high inter
correlation along variables. Also, PCA is useful for the reduction of number of variables, as only
the first few PCs can explain most of tregiance present in original data set. Using synthetic data,
Reddy and Claridge (19949und that the PCAvased prediction models had better prediction
performance than the Multivariate Regression (MLR) model, when thelaton between
regressors and predictions is higlam et al. (2008ppplied PCA to five weather variables and
reduced the initial data set to two PCs, which were used as regressors in a MLR model for
prediction of yearly and monthly electricity use in 20 office building in Hong Kong. In the pas
several studies focused on P®Ased methods for the monitoring and Fault Detection and

Diagnosis (FDD) of systems. Some representative works are presented herein. An introduction to
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PCA-based techniques for data quality control of processes was gyvéackson(1991) An
ellipse formulation was used to define the border of a control region, out of which the
measurements are considered out of control. The ellipse was constructed by using Hotélling's T
statistic, which is a multivariate statistical generalization of the Studest.t

Many studies investigated the use of PCA for HVYAC equipment benchmarking and fault
detection(Luo et al.1999 Pranatyasto and Qin 20Qlennox and Rosen 200Runia et al. 1996
Wang and Xiao 2004and2004b

Wang and Cui (2005)sed PCA for sensor fault detection and identification in centrifugal
chillers. They developed one PCA model for the energy performance indices of chillers, and
anothe PCA model for the energy balance of the chillers. The models were trained by using
measurements from centrifugal chillers in a large commercial building. The first three PCs were
used for the first PCA model that explains 95.62% of the total variandeha four first PCs for
the second model. When thestatistic exceeded the threshold limit, which was calculated in terms
of confidence level, a faulMvas detected. The faulty sensors were detected by using the Q
contribution plot. Multilevel PCA moded were developed bpu and Jin (2007)at the system
and local levels, to detect the multiple fauhat might occur simultaneously in a Variable Air
Volume system. The PCA models were developed from the energy and mass balance equations,
and trained by using simulation results. There was an indication of the occurrence of faults when
the SPE of measurents exceed the threshold of corresponding model. The fault signatures and
expert rules were integrated for the fault identificationXinet al.(2008)PCA was coupled with
wavelet transform analysis to exclude noise and dynamics from measurements, and to enhance the
effectivenss of PCA based fault detection, diagnosis and estimation methods. The PCA models
were trained with measurements from a chiller plant serving arlsigiy building. A similar
approach was used lhyand Wen (2014)

2.4.Virtual sensors
A virtual sensor also referred to asoft smart or inferential sensqruses measured
variables and other available information to predict the value of a variable of interest. In the last
decades the implementation of virtual sensor models progressively spread out in several fields, as
for instance process control, automebjl wireless communication, robotic, traffic and building

monitoring(Li et al.2011) As an example, virtual sensors have bereloped for application on
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automobiles which estimate the air pressure in tires, the vehicle road friction, the vehicle velocity
and motor combustion time.

The adoption of virtual sensors in buildings is slower than for other fields, and the interest
on its implementation in buildings only raised in the last decade. This delay is mainly due to the
uniqueness of each building. Differently from production in series, buildings are individually
engineered. Costs for integrated virtual sensors is more ntlemaeach individually engineered
products than on mass produg¢kdet al. 2011) Nowadays, the implementation of virtual sensing
technology in buildig systems is recognized to enable more effectivédnenmonitoring of
equipment and components performance without increasing(tostsd Braun 2009Ploennigs
et al. 2011 Hjortland and Braun 20)}6In the last few years a growing number of virtual sensors
has been proposed for HVAC monitoring. For instamicgjal sensor models have been developed
for monitoring &ad fault detection of chilleréLi and Braun 2007 Mcdonald and Zmeureanu
2014) reliable measurements of pipes internal fluid temperéGoeman et al2013) prediction
and correction of air temperature measurements in AHU duetsand Dexter 2005Brambley
et al. 201% Yu et al. 2011pnd in occupied spacéalhashme and Ashgriz 201,6nd prediction
of the air flow rat§Tan and Dexter 2006Yu et al.2011)

Wichman and Braun (200@ropo®d a model to correct the measurements of the mixed
air temperature in Roof Top Units (RTUs) from an embedded single sensor. A set of previous tests
allowed to develop theorrelationbetween the measuredixed air temperaturéTmg and the
sensor errorf-urther prediction of the sensor error from the developed correlagethen used
to correct the faulty measurementsleh. Femandez et al2009)proposed a set of algorithms to
correct faults from air temperature and relative humidity sensors, and from signals of dampers
position in AHUs.Yu et al. (2011ajleveloped a regression model to correct faulty measurements
of the supply air temperatur@sg) in a RTU. The model predicts tfie, correction term, at each
new time step, as functiai the number of heating stag@é:{) and the outdoor dampers position.

An improved version of this model was proposedryet al. (2011h)in which measurements of

the oudoor air temperaturel§s) were included in the list alegressorsTan and Dexte(2006)
developed data driven models to predict: (1) the outdoor air flow rate from the control signal to
the inlet damper of a VAV system, and (2) the supply and extndictvairates from the control

signals to the fans and dampers. The Virtual Flow Meter (VFM) produced relatively small errors
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of 8%, 2% and 3% for the recirculated, supply and outdoor air flow rates, respectively, when
compared with direct measurements.

Wang et al. (2014Jeveloped a VFM that uses measurements of the fan power input, along
with the motor and fan efficiency, to predict the supply air flow rate from an AirlHjortland
and Braun (2016he supply air flow rate of a RTU was predicted from the fans VFD signal and
the pressure difference across the supply fan. The same study proposed linear correlation models
to correct: (1) the outdoor air temperature from the dasnpesition signal, the faulty outdoor air
temperature and the return air temperatures as measured by the embedded sensors, and (2) the
mixed air temperature from the supply mass air flow rate along with the dampers position signal,
and the faulty mixed aitemperature, and the correct outdoor and return air temperatures as
measured by the embedded sensors. Finally, a third order correlation model was proposed to
predict the outdoor air fraction, the factor

U=

eq. 1

whereTma, Tra @andToa are the mixed, return, and outdoor air temperatures, respectively.

Padilla et al.(2015) presented a model for the virtual measurement of the supply air
temperature in AHU as part of a FDD strategy. Starting with the measurement of the mixed air
temperature, the supply air temperature is calculated by adding: (1) the temperature change due to
heating coil, (2) the temperature change due to mechanical cooling coil, and (3) the temperature
change due to the sply fans.The contribution of each term was correlated to measurements from
the BAS through genetic algorithms (GA). The GA were usesbtimate the model coefficients
which minimize the difference between measurements and model predictions.

Several studies focused on the development of VFM for the virtual measurement of water
flow rate in cooling plant¢Songet al.2012; Swamyet al.2012; Zhaoet al.2012; Mcdonald
and Zmeureanu 20L4Andiroglu etal. 2016) Mcdonald and Zmeureanu (201dgveloped two,
first principle based, models to estimate the water mass flow rate at the chiller evaporator and
condenser. Five different scenario were considered, cordspy to different number of available

Sensors.

20



A complete list of the reviewed articles on the topic of virtual sensors for building applications is
given inTable2.1 The virtual sensor modetse reportedlong withthecorrespondent modelling

method type of application and required measurements.

2.4.1. The need for a new definition of virtual sensor

According toLi et al. (2011) a widely acepted definition for virtual sensors does not exist
yet. The most recurrent definition from scientific literature on HVAC states that a virtual sensor
consists of a mathematical model which use measurements from other measured variables to
predict (virtualy measure) a variable of interest (elg.et al. 2011; Mcdonald et al. 2014
Hjortland and Braun 20165omene may argue that, according to this definition, most of the
existing physical sensors actually work as virtual sensors, as they direwity measure the
physical variable they are used for, but they derive their outputdrather measured parameter:
for instance an ultrasonic flow meter does dioéctly measure the liquid flow rate, but derive it
from the delay in time of an ultrasound traveling through the fluid, between two transducers, in
both directions; a thermocoupdees notirectly measure the air temperature, but derive it from a
temperaturaependent voltageEventually, according to the above given definition, all the
formulas to derive performance parameters, as for instance the buildingeElJILee and
Rajagopalan2008) or any <chil | er pasametdrga.g. dixandcReddg 2003 p hy s
may be referred to asvartual sensor The notion ofvirtual sensoythus, risks to be assimilated to
a generic process of deriving a parameter (a medium physical property, an index, a probability,
etc.) from other values. In order to make the subject clearer, within the field of H\6A®oming,

the present research work proposes a new formulation of the definitintuad sensor
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Table2.17 Virtual sensor model from literature review.

Grey box

System / _ Modeling _
) Virtual sensor App Required measurements Reference
equipment method
v Power consumption Grey box Obs Tsuc,d; Tdis,d
apor - - — - .
) Refrigerant flow rate First principle Obs 0 ; Qioss; Tsuc,d; Tdis.d Li and Braun2007
compression AC : _
Volumetric efficiency Grey box Obs Psuc; Pdis; Tamb; Tsuc
Refrigerant charge level First principle Obs Tsc,1; Tsh,1; Tsc,2; Tsh,2 Li and Braun 2009
Refrigerant pressure Grey box Obs O ref Li and Braurn2009b
Condenser fouling First principle Obs Tenps; Tenor; Tenbret Zhao et al. 2012
First principle Tchws; Terwr; Tenos; Tenos; Tois
) ) . McDonald and
(five scenarios from § Obs Tsuc; Tu; Tev: Pev; Ten; Pen; O
Water flow rate ) o Zmeureanu 2014
Chillers to 6 points) manufacture specification
First principle Obs Zhao 2012b
Condenser heat loss First principle Obs O cds; Tendref; Tonps; TenDR
Evaporator heat loss First principle Obs Ochw; T ;T T
p p p cHW ; lehwref; Tchws; Tchwr Reddy 2007
Polytropic efficiency of the ] o
First principle Obs Tsuc; Psuc; Tois; Pois
compressor
Grey box Obs ;o Song et al. 2012
Pumps Water flow rate y P pump g
Grey box Obs H; W V;f;Q Andiroglu et al. 2016
. ) Tair
Pipes Fluid temperature Grey box Obs _ ) ) Gorman et al. 2013
Pipe dimensions
First principle/ P, ; x ; design and manuf.
AHU / RTU Water flow rate Obs Swamy et al. 2012

specifications
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Supply, Mixed and Returr] ] o
) First principle B-up Toa; Tma; Tsa; OADst Fernandez et al. 2009
air temperature
Supply air static pressure Black box B-up Xtan ; Ntan ; Xvav; Qsa Padilla et al. 2015
] Hjortland and Braun
Outdoor air temperature Grey box B-up OADst; Toa; Tra 2016
NHstages; OADS; Toa ;
Grey box B-up along with other shorterm Yu etal. 2011a
measurements
Supply air temperature Nhstages; OADST;
Grey box B-up along with other shorterm Yu et al. 2011c
measurements
AHU / RTU Black box B-up Toa; Tow ; Xne ; Tehw s Xec ; 00 Rin ; Xtan Padilla et al. 2015
Black box B-up Tma; CFD model of the AHU Lee and Dexter 2005
Wichman and Braun
. . Grey box Obs Toa; Tra; Tsa
Mixed air temperature 2009
. Hjortland and Braun
Grey box B-up OADst; Toa; Tra; Tma; Osa
2016
Grey box Obs Tan and Dexter 2006
Outdoor air flow rate . m—
First principle Obs Toa; Tra; Tsa; OADst Yan et al. 2017
Grey box Obs Toa; Tsa; OADst; NHstg Yu et al. 2011b
Grey box Obs Vg; Tma; Tmawo; Tsa; #PT Yu etal. 2011d
. ) o ) o Mishukov and Horyna
Air flow rate First principle Tsa; Tra ; design specifications
2015
First principle/ .
Obs O motor; H Wang et al. 2014
Grey box
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Grey box

Obs

VFD P @

Hjortland and Braun

2016
] o Zmeureanu and
First principle Obs Toa; Tma; Tr
Vanderbrook 2015
Electrical power input Grey box Obs VFD Pan Hjortland and Braun
Fans
Fan air temp. increase Firstprinciple Obs 0 fan; Vair (air velocity) 2016
) o Alhashme and Ashgriz
First principle Obs Troom
Room temperature 2016
Black box Vin ; 8 chw Reppa et al. 2014
Energy consumption First principle O pipe,w Ploennings et al. 2011
IAQ(COy) ; IAQ(RH) ; Tset; ICroom; P: ]
Zone IAQ (T) Black box Obs eom T Kusiak et al. 2010
; RHoa; Toa; lsol,beam; Isol,horz; Wair ; Wepd
IAQ(CO) ; IAQ(T) ; TseT; ICroom; Patm; .
IAQ (RH) Black box Obs Kusiak et al. 2010
RHoa; Toa; Isolbeam; Isolhorz; Wair ; Wspd
IAQ(T) ; IAQ(RH) ; Tset; ICroom; Patm; .
IAQ (COy) Black box Obs Kusiak et al. 2010

RHoa; Toa; Isolbeam; Isol,horz; Wair ; Wspd

NOTE: ObsobservationB-up backup/replacement.
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2.5. Objective of the thesis
In the context of HVAC systems ongoing commissioning there is a need for more flexible
and easily scalable monitoring metho@lse main objective of thiswork arethe development of

the following points:

1. A new method for the detection and identificatieD&l) of faults in chillers operation.
Chillers have been observed to decrease their performance over the time. The rise of faults
in operation, along with components degradation, can provoke energy waste, increase
operation costs, and generate thermatadigfort for building occupant®eattime FD&I
would promptly inform the building operators about the occurrence of a fault and the need
of further actions. Addressing commissioning efforts, an automated FD&I method would
require less experienced knowledgem building operators, and it would reduce the time
needed for inspection and maintenance. On the other hands, the implementation of FD&lI
on historical data can help energy managers and manufacturers to better understand the
system operation and its dubon through its lifecycle. A data transformation and
reduction technique, the Principal Component Analysis (PCA), is considered for the
development of a datdriven model used for benchmarking the fdtdie chiller operatin
and detect abnormal events

2. Two rewvirtual flow meter models for the virtual measurement of the outdoor air flow rate
into the AHU.
Although he measurement of air flow rates in AHUs is of a major significance for control
and performance monitoring, such a sensor is not alwayalled.A physical air flow
meter would come at additional cost, amacticalissues may occure(g. improper
installation, miscalibration, sensor degradation, €ttg implementation of virtual sensor
can effectively overcompracticalissues and, @ the same time, prevent additional costs.

3. Severaimethoddor the development of virtual sensor models for the virtual measurement
of variables or the virtual realibration of faulty sensors of apropertiesat the AHU
mixing box inlets and outlet.
The measurements of the air temperature and relative humidity at the AHU mixing box
inlets and outlet are known to face severalcticalissues which may affect the quality of

the measurements.g.compact structuref the AHU, air stratification etc. The virtual
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sensor models of the air properties shouldniiglementedo overcomehese issues and
avoid additional costs

. A new definition of virtual sensor for building application.

Although slower than for other fields, the implementation of virtual senmsorgldings is
progressively spreading out. Virtual sensors are used to avoid the installation of a new
sensor, which would come at additional cost, or when the variable of interest is difficult to
measure because of HVAC system configuratierg.(AHUs usually have compact
structure which may make hard to measure air properties at specific points). From the
review of the literature on virtual sensor models for building application, the need for a
new definition has been identified. The objective is tovig® a clear definition which
highlight the key characteristics of virtual sensors, and distinguish from other mathematical
formulations e.g.performance indices, which are already commonly used in buildings for

benchmarking and signature purpose.
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3.METHODOLOGY

This research work aims to develop new methods for the OCx of HVAC systems. For this

purposefour specificobjectivesare proposedvhich consist in the development of the following

1. a new FD&I method for chillers

2. new VFM models fothe outdoor air flow rate into AHUs;

3. new methods for the development of virtual air properties sensors in AHUSs;
4

. a new definition o¥irtual sensoffor building application.

Objectives 1, 2 and 3 have been addressed using a real case study bligdidglata
fromthe HVACsystem operation are used which were collected from the BAS for control purpose.
Field measurements, thus, have been used to develop and validate new models. The final intent is
to deriveactionable informatiofior the ongoing commissning of HYAC equipment. The process
of using raw data to extract knowledged.operation patterns) is a muftiep process known as
Knowledge Discovery in Databases (KDayyad et al. 1996)he next section imoduces the
KDD main steps. Following, the methodologies used for the development and validation of the
FD&I method and the methods and modets &ir virtual measurements in AHUse presented
(sections 3.2, 3.3 and 3.4). A schematic of the main feaftoen the methods and models which
this research work proposes is showed in Figure 3.7. Finally the uncertainty analysis approach
used to quantify the propagation of uncertainty on virtual models predictions is outlined.

The development of a new definition dftual sensors (objective 4) has been addressed
through an extensive literature review of publications which explicitly used the Vietunal
sensorsfor building application. From the literature review, the most recurrent reasons why a
virtual sensor should be used/bdeen highlighted and used to develop a new defirofigintual

sensordor building application.

3.1.Knowledge Discovery in Dat®ases (KDD)
An exhaustive introduction to the KDD process is presentédyyad et al(1996) KDD
is a multistep process aiimg to use raw data to extract useful informatiéive main steps within
the KDD process model and transform the original raw data set and finally ek&duidden
patterns. Those five main steps are: i) Selection, ijpRweessing, iii) Transformation, iv) Data

mining, and v) Interpretation and evaluation.
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Selectionis the first step in KDD. From thieitial raw data setthe selection step aims to list@
thetarget variablesat given target condition. The amount of available recorded items can be huge,
compromising the effectiveness of data analysis. The selectianget variablegs based on the
overall knowledge of the domain, and applying sangxéniques.
Pre-processingncludes limit checks and statistical techniques intendptejparedata for further
analysis. The quality of field measurements needs to be verified as the condition under which
measurements are collected are not always kndwpical issues in data collection are noise,
missing data, quasteady versus transient operation. Also, differently from laboratory
experiments in which all the conditions are strictly controlled, field measuremantse affected
by sensors mealibraion and improper installation, incorrect assumptions, etc. In order to
overcome those issues, the ASHRAE Guideling&eagineering Analysis of Experimental Data
(ASHRAE 2005b)proposes to check limits, which means measurements must comply with
physical, expected anitheoretical conditions. Measurements which do not comply with those
conditions should be excluded by data sets. Furthermore, when the data set includes variables with
different units and different range of variation. When statistical techniques are thiesd,
variables with larger range of variation ntaglethe information from the variables with a smaller
range of variation. Data normalization techniques, thus, may be necessary to normalize each
variable(Reddy 2011)
Transformation consists of representing the gyecessed data set with new system of
coordinates, making easier to manipulate it. Transformation techniques are also used for data
reduction. For instance, Principal Component Analysis (PCA) allows to represent ardatdial
set through new independent variables, and reduce the number of variables to be used for
information extraction.
Data mining is the core of the KDD process, and consists of extracting the needed information
and patterns from available data. Differdata mining techniques respond to different KDD goals.
Common data mining methods are classification, clustering, and regression.
Interpretation and evaluation is the final step in KDD, when the information extracted with data
mining technique are interpted and eventually converted into usedationable information
Visualization techniques and summarization can be very powerful in information interpretation.
The KDD process can include iterations on one or more of the above listed steps. The KDD

multi-step process, as proposedHayyadet al.(1996) is resumed in Figurg.1
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Interpretation
and evaluation
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Raw data Target Pre-processed  Transformed Patterns Knowledge
variables data data recognition

Selection Pre-processing Transformation Data mining

Figureli KDD multi-step process biyayyad et al. (1996)

The potential application of KDbas been usedor building energy modeling.e Cam et
al. (2016)used KDDto extract insights from measurements of an existing HVAC operation with

the goal offorecasting the energy consumption of the AHU fans

3.2.Chillers benchmarking and Fault Detection and Identification (FD&I)

HVAC equipment tend to deteriorate their operation performance through time. Few
months or years after building initial commissioning ofcoemissioning, the occurrence of
operation faults, compents degradation and sensors caigbration issues rise, affecting energy
consumption, equipment life cycle and occupants comfort. Economic benefits from building re
commissioning can drop by up to 25% four years after recommissioning is con{fi&tez010)

The present research work proposes a new Fault Detection and Identification (FD&I) method for
chillers, which uses trend data to benchmark théectidultfree operation (ideally just after initial
commissioning or keommissioning). The proposed benchmarking model is a statistical model
which aims to describe the faifiitee operation of a specific, -aperated, chiller. The proposed
benchmarking evelopment consists of learning from trend dtthe chiller faultfree operation
pattern After initial, re- or retro commissioninglVAC systems operatiois expected to be fault

free Thus, the models for OCshould learn from data collected just after the system
commissioning. The proposed model is an inverse, grey/black, model. The developed
benchmarking model is than applied to further measurements in order to detect abnormal values
which do not comply withthe benchmarked faultee operation condition, and identify the
variable which caused the detection.

3.2.1.Principal ComponentAnalysis (PCA)based method for FD&l
Chillers include several components, at least two heat exchangers, one compresssr and on

throttling valve. In order to properly describe a chiller operation, thus, several variables should be
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monitored €.g.the chiller power input, the supply chilled water temperature, etc.). At each time
step, thus, chiller operation is described withtaseof v ari abl eds measur eme
measurements at a given time step is here nahservation Chillers FD&I is a multivariate
analysis problem, including inteorrelated variables. In order to reduce the number of variables,
and remove thater-correlation among them, Principal Component Analysis (PCA) is used. PCA
transforms the initial data set pinter-correlated variables into a new data sef ioidependent
(orthogonal) variables, the Principal Components (PCs). Most of the informiatiuded into the
original data set (the variance) is explained by few flP€ls. Variables reductias implemented
retaining only few PCs and excluding the others. Chillerfineét operation benchmarking is thus
implemented into the Pasased space

Faultfree operation benchmarking consists of identify a boundary which delimits the
region of space where the fafiiee observations are expected to fall once projected into the PCs
based space. The boundary is defined using statistical indicegHeodistribution of the fault
free observationalong each axigto the PCsased space. This step is nanraihing, and the
fault-free data set used foraining is referred to asraining data set The identified boundary
consists of an ellipsoidéihreshold condition that further observations must comply with in order
to be labelled agault free observationsObservations whosBCsprojections fall outside the
identified threshold condition are taken as abnormal events, and labelled as outlietse@mnde
free benchmarking model is trained, thus, it can be applied to further measurements in order to
detect abnormal (nefault-free) observationsapplication.

Fault identification consists of identifying which variable, from the list of variaststed
to describe the chiller operation, took an abnormal value, and thus caused the detection of an
abnormal projected observation. Fig@t& shows a schematic of the proposed RG&sed FD&lI
method, which is explained in detail in Chagerdlong with method validation.

Chapter 5 gives a details explanation of the model development and application here

introduced.
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Figure3.21 Schematic of the proposed P@ased FD&I method.

For validationpurposes, measurements of chiller operation from eight summer season
(from 2009 to 2016), is used. Measurements from the entire summer 2009 are used as training
period to evaluate the fatfitee operation boundary (benchmarking). The derived boundary
thredold condition is then applied to measurements from the following seven summer seasons
(validation) to detect and identify faults. The variables found to be responsible for the highest
percentages of detected faults are investigated

Along chiller operabn, if a fault occurs, it can be detected with the proposed-Pas&d
FD&l method, and the measured variable which caused the fault detection be identified. These
information can be used by building operators and energy managers to plan inspections and

address maintenance efforts.

3.3.Virtual Flow Meter sfor AHUs

Reliable values of the outdoor air flow rate into the AHU economizer are needed for control
schemes and performance monitoring purpose. Virtual measurements of the outdoor air flow rate
deg.r r at.i

can beobtainedwith eq.3.2, from the supply air flow rate aidh e out door
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3.1). Combining eq3.1 with the energy balance equatiornthe mixingbox (eg3.3) , t he f act c
can be formulated as function of the air specific enthalpu#ttoor, return and mixed condition
(eq.3.9).

The VFM model from e.2, thus, is a first principle based modslthe box modégbased
on the energy balance across the mixing box. If the water content in the air streams entering and
leavingthe mixinpox is neglected, the factor U can be
only(eq.3.5 . The f ac35acotimdn fomnmatiengaccepted by several authors for
both HVAC ongoing commissioning and models calibratiemy.Zibin et al.2016; Yan et al.
2017).

u — eq.3.1
Boa= (hiAVea) eq. 3.2

0 mahma = B 0a-hoa + G rec-hra eq. 3.3
U —= eq. 3.4
th=— eq. 3.5

wheref oa , 0 maandd rec are the outdoor, mixed and recirculated air mass flow rate respectively,
kg/s;} air is the air density, kg/fandVsais the air volume flow rate, #s; hma hoa andhia are the
air specific enthalpies at mixed, outdoor and return conditions respectively, kJ/Kgi.ahd and

Tra are the air temperatures at mixed, outdoor and return conditions respectively, °C.

3.3.1.0Operation modes

Three different AHU operation modes have been identifiethfecase study (section 4.2).
When the mixing dampers are completely closed (operation #igdehe outdoor air flow rate is
expected to béhe same athe BASmeasured supplgir flow rate VFM based on eq..3 are
proposed for the case when the AHU is working under operation #d@esi#3. Under operation
mode#2 the measured outdoor air properties are the same as at the mixiogttoarinlet
(Figure3.3). Under operation mode #3 a heat recovery system is used-beatr¢he outdoor air

stream (Figure 3.4). Thuduring the cold seasothe temperature of the outdoor air entering the
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mixing box (Tac) will be higher than the air temperature at outdoor it (Tos) (Figure 3.4).
In this case, the measured outdoor air temperature is not the same as at the mixing box outdoor
inlet, and should not be used with eq. 3.5.

BN
-

Figure3.31 Schematic of a mixing box with known inlets conditions.

TO a
®

Figure 3.4 1 Schematic of a mixing box, with measured and actual mixing box inlet
temperatures.

The f act oB.5idrepfaced oy edd.§ where the outdoor and return air temperatures

(Toa) is replaced by the actual air temperatures at the mixing box kgt (

U —= €q.3.6

The implementation of e®.6 for the evaluation of the faato U r ferovallies of asvariable

(Tac) whichis notalwaysmeasured and collected by the BAS. Tharegadditional, dedicatkair
temperature sensor should be purchased and installed, which would increase costs and involve
installation issuese(g.air stratification, AHU mixing box compact structure, et new model

for the prediction of the fact orTaUheinewmpdelopos e
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consists of a system of two equ a veredthreugitheh e f a
heat recovery system from eq. 3.7) antg.two un
Theheat transfe@Q+r from the heat recovery coils (in green in fig@3ré) to the outdoor air stream

is given(eq. 3.7):

QHrR= gld'Vglc'Cp,glc'( Thre T Thra) eq. 3.7

w h e rgeis the glycol density, kg/fn Vg is the glycol flow rate, L/s-18 Cp g is the glycol
specific heat, ggc = 3.35 kJ/(kg K); and’he and Thra are the glycol temperatures respectively

before and after the heat recoveojl, °C.

3.3.2.Models developmentand validation

New model s for the predi c topecationmddes2 amd#3, f act or
and compared tthe referencefactor Ufrom eqgs.3.5and3.6, in which the actual values of the air
temperatures at the mixing box inleisd outletare used.

Field measurements from an existing system are used. The raw data setpereqased:
physical, expected and theoretical linate checked. According ASHRAE 2005h observations
which do not comply with checked limits are discharged from data sets.-Seady state
equilibrium is required whe s Theodcurrgneceftemsierar U b :
phenomena imperationdata has beetetected and correspang measurements are discharged
from data setsShortterm measurements (STM) from portable calibrated sensors have been
collected for models training and validation only.

Models vdidation is performed comparing the predictiomd t h e tofrefecence r U
values in terms of statistical indices: the Mean Bias Error (MBE), the Mean Absolute Error (MAE),
the maximum occurred Absolute Error (A& and the Coefficient of Variance ofdéliRoot Mean
Square Error (C\RMSE).

3.3.3.Virtual sensorsselection criteria

Two main aspects should be considered when develapirsglectinga virtual £nsor
model: i) the information andneasurements needed for model implementation, and; ii) the
uncertainty associated to the model predictions. In order to enhance the feasibility of virtual

sensors implementation, the model should require for a reduced number of measursuadiyts
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selected fromthose already available from BASs A virtual sensormodel which needs
measurements from several sensors not already installed in AHUs may be difficult or impossible
to implement due to the lack of information. Also, costs would increase if additional physical
sensors are purchased. On the other handstualvsensor model which only needs for few
measurements from commonly installed sensors would be easy to implement without additional
costs. Furthermore, the uncertaiagsociated to models predictions must be consid€oedlarge
prediction uncertaintyaluescanmake the model predictions unreliabl€hose two criteria have

been taken into account, in this research work, along the development and the selection of the

proposed virtual sensor models.

3.4.Virtual sensorsfor the air properties atthe AHUs mixing box

In an AHU the neasurements of the air temperature and relative humidibytaoor,
recirculatedand mixed conditionsre needed for system control purpoEkree methods are
presented in this research work for the virtual measureonesmttual calibration offaulty sensors
of the air temperature and relative humidity at the mixing box inlets and outlet. The methods differ
in the model strategy (first principle or data driven models), the needed information and the
technical skillrequired tobuilding operatorsThe virtual sensors developed using the proposed
methods are intended to be used each time new measurements are collected by the BAS, before
those measurements are used for control purpose.

The need information, the uncertainty propagation, and the required technical for each

method have been assessed.

3.4.1 Method A

Method A is used for the virtual 4@libration of one sensofe.g. the outdoor air
temperatureput of the six air temperature and relative humidity sensors installed in the AHU
mixing box (Figure8.5and Table3.1), which has been detected to be faulty by some fault detection
method or by the building operators. Tlaelty measurement itsedire used by MetltbA along
with the measurements from remaining fefudte five sensors. Method A uses a first principle
based model based on the energy balance of the AHU mixing box3(8gs.d3.4), along with
the selection of optimum correction values, to adjust thasurements from a faulty sensthis
sectionpresents, as an example, the caseirtiial re-calibration of the outdoor air temperature

sensor. The same approach can be applied for any other of the five sensors involved.
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Figure3.517 Schematic of the AHU mixing box including temperature and relative humic

the outdoor (0a), mixed (ma), and recirculated (rec) air flows.

Table3.1 - List of variablegequired by method A.

Description Units Variable names
Outdoor air temperature °C Toa
Outdoor air relative humidity % RHoa
Recirculatedair temperature °C Trec
Recirculatedair relative humidity % RHrec
Mixed air temperature °C Tma
Mixed airrelative humidity % RHma

The air humidity ratio X) and specific enthalpyh)f at outdoor, recirculated and mixed

conditions are derived using the measurements of the correspondent air temperature and relative

humidity. For instance, at outdoor conditions, the air humidity ratio and specific enthalpy are

derived as follows (eqs. 3R811):

eq.3.8

eq.3.9
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®w =0.62198—— eq.3.10

M =CY +® -Q o0 Y eq.3.11

wherePsa andPvoa arethe saturation and thpartial pressure of water vapoespectively, Pa; P
is the atmospheric pressure, P = 101,325(Pais the water vaporization hed®, = 2501 kJ/Kkg;
Ca andC, are the dry air and water vapor specific heats at constant preSsarg,006 kJ/(kg K)
andC, = 1.875 kJ/(kg K).

Combining the f aclwiththelenedyg falante equatifay. 3.08)eay . 3.
the AHU mixing box, the outdoor air fraction
the air specific enthalpy at outdoor, recirculated and mixed conditions which are derived from egs.
3.83.11.

At each time step, ifine of thesix considered sensors is found to be fawdty the outdoor
air temperature), an iterative procedure is implemented to identify the optimum correction term,
from a set of candidate correction terms @42, which will be used to correct (virtuallyre
calibrate) the faulty measurement from the BAS. For instance, for the outdoor air temperature, the

vectordT of candidate correction terms includes elements ffmMto 5.0, with a 0.1 step.
dT =[dT.,dT>, € ji, dTp=1-5.0,-4.9,-4 . 8, ¢é é4645.0B , eq.3.12
For each term ofiT an iteration of the realibration procedure is performed. For instance, for a

generig term fromdT, the following steps are performed:

a. The faulty measurement from the BAR4) is corrected with theterm fromvectordT (dT))
(eq.3.13:

Y =Toa+dT, eq.3.13

b. Thefive fault-free measurements of the air temperature and relative humidity from BAS, along

with the faulty measurement corrected witly (Y ), are used to estimatbe air specific

enthalpies,and he val ue j@§34;he factor U
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c. The thermodynamics properties ofhunidityrdioor ai r
(eq.3.19), specific enthalpy (ed®.15, and temperature (e§.16), which are dependefitom
the factor U and thus denoted with a subscri

Op —t eq.3.14

Ny, ——+0 eq.3.15

Y g ” ” eq.3.16

d. The outdoor air temperature derived from 8dl6 ('Y ) is compared to the corrected

measurement from the BASY( ), and their differencen{ "Y ) is retained (ed3.17):

QWY =Y Y eq.3.17

3.4.1.1The objective function

At each time step, the objective functiai’Y  is minimized The optimum correction
term (Q ™Y is thus selectedmong the available candidateas the one which correspatd the
minimumw “Y ;. Finally, the optimized (realibrated) measurement of the faulty variable (in

this case the outdoor air temperature) is given b3 4@

YOY QY eq.3.18

where“Y is the optimized (realibrated) measurement of the faulty variable, @&itvis the

selected optimum correction term.

Given a set of six, fully faullree measurements of the air temperature and relative
humidity at the mixing box inlets and outlet, the r r e s p o n d e B.4) is éxpectéddorbe U ( e q
fault-free, and so the terms derived fronh e f a u | t with eqe3el4 3.1%Hand3d 6 (if no
correction terms are used to correct any initial variglte)). In particular, if the output fromqg.

3.16("Y ) is faulty free, it must be the same as the initial measurement from theTg)3Hus

WY:="Y Yi =0.
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If one over the six air properties measurements is fagltyTos) , t he deri ved
expected to be faulty, and so ttherived air specific humidityf j ) fromeq 3.14and the derived
air specific enthalpy from e®.15 The initial and the derived air specific enthap(Q and
"Q ) have the same valwseq. 3.4 and eq.3.15are equivalentOn the other hands, the initial
value of air specific humiditys§ ) and the derived oneo( ) are different because calculated

through different equations (e@8-3.10for @ and eq3.14for w ), andthus affected in two
different ways by the initial error in the measurement of the outdoor air temperasusn
example figure3.6 shows thedivergence betweethe initial and derived outdoor air specific
humidity values for a set of six faulty free messmentsvhere thenitially faulty free outdoor air

temperature has been modified adding an artificial error.
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6 5 4 3 2 -1 0 1 2 3 - 5
Artificial error to the outdoor air temperature [°C]

Figure3.67 Initial (eqs.3.8-3.10 and derived (ed.14) outdoor air specific humidityalues as

function of the error affecting the outdoor air temperature.

Finally, the derived faulty’Y ; would not be the same as the initial faulty (w"Y ; =

Y "Y >0), and the reason is th¥  is derived fromw  which is different from the
one derived fromY (@ ). The Initial and derived outdoor air temperatures converge to the same

value when nanitial faulty measurementsroduce a divergence between from eqs.3.8-3.10
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andw j from eq.3.14 Thus, the recalibration procedure consists of an iterative process which
tests a number of candidate correction terms, and the select the optimum one through an objective
function which minimize the term@ "Y y = Y  "Y .

Method A is here presented for virtual calibration (selfrection). Nevertheless, method
A can be used for virtual measurement if one over the six air properties is not available. A default

value should be assigned to thissing variable, which would then be corrected with method A.

3.4.2 Method B
Method B consists of developing grey box (data driven) models for thecpoadi
of a variable of intereaising other correlated variabléfhere are three models B for ttieee
different operation modes of an AHU.
The variables of interest are modelled as function of other variables available from the
BAS. Shortterm measuremen{STM) from calibrated portable sensors are collected to be used
as reference for models vaditbn.

3.4.3 Method C

Method C aims tovirtually re-calibrate a faulty sensoSTM from portable calibrated
sensorsre usegdalong with correlation analysis to estimate the sensor eFlar estimated sensor
error is then used to correct the faulty meaments from the BAS. As an example, method C is
used for the realibration of an outdoor air temperature faulty sensor.

STM from calibrated portable sensors are collected to derive theedrmm comparison

against the faulty measuremerand to beaused as reference for models validation.
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Figure3.71 Features of the proposed methods and models for the OCx of HVAC.



3.5. Uncertainty analysis

Themeasurements of a variable are always affectesblne residual from thieue value.
The occurrence of residuals is accounted for throughribertainty analysisThe uncertaintyf
a measuremens defined as the interval, around the measured valubinwtite true value is
expected to fall with a certain level of confideneeg(95%). A measured value without any
statement about the correlated uncertainty has limited meéRredpy 2011) For engineering
application purpose, two main sources of error affecting measurement are considered: the random
error(R) and the bias (fixed) err¢B). Those two errors contribute to define the overall uncertainty
affecting the measuremenfd). If a value is not directly measured, but it is derilsgdother
measurements through sommathematical formulations, the uncertainty propagates from the
measuements through the mathematical formulatioto the derived value. According to
ASHRAE (2005b) the random and bias errors are here introduced along with the overall
uncertainty analysis and its propagation through mathematical fttoms. Further, a procedure
to remove the effect of the bias (fixed) error from measuremesitgualis presented.
The random error (Ry) is a deviation from the true value which varies at each observation
following some probability distribution. Usually the random error distribution around the mean
(the true value) is approximated to a normal (Gaussian) distribution. Thus, given aipomflat
n measurements only affected by the random error, the true value is approximated to the mean of

the measurements (e2}19):

® -B ® eq.3.19

where® is the mean value from the populatiomaheasurementx.

For measurements only affected by the random dRaepresents the amplitude of the interval,
around the measured value, within which the true value is expected to fall, with a given level of

confidence. For a level of confidence of 95%, the randont ergiven by (eqg3.20):
R«=Z2-&%=1.96& eq. 320

whereS is the standard deviation of the measurements distribution around the mean, i8¢ Z =

accounts for 95% of the measurements population around the mean.
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The bias (fixed) error (Bx) is defined as a constant deviation of the measurements from the true
value of arxvariable. The bias error is mainly due to sensors miscalibration and installation issues.
For a given level of confidence, the bias error is provided by the sensor niarerfas the
maximum deviation of measurements from the true value. The true value is identified with a
reference sensing device. The given bias error is a constant value, derived from a larger distribution
of possible bias errors, which is assumed todrenally distributed around the mean true value.
Thus, given a population of bias errors normally distributed around the true value of a variable
the bias erroBx with a confidence level of 95% is (e8j21):

Bx=2-$=1.96% eq.3.21

whereSs is the standard deviation of the bias errors distribution around the mean, ah®& =

accounts for 95% of the bias error population around the mean.

The random and the bias (fix) errors of a variaddee combined together to evaluate the
overall uncetainty Ux) which affects the measurements of the variablgth a given level of
confidence (eg3.22. When a dependent variable Y is derived fijorariablesx, the random and
the bias (fixed) errors propagate through the functionf(ki=x, &) to,the dependent variable
Y. The propagation of the random and bias errors is evaluated separately vadtB3gavhich

applies to both bias and random errors) and then combined througjB@2q.

U= 6 Y eq.3.22

Sy= B —Y eq.3.23

Figure 3.8 shows a schematic of the contribution of the bias and random errors on each

measurement (or derivation) of a value.
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Figure3.8 7 Schematic of the uncertainty on a measured (or predicted) value, due to tl
(fixed) error and the random error.

3.5.1.Bias (fixed) error effect: estimation and removal
A procedure is here proposed to remove the effect of the bias (fixed)eigore 38)
from the measurements (or predictions). As introduced above, the two main sources of error
accounted for in engineering data analysis are: i) the bias (fixed) error, which is constant and it is
not expected to change through time, and ii) ttsedom error, which change at each new
observation, whose distribution curve is often considered to be symmetrical around the mean. Both
are associated to a certain level of confidence, usually 95%, and so it is the overall uncertainty
given by the combirtaon of those two errors (e§.22). It is worth to remark that the bias erigy;
as stated by the manufacturer, is the maximum possible vall with a given level of
confidence. Although its actual value is unknown, the bias (fixed) error affecsingla specific
physicalsensor will be smaller than the maximBngiven by the manufacturer. On the other
hands, because the random error distribution is approximated to a Gaussian (symmetric)
distribution (ASHRAE 2005b) the average random error on the measureme(us predicted
variables Y) is zero. Thus, averaging a statistically relevant number of residuals between
measurements and true values would remove the effect of the random error on the measurements.
If reference values of the variable of interest are collected froatitaration data set€.g.
short term measurements with high precision sensing equipment), the average residual between

reference values and measurements would give an estimation of the teffstztnof the bias
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error on the measurements. The constant effect of the bias error on measurements is estimated
through the Mean Bias Error (MBE) between measurements and reference valaeel{eQnce

the constantontributionof the bias error orne measurements is estimated alongcHigration

data set, it can be removed from further measurements when the reference values are not available
(eq. 3.25). The resultingunbiasedmeasurements would be affected by the random error only

(Figure3.9).

MBE=-B ® ® eq.3.24

Wi =w - MBE eq.3.25

where  , @ and wy are the biased measurement, the reference value and the unbiased

measurement respectively, at thiame step.

Random error

True value

Measured/derive
value

Frequency

v

Variable value

Figure3.9 1 Schematic of a measurement (or prediction) affected by the random errc
(unbiaseq.

The MBE is an estimation of the effect of the bias (fixed) error on the measurements of a variable
of interest. Three main issues manevent from good estimation of the bias effect through the
MBE:

i) the sizen of the population of measurements used to average the residualég.

increasing the sizethe precision of the estimation would increase;
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ii)

the random error may not take auSsian (thus symmetrical) distribution, tlibe use

of eq. 324 to estimate the bias (fixed) contribution to the overall erisks to be
affected by the random compongent

the availabldrue valuesof some variable of interest are the best availablenatittn

of the considered variable, which are often measured by some high precision
instrument, thus affected by some error too: 284 will give an estimation of the

effect of the bias error from the reference values, and not from the true value.
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4.CASE STUDY

The case study used in this reseascink includes: i)the cooling plant serving several buildings
at Loyola Campus, Concordia Warsity, in Montreal, and ii) the air handling systerstalled In

the Genomic Research building (GE building) at the same university cdfrguse4.1).

AD  Administration Building /
7141 Sherbrooke W.

BB 3502 Belmore
BH 3500 Belmore
CC  Central Building

C]  Communication Studies &
Journalism Building (DA-DS)

DO The Dome

FC  Loyola Chapel / F.C.
Smith Auditorium

GE  Research Centre for Structural
and Functional Genomics

HA  Hingston Hall A

HB  Hingston Hall B

HC  Hingston Hall C

JR Jesuit Residence /
7141 Sherbrocke W

Athletics Complex /
7200 Sherbrooke W.

Ed Meagher Arena /
7200 Sherbrooke W.

PERFORM Centre
7200 Sherbrooke W.

Loyola Gym /
7200 Sherbrooke W.

Physical Services
Oscar Peterson Concert Hall

VER: i’ll'l?9
s

SHUTTLE BUS STOP

Psychology Building
Refectory

Campus Centre
Solar House

2285333 ZR] & B

s N

St. Ignatius /
4455 West Broadway

SP  Richard . Renaud Science
Complex / 7141
Sherbrooke W.

TA 7079 Terrebonne
VE  Vanier Extension
VL  Vanier Library

Figure4.11 Map of the Loyola Campus, Concordia Univershiygntréal, Qc, Canada (extract
from www.concordia.ca).

A Building Automation System (BAS) collects measurements of the systems operation
from more than 200 points with a 15 minutes time step.

4.1.The oodling plant

The cooling plant is located in the SP building and prowtidked water to three buildirg
within the campusthe Science (SP) building itsethe Administrative (AD) building, and the
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Genomic Research (GE) buildinthe cooling plantonsists of two sulystems (#1 and #2), each

of them including a centrifugal chillef 3,165 kW (900 tons) cooling capacity,o constant speed
pumps, andone perpendicular flow cooling towerWhen one of the chillers starts, the
correspondent pumps and cooling tower are started as well. If one chiller is not sufficient to match
the themal load, the second one starts, working simultaneously with the first one. Thus, four
different operation modes are identified: i) both chillers and corresponding pumps and cooling
towers work; ii) only chiller CHL and corresponding pumps and coolingdowork; iii) only

chiller CH-2 and corresponding pumps and cooling tower work; iv) the entire cooling plant is
turned off.A heat exchanger (H3) is used to recover heat from the condenser supply water, and
use it to prewarm the heating water return. tp80% of the condenser supply water is directed

to HX-3 and then mixed with the remaining 20% before being sent to the cooling tower. The
cooling tower fans are turned off when the outdoor conditions allow it.

The as operated equipment parameters carexpected from the BAS trend data.
Measurements from the summer season in 2009 are here used to derive those parameters. For the
present research work the cooling plant operation from 2009 is taken as reference for further
analysis.

Figure4.2 shows a schmatic of the central plant equipment along with location of the

sensors used for control purpose by the BAS.

4.1.1. The chillers

The two centrifugal chillers are rated with a 549 kW power input, and a design COP of
5.76. The supply chilled wateamperature sqgioint is 6.7°C, while thaveragesupply condenser
water temperature is 35.0°C for both chillers (as operated). Whenever one chiller is not enough to
match the cooling load (electrical power input higher than 525 kW), the second chilterast
well. The two chillers working simultaneously operate at the same power input, of 200 and 400
kW each (Figure 4.3). The electrical power input to the chillers increases with the outdoor air
temperature, and reaches its maximum value at around@f@utdoor air temperature (Figure
4.4).
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Figure4.21 Schematic of the cooling plant along with sensors location (red bars).
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Figure4.31 Electrical power input to the two chillers along several days in 2009.

600

e, .

Y e

.e LT UL
L]

chiler electrical power input [°C]
w
o
o

200 F .
100 S R
0 | | | | 1 |
10 15 20 25 30 35 40

outdoor air temperature [°C]

Figure4.4 7 Electrical power input to CH against the outdoor air temperature whenXC
works alone, between June 1 and August 30, in 2009.
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4.1.2. The cooling towers

The cooling towers have a capacity of 4750 kW (1350 tons) at design contlitesupply
cooling tower water temperature is set at 29.0°C (as from trend data). Variable Frequency Drive
VFED is used for cooling towers fans control. When a chiller starts, the corrésgoadling tower
starts as well. When the outdoor air temperature allowiseitcooling towers are turned off. The
fans VFD signalincreases with the outdoor air temperature, rangetyveen 30% and00%
(Figure4.5).
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Figure4.51 VFD signal to CT1 fan against the outdoor air tperature when CH. is the only
chiller working, between June 1 and August 30, in 2009.

4.1.3. The pumps

Two pumps installed in parallel {Pand P2) drive the chilled water, between the chiller
evaporators and theooling coils in thebuildings (Figure4.2). When one chiller is started, the
corresponghg pump is started as well. If two chillers work simultaneously, the two constant speed
pumps work at the same tim@ther two constant speed punpPs3 and P4), one for each chiller,
drive water between the chiller condensers and the cooling t@yEsmeasurements of the water
flow rate an the evaporator and condenser constant speed phampsdeen collected in 2014, and
reported inTable4.1 (Mcdonald 2014)
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Table4.17 Constant speed pumps spot measurements, 2014.

Chilled water flow rate [kg/s]

P1 89.8+2.7
P2 90.1+ 2.7
P1 & P2 151.7 £ 3.5
Condenser water flow rate [kg/s]
P3 112.4 + 3.8
P4 -

4.2.The Air Handling Unit (AHU)

The Air Handling Unit (AHU) is installed at th@enomic(GE) research building. The GE
building was completed in 2011, andsaeertified LEED Gold in 2013’ he AHU consists of two
AHU sub-systems (AHU#1 and #2) installed in parallel. Eachsggtem includes a recovery coil
(R-HC), a mixing box, an heating coil (HC), a humidifier (HH), a cooling coil (CC), and two
supply funs irparallel. Two return fans installed in parallel extract the air from the occupied space,
which is then rejected outside or recirculabdcontrolling the mixing and rejection dampers
(Figure4.6). Subsystem #2 handles and supplies roughly double theass from susystem #1.

From figure 4.7, two different daily profiles are distinguished: week days and weekends.

Three different AHU operation modes are identified:

1 Operation mode #1 the mixing dampers are completely closed, 100% of the supply
air flow comes from the outdoor air intake, and 100% of the return air flow is rejected
outside the building;

1 Operation mode #2 the mixing dampers are modulated and part of the return air flow
is recirculated and mixed up in the mixing box with the outdootaar; f

1 Operation mode #3 the heat recovery system is turned on, the outdoor air flow-s pre
heated with two coils before it reaches the mixing box and mix up with the recirculated

air flow.

52



ﬂ

() d)

exhaust air (::l ) ) return fans g C:I return air

rejection dampers J

|_r_a_| == relative humidity

mixing dampers = temperature

5C2-2 HC HH  CC sm‘-@
[ T P D o e | ;! > Fa J sa#
- o

o volume flow rate

R TTT 2
T =l O} —
outdoor | i E ! ! ! v
airintake[::> Z“_ | | i i i i supply fans > supply air
r i / i L i‘r"r-. ! E i ;i'r: : T J
— e ——h O O /—H—,
5C2-1 I;—#—ll

Figure4.6 i Schematic of the case study air handling system with measurements location: outdoor (oa), return (ra), mi
supply (sa), recirculated (rec), and after thehgating coil (ac).
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Figure4.71 Supply and return air mass flow rates during one week of July in 2016.

4.2.1. The mixing dampers
The mixing damperaremodulated between the closed positiahtbedampers signadf
100%, the supply air flow rate is entirely taken from outdand) fully open &t the dampers signal

of 0%, the maximum portion of return air flow is recirculatediien theoutdoor air temperature
varies between 10°C and 20(Eigure4.8).
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Figure4.81 Mixing dampers control signal against outdoor air temperature in 2016.
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4.2.2. The heat recovery system
A recovery loop is used to recover heat from the rejected air stream coming from

laboratories and washroopwghich is not recirculatedrhe recovered heat is then useg@reheat
the outdoor air stream when the outdoor air temperature drops below 8°C. Heat is recovered
through one recovery coil (SR3), and it is transferred to the outdoor air stream throwglcoils
(SC21 and SC2) (Figure 49). A constant speed pump (P03) drives a glycol based liquid
(glycol/ethylene 50/50) through the recovery loop pifé® constant speed pump P03 is rated at
11.8 L/s by the manufacturdfrom spot measurements from120 the glycol constant flow rate
resulted to be 10.0 L/s = 0.5 L{&ibin 2014) In order to avoid frost issues @il SR1-3, a three
way valve (3V) is controlledo deviatepart of the glycol, maintaining the glycol temperature at
SR13 inlet (Thra) higher than 4°QFigure 4.10. When the recovery loop works, the mixing
dampers are always fully open.

SR1-3

EXHAUST AIR FROM LABS AND FUME HOODS

=== Glycol temperature (BAS)

Vo POA-GLC O Glycol flow rate (SPOT)

Figure4.91 Schematic of the case study recovery loop.

The rate at which the heat is recovered varies with the outdoor air temperature. It reaches its
maximum (340 kW) at arounfa =-6°C, and decreases to 250 kW for lower temperatures. Taking
the glycol flow raé as constant (10.0 L/s as measured on 2014), the heat recovered through coll
SR13 is calculated from the measurements of the glycol at the inlet and outlet of ced SR1
(Figure 4.11).
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Figure4.117 Heat recovery rate at coil SRBlagainst the outdoor air temperature.

4.3.Measurements
The BAS collects measurements of variables of interest with a 15 minutes time step for
control purpose. Over 220 variables are measured, including power inputs to equipment, water
temperature and flow rate, and air temperature, relative humidity andefieyvalves and dampers
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modulation. Tablel.2 lists the variables available from BAS used in this study. The location the

correspondent sensors is reported in figdr2s4.6 and4.9.

Table4.2 - List of poirts measured by the BAS used in this research.

Description Units Variable names
Outdoor air
Outdoor air temperature °C Toa
Outdoor air relative humidity % RHoa
Air Handling Units (#1 and #2)
Supply air flow rate by fans L/s VA
Return air flow rate byan L/s VR
Supply air temperature °C Tsa
Supply air relative humidity % RHsa
Return air temperature °C Tra
Return air relative humidity % RHa
Mixed air temperature °C Tma
Cooling coil valve modulation % CGCu
Heating coil valve modulation % HCo
Mixed air damper modulation % MDo,
AHU Heat Recovery System
Glycol temperature entering glycol HX °C Thra
Glycol temperature leaving glycol HX °C Thre
Pump operation status ON/OFF P03
Cooling Plant (#1 and #2)
Chiller pumps operation status ON/OFF Pi; P
Condenser pumps operation status ON/OFF P3; P4
Supply chilled water temperature °C Terws
Return chilled water temperature °C TcHwr
Supply condenser water temperature °C Tenps
Return condenser water temperature °C Tenor
Electric power input tehe chiller kw EcH
Cooling towers supply water temperature °C Tcrs
Cooling towers fan operation level % VFDct

4.3.1.Short-Term Measurements (STM)and Spot measurements
For the purpose of measurements validat®mrt Term Measurements (STMgnd Spot
measurements have been collected for several variables of interest at the AHU using calibrated
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portable sensorshortterm and spot measurements have been used to provide values for those
variables which were not collected from the BAS: the air teaipeg at the mixing box inlets
(after the recovery coil and behind the mixing dampBgsandTrec), the air relative humidity at
mixing condition RHna), and the glycol volume flow rate through the recovery loop piggs.(

The portable sensors usedmeasure the air temperature and relative humidity in AHU
ducts are SmartReader data loggers by ACR System$AGR System Inc. 2012)Table4.3
reports product specifications as given by the manufacturer. Those portable sensors have been
recalibrated by the manufacéus in August 2013.

Table4.37 SmartReader product specifications (ACR System Inc. 2012).

Temperature

Type NTC Thermistor

Range -40°C to 70°C

Accuracy +0.2°C over the range of 0°C to 70°C
Relative Humidity

Type Capacitive thin polymer film

Range 0 to 95% RH (nofcondensing)
Accuracy +4% RH from10 to 90% RH

The glycol volume flow rate through the recovery loop pipes has been measured with a
portable ultrasonic flow meter, Portaflow PT400, by Greyline instruments Incaif velocity
metes, used to derive air flow rateefore each of the four supply and twaurn fanshave an
operation range, as given by the manufacturer, between 0.1 m/s and,2fbmesponding to a
flow rate between 0.5 L/s and 70 LI$he accuracy is stated to be between 0.2% and Zjieefd
reading forvelocidy higher than 0.2 m/éGreyline instruments inc 2013Jable 4.4 reports the
random and bias (fixed) errors, as well as the overall estimated unceofainegySTM and BAS
measurements from the AHU

Table4.41 Sensors Uncertainty.

Sensors Unit Fixed (bias) Random Uncertainty
BAS - Air temperature at 3@ °C 0.45 0.190 0.49
BAS - Air relative humidity % 4.00 0.150 4.00
BAS - Glycol temperature at 3G °C 0.45 0.075 0.46
STM - Air temperature °C 0.20 0.001 0.20
STM - Air relative humidity % 0.80 0.230 0.83
Solar radiation W/m? 175.0 - 175.0
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5.PRINCIPAL COMPONENT ANALYSIS (PCA)
BASED FAULT DETECTION AND
IDENTIFICATION

In this chapter the results from the development of a new-P&3&d elliptical threshold
model for the FD&I of HVAC equipment are presented. First the method is presented along is
development using measurements of a chiller operation from summer 200@r fugtdeveloped
method is validated using measurements from seven following summer seasons, from 2010 to
2016.

5.1.PCA based method for FD&l

In order to describehiller operation several intercorrelated parameters have to be
considered at the santiene. The ongoing commissioning of chillers is a multivariate analysis
problem. PCA has been used in order to reduce the nuvhl@tial variables, and remowhe
inter-correlation among them. Through the data transformation capabilities of the P@Ajahe
set of jvariables from the training data set considered representative of the chiller operation,
extracted from the BAS, is transformed into a reduced set (k < j) of variables called Principal
Components (PCs), which are linear combinations oiritial j-variables and PCA coefficients.

In other words, the initial-yariables are projected into adkmensional P&ased space. The
transformed measurements in the-lP&3ed space are called scores. As consequence of data
normalization and PCA featwggethe projection of measurements into thella€ed space tends to

be centered on the origin of the axes, and are here assumed to have a Gaussian distribution along

each principal direction, around the origin of the axes.

5.1.1.Summary of the method
The PCA method for FD&I consists of three main steps: i) threshold model training; ii)
outliers detection; and iii) variables identification. The threshold model, developed from the

training data set through the projection in thelf¥Sed space, defines thenfidence region for

Most of the content of this chapter was published as Cotrufo andréarmeu 2016. PCAased method oft fault
detection and identification for the ongoing commissioning of chillenergy and Buildingsl3Q 443453.

59



normal operation conditions. In this study, the threshold model takes the shape of an ellipsoid into
the kdimensional P&éased space, which is centered at the origin of the @kestores that fall
outside the ellipsoid are detectasl outliers, which could be caused by sensor error, components
degradation or change in the system operation. For eadba&€d detected outlier, the initial
variable which is responsible of the abnormal score is selected as the variable with the highest
d stance of the detected outlier from the axes:s
definition of v abaseddpadcevillsbe given8ection 1l1.3t4he PCs

The proposed method uses an ellipsoidal threshold, a concept simddakson (199), to
distinguish between normal and abnormal value of measurements in a building HVAC system.
The projection into the PBased space of observations of different years of operationi (2016)
were normalized by the mean and standard deviation of observatiounlsies from the training
dataset of the reference summer of 2009. The graphical representation of outliers by using the first
two PCs in the P®ased space has a practical advantage for the building operation team, and
should be implemented in currentiBling Automation Systems.

Most studies used the-Qatistic (or SPE) for the fault detection, and the Q contribution
plot and sensor sensitivity index (SVI) to identify the sensor responsible of the abnormal measure.
The identification procedure presedtin this study selects, for each outlier detected in the PCs
based space, the variable corresponding to the highest distance of the outlier from the axes origin
along the corresponding variabl eds axis. S 0 me
noise from simulation programs to test the proposed methods. This study uses real measurements
that contain noise and errors or changes in operation, which are inherent to measurements from

the Building Automation System of a university campus.

5.1.2.0peration data sets

Results from this chapter refers to the case when only chiller #2§Gsiworking. A
dedicate PCAbased threshold model should be developed for each operation mode. According to
Wang and Xiao (2004aa single PCAbased model, which accounts for all the system variables,
would not reach desirable levels of performance in HVAC FDD application. The application of
the proposed PGhased method to the operation of chiller-2lhcludes measurements from a
dedicate list of variables inherent to the considered operation mode and available from the BAS
(Table 5.1). The quality of available data was verified through inspection and profiles

visualization. Although the considered building is quite new (the tpearstarted in 2008), some
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abnormal values were observed. The system operation, thus, is not really fully fault free, but
representative of a real system operation, in which, after initial commissioning, some soft faults

might occur and equipment perfornte might decrease over the ti(iRoth et al. 2008)

Table5.171 List of measured variables from the BAS trelada recorded every 15 min.

Variables Units Symbols
1. Outdoor air temperature °C Toa
2. Electrical power input to Ci2 kw EcH
3. Supply chilled water temperature, €H °C Tcrws
4, Return chilled water temperature, €H °C Tchwr
5. Supply condensevater temperature, G& °C Tenps
6. Cooling tower fan VFD signal, G2 % VFDct
7. Supply cooling tower water temperature °C Ters

Available measurements of seven variabl€ab(e 5.} were split in two clusters: the
training and application data sets. Théraining data set, which includes 672 observations
(corresponding to one week measurements at 15 min time step) collected between May 25 and
Junel9, 2009, is used as a reference set for
The application data set contains 804 observations from June 29 to August 30, 2009. In addition
to the original application data set from the BAS, a modified application data set was generated,
in which the measurements of supply chilled water temperéime chiller CH2 (Tchwg, and
the supply cooling tower water temperature from cooling towel (llct.s) were replaced by a
random Gaussian distribution that was generated using the corresponding mean and standard
deviation values from the training dat@t of normal operation. Fdenwsthe mean value is equal
tothesepoi nt temperature of 6. 7UC, arerg theahean st anc
value is 28.9U0C and the standard deviation is

purposes.

5.1.3.Threshold model training

5.1.31. Transformation of original data
The original dataset ofjariables was transformed into a new data set made of a reduced
k number (k < j) of variables named Principal Components (PCs). The PCA trartgiarared
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data reduction is applied to measurements from the training period:vEn@lles included in
Table5.1 have different units of measure and range of variation. Accordifgdaly (2011)in
order to avoid that any variable overloads the projection of the observations into tbade@s
space, hiding the effect of the others, s@oe of data normalization is needed. Given a training
data set X(i;j ), wherei are the observations, apdre the variables, the normalization is defined

as follows (eq5.1):
ZX%r) :% eq.5.1

wherezXy, is thej-column of the normalized training data s§t; is thej-column of the original
training data seXu; €« is the mean value of thjecolumn of the original training data sét;; is
the standard deviation of th@olumn of the original trainindata set.

The PCA transformation is applied to the normalized training dataXggtand results
consist ofaj x j matrix Qu (eq.5.2).The first column ofQy corresponds to the first principal
component (PC#1), with the coefficierig used to pryect thei-normalized observations along
the first principal direction. The second column contains the coefficients of the second principal
component (PC#2) and so on. The first raw corresponds to the first vafigpks(listed in Table
5.1, the secondaw corresponds to the second varialdden}, and so on. The order of variables
always follows the list oTable 5.1

T Cp TWpp WOY @XT T CX TBTX TBIp

N ™ @O0 TIGCT TV TP CC TP O T O Q ns(rfep

2 TBIQT T XL T GX TIT X TBIC W Mlwp THI P
Q=>TBUwMITo BIXQ NX WwX @ p¢e eo  €d4.52

OmMun mMpyPp TWoT MNP T X T w T8 ok

T oL TBIUT TMrug T MY T W TP MG THIT X

O TIumM M GX X0 TWoyP Py mtyn e ng

The projection of measurements into the-lBSed space consists of a linear combination of
normalized observations witQ; matrix columns, resulting in a new matfx, whose elements
are named scores (€813). The scores are the new coordinates skolmations into the RGased
space. As an example, the scaieof the i-observation along the first principal direction is

calculated as follows (egS.4and5.5):
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Fir = zZXo Qe eqg.5.3
fii = 2%1qQuit+ ZX%2:Qe1t+ €  iF1-QiZd. ¢ 2X,-O1 eq.5.4
fi1 = 2%,1-0.421 + zxol. 0 . 4 6 3zxj+-0.485 + zx;-0.050 eq.5.5

whereFy is the matrix of scoregX: is the normalized training data s&t; Qv is the matrix of
coefficients;fiy is the score of thé-observation along the first principal directiog; is the
coefficient fromQy matrix corresponding to thevariable and-principal direction; anax; is the
normalized value of thevariable at the-observation.

The selection of PCs is a majosi® in PCA variable reduction. Most of the variance of
the initial data set is retained by first few PCs. Accordiniyltarison and Donald (1976PCs
should be selected in such a way to explain the minimum cumulative variance of 75% in the initial
data set. Fodolliffe (1986) it should be at least ¥80%, while for Ladd and Driscoll (1980) it
should be equal to 80%. In this resgawork the minimum cumulative variance to be retained
was 90% of the total variance explained by the whole initial training dataset. For the considered

training data set, this condition corresponds to the use of the first three PCs, k = 35H)gure

Cumulative
variance explained [%]

60 1 ! 1 1 1

1 2 3 4 5 6 7
Principal Components

Figure5.1i Cumulative variance explained by the principal components.

Hence the reduce®: matrix contains only the first three columns @f from eq.5.2 The
remaining PCs were neglected because they explain only a very small variance from the original

data set, which corresponds to random noise and some useless information from data set (Hu et
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al., 2012).Scores evaluated through Ef8( 5.5, are distrilnted along the principal directions,
around the origin of the axes. The plot of the scores into threditmensional P&based spaces

defined by PC#1, PC#2and PC#3 helps to visualize the different distributions (Fidgh5ed).

10

Principal direction #2

Principal direction #1

Figure5.21 Scores distribution into a P@msed space defined by PC#1 and PC#2.
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Figure5.31 Scores distribution into a P@msed space defined by PC#1 and PC#3.

64



14

Principal direction #3

4 \ \ ! ! \ | |
-4 -2 0 2 4 6 8 10 12 14

Principal direction #2

Figure5.41 Scores distribution into a P@msed space defined by PC#2 and PC#3.

5.1.32. Threshold model for the training data set

The scores distribution along the principal direction is assumed to Gauasian
distribution, with a different standard deviation for each direction. The threshold model draws the
border of a region, within the-#imensional Péased space (in this case k = 3), within which
scores correspond to normal operation conditiomse®rations projected outside that border are
labeled as abnormal events. The threshold model is formulated in terms of standard deviation of
scores distribution along each principal direction. The scores and principal directions are
calculated applying #h PCA transformation to the training data set. An ellipsoidal formulation
was selected for the threshold model having easérkiaxis as function of thetandard deviation
of thescores distribution along thegkincipal direction (eg5.6). A circular skape threshold was
not used since it does not consider the difference between the standard deviation of scores along
different principal directions. A parallelepiped or triangular shape thresholds were not considered
because they do not account for the corad probability distribution due to the overlapping of
severalGaussiardistributions,with different standard deviatisnpalong the k perpendicular axes
(Figure5.5). Thei-observations projected into the ®@sed corresponds to normal operation if
eq.5.7is satisfied.
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Principal direction #2

Principal direction #1

Figure5.5 7 Candidate threshold shapes (dash lines) against the color map of the co
probability distribution from the overlapping of two perpendicular Gaussian curves.

"0
: p eq.5.6
"0
T p eq.5.7
Where:s & 1.960y, ; & dGhe ellipsoid semaxis along the-principal direction;ly; is the

standard deviation of the scores distribution along-réngipal direction; and is the score of

thei-observation along theprincipal direction of the training data set.

5.1.33. Detection of outliers in the P&msed space

The detection of outliers consists of applying the threshold condition, given by’eqd
developed using the training data set, to the observations from the application data set, normalized
and projected into the-&imensional PGéased space (k = 3). First the measurements from the

application data set were normalized by using the mahrese; and standard deviation,
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from the training data set (e§.8) (Abdi and Williams 201Q)For clarification, the subscript
refers to the training data set, whap refers to the application data set. Second, the normalize
application data were projected into the-BP&ed space resulting in a new makiy of scores,

by using theQy matrix already calculated from the training data set%ed).

h h

ZXj,ap = p

eq.5.8

Fap = Zxap . Qr eq59

wherezXap jis thej-column of the normalized application data ¥ag;; is thej-column of the initial
application data set.

The normalized measurements from the application data set were projected intintie@gional

(k = 3) PGbased space using tiiest 3 columns ofFap. Points located outside the ellipsoidal
border, which was identified by the trained threshold model5&}. were detected and marked

as outliers. As an example, Figss shows the normalized measurements from the application
data set that were projected into a tdionensional Péased space defined by PC#land PC#2.
The scores corresponding to normal (blue) observations are within the ellipsoidal threshold border,

while the scores corresponding to abnormal (red) observatiotescated outside the border.

Principal direction #2
o
3
¢

Principal direction #1

Figure5.61 Ellipsoidal threshold border separates the projections of normal observations
from the projections of abnormal observations (red) from the normalized data set.
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5.1.34. Identification of variables

This section presents the variable identification phase, which consists of identifying, for
each detected outlier, which variables show abnormal values. The interpretation of the principal
components, in order to extract information in terms of initialades, is known in literature as
the principal components interpretation.

There are different ways to interpret PCs and their relationship with initial variables.
Several authors used the coefficients from Q matrix along with their linear combination wi
normalized data to identify strong correlations between a PC and specific vafiédudibsy and
Tomich 1986) According toCadima and Jolliffe (1995he coefficients are not appropriate to
highlight this kind of correlation. In this section a new interpretation is proposed. As the outliers
arescores,evalmatd from | i near combinations of wvariabl
coefficients (eqs.3-5.5), for each outlier one or several variables (T&bleare expected to have
an abnormal value and, thus, to be responsible for the score abnormal datugli@n detection.

The identification of variables (one or several) responsible for the outlier detection is based
on the definition of axis of eagloriginal variable in the klimensional Péased space. We define
aj-variable axis into the-dimensimal PCGbased space as the straight line passing by the origin
of the axes and by the point P, where the coordinates of point P are the first k valugsoivthe
of Qv matrix (eg.5.2). For instance the axis of the third variable from T&ble(Tchwg, in a 2D
PC-based space defined byPC#1 and PC#2, is the straight line passing through the origin of the
axes andthe pointP{gc 1 0 . 30=8475) (Fjguréd.7).For each outlier in the RBased space,
the Euclidean distance between the outlier and tise2zrevalue of each variable is calculated
(Figure5.8). The initial variable corresponding to the highest distance for that outlier is considered
to be responsible for that outli€igure 5.8 shows, as an example in a 2DR€ed space defined
by PC # and PC#2, the distance of a detected outlier (point S) from thevalei® of the axis
corresponding to the supply chilled water temperatlitewg. Since some variables have axes
that are very close to each other (eg4 andToa in Figure 5.7), theercvalue of those axes are
almost equal. Thus, for a given outlier, the Euclidean distance from theaamof those axes
could be almost equal, and as a consequence errors in variables identification may occur. For this
reason, the identification pbsa of this proposed method uses not only the first highest Euclidean
distance, but also the second, and eventually the third highest distances.
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Figureb.7 - Axes of the seven variables plotted into a-tumensional P&hased space define
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Figure5.8 - Euclidean distance of point S from the zgadue ofTchwsaxis into a 2D P&hased
space defined by PC#1 and PC#2.
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5.1.4.Results from summer 2009

The threshold model, trained on a one week training period (672 observations from May
25 to June 19) was applied to an application data set (804 observations from June 29 to August 30,
in 2009), to detect eventual outliers and test its effectivenesshiigshold model detected 139
outliers (Tables.2).

Table5.27 Number and percentage of cases when each variable was responsible for outliers.

: 1%t highest Euclidean distance 24 highest Euclidean diance
Variables
no [%] no [%]
Toa 0 0.0 10 7.2
EcH 28 20.1 46 33.1
Y 2 15 3 2.2
Y 4 2.9 37 26.6
Y 0 0.0 17 12.2
VFDcr 52 37.4 26 18.7
Y 53 38.1 0 0.0
TOTAL 139 100 139 100

If the variables that influence the outliers are selected based on the highest Euclidean

distanceTcr-sandVFDcrtogether are the cause of 75.5% of outliers, followeBdpywith 20.1%.

If the second highest distance is used for the selection of vaigbleand Tchwrtogether are the

cause for about 59.7% of outliers. The proposed method detected possible errors in the application
data set of summer 2009, related to the control or measurements of five variables frolmITable

EcH, Tchws Tchwr VFDcr, and Ters Therefore the operation team should verify those five
possible sources of errors.

In order to test the proposed method, the values of two variables in the application data set
(TchwsandTcr.s) were replaced with synthetic values represergatf normal operatiomfodified
application data sefection5.1.2. The model was applied to the modified application data set
and, as expected, the two modified variablesysandTcr.s) do not appear anymore as the cause
of outliers (Table5.3). These results proved that PCA based method can effectively detect
abnormal operation conditions from chiller operation data, and properly identify the variables

which are responsible for the detected outliers.
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Table5.3 7 Number of cases when each variable was responsible for outliers when using the
modified application data set.

Vari 1% highestEuclideandistance 2" highestEuclideandistance
ariables
no [%0] no [%]
Toa 0 0.0 5 5.8
EcH 29 33.7 44 51.2
Y 0 0.0 0 0.0
Y 4 4.7 21 24.4
Y 0 0.0 3 3.5
VFDcr 53 61.6 13 15.1
Y 0 0.0 0 0.0
TOTAL 86 100 86 100

If the first three PCs are used, which explain 91.5% of the total variance in the initial training data

set, thehreshold model detects 139 outliers in the application data set. The detection has a lower
performance when it uses only two PCs; it detects 101 outliers with the first two PCs (PC#1 and
PC#2) that explain 77.4% of variance, 86outliers with PC#1 and B@t®xplains 75.8% of

variance, and45 outliers with PC#2 and PC#3 that explains 28.9% of variance.

5.1.5.Detection of outliers from 2009 to 2015

The proposed PGhased method was used to assess the chiller performance over seven
summer seasons from 20@2015, from June 1st to August 30th. Only observations whe& CH
works alone were consideret@iable 5.4. The entire data set of observations from the summer
season of 2009, the first season of operation, were used as the reference data set, amdinised to

the threshold model on the Rased space.

Table5.47 Number of observations included in each data sets.

Year 2009 2010 2011 2012 2013 2014 2015

Numberof 5505 3236 3289 4241 2577 4131 4919
observations

Figure5.9 shows that the threshold model detected outliers (in red) in the 2009 training
dataset; those are the outliers in the-timensional (2D) PGbased space defined by PC#1 and
PC#2, and not the outliers in the original measurement data set. The 2D thrastels contains

about 75% of the total variance explained by the whole initial training dateigetg 5.}, while
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the threshold model composed of the first three PCs (3D model), PC#1, PC#2 and PC#3 (k = 3),
contains 92%of the total variance. Howevbe, 2D threshold models have the practical advantage

of two-dimensional graphical representation. About 18% of the observation projections of 2009
on the PGbhased space exceeded the threshold lieng, they are outliers (Fige 5.11). The
observationsrbm the following summer seasons (202015) were projected into the RGased

space through egs. 5.8 and 5.9, by usingjtheean valuesy; and standard deviation&;
calculated from the training data set of the entire summer 2009. For indtanae, 5.10 shows

that the same threshold model (developed along the 2009 data set) detected outliers (in red) in the
application data set of summer 2015.

- - N
o )] o
|

Principal direction #2
a

Principal direction #1

Figure 5.9 - Ellipsoidal threshold boundary septas the projections of normal observatic
(blue) from the projections of abnormal observations (red) along the 2009 data set.

From 2011 to 2015, the percentage of detected outliers over the entire seasonal data sets
was lower than 10% (Figure 5.11¢pmpared with 18% for the summer of 2009. Three
combinations of PCs were used: (1) the first three PCs (3D model), PC#1, PC#2 andPC#3, (2) the
first two PCs, PC#1 and #2, and (3) two PCs, PC#1 andPC#3. Since the 3D model contains 92%
of the total variancexplained by the whole initial training data set (Figure 5.1), one can expect

that PCbased model is a good representation of the original measurement data set. The other 2D
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models can also give close estimates of the number of outliers in thade@ spae, of about
11% for 2D model #2, and about 10% for 2D model #3.
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— N N w
w o &) o
T T

Principal direction #2
S

-6 -4 -2 0 2 4 6 8
Principal direction #1
Figure5.10 1 Ellipsoidal threshold border separates the projections of normal observ
(blue) from the projections of abnormal observations (red) along the 2015 data set.

As presented in Sectidnl.4 the proposed method detected possible errors related to
control or measurements, in the sum2@09, of five measurementSeh, Tchws Techwr VFDcr,
andTcts. A higher percentage of faults along the 2009 data set could be explained by considering
that in 2009 the system was in the first year of operatiod, partially under commissioning.
Corrections and adjustments in the system o0pe
range of variation and changing of correlations between the variables within the same training data
set. The reduction of nuver of detected outliers during the following years (2@D15) can be
the result of the corrections undertaken during the first year of operation. However, there are still
a few detected outliers due to sensors and component degradation, or changepénatien
conditions that normally occur in HVAC systems after the initial commissioning. The cooling
tower fan VFD signal\{FDct) was responsible for 239% of outliers (Tablé.5), as notted also

by the operation team.
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Table5.571 Variables identification for detected outliers from 2010 to 2015.

2010 2011 2012 2013 2014 2015
no [%] no [%] no [%] no [%] no [%] no [%]
Toa 1 03 3 1.6 18 4.7 8 4.1 28 7.0 21 4.6
EcH 1 03 O 0.0 9 23 2 1.0 31 7.7 3 0.6

Variables

Y 42 121 30 158 46 119 46 232 66 16.0 120 26.1
Y 11 3.2 2 1.0 22 57 1 0.5 14 3.5 25 54
Y 44 127 24 126 51 13.2 18 9.1 23 5.8 47 10.2
CTvep 105 304 37 195 141 364 77 389 100 250 164 357
Y 142 410 94 495 100 258 46 232 138 350 80 17.4
18 e
—3D model
16 ---PC#1-#2 |
PC#1-#3

—_
N
[

—
N
S

o8]
I

Detected outliers [%]
o

(o]

2 | | |
2009 2010 2011 2012 2013 2014 2015
Years
Figure5.117 Total percentage of detected outliers over the entire application data set si.

5.1.6.Detection of outliers in 2016

The same threshold model trained in the previous section, with the observations from the
entire summer 2009, has been used to detect outliers among measurements from summer 2016.
The data set from summer 2016 includes 1,496 observations for which chil2m@s the only
one to work. Figuré.12 shows, for the three considered ellipsoidal threshold models based on
PCA, the percentage of detected outliers over the entire sample of observation under the considered

operation mode, from 2009 (the training dséd) to 2016. A pick of detections is revealed by all

74



the three models in 2016, with a percentage of detection close to 100% for the 3D model. Figure
5.13 represents, in a 2D P@msed space defined by PC#1 and #2, the projections of the
observation fronsummer 2016 along with the threshold model trained with measurements from
summer 2009. The cloud of projections lies just outside the ellipsoidal threshold, suggesting the
occurrence of a change in the system operation level.

100~

—— 3D model
--- PC#1-2
80~ PC#1-3

Detected outliers [%]

O |
2009 2010 2011 2012 2013 2014 2015 2016
Years

Figure5.12 - Total percentage of detected outliers over the entire application data set siz
25
20+

15

Principal direction #2

-10 ‘
Principal direction #1

Figure 5.13 1 Ellipsoidal threshold border separates the projections of navbsdrvations
(blue) from the projections of abnormal observations (red) along the 2016 data set.
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In order to investigate the origin of the pick of detection®i6 (Fgure 5.12, the
outcomes from the identification phase have been inquired: the first, second and third highest
distances from the original variables zswaue axis have been considered for each outlier (Table
5.6). From considering the first highest distance, thepy chilled water temperatur&ddnws
resulted to be responsible for 60.3% of the detected outliers, while the cooling tower supply water
temperatureTcr.s) was identified as the first responsible for the outliers in 19.1% of the cases.
Through the secual highest distancdcrs and Tchwswere accounted for 59.4 and 20.3% of the
outliers respectively. Finally, the cooling tower VFD sign&FrDct) was found to be responsible
for the third highest diahce for 59.7% of the outliers.

Table5.6 7 Number and percentage of cases when each variable was responsible for ot

Variables 15t highest distance 2" highest distance 3 highest distance
no [%0] no [%0] no [%]
Toa 0 0.0 18 54 0 0.0
EcH 0 0.0 0 0.0 52 15.5
Y 202 60.3 68 20.3 12 3.6
Y 1 0.3 46 13.7 4 1.2
Y 18 5.4 0 0.0 63 18.8
CTvrp 50 14.9 4 1.2 200 59.7
Y 64 19.1 199 594 4 1.2
TOTAL 335 100.0 335 100.0 335 100.0

The first variable to be considered farther investigation, thus, is the supply chilled water
tempeature. From data visualizatipseveral abnormal values Bénwswere highlighted, as well
as a change in the saint from 6.7°C to 6.0°C (Figure 14). Although the highlights from data
visualization can be accounted for some outliersy tir@ not enough to justify the detection of
almost 100% of the observatiofrem 2016(Figures5.12and5.13, and Table 5)6 Thus, the
investigation effort was addressed to the second variable identifiedgh the highest distance
criterion (tables.6): the cooling tower supply water temperaturé ( ). TheTcr.s setpoint was
found to have changed between summer 2015 and 2016. Along the previous period (from 2009 to
2015) theTcr.s setpoint was 29.0°C, while in 2016 this value dropped to 27.0°C.
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Figure5.14 1 Supply chilled water temperature measured atZOMhen CH2 was the only
chiller to work, along summer 2016.

The faultsdetected along the summer season of 2016, thus, were not actual faults but
changes of the s@ints of the supply chilled water temperatufer{vg and the cooling tower
supply water temperatur@dr-s). The proposed Pdsased threshold model effectivadgtected
and identified any abnormal observations with respect to measurements from 2009 (the training
data set), regardless if those abnormal values are due to faults or are inconsistent with the training
period. As the system operation was modified-fsehts changes), the model should be updated
(re-trained using measurements from the summer season of 2016) before using it for further FD&I.

5.1.7.Discussion

A new PCAbased method for fault detection and identification in the chilled water system
was presented in this paper, which used BAS trend data from an existing HVAC system in an
institutional building. The proposed method proved to be effective for tadejeabnormal
measurements and for identifying the variables which are responsible for those outliers. The first
case used one week of data (672 measurements atl5 min time step) for training the threshold
model, and then applied the model to an applicataia set (804 measurements between June 29
and August 30), both data sets being collected during the summer of 2009. The proposed method
was effective in detecting outliers and identify faulty variables, by using data from a real system
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operation. The tlashold model detected 139 outliers of normal operation, and identified the
variables that caused those abnormal operation outcomes. Synthetic data, representative of fault
free operation, have been used to replace values from two faulty variables iplibatiap data

set. Results from applying the P@#Aethod to this modified application data set validated the
results from fault detection and identification from the original application data set.

In the second case, the measurements over the full suohi2@09 were used for training
the threshold model, which was then applied to measurements of summer seasons26f1%010
The reduction of number of detected outliers between summer 2010 and 2015 can be due to the
corrections in the first year of opei@ti There are still a few detected outliers due to sensors
degradation which usually occurs in HVAC systems after initial commissioning. From summer
2016 almost 100% of the observations were detected as ouHigtsgs 5.12 and 5.13The
proposed PCAnehod identified two variables to be responsible for those outliers: the supply
chilled water temperature and the cooling tower supply water. Those variables were found to
undergo changes in the gmint values by the building operators. The P@Athod, ths,
promptly detected the change in the chiller operation with respect to the training period (summer
2009), and effectively identified the variables characterized by nepos#tvalues. If changes to
the chiller operation are made, the P@wthod shouldbe retrained with measurements
representative of the new operation profile.

The proposed method would give another tool to building operators to continuously verify
and detect soft faults in sensors or degradation of equipment performance, whiclmelpulce
scheduling for maintenance. Alarm signals would be sent to building operators when outliers are
detected, and the identified responsible variable would be displayed. The method could be easily
implemented in the control strategies using BAS titaitd. Results from the proposed RG#sed
method are easy to be interpreted, and advanced technical skills are not needed.
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6.VIRTUAL FLOW METER FORAHUs

Modelsf o r f hmeetbeen dewgloped for two AHU operation modes, to be used for the virtual

measurement of the outdoor air flow réeg. 32):

i) Operation mode#2: known mixing box inlet conditions
The outdoor air temperature taken as the temperature of the air at the mixing box

inlet. The effect of the return fan on the return air temperature has been considered: a
constantp fan = 1.8°C has been added to the return air temperature values from the
BAS (Zibin 2014)

ii) Operation mode#3: unknown mixing box inlet conditions
The outdoor air stream is pheated before it reaches the mixing box, and the

difference between measured outdooteinperature and actual air temperature at the

mixing box inlet cannot be ignored.

6.1.Factor U with known mixing box inle
I n this secti ofirstpgrifciple ased madelafe dirsttp@sentedlhe
propagation of theincertainty from te measurement® the predictions is evaluated for each
model In order to reduce the number of required inputs, three data driven models are developed
which predict the factor U wusing atedthedataed nu
driven models can be used instead of the first principle masddls Finally the best first principle
based and data driven moslare selected based amodels accuracy, uncertainty arejuired

information

6.1.1.First principle based models
S mplified engergy balance (U

The common f or mul abased on aif temperdtunésq. 3t5dschere r U
reported (eq. 6.1)Thef a c tisogivenas function othe air temperatureat outdoor, return and

mixed canditions

bh=—— eq.6.1

Part of the content of this chapter has been presented in a conference paper: Cotrufo et al. 2016. Virtual outdoor air
flow meter for he ongoing commissioning of HVAC systems: lessons from a case #t8tHRAE 2016 Winter
Conference, Orlando, FL.
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Three balance equationssystem( 4)

Thef a c tnwdel i<hased omsystem of three equations with three unknowns. The three
equations are: i) the energy balance equationG&. i) the water mass balance equation (eq.
6.3), and iii) the air mass balance equation @d). The three unknown variablésom the
considered case studyre: the outdoor and recirculated air mass flow rabes and Qec

respectively), and the mixed air humidity ratie.d).

0 sa-hma = Gl oa-hoa + Girec'hra eq.6.2
0 saXma = O 0a'Xoa + O recXra eq.6.3
Gsa= Ooat Orec eq.6.4

whered sa, 0 0a andd rec are the air mass flow rates at supply, outdoor and recirculated conditions
respectivelyhma hoa andhra are the air specific enthalpies at mixed, outdoor and return conditions
respectively; angma, Xoa@andxa are the air humidity ratios at mixed, outdoor and return conditions

respectively.

Fromcombiningt he t hree above | i sgwvrdbylegphat i ons, t he

=—7" i €Q.6.5

where:Cp.ais the dry air specific heat at constant pressUseis the water vapor specific heat at

constant pressurégis the water heat of vaporization.

Energy balance ad the mixing box (U
The f aisglvenifromihe energy balance across the mixing box3(dy.combining

eg.3.1and eq3.3 Eq. 3.4 is here reported (eg. 6.6):

U= eq.6.6

The air humidity ratio at mixed conditiom{z) is unknown, as an air humidity sam after the
mixing box is not installed (see Figutes from Case Study). Thus the mixed air humidity ratio is

assumed to be equal to the supply air humidity ra¢ip, (vhich can be derived from the available
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measurements of the supply air temperatune relative humidity. This assumptiomg = Xsa) iS

valid underthe following two conditions:

i. No humidification, as indicated by the humidifier valve modulation equal to 0%;

ii. No condensation occurs between mixing and supghylitiors.

The second contion is imposed by considering the saturation degree of air at the cooling coil
(ASHRAE 2009) Measurements for which the saturation degree is close to 100% are excluded
from the dataset as wels measurements taken when the air was humidified. The outdoor and

return air enthalpies are evaluated by using the measured air temperature and relative humidity.

6.1.2.Uncertainty analysis

The uncertainty propagated from the initial measurements, througibtive presented
modelsto the predictions, is evaluatetcording to section 3.5 (Uncertainty analysig)he
measurements meanal ue (€) and random er r omthefraithing val ue:
period (from April 7 to May 5, in 2015), and the bias (fixed) error (B) asestdity the sensors

manufacture(Tables 6.1 and 6.2)

Table6.17 Measurements mean value and random error asvaosduring the training perio
(from April 7 to May 5, in 2015), and bias error as stated by the sensors manufacturer.

Tma Tsa Toa Tra RHsa RHoa RHa
[°C] [°C] [°C] [°C] [%] [%] [%]
€ 11.5 15.0 8.6 215 60.3 38.3 32.2
0.08 0.08 0.10 0.08 8.3 1.4 0.5
B 0.45 0.45 0.45 0.45 4.0 4.0 4.0
Table6.271 St at i sti cal indices and wuncertaint
Formulation Mean Std N. of input Biaserror Random Uncertainty
[-] [-] [-] [-] error f] [-]
b 0.71 0.18 3 0.08 0.03 0.08
U 0.71 0.18 5 0.13 0.02 0.13
G 0.76 0.09 6 0.12 0.12 0.17
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The three factor U model (Tathes.9 as toeibiad aad random un c e
errors propagate through different mathematical formulations §efj€.5and6.6). Specifically,

the more complex is the mathematical formulation and the greater is the number of input
measurements, higher the propagated uncéytsiexpected=or i nst ance the firs
= 0.71N0.08, compar@®h+0ilda the third model U

6.1.3.Data driven models

The thredirst principle based models froags.6.1, 6.5and6.6 ( d) salh @) retuire for
3, 5 and 6 input measurements respectiwdiyh the goal of reducing the number of those required
measurement s, three data driven model,;sas have
predicted by the first principle based modelsing areduced number of predictors. From a
preliminarycorrelationanalysis (Figuré.1), the best regressor among others has been found to
be the difference between mixed and outdoor air tempera@uesiratic regression models have
been developed which udeetterm(Tmai Tos) to predictfactorslh (modela)  a ¢ rdodelb).
For the prediction dfactor(k, aquadratic regression modsfithe term Tmai Tos) Showed limited
prediction capability. Thus, a multivariate regression model has been developedausing
regressors (outdoor air relative humidiRkbs; mixed air temperatur@ms; outdoor air enthalpy,
hoa; and return air enthalpfa) , whi ch resulted in the highest
t o t hee(rodem)t or U

The three models haven been trained alongrdiring period(April 7 to May 5, 2015)
and validated on thealidation period(May 512, 2015)(Table 6.3).Figures6.2 shows results
from the factor U dat a dr.Statistiodindicesifermh som@atisonn g t h ¢
between first principle based and data driven models are giy&€abie6.4). Figure 6.2.c presents
data from only two consecutive days begause,
conditions, several measurements exeluded from the data set to satisfy two conditions: i) no
saturation, and ii) no condensation occurring in the AHU between mixed and supply conditions.

Table6.3 1 Prediction models trained along the training period (April 7 to May 5, 2015).

Prediction moded f or Trained model 6s for
modela Ub=1.0041 0.071-Tmal Toa) T 0.002:Tmal Toa)?
modelb Us= 1.002i 0.079-Tmai Tos) i 0.002-Tmai Toa)?
modelc Ue = 1.598i 0.001RHoai 0.055Tma+ 0.0155h0a - 0.009hra
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Table6.41 Statistical indices of goodness of fit for the regression models.

Factor U Training Validation
model R?[-] CV-RMSE [%)] R?[-] CV-RMSE [%]
modela ( d) 0.97 2.8 0.87 4.3
modelb ( §) 0.96 3.8 0.80 4.6
modelc ( &) 0.85 1.4 0.78 2.2

6.1.4.Validation through the mixed air temperature

Direct measurements of the outdoor air flow rnagFenot available fronthis case study.
vnaedad éoisvalidation, tthinse codldahet teaved frdm ed.1.

The reference

An alterndive, indirect strategy has beased to validate the three preserfted c t o r
(egs. 6.1, 6.5 and 6.6) atttk corresponihg data drivermodels The predictions ofhe factorU
from each of the thregata drivermodels are used, along witheasurements of treutdoor and

U

f or mul

return air conditionsto derive the mixed air humidity ratia (eqg.6.7), the mixed air specific

enthalpy ha , (9. 6.8), andthe mixed air tmperatureTmap (€g. 6.9). The derived mixed air

temperatureTma,d iS thus compared to the direct measurements of the same vafiadlégble

6.5 and figures 6.3)

Xmall = Q)al—' ((ra) + Xra
hma = E!)el-‘ hra) +hra
Tmap= i i

eq.6.7

eq.6.8

eq.6.9

whereTmapis the derived mixed air temperatuxgapis the derived mixed air humidity ration, and

hma,dis the derived mixed air enthalpy calculated fribvea derivedkmap and the measurelha.

Table65T Compari son between measured Tma an
Factor U pre R?[-] MAE [°C]
modela ( d) 0.97 0.27
modelb ( ) 0.97 0.26
modelc ( 4 0.67 1.56
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Figure6.31 Regression models validation through the mixed air temperature.
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6.1.5.Discussion

The three first principle based models of
uncertainty Table 6.2. The uncertaintyanalysisallows to evaluate the models feasibility: the
uncertaintyfrom factor (eq. 6.1)bis the smallestoneg# 0. 08 and U varies fr
makes theap model the best candidate for thdevelopmentof a virtual air flowmeter The
uncertaintyfrom modelda n d(edd. 6.5 and 6.63 0.13 and 0.17 respectively. Due to the error
propagabn, more complex formulationsead to higher uncertainty values. Thus, simple
mathematical formulations, withr@duced number of required inputs, should be preferred. The
uncertaintyffromandi ¢ more than 10% of the entire ran
circumstance may prevent from the effective implementation of thase tfasnulations in an
ar VFM (eq. 32).

The regression models based on the regre$soa - Toa allow for the physical
interpretation of system operation (Figsi®.2a and6.2b). Models a and b showed good
prediction accuracyR? = 0.97 and 0.96, respectivedjong the training perigdR? = 0.87= 0.80
respectively along the validation periddodelc shows the poorest accuraeyith R> = 0.85 and
0.78 for training and validation perisdespectively Table 6.4. The CVRMSE values are
acceptable for the firstvo models.

From models validationmodelsa andb provide good statistical indices (Tatie5): R? =
0.97 for both and MAE equal to 0.27°C and 0.26°C, respectively. However, iisdehined on
t he fsdronten.6.5 Which requires more sensdf) thanthec o mmon f or mul at i o
fromeqg.6.1. The three air t e mpare @mmoniealreadymnstalledsn ne e d
AHU for control . kformdlation hasithe senallest uncertaintyavaltieqTrableU
6.2). It is important tdhighlight that thenodelsvalidationis only based ofmabecause the outdoor
air flow rate was not available from the BAS,
The temperaturbasedno d e | of (tohskould ke preferred when compared to the other
two models. Alsothedata drivermodela usesthe term(Tmal Toa) as regressor, thusquires for

a reduced number of sensdrsompared to moded.

87



6.2.Heat recovery operation mode
The f act oation flom feq r3.8,unhich accounts for the actual outdoor air

temperature at the mixing box irg€fac andTrec), is here used as a refererfeq. 610).

D{ef =

eq.6.10

The lack of measurements Bf is overcome coupling eq. 1 with the equation of the energy

balance at the heat recovery coils (SCand SC2) (eq. 6.1). The left part from eq. 61lis the

heat recovered by the recovery system at coil3Qlhe right part is the heat gained bydlédoor

air stream passing through coils (SC2and SC2).The factor U, t hus, is d
of two equations (eq. B0andeq. 62) and t wo unkno W (eq. 6.B.eThef act or
third unknown variable, the recirculated air temperatugg is here replaced by the return air

temperaturd;a, which is available from the BAS.

J-glc'VgIc'Cp,gIc'( Thre T Thra) = airlvsé'CpJair'(Tac - Toa) eq. 6.1

t t 5t
t t 5t

(=

eq.6.12

where G airis the dry air specific heat at constantpresswe;€ 1. 006 kcBthé dtygol K) ; )
density, kg/m; Vg is the glycol flow rate, L/s-I8 Cp g is the glycol specific heat, Gic = 3.35

kJ/(kg K); andTnre and Thra are the glycol temperatures respectively before and after the pre
heating coil, °C.

The air temperature difference between return and recirculated conditions depends on
features whib are unique of each AHU systemd. return fan temperature rise, ducts size and
insulation level, etc.)and it may not bealways negligible A white box model of the
thermodynamic processesthe airflow betweerreturn and recirculaticonditions wouldequire
additiond information,modelling skillsand time Designinformation may be difficult to find, and
the overall approach is likely to result time consumihigus, in order to account for the air
temperature variation between the return conditibg) @nd the recirculation mixing box inlet
(Trec), @ grey box modelling approach is preferrgding $ortterm measurements of the actual
Trec, @an inverse model is developedhich predics the recirculated air temperatur&et,) from
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measurementavailable from the BASA liner regression model has been successfully used (eq.
6.13).

Trecp=a + a1-x + az'x eq.6.13

where Trecp IS the predicted recirculated air temperature, 8C; a1 and az are the regression
coefficients; anc: andx. are the measurements of the identified most correlated variables.
The predicted recirculated air temperature is then tesegplace the return air temperatureq
6.12 (eq.6.14).

e

eg. 6.14

The factos fromeq.6.12((h) andeqb.14(l) are compared to W10 ef er e
(Uer), whereTra is replaced byTrec, and bothTac and Trec have been measured with portable

calibrated sensors.

6.2.1.The equivalentAHU single system

The proposed f act6il?andh.14) cam beappled at each of the Bvg s .
subsystems from the considered case study (fgdii@ and 4.9if the heat transfer rate€r,1and
Qnr2) at each of the two coils (S€&land SC2) is known. This is not the case, as only the total
heat transfer across coil SB1Qnr = Qnr,1 + Qnr,2) can me estimated hus, arequivalentsingle
AHU system has been dertaising the measurements of the supply air volume flow rate at each
subsystem. Taking the air density as constant, the parameters of the new equivalent system have
been derived aseighted average valuestbief a c t(ew.r6.5)J)andthe mixedair temperature
(Tma) (eq. 6.5).

Uef = ———— eq.6.15

n n n n

Tma= eq.6.16

Wherehandatde the factor U for [s]yb tasdds aréftleaimnd # 2
volume flow rates supplied by sislystems #1 and #2 respectively, ldad”Y' and”Y' are the

mixed air temperatures at ssigstems #1 and #2 respectivelg,
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6.2.2.Measurementsof the outdoor air temperature at the mixing box inkt (Tac)

The temperature of the air in the AHU, just after the heat recovery coild S&PSC22
(Tao), is a variable of interest for this research work. The air temperagdiis not currently
measured by the BAS. The compact structure of the mixing box makes difficult to measure the
effective air temperaturest after the heat recovery cailsefore the outdoor air streastarts to
mix upwith the recirculated air stream (Figg&). In order to identify the optimal location where
Tac can be properly measured, a set of six air temperature portable sensors (from #5 to #10) has
been placed, in system #1, just after the heat recovery coillSQ@2 the opposite side from the
mixing dampers(Figure6.5). Measurements of théraemperatur€’Y' ) have been collected when
the heat recovery coil was not working and the mixing dampers were open, along a ten days period
between October and November in 2016. Collected values have beearedrtgpmeasurements
of the outdoor aitemperaturdefore the heat recovery coilog). When the heat recovery system
is off, the air temperature after the recovery coff || is expected to be the same at outdoor
condition (Y = Toa). Figure6.6 shows, for each of the six sensors, the Mean Absolute Error
(MAE) and the maximum Absolute ErrokEmay) betweeriY' andT.a A black dash line reports
the uncertaintyf the differencéetween those two measuremguts= 0.53T). Air temperature
differences smaller than tlerrespondentncertainty have no engineering meaning, anchate
takenin considerationExcept for location #5, measurements from all the other locations gave
haveMAE lower than the uncertaintizocation # has been selected fitve measurements of the
air temperature after the recovery coll.

The occurrence of air stratification at the outdoor air mixing box inlet has been verified
collecting measurements of the air temperature at point #5 at diffeightsh@~igure 6.7) along
the same ten days period between October and November in 2016. The air temperature difference
among the collected points was always smaller than the correspondent uncertainty. Thus, the air
temperature distribution at the mixingxomlet has been taken homogenous.
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Figure6.51 Picture: aitemperature portable sensors placed just after the heat recovery
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Figure6.61 MAE andAEmaxbetween air temperatures before and aftehéagrecovery coil at
different locationswhile the heatecovery loop is not working, along ten days between Oct

and November 2016.

Figure6.7 - Picture: air temperature portable sensors at different heights after the heat re
coil while the heat recovery loop is not working.
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6.2.3.Trend data validation

Data validation has been performed on the trend data from the BAS collected between
November 20, in 2016, and January 12, in 2017. Physical and theoretical limits have beseh verif
according ttASHRAE (2005b) and measurements behind those limits have bisehatged.

Figure6.8s hows t he gl ycol t @)mgosstletreaovesy cal SBLf er enc
Two time intervals were identified (red dadines in figure6.8) which present abnormally fast
variations of the parametgr Tc (the glycol temperature difference across coil SR1nterval 1
was found to be due to the return fans from laboratameswashroomsvhich were off during
few hours, even though the outdoor air temperature was lower than 8.0°C and the recovery loop
was working. Thus, the recovery coil did not recover any heat along these measurements. This
may be due tonaintenance operation by the loing operatorsafault at thefans or a bug in the
control code. Interval 2 includes fast oscillations of the glycol temperature difference, up to 5.0
6.0°C, at each 130 minutes, which were found to be correlated to the outdoor air temperature.
Figure6.9s hows t hose consecutive varggdal)ipHh®, of th
plotted against the outdoor air temperature. A marked change in variations magnitude occurs at
around 0.0°C. Although the recovery loop is started when the outddemgerature drops below
8.0°C, above 0.0°C the outdoor air stream is not cold enoughvarysestablish a quasiteady
state thermal exchange with the heat recovery coils SR& SC2 (blue points in figure 6.9)
T h e gc@pSt variations are thusid to transient heat transfévhenToa < 0.0°C the observation
are considered to be representative of a egtasidy state heat transfer at SRDnly the smallest
95 % ogf vargibns has been retained (as the remaining 5% includes outliers amohabno
val ues) which cor r gesvariatiordegualttood.5doramye paints in figurep T
6.9). Thema x i mugnvanpflon has been usex$ criteria to detect transient operation, and
applied to the entire data set, including measurements wbé@ 8 Toa < 8.0°C (dash line in
figure 6.9).

From data validation, two windows of measurements where identified: window #1
(December 225, 2016), here namerhining period,and window #2 (from December 27, 2016
to January 6, 2017), namedlidation perod.
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Figure6.91 Variations of the glycol temperature differerfabsolute values) versus the outd
air.
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6.2.4.Models training
Thetraining datase{December 225, 2016) is here used to: i) train the regression model
from eq.6.13, which will predict values of the recirculation air temperature; and ii) dénee

actual value of the glycol flow rate through the heat recovery sysg (

6.2.4.1The prediction model for the recirculation air temperatuee JT

Shortterm measurementéSTM) of the recirculated air temperatur€ef) have been
collectedalong the training period using portable calibrated @en$he difference between the
return (Tra) and recirculatedTiec) air temperatureBas beeriound to be correlated to the outdoor
air temperature: lowawas the outdoor air temperatutatgerwas the difference betweéeha and
Trec (Figure6.10).
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Figure 6.10 7 Air temperature difference between return and recirculated conditions p
against the outdoor air temperature.

The air handling system is installed in a remmditioned space, and the long, finsulated
recirculation duct is exposed to the ambient temperature whsthiagy correlated to the outdoor
condition. A regression model, thus, is developed which prethie recirculated air temperature
from measurements of the outdoor and return air temperature® 1€q.The goodness of fit of
the predictions from Eq. 11 to the shtgtm measurements of the recirculated air temperature is
evaluated in terms of ststical indices: MAE = 0.45°C, CARMSE = 3.3%, and R= 0.43.
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Trec,p: 1.24 + 0.17Fpa+ 0.81Ta eq617

whereTecpis the predicted value of the recirculated air temperature, °C.
6.2.4.2The glycol flow rate (M

The recovery loop pump (PE3LC) is rated by the manufacturer at 11.8 L/s constant flow
rate. This value was verified with spot measurements from a portable ultrasonic flow rate. Two
times, in April 2014 and February 2017, the glycol flow rate was meaauacetbund to be 10.0
and 9.7 L/s respectively, with 0.5 L/s uncertainty. The discrepancy between measurements from
2014 and 2017 can be explained by the uncertainty due to the flow meter. The only available
location to install the portable flow meter iaoth 2014 and 2017, was just before the pump (Figure
6.1]). It was not possible to comply with the minimum distance between the flow meter and any
obstruction or ' i quid flow distort i(Gaylpe as r e

instruments incn.d).

Figure6.117 Pictures of the portable flow meter installed just before pump-BLE.
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Thus, measurements from ttnaining periodwere used to derive the actual glycol constant flow

rate from the energy balance at the recovery coilsg(@8). The derived average glycol constant

flow rate was found to begé¢=8.2 L/s (Figuré6.12 , wi th a standard devi a
Uvgic = 0.9 L/s. Figure6.13 reports the glycol constant flow rate as given by manufacturer
specification, measured in 2014 and 2017, and derived frofal8galong withthe correspondent

uncertainty intervals in red

Vglc|d = i eq.6.18
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Figure6.127 Glycol volume flow rate derived from measurements an® 4§.

The discrepancy between spot measurements andltieederived from eq. 6.18 is larger than the
involved uncertainties. This circumstance, together with theoptimal location of the portable

flow meter, makes the spot measurements from 2014 and 2017 unusable. Thus, for the
implementation of the presi VFMs, the glycol constant flow rate as derived from eq. 6.18 has
been used (y: = 8.2 L/s).

97



A A A o
N W A~ O
T T T
L L L

—_
T
L

— —
o
T
-
—
L

T
—
L

Glycol flow rate [L/s]

o =~ N W A~ 00O N o ©
T
I

design spec. meas.'14 meas."17 derived from meas.

Figure6.137 Glycol constant flow rate values (bars) and uncertainties (red)

6.2.5.Validation ofthefact or U model s
The two presentethodelso f t h e U foro eqo6r12, dndUf from eq. 6.%) have
been applied to measurements fromuakdationdata set (from December 27 in 2016 to January
6 in 2017). Reference 648U« kase beeh usedior commaisono r U
Values of the factor U fr om®l(thhaee used tomsmw thd or mu
improvement of predictizss due to the use of the act@aleasured or derivganixing box inlets
air temperatures.
In figure 6.14thevalueso f t he f ok b andUe)oareplotted dgring few
hours from thevalidationperiod. Tableé.6reports the statistical indices from comparing the factor
U predi ct i6lnesl2ahds.arib ehdly against the reference values from @40
(Uer).
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Figure6.14i Fact or U predi ct i on bl the tworpropdses modeld(
andW), and the base cada) during 24 hours along theaining period.

Table6.671 St at i st i cal indices from compegri so
MBE [-] MAE [-] AE max[-] CV-RMSE [%)]
| Training period (window #1lpecember 225, 2016 |
W3 -0.44 0.44 0.48 53.2
U 0.045 0.045 0.09 5.7
U 0.026 0.026 0.07 3.7
Validation period (window #2) December 27, 201&nuary 6, 2017 |
W -0.46 0.46 0.50 54.0
Uy 0.03 0.03 0.08 4.2
U 0.01 0.02 0.08 2.7

6.2.6.Uncertainty analysis and Bias (fixed) error estimation and removal
The propagated uncertainty was estimated for each consitlesed t noodet €d. 6.10
(Ues), €q. 612 (k) andeq. 6.4 (Ub) along thdraining dataset. Tables.7reports the measurements
mean value (e&¢) and random error (R) as observ.

(fixed) error B as stated by the sensors manufacturer.
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Table6.717 Measurements mean value and random error as observed during the training
(December 2225, in 2016), and bias error as stated by the sensors manufacturer.

Vglc Vsa Thra Thre Tma Toa Tra Tac Trec

[Lis] [Us] [°C] [°C] [°C] [°C] [°’C] [°C] [*C]

€ 8.2 14,618 8.9 15.0 13.7 1.0 22.3 12.9 19.9
R (%) 0.3 240.0 0.17 0.17 0.35 0.55 0.10 0.01 0.01
B (%) 0.85 2223 0.45 0.45 0.45 0.45 0.45 0.2 0.2

The propagated uncertainty has been estimated to be +0.05, +0.42 and +Q&pWoand U,
respectively. According to secti@b5.1(Bias(fixed) error estimation and removal) an estimation
of thecontribution of thebias (fixed) error to the residual from reference values was evaluated for
bothmodelst, and(h. Assuming theandom errorso besymmetrical around the mean value, the
estimated contribution of the bias (fixed) ertorthe overall uncertainty di and( is given by

the MBE along theraining period(Table6.6): MBEa = 0.045 andMBEj;, = 0.026 for Us and U,
respectively(Table 6.6) Figures6.15 and 6.16 show for both Uy and U, the distribution of
frequency of the residuals from the reference valugs along thetraining period The
correspondence betwetire MBE values from table 6.@ndthehighest frequencyesidualvalues

(Figures6.15 and 6.16) validate the assumptiotihat the random error around the mean was

symmetrical.
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Figure6.15 - U distribution of frequency of the residuals frdse along thetraining period

100



50

1
1
1
:
1
40 - : MBE,,
|
1
—_— !
(=] 1
230 - :
> 1
1] 1
c
e :
3
o 1
©20- !
L 1
1
:
1
i : l
1
-0.01 0 003 004 005 006 007

Re3|dual from a f [-]

Figure6.16i U, distribution of frequency of the residuals frdie along thetraining period

The contribution of the bias (fixed) error estimated alongtithi@ing period is subtracted by
further predictions along thealidation period(egs.6.19 and 6.20) (section 3.5.1) Those new
predictions are said to hmbiased and the models from ec.19 and6.20 (L candU, ) aresaid

to be calibrated Predictions from calibrated models along thadidation period have been

compared tdler, and the statistical indices from comparison are given in Ta8le

E(

-0060 eq.6.19

t t gt H

§(

-060 eq.6.20

whereMBE, andMBE; are the mean bias errors for factdksindU, respectively along the training
period, Uk c andU, c are the initial factor§k andU, calibrated withVIBE, andMBE; respectively.
Table6.81 Statistical indices from comparison between calibrated moddlsefgrence value
( &) along the validation period (from December 27 in 2016, to January 6 in 2017).

MBE [-] MAE [-] AEmax[-] CV-RMSE[%)]
\ Validation period (window #2) December 27, 201&nuary 6, 2017 |
U -0.009 0.015 0.09 23
U -0.008 0.016 0.10 24
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6.2.7.Discussion

When the AHU is working in heat recovery mode and the heat loss through the
recirculation duct cannot be neglected,othe c
from eq.6.1) cannot be used (Figuel4andTable6.6) . Reference valdg@ues of
were obtained with sheterm measurements of the actual air temperature at the mixing box inlets
(€9.610 . Two new f or mul a t6ilbands.l4¥were prapbsed whiehddnotr U (
need for addibnal permanent sensors.

Along BAS trend data of the heat recovery system from the considered period (from
November 20 in 2016 to January 6 in 2017), a transient thermodynamic equilibrium occurred
several times. From data visualizatiarcriterion was di#vedto detecthe occurrence of transient
operation When transient operation was detected, the correspondent measurements were
dischargedrom the data sefFrom a far days datasetr@ining datasetDecember 225, 2016,
which included measurement®iin the BAS and from portable sensorg;& prediction model
(eq.6.17) and the actual glycol flow rate (e8}18) were derived.

The factor U was predicted t hredliagd6.14), he t wo
and predictions were compared against the reference values frémh@(rigure6.14and Table
6.6). The statistical indices from taleb prove that both thproposed model&qs.6.12 and6.14)
are highly effective in predicting the outdoor air @ati Along thevalidation periodthe MBE and
MAE are | ower than 0.03, which correspond to t
the AEnaxis lower than 0.1, and GRMSE does not exceed 5.0%.

The MBE from the training periodas beemsed 6 estimate andemove the effect of the
bias error from the predictions of the two presented formulations over the validation(pabes
6.8). Asaresult, the MBEr opped under O0.01 (1.0% of the f ac
=-0.08 and MBE =0.09 forU, andU, respectively.

Table 6.9 lists the longterm measurements required by each of the two proposed
formulations (4 and(}) and the ones required byeth r e f e r e n ¢ e Ued) Althaughttha | at i o |
two proposed formulations require more measurements than the model used as reference (six
permanent sensors for bdthandU, against three fotler), those sensors are commonly already
installed and measur@mts are available from BASs as they are used for AHU control. The
implementation of the presented models, thus, does not need any additional physical sensor, which

would come at additional cost. On the other hands, althougl«Hermulation (eq6.10) only
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needs for three air temperature measures to be implemented, two over threaadse not
collected from BASIn order to implement ed.10, two new dedicated physical sensors should

be purchased and installed.

Table6.97 List of permanent (x) sensors required by each VFM model.

Factor|  Thre Thra Toa Tac Tma Tra Trec Vsa

u [°C] [°C] [°C] [°C] [°C] [°C] [°C] [L/s]
Uef X X X X
h X X X X X X
h X X X X X X

The uncertainty of eactonsidered formulation was found to besd +0.05, W =+0.42
and W = £0.56 for the reference model and modetndb respectively.

As the bias (fixed) error was derived in terms of MBE, andoraxd from the predictions
o f aldng the validating pesid, t he pr opagat e dpredieiondodel isstrer or  f

only source of error affecting thenbiasedd pr edi cti ons.

Becauané of i
small random errors affecting the input variables (eq.6.10) is affected by an extreryesmall
random error, B = +0.001. The random error for modalsandb was found to be R= +0.3 and
Ro= NO. 4 maealibrated fotmulations t he p |

(eqs.6.19 and6.20) are expected ttall within theintervak £0.3and +0.4around the true value,

respectively, which

with a normal distribution and a 95% confidence level.
Al t hough NOo.3 or KNO.
for every time step, the statistical indices from Table 6.8 atdithat the average residual between
predictirtoessmatll U(MAE = 0.015 for Ul and MAE
shoul d be

the daily average outdooir dlow rate.

maxi mum uncertainty of

model s used for t he

estimation of t
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7.VIRTUAL SENSORS FOR THE AIR PROPERTIES
AT THE AHUs MIXING BOX

The methods fothevirtual measurements oirtual calibration ofair propertiesensors in
AHUs introduced in section 3dre here implementexhd validate.

7.1Method A

Method A ishereapplied to recalibrate the outdoor air temperatyii@a) sensoy using
measurements from October 19, 2016 (Figudg. The corrected values are compared with the
STM. Table7.1reports statistical indices of tikemparisorbetween the STM anthefaulty BAS
measurements, and between the STM é#mel correctedBAS measurements. The overall
uncertainty affecting the difference between STM and BAS measuremet@sh8C for air

temperature antl4.1%for air relative humidity.

Table7.17 Statistical indices of the outdoor air temperature STM comparison to the BAS

measurements, and to the BAS corrected measurements, with method A, on October 1

Comparison AEmax MAE CV-RMSE

STM vs BAS 4.0°C 1.2C 9.7%

STMvs BAS 0.7°C 0.2C 1.7%
corrected

Similarly, method A was used to-ocalibrate the sensors of the remaining five air properties from
Figure 3.5, by considering one faulty sensor at a time. For this purpesicate data set has been
generated for each variable to be corrected. The dataset includes faulty measurements of the
considered variable along with faditee values of the remaining five variables. Figures 7.2 and

7.3 show the results from correctioitlee mixed air temperature and outdoor air relative humidity
respectively. Statistical indices of the difference between the STM and faulty BAS measurements,
and between the STM and BAS corrected measurements are given in Tables 7.2 to 7.6.

Part of the content of this chapter has been presented in a conference paper: Cotrufo and Zmeureanu. 2016. A New
Algorithm for Sensors Verifidgon and Correction in Air Handling UniteSim2016 Conferencejlamilton, ON
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Table7.27 Statistical indices of the mixed air temperature STM comparison to the BAS

measurements, and to the BAS corrected measurements, with method A, on October 1

Comparison AEmax MAE CV-RMSE

STM vsBAS 5.0°C 3.1°C 22.9%

STMvs BAS 0.43C 0.2°C 1.4%
corrected

Table7.31 Statistical indices of the outdoor air humidity STM comparison to the BAS fi
measurements, and to the BAS corrected measurements, with method A, on October 1

Comparison AEmax MAE CV-RMSE

STMvs BAS 38.7% 32.5% 38.4%

STMvs BAS 5.1% 2.1% 2.9%
corrected

Table7.4 7 Statistical indices of the mixed air humidity STM comparison to the BAS fe
measurements, and to the BAS corrected measurements, with method A, on October 1

Comparison AEmax MAE CV-RMSE

STMvs BAS 30.0% 30.0% 43.0%

STMvs BAS 0 0 0
corrected 3.5% 0.8% 1.6%

Table7.571 Statistical indices of the return air temperature STM comparison to the BAS
measurements, and to the BAS corrected measurements, with method A, on October 1

Comparison AEmax MAE CV-RMSE
STMvs BAS 5.0cC 3.1°C 17.1%
STMvs BAS o

corrected 3.38C 1.1°C 6.8%

Table7.6 1 Statistical indices of the return air humidity STM comparison to the BAS f:
measurements, and to the BAS corrected measurements, with method A, on October 1

Comparison AEmax MAE CV-RMSE

STMvs BAS 25.0% 25.0% 53.3%

STMvs BAS 0 0 0
corrected 7.5% 1.9% 5.6%
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Figure7.1 1 Outdoor air temperature: STM (dash line), BAS (solid line) and corrected

asterix) measurements, and uncertainty (dot black lines) on October 19, in 2016.
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Figure 7.2 1 Mixed air temperature: STNdash line), BAS (solid line) and corrected (hr

asterix) measurements, and uncertainty (dot black lines) on October 19, in 2016.

106



110 -

---STM
100 | —BAS (faulty)
—+—BAS corrected

Outdoor air relative humidity [%]

-
60 | e
~
> M /
\ /
\ N
30 | | |
00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

time [HH:MM]

Figure7.3 17 Outdoor air relative humidity: STM (dash line), BAS (solide) and correcte(
(line-asterix) measurements, and uncertainty (dot black lines) on October 19, in 2016.

7.2 Method B
In the absence @f physicakensor, the variable of interest is virtually measured (modelled)
in terms of measurements from other sensors related to the thermodynamic process within the
AHU. The paper focuses on the prediction of the temperature and relative humidity of outdoor air
that enters the AHU. The same approach can also be used to virtually measure the air properties at
mixed or return conditions.

There are three models B for the three different operation modes of an AHU.
7.2.1 Models B1

Under operation mod#l, the AHUeconomizer works with 100% outdoor air. The outdoor
air (0a) flow reaches the mixing box without changes of the thermodynamic properties. Hence, the
variables of interest amerived from the measurements of the mixed i@ ((egs.7.1and7.2).
Those redtions are well known and commonly used for proactive tests to verify the sensors
calibration statuge.g.Fernandez et al2009)
Toa= Tma eq.7.1

RHoa= RHma eq72
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Measurements from September 2 to 18, in 2015, are used for the operatiotlmibDae outdoor

air propertiesare predicted with egs. 7.1 and 7.2 (Figures 7.4 and Table 7.7).
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Figure7.4i Models B1:a) comparison between the outdoor and mixed air temperature (ec

andb) comparison between the outdoor and mixed air relative humidity.

Table7.71 Statistical indices from models B1.

Eq. AEmax MAE CV-RMSE
7.1 0.88C 0.22C 1.4%
7.2 4.4% 1.4% 2.1%

The uncertainty affecting the difference between STM outdoor and BAS mixed measurements,
was estimated as04%°C for air temperaturand +4.1% for relative humidityFor both air
temperature and relative humidity, the average absolute difference between outdoor and mixed
conditions (MAE) is lower than the corresponding overall uncertainty (Table 7.7).

7.2.2 Models B2

Under the operatn mode#2, the mixing dampers are modulated to control the recirculated
air flow rate. The STM are used to train fhredictionmodels (eqs7.3to 7.6) that predict the

outdoorand mixedair temperature and relative humidity from the measurements ahalsé
correlated variables:

Toa= a0+ a1 Tma+ a2:MDy eq.7.3

RHoa = bo + b1-RHma + b2- RHa eq.7.4
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Tma= Co + C1-Toa+ C2:MDus eq. 7.5
RHma= do + di-RHoa + d2- RHa eq. 76

wherea;, bi, ¢ andd; are the coefficients of the prediction modéiD)y, is the mixing dampers
control signal, an®RH s the relative humidity.

Measurements from October 16 and November 11, 2015, are used for the operation mode
2. Modek B2 (egs.7.3to 7.6 have beerrained with the STM for onereek period between
October16 and 23 (672 observation at 15 minutes time st€pg uncertainty from models
predictions has been evaluated as \WEdble 7.8). For validation purpose, the predictions from
models B2 have been compared to STM in terms of statistical indices. Thertiffebetween
models predictions and STM has an uncertainty itself, which is given in Table 7.8.

The resuts over the validation perioaf 17 days (October 24 to November 11) are given
in Figures 7.5 and Table 7.9 and 7.10for the outdoor aiproperties(eqs. 7.3 and 7.4and in
Figures7.6and Tabls7.11and7.12for themixedair properties (egs. 7.5 and 7.6).

Table7.87 Model B2 trained with the STM for ongeek (October 16 to 23).

Models Difference

Eq. Trained model _ _
uncertainty uncertainty
7.3 Toa= -2.133+ 1.043Tma+ 0.021:MDy +0.47C +0.55C
7.4 RHoa = -0.281+ 1.842RHmna- 1.042RHa +8.47% +8.51%
7.5 Tma= 3.003+ 0.873Toal 0.016MDy 10.43C +0.47C
7.6 RHna= -0.62+ 0.395RHya + 0.862 RHa +3.79% +3.88%

Table 7.9 17 Comparison between the outdoor air temperature STM and model B2 (e
predictions.

Time interval AEmax MAE CV-RMSE
Training 1.19C 0.3°C 3.4%
Validation 3.13C 0.4°C 4.8%

109



Table7.107 Comparison between the outdoor air relative humidity STM and model B:
7.4) predictions.

Time interval AEmax MAE CV-RMSE
Training 14.6% 3.2% 4.7%
Validation 11.4% 4.1% 6.3%

Table7.11 7 Comparison between the mixed air temperature STM and model B2 (ec
predictions.

Time interval AEmax MAE CV-RMSE
Training 1.18C 0.2C 2.8%
Validation 2.73C 0.4°C 3.7%

Table7.127 Comparison between the mixed air relative humidity STM and model B2 (ec
predictions.

Time interval AEmax MAE CV-RMSE
Training 7.8% 1.5% 2.6%
Validation 5.9% 1.3% 2.9%

N - - N
S > ™ S

Predicted outdoor air temp. [°C]
> ®

o]

6 8 10 12 14 16 18 20
Measured outdoor air temp. [°C]

(@) (b)
Figure7.517 Models B2i validation period: comparison between STM and predicted value

a) outdoor air temperature (eq. 7.3); d)autdoor air relative humidity (eq. 7.4).
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