
On Near Optimal Time and Dynamic
Delay and Delay Variation Multicast

Algorithms

Meghrig Terzian

A Thesis

In the Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of

Doctor of Philosophy (Computer Science) at

Concordia University

Montréal, Québec, Canada

October 2017

c© Meghrig Terzian, 2018



Concordia University

School of Graduate Studies

This is to certify that the thesis prepared

By: Meghrig Terzian

Entitled: On Near Optimal Time and Dynamic Delay and Delay

Variation Multicast Algorithms

and submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy (Computer Science)

complies with the regulations of this University and meets the accepted standards
with respect to originality and quality.

Signed by the Final Examining Committee:

Chair
Dr. J. Y. Yu

External Examiner
Dr. Muthucumaru Maheswaran

External to Program
Dr. M. Reza Soleymani

Examiner
Dr. Brigitte Jaumard

Examiner
Dr. Dhrubajyoti Goswami

Thesis Supervisor
Dr. Hovhannes A. Harutyunyan

Approved
Dr. Volker Haarslev, Graduate Program Director

1/12/2017
Dr. Amir Asif, Dean, Faculty of Engineering and Computer Science



Abstract

On Near Optimal Time and Dynamic Delay and Delay Variation Multicast
Algorithms

Meghrig Terzian, Ph.D.

Concordia University, 2018

Multicast is one of the most prevalent communication modes in computer net-

works. A plethora of systems and applications today rely on multicast communication

to disseminate traffic including but not limited to teleconferencing, videoconferencing,

stock exchanges, supercomputers, software update distribution, distributed database

systems, and gaming.

This dissertation elaborates and addresses key research challenges and problems

related to the design and implementation of multicast algorithms. In particular, it

investigates the problems of (1) Designing near optimal multicast time algorithms for

mesh and torus connected systems and (2) Designing efficient algorithms for Delay

and Delay Variation Bounded Multicast (DVBM).

To achieve the first goal, improvements on four tree based multicast algorithms are

made: Modified PAIR (MPAIR), Modified DIAG (MDIAG), Modified MIN (MMIN),

and Modified DIST (MDIST). The proof that MDIAG generates optimal or optimal

plus one multicast time in 2-Dimensional (2D) mesh networks is provided. The hybrid

version of MDIAG (HMDIAG) is designed, that gives a 3-additive approximation

algorithm on multicast time in 2D torus networks. To make HMDIAG applicable on

systems using higher dimensional meshes and tori, it is extended and the proof that

it gives a (2n − 1)-additive approximation algorithm on multicast time in nD torus

networks is given.

iii



To address the second goal, Directional Core Selection (DCS) algorithm for core

selection and DVBM Tree generation is designed. To further reduce the delay vari-

ation of trees generated by DCS, a k-shortest-path based algorithm, Build Lower

Variation Tree (BLVT) is designed. To tackle dynamic join/leave requests to the

ongoing multicast session, the dynamic version of both algorithms is given that re-

sponds to requests by reorganizing the tree and avoiding session disruption. To solve

cases where single-core based algorithms fail to construct a DVBM tree, a dynamic

three-phase algorithm, Multi-core DVBM Trees (MCDVBMT) is designed, that semi-

matches group members to core nodes.

iv



Acknowledgments

I would like to express my most sincere gratitude and acknowledgment to the great

people who supported me along the way towards completing my Ph.D. studies. First,

I am extremely grateful to my supervisor Prof. Harutyunyan, for his encouragement,

guidance, and support. I cannot think of a more inspiring and caring supervisor.

Moreover, I would like to thank my committee members, Prof. Jaumard, Prof.

Goswami, and Prof. Soleymani for their time, effort, and willingness to serve on

my Ph.D. committee throughout my Ph.D. studies. I would like to also extend my

appreciation for the external examiner Pof. Maheswaran for his willingness to read

through the thesis and serve on my defense committee.

Finally yet importantly, I would like to thank my family and friends for their

unrelenting support. My deepest and endless gratitude goes to my mom for her

endless sacrifices. I would also like to thank my sister for always being there for me.

v



Contents

List of Figures ix

List of Tables xii

List of Algorithms xiii

Abbreviations xv

1 Introduction 1

1.1 Knowledge Context and Framework of Problem . . . . . . . . . . . . 1

1.2 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Literature Review and Motivation 10

2.1 On Multicast in Mesh and Torus Networks . . . . . . . . . . . . . . . 10

2.2 On Delay and Delay Variation Multicast . . . . . . . . . . . . . . . . 23

3 On Near Optimal Time Multicast Algorithms in Mesh and Torus

Networks 32

3.1 System Model and Problem Specification . . . . . . . . . . . . . . . . 32

3.2 Modified Algorithms in 2D Mesh and Torus . . . . . . . . . . . . . . 38

3.2.1 Modified DIAG Algorithm in 2D Mesh . . . . . . . . . . . . . 38

vi



3.2.2 Modified PAIR Algorithm in 2D Mesh . . . . . . . . . . . . . 40

3.2.3 Modified MIN Algorithm in 2D Mesh . . . . . . . . . . . . . . 41

3.2.4 Modified DIST Algorithm in 2D Mesh . . . . . . . . . . . . . 43

3.2.5 Modified Algorithms in 2D Torus . . . . . . . . . . . . . . . . 44

3.2.6 Time Complexity of the Modified Algorithms . . . . . . . . . 48

3.2.7 Bounds on Time of the Modified Algorithms . . . . . . . . . . 50

3.3 Hybrid MDIAG (HMDIAG) Algorithm . . . . . . . . . . . . . . . . . 53

3.3.1 Time Complexity of HMDIAG . . . . . . . . . . . . . . . . . . 57

3.3.2 3-additive Approximation for Multicast Time in 2D Torus Net-

works Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3.3 (2n−1)-additive Approximation for Multicast Time in nD torus

networks Proof . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4 On Delay and Delay Variation Multicast Routing 63

4.1 Network Model and Problem Specification . . . . . . . . . . . . . . . 63

4.2 Directional Core Selection (DCS) Algorithm . . . . . . . . . . . . . . 65

4.2.1 Time Complexity of DCS . . . . . . . . . . . . . . . . . . . . 68

4.3 Build Lower Variation Tree (BLVT) Algorithm . . . . . . . . . . . . . 68

4.3.1 Time Complexity of BLVT . . . . . . . . . . . . . . . . . . . . 70

4.4 Dynamic DCS and DCSBLVT . . . . . . . . . . . . . . . . . . . . . . 70

4.4.1 Time Complexity of Dynamic DCS and DCSBLVT . . . . . . 73

4.5 Multi-Core DVBMT (MCDVBMT) Algorithm . . . . . . . . . . . . . 75

4.5.1 Candidate Core Nodes Generation Satisfying End-to-end Delay

(CCNG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.5.2 Candidate Core Nodes Elimination (CCNE) . . . . . . . . . . 76

4.5.3 Select Cores (SC) . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.5.4 Time Complexity of MCDVBMT . . . . . . . . . . . . . . . . 80

vii



4.6 Dynamic MCDVBMT . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.6.1 Time Complexity of Dynamic MCDVBMT . . . . . . . . . . . 85

5 Numerical Results 87

5.1 Results on MDIAG, MPAIR, MMIN, and MDIST . . . . . . . . . . . 91

5.2 Results on HMDIAG . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.3 Results on DCS and DCSBLVT . . . . . . . . . . . . . . . . . . . . . 104

5.3.1 Failure Percentage . . . . . . . . . . . . . . . . . . . . . . . . 104

5.3.2 Inter-destination Delay Variation . . . . . . . . . . . . . . . . 104

5.3.3 End-to-End Delay . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.3.4 Execution Time . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.3.5 Nodes Explored . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.3.6 Re-executions in Dynamic DCS and DCSBLVT . . . . . . . . 110

5.4 Results on MCDVBMT . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.4.1 Cardinality of Core Nodes Generated by MCDVBMT . . . . . 116

5.4.2 Failure Percentage of Single-core Based Algorithms . . . . . . 117

5.4.3 Inter-destination Delay Variation of MCDVBMT . . . . . . . 117

5.4.4 End-to-end Delay of MCDVBMT . . . . . . . . . . . . . . . . 119

5.4.5 Bandwidth Cost . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.4.6 Traffic Concentration . . . . . . . . . . . . . . . . . . . . . . . 121

5.4.7 Re-executions in Dynamic MCDVBMT . . . . . . . . . . . . . 122

6 Conclusion and Future Work 123

Bibliography 128

viii



List of Figures

Figure 2.1 Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Figure 3.1 2D torus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Figure 3.2 DIAG and MDIAG created T -s . . . . . . . . . . . . . . . . . 38

Figure 3.3 PAIR and MPAIR created T -s . . . . . . . . . . . . . . . . . . 41

Figure 3.4 MIN and MMIN created T -s . . . . . . . . . . . . . . . . . . . 42

Figure 3.5 DIST and MDIST created T -s . . . . . . . . . . . . . . . . . . 44

Figure 3.6 MDIAG T -s in 2D mesh and torus . . . . . . . . . . . . . . . 46

Figure 3.7 MPAIR T -s in 2D mesh and torus . . . . . . . . . . . . . . . . 46

Figure 3.8 MMIN T -s in 2D mesh and torus . . . . . . . . . . . . . . . . 47

Figure 3.9 MDIST T -s in 2D mesh and torus . . . . . . . . . . . . . . . . 47

Figure 3.10 HMDIAG multicast in 2D torus . . . . . . . . . . . . . . . . . 57

Figure 4.1 Dynamic leave request examples . . . . . . . . . . . . . . . . . 72

Figure 4.2 Dynamic join request examples . . . . . . . . . . . . . . . . . 74

Figure 4.3 Dynamic MCDVBMT leave request examples . . . . . . . . . 84

Figure 4.4 Dynamic MCDVBMT join request examples . . . . . . . . . . 85

Figure 5.1 Average traffic of the modified algorithms in 2D mesh . . . . . 94

Figure 5.2 Average traffic of the modified algorithms in 2D torus . . . . . 95

Figure 5.3 Loss in time from DIAG to MPAIR, MDIST, and MMIN . . . 95

Figure 5.4 Variation of latency of MPAIR and MMIN in 2D mesh . . . . 96

Figure 5.5 Variation of latency of MPAIR and MMIN in 2D torus . . . . 96

ix



Figure 5.6 Average time . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Figure 5.7 Average latency . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Figure 5.8 Average coefficient variation of multicast time . . . . . . . . . 100

Figure 5.9 Average traffic . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Figure 5.10 Average time in 2D and 3D torus networks . . . . . . . . . . . 100

Figure 5.11 Average latency in 2D and 3D torus networks . . . . . . . . . 101

Figure 5.12 Average Coefficient variation of multicast time in 2D and 3D

torus networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Figure 5.13 Average traffic in 2D and 3D torus networks . . . . . . . . . . 102

Figure 5.14 Average broadcast and multicast time in 2D torus . . . . . . . 102

Figure 5.15 Average broadcast and multicast time in 3D torus . . . . . . . 102

Figure 5.16 Average time as a function of torus size . . . . . . . . . . . . . 103

Figure 5.17 Average traffic as a function of torus size . . . . . . . . . . . . 104

Figure 5.18 Inter-destination delay variation when σ = p . . . . . . . . . . 105

Figure 5.19 Inter-destination delay variation when σ = 0 . . . . . . . . . . 106

Figure 5.20 Maximum end-to-end delay when σ = p . . . . . . . . . . . . . 107

Figure 5.21 Maximum end-to-end delay when σ = 0 . . . . . . . . . . . . . 108

Figure 5.22 Change in inter-destination delay variation in dynamic DCS for

n = 80 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Figure 5.23 Change in end-to-end delay in dynamic DCS for n = 80 . . . . 113

Figure 5.24 Change in inter-destination delay variation in dynamic DCS-

BLVT for n = 80 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Figure 5.25 Change in end-to-end delay in dynamic DCSBLVT for n = 80 115

Figure 5.26 Cardinality of core nodes . . . . . . . . . . . . . . . . . . . . . 116

Figure 5.27 Inter-destination delay variation . . . . . . . . . . . . . . . . . 118

Figure 5.28 Maximum end-to-end delay . . . . . . . . . . . . . . . . . . . 119

x



Figure 5.29 Bandwidth cost . . . . . . . . . . . . . . . . . . . . . . . . . . 120

Figure 5.30 Traffic concentration . . . . . . . . . . . . . . . . . . . . . . . 121

xi



List of Tables

Table 5.1 MDIAG and MPAIR in 2D mesh network . . . . . . . . . . . . 91

Table 5.2 MDIST in 2D mesh . . . . . . . . . . . . . . . . . . . . . . . . 93

Table 5.3 MMIN in 2D mesh . . . . . . . . . . . . . . . . . . . . . . . . . 94

Table 5.4 Average time and traffic in 2D mesh and torus networks . . . . 97

Table 5.5 Failure percentage when σ = p . . . . . . . . . . . . . . . . . . 105

Table 5.6 Execution time . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Table 5.7 Nodes explored . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Table 5.8 Re-executions in dynamic DCS . . . . . . . . . . . . . . . . . . 111

Table 5.9 Re-executions in dynamic DCSBLVT . . . . . . . . . . . . . . . 112

Table 5.10 Failure Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Table 5.11 Dynamic MCDVBMT re-executions . . . . . . . . . . . . . . . 122

xii



List of Algorithms

Algorithm 2.1 DIST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Algorithm 2.2 DIAG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Algorithm 2.3 PAIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Algorithm 2.4 MIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Algorithm 3.1 Generate Subproblems . . . . . . . . . . . . . . . . . . . . 35

Algorithm 3.2 Generate Endpoints . . . . . . . . . . . . . . . . . . . . . 35

Algorithm 3.3 Generate Multicast Scheme . . . . . . . . . . . . . . . . . 37

Algorithm 3.4 Modified DIAG (MDIAG) . . . . . . . . . . . . . . . . . . 39

Algorithm 3.5 Modified PAIR (MPAIR) . . . . . . . . . . . . . . . . . . . 40

Algorithm 3.6 Modified MIN (MMIN) . . . . . . . . . . . . . . . . . . . . 42

Algorithm 3.7 Modified DIST (MDIST) . . . . . . . . . . . . . . . . . . . 43

Algorithm 3.8 Multicast in 2D Torus . . . . . . . . . . . . . . . . . . . . 45

Algorithm 3.9 Hybrid MDIAG (HMDIAG) . . . . . . . . . . . . . . . . . 53

Algorithm 3.10 Create Message Header . . . . . . . . . . . . . . . . . . . . 54

Algorithm 3.11 Communication Service Operations . . . . . . . . . . . . . 55

Algorithm 4.1 Directional Core Selection (DCS) . . . . . . . . . . . . . . 66

Algorithm 4.2 Core Found (CF) . . . . . . . . . . . . . . . . . . . . . . . 67

Algorithm 4.3 Build Lower Variation Tree (BLVT) . . . . . . . . . . . . . 69

Algorithm 4.4 Dynamic DCS and DCSBLVT . . . . . . . . . . . . . . . . 71

Algorithm 4.5 Multi-Core DVBMT (MCDVBMT) . . . . . . . . . . . . . 75

xiii



Algorithm 4.6 Candidate Core Nodes Generation Satisfying End-to-end

Delay (CCNG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Algorithm 4.7 Candidate Core Nodes Elimination (CCNE) . . . . . . . . 77

Algorithm 4.8 Select Cores (SC) . . . . . . . . . . . . . . . . . . . . . . . 78

Algorithm 4.9 Dynamic MCDVBMT . . . . . . . . . . . . . . . . . . . . 82

xiv



Abbreviations

ATabu . . . . . . . . Adaptive Tabu algorithm

BLVT . . . . . . . . Build Lower Variation Tree algorithm

BT . . . . . . . . . . . . Broadcast Time

MT . . . . . . . . . . . Multicast Time

CCNE . . . . . . . . Candidate Core Nodes Elimination algorithm

CCNG . . . . . . . Candidate Core Nodes Generation Satisfying End-to-end Delay al-

gorithm

CF . . . . . . . . . . . . Core Found algorithm

d . . . . . . . . . . . . . . diagonal node

DCS . . . . . . . . . . Directional Core Selection algorithm

DDS . . . . . . . . . . Dimensional Distance Sorted algorithm

DDVCA . . . . . . Delay and Delay Variation Constrained Algorithm

DIAG . . . . . . . . DIAGonal algorithm

DISTance . . . . DIST algorithm

DP . . . . . . . . . . . Diagonal Path

DVBM . . . . . . . Delay and Delay Variation Bounded Multicast

DVBMT . . . . . Delay and Delay Variation Bounded Multicast Tree

xv



DVMA . . . . . . . Delay Variation Multicast Algorithm

ESC . . . . . . . . . . estimation algorithm

FR . . . . . . . . . . . . Forward and Retransmit

HMDIAG . . . . Hybrid MDIAG algorithm

KMK . . . . . . . . . Kabat et al. Multicast algorithm with K shortest paths algorithm

KMKh . . . . . . . Kabat et al. Multicast algorithm with K shortest paths where h= k

algorithm

LDP . . . . . . . . . . nodes on the Lower side of the Diagonal Path

M . . . . . . . . . . . . . multicast group

MCDVBMT . Multi-core DVBMT algorithm

MDIAG . . . . . . Modified DIAG algorithm

MDIST . . . . . . . Modified DIST algorithm

M-HCM . . . . . . Multipath Hamiltonian Cycle Model algorithm

MMIN . . . . . . . Modified MIN algorithm

MPAIR . . . . . . Modified PAIR algorithm

MST . . . . . . . . . . Minimal Steiner Tree

nD . . . . . . . . . . . . n-dimensional

OMC . . . . . . . . . Optimal Multicast Cycle

OMP . . . . . . . . . Optimal Multicast Path

OMT . . . . . . . . . Optimal Multicast Tree

PAF . . . . . . . . . . Permanent Absorb and Forward

PAFR . . . . . . . . Permanent Absorb, Forward and Retransmit

xvi



PDP . . . . . . . . . . Primary Diagonal Path

QoS . . . . . . . . . . . Quality of Service

RP . . . . . . . . . . . . Rendezvous Point

SC . . . . . . . . . . . . Select Cores algorithm

sd . . . . . . . . . . . . . diagonal line from s to d

SDP . . . . . . . . . . Secondary Diagonal Path

T . . . . . . . . . . . . . . multicast Tree

TASNEM . . . . Tree based Algorithm which Splits torus Networks into two Equally

Meshes

UDP . . . . . . . . . nodes on the Upper side of the Diagonal Path

VH . . . . . . . . . . . Vertical Horizontal algorithm

2D . . . . . . . . . . . . 2-dimensional

xvii



Chapter 1

Introduction

1.1 Knowledge Context and Framework of Prob-

lem

Data communication in computer networks can be achieved over unicast, broadcast,

anycast, and multicast communication. Unicast is communication between a sender

and a single receiver node. Broadcast is communication between a sender and all

nodes in a network. Anycast is communication between a single sender and the nearest

node of a subset of receiver nodes in a network. Multicast is data communication

between a sender or a set of senders and a subset of receiver nodes known as multicast

group members in a network.

Multicast communication is an important component of the design and imple-

mentation of high-speed networks and applications. It is used in many systems

and applications including but not limited to teleconferencing, videoconferencing,

stock exchanges, distance learning, supercomputers, software update distribution,

distributed database systems, and gaming. The performance of these processes and

systems depends on the multicast process [41].

1



Before starting dissemination, multicast routing algorithms construct a multicast

tree or path. The performance of the multicast highly depends on the generated tree

or path and a tremendous amount of research has been performed to generate trees

or paths tailoring specific application requirements. To use network resources more

efficiently most approaches for multicast routing disseminate a message along a tree

spanning the sender and receiver nodes.

Routing algorithms are classified into four groups, depending on where state in-

formation and global topology is available and how routing paths are selected. In

source routing, state information and global topology is available at every node and

routing paths are selected at the source node. The routing information is added to

the message and the global state at every node is updated using a link-state protocol.

In distributed routing, state information and global topology is available at every

node and routing is achieved hop-by-hop. The destination field of a message carries

destination addresses only. Source routing suffers from high message overhead as the

addresses of intermediate nodes are added to the message. In distributed routing,

the algorithm executed at every node should be simple. To tackle the disadvantages

of source and distributed routing, hybrid routing was suggested. In hybrid routing,

both the source and intermediate nodes make routing decisions and state information

and global topology is available at every node [41]. In hierarchical routing, nodes

are divided into groups, which are further divided into higher-level groups. Every

node maintains state information. Routing paths including logical nodes represent-

ing groups are selected at the source node. At every logical node, source routing is

used again to disseminate within a group [12].

A message is divided into packets before transmission, for efficient use of network

resources [50]. A packet is the smallest segment of communication that contains

routing and sequencing information in its header [50]. Packets are switched using

2



one of the four switching techniques: circuit switching, store-and-forward, virtual

cut-through, and wormhole. In circuit switching, a path between the source and

destination nodes is built and reserved. Although path building requires time and

reservation of channels throughout message transmission, buffering of data is not

required and messages are never blocked [50]. In store-and-forward switching, packets

are buffered at every intermediate node before being forwarded to the next node on

the path. Channels are only reserved when a packet is being transferred. However,

since a packet is buffered at each intermediate node, the time to transmit a packet

from the source to the destination is directly proportional to the number of nodes on

the path [50]. In virtual cut-through, a packet is only stored at an intermediate node if

the next channel required is busy. Consequently, the distance between the source and

destination has a slight effect on the transmission latency. However, each node should

provide sufficient buffer space for all the messages passing through it. If a packet is

blocked at every intermediate node, the virtual cut-through becomes equivalent to

store-and-forward switching [50]. In wormhole-routing, a message is divided into flits.

A flit is the smallest segment of a message that can be accepted or rejected by a queue

or a channel. The header flit holds the routing information and leads the route of flits

holding data [46]. In wormhole-routing, the path length does not have a high effect

on the transmission latency and small buffers are needed for a channel to hold a flit.

However, when the header flit flow is hindered in the network, the flow of trailing

flits will not be possible, which can further stop the flow of other messages ending in

deadlock [50]. Virtual cut-through switching, buffers blocked messages and removes

them from the network, while blocked messages remain in the network in wormhole

switching.

The main parameters for evaluating a multicast process are time and traffic, which

are negatively correlated [41]. Multicast traffic is the number of links and multicast

3



time is the number of time units needed to perform the process [41]. The distance

between the source and a destination node is the lower bound on the multicast time

of every destination node and the number of destinations is the lower bound on the

multicast traffic [38].

When the routing method does not allow messages to be replicated at interme-

diate nodes because it involves high overhead, the multicast communication problem

becomes a multicast path problem, where finding an Optimal Multicast Path (OMP)

is sought. When replication is not allowed and an acknowledgment should be sent

back to the source node once all destination nodes receive the message, the multi-

cast communication problem becomes a multicast cycle problem, where finding an

Optimal Multicast Cycle (OMC) is sought. When message replication is allowed

and traffic should be minimized, the multicast communication problem becomes a

Minimum Steiner Tree (MST) problem. When message replication is allowed and

distance sensitive switching is adapted in the network, time will be first minimized

then traffic. This makes the multicast communication problem equivalent to an op-

timal multicast tree (OMT) problem [50], which is proven to be NP-complete in

2D mesh networks [41]. Consequently, many heuristics were proposed to solve the

problem that minimizes one parameter first and then tries to reduce the cost of the

other.

The torus topology is one of the most prevalent interconnection topologies used in

several of the most powerful supercomputers. On the latest list of the TOP500 [60],

the fourth fastest supercomputer Titan, a Cray XK7 system, uses Gemini intercon-

nect with an underlying 3D torus interconnection [5, 61]. The fifth entry on the list,

IBM BlueGene/Q Sequoia, uses a 5D torus topology [69].

Path based [17,64,65] and tree based [19,26,28] algorithms are the two classes of

existing multicast algorithms for nD torus networks. Tree based multicast has high

4



efficiency on time and traffic [38]. The message from the originator is sent to multiple

neighbors, which in turn send the message to nodes at a further distance [46]. The

parallel way the message is disseminated leads to time efficiency and nodes sharing

as much common path as possible leads to traffic efficiency. Path based multicast

generates high traffic because a single path is followed to reach all destination nodes

and might lead to network congestion. It also generates high latency, because the

path lengths are generally long.

In the first part of this dissertation, source based and hybrid multicast tree algo-

rithms suitable for supercomputer system requirements are designed. More specifi-

cally, near optimal time multicast algorithms, as time efficiency is crucial for these

systems.

Quality of Service (QoS) multicast communication requirements of an application

are given as a set of constraints, C. Ci can be a constraint on individual links or

the entire communication. A link constraint specifies a QoS requirement on paths.

Whereas an entire communication constraint specifies a QoS requirement on the com-

munication tree. These constraints include but are not limited to end-to-end delay,

inter-destination delay variation, total bandwidth, buffer utilization, traffic concen-

tration, and minimum residual bandwidth. Some constraints or a combination of

constraints, often make the routing problem intractable. A QoS multicast routing

algorithm might fail to generate a session satisfying all the QoS constraints of an

application because a solution does not exist, or because the search space of the al-

gorithm is not efficient enough. Consequently, the connection request is rejected or

the application is negotiated for looser QoS constraints.

Some applications require a multicast communication with minimal use of network

resources, represented by an optimization objective. If the optimization function is the

sum of the costs of the links of the multicast tree, it is the Steiner tree problem which is

5



proven to be NP-complete [23]. Other applications require minimizing of an objective

function under QoS constraints. Algorithms have been proposed that minimize the

inter-destination delay variation under end-to-end delay [8, 13, 30, 32, 35, 53, 54, 56].

Others, minimize the cost of the tree under delay constraints [72]. Another group of

algorithms have been proposed that minimize the cost under end-to-end delay and

delay variation constraints [7, 32,36,37].

Trees constructed by multicast routing protocols fall into two categories: single-

source shortest-path and shared core-based. In single-source shortest-path trees, a

separate tree is built for each source using least-cost paths between the source node

and multicast group members. In shared core-based trees, one tree is built for the

entire group and is shared among all senders. A node is chosen as the core or Ren-

dezvous Point (RP), and a shortest-path tree is built rooted at the core node to the

multicast group members. The source nodes send a unicast message to the core node,

which is responsible for disseminating the message to multicast group members. The

position of the core affects the performance of multicast and selecting an optimal core

node is an NP-complete problem [62]. Research on core-based routing has focused

on core selection [59], multicast tree construction, membership dynamics, and core

migration [42]. Several approaches have been suggested for core selection that fall

into three categories: random, topology based, and group based including different

simple neighborhood search heuristic algorithms [25, 49] or local and global search

fitness function minimization algorithms like Tabu, GRASP and VNS [6,7, 31,63].

In the second part of the thesis, QoS core-based tree multicast algorithms for high-

speed network real-time applications are designed. More specifically, applications that

require a message to be sent to group members within a certain bound on delay and

delay variation.

6



1.2 Thesis Contributions

The main contributions of this thesis can be summarized as follows:

• Improvements on four tree based multicast algorithms in 2D mesh and torus

networks are made: MDIAG, MPAIR, MMIN, and MDIST. The proof that

MDIAG generates optimal or optimal plus one multicast time in 2D mesh net-

works is provided. Bounds on the time of the modified algorithms in 2D mesh

and torus networks is given. Extensive simulations of these algorithms show

that they perform better than existing ones, MDIAG is suitable for pro-time

applications, and MPAIR is suitable for pro-traffic applications.

• To tackle the disadvantages of centralized routing algorithms, the hybrid version

of MDIAG, HMDIAG is designed. HMDIAG performs preprocessing at the

source node. At the source node and every intermediate node, another process

is performed to retransmit the message to another subset of destination nodes.

HMDIAG generates optimal or optimal plus one time in 2D meshes and it is

a 3-additive approximation for multicast time in 2D torus networks. To make

HMDIAG applicable on systems using higher dimensional tori, it is extended.

HMDIAG gives a (2n− 1)-additive approximation algorithm on multicast time

in nD torus networks. Simulation results show that HMDIAG generates less

multicast time, latency, and coefficient variation of multicast time than existing

algorithms.

• DCS algorithm is designed that uses a novel directional approach to select a

core node and generate a Delay and Delay Variation Bounded Multicast Tree

(DVBMT).

• To further decrease the inter-destination delay variation of the trees generated

7



by DCS, Build Lower Variation Tree (BLVT) algorithm based on k-shortest-

paths is designed. In DCS and DCSBLVT, the source sends a unicast message

to the core node, and the core sends the message to group members using the

multicast tree. Thus, the end-to-end delay and inter-destination delay varia-

tion values set during the execution of the algorithms reflect the values of the

generated tree. DCS and DCSBLVT surpass existing algorithms in efficiency,

end-to-end delay, inter destination delay variation, and execution time.

• Moreover, the dynamic version of DCS and DCSBLVT is given, that respond to

dynamic join and leave requests to the ongoing multicast session by reorganizing

the tree and avoiding session disruption. On average, only 3.4% of the total

requests in DCS triggered re-executions and 2.8% in DCSBLVT.

• To address cases where single-core based algorithms fail to generate a tree satis-

fying delay and delay variation constraints, Multi-Core DVBMT (MCDVBMT)

algorithm is designed. When existing single-core based algorithms fail to gen-

erate a tree satisfying delay and delay variation constraints, MCDVBMT suc-

cessfully selects multiple cores and generates trees rooted at the selected cores

satisfying both constraints. MCDVBMT generates less inter-destination de-

lay variation and traffic concentration than existing single-core algorithms. In

addition, in MCDVBMT only group members receiving the message from the

failing core node suffer from recovery delay when a core node fails. However,

the end-to-end delay and cost of MCDVBMT is higher than single-core trees.

• The dynamic version of MCDVBMT is designed. On average, only 5.2% of the

requests triggered re-executions.

8



1.3 Thesis Outline

The rest of this thesis is organized as follows: Chapter 2 presents a review of cur-

rent state of knowledge and the motivation for this research; where Section 2.1 is

dedicated for multicast in supercomputer systems and Section 2.2 is dedicated for

delay and delay variation multicast algorithms. Chapter 3 focuses on near optimal

time multicast algorithms in 2D mesh and torus networks; where Section 3.1 defines

the system model and specifies the problem, Section 3.2 presents the first contribu-

tion, the four modified algorithms MPAIR, MDIAG, MMIN, and MDIST in mesh and

torus networks with their time complexities and bounds on time, and Section 3.5 gives

the second contribution, HMDIAG, with its time complexity and proof of giving a 3-

additive and 2(n−1)-additive approximation algorithm for multicast time in 2D torus

and nD torus networks, respectively. Chapter 4 focuses on DVBM algorithms; where

Section 4.1 defines the network model and specifies the problem, Section 4.2 presents

the third contribution, DCS algorithm with its time complexity, Section 4.3 presents

the fourth contribution BLVT algorithm with its time complexity, Section 4.4 presents

the fifth contribution, the dynamic version of DCS and DCSBLVT to tackle dynamic

changes to the multicast group, Section 4.5 presents the sixth contribution, MCD-

VBMT with its time complexity, and Section 4.6 presents the seventh contribution,

dynamic MCDVBMT. Chapter 5 is dedicated for numerical results and experiments

performed to compare the proposed algorithms with existing ones. Chapter 6 provides

a conclusion to this manuscript and future directions for this research. Throughout

this dissertation, figures, tables, and algorithms are enumerated relatively to each

chapter.

9



Chapter 2

Literature Review and Motivation

2.1 On Multicast in Mesh and Torus Networks

Direct network topologies, like meshes and tori, are the most commonly used network

topologies in supercomputer systems since it is easy to design and cheap to implement

multicast on them because of their geometric regularity [50].

A mesh has a geometrically regular structure. Computation of connectivity, dis-

tance and routing is very simple. Connectivity and distance are determined by com-

paring coordinates of the nodes. Routing is choosing a direction at each node, which

reduces the complexity of the algorithm significantly by finding shortest paths eas-

ily. A mesh network is reliable and fault tolerant, the network would not fail when a

node or several links fail. In addition, adding nodes increases the total communication

bandwidth, memory bandwidth, and processing capability of the system [66]. How-

ever, a communication between the first and last node of a dimension passes through

a long path because of the absence of a direct edge between them. If this direct edge

is added, the structure becomes symmetric and the distance between nodes reduces

roughly by half given that the message can travel from two opposite directions to

reach the same destination. Such a structure is known as a torus [50].

10



The symmetric nature of a torus balances the traffic load. In a mesh, assuming

uniform traffic between nodes, links closer to the center will be more loaded than

links closer to the borders [66]. However, it is easier to provide deadlock free routing

in a mesh than in a torus [50].

Messages divided into packets can be switched using one of the four available

switching techniques: circuit switching, store-and-forward, virtual cut-through, and

wormhole. The difference between these switching techniques is discussed in the

Chapter 1. Deadlock prevention is one of the main issues in wormhole switching and

many approaches have been proposed to tackle it [15,24,24,40,43,47,50].

Early multicast communication approaches were based on software, to reduce the

delay and overhead they started depending on hardware [38]. All first generation

hypercube multiprocessors supported unicast and a few second generation hypercube

multiprocessors supported broadcast [38]. Lan et al. presented the key features of a

VLSI router to support all three types of communication and proposed an optimal

algorithm for generating an OMT when the multicast set is small. They also proposed

a heuristic greedy multicast algorithm based on distributed routing of messages in

hypercube multiprocessors when the multicast set size is not small. The time com-

plexity of the algorithm is O(qn+n2), where q is the number of destinations and n is

the dimension of the hypercube. The proposed algorithm guarantees shortest paths

between the source and each destination. The traffic generated is very close to the

optimal solution, and is optimal when the number of destination nodes is less than

four [38].

Since first generation supercomputers implemented distance sensitive routing tech-

nologies, the network topology widely used was the hypercube because of its dense

interconnection that resulted in shorter message paths. When virtual cut-through

and wormhole routing were proposed, hypercubes were replaced by low-dimensional

11



meshes and tori.

Lin et al. proposed two deadlock-free path based multicast algorithms for worm-

hole routed networks and a routing function for 2D mesh and hypercube topologies.

After showing that tree based routing is not suitable for wormhole routing, they pro-

posed a multicast star model. In this model, destination nodes are partitioned into

several disjoint subsets and the message is sent along several multicast paths, one for

each subset of destination nodes. Subsets are created after labeling nodes based on

their order in a Hamiltonian path, such that in the path any two given nodes are

connected by a shortest path. The dual-path algorithm creates two subsets, while

the multi-path can create up to c paths, where c is the number of outgoing channels

of the sender. The path selected by the routing function R for any two random nodes

u and v is a shortest path from u to v and is a partial order preserving the label as-

signment function. The complexity of the message preparation part of the algorithms

are O(q log q) and max{O(q log q), O(cq)} respectively, where q is the multicast set

size. At every node, it takes O(c) time to make the routing decision. Although the

multi-path routing requires less number of channels than the dual-path routing, each

path must buffer the whole message at the source node and it is not released until

the last flit is sent. Moreover, if multiple messages are transmitted, the link between

the local processor and router may become a bottleneck [40].

Lin et al. after proving that OMP, OMC, and MST problems are NP-Complete

for 2D mesh and n-cube topologies, they proposed a hybrid heuristic algorithm for

OMP. In the message preparation part of the algorithm, the source node adds a

routing control field including the destination addresses and some routing information.

The routing information includes destination nodes sorted according to their position

in the Hamiltonian path or cycle. In the second part of the algorithm, message

routing, each forward node including the source node selects a next node that is the

12



closest in the cycle to the next destination. The time complexity of the first part

of the algorithm is O(q log q) where q is the number of destination nodes. The time

complexity of the second part of the algorithm is O(1) in a 2D mesh and O(n) in an

n-cube [41].

Mckinely et al. (1994) proposed a minimum-time multicast algorithm for nD

meshes that uses dimension-ordered and restricted routing of unicast messages. In

dimension ordered routing, routing is performed on each dimension monotonically.

In restricted routing, channel selection is constrained. The algorithm (U-mesh) is

contention free and can deliver a multicast message to m− 1 destinations in dlogme

steps in one port architectures. After sorting the multicast set into a dimension

ordered set (M ′), the source node divides M ′ into two equal sets, lower and upper

half. If the source is in the lower half, it sends a copy of the message to the lowest

node in the upper half, which in turn is responsible for sending the message to the

group members in that half. If the source is in the upper half, it sends a copy of the

message to the highest node in the lower half. At each step, the selected node and

the nodes assigned to it are removed from M ′. The procedure continues until M ′ has

only the source address [46]. In unicast based multicast, multiple copies of the same

message is sent leading to high network traffic.

A hardware path based multicast routing algorithm, TPM, for 2D meshes was

proposed in [48]. TPM outperforms U-mesh. It divides the mesh into up two four

submeshes and sends at most four messages. TPM uses two startup times.

Applying the U-mesh algorithm in a torus does not result in a contention free

multicast. Consequently, Robinson et al. extended the idea of the U-mesh algorithm

and proposed the U-torus algorithm that is a minimum-time multicast algorithm

for nD torus networks that uses dimension-ordered and restricted routing of unicast

messages. The algorithm is contention free and can deliver a multicast message to

13



m - 1 destinations in dlogme steps under UTR or BTR. UTR and BTR are the two

routing algorithms they propose for Unidirectional and Bidirectional torus networks,

respectively adapting the virtual channels approach. The algorithm first sorts the

multicast set into a dimension ordered set (M’), then rotates the order such that

source node is at the head of the chain called R-chain. After, the algorithm performs

the same steps as the U-Mesh algorithm. The complexity of the algorithm is O(q log q)

where q is the size of the multicast set [10]. Multiple copies of the same message is

sent in U-mesh algorithm, leading to high network traffic.

The critical issues in virtual channel implementation are multiplexing and schedul-

ing. Sharing of bandwidth results in an increase in network latency. Moreover, an

increase in the number of virtual channel, makes scheduling more complicated [50].

Virtual channels are implemented with a flow control protocol, that determines how

resources like buffers and channel bandwidth are allocated and how message colli-

sions are resolved. A message collision occurs when a packet cannot proceed because

the buffer it needs is occupied by another message [47]. A comprehensive survey of

algorithms using virtual channels is provided by Mohapatra (1998) [47].

The dual-path and multi-path algorithms emphasize on reducing the number of

startup latencies, and do not perform well in the presence of high traffic loads, since

they generate long paths. To overcome this limitation, Boppana et al. proposed the

column-path path based multicast routing algorithm which is based on dimension

ordered routing and focuses on using shorter paths rather than less number of paths

[10]. The algorithm divides the destination nodes into at most 2k subsets, where k is

the number of columns in the mesh, such that at most two messages are directed to

each column. If a column has one or more destination nodes in rows above the source

node row, one copy of the message is sent to serve all those destinations. Similarly, if a

column has one or more destinations in the rows below the source node row, one copy

14



of the message is sent to serve all those destinations [3]. The column-path multicast

algorithm uses short paths and performs better in the presence of high traffic loads.

The drawback in this approach is the high number of startups, one for each path [44].

In the time optimal, centralized, and tree based Vertical Horizontal (VH) algo-

rithm for mesh and torus networks, the message is routed to each destination node

in dimensional order. The algorithm delivers the message to each destination along

a shortest path, achieves optimal multicast time, and has O(qD) time complexity

where q is the number of destinations and D is the diagonal of the mesh or torus.

However, it generates high traffic because of the followed dimensional order. If VH

routes in horizontal dimension first, the top row becomes a major path and if most of

destinations are located at the bottom rows of the mesh, the message will be routed

from the top row to the bottom only to one or two destinations [4].

The non-mimimal, centralized, and tree based DISTance (DIST) algorithm, sorts

destination nodes in ascending order of distances from the source node. The multicast

tree is constructed by adding the sorted nodes to the multicast tree through a shortest

path to a node on the hitherto created tree (Algorithm 2.1) [44]. XY routing is

a deadlock free, dimension ordered, and minimal routing algorithm in 2D meshes.

Packets are sent first in the X dimension and then in the Y dimension. In nD meshes,

routing is completed in one dimension before proceeding to the next dimension. The

time complexity of the algorithm is O(qDN) where q is the number of destination

nodes, D is the diagonal of the mesh or torus, and N is the total number of nodes in

the network.

The centralized, minimal, and tree based DIAGonal (DIAG) algorithm was pro-

posed to reduce the traffic generated by the VH algorithm. The main concept in

DIAG is setting the major path, the diagonal of the multicast zone. The algorithm

first finds the multicast zone and the diagonal node d. Computes the diagonal line

15



Algorithm 2.1 DIST

1: function DIST(M , s)
2: Sort destination nodes in increasing order of distances from s
3: T ← T ∪ s
4: repeat
5: u ← first node in M
6: Find a closest node v in T to u
7: Add node u to T through a shortest path from v by XY routing
8: M ←M − {u}
9: until M = ∅
10: return T
11: end function

(sd) between s and d, and adds it to T . Next, destination nodes are sorted in in-

creasing order of distance from the source node and added to T though a closest node

v in T within the zone {s ⇔ u} (Algorithm 2.2). The algorithm takes O(qN) time

in a 2D mesh and torus, where q is the total number of destinations and N is the

total number of nodes in the network. DIAG does not perform well if destinations

are located at a far distance from the diagonal of the mesh [4].

DDS (Dimensional Distance Sorted) is a centralized, minimal, and tree based mul-

ticast routing algorithm for mesh and torus networks. The algorithm sorts the desti-

nations in dimensional distance, which is the distance along one dimension between

them. For example, for any two nodes x(x1, · · · , xi, · · · , xn) and y(y1, ..., yi, ..., yn),

the ith dimensional distance di = |xi − yi|. The minimum dimensional distance be-

tween x and y denoted as dmin = min{d1, · · · , di, · · · , dn}. Destination nodes (di) are

added to T through the closest node v in the T within the zone {s⇔ di}. The time

complexity of DDS in a 2D mesh or torus is O(qN), where q is the total number of

destinations and N is the total number of nodes in the network [66].

The XY centralized and path based multicast algorithm was proposed by Wang et

al. (2005) which increases the parallelism of message passing by increasing the number

of paths through which messages can be passed concurrently to two. It reduces the

16



Algorithm 2.2 DIAG

1: function CreateDiagonalPath(M, s)
2: DP ← s
3: u← s
4: xd ← Max {xdi} ∀i | 1 ≤ i ≤ q
5: yd ← Max {ydi} ∀i | 1 ≤ i ≤ q
6: repeat
7: xu′ ← xu + 1, yu′ ← yu, xu′′ ← xu, yu′′ ← yu + 1
8: if D(u′, sd) ≤ D(u′′, sd) then
9: u← u′

10: else
11: u← u′′

12: until u = d
13: return DP
14: end function
15: function CreateT(M, s,DP )
16: Sort destination nodes in increasing order of distances from s
17: T ← DP
18: repeat
19: u ← first node in M
20: Find a node v in T in the zone {s⇔ u} that is the closest to u
21: Add node u to T through a shortest path to v by XY routing
22: M ←M − {u}
23: until M = ∅
24: Cut the tail part of the DP that does not have destination or replicate nodes
25: return T
26: end function

total traffic by reducing the back and forth traveling distance of the base path and by

passing a message through a shortest path. In a 2D mesh two message-passing paths

are possible, one travels along the X dimension and the other along the Y dimension

and together they cover all the destination nodes in the mesh. After splitting nodes

into two subsets joined at the source node, and forming a sub-Hamiltonian path

for each subset, the message in X path and Y path are routed concurrently from one

destination to another in the order as they occur in X path or Y path. The complexity

is O(N) where N is the number of nodes in the mesh [66].

Al-Dubai et al. proposed a path based multicast algorithm, Qualified Groups

17



(QG). They take into consideration the multicast latency at network and node levels.

The QG algorithm has four phases. In phase one, the multicast area (GMA) is defined

which is the area in the mesh that includes the multicast set. In phase two, the mesh

is divided into submeshes. In phase three, the submeshes obtained from the previous

phase are tested and further divided from 2 to 2n subgroups. In phase four, for each

qualified group the node closest to the source node is selected as a representative node

to receive the multicast message from the source node. Each representative node acts

as a source node in the group and sends the message to the destination nodes in the

group. The QG algorithm uses the deadlock free e-cube routing algorithm [3].

PAIR is another centralized, minimal, and tree based algorithm designed to reduce

the traffic of the tree based DIAG and VH algorithms. Given the q destination nodes,

destination nodes are arranged as {(x1, y1), (x2, y2), · · · , (xq, yq)}, where x1 ≤ x3 ≤

x5 ≤ · · · ≤ xk and y2 ≤ y4 ≤ y6 ≤ · · · ≤ yq. The algorithm first selects a pair of

nodes u and v from the destination set with minimum x and y values denoted as xmin

and ymin and then constructs a multicast tree from the source to the intermediate

node (xmin, ymin). Next, it connects nodes u and v to (xmin, ymin) through a shortest

path. This process is repeated until every destination node is added to the multicast

tree (Algorithm 2.3) [45]. The complexity of the algorithm in a 2D mesh and torus is

O(qD) where q is the number of destination nodes and D is the diagonal of the mesh.

MIN was designed to further reduce the multicast traffic of PAIR and obtain a

near optimal time. MIN is a centralized, non-minimal, and tree based algorithm

that focuses on reaching destination nodes through a shortest path from the existing

multicast tree. In MIN, instead of generating many intermediate nodes, only one

intermediate node is generated, and the rest of the destinations are connected to

the existing multicast tree in the same order as PAIR without an intermediate node

(Algorithm 2.4) [45]. The time complexity of MIN in a 2D mesh or torus is O(qDN),

18



Algorithm 2.3 PAIR

1: function PAIR(M, s)
2: T ← T ∪ s
3: Arrange destination nodes in M
4: repeat
5: Select destination nodes u and v, where u has the minimum x value xmin

in M and v has the minimum y value ymin in M
6: Find a node w in T in the zone {s ⇔ (xmin, ymin)} that is the closest to

(xmin, ymin)

7: Add node (xmin, ymin) to T through a shortest path to w by XY routing
8: Add u to T through a shortest path to (xmin, ymin) by XY routing
9: Add v to T through a shortest path to (xmin, ymin) by XY routing
10: M ←M − {u, v}
11: until M = ∅
12: Cut the end parts of T not having di or replicate node
13: return T
14: end function

where q is the number of destination nodes, D is the diameter of the mesh, and N is

the number of nodes in the network.

VH, DIAG, DDS, PAIR and MIN in torus networks are applied using the generic

algorithm presented in Section 3.2.5.

TDP, a deadlock free Hamiltonian path based multicast algorithm for 2D torus

networks, divides the torus into two equal meshes according to the location of the

source node. One mesh contains the nodes with y-coordinate value less than that of

the source node or greater than that of the source node minus m
2

. The second mesh

contains the remaining nodes. Destination nodes in each mesh receive the message

in a Hamiltonian path based order. Consequently, in TDP the path length becomes

a dominant factor, leading to high latency [1].

Two Hamiltonian path based multicast routing algorithms for 2D torus networks,

uniform and fixed routing, were proposed. The algorithms differ in their message

preparation part. In uniform routing, destination nodes are divided into two groups

having almost equal number of destination nodes. In fixed routing, the routing paths

19



Algorithm 2.4 MIN

1: procedure MIN(M , s)
2: T ← T ∪ s
3: Arrange destination nodes in M
4: Select destination nodes u and v, where u has the minimum x value xmin

in M and v has the minimum y value ymin in M

5: Add node (xmin, ymin) to T through a shortest path to S by XY routing
6: Add u to T through a shortest path to (xmin, ymin) by XY routing
7: Add v to T through a shortest path to (xmin, ymin) by XY routing
8: M ←M − {u, v}
9: repeat
10: Select a node f that has the minimum x value xmin in M
11: Find a node c1 in T that is the closest to f
12: Add node f to T through a shortest path to c1 by XY routing
13: Select a node g that has the minimum y value ymin in M
14: Find a node c2 in T that is the closest to g
15: Add node g to T through a shortest path to c2 by XY routing
16: M ←M − {f, g}
17: until M = ∅
18: end procedure

have a maximum length restriction. The proposed algorithms have similar behavior

in 2D torus networks and use two startup times [65].

GTTPM and TTPM are two path based multicast routing algorithms for 2D

torus networks that divide the 2D torus into two meshes. TTPM uses the vertical

wraparound links while GTTPM uses the horizontal ones. GTTPM resolves the issue

of TTPM not being able to include all destination nodes when the x-dimension is

larger than the y-dimension of the torus network. Both algorithms use two startup

times. At startup time one, the message is sent to a set of nodes through a Main

Path (MP) in a way that all destination nodes can be reached in the second phase

of communication. At startup time two, nodes on the MP send the message to the

remaining destination nodes [16,17].

Multipath Hamiltonian Cycle Model (M-HCM) is a path based algorithm based

on the Hamiltonian cycle model dividing the network into two subnetworks, after

20



labeling nodes according to their position on a Hamiltonian cycle starting from the

source. The high-channel network contains directional common links with nodes

labeled from low to high and directional wraparound links with nodes labeled from

high to low. The low-channel network contains directional common links with nodes

labeled from high to low and directional wraparound links with nodes labeled from

low to high. Destination nodes are partitioned into 2n subsets and two messages are

sent to each subnetwork. The time complexity of the message preparation part of

M-HCM is O(q log q) and at every node involved in the multicast process constant

time is spent. M-HCM utilizes one startup time [64].

Another Hamiltonian path based a multicast routing algorithm, RG, for 2D torus

networks was proposed. RG divides the 2D torus into disjoint subnetworks and the

destination nodes into several groups. It uses two startup times. At startup time

one, for each group the nearest destination node to the source node is selected to

become the leader of that group. Next, the message is sent from the source node to

the leaders. At startup time two, the leaders retransmit the message to all remaining

destination nodes in their own groups [18].

Tree based Algorithm which Splits torus Networks into two Equally Meshes (TAS-

NEM), is a tree based algorithm for 2D torus networks dividing the torus into two

equal meshes. One mesh has the nodes with y-coordinate value between that of the

source node and source node ± m
2

. The other mesh has the remaining nodes. In each

mesh, the message is sent along a main path and many branching horizontal paths.

The time complexity of both the message preparation part and time spent at every

node involved in the multicast process in TASNEM is O(q). TASNEM utilizes two

startup times [19].

Tree based multicast has high efficiency on both time and traffic [38]. The message

from the source node is sent to multiple neighbors that in turn send the message

21



to other nodes located at a further distance from the source node [46]. The time

efficiency is due to the high degree of parallelism in the message distribution and

the traffic efficiency is due to destination nodes sharing as much common path as

possible. Path based multicast algorithms generate high traffic, since they follow a

certain order along a single Hamiltonian path and as paths get longer multicast time

becomes higher [19]. Most of the above-mentioned algorithms are path based or rely

on unicast, except TASNEM, DIAG, PAIR, DIST, MIN, DDS, and VH.

In this dissertation, improvements on four tree based multicast algorithms in 2D

mesh and torus networks are made: MDIAG, MPAIR, MMIN, and MDIST. The

proof that MDIAG generates optimal or optimal plus one multicast time in 2D mesh

networks is provided. Bounds on the time of the modified algorithms in 2D mesh

and torus networks is given. Extensive simulations of these algorithms show that

they perform better than existing ones, MDIAG is suitable for pro-time applications,

and MPAIR is suitable for pro-traffic applications. To tackle the disadvantages of

centralized routing algorithms, the hybrid version of MDIAG, HMDIAG is designed.

HMDIAG performs preprocessing at the source node. At the source node and every

intermediate node, another process is performed to retransmit the message to another

subset of destination nodes. HMDIAG generates optimal or optimal plus one time

in 2D meshes and it is a 3-additive approximation for multicast time in 2D torus

networks. To make HMDIAG applicable on systems using higher dimensional mesh

and tori, it is extended. HMDIAG gives a (2n− 1)-additive approximation algorithm

on multicast time in nD torus networks. Simulation results show that HMDIAG

generates less multicast time, latency, and coefficient variation of multicast time than

existing algorithms.

22



2.2 On Delay and Delay Variation Multicast

Multicast communication is deployed in many applications requiring efficient and

fair delivery of messages to recipients. If the inter-destination delay variation be-

tween replicated data in a distributed database system is high during an update,

unfairness, inconsistencies, and incorrect computations occur. Updates should also

be propagated within an upper bound on delay, for instant effect. Delay and Delay

Variation Bounded Multicast (DVBM) imposes certain Quality of Service (QoS) con-

ditions on message dissemination, including low end-to-end delay, inter-destination

delay variation, and error probability.

Rouskas and Baldine defined the DVBM Tree problem (DVBMT) and proved it

to be NP-complete [53]. DVBMT has been studied in various networks [2, 8] and

many methods have been suggested to tackle it [8, 13,30,32,35,53,54,56].

Buffering at the source node, intermediate nodes, or destination nodes may be

used to achieve minimum delay variation. However, each approach introduces an

additional load on the network. When the source node buffers messages, it maintains

additional information about all destinations and sends multiple copies of the message

at different times. When selected intermediate nodes buffer messages, multiple copies

of the same message will be sent at different times. When destination nodes buffer

multicast messages before passing them to the user, end-users may use the information

in the messages to compete against each other. Furthermore, the amount of buffering

needed is proportional to the maximum variation of end-to-end delays. If the variation

is smaller buffering would be used more efficiently. Thus, buffering at the receivers

may be used along with DVBM algorithms.

Rouskas and Baldine after defining the DVBMT problem they proposed the Delay

Variation Multicast Algorithm (DVMA) [53]. DVMA generates a shortest path tree,

23



T , rooted at s to all nodes in M . If T violates the maximum end-to-end delay value

(∆), a valid tree does not exist. If T satisfies both constraints, it is a valid tree for the

multicast session. If T satisfies only the ∆ constraint, the longest path group member

di in T is selected and k-shortest-paths satisfying the ∆ constraint from s to di are

generated. After sorting the paths in increasing order of delay, a tree is gradually

constructed by starting with the shortest path of the k paths. The rest of the group

members are appended gradually, through paths satisfying both constraints to a node

on the hitherto created tree. This is achieved by generating l-shortest-paths within

the ∆ constraint from every node on the hitherto created tree to the group member to

be added, and then selecting the lowest inter-destination delay variation generating

path of the l paths. If all group members are added to the tree and the maximum

inter-destination delay value (σ) is satisfied, a solution is found. However, if all k-

shortest-paths are used and a tree satisfying the σ constraint is not generated, the tree

with the lowest inter-destination delay variation is returned. The time complexity of

the algorithm is O(klmn4) [53].

The location of a core node, vc, affects the end-to-end delay and inter-destination

delay variation of the trees generated for core-based DVBMT in three cases. Let vi be

a multicast group member. A Dotted link between two nodes indicates the presence

of relay nodes.

Case (1): vi is on the minimum delay path from s to vc (Figure 2.1(a)).

Case (2): The minimum delay path from vi to vc and s to vc share common links

(Figure 2.1(b)).

Case (3): s is on the minimum delay path from vc to vi (Figure 2.1(c)).

A discussion on existing algorithms considering or failing to consider these cases is

presented below.

A core based tree method to tackle the DVBMT problem was first suggested by

24



(a) (b) (c)

Figure 2.1: Cases

Sheu and Chen. The proposed Delay and Delay Variation Constrained Algorithm

(DDVCA), finds shortest paths from the source to all nodes in the network and from

every node in M to all nodes. After setting the inter-destination delay variation

of every node satisfying the ∆ constraint to reach all members, the node with the

minimum inter-destination delay variation value is selected as the core node. A group

member in a tree generated by DVBMT receives the message from the source, if its

location conforms with case (1) (Figure 2.1(a)). The time complexity of the algorithm

is O(mn2) [56].

The algorithm Kim et al. propose, estimation (ESC), finds shortest paths from

the source to all nodes in the network and from every node in M to all nodes in the

network. After setting the inter-destination delay variation of every node satisfying

the ∆ constraint to reach all members, the minimum inter-destination delay variation

value (dvmin) is selected. If the dvmin value holding node is not unique, the potential

variation of these nodes is calculated. The potential variation calculation function

considers if the location of the nodes conforms with cases (1) or (3). The node with the

minimum potential variation value is selected as the core node. A group member in a

tree generated by ESC receives the message from the source, if its location conforms

with case (1). The time complexity of the algorithm is O(mn2) [35].

Kabat et al. propose another core-based algorithm for DVBMT, Kabat et al.

Multicast algorithm with K shortest paths (KMK) [30]. The algorithm also takes

into consideration if the location of the nodes conforms with cases (1) or (3). The

25



algorithm finds shortest paths from the source to all nodes in the network and from

every node in M to all nodes in the network. Next, the inter-destination delay

variation of every node is set and the minimum inter-destination delay variation

value (dvmin) is selected. To prevent the occurrence of case (3) in the generated trees,

all candidate core nodes that have s on their shortest paths to a group member are

marked as non-candidate nodes. A value p = dvmin + stddev(dv)/2, where stddev is

the standard deviation of the delay variations of candidate core nodes, is introduced.

Nodes that do not satisfy the ∆ constraint and have higher inter-destination delay

variation than p are marked as non-candidate nodes. Next, pass and compare values

are set for candidate core nodes reflecting the maximum distance of all group members

from the candidate core node if case (1) occurs. The node with the minimum compare

value is selected as the core node, vc. If the lowest compare value node is not unique,

the node with the lowest inter-destination delay variation is selected as vc. In the

second part of the algorithm, a k-shortest-path based approach is proposed to further

decrease the inter-destination delay variation of the generated tree. k-shortest-paths

constrained by ∆ − maxvi∈M D(vc, vi) delay value are selected from s to vc. Group

members are connected to vc through shortest paths. s is connected to vc through

the best of the k paths and cycles are removed. The algorithm including both parts

is KMKh where h = k. The time complexity of KMK and KMKh are O(mn2) and

O(n3), respectively [30].

Sahoo et al. propose an Adaptive Tabu (ATabu) search based algorithm for core

selection. The algorithm finds shortest paths from the source to all nodes in the

network and from every node in M to all nodes in the network. After setting the inter-

destination delay variation of every node, the node (current) with the minimum inter-

destination delay variation is selected as the starting point of the search. Neighbors

within the search radius of current are evaluated and the node (best) with the lowest

26



fitness value is selected. If best has lower fitness than current, the next search starts

from node best. If best does not have lower fitness than current, local minima is

reached. The Tabu list is updated to include the high quality nodes. Entrapment in

local optima is avoided by reselecting one of the previous high quality solutions from

the Tabu list as the starting point of the next search, when the maximum allowed

number for solution cycling is reached. The search process of adaptive Tabu is faster

than the standard Tabu search as the search radius is gradually decreased with fitness

function decrease. The time complexity of the algorithm is O(n3) [54].

In the next couple of paragraphs, the weaknesses of existing core-based DVBMT

algorithms are listed and the motivation for proposing DCS and DCSBLVT is stated.

When the location of a group member in trees constructed by DDVCA conforms

with case (1), it receives the message from the source node [56]. This leads to a

different end-to-end delay and inter-destination delay variation values than the ones

set during the execution of the algorithm. Moreover, DDVCA models the problem

with an undirected graph that does not reflect realistic networks.

In ESC, the estimation value is set for a small subset of candidate core nodes,

the ones having the lowest inter-destination delay variation value. When the location

of all these considered candidate nodes in trees constructed by ESC conforms with

cases (1) or (3), the end-to-end delay and inter-destination delay variation values of

the tree are different than the ones set during the execution of the algorithm, as the

nodes receive the message directly from the source [35]. Thus, it is possible that a

higher quality core node existed but was not checked for candidacy.

In trees generated by KMKh, group members receive the message from the core

node [30]. The k-shortest-path approach they propose, only improves the inter-

destination delay variation of the tree when a group member is located on the extended

path. The tolerance value (p) the algorithm sets to mimic the inter-destination delay

27



variation of the tree and the discarding of nodes conforming with case (1), result in

failure to generate solutions in 9% of the cases according to the performed simulations

in Chapter 5.

In ATabu, the fitness function does not reflect the inter-destination delay variation

of the generated tree. When cases (1) or (3) occur in the generated tree with some

group members, the delay s to vc is added to inter-destination delay variation of the

remaining vc to group member delays. ATabu on average checks the candidacy of 30%

of the nodes guided by the fitness function that penalizes cases (1) and (3). Thus, it

is possible that a higher quality core node existed but was not checked.

KMK and KMKh set their own tolerance value (p) to mimic the maximum ac-

cepted inter-destination delay variation of a DVBM tree. DDVCA, ESC, and ATabu

do not consider a tolerance value on the inter-destination delay variation of a DVBM

tree, they return the lowest inter-destination delay variation tree the algorithm finds.

DDVCA, ESC, KMK, and ATabu cannot generate a lower inter-destination delay

variation tree than the shortest path tree rooted at the selected core node. The inter-

destination delay variation of a tree can be lowered by replacing shortest paths from

the source to some group members with longer paths.

The core node in Directional Core Selection (DCS) algorithm designed, is selected

by searching from group members by gradual radius expansion. A core node is found

when the searches intersect at a node complying with both constraints. To further

decrease the inter-destination delay variation of the tree, another algorithm Build

Lower Variation Tree (BLVT) is designed. In BLVT shortest paths to some group

members are replaced by longer paths. Longer paths are selected by generating k-

shortest-paths bound by the maximum delay from the source to a group member

(maxD) of the tree, and taking the longest path of the k paths. The source sends a

unicast message to the core node, and the core sends the message to group members

28



using the multicast tree. In DCS and DCSBLVT the end-to-end delay and inter-

destination delay variation values set during the execution of the algorithms reflect

the values of the generated tree.

In dynamic DVBMT, multicast group members can leave the multicast session

and new nodes can join the multicast session after issuing leave and join requests,

respectively. The multicast tree should be updated in response to changes in multicast

group membership, without violating the end-to-end delay and inter-destination delay

variation constraints. Dynamic DVBMT can be tackled by re-executing the algorithm

after every dynamic request to generate a new tree and use it for routing subsequent

packets. However, this method is very costly as the algorithm is re-executed, old

paths are removed, and new paths are formed.

Dynamic DVBMT is not handled by DDVCA, ESC, KMK, KMKh, and ATabu.

Thus, the algorithms are re-executed after every request to obtain a new tree for

the modified multicast group. The approach given in this dissertation for dynamic

DVBMT, tries to avoid reconstruction of the multicast tree by adding a new path

without effecting any of the paths from the source to nodes in M . However, if adding

a new path does not satisfy the end-to-end delay and inter-destination delay variation

constraints, reconstruction cannot be avoided.

In the next couple of paragraphs, existing multi-core based algorithms for multi-

cast communication are given and the motivation for proposing MCDVBMT is stated.

Distributed Core Multicast (DCM) is a core-based routing protocol that utilizes

multiple cores, but does not take into consideration any QoS constraints. QoS Core

Selection Algorithm (QCSA) is a distributed core selection algorithm taking into

consideration core-to-end delay, delay-jitters, and bandwidth QoS constraints [14].

Putthividya and Tavanapong propose three clustering algorithms to choose a minimal

set of core nodes satisfying end-to-end delay [52]. They also propose a distributed

29



algorithm with backup cores [51]. Delay constrained multiple core selection algorithms

are suggested by [33,55]. Delay constrained and cost minimizing multi-core algorithm

is proposed in [34]. Ordered Core-Based Tree (OCBT) constructs a unique tree

governed by multiple cores to span the entire receiver group [57]. Using multiple

cores reduces the delay between source nodes and group members, avoids the core

node being a single point of failure, and reduces traffic concentration [9,71]. However,

using multiple cores increases the cost of the session, since every sender router sends

one unicast stream to each core [22,51,52].

When single-core based multicast algorithms fail to generate a tree satisfying delay

and delay variation constraints such that all paths to multicast group members pass

through a single core node, the multi-core might as it is less constrained.

In the multi-core multicast approach, each core is the root of a separate multicast

tree, and there is no coordination between cores. In single-core multicast trees, a core

node is a single point of failure. When the core fails, all group members suffer from

recovery delay, that includes the cost of re-running the algorithm, tearing down old

paths, and establishing new ones [20]. On contrary, when one of the core nodes fail

in a multi-core multicast, only group members receiving the message from the failing

core node suffer from recovery delay.

Single core-based trees may cause traffic concentration, where some links in the

network are much more heavily utilized than others [11, 68]. On contrary, the multi-

core approach avoids the problem of traffic concentration as different cores are used

to disseminate the message to multicast group members.

Motivated from the above-mentioned advantages of multi-core trees, a multi-core

multicast approach to solve the DVBM problem is designed. The proposed three-

phase algorithm, Multi-Core DVBM Trees (MCDVBMT), constructs multiple multi-

cast trees rooted at every core node satisfying end-to-end delay and inter-destination

30



delay variation constraints. Simulation results show that when existing single-core

based algorithms fail to construct a tree satisfying both QoS constraints, MCDVBMT

generates a result using multiple rooted trees at selected core nodes. MCDVBMT

generates less inter-destination delay variation and traffic concentration than existing

single-core algorithms. In addition, group members suffer from lower recovery delay

when a core node fails. However, they have higher end-to-end delay and cost than

single-core trees [27]. The dynamic version of MCDVBMT is also given that reorga-

nizes the multicast trees in response to changes to the multicast group members.

31



Chapter 3

On Near Optimal Time Multicast

Algorithms in Mesh and Torus

Networks

3.1 System Model and Problem Specification

An interconnection network consists of nodes. Every node has its own router, pro-

cessor, local memory, and communication links. The router is responsible for the

entering, leaving, and passing of messages through the node and is connected to its

processor by pairs of internal channels. One internal channel is for incoming traffic

and the other, for outgoing. The number of internal channels indicate the number of

messages that a processor can send concurrently. Pairs of external channels connect

nodes to each other.

Multicast communication is modeled as a graph theoretical problem where G(V,E)

is a graph with a set of V nodes and E edges representing links between nodes. The

source node, s and d1, d2, d3, . . . , dq denoting q destination nodes form the multicast

32



set, M .

An Optimal Multicast Tree (OMT), T (V,E), for a multicast set M in G is a

subtree of G, such that q ⊆ V (T ), DT (s, ui) = DG(s, ui) for 1 ≤ i ≤ q , and |E(T )| is

as small as possible.

An nD mesh has k0×k1×· · · kn−1 nodes, where ki is the number of nodes in the ith

dimension. Every node in an nD mesh has an n-coordinate vector (x0, x1, · · · , xn−1),

where 0 ≤ xi ≤ ki − 1 for all i, 0 ≤ i ≤ n − 1. Two nodes x(x0, x1, · · · , xn−1) and

y(y0, y1, · · · , yn−1) are connected if xi = yi for all i, 0 ≤ i ≤ n − 1, except one, j,

where xj = (yj ± 1) [46]. The distance between nodes x and y is
∑n−1

i=0 |yi − xi|. The

degree of a node in a nD mesh can be from n to 2n. The diameter of a 2D mesh is∑n−1
i=0 ki −n.

In a mesh, a communication between the first and the last node of a dimension

passes through a long path because of the absence of a direct edge between them. If

an edge is added, the structure becomes symmetric and the distance between these

nodes reduces roughly by half given that the message can travel from two opposite

directions to reach the same destination. The resulting structure is a torus.

An nD torus is an nD mesh with wraparound links. Two nodes x(x0, x1, · · · , xn−1)

and y(y0, y1, · · · , yn−1) are connected if xi = yi for all i, 0 ≤ i ≤ n − 1, except one,

j, where xj = (yj ± 1) mod kj. The distance between nodes x(x0, x1, · · · , xn−1) and

y(y0, y1, · · · , yn−1) is
∑n−1

i=0 min(|yi−xi|, ki− |yi−xi|) [46]. Every node in a nD torus

has degree 2n. The diameter of an nD torus is
n∑
i=0

bki
2
c. Many properties result from

the symmetric nature of an nD torus including low contention latency, high channel

bandwidth, and balanced use of transmission channels.

A zone Z of an nD mesh or torus is a submesh represented by its two diagonal

nodes. A node is in a zone, if its coordinate values are within the coordinate values

of the two diagonal nodes of that zone [28]. Zoning is used to restrict the boundary

33



of the network.

A di is a destination node where 1 ≤ i ≤ q. D(u, v) is the distance between nodes

u and v. d is the diagonal node d = (Xmax, Ymax) where Xmax = max{x1, . . . , xk},

Ymax = max{y1, . . . , yk}, xk is the x coordinate of node dk and yk is the y coordinate

of node dk. sd is the diagonal line from s to d. DP is the diagonal path from

s to d, approximating the sd. Dmax = max{D(s, d1), . . . , D(s, dk)}. UDP is the

set containing destination nodes in the upper part of the DP and LDP is the set

containing destination nodes in the lower part of the DP . Intermediate nodes are

nodes between s and leaf nodes.

The multicast communication services used by HMDIAG are the following:

• Permanent Absorb, Forward and Retransmit (PAFR): The message is absorbed

while being forwarded to the node towards the next destination node. The node

might also retransmit the message.

• Forward and Retransmit (FR): The message is forwarded towards the next

destination node. The node might also retransmit the message.

• Permanent Absorb and Forward (PAF): The message is absorbed. The node

might also forward the message.

The problem of multicast in an nD torus is transformed to multicast in 2n equal

nD meshes (Algorithm 3.1). The algorithm, given a vector of dimension details, dims,

of size n, depth = 0, and curr = “” recursively generates the sources and endpoints

of the meshes. Algorithm 3.2, given the source node and the number of dimensions,

generates the endpoint of the zone.

For example, given dims = ((0,m − 1), (0, n − 1)), Algorithm 3.1 creates four

meshes {(0, 0) ⇔ (dm
2
e − 1, dn

2
e − 1)}, {(m − 1, 0) ⇔ (dm

2
e, dn

2
e − 1)}, {(0, n− 1) ⇔

(dm
2
e − 1, dn

2
e)}, {(m− 1, n− 1) ⇔ (dm

2
e, dn

2
e)} (Figure 3.1). sources = ((0, 0), (m−

1, 0), (0, n − 1), (m − 1, n − 1)) and endpoints = ((dm
2
e − 1, dn

2
e − 1), (dm

2
e, dn

2
e −

34



Algorithm 3.1 Generate Subproblems

1: function GenerateSubproblems(dims,depth,curr)
2: if depth = dims.size() then
3: sources.push(curr)
4: endpoints.push(GenerateEndpoints(curr, dims))
5: curr = “”
6: return
7: for i = 0 : dims[depth].size() do
8: GenerateSubproblems(dims, depth+ 1, curr + “” + dims[depth][i])

return sources, endpoints
9: end function

1), (dm
2
e − 1, dn

2
e), (dm

2
e, dn

2
e)). Similary, given dims = ((0,m − 1), (0, n − 1), (0, p)),

Algorithm 3.1 creates eight meshes {(0, 0, 0) ⇔ (dm
2
e − 1, dn

2
e − 1, dp

2
e − 1)}, {(m −

1, 0, 0)⇔ (dm
2
e, dn

2
e−1, dp

2
e−1)}, {(m−1, 0, p−1)⇔ (dm

2
e, dn

2
e−1, dp

2
e)}, {(0, 0, p−

1)⇔ (dm
2
e − 1, dn

2
e − 1, dp

2
e)}, {(0, n− 1, 0)⇔ (dm

2
e − 1, dn

2
e, dp

2
e − 1)}, {(m− 1, n−

1, 0)⇔ (dm
2
e, dn

2
e, dp

2
e− 1)}, {(m− 1, n− 1, p− 1)⇔ (dm

2
e, dn

2
e, dp

2
e)}, {(0, n− 1, p−

1)⇔ (dm
2
e−1, dn

2
e, dp

2
e)}. sources = ((0, 0, 0), (m−1, 0, 0), (m−1, 0, p−1), (0, 0, p−

1), (0, n−1, 0), (m−1, n−1, 0), (m−1, n−1, p−1), (0, n−1, p−1)) and endpoints =

((dm
2
e−1, dn

2
e−1, dp

2
e−1), (dm

2
e, dn

2
e−1, dp

2
e−1), (dm

2
e, dn

2
e−1, dp

2
e), (dm

2
e−1, dn

2
e−

1, dp
2
e), (dm

2
e−1, dn

2
e, dp

2
e−1), (dm

2
e, dn

2
e, dp

2
e−1), (dm

2
e, dn

2
e, dp

2
e), (dm

2
e−1, dn

2
e, dp

2
e)).

M is also partitioned into 2n subsets, containing the destination nodes belonging

to the 2n meshes. Dividing an nD torus into 2n nD meshes forces every destination

node to receive the message from the closest source node. This reduces the upper

Algorithm 3.2 Generate Endpoints

1: function GenerateEndpoints(source,dims)
2: sourceCoordinates← tokenize(source)
3: for i = 0 : sourceCoordinates.size() do
4: if sourceCoordinates[i] = “0” then
5: endpoint+ =“ ceil(”+ dims[i][1] + “/2)− 1”
6: else
7: endpoint+ =“ ceil(”+ dims[i][1] + “/2)”

return endpoint
8: end function

35



Figure 3.1: 2D torus

bound on multicast latency by almost half, enables destination nodes to receive the

message in comparable time, and avoids traffic congestion by distributing the traffic

load.

The multicast scheme the algorithms follow to send the message to the 2n source

nodes of the 2n submeshes, is generated by Algorithm 3.3. Once the scheme from s to

all source nodes of the meshes is generated, the source nodes of the meshes start local

multicast. Prioritizing source nodes receiving the message earlier to further send the

message to remaining uninformed source nodes, makes meshes start local multicast in

parallel. In the meshes, the message is first transmitted along the Primary Diagonal

Paths (PDP-s) and then intermediate nodes on the PDP-s retransmit the message

along Secondary Diagonal Paths (SDP-s) and/or paths branching from the PDP. In

an nD torus, at most n− 1 DP-s are created. One PDP and n− 2 SDP-s.

The Routing function R(u, v) = w utilized for sending a message from a node

36



u(x0, x1, · · · , xn−1) to a node v(y0, y1, · · · , yn−1) is :

R(u, v) =



v if ∃ a pair, p in scheme |

p[0] = u and p[1] = v

(zi, · · · , zn−1) | zi = xi and zj = xj + 1 if xi = yi ∀i | 0 ≤ i ≤ n− 1

except j where xj < yj

(zi, · · · , zn−1) | zi = xi and zj = xj − 1 if xi = yi ∀i | 0 ≤ i ≤ n− 1

except j where xj > yj

(1)

In the presented theoretical results, the underlying architecture is assumed to be

one-port. At each time unit a node can send a message to one of its neighbors or

receive a message from one of its neighbors. A message can be transmitted over

different links simultaneously.

When calculating multicast latency, the underlying architecture is assumed to be

all-port, where a node can transmit multiple messages at a time because of the exis-

tence of several pair of internal channels. Nodes also support intermediate reception

(IR). IR allows a router to send an incoming message to the local processor and

forward it to another router at the same time [21].

Any node in a mesh or torus can be s, for simplicity it is fixed at (0,0) [66].

Algorithm 3.3 Generate Multicast Scheme

1: function GenerateMulticastScheme(s, sources)
2: Q.push(s), visited[s] =true
3: while all sources are not visited do
4: sender = Q.pop()
5: for every unvisited source, si, sender is connected to by a wraparound link
6: scheme.push(sender, si)
7: visited[si] =true

return scheme
8: end function

37



It is also assumed that messages are switched using one of the distance insensitive

switching techniques.

3.2 Modified Algorithms in 2D Mesh and Torus

3.2.1 Modified DIAG Algorithm in 2D Mesh

Modified DIAG (MDIAG) is divided into two parts. Part one (CreateDiagonalPath)

of the algorithm creates the Diagonal Path (DP ). Part two (CreateT), creates the

multicast tree (T ).

When creating T , MDIAG instead of selecting a closest node to u within the zone

{s ⇔ u}, selects node v on the DP with the same x or y value as u, depending on

the relative position of u to DP .

The main advantage of MDIAG is that it generates optimal time in most cases.

When it does not generate optimal time, it generates optimal plus one time (proved

in Proposition 3.2.5). However, MDIAG might generate more traffic.

(a) DIAG T (b) MDIAG T

Figure 3.2: DIAG and MDIAG created T -s

38



Figure 3.2(a) and Figure 3.2(b) show the T -s created for the same set of destination

nodes by DIAG and MDIAG. DIAG creates a T with multicast time 13 and traffic

27. MDIAG creates a T with multicast time 12 and traffic 28. Double lines in the

figures denote the DP , labels on links specify the time unit at which the message

passes through that link, and shaded nodes represent the destination nodes.

Algorithm 3.4 Modified DIAG (MDIAG)

1: function CreateDiagonalPath(M, s)
2: DP ← s, u← s
3: xd ← max{xdi} ∀i | 1 ≤ i ≤ q
4: yd ← max{ydi} ∀i | 1 ≤ i ≤ q
5: repeat
6: xu′ ← xu + 1, yu′ ← yu, xu′′ ← xu, yu′′ ← yu + 1
7: if D(u′, sd) ≤ D(u′′, sd) then
8: u← u′

9: else
10: u← u′′

11: uprevious ← u
12: DP ← DP ∪ u
13: if direction changed from x to y then
14: maxX ← uprevious
15: else
16: maxY ← uprevious

17: until u = d
18: return DP,maxX,maxY
19: end function
20: function CreateT(M, s,DP,maxX,maxY )
21: T ← DP
22: repeat
23: u ← first node in M
24: if u ∈ UDP then
25: Select node v from maxX or DP where yv = yu
26: else
27: Select v from maxY or DP where xv = xu
28: Connect u to v
29: M ←M − {u}
30: until M = ∅
31: Cut the tail part of the DP that does not have a di or replicate nodes
32: return T
33: end function

39



Algorithm 3.5 Modified PAIR (MPAIR)

1: function MPAIR(M, s)
2: Arrange destination nodes in M
3: T ← T ∪ s
4: repeat
5: Select destination nodes u and v, where u has the minimum x value xmin

in M and v has the minimum y value ymin in M
6: Find a node w in T in zone {s ⇔ (xmin, ymin)} that is the closest to

(xmin, ymin)

7: Add node (xmin, ymin) to T through a shortest path to w by XY routing
8: Find a node c1 in T and in zone {s⇔ u}, that is the closest to u
9: Add u to T through a shortest path to c1 by XY routing
10: Find a node c2 in T and in zone {s⇔ v}, that is the closest to v
11: Add v to T through a shortest path to c2 by XY routing
12: M ←M − {u, v}
13: until M = ∅
14: Cut end parts of T not having di or replicate node
15: return T
16: end function

3.2.2 Modified PAIR Algorithm in 2D Mesh

Modified PAIR (MPAIR) instead of connecting nodes u and v to their corresponding

intermediate node, connects them to a closest node c1 to u and c2 to v within the

zone {s ⇔ u} and {s ⇔ v}, respectively. This improves traffic but might increase

time.

The multicast scheme MPAIR and MPAIR follow, first sends the message to the

furthest intermediate node creating an abstract main path. Then nodes branching

from that path receive the message.

Figure 3.3(a) and Figure 3.3(b) show the T -s created for the same set of destination

nodes by PAIR and MPAIR, respectively. PAIR creates a T with time 8 and traffic

35. MPAIR creates a T with time 9 and traffic 27. Double lined nodes in the figures

denote intermediate nodes.

40



(a) PAIR T (b) MPAIR T

Figure 3.3: PAIR and MPAIR created T -s

3.2.3 Modified MIN Algorithm in 2D Mesh

Modified MIN (MMIN) instead of selecting the closest node c1 and c2 to every f and

g, it selects the closest c1 and c2 to every f and g within the zone {s ⇔ f} and

{s ⇔ g}, respectively (Algorithm 3.6). This improves the time, but might increase

the traffic.

The multicast scheme MIN and MMIN follow, first sends the message to the

furthest destination node creating an abstract main path. Then nodes branching

from that path receive the message.

Figure 3.4(a) and Figure 3.4(b) show the T -s created for the same set of destination

nodes by MIN and MMIN algorithms. The T created by MIN has multicast time 35

and traffic 59, whereas the T created by MMIN has time 28 and traffic 61.

41



(a) MIN T (b) MMIN T

Figure 3.4: MIN and MMIN created T -s

Algorithm 3.6 Modified MIN (MMIN)

1: procedure MMIN(M , s)
2: Arrange destination nodes in M
3: T ← T ∪ s
4: Select a pair of destination nodes u and v, where node u has the minimum

x value xmin in M and node v has the minimum y value ymin in M
5: Find a node w in T in zone {s ⇔ (xmin, ymin)} that is the closest to

(xmin, ymin)
6: Add node (xmin, ymin) to T through a shortest path to w by XY routing
7: Find a node c in T and in the zone {s⇔ u}, that is the closest to u
8: Add node u to T through a shortest path to c by XY routing
9: Find a node d in T and in the zone {s⇔ v}, that is the closest to v
10: Add node v to T through a shortest path to d by XY routing
11: M ←M − {u, v}
12: repeat
13: Select a node f that has the minimum x value xmin in M
14: Find a node c1 in T and in the zone {s⇔ f}, that is the closest to f
15: Add node f to T through a shortest path to c1 by XY routing
16: Select a node g that has the minimum y value ymin in M
17: Find a node c2 in T and in the zone {s⇔ g}, that is the closest to g
18: Add node g to T through a shortest path to c2 by XY routing
19: M ←M − {f, g}
20: until M = ∅
21: end procedure

42



3.2.4 Modified DIST Algorithm in 2D Mesh

Modified DIST (MDIST) instead of selecting a closest node v to u, it selects a closest

node v to u within the zone {s ⇔ u} (Algorithm 3.7). This improves the time, but

might increase traffic.

The multicast scheme DIST and MDIST follow, first sends the message to the

furthest destination node creating an abstract main path. Then nodes branching

from that path receive the message.

Figure 3.5(a) and Figure 3.5(b) show the T -s created for the same set of destination

nodes by DIST and MDIST algorithms. The T created by DIST has multicast time

34 and traffic 47, whereas the T created by MDIST has time 22 and traffic 60.

Algorithm 3.7 Modified DIST (MDIST)

1: procedure MDIST(M , s)
2: Sort destination nodes in increasing order of distances from s
3: T ← T ∪ s
4: repeat
5: u ← first node in D
6: Find a node v in T and in zone {s⇔u} that is the closest to u
7: Add node u to T through a shortest path from v by XY routing
8: D ← D − {u}
9: until D = ∅
10: end procedure

43



(a) DIST T (b) MDIST T

Figure 3.5: DIST and MDIST created T -s

3.2.5 Modified Algorithms in 2D Torus

Algorithm 3.8 transfers the problem of multicast in a 2D torus into multicast in four

2D meshes. Using Algorithm 3.1, an m × n torus is divided into four meshes and

subproblems are generated. The generated subproblems are {(0, 0)⇔ (dm
2
e−1, dn

2
e−

1)}, {(m− 1, 0)⇔ (dm
2
e, dn

2
e − 1)}, {(0, n− 1)⇔ (dm

2
e − 1, dn

2
e)}, {(m− 1, n− 1) ⇔

(dm
2
e, dn

2
e)}. The source nodes of the four meshes are (0, 0), (n−1, 0), (0,m−1), and

(m−1, n−1), respectively (Figure 3.1). On every subproblem algorithm A is applied

and a tree is generated. A can be MPAIR, MDIAG, MMIN, or MDIST. The trees

generated by the subproblems are connected to each other according to the scheme

generated by Algorithm 3.3 (Algorithm 3.8).

44



Algorithm 3.8 Multicast in 2D Torus

1: function GenerateMT(T , s, A)
2: partition the nD torus into 2n meshes using Algorithm 3.1 and get sources

and endpoints
3: partition M into 2n subsets, Mi, containing destination nodes belonging to

meshi for all i, 1 ≤ i ≤ 2n

4: for i = 0 : 2n do
5: if Mi 6= ∅ then
6: Apply A on meshi and Mi and get Ti
7: T ← T ∪ Ti
8: scheme← GenerateMulitcastScheme((0, 0), sources)
9: for every sender, receiver pair in scheme do
10: T ← T∪ add a link from sender to receiver
11: return T
12: end function

Figure 3.6(a) and Figure 3.6(b) show the T -s generated for the same set of desti-

nation nodes by MDIAG in a 2D mesh and torus, respectively. MDIAG in a 2D mesh

generates a T with time 38 and traffic 143. In a 2D torus, it generates a T with time

15 and traffic 86.

Figure 3.7(a) and Figure 3.7(b) show the T -s generated for the same set of desti-

nation nodes by MPAIR in a 2D mesh and torus, respectively. MPAIR in a 2D mesh

generates a T with time 38 and traffic 100. In a 2D torus, it generates a T with time

20 and traffic 71.

Figure 3.8(a) and Figure 3.8(b) show the T -s generated for the same set of desti-

nation nodes by MMIN in a 2D mesh and torus, respectively. MMIN in a 2D mesh

generates a T with time 37 and traffic 105. In a 2D torus, it generates a T with time

20 and traffic 75.

45



(a) MDIAG T in 2D mesh (b) MDIAG T in 2D torus

Figure 3.6: MDIAG T -s in 2D mesh and torus

(a) MPAIR T in 2D mesh (b) MPAIR T in 2D torus

Figure 3.7: MPAIR T -s in 2D mesh and torus

46



(a) MMIN T in 2D mesh (b) MMIN T in 2D torus

Figure 3.8: MMIN T -s in 2D mesh and torus

(a) MDIST T in 2D mesh (b) MDIST T in 2D torus

Figure 3.9: MDIST T -s in 2D mesh and torus

Figure 3.9(a) and Figure 3.9(b) show the T -s generated for the same set of desti-

nation nodes by MDIST in a 2D mesh and torus, respectively. MDIST in a 2D mesh

generates a T with time 37 and traffic 112. In a 2D torus, it generates a T with time

47



20 and traffic 75.

3.2.6 Time Complexity of the Modified Algorithms

3.2.6.1 Time Complexity of MDIAG

The time complexity of DIAG is O(qn2) in an n× n mesh and torus [28].

Proposition 3.2.1 The time complexity of MDIAG is O(qn) in an n× n mesh and

torus.

Proof The multicast preparation algorithm of MDIAG takes O(n) time. In the T

creation part, for every destination node di, finding the closest node on the DP takes

O(log n) time since binary search is used on the minX or minY . If binary search on

minX or minY vectors does not return a node, another binary search is performed on

the DP . Connecting a di to a closest node takes O(n) time. Therefore, the complexity

of part two of MDIAG is O(qn). Thus, the time complexity of MDIAG is O(qn) in

an n× n mesh.

Dividing the torus into four meshes and partitioning the destination nodes into four

subsets takes O(q) time. Applying MDIAG in the four meshes of size n
2
× n

2
takes

4∑
i=1

O(qi
n
2
) = O(q n

2
). Combining the four T -s into a single one takes O(1) time. Thus,

the time complexity of MDIAG is O(q n
2

+ q + 1) = O(qn) in an n × n torus. This

improvement in time complexity is due to a change in the implementation of part two

of the algorithm. In DIAG it takes O(qn2) time, whereas in MDIAG it takes O(qn)

time.

3.2.6.2 Time Complexity of MPAIR

The time complexity of PAIR is O(qn) in an n× n mesh and torus [45].

48



Proposition 3.2.2 The time complexity of MPAIR is O(qn) in an n× n mesh and

torus.

Proof Arranging destination nodes takes O(q log q) time. To find a closest node in T

to the di destination nodes, only leaf nodes of the T within the zone {(0, 0) ⇔ (di)}

are checked. Leaf nodes are the closest nodes to a di. There are at most n + n − 1

leaf nodes within the zone {(0, 0) ⇔ (n, n)}, so it takes O(q(n + n − 1)) = O(qn)

time. Connecting a di to a closest node takes O(n) time. Thus, the time complexity

of MPAIR is O(q log q + qn)) = O(qn) in an n× n mesh.

Dividing the torus into four meshes and partitioning the destination nodes into 4

subsets takes O(q) time. Applying MPAIR in the four meshes of size n
2
× n

2
takes

4∑
i=1

O(qi
n
2
) = O(q n

2
). Combining the four T -s into a single one takes O(1) time. Thus,

the time complexity of MPAIR is O(q n
2

+ q + 1) = O(qn) in an n× n torus.

3.2.6.3 Time Complexity of MMIN

The time complexity of MIN is O(qn3) in an n× n mesh.

Proposition 3.2.3 The time complexity of MMIN is O(qn) in an n × n mesh and

torus.

Proof Arranging destination nodes takes O(q log q) time. Selecting a closest node

in T to a node to be added to the tree takes O(n) time, since only the leaf nodes of

the T are checked. Finding a path from the existing multicast tree to the node to be

added takes O(n) time. Thus, the time complexity of MMIN is O(qn) in an n × n

mesh.

Dividing the torus into four meshes and partitioning the destination nodes into 4

subsets takes O(q) time. Applying MMIN in the four meshes of size n
2
× n

2
takes

4∑
i=1

O(qi
n
2
) = O(q n

2
). Combining the four T -s into a single one takes O(1) time. Thus,

the time complexity of MMIN is O(q n
2

+ q + 1) = O(qn) in an n× n torus.

49



3.2.6.4 Time Complexity of MDIST

The time complexity of DIST is O(qn3) in an n× n mesh.

Proposition 3.2.4 The time complexity of MDIST is O(qn) in an n× n mesh and

torus.

Proof Sorting destination nodes takes O(q log q) time. Finding a path from the

existing multicast tree to the node to be added takes O(n) time. Connecting nodes

takes O(n) time. Thus, the time complexity of MDIST is O(qn) in an n× n mesh.

Dividing the torus into four meshes and partitioning the destination nodes into 4

subsets takes O(q) time. Applying MDIST in the four meshes of size n
2
× n

2
takes

4∑
i=1

O(qi
n
2
) = O(q n

2
). Combining the four T -s into a single one takes O(1) time. Thus,

the time complexity of MDIST is O(q n
2

+ q + 1) = O(qn) in an n× n torus.

3.2.7 Bounds on Time of the Modified Algorithms

In [44], it is proven that the minimum possible multicast time in a 2D mesh:

Toptimal =


Dmax ∃ a unique node at distance Dmax

Dmax + 1 otherwise .

(2)

Proposition 3.2.5 In a 2D mesh MDIAG always generates optimal or optimal plus

one time.

Proof In the multicast scheme followed by MDIAG, the message is first sent to the

last node on the DP. Next, remaining uninformed destination nodes branching from

the DP receive the message.

Case 1: MDIAG generates optimal time.

50



Case 1a: There are more than one nodes at distance Dmax.

If there is no destination node on the DP with distance Dmax, the message is sent to

the furthest node v on the DP . If there is a destination node u with Dmax distance on

the DP , it will receive the message at time Dmax. If a Dmax distance node branches

from v, it will receive the message at time Dmax. All remaining destination nodes

receive the message by time D(s, di) + 1 for all i where 1 ≤ i ≤ q. All these nodes

branch from the path leading to v or u or are on the DP. A branching leads to a

delay of one time unit. Since D(s, di) ≤ Dmax, D(s, di) + 1 ≤ Dmax + 1 for all i where

1 ≤ i ≤ q. Thus, the multicast time is at most Dmax + 1, which is optimal.

Case 1b: There is a unique node u at distance Dmax on the DP.

If there is a unique node u at distance Dmax on the DP , it receives the message at

time Dmax. All remaining destination nodes receive the message by time D(s, di) + 1

for all i where 1 ≤ i ≤ q. The time unit of delay is the result of branching from the

DP. Since D(s, di) ≤ Dmax − 1, D(s, di) + 1 ≤ Dmax for all i where 1 ≤ i ≤ q. Thus,

the multicast time is at most Dmax, which is optimal.

Case 1c: There is a unique node u at distance Dmax branching from the last DP

node.

The message is sent to the furthest node v on the DP . The Dmax distance node

branches from v, thus it receives the message at time Dmax. All remaining destination

nodes receive the message by time D(s, di) + 1 for all i where 1 ≤ i ≤ q. All these

nodes branch from the path leading to v. A branching leads to a delay of one time

unit. Since D(s, di) ≤ Dmax− 1, D(s, di) + 1 ≤ Dmax for all i where 1 ≤ i ≤ q. Thus,

the multicast time is at most Dmax, which is optimal.

Case 2: MDIAG does not generate optimal time when there is a unique node u

at distance Dmax not on the DP or branching from the last DP node.

The message is sent to the furthest node v on the DP . All remaining destination

51



nodes receive the message by time D(s, di) + 1 for all i where 1 ≤ i ≤ q. All these

nodes branch from the path leading to v. A branching leads to a delay of one time

unit. Since D(s, di) ≤ Dmax, D(s, di) + 1 ≤ Dmax + 1 for all i where 1 ≤ i ≤ q. Thus,

the multicast time is at most Dmax + 1 which is optimal plus one.

Thus, MDIAG generates Toptimal or Toptimal + 1.

Proposition 3.2.6 In a 2D mesh Time(DIAG)−1 ≤ Time(MDIAG) ≤ Time(DIAG)

Proof In DIAG, a di can be connected to a node on the T generating an extra time

unit.

Proposition 3.2.7 In a 2D mesh Time(MPAIR)−1 ≤ Time(PAIR) ≤ Time(MPAIR)

Proof In MPAIR, a di can be connected to a node on the T generating an extra time

unit.

Proposition 3.2.8 In a 2D mesh, Time(MDIST) ≤ Time(DIST)

Proof Since MDIST is a shortest path algorithm, Time(MDIST) ≤ Time(DIST).

Proposition 3.2.9 In a 2D mesh, Time(MMIN) ≤ Time(MIN)

Proof Since MMIN is a shortest path algorithm, Time(MMIN) ≤ Time(MIN).

Proposition 3.2.10 In a 2D torus Time(torus) ≤ max {Time(mesh 1), Time(mesh

2), Time(mesh 3), Time(mesh 4)} + 2

Proof To provide an upper bound on the multicast time of any algorithm in a 2D

torus, the delays caused by the wraparound links are added. This delay depends on

the distribution of the destination nodes.

52



To multicast in a 2D torus, node (0, 0) informs node (m− 1, 0) at time 1. At time

2, nodes (0, 0) and (m− 1, 0) inform (0, n− 1) and (m− 1, n− 1) respectively (Figure

3.1). At time 3, all four meshes start multicast within their respective meshes. If no

nodes lie in mesh 3, mesh 1 starts local multicast at time 2. Also, if no nodes lie in

mesh 4, mesh 2 starts local multicast at time 2. Thus, the maximum possible number

of delays wraparound links may cause is two.

3.3 Hybrid MDIAG (HMDIAG) Algorithm

In centralized routing, routing paths are selected at the source node and the routing

information is added to the message. Consequently, centralized routing suffers from

high message overhead as the addresses of all intermediate nodes are added to the

message. In centralized routing, the time spent at the source node to select routing

paths and start message sending should also be low. To tackle the disadvantages of

centralized routing, the hybrid version of MDIAG, HMDAIG is designed. In hybrid

routing, both the source and intermediate nodes make routing decisions and some

intermediate nodes are added to the message.

Algorithm 3.9 Hybrid MDIAG (HMDIAG)

1: procedure HMDIAG(M,message, n)
2: partition the nD torus into 2n meshes using Algorithm 3.1 and get sources

and endpoints
3: partition M into 2n subsets, Mi, containing destination nodes belonging to

meshi for all i, 1 ≤ i ≤ 2n

4: apply CreateMessageHeader on (Mi, sources[i], endpoints[i]) for all i, 1 ≤ i ≤
2n, to create headeri

5: encapsulate headeri to message to create messagei for all i, 1 ≤ i ≤ 2n

6: send messagei for all i, 1 ≤ i ≤ 2n

7: nodes in header of messagei for all i, 1 ≤ i ≤ 2n, perform Communication-
ServiceOperations

8: end procedure

53



Algorithm 3.10 Create Message Header

1: function CreateMessageHeader(M ′, s, e)
2: Sort M ′ in increasing order of distances from s, DP ← s, v ← s
3: for i = 0 : q′ do dOnDP [i]← 0

4: for j = 0 : n− 1 do
5: if sj < ej then dj ← Max{dqj} ∀ dq ∈M ′

6: else dj ← Min{dqj} ∀ dq ∈M ′

7: create un−1 nodes
8: while v 6= d do
9: for j = 0 : n− 1 do
10: uj ← v
11: if sj < ej then ujj ← vj + 1
12: else uij ← vj − 1

13: v ← Min{M(ui, sd)} ∀ i | 0 ≤ i ≤ n− 1
14: index← binarySearch(v,M ′)
15: if index 6= −1 then v.flag ← “PAFR”, dOnDP [i]← 1
16: else v.flag ← “FR”

17: DP ← DP ∪ v
18: header′ ← DP
19: for i = 0 : q′ do
20: if dOnDP [i] = 0 then
21: v ← dOnDP [i], v.flag ← “PAF”, header′ ← header′ ∪ v
22: return header′

23: end function

HMDIAG divides the nD torus into 2n meshes and M into 2n sets. Creates at

most 2n headers by Algorithm 3.9, if there is a destination node in every mesh. The

headers include nodes on the Primary Diagonal Path (PDP) and destination nodes

that receive the message from paths branching from the PDP. Next, it encapsulates

each header to a copy of the message, and transmits them (Algorithm 3.9).

In Algorithm 3.10, given a set of destination nodes M ′ ∈ {M1, · · · ,M2n}, a source

node s ∈ {s1, · · · , s2n}, and an endpoint e ∈ {e1, · · · , s2n} header′ is created. header′

includes nodes on a DP and destination nodes not on the DP with their flags.

When an intermediate node receives the header flit, if it is not the first node in

the header, forwards it towards the first node in the header using R.

54



Algorithm 3.11 Communication Service Operations

1: procedure CommunicationServiceOperations(flit)
2: if P and A flags are set then Absorb flit

3: Remove current from flit.H
4: if R flag is set then
5: previous← node from where flit received
6: next← first node in flit.H
7: DPDirDim← the dimension the DP is taking based on current and next

nodes
8: for all nodes di in flit.H do
9: if di.f lag = “PAF” then
10: if di and current have same value for the DPDirDim but different

dimension and D(si, di) = d(si, current) + d(current, di) then

11: retransHeader ← retransHeader ∪ di
12: if di and current have same value for the DPDirDim and

D(si, di) = d(si, current) + d(current, di) then

13: newheader ← newheader ∪ di
14: if newheader 6= ∅ then
15: newheader ←CreateMessageHeader(newheader, current, ei)
16: newflit← flit, newflit.H ← newheader
17: flit.H ← flit.H - newheader

18: if retransHeader 6= ∅ then
19: retransflit← flit, retransflit.H ← retransHeader
20: flit.H ← flit.H - retransflit

21: for all nodes di in flit.H do
22: if di.f lag = “PAFR” then
23: destinationNodesLeft ← destinationNodesLeft + 1

24: if F flag is set and destinationNodesLeft 6= 0 then
25: forward flit to the node returned by R(current, next)

26: if newheader 6= ∅ then
27: retransmit newflit to node R(current, first node in newheader)

28: if retransHeader 6= 0 then
29: retransmit retransflit to node R(current, first node in retransflit.H)

30: end procedure

55



When an intermediate node is the first node in the header, it performs Communica-

tionServiceOperations (Algorithm 3.11). If flags P and A are set, the flit is absorbed.

The current node is removed from the header. If flag R is set, the header is checked

for nodes with flag “PAF” that represent destination nodes not on a DP. The goal is

to check if there are destination nodes that can be reached through a path branching

from the current node towards any dimension except the dimension the PDP takes.

If there is a difference in only one dimension between the current node and PAF

nodes in the header, these nodes are nodes that receive the message along one direct

dimension and are added to retransHeader. If there is a difference in more than

one dimension, these nodes represent nodes that receive the message through more

than one dimension and are added to newheader. Consequently, another DP, SDP, is

created to send the message to the latter nodes. The flit is copied, the header of the

retransflit and the newflit are set, and sent. The remaining nodes with flag “FR”

were added by CreateMessageHeader to make branchings possible. Data flits follow

the header flit. The order of first forwarding then retransmitting is crucial to achieve

optimal or optimal plus n− 1 time in a respective mesh (Proposition 3.3.2).

HMDIAG uses at most n−1 startup times. At startup one, message transmission is

performed along the PDP. Retransmissions from the PDP and any SDP takes another

startup time. HMDIAG is deadlock free since the source node is fixed, meshes do not

share links, and the routing function R creates a channel dependency graph with no

cycles.

Given M = {(0, 0), (1, 0), (1, 1), (2, 1), (2, 2), (1, 3)} and message msg, Figure 3.10

shows how HMDIAG performs multicast in a 2D torus. Double lines represent the

PDP.

56



Figure 3.10: HMDIAG multicast in 2D torus

3.3.1 Time Complexity of HMDIAG

Partitioning an nD torus and M takes O(q) time. Sorting q destination nodes takes

O(q log q) time. Assume, all n dimensions have m nodes. Creating a DP takes

O(m log q+ q log q) time, since at most nm−n+ q nodes can be on the DP-s created

for all 2n meshes and for each node a binary search takes O(log q) time. This process

is repeated at most n − 1 times one for the PDP and n − 2 times for the SDP-s.

Adding destination nodes not on the DP to the header, takes O(q) time. Thus, the

time complexity of CreateMessageHeader is O(m log q+q log q). The time complexity

of CommunicationServiceOperations is O(q+m), since at most nm−n+ q nodes can

be in the headers of all 2n meshes and n is a constant.

Thus, the time complexity of the message preparation part of HMDIAG in nD torus

is O(m log q+q log q) and at every node in the message header O(q+m) or O(m log q+

57



q log q) time is spent.

3.3.2 3-additive Approximation for Multicast Time in 2D

Torus Networks Proof

Dividing a 2D torus into four equal meshes forces every destination node to receive

the message from the closest source node s, s2, s3, or s4. The optimal multicast time

in a 2D or mesh or torus satisfies Equation 2: Consequently, given a multicast set

M and the number of destination nodes at Dmax distance, the optimal time in a 2D

torus is the same as the optimal time in the 2D mesh including the Dmax distance

node or nodes.

HMDIAG in 2D torus follows the following multicast scheme: at time 1, s sends

the message to s2. At time 2, s sends the message to s3 and s2 sends the message to

s. At time 3, all source nodes start local multicast.

Proposition 3.3.1 The multicast time generated by HMDIAG in a 2D torus is al-

ways Toptimal + 3 in the worst case.

Proof According to proposition 3.2.5, in the four meshes the time generated from

their respective source nodes is Toptimal or Toptimal + 1.

The four source nodes start local multicast at time 3. The time generated by

HMDIAG depends on in which mesh the Dmax distance node or nodes lie.

If the Dmax distance node or nodes are in mesh4, for any di in mesh4, D(s, di) =

D(s4, di) + 2. Thus, the two time units of delay correspond to the two wraparound

links connecting s4 to s. Thus, the time is Toptimal or Toptimal + 1.

If the Dmax distance node or nodes are in mesh2 or mesh3, for any di in mesh2,

D(s, di) = D(s2, di)+1. Similarly, for any di in mesh3, D(s, di) = D(s3, di)+1. Thus,

there is one time unit of delay that makes the generated time equal to Toptimal + 1 or

58



Toptimal + 2.

If the Dmax distance node or nodes are in mesh1, the two extra times are pure delays.

Thus, the time is Toptimal + 2 or Toptimal + 3.

Consequently, HMDIAG is a 3-additive approximation algorithm for multicast

time.

3.3.3 (2n− 1)-additive Approximation for Multicast Time in

nD torus networks Proof

Dividing an nD torus into 2n equal meshes forces every destination node to receive

the message from the closest source node si.

The optimal multicast time in an nD mesh or an nD torus satisfies:

Toptimal =



Dmax ∃ a unique node at distance Dmax and Dmax − 1

Dmax + x ∃ a unique node at distance Dmax and x+ 1 nodes at

distance Dmax − 1 not on the path leading to the Dmax

distance node and branching from the same node

where 1 ≤ x ≤ n− 1

Dmax + x ∃ x+ 1 nodes at distance Dmax branching from the same

node where 1 ≤ x ≤ n− 1 .

(3)

Consequently, given a multicast set M and the number of destination nodes at Dmax

distance, the optimal time in an nD torus is the same as the optimal time in the nD

mesh including the Dmax distance node or nodes.

Algorithm 3.3 prioritizes source nodes receiving the message earlier to send the

59



message to remaining uninformed source nodes of the 2n − 1 meshes. Consequently,

meshes start local multicast at the earliest possible time unit. At least n time units

are needed to propagate the message from s to s2n . At every time unit, the message

propagates in one dimension. By the time the furthest source node, s2n , receives the

message, all remaining source nodes are informed, as they are n− 1 dimensions away

from s. Thus, following this scheme, in an nD torus meshes start local multicast at

time n+ 1.

Proposition 3.3.2 The multicast time generated by HMDIAG in an nD torus is at

most Toptimal + 2n− 1.

Proof First, the proof that in an nD mesh HMDIAG always generates optimal or

optimal plus n− 1 time is given. In the multicast scheme followed by HMDIAG, the

message is first sent to the last node on the PDP. Next, the message is sent to the

last node on the SDP-s. Finally, remaining uninformed destination nodes branching

from the PDP or SDP-s receive the message.

In an nD mesh, every node ni receives the message by timeD(s, ni)+NumberOfDP

where NumberOfDP is the number of diagonal paths. NumberOfDP can at most

be n− 1, one PDP and n− 2 SDP-s. A branching from a DP results in a time unit

of delay. Consequently, the number of delays a node ni suffers from depends on its

location. If ni is on the PDP, it receives the message at time D(s, ni). If ni branches

from PDP , it receives the message at time D(s, ni) + 1. If ni is on the first SDP ,

it receives the message at time D(s, ni) + 1. If ni branches from the first SDP , it

receives the message at time D(s, ni) + 2. If ni is on the ith SDP , it receives the

message at time D(s, ni)+i. If ni branches from the ith SDP , it receives the message

at time D(s, ni) + i+ 1. There exists at most n− 2 SDP-s. Thus, a node ni in an nD

array receives the message by time D(s, ni) + n− 1.

60



Case 1: There is a unique node u at distance Dmax on the PDP.

If there is a unique node u at distanceDmax on the PDP, it receives the message at time

Dmax. All remaining destination nodes receive the message by time D(s, di) + n− 1

for all i where 1 ≤ i ≤ q. Since D(s, di) ≤ Dmax− 1, D(s, di) + n− 1 ≤ Dmax + n− 2

for all i where 1 ≤ i ≤ q. Thus, the multicast time is at most Dmax + n− 2, which is

optimal plus n− 2.

Case 2: There is a unique node u at distance Dmax branching from the last PDP

node.

The message is sent to the furthest node v on the PDP. The Dmax distance node

branches from v, thus it receives the message at time Dmax. All remaining destination

nodes receive the message by time D(s, di) + n − 1 for all i where 1 ≤ i ≤ q. Since

D(s, di) ≤ Dmax− 1, D(s, di) +n− 1 ≤ Dmax +n− 2 for all i where 1 ≤ i ≤ q. Thus,

the multicast time is at most Dmax + n− 2, which is optimal plus n− 2.

Case 3: There is a unique node u at distance Dmax not on the DP or branching

from the last DP node.

The message is sent to the furthest node v on the DP. All remaining destination

nodes receive the message by time D(s, di) + n for all i where 1 ≤ i ≤ q. Since

D(s, di) ≤ Dmax− 1, D(s, di) +n− 1 ≤ Dmax +n− 1 for all i where 1 ≤ i ≤ q. Thus,

the multicast time is at most Dmax + n− 1, which is optimal plus n− 1.

Case 4: There are more than one nodes at distance Dmax.

If there is no destination node on the PDP with distance Dmax, the message is sent to

the furthest node v on the PDP. If there is a destination node u with Dmax distance

on the PDP, it will receive the message at time Dmax. If a Dmax distance node

branches from v, it will receive the message at time Dmax. All remaining destination

nodes receive the message by time D(s, di) + n − 1 for all i where 1 ≤ i ≤ q. Since

D(s, di) ≤ Dmax, D(s, di) + n ≤ Dmax + n − 1 for all i where 1 ≤ i ≤ q. Thus, the

61



multicast time is at most Dmax + n− 1, which is optimal.

Thus, in the 2n meshes the time generated from their respective source nodes at

most Toptimal + n− 1.

In an nD torus at most n delays are added to a node, since it takes at most n

time units to propagate the message from s to s2n . Thus, any node ni in an nD torus

receives the message by time D(s, ni) + 2n− 1.

Consequently, HMDIAG is an (2n−1)-additive approximation algorithm for mul-

ticast time in nD torus.

62



Chapter 4

On Delay and Delay Variation

Multicast Routing

4.1 Network Model and Problem Specification

The multicast communication in a network is modeled as a graph G(V,E, s,M)

with a set of V nodes, E edges denoting links between nodes, s is the source node,

d1, d2, d3, . . . , dq are the q members of the multicast group, M and n = |V |. An edge

e = (vi, vj) from node vi ∈ V to node vj ∈ V indicates a directed communication

link from vi to vj. Every edge has a delay D(e) : E → R+, that reflects the queuing,

transmission, and propagation delays of the link. The total delay of a path from s to

u, PT (s, u), is the sum of the delays of all the links on the path (4).

D(PT (s, u)) =
∑

e ∈ PT (s, u)D(e) (4)

The maximum difference between path delays from s to any two nodes in M is the

inter-destination delay variation, dv (5).

dv = max{|
∑

e∈PT (s,vi)

D(e)−
∑

e∈PT (s,vj)

D(e)| ∀vi, vj ∈M} (5)

63



The maximum path delay from s to a node in M is the maximum end-to-end delay,

maxD (6).

maxD = max
vi∈M

∑
e∈PT (s,vi)

D(e) (6)

Given a directed weighted graph G = (V,E), s ∈ V , M ⊆ V −s, a link-delay function

D(e) : E → R+ where e ∈ E, maximum end-to-end delay ∆, and maximum inter-

destination delay variation σ, the objective of DVBMT is to generate a tree, T (s,M),

which is a subgraph of G spanning s and the q group members with maxD ≤ ∆ and

dv ≤ σ. In addition to s and the q group members, T may have relay nodes. Relay

nodes are intermediate nodes on the paths from s to group members.

The objective of DCS is to generate a tree T rooted at a selected core node

satisfying maxD ≤ ∆ and dv ≤ σ.

The objective of MCDVBMT is to generate trees rooted at multiple core nodes

satisfying maxD ≤ ∆ and dv ≤ σ, where the cardinality of core nodes |C| is 1 <

|C| < q. |C| should not be very close to one to avoid the drawbacks of single core

multicast trees. |C| should also not be very close to |M |, as it increases the cost.

This objective is solved in three phases: Phase one, generates for every multicast

group member candidate core nodes satisfying the ∆ constraint. Phase two, by

eliminating candidate core nodes, reduces the maximum variation among candidate

core nodes of all multicast group members. It returns a reduced candidate core node

set such that selecting any combination of candidate core nodes for all multicast group

members satisfies the σ constraint. Phase three, selects core nodes from the candidate

core sets such that |C| is optimized.

Phase one and two operate on vector sets of candidate core nodes. In phase three,

the vector sets of candidate core nodes is modeled as a bipartite graph.

Let G = (U∪W,E) be a simple bipartite graph with U the set of left-hand vertices,

W the set of right-hand vertices, edge set E ⊆ U ×W , q = |U |, and p = |W |. A

64



vertex u ∈ U is a multicast group member and a vertex w ∈ W is a candidate core

node. If candidate core node u belongs to the candidate core node set of multicast

group member w, an edge (u,w) exists between them.

A matching in G is a set of edges, MG ⊆ E, such that each vertex in U ∪ W

is an endpoint of at most one edge in MG. A maximum matching is a matching of

maximum size. A relaxation of the problem is semi-matching, where each vertex in U

is an endpoint of exactly one edge in MG. For a semi-matching to exist, the degree

of every U vertex must be at least 1. Finding semi-matchings of maximum weight

was studied in [39] and matching U vertices with W vertices as fairly as possible by

minimizing the variance of the matching edges was studied in [29].

Assignment of cores to group members is equivalent to finding a semi-matching.

Thus, the objective of phase three of MCDVBMT is to find a semi-matching in G

where the number of nodes in W participating in the matching is optimized. Given

that phase two generates candidate core nodes within the ∆ and σ constraints, any

matching in the bipartite graph satisfies both constraints.

4.2 Directional Core Selection (DCS) Algorithm

Directional Core Selection (DCS) selects a core node by starting a search from every

group member. Q is a vector of priority queues of size q. Q[i] holds visited vertices

of search i | 0 ≤ i ≤ q − 1. cost and predecessor are vector of vectors of size q + 1.

cost[0] and predecessor[0] hold delay and predecessor values obtained from Dijkstra’s

algorithm from s to all nodes in G. cost[i + 1] and predecessor[i + 1] hold the costs

and predecessors of visited vertices of search i | 0 ≤ i ≤ q − 1. explored is an integer

vector of size n. explored[i] represents the number of directional searches that have

visited vertex i. candidate is a Boolean vector of size n. candidate[i] indicates if

node i is a candidate. dv is a vector of size n. dv[i] holds the inter-destination delay

65



variation if node i is the core. vc is the index of the selected core (Algorithm 4.1).

The first step of DCS algorithm is finding shortest paths from the source to all

nodes in the network. The group member from where every search starts is pushed

into queue, Q. The transpose of the directed graph G(V,E), graph G′(V,E ′) such

that ∀e ∈ E | e = (u, v), e′ = (v, u) ∈ E ′, is computed. The search radius is gradually

expanded until the searches intersect at a node complying with both constraints or

when all nodes are explored from all directions.

Algorithm 4.1 Directional Core Selection (DCS)

1: function DCS(M , s, G, σ, ∆)
2: Create Q, cost, predecessor, explored, candidate, dv, vc ← −1
3: cost[0], predecessor[0] ← Dijkstra from s to all nodes in G
4: for i = 0 : q − 1 do
5: Q[i].push(makePair(M [i], 0) . start point of every search is member M [i]
6: cost[i+ 1][M [i]]← 0 . cost to M [i] from M [i] is zero

7: G′ ← transpose G
8: while vc = −1 do
9: r ← index of the search with the lowest cost or expansion radius in Q
10: if r = −1 then break . all directional searches explored all nodes

11: u← Q[r].pop()
12: explored[u] + +, visited[r][u]← true
13: if candidate[u] and explored[u] = q then
14: vc ← CF (cost, candidate, u, σ,∆, dv)

15: if vc! = −1 then break . vc found

16: for every non-visited neighbor v of u in G′ do
17: tempCost← cost[r + 1][u]+ Delay(v, u)
18: if cost[r + 1][v] > tempCost then
19: cost[r + 1][v]← tempCost, predecessor[r + 1][v]← u
20: Q[r].push(makePair(v, tempCost))

21: if vc = −1 then . All searches explored all nodes, no solution
22: vc ← lowest dv value node
23: T ← BLV T (vc, s,∆,M, predecessor)
24: else . solution found, T construction
25: T.push(makePair(getPath(s, vc, predecessor[0]), cost[0][vc]))
26: for i = 0 : q do
27: T.push(makePair(getPath(vc,M [i], predecessor[i+ 1]), cost[i+ 1][vc]))

28: return T
29: end function

66



Algorithm 4.2 Core Found (CF)

1: function CF(cost, candidate, vc, σ, ∆, dv)
2: for i = 1 : q + 1 do
3: delays[i− 1]← cost[i][vc] + cost[0][vc] . delays is a vector of size q.

delays[i] represents the delay to
group member i

4: if delays[i− 1] > ∆ then
5: candidate[vc]← false . ∆ not satisfied
6: return −1

7: minD ← Min {delays[j]}∀j, 0 ≤ j ≤ q − 1
8: maxD ← Max {delays[j]}∀j, 0 ≤ j ≤ q − 1
9: if σ = 0 or maxD −minD ≤ σ then
10: return vc
11: dv[vc]← maxD −minD . record dv[vc], to be used if no so-

lution found
12: else
13: candidate[vc]← false . σ not satisfied

14: return −1
15: end function

The lowest expansion radius search round, r, is selected. The minimum cost

node, u, of Q[r] reflecting the lowest expansion radius node is selected and removed

from Q[r]. visited[r][u] is set to true and explored[u] is incremented by one. If

explored[u] = q and candidate[u] = true, Algorithm 4.2 is called. The algorithm

examines if u is a valid core node. If u complies with both constraints or if the

minimum inter-destination delay variation is set to zero (σ = 0), u is selected as the

core node. σ = 0 denotes finding the lowest possible inter-destination delay variation

tree. If u does not comply with both constraints, candidate[u] is set to false. Next,

all non-visited neighbors, v, of u are selected, pushed into Q[r] with their expansion

radius or cost, and their predecessor is set. If a shorter path to v is found, its cost

and predecessor values are modified.

When all nodes are explored by all searches and a node complying with both

constraints is not found, the minimum inter-destination delay variation node from

dv is selected as the core node and Algorithm 4.3 is called. Algorithm 4.3 replaces

67



shortest paths with longer paths from vc to some group members, to lower the inter-

destination delay variation of the tree. If a solution is found, Tree T is constructed

by connecting s to vc and all nodes in M to vc.

4.2.1 Time Complexity of DCS

Getting G′ takes O(E) time. Dijkstra from the source to all nodes in the network

takes O(E log n) time. Selecting the next expansion radius round, r, takes O(q) time.

Selecting all expansion radius rounds takes O(q2n) time, since it is performed at most

qn times. Removing all nodes from Q takes O(qE log n) time, since removing a node

from Q takes O(log n) time and at most nE nodes are removed. Inserting all nodes

into the Q takes O(qE log n) time, since inserting a node into Q takes O(log n) and

at most qE edges are relaxed. CF takes O(q) time and is called at most n times

(Algorithm 4.2). The tree generation takes O(qn) time. Thus, the complexity of

DCS is O(E + E log n + q2n + qE log n + qE log n + qn) = O(n3 log n) in the worst

case.

4.3 Build Lower Variation Tree (BLVT) Algorithm

Build Lower Variation Tree (BLVT) algorithm replaces shortest paths from vc to some

group members with longer paths, to decrease the inter-destination delay variation

of the generated trees. The lowest cost path member in T is selected and its shortest

path is replaced with a longer path within the ∆ and maxCost values. This process

is repeated until the lowest cost path cannot be replaced or all paths except the

maximum delay path in T are replaced. paths and costs represent the paths and the

costs of the paths in T , respectively (Algorithm 4.3).

68



Algorithm 4.3 Build Lower Variation Tree (BLVT)

1: function BLVT(vc, s, ∆, M , pred)
2: paths.push(getPath(s, vc, pred[0]))
3: delays.push(cost[0][vc])
4: for i = 0 : q do
5: delays.push(cost[i][vc])
6: paths.push(getPath(vc,M [i], pred[i+ 1]))

7: i← index of node with maximum delay value in delays
8: maxD ← delays[i]
9: replaced[i]← true . not to increase the maxD
10: maxCost← maxD − cost[0][vc] . the maximum allowed cost
11: while currentReplaced do
12: j ← index of a non-replaced path member with minimum value in delays
13: if j = −1 then break . all paths replaced
14: else
15: kpaths← k-shortest-paths from j to vc with cost ≤ maxCost
16: if kpaths = ∅ then
17: currentReplaced← false . the minimum cost path cannot be re-

placed
18: else
19: maxP ← maximum cost path of kpaths
20: paths[j]← maxP
21: delays[j]← maxP.cost
22: replaced[j]← true

23: for i = 0 : paths do
24: T.push(makePair(paths[i], delays[i]))

25: return T
26: end function

The algorithm selects the index i of the member with maximum path length and

sets replaced[i] to true, to disable increasing the maxD of T . The maxCost value is

set, which is the bound on path length. Path replacement is achieved by generating

k-shortest-paths from vc to the lowest cost path member without passing through

any of the nodes already in T . k is the number of edges in the shortest path to be

extended [70]. If paths are found, the highest cost path of the k paths is selected and

paths[j], delays[j], and replaced[j] are updated. If a path is not found, the dv cannot

be improved since a selected path cannot be replaced.

69



4.3.1 Time Complexity of BLVT

Generating paths and costs takes O(qn) time. Selecting indices i and j takes O(q)

time. Selecting k-shortest-paths takes O(knE log n) time, since it makes kl calls to

Dijkstra to generate the spur paths where l is the length of spur paths and can at most

be n. The algorithm tries to replace at most q − 1 paths. Consequently, DCSBLVT

has O(qknE log n) time complexity.

4.4 Dynamic DCS and DCSBLVT

In the dynamic reorganization approach designed, reconstruction of the multicast tree

is avoided by adding a new path, without effecting any of the paths from s to nodes in

M . However, if adding a new path does not satisfy both constraints, reconstruction

cannot be avoided. Algorithm 4.4 takes a request r, a node u, and an algorithm A and

tries to restructure the multicast tree before reconstructing. A is DCS or DCSBLVT

and k is 1 when A is DCS. Assume T is the multicast tree and M is the multicast

group of the current multicast session and because of a dynamic request, the new

multicast group is M ′ and tree is T ′. When a node u ∈ M issues a leave request,

M ′ = M , T ′ = T , and the index i of u in M ′ is selected. Nodes in M ′ are shifted to

remove u.

• If u is not vc, the unique path u takes in T ′ is removed. In Algorithm 4.4, the

paths taken in T ′ are shifted to remove the path taken by u and the size of T ′

is updated. If u is the minimum or maximum path length node in T ′, the dv

and maxD of T ′ changes.

• If u is vc, u stops forwarding packets to its local processor. The dv of T ′ changes.

70



Algorithm 4.4 Dynamic DCS and DCSBLVT

1: function DynamicReorganization(G ,vc, s, ∆, M , T , r, u, A, k)
2: T ′ = T
3: M ′ = M
4: if r.equals(”leave”) then
5: i← index of u in M ′

6: for j = i : q do . T ′ has q + 1 paths. Removing u.
7: M ′[j] = M ′[j + 1]

8: resize M ′

9: if u! = vc then
10: for j = i+ 1 : q do
11: T ′[j] = T ′[j + 1]

12: resize T ′

13: else
14: u stops forwarding packets to its local processor

15: else
16: M ′ ←M ′ ∪ u
17: costToCore← cost from s to vc
18: maxCost = ∆− costToCore
19: if u is not on a path from vc to a group member then
20: kpaths← k-shortest-paths from vc to u with cost ≤ maxCost
21: nP ←minimum variation path of kpaths not violating σ
22: if nP = ∅ then
23: T ′ ←A(M ′, s, G, σ,∆) . re-execution
24: else
25: T ′.push(makePair(nP, nP.cost)) . new path added

26: else
27: nP ← getPath(s, vc) + getPath(vc, u)
28: if u receiving from nP does not violate σ then
29: T ′.push(makePair(nP, nP.cost))
30: else
31: T ′ ← A(M ′, s, G, σ,∆) . re-execution

32: return T ′, M ′

33: end function

Given M = {6, 1, 8, 5}, s = 2, σ = 81, and ∆ = 200, Figure 4.1 (a) shows T

with vc = 5, dv = 80, and maxD = 104.56. A dotted link between two nodes is

not a direct link, indicating the presence of relay nodes. If node 1 issues a leave

request, the path taken by 1 is removed from T ′, the dv and maxD of T ′ stay

71



unaltered (Figure 4.1 (b)). If node 8 issues a leave request, the path taken by 8

is removed from T ′. Since 8 was the node with maximum path length in T , T ′

has dv = 78.6 and maxD = 103.16 (Figure 4.1 (c)). If node 5, which is the core

node, issues a leave request, it stops forwarding packets to its local processor.

T ′ has dv = 58.13 and maxD = 104.56 (Figure 4.1 (d)).

When a node u issues a join request, u is added to M ′, the delay from s to vc

(costToCore) is selected. maxCost is the maximum allowed path length for u to

receive the message through.

• If u is not on a path from vc to a group member in T ′ and A = DCSBLV T , the

algorithm finds k-shortest-paths from vc to u without passing through any of

the nodes already in T ′. Path lengths are bounded by maxCost. The minimum

inter-destination delay variation path, nP , not violating the σ constraint is

selected. If A = DCS, the algorithm finds the shortest path sP from vc to u.

If sP does not violate both σ and ∆ constraints, it is saved in nP .

– If nP = ∅, A is re-executed to select a new core and construct a new

multicast tree.

(a) T (b) T ′ after 1 issues a
leave request

(c) T ′ after 8 issues a
leave request

(d) T ′ after 5 issues a
leave request

Figure 4.1: Dynamic leave request examples

72



– Otherwise, nP is added to T ′.

• If u is on a path from vc to a group member in T ′, nP , the path from vc to u

added to the path from s to vc, is selected.

– If σ constraint is satisfied, u starts to forward multicast packets to its

processor.

– Otherwise, A is re-executed to select a new core and construct a new

multicast tree.

Given M = {6, 1, 8}, s = 2, σ = 63, and ∆ = 140, Figure 4.2 (a) shows T

with vc = 5, dv = 58.13, and maxD = 104.56. If 9 issues a join request, the

shortest path nP from vc = 5 to 9 is found. Since nP does not violate ∆ and σ

constraints, it is added to T ′. The dv and maxD of T ′ stay unaltered (Figure

4.2 (b)). If 3 issues a join request, the shortest path from vc to 3 violates the ∆

constraint. A is re-executed and T ′ is generated with vc = 4, dv = 40.19, and

maxD = 93.59 (Figure 4.2 (c)). If 11 issues a join request, since it is already on

the path sending the message from vc to group member 6 and this path delay

satisfies the ∆ and σ constraints, node 6 starts receiving the message through

the path already existing in T ′. The dv = 62 and maxD = 104.56 (Figure 4.2

(d)).

4.4.1 Time Complexity of Dynamic DCS and DCSBLVT

When a node u issues a leave request, getting the index of u in M ′ takes O(q) time,

shifting and resizing also take O(q) time each. Thus, the time complexity of a leave

request is O(q) (Algorithm 4.4). When a node u issues a join request, checking if a

node is on a path from vc to a group member takes O(qn) time. If u is not on a path

from vc to a group member and A = DCS, finding the shortest path, nP , from vc to

73



(a) T (b) T ′ after 9 issues a
join request

(c) T ′ after 3 issues a
join request

(d) T ′ after 11 issues
a join request

Figure 4.2: Dynamic join request examples

u takes O(E log n) time. If adding nP does not violate the σ and ∆ constraints, the

time complexity of the join operation is O(qn+ E log n) = O(E log n). Otherwise, if

adding nP violates the σ constraint, DCS is re-executed which takes O(n3 log n) time.

If u is not in T and A = DCSBLV T , finding k-shortest-paths takes O(knE log n).

Selecting nP takes O(k) time. If adding nP does not violate the σ constraint, the

time complexity of the join operation is O(qn+ k+ knE log n) = O(knE log n+ qn).

Otherwise, if adding nP violates the σ constraint, DCSBLVT is re-executed which

takes O(qknE log n) time. If u is on a path from vc to a group member and A = DCS,

retrieving nP takes O(n) time. If nP does not violate the σ constraint, the time

complexity of the join operation is O(qn+n) = O(qn). Otherwise, if nP violates the

σ constraint, DCS is re-executed which takes O(n3 log n) time. If u is on a path from

vc to a group member and A = DCSBLV T , retrieving path nP takes O(n) time.

If nP does not violate the σ constraint, the time complexity of the join operation

is O(qn + n) = O(qn). Otherwise, if nP violates the σ constraint, DCSBLVT is

re-executed which takes O(qknE log n) time.

74



4.5 Multi-Core DVBMT (MCDVBMT) Algorithm

Phase one of Multi-Core Delay Variation Bound Multicast Trees (MCDVBMT) (Al-

gorithm 4.5) calls Candidate Core Nodes Generation Satisfying End-to-end Delay

(CCNG), to get candidate nodes and costs satisfying the ∆ constraint. The algo-

rithm also returns predecessors of nodes on shortest paths found (Algorithm 4.6).

Phase two calls Candidate Core Nodes Elimination (CCNE), to get revised candi-

date nodes and costs satisfying the σ constraint (Algorithm 4.7). Phase three calls

Select Cores (SC), to select core nodes C (Algorithm 4.8). d is the maximum allowed

covering degree of candidate nodes.

Algorithm 4.5 Multi-Core DVBMT (MCDVBMT)

1: function MCDVBMT(G, s, M , ∆, σ, d)
2: cN, cC, pred← CCNG(G, s, M , ∆)
3: cN, cC ← CCNE(cN , cC, σ)
4: C, core← SC(cN , cC, M , d)
5: for i = 0 : q − 1 do
6: T.push(getPath(s, core[i], pred[0])∪ getPath(core[i],M [i], pred[i+ 1]))

7: return C, T
8: end function

4.5.1 Candidate Core Nodes Generation Satisfying End-to-

end Delay (CCNG)

CCNG creates cN , cC, and pred. cN [i] holds the candidate core nodes satisfying the

∆ constraint for group member i, and cC[i] their corresponding costs. pred[0] holds

predecessors of nodes on shortest paths from s to all nodes and pred[i+1] from group

member i | 0 ≤ i ≤ q − 1 to all nodes (Algorithm 4.6).

The algorithm starts by finding the shortest path from s to every node in G. Next,

the transpose of directed graph G(V,E), graph G′(V,E ′) such that ∀e ∈ E | e = (u, v),

75



e′ = (v, u) ∈ E ′, is generated. The shortest path from every i group member to all

nodes is found and cN and cC are generated. For every group member, every node in

G except the source node are checked if it can serve as a candidate core node. A node

j in G is a candidate core node to a group member i, if cost(s, j) + cost(j, i) ≤ ∆.

4.5.2 Candidate Core Nodes Elimination (CCNE)

CCNE algorithm reduces the cardinality of candidate core nodes of group members,

to lower the maximum variation among all candidate core node costs. The algorithm

first sorts every multicast group member candidate core nodes, in increasing order of

costs. If one of the multicast group members does not have a candidate core node,

the algorithm terminates, no solution can be found. The following steps are repeated

until the variation among the costs in cC is less than σ or the size of the q candidate

core node vectors is 1. This reflects the semi-matching of every q multicast group

member to a core node (Algorithm 4.7).

Algorithm 4.6 Candidate Core Nodes Generation Satisfying End-to-end Delay
(CCNG)

1: function CCNG(G, s, M , ∆)
2: cost[0], pred[0] ← Dijkstra(s,G)
3: G′ ← transpose G
4: for i = 1 : q do
5: cost[i], pred[i] ← Dijkstra(M [i− 1], G′)

6: for i = 0 : q − 1 do
7: for j = 0 : n− 1 do
8: if j! = s then
9: delay ← cost[0][j] + cost[i+ 1][j]
10: if delay <= ∆ then
11: cN [i].push(j)
12: cC[i].push(cost[0][j] + cost[i+ 1][j])

13: return cN, cC, pred
14: end function

76



The lowest cost candidate core node of every group member is taken and pushed

into a vector, costsMin. Similarly, the highest cost candidate core node of every

group member is taken and pushed into a vector, costsMax. If the variation of

costs in costsMin is greater than that of costsMax, the minimum cost node of all

candidate nodes is removed from cN and cC. If the variation of costs in costsMax

is greater than that of costsMin, the maximum cost node of all candidate nodes is

removed from cN and cC. With every elimination of a candidate core node, the

overall variation between all core nodes decreases.

Algorithm 4.7 Candidate Core Nodes Elimination (CCNE)

1: function CCNE(cN , cC,σ)
2: for i = 0 : q − 1 do
3: if |cN [i]| = 0 then return

4: sort(cN[i], cC[i])

5: while true do
6: matched← 0
7: for i = 0 : q − 1 do
8: if |cN [i]| = 1 then matched+ +

9: var ← delay variation of costs in cC
10: if var ≤ σ or matched = q then break

11: for i = 0 : q − 1 do
12: costsMin.push(cC[i][0])
13: costsMax.push(cC[i][|cC[i]| − 1])

14: maxMin← max(costsMin)
15: minMin← min(costsMin)
16: maxMax← max(costsMax)
17: minMax← min(costsMax)
18: minSideDv ← maxMin−minMin
19: maxSideDv ← maxMax−minMax
20: if minSideDv > maxSideDv then
21: remove minMin node from cN and its cost from cC
22: else
23: remove maxMax node from cN and its cost from cC
24: return cN, cC
25: end function

77



4.5.3 Select Cores (SC)

This phase tries to find a semi-matching in G. If only a single node w can cover a

group member i, w is added to C, i is marked as matched, the cost and cover node

of i is updated, the number of group members matched m is incremented, and cN [i]

and cC[i] are cleared. Next, if w is a group member, it is marked as matched, m

is incremented, and its cost and cover node are set. The generated adjN and adjC,

represent for every candidate core node the list of group members it can cover and

their costs, respectively. The size of adjN and adjC is at most n and every candidate

node can cover at most q members. Next, every non-matched member a node in C

can cover is marked as matched, m is incremented, costs and cover nodes are set, and

is removed from adjN and adjC (Algorithm 4.8).

Algorithm 4.8 Select Cores (SC)

1: function SC(cN , cC, M , d)
2: U ←M , W ← V − {s}
3: for i = 0 : q − 1 do
4: if |cN [i]| = 1 then
5: w ← cN [i][0],matched[i]← true, m+ +
6: set cost and core of M [i]
7: if w /∈ C then C.push(w)

8: if w ∈M and !matched[w] and w ∈ cN [w] then
9: matched[w]← true, m+ +
10: set cost and core of w
11: clear cN [i], cC[i]

12: generate adjN and adjC from cN and cC
13: for every node ci in C do
14: for every node ui, ci is linked to do
15: if !matched[ui] then
16: matched[ui]← true, m+ +
17: set cost and core of ui
18: clear W [ci], adjN [ci], adjC[ci]

19: remove matched members from adjN and adjC
20: sort W,adjN, adjC
21: adjNT ← adjN , adjCT ← adjC, WT ← W

78



22: for i = 0 : |W | − 1 do N ← cN [i]
23: if |N | >= d or |N | = 0 then remove W [i]

24: while true do
25: if m = q then break

26: if |WT |! = 0 then
27: while m! = q and |WT |! = 0 do
28: sort WT, adjNT, adjCT
29: w ← WT [0]
30: for every node ui, w is linked to do
31: if !matched[ui] then
32: matched[ui]← true, m+ +
33: set cost and core of ui
34: if w ∈M and !matched[w] and w ∈ cN [w] then
35: matched[w]← true, m+ +
36: set cost and core of w
37: C.push(w)
38: clear WT [0], adjNT [0], adjCT [0]
39: remove matched members from adjNT and adjCT

40: if m = q then break

41: adjNT ← adjN, adjCT ← adjC,WT ← W
42: while m! = q do
43: execute steps 29− 41

44: return C, core
45: end function

W , adjN , and adjC are sorted in decreasing order of covering degree. To select

an acceptable number of candidate core nodes, candidate nodes covering zero or more

than d members are removed. Copies of W , adjN , and adjC are taken in WT , adjNT ,

and adjCT to be used if removal of nodes with degree greater than d leads to failure

to find a semi-matching. The node w with the largest degree is removed from W and

added to C. The cost and cover node of all nodes w can cover is updated. Nodes

covered by w are removed from adjN and adjC. This ends the first iteration of the

algorithm, and is repeated until all q group members are matched or W is empty.

If W is empty and not all nodes are matched, removal of candidate nodes of cover

size greater than d, has led to failure to find a semi-matching. Thus, a candidate core

79



node of cover size greater than d is added to C until all nodes are matched.

4.5.4 Time Complexity of MCDVBMT

Dijkstra from s to all nodes in G takes O(E log n) time. Getting G′ takes O(E)

time. Dijkstra from all q group members to all nodes in G takes O(qE log n) time.

Generating cN and CC takes O(qn) time. Thus, the time complexity of CCNG is

O(qE log n).

Sorting cN and cC takes O(qn log n) time. Checking if a group member has no

candidate core nodes takes O(q) time. Checking the number of candidate core nodes

of every group member takes O(q) time. Getting the variation takes O(q) time.

Pushing nodes to costsMin and costsMax also takes O(q) time. Finding min and

max values for both candidate sets takes O(q) time and is repeated at most |q(n−1)|

times. Removing a node from the end of cN and cC takes O(1) time. Removing a

node from the front of cN and cC takes O(n) time. At most |q(n − 1)| nodes are

removed. Removal of nodes takes at most O(qn2) time, if all nodes are removed from

the end. Thus, the time complexity of CCNE is O(qn2).

Generating U takes O(qn) time. Generating W takes O(n2) time. Adding multi-

cast group member core nodes with single candidate node to C and checking if the

added core is a multicast group member takes O(q2) time. Generating adjN and

adjC takes O(qn) time. Sorting W , adjN , and adjC takes O(n log n) time. Checking

if nodes in C cover other multicast group members and removing matched mem-

bers takes O(q2n + qn) time. Checking and removing candidate nodes with degree

zero or greater than d from W takes O(n2) time. The next steps are repeated until

all multicast group members are matched. If every iteration covers only one group

member, the steps are repeated at most q times. Sorting W , adjN , and adjC takes

O(qn log n) time. Removing a node from W together with its adjN and adjC takes

80



O(qn) time. Removing matched multicast group members takes O(q2n) time, since

at most qn nodes are removed and removing a node takes O(q) time. Checking if the

just added core node is a multicast group member and updating it takes O(q2) time.

When all points are not matched and size of W is zero, the same steps are repeated

on WT, adjNT, and adjCT . Thus, the time complexity of SC is O(q2n).

Thus, the time complexity of MCDVBMT is O(qE log n+q2n+q2n) = O(n3 log n).

4.6 Dynamic MCDVBMT

In dynamic DVBMT nodes join and leave the multicast group during the life of the

multicast session. The multicast tree should be updated in response to changes in mul-

ticast group members, without violating both end-to-end delay and inter-destination

delay variation constraints. Nodes in M may leave the group after issuing a leave re-

quest, while nodes that want to join an ongoing multicast session issue a join request.

Dynamic DVBMT can be tackled by re-executing the algorithm after every dy-

namic request to generate a new tree and use it for routing subsequent packets.

However, this method is very costly as the algorithm is re-executed, old paths are

removed, and new paths are formed.

Let T be the set of multi-core rooted trees generated by MCDVBMT of the ongoing

multicast session with multicast set M and suppose that because of a join or leave

request, the new multicast set is M ′, the set of multi-core rooted trees is T ′, and set

of core nodes is C ′.

The proposed dynamic organization algorithm takes the source node s, the trees

T , the group members M , the cores C, the core node of every multicast group member

core, ∆, σ of the ongoing multicast session, a request r, and a node u generating the

request and first sets M ′ = M , T ′ = T , and C ′ = C (Algorithm 4.9). Reconstruction

is avoided by augmenting new paths or using already existing paths without affecting

81



any of the paths from s to nodes in M not affected by the request. However, if

reorganization is not possible, the algorithm is re-executed to generate new cores and

trees.

Algorithm 4.9 Dynamic MCDVBMT

1: function DO(G, s, M , ∆, σ, C, core, T , r, u)
2: T ′ = T , M ′ = M , C ′ = C
3: if r.equals(”leave”) then
4: remove u from M ′, ci = core[u]
5: remove core of u from core
6: if u /∈ C ′ then
7: remove the path u takes from T ′

8: if ci covers only u then
9: remove ci from C ′

10: remove path s to ci from T ′

11: else
12: u stops forwarding messages to its local processor

13: else
14: M ′ ←M ′ ∪ u
15: if u /∈ T ′ then
16: pStoC, cStoC ← paths and costs from s to every node in C ′

17: G′ ← transpose(G)
18: cost[1], pred[1] ← Dijkstra(u,G′)
19: for i = 0 : |C ′| − 1 do
20: paths.push(pStoC[i]∪ path(u,C ′[i])
21: costs.push(cStoC[i] + cost[1][C ′[i]])

22: select paths, costs satisfying σ and ∆
23: if paths = ∅ then re-execution
24: else
25: select minimum variation path p ∈ paths add to T ′

26: else
27: paths, costs← paths and costs existing in T ′ from nodes in C ′ to u
28: record nodes in C ′ from where u is not reachable in C ′′

29: select paths, costs satisfying σ and ∆
30: if paths = ∅ then
31: execute steps 16− 25 on C ′′

32: else
33: select minimum variation path p ∈ paths add to T ′

34: return T ′, M ′

35: end function

82



When a node u ∈M issues a leave request, u is removed from M ′. Next, the core

node, ci, covering u is selected and the core node of u is removed from core.

• If u /∈ C ′, the path u takes is removed from T ′. If ci does not cover other

members, it is removed from C ′ and the path s to ci is also removed from T ′.

If u was the minimum or maximum path length node in T ′, the dv and maxD

of T ′ changes.

• If u ∈ C ′, u stops forwarding messages to its local processor. The dv of T ′

changes.

Given M = {6, 1, 8, 5, 4, 3}, s = 2, σ = 62, and ∆ = 140, Figure 4.3 (a) shows

T with C = {7, 8, 9}, core = {7, 7, 8, 8, 8, 9}, dv = 58.13, and maxD = 104.56. A

Dotted link between two nodes is not a direct link, indicating the presence of relay

nodes. If node 3 issues a leave request, it is removed from M ′ and its core from core.

The path it takes is also removed from T ′. The cover node, 9, covering 3 is selected.

9 does not cover any other nodes, so it is removed from C ′ together with the path it

takes from T ′. Since 3 was the node with maximum path length in T ′, the updated T ′

has dv = 56.73 and maxD = 103.16 (Figure 4.3 (b)). If node 8 issues a leave request,

it is removed from M ′ and core. Since 8 is a core node, it stops forwarding packets

to its local processor. The delay variation of T ′ changes to 28.13 (Figure 4.3 (c)).

When a node u issues a join request, it is added to M ′.

• If u /∈ T ′, the algorithm selects the paths and costs from s to all core nodes

in pStoC and cStoC, respectively. The transpose of G, G′, is generated and

shortest path from u to all core nodes in G′ is found. Next, paths and costs

from s to u by passing through every node in C ′ and not violating the ∆ and σ

constraints are generated.

– If paths = ∅, MCDVBMT is re-executed.

83



(a) T (b) T ′ after 3 issues a leave
request

(c) T ′ after 8 issues a leave
request

Figure 4.3: Dynamic MCDVBMT leave request examples

– Otherwise, the lowest variation path p from paths is added to T ′.

• If u ∈ T , the algorithm selects the paths and costs from s to u already in T ′

by passing through every node in C ′ and not violating both constraints. It also

selects C ′′ core nodes from where u cannot be reached.

– If paths = ∅, the same steps when u /∈ T ′ are performed but on C ′′ instead

of C ′

– Otherwise, the lowest variation path p from paths is added to T ′.

Given M = {6, 1, 8, 5, 4, 3}, s = 2, σ = 62, and ∆ = 140, Figure 4.4 (a) shows T

with C = {7, 8, 9}, core = {7, 7, 8, 8, 8, 9}, dv = 58.13, and maxD = 104.56. If node

12 /∈ T issues a join request, 9 is chosen as its core node. The dv and maxD of T ′ are

unaltered (Figure 4.4 (b)). If node 14 ∈ T issues a join request, 14 is already on the

path from core node 8 to group member 4. Since the path satisfies both constraints,

8 is set as the core node of 14. The dv and maxD of T ′ are unaltered (Figure 4.4

(c)).

84



(a) T (b) T ′ after 12 issues a join
request

(c) T ′ after 14 issues a join
request

Figure 4.4: Dynamic MCDVBMT join request examples

4.6.1 Time Complexity of Dynamic MCDVBMT

When node u issues a leave request, removing u from M ′, selecting and removing

core of u from core takes O(q) time. Checking if u is a core node takes O(q) time.

Removing T ′[u] takes O(q) time. Checking if the core node of u covers other multicast

group members and removing them takes O(q) time. Thus, a leave operation takes

O(q) time.

When a node u issues a join request, checking if a node is in T ′, takes O(qn) time.

If u /∈ T ′, selecting paths from s to all core nodes in T ′ takes O(q(n+ |E|)) time.

Getting the transpose of G takes O(|E|) time. Finding shortest paths from u to core

nodes takes O(E log q) time. Generating paths and costs takes O(qn) time. Selecting

paths not violating ∆ and σ constraints takes O(q) time. If none of the paths satisfy

both constraints, MCDVBMT is executed which takes O(n3 log n) time, otherwise

the lowest path selection takes O(q) time. Thus, when u /∈ T ′, a leave request takes

O(n3 log n) or O(n3).

If u ∈ T ′, for every core node selecting and generating paths takes O(n3). Selecting

paths not violating ∆ and σ constraints takes O(q) time. If none of the paths satisfy

85



both constraints, the steps executed next as stated above, takes O(n3) or O(n3 log n)

time. Otherwise the lowest path selection takes O(q) time. Thus, when u ∈ T ′, a

leave request takes O(n3 log n) or O(n3).

86



Chapter 5

Numerical Results

The performance of the MPAIR, MDIAG, MDIST, and MMIN is evaluated through

simulations in a 20 × 20 mesh and torus for 20 ≤ q ≤ 360. Multicast sets are

randomly generated. 100 runs are performed for each algorithm for the same set of

destination nodes. After generating a T , the problem of multicast in the nD mesh

or torus is transformed into broadcast in the T . Thus, the broadcast time of the T

is calculated using the algorithm proposed by Slater et al. that reflects the time in

hops needed to perform the broadcast communication [58].

To compare the time generated by the four algorithms, the number of times an

algorithm generates an extra time unit, reflecting a loss is counted. This loss in time is

only in one time unit. To compare traffic, the average traffic generated is considered.

The time and traffic of PAIR with MPAIR, DIAG with MDIAG, DIST and

MDIST, and MIN and MMIN is compared. Since DIAG and MPAIR are pro-traffic,

the traffic they generate is compared. The average time and traffic generated by the

modified algorithms in 2D mesh and torus networks is compared.

Next, the performance of HMDIAG is compared with TASNEM [19] and M-HCM

[64] in a 2D torus with k0 = k1 = 40. The routing performance under various

multicast set sizes is explored starting from 40 destination nodes to 1560. Multicast

87



sets are randomly generated and 100 runs are performed for the same cardinality of

destination node set for each algorithm.

The communication latency consists of three parts: startup, network and blocking

latency. Startup latency is the time required to start a message, including operating

system overheads. Network latency is the latency caused by propagation and router

delays, blocking latency is the latency caused by delays due to contention in the

network. Network latency depends on the traffic generated by the routing algorithm.

The startup latency is in microseconds (ms) and network latency is in nanoseconds

(ns) [48]. Consequently, researchers have focused on minimizing the startup latency

since it dominates the communication latency. The network latency has a slight effect

on the communication latency, except when the maximum path length to reach all

destination nodes is very long. In addition, when the network traffic increases, the

blocking time which is a function of path length may become considerable.

The startup latency is set to 0.5 µs. 0.3 µs correspond to message sending latency

and 0.2 µs correspond to message receiving latency. The network latency is set to

25 ns. 5 ns correspond to link dissemination time and 20 ns correspond to router

delays. These values reflect prevalent systems utilized values [19,65]. Blocking latency

is ignored. Thus, multicast latency is (500 × NStartup) + (25 × LPath), where

NStartup is the number of startups used by an algorithm and LPath is the maximum

path length to reach a destination node.

To reflect the parallelism achieved by the three algorithms, the coefficient variation

of multicast time they generate is compared. It is calculated by σmulticastT ime

Mnl
, where

σmulticastT ime is the standard deviation of the multicast time and Mnl is the mean mul-

ticast time [3]. A low variation indicates that destination nodes receive the multicast

message in comparable arrival time. The traffic generated by the algorithms, which

is the number of links in the T is marked.

88



The time, traffic, latency and variation generated by HMDIAG in 2D torus where

k0 = k1 = 40 and 3D torus where k0 = k1 = k2 = 12 for 40 ≤ q ≤ 1560 is compared.

The multicast and broadcast time of the generated multicast trees in 2D and 3D torus

networks is also compared.

In the simulations for DVBM, graphs are randomly generated using Waxman

model with α = 0.8, β = 0.7, and average node degree 4 [67]. The position of nodes

is fixed randomly in a grid of size 4000 km × 2400 km. The delay D(u, v) between

two nodes u and v is set to l(u, v)×L×20 ms, where l(u, v) is the Euclidean distance

between the nodes and L is the maximum possible distance between two nodes.

The performance of DCS and DCSBLVT is compared to KMK, KMKh, DDVCA,

ESC, and ATabu. The values recorded are the average over 100 graphs for every n

and q, where 20 ≤ n ≤ 120 and q = {20% of n, 50% of n, 80% of n}.

The failure percentage, inter-destination delay variation, and maximum end-to-

end delay of the seven algorithms is compared. The execution time and number of

nodes explored by KMK and DCS is compared. ∆ = 1.5×maxD of the shortest path

tree rooted at s and σ = p from KMK. To compare KMKh to DCSBLVT, results are

recorded with σ = 0. When σ = 0, the algorithms return the tree with the smallest

inter-destination delay variation they can find.

The approach proposed for dynamic DVBMT tree reorganization is studied. The

initial tree is constructed using DCS or DCSBLVT. q join or leave requests are per-

formed for each group. Requests are chosen as either a join or a leave request ran-

domly. The percentage of algorithm re-execution compared to the total number of

requests is given. Examples are also given on the change in inter-destination delay

variation and end-to-end delay of the tree as nodes join or leave the group. One set

of experiments are performed on DCS another on DCSBLVT.

Next, the performance of MCDVBMT is evaluated by comparing it to single-core

89



based algorithms including DDVCA, ESC, KMK, and DCS. Each point plotted or

value in a table represents the average over 200 graphs for the stated n and q. q is

set to 20%, 40%, 60%, and 80% of n where 20 ≤ n ≤ 100. ∆ is set to 1.5 ×maxD

of the shortest path tree rooted at s to all group members. σ is set to p from

KMK. The performance of MCDVBMT is also evaluated with three maximum allowed

covering degree values for candidate core nodes. The average case behavior of the five

algorithms in terms of failure percentage, inter-destination delay variation, maximum

end-to-end delay, cost, and traffic concentration is studied.

The behavior of MCDVBMT to dynamic requests with d set to 0.75× q, 0.5× q,

and 0.25×q is compared. Each value represents the average over 200 graphs. q join or

leave requests are performed for each generated session. Requests are chosen as join

or leave randomly. The percentage of trees that were re-executed before receiving all

the q requests is presented. The percentage of re-executions compared to the total

number of requests is also presented.

90



5.1 Results on MDIAG, MPAIR, MMIN, and MDIST

Table 5.1 shows that MDIAG generates one time unit less time than the time of DIAG

in 25% of the cases when q = 20 and in 17% of the cases when q = 40. This value of

gain in time decreases reaching zero when q = 140. However, although there is gain

in time, MDIAG generates more traffic and the percent value increases with q until

reaching a maximum value after which it starts to decrease. The maximum loss in

traffic is 51% when q = 80.

Table 5.1: MDIAG and MPAIR in 2D mesh network

q
DIAG to

MDIAG gain
in time unit

DIAG to
MDIAG

traffic loss

PAIR to
MPAIR loss
in time unit

PAIR to
MPAIR

traffic gain

20 25% 24% 31% 22%

40 17% 42% 24% 35%

60 7% 48% 14% 37%

80 6% 51% 11% 38%

100 1% 50% 5% 37%

120 1% 48% 5% 36%

140 0% 46% 2% 35%

160 0% 40% 1% 32%

180 0% 39% 1% 31%

200 0% 34% 0% 28%

240 0% 27% 0% 24%

280 0% 20% 0% 19%

320 0% 14% 0% 13%

360 0% 7% 0% 7%

91



In summary, MDIAG runs in O(qn) time compared to DIAG with run time O(qn2),

making MDIAG a good candidate algorithm for pro-time applications since the time

is optimal or optimal plus one and the average loss in traffic is approximately 35%.

MPAIR generates one extra time unit more than the time of PAIR in 31% of the

cases when q = 20 and in 24% of the cases when q = 40. This value decreases reaching

zero when q = 200. However, although there is loss in time when q is small, there is

gain approximately 34% in traffic. The gain in traffic increases with q and reaches its

maximum value, 38%, when q = 80.

In summary, MPAIR and PAIR have the same time complexity O(qn). Therefore,

MPAIR is a viable candidate algorithm for pro-traffic applications since on average

there is approximately 28% gain in traffic and loss in a time unit in 7% of the cases.

Moreover, when q is greater than or equal to 200 there is no loss in time (Table 5.1).

MDIST generates less time than DIST in 72% of the cases when q = 20. This

percent gain in time decreases as q increases. The maximum gain in time is 14 units

at q = 20. However, this gain occurs in expense of traffic. For example, at q = 20

there is an average increase of 16 units of traffic in 96% of the cases. The maximum

loss in traffic units is 16 when q ≤ 80. When q > 80, the loss in traffic starts to

decrease. This is mainly because as q increases the traffic would generally increase,

and most of the links in the mesh would be in the T .

In summary, MDIST has lower complexity O(qn) than the complexity of DIST

which is O(qn3). Therefore, MDIST is a suitable candidate algorithm for pro-time

applications since on average there is approximately 6.5 time units gain and on average

15 traffic units loss (Table 5.2).

MMIN generates less time than MIN in 70% of the cases when q = 20. This

percent gain in time decreases as q increases. The maximum gain in time is 10 units

when q ≤ 140, after which it starts to decrease. However, this gain occurs in expense

92



of traffic. For example, at q = 20 there is an average increase of 6 units of traffic in

82% of the cases. The maximum loss in traffic is 6 when q ≤ 80. When q > 80, the

loss in traffic starts to decrease.

In summary, MMIN has lower complexity O(qn) than the complexity of MIN

which is O(qn3). Therefore, MMIN is a viable candidate algorithm for pro-time

applications since on average there is approximately 5 time units gain and on average

4 traffic units loss (Table 5.3).

Table 5.2: MDIST in 2D mesh

q
DIST to

MDIST time
gain %

DIST to
MDIST

max time
gain

DIST to
MDIST
traffic
loss %

DIST to
MDIST
average

traffic loss

20 72% 14 96% 16

40 72% 13 98% 16

60 71% 11 98% 16

80 71% 9 98% 16

100 64% 9 99% 12

120 62% 9 100% 12

140 60% 8 98% 9

160 57% 8 97% 8

180 47% 6 96% 7

200 47% 6 89% 5

240 31% 4 75% 3

280 28% 4 54% 2

320 16% 2 20% 2

360 0% 0 4% 2

93



Table 5.3: MMIN in 2D mesh

q
MIN to

MMIN time
gain %

MIN to
MMIN

max time
gain

MIN to
MMIN

traffic loss %

MIN to
MMIN
average

traffic loss

20 70% 10 82% 6

40 69% 10 83% 6

60 67% 8 94% 6

80 55% 8 98% 6

100 55% 6 98% 5

120 55% 6 98% 5

140 48% 6 98% 4

160 30% 5 89% 4

180 29% 5 85% 3

200 22% 5 85% 3

240 4% 2 42% 2

280 2% 2 20% 1

320 0% 0 2% 1

360 0% 0 2% 1

Figure 5.1 shows the average traffic of the four algorithms in a 2D mesh. MPAIR

and MMIN generate the least traffic.

0 50 100 150 200 250 300 350

100

200

300

400

q

tr
a
ffi

c

MDIAG
MPAIR
MDIST
MMIN

Figure 5.1: Average traffic of the modified algorithms in 2D mesh

94



0 50 100 150 200 250 300 350

100

200

300

400

q

tr
a
ffi

c

MDIAG
MPAIR
MDIST
MMIN

Figure 5.2: Average traffic of the modified algorithms in 2D torus

Figure 5.2 shows the average traffic of the four algorithms in a 2D torus. MPAIR

and MMIN generate the least traffic.

Figure 5.3 shows the time increase of MPAIR, MDIST and MMIN from DIAG.

Although MMIN generates the least traffic, it increases the time the most.

To further compare the performance of MPAIR and MMIN, the average variance

of multicast latency they generate is compared. Figure 5.4 and Figure 5.5 show

the average variance of multicast latency of MPAIR and MMIN in 2D mesh and

torus networks. MPAIR in 2D mesh and torus networks has less average variance

of multicast latency than MMIN, showing that MPAIR is more parallel than MMIN

because of the intermediate nodes. In addition, the average variance of multicast

latency in a 2D mesh for both algorithms is less than half of its average value in a

2D torus.

0 50 100 150 200 250 300 350

0

10

20

q

ti
m

e
lo

ss
c
a
se

s
%

MPAIR
MDIST
MMIN

Figure 5.3: Loss in time from DIAG to MPAIR, MDIST, and MMIN

95



0 50 100 150 200 250 300 350

3.3

3.4

3.5

3.6

q

v
a
ri

a
ti

o
n

o
f

la
te

n
c
y

MPAIR
MMIN

Figure 5.4: Variation of latency of MPAIR and MMIN in 2D mesh

Thus, MPAIR is the best candidate algorithm for pro-traffic applications and

MDIAG as the best candidate algorithm for pro-time applications as it generates

optimal or optimal plus one time.

Table 5.4 shows that in MDIAG and MPAIR algorithms the average time gen-

erated in a 2D torus is almost half of the average time generated in a 2D mesh for

all values of q. In MDIAG the average traffic generated in 2D torus is less than the

average traffic generated in 2D mesh for all values of q. In MPAIR the average traffic

generated in 2D torus is lower than the average value generated in 2D mesh when

q ≤ 80, after which it is slightly more. M in this table represents a mesh and T, a

torus.

0 50 100 150 200 250 300 350
1.3

1.4

1.5

q

v
a
ri

a
ti

o
n

o
f

la
te

n
c
y

MPAIR
MMIN

Figure 5.5: Variation of latency of MPAIR and MMIN in 2D torus

96



Table 5.4: Average time and traffic in 2D mesh and torus networks

q
MDIAG
average

time

MDIAG
average
traffic

MPAIR
average

time

MPAIR
average
traffic

M T M T M T M T

20 34 18 128 101 35 18 88 81

40 36 19 200 152 36 19 123 118

60 36 19 245 192 36 19 150 146

80 37 20 281 226 37 20 172 170

100 37 20 301 254 37 20 187 190

120 37 20 322 275 37 20 206 207

140 37 20 336 294 37 20 219 223

160 38 20 344 312 38 20 234 238

180 38 20 355 324 38 20 246 251

200 38 20 363 337 38 20 261 265

240 38 20 374 356 38 20 285 290

280 38 20 383 371 38 20 311 315

320 38 20 389 383 38 20 337 342

360 38 20 395 392 38 20 366 369

97



5.2 Results on HMDIAG

Figure 5.6 shows that HMDIAG generates the least average time for all values of

q. The maximum average time generated by HMDIAG is 40, TASNEM 243, and

M-HCM 800. Moreover, HMDIAG time increases with q until q ≤ 160, after which

it is constant. In TASNEM, as the multicast set size increases, the main path length

decreases, resulting in a more parallel tree. This is displayed in Figure 5.6, as the

time decreases with increase in q. When q ≥ 800, TASNEM generates on average

approximately 61% more time than HMDIAG. In M-HCM as the multicast set size

increases, almost all nodes of the 2D torus are in the destination set, resulting in

longer paths and higher multicast time.

Figure 5.7 shows that HMDIAG generates the least average latency for all values

of q. The maximum average latency generated by HMDIAG is 2 µs, TASNEM 7.7 µs,

and M-HCM 20.5 µs. When q ≥ 800, TASNEM generates on average approximately

31% more latency than HMDIAG.

Figure 5.8 shows that HMDIAG generates the least coefficient variation of multi-

cast time for all values of q, proving that the T -s generated by HMDIAG are the most

parallel. The maximum coefficient variation of multicast time generated by HMDIAG

is 0.36 ns, TASNEM 0.58 ns, and M-HCM 0.60 ns. On average, the average coeffi-

cient variation of multicast time generated by TASNEM is approximately 19% more

than that of HMDIAG.

98



0 200 400 600 800 1,000 1,200 1,400 1,600

25

27

29

q

ti
m

e
in

h
o
p
s

HMDIAG
TASNEM
M-HCM

Figure 5.6: Average time

Figure 5.9 shows that HMDIAG generates on average approximately 16% less

traffic than TASNEM when q ≤ 160, after which HMDIAG generates on average

approximately 14% more traffic. This is mainly because as the number of destination

nodes increases, the probability of reaching a destination node from a path sending

the message to another destination node increases and HMDIAG forces nodes to

receive a message only from nodes on the PDP or SDP. Thus, although shorter paths

might be available, to achieve a (2n - 1)-additive approximation on multicast time,

HMDIAG does not consider them as every branching leads to a time unit of delay.

M-HCM generates the most traffic.

0 200 400 600 800 1,000 1,200 1,400 1,600

22

24

q

la
te

n
c
y

HMDIAG
TASNEM
M-HCM

Figure 5.7: Average latency

99



0 200 400 600 800 1,000 1,200 1,400 1,600

0.4

0.5

0.6

q

ti
m

e
v
a
ri

a
ti

o
n

HMDIAG
TASNEM
M-HCM

Figure 5.8: Average coefficient variation of multicast time

0 200 400 600 800 1,000 1,200 1,400 1,600

500

1,000

1,500

q

tr
a
ffi

c

HMDIAG
TASNEM
M-HCM

Figure 5.9: Average traffic

Figure 5.10 shows the average multicast time generated by HMDIAG in 2D and

3D torus networks. On average, the time generated in 3D torus is 55% less than that

in 2D torus. This is because for the same number of compute nodes, as the dimension

of a torus increases, the maximum possible path length to reach a destination node

decreases.

0 200 400 600 800 1,000 1,200 1,400 1,600

20

30

40

q

ti
m

e
in

h
o
p
s

2D torus
3D torus

Figure 5.10: Average time in 2D and 3D torus networks

100



0 200 400 600 800 1,000 1,200 1,400 1,600

2,000

2,200

2,400

q

la
te

n
c
y

2D torus
3D torus

Figure 5.11: Average latency in 2D and 3D torus networks

0 200 400 600 800 1,000 1,200 1,400 1,600

0.25

0.3

0.35

q

ti
m

e
v
a
ri

a
ti

o
n

2D torus
3D torus

Figure 5.12: Average Coefficient variation of multicast time in 2D and 3D torus
networks

Figure 5.11 shows the average latency generated by HMDIAG in 2D and 3D torus.

On average, the latency generated in 3D torus is 22% less than that in 2D torus. This

is also because for the same number of compute nodes, as the dimensions of a torus

increases, the maximum possible path length to reach a destination node decreases.

Figure 5.12 shows the average coefficient variation of multicast time generated by

HMDIAG in 2D and 3D torus networks. On average, the average coefficient variation

of multicast time generated in 3D torus is 36% less than that in 2D torus. This is

because, as the dimensions of a torus increases, the tree becomes more parallel.

Figure 5.13 shows the average traffic generated by HMDIAG in 2D and 3D torus

networks. The average traffic generated in 3D torus is on average 12% less than the

average traffic generated in 2D torus when q ≤ 480, after which it is more on average

by 22%. This is mainly because as the number of destination nodes and dimensions

101



increases, the probability of reaching a destination node from a path sending the

message to another destination node increases and HMDIAG forces nodes to receive

a message only from nodes on the PDP or SDP. Thus, although shorter paths might be

available, to achieve a (2n− 1)-additive approximation on multicast time, HMDIAG

does not consider them as every branching leads to a time unit of delay.

0 200 400 600 800 1,000 1,200 1,400 1,600

500

1,000

1,500

q

tr
a
ffi

c

2D torus
3D torus

Figure 5.13: Average traffic in 2D and 3D torus networks

0 200 400 600 800 1,000 1,200 1,400 1,600

36

38

40

q

ti
m

e
in

h
o
p
s

BT
MT

Figure 5.14: Average broadcast and multicast time in 2D torus

0 200 400 600 800 1,000 1,200 1,400 1,600

16

17

18

q

ti
m

e
in

h
o
p
s

BT
MT

Figure 5.15: Average broadcast and multicast time in 3D torus

102



Figure 5.14 shows the broadcast time (BT) and multicast time (MT) of the trees

generated by HMDIAG in 2D torus. The maximum difference between the BT and

MT is two and when q ≥ 840, BT and MT are equal.

Figure 5.15 shows the broadcast time (BT) and multicast time (MT) of the trees

generated by HMDIAG in 3D torus. The maximum difference between the BT and

MT is two and when q ≥ 640, BT and MT are equal. Although theoretically it is

possible to have 2n-1 extra time units in an nD Torus to achieve the multicast process,

simulations showed that in a 3D torus the maximum extra time is 2. This is mainly

because of the position of the primary Diagonal Path (PDP).

Figures 5.16 and 5.17 show the effect of network size on time and traffic generated

by the three algorithms, respectively. The multicast set size is set to 20% of the

maximum possible destination node set size. Figure 5.16 shows that increase in torus

size increases the time generated by the three algorithms. The increase rate in time

of HMDIAG is the least. The average increase in time of TASNEM is approximately

three times the average increase of HMDIAG. The network size has the lowest effect

on the time generated by HMDIAG. Figure 5.17 shows that increase in torus size

increases the traffic. The increase rate of HMDIAG and TASNEM is almost the same

when Tsize ≤ 30 × 30, after which the traffic increase rate of HMDIAG is more by

approximately 11%.

10 15 20 25 30 35 40

23

26

29

Tsize

ti
m

e
in

h
o
p
s

HMDIAG
TASNEM
M-HCM

Figure 5.16: Average time as a function of torus size

103



10 15 20 25 30 35 40

0

500

1,000

1,500

Tsize

tr
a
ffi

c

HMDIAG
TASNEM
M-HCM

Figure 5.17: Average traffic as a function of torus size

5.3 Results on DCS and DCSBLVT

5.3.1 Failure Percentage

In table 5.5 the failure percentage of the algorithms when σ = p is recorded. KMK

fails when it does not return a tree. DDVCA, ESC, and ATabu fail when they

generate a tree not complying with both constraints. KMK and KMKh have equal

failure percentage. In the simulations, DCS and DCSBLVT generate trees complying

with both constraints.

As the cardinality of the multicast set increases, all four algorithm failing percent-

ages increases. For instance, when n = 40 and q = 20% of n, ESC creates trees not

complying with both constraints 26% of the time. This value increases to 41% when

q = 50% of n and to 42% when q = 80% of n.

On average KMK fails in 9% of the cases, DDVCA in 47%, ESC in 58%, and

ATabu in 28%.

5.3.2 Inter-destination Delay Variation

Figure 5.18 presents the average inter-destination delay variation generated by the

algorithms when σ = p.

104



Table 5.5: Failure percentage when σ = p

KMK DDVCA ESC ATabu

n q q q q

20% 50% 80% 20% 50% 80% 20% 50% 80% 20% 50% 80%

20 6 12 11 18 29 34 26 41 42 14 21 29

40 4 10 12 21 42 59 29 55 69 14 33 48

60 7 12 13 23 54 69 39 62 76 10 39 41

80 6 8 13 27 50 69 41 66 79 11 30 46

100 4 8 13 34 58 78 47 73 86 8 23 43

120 4 8 11 31 68 82 50 80 90 18 25 43

avg 5.2 9.7 12.2 25.7 50.2 65.2 38.7 62.8 73.7 12.5 28.5 41.7

20 40 60 80 100 120

40

60

n

d
v

20 40 60 80 100 120

60

70

80

90

n

20 40 60 80 100 120

70

80

90

100

n

d
v

DCS

DCSBLVT

KMK

KMKh

DDVCA

ESC

ATabu

(a) q = 20% of n (b) q = 50% of n

(c) q = 80% of n

Figure 5.18: Inter-destination delay variation when σ = p

KMK, KMKh, and DCS have almost the same inter-destination delay variation

when q = 20% of n. DDVCA, and ESC generate the highest inter-destination delay

105



20 40 60 80 100 120

30

40

50

60

n

d
v

20 40 60 80 100 120

55

60

65

n

20 40 60 80 100 120

65

70

n

d
v

DCSBLVT

KMKh

(a) q = 20% of n (b) q = 50% of n

(c) q = 80% of n

Figure 5.19: Inter-destination delay variation when σ = 0

variation. KMK has lower inter-destination delay variation than DDVCA, ESC, and

ATabu.

DCS has lower inter-destination delay variation than KMK, KMKh, DDVCA,

ESC, and ATabu when q > 20% of n. On average, it is 3.5% less than KMK, 3.2%

less than KMKh, and 8.3% less than ATabu.

DCSBLVT has the least inter-destination delay variation for all values of n and q.

DCSBLVT has at most 10% less inter-destination delay variation than KMK, 9.8%

less than KMKh, and 15.8% less than ATabu.

DCSBLVT decreases the inter-destination delay variation of DCS the most when

the multicast group is a small fraction of network nodes. This improvement per-

centage decreases with increase in the cardinality of the multicast group for both

algorithms. As the cardinality of the multicast group increases, it is harder to re-

place paths to decrease the inter-destination delay variation of the tree. DCSBLVT

106



20 40 60 80 100 120

90

100

110

n

m
a
x
D

20 40 60 80 100 120
100

105

110

115

n

20 40 60 80 100 120

105

110

115

n

m
a
x
D DCS

KMK

KMKh

DDVCA

ESC

ATabu

(a) q = 20% of n (b) q = 50% of n

(c) q = 80% of n

Figure 5.20: Maximum end-to-end delay when σ = p

decreases the inter-destination delay variation of DCS by at most 9.7%. On contrary,

KMKh decreases the inter-destination delay variation of KMK by at most 0.6%.

This improvement in DCSBLVT is on average in 38.2% of the cases. On contrary,

in KMKh, it is in 14.9% of the cases. Thus, the strategy used in DCSBLVT is more

powerful than the one used in KMKh.

Figure 5.19 displays the average inter-destination delay variation of DCSBLVT

and KMKh when σ = 0. DCSBLVT has at most 10.5% less inter-destination delay

variation than KMKh.

5.3.3 End-to-End Delay

Figure 5.20 displays the average end-to-end delay generated by the algorithms when

σ = p. DCS and DCSBLVT generate the same end-to-end delay. KMKh generates

more end-to-end delay than KMK, since it takes longer paths from the source node

107



20 40 60 80 100 120

90

100

110

n

m
a
x
D

20 40 60 80 100 120

105

110

n

20 40 60 80 100 120
100

105

110

115

n

m
a
x
D

DCSBLVT

KMKh

(a) q = 20% of n (b) q = 50% of n

(c) q = 80% of n

Figure 5.21: Maximum end-to-end delay when σ = 0

to the core node. When q < 80% of n the end-to-end delay of DCS and DCSBLVT

is the lowest. However, when q ≥ 80% of n, ATabu on average generates 0.4% lower

end-to-end delay than DCS and DCSBLVT.

On average, DCS and DCSBLVT have 2.7% less end-to-end delay than KMK, 4.3

% less than KMKh, 2.1% less than DDVCA, 2 % less than ESC, and 1.5% less than

ATabu.

Figure 5.21 displays the end-to-end delay of DCSBLVT and KMKh when σ = 0.

The end-to-end delay of DCSBLVT is the least for all values of n and q. DCSBLVT

has on average 4.2% less end-to-end delay than KMKh.

5.3.4 Execution Time

Table 5.6 compares the execution time of DCS to that of KMK when σ = p. When

q is 20%, 50%, and 80% of n, DCS has 33.7%, 46.5%, and 58% the execution time of

108



KMK, respectively. On average, the execution time of DCS is 46% of that of KMK

and they have the same time complexity.

Table 5.6 also compares the execution time of DCSBLVT to that of KMKh when

σ = 0. When q is 20%, 50%, and 80% of n, DCSBLVT has 93.9%, 91.5%, and

83.8% the execution time of KMK, respectively. When n < 80, the execution time

of DCSBLVT is lower than that of KMKh. When n ≥ 90, there are cases where it is

slightly higher.

5.3.5 Nodes Explored

Table 5.7 compares the number of nodes explored by DCS to that KMK. KMK finds

the shortest path from the source to all nodes in the network and from every group

member to all nodes, with a total of qn+q nodes explored. Given that both algorithms

have the same time complexity, DCS explores on average 67.5% of the nodes KMK

explores, causing it to have execution time lower than that of KMK (Table 5.6).

Table 5.6: Execution time

DCS
versus
KMK
σ = p

DCSBLVT
versus
KMKh
σ = 0

n q q

20% 50% 80% 20% 50% 80%

20 28.5 36.5 41.2 66.5 62 51.5

40 30.3 39.8 47.8 93.2 91.8 68.5

60 32.6 43.1 53.5 94.1 92.7 89.4

80 34.2 48.6 61.2 96.5 94.1 91.4

100 37.2 53.5 68.5 101.5 99 93.5

120 39.3 57.6 75.9 111.7 109.6 108.7

avg 33.7 46.5 58 93.9 91.5 83.8

109



Table 5.7: Nodes explored

n q

20% 50% 80%

20 41.9 62.4 68.1

40 55.3 68.8 71.9

60 62.8 69.8 72.3

80 65.6 71.7 73

100 69.6 72.4 73.9

120 68.6 72.7 74.4

avg 60.6 69.6 72.3

5.3.6 Re-executions in Dynamic DCS and DCSBLVT

In this section, the dynamic approach for DVBMT tree reorganization is studied.

Table 5.8 shows the total number of requests performed, re-executions because of

join requests, and their respective percentages for every combination of n and q value

for DCS. Re-executions are the highest when n = 20 and q = 20% of n. For a given

n value, the number of re-executions decreases as the multicast set size increases.

This follows from the observation that as the percentage of group members increases,

the values set for ∆ and σ reflect a higher percentage of the n nodes. On average

3.4% of total requests triggered re-executions and 38.1% of the graphs suffered from

a re-execution before successfully accepting the q join or leave requests.

110



Table 5.8: Re-executions in dynamic DCS

n− q request # re-execution
#

re-
execution%

20-20% 304 61 20.1

20-50% 758 41 5.4

20-80% 1454 13 0.9

40-20% 584 54 9.2

40-50% 1616 35 2.2

40-80% 2764 22 0.8

60-20% 854 45 5.3

60-50% 2418 34 1.4

60-80% 4004 22 0.5

80-20% 1084 55 5.1

80-50% 2986 41 1.4

80-80% 5146 25 0.5

100-20% 1452 47 3.2

100-50% 3614 35 1

100-80% 6666 26 0.4

120-20% 1498 55 3.7

120-50% 3996 47 1.2

120-80% 7508 28 0.4

Table 5.9 shows the total number of join/leave requests performed, re-executions

as a result of join requests, and their respective percentages for every combination

of n and q value for DCSBLVT. Re-executions are the highest when n = 20 and

q = 20% of n. On average 2.8% of total requests triggered re-executions and 36.8%

of the graphs suffered from a re-execution before successfully accepting the q join or

leave requests.

111



Table 5.9: Re-executions in dynamic DCSBLVT

n− q request # re-execution
#

re-execution
%

20-20% 388 46 11.9

20-50% 776 44 5.7

20-80% 1356 29 2.1

40-20% 631 42 6.7

40-50% 1581 42 2.7

40-80% 3092 10 0.3

60-20% 927 39 4.2

60-50% 2416 39 1.6

60-80% 4263 19 0.4

80-20% 1128 55 4.9

80-50% 3074 40 1.3

80-80% 5607 20 0.4

100-20% 1442 52 3.6

100-50% 3512 44 1.3

100-80% 6646 28 0.4

120-20% 1729 48 2.8

120-50% 4344 41 0.9

120-80% 7952 26 0.3

Figure 5.22 and Figure 5.23 show examples of change in inter-destination delay

variation and end-to-end delay of the multicast tree as nodes join/leave the multicast

group for DCS when n = 80, respectively. The values at r = 0 represent the tree of

the current multicast session. At r = i the values represent the reorganized tree after

request number i.

112



0 5 10 15

58

60

62

r

d
v

0 10 20 30 40

77.6

77.8

78

r

0 20 40 60

65

70

75

r

d
v

dv

(a) q = 20% of n (b) q = 50% of n

(c) q = 80% of n

Figure 5.22: Change in inter-destination delay variation in dynamic DCS for n = 80

0 5 10 15

110

120

130

140

r

d
e
la

y

0 10 20 30 40

103.4

103.6

103.8

r

0 20 40 60

140

150

r

d
e
la

y

delay

(a) q = 20% of n (b) q = 50% of n

(c) q = 80% of n

Figure 5.23: Change in end-to-end delay in dynamic DCS for n = 80

113



0 5 10 15

54

56

58

r

d
v

0 10 20 30 40

57

58

r

0 20 40 60

72

74

76

r

d
v

dv

(a) q = 20% of n (b) q = 50% of n

(c) q = 80% of n

Figure 5.24: Change in inter-destination delay variation in dynamic DCSBLVT for
n = 80

In Figure 5.22 and Figure 5.23 when q = 20% of n, 16 join/leave requests are

performed with σ = 65.6 and ∆ = 156.5. At join request 8, re-execution occurs and

a new core node is selected. This decreases the inter-destination delay variation and

increases the end-to-end delay. In Figure 5.22 and Figure 5.23 when q = 50% of n, 40

join/leave requests are performed. No re-executions occur. However, both the inter-

destination delay variation and the end-to-end delay vary as nodes join and leave the

multicast group. In Figure 5.22 and Figure 5.23 when q = 80% of n, 64 join/leave

requests are performed with σ = 78.2 and ∆ = 197. Two join re-executions occur at

request 2 and 56.

Figure 5.24 and Figure 5.25 show examples of change in inter-destination delay

variation and end-to-end delay of the multicast tree as nodes join/leave the multicast

group for DCSBLVT when n = 80, respectively. The delay and inter-destination delay

114



0 5 10 15

132

134

136

r

d
e
la

y

0 10 20 30 40

117

117.5

118

r

0 20 40 60
118

120

122

124

r

d
e
la

y

delay

(a) q = 20% of n (b) q = 50% of n

(c) q = 80% of n

Figure 5.25: Change in end-to-end delay in dynamic DCSBLVT for n = 80

variation at point zero of the axis is the delay and inter-destination delay variation of

the initial tree, T , before any nodes are added or deleted. In Figure 5.24 and Figure

5.25 when q = 20% of n, 16 join/leave requests are performed. No re-executions

occur. In Figure 5.24 and Figure 5.25 when q = 50% of n, 40 join/leave requests are

performed with σ = 61.9 and ∆ = 175.2. One re-execution occurs at join request 16,

a new core is selected, and a new tree constructed. Thus, there is a slight decrease in

inter-destination delay variation and a slight increase in end-to-end delay. In Figure

5.22 and Figure 5.23 when q = 80% of n, 64 join/leave requests are performed with

σ = 80.1 and ∆ = 158.9. One re-execution occurs at join request 55.

115



5.4 Results on MCDVBMT

20 40 60 80 100

2

3

4

5

n

|C
|

20 40 60 80 100
2

3

4

5

n

20 40 60 80 100
2

4

6

n

|C
|

20 40 60 80 100
2

4

6

n

MCDVBMT(d = 0.75 × q) MCDVBMT(d = 0.5 × q) MCDVBMT(d = 0.25 × q)

(a) q = 20% of n (b) q = 40% of n

(c) q = 60% of n (d) q = 80% of n

Figure 5.26: Cardinality of core nodes

5.4.1 Cardinality of Core Nodes Generated by MCDVBMT

The cardinality of core nodes selected by MCDVBMT with three d values is studied.

d in Algorithm 4.8 is set to 0.75× q, 0.5× q, and 0.25× q (Figure 5.26).

MCDVBMT(d = 0.75× q) selects the least number of cores for all values of n and

q. On average, it selects 2 nodes. MCDVBMT(d = 0.5 × q) selects lower number of

core nodes than MCDVBMT(d = 0.25 × q) when q <= 60% of n. However, when

q = 80% of n on average MCDVBMT(d = 0.25 × q) selects less core nodes than

MCDVBMT(d = 0.5 × q). This is because as d decreases and the percentage of q

116



increases, the algorithm uses the candidate core nodes with degree greater than d to

cover remaining uncovered nodes and find a semi-matching.

5.4.2 Failure Percentage of Single-core Based Algorithms

Table 5.10 presents the number of times the algorithms failed. KMK and DCS failure

reflect inability to generate a tree. DDVCA and ESC failure reflect tree generation

with inter-destination delay variation greater than σ. Single core failure reflects the

inability of single-core based algorithms to generate a tree satisfying both constraints.

On average KMK fails 20%, DCS 2%, DDVCA 47 %, and ESC 61% of the time.

All single-core algorithms fail 2% of the time. In the cases where it is not possible

to generate a single-core tree satisfying both constraints, MCDVBMT successfully

generates a solution.

5.4.3 Inter-destination Delay Variation of MCDVBMT

Figure 5.27 displays the average inter-destination delay variation generated by the

algorithms.

The variation of DCS is on average 3.6% less than KMK. DDVCA and ESC have

the highest variation.

Table 5.10: Failure Cases

n KMK DCS DDVCA ESC
Single
Core

20 43 4 61 85 4

40 39 3 85 114 3

60 43 5 103 129 5

80 38 5 109 138 5

100 37 4 113 144 4

117



20 40 60 80 100
20

40

60

80

n

d
v

20 40 60 80 100

60

80

n

20 40 60 80 100

60

80

100

n

d
v

20 40 60 80 100

60

80

100

n

KMK DCS MCDVBMT(d = 0.75 × q) MCDVBMT(d = 0.5 × q)

MCDVBMT(d = 0.25 × q) DDVCA ESC

(a) q = 20% of n (b) q = 40% of n

(a) q = 60% of n (b) q = 80% of n

Figure 5.27: Inter-destination delay variation

When comparing the average delay variation generated by MCDVBMT with the

three d values, MCDVBMT(d = 0.75 × q) generates the least value. Next lowest is

MCDVBMT(d = 0.5× q).

When q = 20% of n, MCDVBMT(d = 0.75 × q), MCDVBMT(d = 0.5 × q),

and MCDVBMT(d = 0.25 × q) generate 10.1%, 7.3%, and 6.8% less delay varia-

tion than DCS, respectively. When q = 40% of n, MCDVBMT(d = 0.75 × q),

MCDVBMT(d = 0.5× q), and MCDVBMT(d = 0.25× q) generate 6.3%, 5.4%, and

5% less delay variation than DCS, respectively. When q = 60% of n, MCDVBMT(d =

0.75 × q), MCDVBMT(d = 0.5 × q), and MCDVBMT(d = 0.25 × q) generate 6.6%,

5.9%, and 4.8% less delay variation than DCS, respectively. When q = 80% of n,

MCDVBMT(d = 0.75× q), MCDVBMT(d = 0.5× q), and MCDVBMT(d = 0.25× q)

118



generate 6%, 5.1%, and 5% less delay variation than DCS. On average, the delay

variation of MCDVBMT is 6.2% less than DCS.

5.4.4 End-to-end Delay of MCDVBMT

Figure 5.28 displays the average maximum end-to-end delay generated by the algo-

rithms.

On average, DCS has the lowest end-to-end delay. DDVCA, ESC, and KMK

have almost the same end-to-end delay. When comparing the end-to-end delay gen-

erated by MCDVBMT with the three d values, on average MCDVBMT(d = 0.75× q)

generates the least value. Next lowest is MCDVBMT(d = 0.25× q).

20 40 60 80 100

100

120

140

n

m
a
x
D

20 40 60 80 100

100

120

140

n

20 40 60 80 100

100

120

140

n

m
a
x
D

20 40 60 80 100

100

120

140

n

KMK DCS MCDVBMT(d = 0.75 × q) MCDVBMT(d = 0.5 × q)

MCDVBMT(d = 0.25 × q) DDVCA ESC

(a) q = 20% of n (b) q = 40% of n

(a) q = 60% of n (b) q = 80% of n

Figure 5.28: Maximum end-to-end delay

On average, the end-to-end delay of MCDVBMT is 25% more than that of DCS.

119



This is mainly because the algorithm is not trying to minimize the end-to-end de-

lay. The objective is to select a reasonable number of core nodes satisfying both

constraints.

5.4.5 Bandwidth Cost

The bandwidth cost, which is the sum of the delays of the path links to multicast

group members, is evaluated. It represents the bandwidth consumed by one packet

transmission (Figure 5.29).

DCS generates the least cost. Next least cost is KMK. DDVCA and ESC have

almost the same cost.

20 40 60 80 100

500

1,000

1,500

n

c
o
s
t

20 40 60 80 100

1,000

2,000

n

20 40 60 80 100

1,000

2,000

3,000

n

c
o
s
t

20 40 60 80 100

1,000

2,000

3,000

4,000

n

KMK DCS MCDVBMT(d = 0.75 × q) MCDVBMT(d = 0.5 × q)

MCDVBMT(d = 0.25 × q) DDVCA ESC

(a) q = 20% of n (b) q = 40% of n

(a) q = 60% of n (b) q = 80% of n

Figure 5.29: Bandwidth cost

When comparing the average cost generated by MCDVBMT with the three d

120



values, on average MCDVBMT(d = 0.75× q) generates the least value. Next lowest

is MCDVBMT(d = 0.5 × q). The cost of MCDVBMT is on average 20% more than

that of DCS.

5.4.6 Traffic Concentration

To measure the traffic concentration, the number of times a node replicates a message

is counted. Traffic concentration on nodes occurs when some nodes have very high

degree and other nodes low.

Figure 5.30 displays the traffic concentration generated by the algorithms.

20 40 60 80 100

4

6

n

tr
a
f
f
ic

20 40 60 80 100

4

6

8

n

20 40 60 80 100

6

8

n

tr
a
f
f
ic

20 40 60 80 100

6

8

10

n

KMK DCS MCDVBMT(d = 0.75 × q) MCDVBMT(d = 0.5 × q)

MCDVBMT(d = 0.25 × q) DDVCA ESC

(a) q = 20% of n (b) q = 40% of n

(c) q = 60% of n (d) q = 80% of n

Figure 5.30: Traffic concentration

121



MCDVBMT(d = 0.5 × q) on average generates the least traffic concentration.

Next on the list in increasing order are MCDVBMT(d = 0.75× q), MCDVBMT(d =

0.25× q), DDVCA, ESC, KMK, and DCS respectively.

5.4.7 Re-executions in Dynamic MCDVBMT

Table 5.11 presents the average number of requests received by the 200 graphs, per-

centage of re-executions, and percentage of trees suffering from a re-execution before

receiving all q requests when d = {0.75× q, 0.5× q, 0.25× q}.

An increase in the number of core nodes, leads to a decrease in the average requests

handled and an increase in the percentage of leave re-executions and percentage of

trees re-executed before receiving all q requests. This is mainly because the trees be-

come more complicated and augmenting paths becomes more difficult as the number

of core nodes increases.

On average, 5.2% of the requests triggered re-executions. This value reflects the

total percentage of re-executions compared to the total number of dynamic requests.

On average, 53.6% of the sessions suffered from a re-execution before receiving all

q requests. This value reflects the percentage of the randomly generated graphs that

were not able to withstand all q dynamic requests without a re-execution.

Table 5.11: Dynamic MCDVBMT re-executions

MCDVBMT requests # re-execution%
re-executed

trees%

d = 0.75× q 2643 4.8 46.3

d = 0.5× q 2347 5.3 53.6

d = 0.25× q 2058 5.7 61

122



Chapter 6

Conclusion and Future Work

In the first part of the dissertation, time efficient multicast algorithms in torus net-

works are examined. Since the goal of this research is to develop efficient tree based

multicast algorithms for time critical applications, the multicast time is first mini-

mized and the traffic subsequently reduced to find near optimal solutions. Improve-

ments on four tree based multicast algorithms are made. MDIAG algorithm has less

time complexity O(qn) compared to DIAG with time complexity O(qn2) and gener-

ates optimal or optimal plus one time in a 2D mesh. However, it increases the time

on average by 35%. MPAIR and PAIR have O(qn) time complexity and MPAIR

generates on average 28% less traffic. However, it generates an extra time unit in

7% of the cases. MMIN has less time complexity O(qn) compared to MIN with time

complexity O(qn3) and generates on average 5% less time. However, it generates on

average 4% more traffic. MDIST has less time complexity O(qn) compared to DIST

with time complexity O(qn3) and generates on average 6.5% less time. However, it

increases the traffic on average by 15%. When comparing the three pro-traffic algo-

rithms with DIAG, although MMIN generates the least traffic, it increases the time

the most. However, MPAIR generates traffic comparable to MMIN’s traffic, has bet-

ter % increase in time, and lower average coefficient variation of multicast latency

123



than MMIN. Thus, we conclude that MDIAG is good for pro-time applications and

MPAIR for pro-time and pro-traffic applications. The average time generated by the

modified algorithms in a 2D torus is almost half the average time generated in a

2D mesh for the same algorithm. In addition, the average traffic generated by the

modified algorithms in a 2D torus is less than the average traffic generated in a 2D

mesh for the same algorithm in most cases or slightly more.

To tackle the disadvantages of centralized routing, the hybrid version of MDIAG,

HMDIAG is designed. HMDIAG performs preprocessing at the source node. At the

source node and every intermediate node, another process is performed to retransmit

the message to another subset of destination nodes. The proof that HMDIAG is a

3-additive approximation for multicast time in 2D torus networks is given. HMDIAG

is extended to be applicable in nD torus networks and the proof that it is a (2n− 1)-

additive approximation algorithm for multicast time is given. Simulation results show

that HMDIAG generates less multicast time, latency and coefficient variation of mul-

ticast time than TASNEM and M-HCM. However, when the number of destination

nodes is greater than 160, HMDIAG generates on average 14% more traffic than

TASNEM. For the same cardinality of destination nodes, HMDIAG in 3D torus gen-

erates less multicast time and latency than in 2D torus. However, when q ≥ 500, it

generates 22% more traffic in 3D torus. Although HMDIAG is a (2n − 1)-additive

approximation algorithm for multicast time in nD torus networks, in our results the

maximum difference between the broadcast and multicast time of the generated trees

is two. This is mainly because of the construction of the Diagonal Paths and the

relative location of nodes with maximum distance to the diagonal paths.

In the second part of this dissertation, multicast communication constrained by

end-to-end delay and inter-destination delay variation, known as Delay and Delay

124



Variation Bounded Multicast (DVBM) is examined. DCS algorithm that uses a di-

rectional approach to select a core node and generate a DVBMT is designed. An-

other algorithm, based on k-shortest-paths, is designed to further decrease the inter-

destination delay variation of the trees generated by DCS. In DCS and DCSBLVT,

the source sends a unicast message to the core node, and the core sends the message

to group members using the multicast tree. Thus, the end-to-end delay and inter-

destination delay variation values set during the execution of the algorithms reflect

the values of the generated tree. DCS and DCSBLVT surpass existing algorithms

in efficiency since they always generate trees in the performed simulations. KMK,

DDVCA, ESC, and ATabu fail in 9%, 47%, 58%, and 28% of the cases, respectively.

DCS has lower inter-destination delay variation than KMK, KMKh, DDVCA, ESC,

and ATabu. On average DCS has 3.5% less inter-destination delay variation than

KMK, 3.2% less than KMKh, and 8.3% less than ATabu. It also has lower end-to-

end delay. Although DCS and KMK have the same time complexity, DCS has 46%

the execution time of KMK and explores 67.5% of the nodes KMK explores. DCS-

BLVT generates better results than KMKh in end-to-end-delay and inter-destination

delay variation. The strategy DCSBLVT uses to lower the inter-destination delay

variation is much more powerful than the one used in KMKh. DCSBLVT decreases

the inter-destination delay variation of DCS by at most 9.7% in 38.2% of the cases.

On contrary, KMKh decreases the inter-destination delay variation of KMK by at

most 0.6% in 14.9% of the cases. DCSBLVT has a factor of log n more time com-

plexity than KMKh, but they have comparable execution time. The dynamic version

of both algorithms that responds to dynamic join and leave requests to the ongoing

multicast session by reorganizing the tree and avoiding session disruption is given.

On average, only 3.4% of the total requests in DCS triggered re-executions and 2.8%

in DCSBLVT.

125



Next, a multi-core multicast approach for DVBMT is designed. When existing

single-core based algorithms fail to generate a tree satisfying delay and delay varia-

tion constraints, MCDVBMT successfully selects multiple cores and generates trees

rooted at the selected cores satisfying both constraints. MCDVBMT generates less

inter-destination delay variation and load on nodes than existing single-core based

algorithms. In addition, in MCDVBMT only group members receiving the message

from the failing core node suffer from recovery delay when a core node fails. However,

the end-to-end delay and cost of MCDVBMT is higher than single-core trees. Setting

the maximum covering degree to 50% of q generates the most favorable results. The

performance of MCDVBMT in response to dynamic requests is also average when

the maximum covering degree is set to 50% of q. On average, only 5.2% of the re-

quests trigger re-executions and 53.6% of trees generated by MCDVBMT suffer from

re-execution before receiving all q requests. The results suggest that, if the number of

join/leave requests is not very large, the dynamic approach performs well. However,

as the change in the multicast group members increases, the tree stops reflecting the

initial group and it may be necessary to periodically run the algorithms to keep the

inter-destination delay variation low.

This thesis presented contributions in the area of multicast in torus networks and

Delay and Delay Variation Bound Multicast. Yet, there exists several interesting

future research directions that can be explored:

• Extend the suggested single core algorithms to generate DVBM trees when there

exists more than one source node (many-many communication).

• Extend the suggested single core algorithms to generate DVBM trees when all

multicast group members are senders and receivers. This variant of the problem

is used in many applications including videoconferencing and teleconferencing.

126



• Develop multi-core algorithms for DVBM using different viable techniques that

further lower the inter-destination delay variation of the tree. On such technique

could be clustering of multicast group members into groups and then selecting

core nodes for every group. Once the multicast group members clustered into

groups, DCS could be applied on every subset.

• Develop multi-core algorithms for DVBM that also tries to optimize on delay

and bandwidth.

127



Bibliography

[1] M. Abdel-Baky. New routing techniques for high message passing systems per-

formance, 2000.

[2] S. Ahn, M. Kim, and H. Choo. Efficient algorithm for reducing delay varia-

tion on delay-bounded multicast trees in heterogeneous networks. In Wireless

Communications and Networking Conference, pages 2741–2746. IEEE, 2008.

[3] A. Al-Dubai, M. Ould-Khaoua, and I. Romdhani. On high performance multi-

cast algorithms for interconnection networks. High Performance Computing and

Communications, pages 330–339, 2006.

[4] Y. Al-Dubai, M. Ould-Khaoua, and L. M. Mackenzie. An efficient path-based

multicast algorithm for mesh networks. In International Parallel and Distributed

Processing Symposium, pages 8–pp. IEEE, 2003.

[5] R. Alverson, D. Roweth, and L. Kaplan. The gemini system interconnect. In

High Performance Interconnects (HOTI), 2010 IEEE 18th Annual Symposium

on, pages 83–87. IEEE, 2010.

[6] Y. Baddi and M. D. E.-C. El Kettani. Vns-rp algorithm for rp selection in

multicast routing protocol pim-sm. In International Conference on Multimedia

Computing and Systems, pages 595–600. IEEE, 2012.

128



[7] Y. Baddi and M. D. E.-C. El-Kettani. Parallel grasp algorithm with delay and

delay variation for core selection in shared tree based multicast routing protocols.

In Third International Conference on Innovative Computing Technology, pages

227–232. IEEE, 2013.

[8] S. M. Banik, S. Radhakrishnan, and C. N. Sekharan. Multicast routing with

delay and delay variation constraints for collaborative applications on overlay

networks. IEEE Transactions on Parallel and Distributed Systems, 18(3):421–

431, 2007.

[9] L. Blazević and J.-Y. Le Boudec. Distributed core multicast (dcm): a multicast

routing protocol for many groups with few receivers. ACM SIGCOMM Computer

Communication Review, 29(5):6–21, 1999.

[10] R. V. Boppana, S. Chalasani, and C. Raghavendra. Resource deadlocks and

performance of wormhole multicast routing algorithms. IEEE Transactions on

Parallel and Distributed Systems, 9(6):535–549, 1998.

[11] K. L. Calvert, E. W. Zegura, and M. J. Donahoo. Core selection methods for

multicast routing. In Fourth International Conference on Computer Communi-

cations and Networks, pages 638–642. IEEE, 1995.

[12] S. Chen and K. Nahrstedt. An overview of quality of service routing for

next-generation high-speed networks: problems and solutions. IEEE network,

12(6):64–79, 1998.

[13] H. Cheng, J. Cao, and X. Wang. A fast and efficient multicast algorithm for qos

group communications in heterogeneous network. Computer communications,

30(10):2225–2235, 2007.

129



[14] S. M. Chung and C.-H. Youn. Core selection algorithm for multicast routing

under multiple qos constraints. Electronics Letters, 36(4):378–379, 2000.

[15] W. J. Dally and H. Aoki. Deadlock-free adaptive routing in multicomputer

networks using virtual channels. IEEE transactions on Parallel and Distributed

Systems, 4(4):466–475, 1993.

[16] M. Darwish, A. Radwan, M. A. El-Baky, and K. Hamed. Gttpm-an efficient

deadlock-free multicast wormhold algorithm for communication in 2d torus mul-

ticomputers. In IASTED International Conference on Parallel and Distributed

Computing and Systems, pages 707–712, 2005.

[17] M. Darwish, A. Radwan, M. A. El-Baky, and K. Hamed. Ttpm–an efficient

deadlock-free algorithm for multicast communication in 2d torus networks. Jour-

nal of Systems Architecture, 54(10):919–928, 2008.

[18] M. Darwish, A. Radwan, M. A. El-Baky, and K. Hamed. Ready groups: A path-

based multicast algorithm for 2d torus networks. In 7th International Conference

on Informatics and Systems, pages 1–9. IEEE, 2010.

[19] M. A. El-Baky. A tree-based algorithm for multicasting in 2d torus networks.

Egyptian Informatics Journal, 16(1):45–53, 2015.

[20] D. Estrin, M. Handley, A. Helmy, P. Huang, and D. Thaler. A dynamic bootstrap

mechanism for rendezvous-based multicast routing. In Eighteenth Annual Joint

Conference of the IEEE Computer and Communications Societies, volume 3,

pages 1090–1098. IEEE, 1999.

[21] E. Fleury and P. Fraigniaud. Strategies for path-based multicasting in wormhole-

routed meshes. Journal of parallel and distributed computing, 53(1):26–62, 1998.

130



[22] F. Font and D. Mlynek. Applying clustering algorithms as core selection meth-

ods for multiple core trees. In International Conference on Communications,

volume 4, pages 2030–2035. IEEE, 2004.

[23] M. R. Garey and D. S. Johnson. A guide to the theory of np-completeness. WH

Freemann, New York, 70, 1979.

[24] C. J. Glass and L. M. Ni. The turn model for adaptive routing. ACM SIGARCH

Computer Architecture News, 20(2):278–287, 1992.

[25] H. A. Harutyunyan and X. Dong. A new algorithm for rp selection in pim-sm

multicast routing. In IASTED International Conference on Wireless and Optical

Communications, pages 208–216, 2003.

[26] H. A. Harutyunyan and A. Malani. Efficient multicast algorithms for mesh and

torus networks. In International Symposium on Parallel and Distributed Pro-

cessing with Applications, pages 231–236. IEEE, 2014.

[27] H. A. Harutyunyan and M. Terzian. A multi-core multicast tree approach for de-

lay and delay variation multicast routing. In Eighteenth International Conference

on High Performance Computing and Communications, page to be published.

IEEE, Dec 2017.

[28] H. A. Harutyunyan and S. Wang. Efficient multicast algorithms for mesh-

connected multicomputers. In Tenth International Conference on Information

Visualization, pages 504–510. IEEE, 2006.

[29] N. J. Harvey, R. E. Ladner, L. Lovász, and T. Tamir. Semi-matchings for bipar-

tite graphs and load balancing. In Algorithms and Data Structures Symposium,

pages 294–308. Springer, 2003.

131



[30] M. R. Kabat, M. K. Patel, and C. R. Tripathy. A heuristic algorithm for core

selection in multicast routing. Journal of Computer Science and Technology,

26(6):954–961, 2011.

[31] M. R. Kabat and S. P. Sahoo. Adaptive tabu search algorithm for rp selection in

protocol independent multicast-sparse mode. In World Congress on Information

and Communication Technologies, pages 634–638. IEEE, 2011.

[32] S. Kapoor and S. Raghavan. Improved multicast routing with delay and delay

variation constraints. In Global Telecommunications Conference, volume 1, pages

476–480. IEEE, 2000.

[33] A. Karaman and H. Hassanein. Dcmc-delay-constrained multipoint communi-

cation with multiple sources. In Eighth International Symposium on Computers

and Communication, pages 467–472. IEEE, 2003.

[34] A. Karaman and H. Hassanein. Core-selection algorithms in multicast routing-

comparative and complexity analysis. Computer Communications, 29(8):998–

1014, 2006.

[35] M. Kim, M. W. Mutka, and H.-Y. Kim. Esc: Estimation of selecting core for

reducing multicast delay variation under delay constraints. International Journal

of Communication Systems, 24(1):40–52, 2011.

[36] Z. Kun, W. Heng, and L. Feng-Yu. Distributed multicast routing for delay

and delay variation-bounded steiner tree using simulated annealing. Computer

Communications, 28(11):1356–1370, 2005.

[37] Z. Kun, Q. Yong, and Z. Hong. Dynamic multicast routing algorithm for delay

and delay variation-bounded steiner tree problem. Knowledge-Based Systems,

19(7):554–564, 2006.

132



[38] Y. Lan, L. Li, and A. Esfahanian. Distributed multi-destination routing in hyper-

cube multiprocessors. In Third conference on Hypercube concurrent computers

and applications: Architecture, software, computer systems, and general issues,

pages 631–639. ACM, 1988.

[39] E. L. Lawler. Combinatorial optimization: networks and matroids. Courier

Corporation, 1976.

[40] X. Lin and L. M. Ni. Deadlock-free multicast wormhole routing in multicomputer

networks. In ACM SIGARCH Computer Architecture News, volume 19, pages

116–125. ACM, 1991.

[41] X. Lin and L. M. Ni. Multicast communication in multicomputer networks. IEEE

transactions on Parallel and Distributed Systems, 4(10):1105–1117, 1993.

[42] Y.-D. Lin, N.-B. Hsu, and R.-H. Hwang. Rpim-sm: extending pim-sm for rp

relocation. Computer Communications, 25(18):1774–1781, 2002.

[43] D. H. Linder and J. C. Harden. An adaptive and fault tolerant wormhole routing

strategy for k-ary n-cubes. IEEE Transactions on computers, 40(1):2–12, 1991.

[44] X. Liu. Multicasting algorithms for mesh and torus networks. Master’s thesis,

Concordia University, Canada, 2003.

[45] A. Malani. Efficient multicast algorithms for mesh and torus networks. Master’s

thesis, Concordia University, 2012.

[46] P. K. McKinley, H. Xu, A.-H. Esfahanian, and L. M. Ni. Unicast-based multicast

communication in wormhole-routed networks. IEEE Transactions on Parallel

and Distributed Systems, 5(12):1252–1265, 1994.

133



[47] P. Mohapatra. Wormhole routing techniques for directly connected multicom-

puter systems. ACM Computing Surveys (CSUR), 30(3):374–410, 1998.

[48] P. Mohapatra and V. Varavithya. A hardware multicast routing algorithm for

two-dimensional meshes. In Eighth IEEE Symposium on Parallel and Distributed

Processing, pages 198–205. IEEE, 1996.

[49] R. Mukherjee and J. W. Atwood. Rendezvous point relocation in protocol in-

dependent multicast-sparse mode. Telecommunication Systems, 24(2):207–220,

2003.

[50] L. M. Ni and P. K. McKinley. A survey of wormhole routing techniques in direct

networks. Computer, 26(2):62–76, 1993.

[51] W. Putthividhya, W. Tavanapong, M. Tran, and J. Wong. Distributed core

selection with qos support. In International Conference on Communications,

volume 4, pages 2132–2137. IEEE, 2004.

[52] W. Putthividhya, M. Tran, W. Tavanapong, and J. Wong. Core selection with

end-to-end qos support. In ACM symposium on Applied computing, pages 328–

333. ACM, 2004.

[53] G. N. Rouskas and I. Baldine. Multicast routing with end-to-end delay and

delay variation constraints. IEEE Journal on Selected Areas in communications,

15(3):346–356, 1997.

[54] S. P. Sahoo and M. R. Kabat. Adaptive tabu search-based core selection algo-

rithm in heterogeneous network. International Journal of Swarm Intelligence,

1(3):209–225, 2014.

[55] H. F. Salama. Multicast routing for real-time communication of high-speed net-

works. North Carolina State University, 1996.

134



[56] P.-R. Sheu and S.-T. Chen. A fast and efficient heuristic algorithm for the

delay-and delay variation-bounded multicast tree problem. Computer Commu-

nications, 25(8):825–833, 2002.

[57] C. Shields and J. Garcia-Luna-Aceves. The ordered core based tree protocol. In

Sixteenth Annual Joint Conference of the IEEE Computer and Communications

Societies, volume 2, pages 884–891. IEEE, 1997.

[58] P. J. Slater, E. J. Cockayne, and S. T. Hedetniemi. Information dissemination

in trees. SIAM Journal on Computing, 10(4):692–701, 1981.

[59] T. Takabatake. A hybrid bootstrap mechanism for multicast routing in pim-

sm. In Australasian Telecommunication Networks and Applications Conference,

pages 332–336. IEEE, 2007.

[60] Top500. Top500 lists june 2017, 2017.

[61] A. Vishnu, J. Daily, and B. Palmer. Designing scalable pgas communication sub-

systems on cray gemini interconnect. In High Performance Computing (HiPC),

2012 19th International Conference on, pages 1–10. IEEE, 2012.

[62] D. W. Wall. Mechanisms for broadcast and selective broadcast. 1980.

[63] H. Wang, X. Meng, M. Zhang, and Y. Li. Tabu search algorithm for rp selection

in pim-sm multicast routing. Computer Communications, 33(1):35–42, 2010.

[64] N.-C. Wang and Y.-P. Hung. Multicast communication in wormhole-routed 2d

torus networks with hamiltonian cycle model. Journal of Systems Architecture,

55(1):70–78, 2009.

135



[65] N.-C. Wang, C.-P. Yen, and C.-P. Chu. Multicast communication in wormhole-

routed symmetric networks with hamiltonian cycle model. Journal of Systems

Architecture, 51(3):165–183, 2005.

[66] S. Wang. Efficient multicast routing algorithms for mesh-connected multicom-

puters. Master’s thesis, Concordia University, Canada, 2005.

[67] B. M. Waxman. Routing of multipoint connections. IEEE journal on selected

areas in communications, 6(9):1617–1622, 1988.

[68] L. Wei and D. Estrin. The trade-offs of multicast trees and algorithms. In

International Conference on Computer Communications and Networks, pages

17–24, 1994.

[69] X. Wu and V. Taylor. Performance characteristics of hybrid mpi/openmp sci-

entific applications on a large-scale multithreaded bluegene/q supercomputer.

In Software Engineering, Artificial Intelligence, Networking and Parallel/Dis-

tributed Computing (SNPD), 2013 14th ACIS International Conference on, pages

303–309. IEEE, 2013.

[70] J. Y. Yen. Finding the k shortest loopless paths in a network. management

Science, 17(11):712–716, 1971.

[71] D. Zappala, A. Fabbri, and V. Lo. An evaluation of shared multicast trees with

multiple cores. Telecommunication Systems, 19(3):461–479, 2002.

[72] W. Zhengying, S. Bingxin, and Z. Erdun. Bandwidth-delay-constrained least-cost

multicast routing based on heuristic genetic algorithm. Computer communica-

tions, 24(7):685–692, 2001.

136


