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ABSTRACT

The fall accident 1s one of the major causes of fatal injuries and financial losses in the
construction industry. Currently many methods have been studied to detect fall accidents
on the construction sites to avoid fall injuries and reduce financial losses. The state-of-art
fall detection methods include wearable sensor based fall detection, ambience based fall
detection and vision based fall detection. However, these methods still have limitations in
terms of accuracy and detection speed, when being used to detect and locate fall accidents
on the construction sites in practice.

The main objective of this research is to propose a novel vision based framework to
detect and locate fall accidents on the construction sites promptly and automatically. In
order to achieve the main objective, three methods (worker localization, worker matching,
and fall detection) are created under the proposed framework. The worker localization
method acquires real-world map coordinates from video frames based on the perspective
transformation. The worker matching method matches workers captured by different
camera views based on their spatial relationship according to the construction sites. The
fall detection method employs an artificial neural network. The neural network is trained
with features extracted from videos to detect fall accidents automatically.

Experiments have been conducted both in lab and on real construction sites to test
the performances of the methods under the proposed framework. The experiment results

indicated that the average localization accuracy was 90%. The accuracy is similar to the



previous works; however, no attached sensors or tags are required with the proposed
method. The matching accuracy was 93.01%. Compared with the method proposed by Lee
etal. (2016), the proposed method 1s more accurate when cameras are set far from workers.
The fall detection had an 83% precision and a 90% recall rate. The accuracy is similar to
the previous works; however, the proposed method does not require subtle vision features
of workers.

The main contribution of this research study is proposing a framework providing
information about fall accidents on the construction sites promptly and automatically. Also,
the methods created in this research study can be used to assist other automated
construction processes including tracking, motion detection, etc. Future works will focus
on mmproving the localization accuracy, matching workers under ultra-large baseline

camera networks and implementing deep neural networks for fall detection.
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CHAPTER 1: INTRODUCTION

This research seeks to demonstrate that the techniques in the area of visual tracking,
detection, stereo vision and machine learning can be used to detect and locate worker’s fall
accidents on the construction sites from videos. Information about detected fall accidents
can be further used by construction managers to identify unsafe areas on the construction
sites. The following sections in this chapter introduce the research background, motivation,

objectives, methodology, contributions, and the organization of this dissertation.

1.1 Background and Motivation

The construction industry is generally considered as one of the most dangerous
industries (Kartam et al., 2000). Workers are exposed to the hazardous working condition
and taking the risk of accidents like falls, equipment collisions and structure collapses when
doing construction works. Those construction accidents lead to catastrophic results to the
worker health and safety as well as the construction work progress. According to the
Association of Workers' Compensation Boards of Canada (AWCBC), the construction
accident was the third biggest cause of lost time claims and the biggest cause of fatalities
in all industries (AWCBC, 2015). The data collected by AWCBC (Table 1.1) showed that
the construction accident contributed about 25% of fatal accidents in all industries in from

2013 to 2015. Therefore, there is an urgent need to improve the construction safety.



Year Construction Total
2013 221 902
2014 232 919
2015 186 852
Total 639 2673

Table 1.1 Fatal occupational injuries of the construction industry (AWCBC, 2015)

The fall accidents are considered as one of the most common hazards and the major
causes of serious injuries among different kinds of industrial accidents. Reported by
AWCBC, from 2013 to 2015, 29.1% fatal construction accidents were fall accidents (Table
1.2) (AWCBC, 2015). In addition to deaths and injuries, the fall accidents also lead to
tremendous financial losses. It was estimated that the unintentional fall accidents cost
almost $80 million each year in U.S., combining public and private construction projects
(Kendzior, 2010). In the construction industry, the fall accidents happen frequently and
have become one of the leading causes of serious work-related fatalities and injuries, as

well as time and financial losses (Simeonov et al. 2010; Kaskutas et al. 2010).



Year Construction fatal falls Construction fatalities Total
from other events

2013 65 156 221

2014 63 169 232

2015 58 128 186

Total 186 453 639

Table 1.2 Fatal workplace injuries in construction from falls and other events
(AWCBC, 2015)

In order to avoid the fatal injuries and reduce the financial losses incurred due to fall
accidents on the construction sites, it is important to detect fall accidents timely and
promptly to handle them appropriately. The fall detection helps in two ways. First, the fall
detection can contribute to avoiding the secondary damages caused by the delay of rescue.
If a fall accident is detected promptly, the rescue actions for the victims of the fall accident
could be initiated immediately, and the corresponding emergency response could be
arranged in a timely manner. Second, the fall detection can provide plenty of data
overlooked by humans for safety management. For example, it is common that workers
experience stumbles or fall accidents on the construction sites but are not hurt. They may
overlook those experiences and may not report them. Thus the safety managers are not
aware of the existence of the potential risks until a disastrous fall accident finally happens.
With the fall detection, all the stumbles and falls are detected and reported automatically,
and then corresponding actions can be taken to eliminate the potential risks based on the

collected data.



So far, one common category of fall detection methods mainly relies on the use of the
wearable sensors, such as accelerometers, barometric pressure sensors, gyroscopic sensors
or combination of them (Makantasis et al., 2015). However, it is always required to attach
these wearable sensors on human bodies, in order to obtain useful information for the fall
detection. Most construction workers are not willing to wear these sensors for the
consideration of personal information privacy. Therefore, the popularity of this kind of
methods 1s limited in practice. Another category of fall detection methods is based on the
ambiance. Usually, the ambiance sensors are used to collect audio or vibration data when
humans are close to the sensor (Mubashir et al., 2013). However, as the areas of
construction sites are usually huge, it is hard to detect fall accidents with ambiance sensors
on construction sites.

One new category of research studies focuses on the fall detection with computer
vision techniques. Currently, it 1s common to set digital cameras on construction sites to
monitor the working environments, due to the fast development of digital camera
technology. Utilizing those cameras for fall detection can be economical and convenient.
Compared with wearable sensors and acoustic sensors, cameras can acquire data more
efficiently and more accurately. In this category of research studies, video cameras are set
up at height on the construction sites to capture videos. Workers are extracted from the
videos, and the workers’ actions are classified by computer vision techniques. Then the fall

accidents can be detected the instance they happen.
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Although vision based fall detection methods are outstanding, they still have
limitations. First, the location data of the fall accidents is not recorded by videos. That is,
if a fall accident is detected by cameras, the location of the fall accident is required to be
found manually. Second, most vision based fall detection methods are based on a single
camera. A single camera is not enough to handle the occlusion. It is common that workers
are partially or fully occluded in the camera views because the construction sites are
complex due to the great number of materials, different heavy equipment, and various
structural works (Cabonari et al., 2011). With only a single camera, it is hard to detect fall
accidents when the workers are partially or fully occluded. Third, most vision based
methods work with horizontal cameras (e.g., Han and Lee, 2013; Konstantinou and Brilakis,
2016), while in practice most cameras are set at the height to capture the whole scene of

the construction sites.

Figure 1.1 A worker occluded by an excavator



1.2 Research Objectives and Scope

The main objective of this research is to propose a framework using computer vision
techniques including tracking, detection and machine learning for detecting and locating
fall accidents on the construction sites. With the proposed framework, the fall accidents
and nearly-fall accidents happened on the construction sites should be automatically
reported to the construction manager or the safety manager.

To support the main objective, the research objective 1s divided into three sub-
objectives specifically:

1. Create a method to locate the workers on the construction sites. The automatic
worker localization method can help to find the location where fall accidents happen timely.
The perspective transformation is used to retrieve the location data of workers from images.
The workers are detected and tracked in the video frames with bounding boxes. The
bounding box centers are projected on the map by perspective transformation to find the
location of workers. The localization accuracy was tested on the real construction sites.

2. Create a method to match workers in different camera views. The matching
method can help to identify the same worker in different camera views. The spatial
relationship between workers in different camera views is used for matching. The potential
matching candidates are searched based on the epipolar geometry constraint first, and then

they are matched with combinatorial optimization. The matching accuracy was tested with



multiple workers on the real construction sites.

3. Create a method to detect fall accidents. The fall detection method can detect fall
accident on the construction site automatically. The artificial neural network is chosen to
identify fall accidents from other workers’ routine actions. The height-width ratio of
bounding boxes, the angle of bounding ellipses, the workers’ actual height and their
changes between frames are selected as features and extracted from video frames for
identification. The artificial neural network is trained on the training set, and the accuracy
of the 1dentification is tested with the test set.

The main study object of this research 1s the worker on the construction sites,
regardless the type of work. The scope of this research is fall detection of workers on a flat
level surface (ground level, one floor). In this way, the workers’ location can be described
by a 2D coordinate containing the horizontal coordinates x and y, while the vertical
coordinate z is not considered. Also, the algorithm for tracking and detection of
construction workers are not studied in this research. In this research, mature detection and
tracking methods are selected and integrated to generate the bounding boxes of workers in
the videos. Those bounding boxes are used as the input of the proposed framework. In this
research, all the methods proposed (i.e., localization, matching, and fall detection) are

based on the assumption that all the workers are detected and tracked accurately.



1.3 Methodology and Results

In order to fulfill the mentioned research objectives, the research works in this study
includes: (1) Retrieve location data of the workers based on the visual detection and
tracking results. (2) Identify the same workers in different camera views. (3) Detect fall
accidents using artificial neural networks. A framework was proposed to realize these three
tasks.

The first part of the proposed framework is localization. The map coordinates are used
to describe the workers’ location on the construction sites. The perspective transformation
matrix between the flat level surface and the video frames is calculated first as initialization.
In the video, the workers are detected on the first frame and then tracked in the following
frames. The detection and tracking results of the workers are mapped from images to the
flat level surface by perspective transformation. In this way, the map coordinate of each
worker in the videos is obtained.

The second part of the proposed framework is matching. A set of feature point pairs
in different camera views are detected and matched at first. Then matched triangle mesh
pairs are created based on the matched feature point pairs. The detected and tracked
workers in different camera views then can be matched based on their relative position
according to the matched triangle meshes.

The third part of the proposed framework is fall detection. Six features of workers



including the height-width ratio of the bounding box, the angle of the bounding ellipse, the
actual height and their changes between frames are extracted from videos and used for fall
detection. An artificial neural network 1s trained supervised on a training set with labels of
fall or not fall. After training, the neural network can classify the actions of the workers as
fall or not fall with an input of the features extracted from live videos.

The performance of each part was evaluated with proper metrics. For the first part,
the construction sites were divided into small squares, and the accuracy was defined as the
ratio between the number of points located in the correct squares and the total number of
points. For the second part, the accuracy of the proposed matching method was defined as
the ratio between the number of correct matched pairs and the total number of workers.
The correct matched numbers were obtained by comparing the matching results with the
manually matched ground truth. For the third part, both precision and recall rate were used
to evaluate the proposed method. The precision was defined as the ratio between the correct
detected falls and all detected falls, and the recall rate was defined as the ratio between the
correct detected falls and all actual falls.

The test results validated the effectiveness of the proposed framework in this research.
The localization accuracy 1s 90% The accuracy of matching is very high and can reach
93.01%. The precision of fall detection is 83%, and the recall rate 1s 90%. With parameter
adjustments, the precision or recall rate can be even higher. All the test results confirmed

the effectiveness of using computer vision and machine learning techniques for detecting
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and locating fall accidents on the construction sites.

1.4 Contribution

The main goal of this research is to help the construction safety management by
detecting fall accidents on the construction sites timely and automatically. The
contributions of this research are listed as follows:

1. Provide the data about fall accidents without any wearable sensor or tag attached
to the construction workers.

2. Reduce the waste of time and money of human monitoring by automatic
localization and fall detection with video cameras.

3. Report accidents timely to avoid secondary damages caused by delayed rescue
actions.

4. Detect fall accidents automatically for unsafe areas analysis.

The research work of vision based fall detection method can also be used to enhance
other automated construction processes, including but not limited to:

1. Trajectory generation. The localization method can also be used for trajectory
generation. The trajectories of workers or construction equipment can be generated from
videos with the proposed method, then further analysis of the workers or equipment like
the working efficiency analysis can be realized.

2. Object tracking. Usually, the construction sites are huge, so multiple cameras are

10



set up to capture the view of the whole sites. If one worker or construction equipment goes
outside one camera view and enters another camera view, the tracking of the worker or
equipment fails. With the proposed matching method, the worker or equipment can be
matched in the overlap areas, and then tracking can be extended from one camera view to
another camera view.

3. Action classification. The artificial neural network proposed in this research is not
limited to fall detection. If trained with other appropriate features, the artificial neural
network can also be used for classifying other workers’ activities like sitting, running,

lifting, etc.

1.5 Dissertation Organization

The background and motivation, objectives and scope, methodology and results, and
contributions behind this research have been introduced in this chapter. The remaining
chapters in the dissertation are organized as follows:

Chapter 2 is the background literature review. It first lists the current practices of
localization on the construction sites, then followed by the overview of the state-of-art
worker matching methods. These two works are the prerequisite works of the multi-view
fall detection. After that, previous studies of fall detection methods are introduced. This
chapter ends up with a summary of the limitations and issues of previous works this
research going to solve.

11



Chapter 3 presents the methodology of this research. This research proposed a novel
framework for detecting and locating fall accidents on the construction sites. The
framework 1s separated into three main parts. The first part is the localization method for
locating workers on the construction sites. The second part is the matching method for
matching workers in different camera views. The third part is the fall detection method for
classifying fall accidents with an artificial neural network. This chapter ends up with a
summary of the proposed methods.

Chapter 4 describes the implementation and results of different parts of the proposed
framework. The first and the second parts of the proposed framework are tested on the real
construction sites. The third part was tested in an indoor environment simulating a real
construction site. The result of each part is shown 1in this chapter and related factors are
discussed. This chapter ends up with a brief of the contribution of each part of the proposed
framework.

Chapter 5 1s the conclusion of the whole research. First, the background, the
methodology and the results are viewed. Then the whole research is discussed and a
conclusion is made based on the test results and discussions. At the end of this chapter,

future research directions about fall detection on construction sites are recommended.
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CHAPTER 2: LITERATURE REVIEW

This chapter first introduces the current practice of two prerequisites of multi-view
fall detection methods, localization and matching on the construction sites. It is then
followed by the introduction of previous studies of different fall detection methods. The

limitations and issues of existing methods are summarized at the end of this chapter.

2.1 Localization

Construction sites are well known for their complex and dynamic characteristic, thus
employing Real-time Location Systems (RTLSs) to monitor the location of construction
workers real-time and automatically is useful. By locating workers on the construction sites,
the fall accidents victims can be found easily so that the emergency rescue work can be
done promptly when accidents happen. Several methods are used for worker’s localization
on construction sites currently. Different kinds of RTLS are listed and introduced in the

following sections.

2.1.1 Global Positioning System(GPS)

The GPS i1s a global navigation system operated by the U.S. Air Force that provides
geolocation to GPS receivers anywhere on the earth (DoD, U.S., 2001). The GPS is already

a mature system for tracking and locating on the construction sites (Park., 2012). The
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system usually consists of a constellation of satellites, GPS sensors mounted on the targets
and a central module for receiving real-time data from GPS sensors, as shown in Figure
2.1 (Park, 2012). The GPS sensors receive location information from satellites and send it
to the central module over the network. The central module processes the information and

makes it possible to visualize the location information of targets in real time.

- © N

"
Satellites \

A J

GPS receiver Central module

Figure 2.1 GPS localization system (Park, 2012)

Current applications of GPS on construction sites include continuously tracking the
location of equipment to monitor their arrival and departure times (Hildreth et al., 2005)
and to record the working cycle of the equipment for further analysis (Pradhanaga and
Teizer, 2013). Also, construction materials like fabricated pipes can be located preciously
with GPS receivers (Caldas et al., 2004). With the popularization of smartphones, it 1s now

possible to track workers with smartphone built-in GPS modules (Kim and Park, 2013).

14



Although GPS is easy to use, the error of purely civilian GPS will be about 10 meters
on a sunny day in an open area and the accuracy will be even worse when there are
obstacles around or the weather is cloudy (Caldas et al., 2004). Besides, there is a report
indicating that the widely used 4G-LTE open wireless broadband network that incorporates
nationwide satellite coverage disrupts the operation of GPS on construction sites
(ForConstructionPros.Com, 2011). Several research studies found that integrating GPS
with other techniques will increase the localization accuracy obviously (Saeki and Hori,
2006). While in this way, the structures of the systems are more complicated. Another issue
of tracking workers with GPS receivers is the workers’” willingness. An independent survey
showed that only 16% workers who haven’t been tracked with GPS receivers before were
positive to be tracked, and 38% workers had negative opinion because they worried about

being tracked after work hours (Tsheets, n.d.).

2.1.2 Radio Frequency Identification(RFID)

The RFID is another mature localization method used on the construction sites. The
RFID i1s a technology that stores data in tags with radio frequency (RF) compatible
integrated circuits and transmits data with electromagnetic waves (N1 et al., 2004). The
RFID system usually consists of RFID tags, a reader, and an information technology
system, as shown in Figure 2.2 (Soltani, 2013). There are two major types of tags, passive
tags and active tags. The passive ones receive energy from the electromagnetic field

15



generated by the reader and the active ones receive energy from its battery. When the reader
requests, the tags will send data to the reader, and then the reader will send the data to the

information technology system for further analysis (Goodrum et al., 2006).

RFID reader Information system

Passive RFID tag

Figure 2.2 RFID localization system (Soltani, 2013)

Current applications of RFID localization systems are various. Ding et al. used RFID
for tracking workers on an underground project for safety management (Costin et al.,2012).
Wu et al. (2010) tracked workers and equipment with RFID system at the same time to
detect near missed accidents. Also, RFID can be used for identification (Montaser and
Moselhi, 2014; Chae and Yoshida, 2010; Sawyer, 2008), quality management (Wang,
2008), productivity management (Ergen et al., 2007; Grau et al., 2009), etc.

The RFID system is attractive as a mature localization system, while several
limitations and issues still exist when applied to construction sites. RFID is not perfect due
to the limited overlap areas (Li et al., 2016), inflexible networking capabilities, and the

high cost of RFID readers (Skibniewski and Jang, 2007). Moreover, the data transmission

16



between tags and readers are easily interfered by metals, concrete, and moisture which are

all common existences on the construction sites (Lu et al., 2007).

2.1.3 Vision Analysis

The vision analysis localization methods have also been studied for a long time and
can reach an accuracy of 88% (Krumm et al., 2000). For vision based localization, the
targets are not required to carry any receivers or tags. The only hardware required are
different kinds of cameras such as ordinary cameras (Park and Brilakis, 2012; Park et al.,
2011), range cameras (Ray and Teizer, 2012), stereo camera systems (Han and Lee, 2013;
Park et al., 2011), etc. The construction sites are captured by cameras as videos or images.
The captured videos or images are processed with different kinds of algorithms for
localization.

The vision based localization methods are used for tracking workers and equipment
currently. Yang et al. (2011) used the vision based systems to track the position of tower
cranes and estimated the locations of tower cranes to track the ongoing activities. Han and
Lee (2013) used vision based positioning to detect the unsafe worker behavior. The
accuracy of vision based localization was tested by Brilikis et al. (2011) using a 65-mm
truck model and by Park and Brilakis (2012) on a construction site.

The vision based localization methods can cover large areas of the construction sites
and the implementation is easier than GPS and RFID. However, the application of vision

17



based localization 1s limited by the environment and condition of the construction sites.
Reported by Park et al. (2011), occlusion, illumination, background color and other factors
will influence the performance of vision based localization. Another limitation of vision
based localization is the time consumption. Retrieve the location data by 3D triangulation
from images (Park and Brilakis, 2012) usually takes a lot of time and can not meet the

requirement of real-time processing.

2.1.4 Others

There are also many other kinds of methods for localization on construction sites, such
as Ultrasound (Jang and Skibniewski, 2009; Priyantha, 2005; Priyantha et al., 2000), Ultra-
wideband (UWB) (Ingram et al., 2004; Saidi et al., 2011; Shahi et al., 2012), Wireless local
area network(WLAN) (Bahl and Padmanabhan, 2000; Khoury and Kamat,2009; Woo et
al., 2011), etc. These methods are not mature and widely used currently as the three

methods mentioned above.

2.2 Matching

Matching construction objects under different camera views is a challenging task,
especially considering the fact that construction sites are typically complex, cluttered, and
large. Numerous methods have been developed to improve the matching accuracy and

robustness up to now. These matching methods could generally be classified into two
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categories based on the matching strategy they employed. The methods in the first category
relied on the visual features of construction objects in each camera view as the matching
cues, while the other methods in the second category focused more on the spatial position

of the objects according to the construction sites.

2.2.1 Visual Feature-based Matching

The point- and area- features are commonly employed for object matching between
two camera views (Wu et al., 2011). In the visual feature-based matching methods, the
visual appearance of the objects under different camera views are extracted as a set of local
point or area features. Then, the objects’ visual appearances in two camera views are
assumed to be matched if they have the same point or area visual features. The matched
objects’ visual appearances signify that they are the same object captured by different
cameras.

So far, several point feature detectors and descriptors are available, including SIFT
(Lowe, 1999 and 2004) and SURF (Bay et al., 2006). The point features extracted by the
SIFT are robust to the orientation changes of camera views, but it only detects the blob-
like feature points, which might be sparse for the matching of objects’ visual appearances
in camera views. Compared with SIFT, SURF is detected faster, but SURF features are not
fully affine invariant. It means that little feature points may be found when there is a
significant change on the camera view orientations (Pang et al., 2016).
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The area-feature based matching methods mainly treat the visual patterns in local
image windows as the matching features. Typically, the methods in this category find seed
points first and propagate to small image windows from these points. Then, the matching
process can be conducted through finding cross-correlation of the local windows according
to the patterns inside. For example, Pratt (2013) used the image intensities as the patterns
to find the cross-correlation of local windows. Compared with the point-feature based
matching methods, the area-feature based matching methods are able to produce denser
matching results (Joglekar and Gedam, 2012) and are more robust to affine distortions.
However, the matching with the area features might still fail, especially when the local
image windows did not contain distinctive visual patterns or the patterns contained were
deformed due to the complex image transformations (Chang and Gong, 2001).

The point-based and area-based feature matching methods have common limitations.
First, local visual features describing the objects' visual appearance cannot always be found
in captured camera views. This 1s especially true when the cameras are set up at the height
and far away from construction sites, and the size of the object in the camera views 1s small.
Also, the methods have difficulty to match objects with similar visual appearances in
camera views. As the cameras are commonly set far from the construction site and the
workers are usually wearing the similar safety vest and helmet, the visual appearances of

workers in camera views are usually similar. As a result, the feature based matching
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methods are easy to generate matching errors and fail to differentiate workers under

different camera views.

2.2.2 Spatial Relationship-based Matching

In addition to the visual features based methods, the spatial position of the objects in
camera views is also employed to conduct the object matching. The spatial information
used for matching includes homography geometry and epipolar geometry (Chang et al.,
2000, 2001).

The Homography geometry describes the relationship between two two-dimensional
(2D) planes. When this relationship between two planes is specified, the correspondences
of the points in one plane could be easily found, as long as their locations in the other plane
are known (Lee et al., 2000). However, the Homography geometry could not be used for
matching the objects lying in different planes.

Another commonly used spatial relationship for object matching i1s the epipolar
geometry. According to the epipolar geometry, if the projection of a three-dimensional (3D)
point X on the left view (XL) 1s known, then the corresponding epipolar line in the right
view 1s decided. Meanwhile, the projection of the point X on the right view (XR) must lie
on the corresponding epipolar line, as shown in Figure 2.3. Therefore, the search space for
matching the objects' visual appearances under camera views i1s restricted from the whole
image to a line (Papadimitriou and Dennis, 1996). Zhang et al. (1995) used the Least
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Median of Squares (LMedS) to find the epipolar geometry between two camera views with
an 1nitial set of matched points. Based on the epipolar geometry, Lee et al. (2016) proposed
a method to match onsite construction workers captured by a stereo camera system. Under
this method, the location of each construction worker in the first camera view was used to
find its corresponding epipolar line in another camera view. Then, the distances between
the workers in the second camera view and the Epipolar line were calculated. The one

closest to the line was considered to be the same worker in the first camera view (2016).

{ﬂ Epipolar plane

N =

Camera2
Cameral

Left image Right image
Figure 2.3 Epipolar geometry
The effectiveness of the method proposed by Lee et al. (2016) has been tested in real
construction sites. However, the matching method might fail when there are two or more
construction objects lie on the same epipolar line in a camera view, as shown in Figure 2.4,

The failure was mainly due to the searching strategy of this method. The method used the
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centroid of the bounding box of the object to represent its location and calculate the
corresponding epipolar line in another camera view. The bounding boxes generated by the
vision based tracking/detection methods usually have an offset, and thus the centroids do
not always truly reflect the objects’ location. This is especially apparent when the object in

the first camera view is partially occluded. As a result, the deviations are introduced in the

calculation of epipolar line and led to the potential matching error.

Figure 2.4 Object matching with epipolar lines

Konstantinou and Brilakis (2016) also proposed a method for matching workers on
construction sites based on the epipolar geometry. Considering the shift of centroids, they
also employed the visual features of workers and the epipolar lines of previous frames for
a more accurate result. However, the cameras are set up near workers in their study thus
the visual features are easily to be extracted, while in practice the cameras are set far away
to capture the whole scene of the construction sites. Also, as frame drop i1s common when
transmitting videos, features extracted from previous frames are not appropriate for real-

time matching.
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2.3 Fall detection

The currently widely studied automatic fall detection methods can be grouped into
three major categories. The first category is wearable sensor based fall detection. Sensors
are attached to the worker bodies to detect fall accidents by detecting abnormal motions.
The second category is ambient sensor-based fall detection. Ambience features like audio,
vibration, and pressure are collected by sensors set on the construction sites to detect fall.
The third category is vision based fall detection. Workers are captured by cameras, and
their features are extracted from videos or images for fall detection. The previous research

studies on fall detection are introduced and discussed in the following sections:

2.3.1 Wearable sensors based fall detection

Wearable sensors based fall detection methods usually rely on the clothes embedded
sensors to detect the position and monition of the body parts (Delahoz andabrador, 2014).
Acceleration and postures are commonly recorded as fall detection features. Those features
are employed by different kinds of classifiers for fall detection.

The accelerometer is one of the most commonly used wearable sensors (Mubashir et
al., 2013). The accelerometers can be mounted on different parts of human body for fall
detection. Mathie et al. (2004) used an accelerometer mounted on the waist to detect

negative acceleration for fall detection. Luo et al. (2004) implemented a group of sensors
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on the belt to analyze the body acceleration and posture for fall classification. To acquire
more accurate results, different kinds of accelerometers are used. For example, tri-axial
accelerometers are used to detect the acceleration in three axial directions (Zhang et al.,
2006; Wu and Xue, 2008; Lai et al., 2011). Expect accelerometers, sensors for detecting
physiological information like rate gyroscopes, photodiodes or barometric pressure sensors
are also used to assist. These sensors rely on the fact that physical activities and body
motions usually result in the changes in heart rate and blood pressure (Schwickert et
al.,2013).

Although the wearable sensors are easy to set up and operate (Patel et al., 2012), their
disadvantages are also evident. Usually, this kind of method assumes a fixed relation
between the sensor and the wearer (Yu, 2008). That relation heavily relies on the workers’
working environment or the type of work. Thus this kind of method is prone to fail when
the working environment or the type of work are changed. Also, the workers’ unwillingness
of being tracked and recorded is an unavoidable issue on the implementation of wearable

SENSOrs.

2.3.2 Ambience based fall detection

The ambient sensors detect fall accidents based on the ambience changes. When a fall
accident happens, changes of the surrounding ambiance are not avoidable, like the voice,
the vibration and the pressure change on the ground. As the ambiance changes are usually
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tiny, the ambience based fall detection methods are commonly used to detect fall accidents
happen close to the sensors.

Most ambiance based fall detection methods use pressure sensors to detect and locate
the fall accident (Mubashir et al., 2013). Apart from the pressure change, vibration and
audio signal are also used to detect fall. In order to detect the vibration caused by fall,
Alwan et al. (2006) mounted a vibration sensor on the floor. The sensor is capable of
providing the location data of the fall accident based on the vibration features as well.

As the detection range of ambient sensors is usually tiny (Rashidi and Mihailidis,
2013), the ambiance based fall detection methods are not good options for large
construction sites. Also, it i1s hard for sensors to discern the source of the ambient
information. Thus the accuracy of ambience based fall detection on the construction sites

1s not high (Yu, 2008).

2.3.3 Vision based fall detection

Many vision based fall detection methods have been proposed in recent years. These
methods adopt different kinds of camera systems, including stereo-camera systems, multi-
camera systems, monocular camera systems, and depth camera systems (Sathyanarayana
etal, 2015).

Multi-camera systems are mainly used to acquire the 3D features of fall detection.
The 3D model of a person can be generated by the multi-camera systems, and the
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distribution of the 3D model is then used to decide whether a fall accident happens or not
(Auvient etal., 2011). Apart from the 3D shape, the principal component and variance ratio
of the 3D human silhouette are also calculated from multi-view images and used for
detecting fall accidents (Hazelhoff et al., 2008). In most multi-camera systems, the features
extracted or processed from each single camera are combined with a fusion unit, so that
these features could be complementary with each other to conduct the fall detection
(Sathyanarayana et al., 2015). The advantage of multi-camera systems is that the detailed
3D mnformation for the fall detection could be acquired from the multiple camera views.
However, the accurate calibration and synchronized video sequences are required in order
to get the reliable data. Also, it might be difficult to guarantee the real-time processing with
the affordable camera hardware configurations.

Monocular camera systems are also used for fall detection. These systems, unlike the
multi-camera systems, focus on the 2D features for the fall detection. These features, for
example, include but are not limited to the height-width ratio of the bounding box, the
velocity of the center of the bounding box and the angle of bounding ellipse (Foroughi et
al., 2008). The problem of the 2D features is that the distance between the camera and the
human would influence the reliability of the extracted features. In order to address such a
problem, several methods for generating the 3D feature with a monocular camera system
are proposed. In doing so, the camera calibration and inverse perspective mapping are used

(Makantasis et al., 2012).
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In order to get 3D features for the fall detection with one single camera, the idea of
using the depth cameras is also proposed. The depth cameras utilized the time-of-flight
principle. This way, the actual vertical velocity (Mastorakis and Makris, 2012) and 3D
motion history (Dubey et al., 2012) obtained by the depth camera could be used for the fall
detection. Although the depth cameras are able to get the 3D information easily and fast,
the cameras are usually equipped with short-range sensors. Therefore, they are not capable

of providing a wide field of view and monitoring a large area like construction sites.

2.4 Gaps in Body of Knowledge

Detecting fall accidents automatically and timely can help to improve the safety of the
construction sites. Currently, numerous research has been done about fall detection and
various methods have been proposed. However, several limitations and issues still exist on
the state-of-art fall detection methods. For wearable sensors, the main difficulty is
persuading every worker to work with attached sensors. For ambient sensors, the main
difficulty is covering large construction sites with limited sensors. For vision based
methods, the main difficulty 1s finding a fast, robust and accurate method.

In this research study, multi-camera system is employed to detect fall accidents on
the construction site. In order to detect fall accidents with multiple cameras, there are still
two gaps to fill. The first gap 1s locating the fall accident. Localization on construction sites
1s usually done by GPS or RFID systems, in which receivers or tags are required to be
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attached on the target. For the purpose of simplifying localization process, a vision based
localization method is proposed in this research and integrated with vision based object
detection, object tracking and fall detection. These functions form the whole framework of
the propose multi-camera fall detection method. The second gap is objective matching. In
order to detect fall accidents with multiple cameras, matching the same worker in different
cameras 1s required. The existing matching methods are mainly based on visual features
and spatial relationships. Due to the complexity of construction sites, the visual features
are hard to extract. The spatial relationship is also not accurate enough for matching
numerous workers on large construction sites. To fill this gap, this paper proposes a novel
method for matching multiple workers on the construction sites based on triangle meshes.
With the support of the matching method, the multi-camera fall detection framework is

implemented.
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CHAPTER 3: METHODOLOGY

This chapter proposes a framework for detecting and locating fall accidents on the
construction sites. The framework consists of three main parts. The first part 1s workers’
localization. The second part is workers’ matching in different camera views. The third
part is vision based fall detection. The whole framework 1s shown in Figure 3.1. The details

of the proposed framework are described in the following three sections.

Input

Output — &

Figure 3.1 Fall detection and localization framework
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3.1 Localization

This research proposes a fast localization method for workers on construction sites. It
could retrieve workers” working square from videos automatically after initialization. For
initialization, the correspondence between the real world map and video frames is found.
The method detects workers in the video frames at first, then tracks workers based on the
detection results. To improve the tracking accuracy, the detection method is implemented
every few frames. With the tracking/detection results, the workers are mapped from video
frames to the Google Map and the working square of workers are visualized. The

framework of the localization method is shown in Figure 3.2.
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Detection/Tracking results

Workers’ wrking squares

Figure 3.2 Framework of the localization method

3.1.1 Initialization

The purpose of initialization is to find the correspondence between the map of the
construction site and the video frames. The locations of workers are expressed by their map
coordinates and measured with working squares in the map. The working squares are

shown in the following Figure 3.3 and each side of squares 1s 50 pixels, about 6 meters in
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practice.

|2 Google

Figure 3.3 Example of working squares
It 1s assumed that the transformation between the map coordinates and the image

coordinates is perspective transformation. Thus the relation between the coordinates in two

systems 1s:
tx X
[ty =M-|Y (3.1
t 1

where (x, y) 1s the image coordinate of the point, M is the 3X3 perspective transformation
matrix and 7 1s a random constant. To calculate M, 4 pairs of matched map and image
coordinates are required. In this research, the map coordinates and the image coordinates

both are collected manually in Adobe Photoshop CC.
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3.1.2 Detection and tracking

In order to locate the workers on the map, it is necessary to locate workers in the
images at first. For automatic locating workers in the video frames, Single Shot multi-box
Detection (SSD) detection algorithm (Liu et al., 2016) and Kernelized Correlation Filters
(KCF) tracking algorithm (Henriques et al., 2015) are employed.

In the first frame of the video, the workers are detected by the SSD algorithm. The
detection algorithm generated a bounding box of each detected worker and passed the
bounding boxes to the KCF algorithm. The KCF algorithm then tracked workers based on
the received bounding boxes. The KCF tracker is very fast that can track workers real-time,
but it 1s not robust to occlusion. When the tracking object is occluded, the tracker will fail.
Thus SSD i1s called to initialize the input bounding boxes of KCF tracker during the
tracking process. As the speed of SSD is relative slow, it is called once every 24 frames in
this research, which means the detection is performed once per second.

In this research, all the proposed methods including localization, matching and fall
detection are based on the correct worker bounding boxes generated by the proposed
integration of SSD and KCF. That is to say, all the workers in the videos have a bounding
box showing their location during the whole length of the videos. The performance of KCF
and SSD can be referred in Ssd: Single shot multibox detector (Liu et al., 2016) and High-

speed tracking with kernelized correlation filters (Henriques et al., 2015).
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3.1.3 Transformation

After the localization on the image, the workers’ position on the map can be obtained
by perspective transformation. The coordinate of the right-bottom point of a worker’s
bounding box is selected as the location of the worker on the image. Then the image
coordinate is transformed to map coordinate with Eq. 3.1. The worker’s location then can

be described with the working square containing the map coordinate.

3.2 Matching

The research proposes a novel method that could be used to match construction
objects (e.g., equipment, worker, and temporary facility) captured from onsite camera
views in an automatic manner. The proposed method includes two main parts. The first
part searches the potential matching candidates and the second part matched them with
combinatorial optimization. In the first part, the visual feature points under different camera
views are detected and matched at first. Then, the epipolar geometry between different
camera views 1s established based on the matched feature points to search the potential
matching candidates. Also, a dynamic matched triangle mesh pair is generated in different
camera views using the matched visual feature points. Based on the locations of the
potential matching candidates in the corresponding triangle meshes, their triangle

coordinates are further calculated. The difference in their triangle coordinates 1s defined as

35



the matching cost. This way, the matching of multiple construction objects in different
camera views can be solved by finding the minimum matching cost through the
combinational optimization in the second part. Figure 3.4 illustrates the overall framework

of the proposed method, and its details are described in the following sections.

Cam

! Triangle mesh
! generation
I = %27 = T
]

Visual feature
detection & matching |

Potential matching
candidate search

: Combinatorial
! Optimization
I

Figure 3.4 Framework of the matching method

3.2.1 Potential Matching Candidates Search

The potential candidates matching work under each pair of camera views is similar to
the previous research study proposed by Lee et al (2016). Suppose two camera views, 1.e.,
Caml and Cam?2, are under investigation. The SIFT detector/descriptor (Lowe, 1999, 2004)

1s first employed to find an initial set of matched feature points in both camera views,
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considering the robustness of SIFT to large perspective and scale changes (Zhu et al., 2007).
Then, the RANdom Sample Consensus (RANSAC) method (Fischler and Bolles, 1981) is
adopted to remove those wrong matched point pairs, as suggested by Hartley and
Zisserman (2003). Only correctly matched feature points are remained for the next part.
Based on those correctly matched feature points, a 3x3 fundamental matrix is
calculated to establish the epipolar geometry, which describes the intrinsic projective
geometry between any pair of camera views (e.g., Caml and Cam2). For each object of
interest in Caml, its corresponding epipolar line in Cam2 is determined with the
fundamental matrix. The distances between the objects of the interest in Cam2 and the
epipolar line are calculated. Only those objects whose distances to the epipolar line are
equal to or smaller than their bounding box size is kept as the potential matching candidates
of the object of interest in Cam1. The purpose of finding the potential matching candidates
in Cam?2 of the objects of interest in Caml is to reduce the computation complexity of the

combinatorial optimization described in the next section.

3.2.2 Combinatorial Optimization

When all potential candidates in Cam2 are identified for matching the objects of
interest in Caml, the proposed method tries to address the multiple objects matching
problems between two camera views with a combinatorial optimization. Suppose » objects
{0y, O,, O3, ..., O,} are found in Caml, and m potential matching candidates {C;, C5,

37



Cs, ..., Cy} are identified in Cam2. Then, an n by m cost matrix, M, is formulated, as shown

in Eq. 3.2.

M=

My - My,
oy -

Mui = Mo

Where the element, My, in the matrix indicates the corresponding cost for considering
the ith object (O;) in Caml is matched to the jth candidate (C;) in Cam2. If C; in Cam? is
not in the list of the potential matching candidates of O; identified in the previous part, M;;
1s set as +oo. Otherwise, the specific value of Mj; 1s calculated as follows. A triangle mesh
(TM)) 1s first generated based on the correctly matched feature points found in the last part
in Cam1 using the Delaunay triangulation process (Lee and Schachter, 1980). The triangle
mesh (7M;) is then projected into CamView2 to form the corresponding triangle mesh
(TM5). Then, the triangle coordinates of the object (O;) according to 7M; and the candidate
(C)) according to TM, are calculated. The triangle coordinate of a point p according to a

triangle 4ABC 1s defined by Eq. 3.3:

SAPBC SAPAC SAPAR 33
, , (3.3)
SAABC SAABC SAABC

(Pas Do P = (
Where Saspc,Sapscr Sapac, Sapag- are areas of triangles.
The matching cost of the object and a corresponding candidate is defined as the

Euclidean distance between their triangle coordinates as illustrated in Eq. 3.4:

M;j = /(01 — G1)? + (0iz — C2)? + (033 — Cj3)? (34

Where (O;;, O, O;3) and (C;;, Cjz, C;3) are the triangle coordinates of the centroids of
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the object (O;) in 7M1 and the candidate (C;) in 7M2.

After determining the matching cost matrix M, the Hungarian algorithm (Jonker and
Volgenant, 1986) 1s used to find a total mimimum cost incurred to conduct the one-on-one
matching between the objects of interests in Cam1 and the potential candidates in Cam?2.
It is worth to note that the number of the objects of interest in Cam1 does not have to be
the same as the number of the potential candidates in Cam2. In other words, the Hungarian
algorithm (Jonker and Volgenant, 1986) could still work even if M is not a square matrix
(i.e., n#m). The path with the smallest total cost generated by Hungarian algorithm

indicates the best matching result.

3.3 Fall detection

This research proposes a novel method for fall detection with the help of an artificial
neural network. The artificial neural network is trained with a training set at first and then
can be used for fall detection on construction sites. The artificial neural network utilizes
six features of workers to classify workers’ action including the height-width ratio of
bounding box, the bounding ellipse angle, the workers’ actual height and the difference of
them between video frames. After training, the artificial neural network can detect workers’
fall accidents on construction sites automatically. The details of feature extraction and
artificial neural network training are described in the following sections. The framework
of the fall detection method is shown in Figure 3.5.

39



4 i3 | SRk

Camera view 1 Worker n'llatching Camera view n

Image acduiéition

Construction

1

Site Feature compilation v
» Height; Height/width;
Bounding ellipse angle; ... o)

o

J 0

~® V7 Artificial
@ neural network
®

Figure 3.5 Framework of the fall detection method

3.3.1 Feature extraction

According to Makantasis et al.’s (2015) work, fall accidents could be described by
motion features, including height-width ratio, bounding ellipse and actual height. When a
worker is falling, the height-width ratio of his or her bounding box is always smaller than
the one when he or she is standing. Also, the angle of the bounding ellipse is close to 90°
when the worker is standing and close to 0° when fall. To differentiate fall from other
actions like a bow or sit, the changing speed of height-width ratio and bounding ellipse are
also considered. The actual height and vertical motion velocity can also reflect the motion

of the worker. The actual height of the worker is very small when the worker falls on the
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ground and the value of the vertical motion velocity would be larger when a fall accident
occurs. Thus all these six features are used for detecting a fall accident.

In order to extract all these features, first of all, the workers' silhouette should be
extracted from the video images. A foreground extraction algorithm proposed by
KaewTraKulPong and Bowden (2002) was used. The workers are extracted from the
background based on the K Gaussian distributions of pixels. The extracted workers’
silhouettes are then transformed into the black-white format. At the same time, the
minimum bounding box containing all the pixels of each extracted silhouette is calculated,
as shown in Figure 3.6. The pixel coordinate of four corners (top-right, top-left, bottom-

right and bottom-left) of the bounding box are recorded as P, (p,, p,), Pu(ps, 1), Por (Pb, D),

Py (ps, py)-

Figure 3.6 Bounding box of extracted workers
The first feature to be calculated is the height-width ratio. The height-width ratio is
defined as the ratio between the height and the width of the bounding box. As the
coordinates of the four corners of the bounding box are known, the ratio could be expressed

by the following equation:
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R=2_ Pt — Pp (3.55)
W Pr—Di

where /7 1s the height of the bounding box and w 1s the width of the bounding box. For
a standing worker, the ratio is higher than a fell down worker. The difference of height-
width ration between two frames AR is also calculated and recorded as a fall detection
feature, and for the first frame the value is set to be zero.

In order to obtain the bounding ellipses of the workers, the image moments describing
the extracted workers’ silhouettes were used. An ellipse is defined by its centroid (x., y.),
its major and minor semi-axes a and b and its orientation #. These parameters of an ellipse
could be calculated with the image moments of a black-white silhouette. The 1mage
moment 1s a certain weighted average of the image pixels' intensities, and the image

moment Mj; of a scalar image 1s defined as (Hu,1962):
My = ZZ x'y/I(x,y) forij=0,1,2.. (3.6)
x y

where I(x, y) is the pixel intensity at the point (x, y).
The centroid of the ellipse (x., y.) coincides with the mass center of the extracted

silhouette, which could be calculated by (Hu,1962):

Mo My,
(X, ¥e) = (G— 77— (3.7)

M 00 ' M 00
After calculating the centroid of the ellipse, the orientation of the ellipse could be
calculated by the second order central moments. The central moment ; 1s defined by

(Hu,1962):
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= Z Z(x — %)y =) 1(x,y) forij=0,1,2.. (3.8)
Xy

and its orientation @ 1s obtained by (Hu,1962):

1 2
0 = Earctan (i) (3.9

Hz0 — Hoz

The length of the major semi-axis « and the minor semi-axis b could also be calculated

by the central moment (Hu,1962):

0 (e
2
a= (—) ( i ) (3.10)
s Imz'n
1 1
Mg [(I..3\8
b= (—) (”“" ) (3.11)
T Imax
where 1,,., and 1,,;, are moments of inertia and given by (Hu,1962):
1 2 p)
Ipax = E(#zo + Uo2 + \/(#20 — to2)? + 4y, ) (3.12)
1 2 p)
Ipin = E(#zu + oz — \/(#20 — Ho2)? + 414 ) (3.13)

The bounding ellipses are drawn with the three features calculated above and shown
in Figure 3.7. The bounding ellipse angle € and the difference of bounding ellipse angle
between two frames A@ are calculated and recorded as fall detection features. For the first

frame, the value of A@ is set to be zero.
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Figure 3.7 Bounding ellipse of extracted workers

Instead of using worker’s projection height, the worker’s actual height is used in this
method. It is because the actual height 1s irrelevant to the distance between the worker and
the camera. In addition, the actual height could give information about the type of the
moving object extracted from the background, and then the moving construction equipment
won’t be mistaken as a worker. What’s more, with the actual height, the mounting position
and the view of the camera would not be restricted.

In order to obtain the actual height of the worker, the camera location and the worker's
location are required. In the first part of the framework, the worker’s working square is
determined. As the size of the working square are relative small compared with the distance
between the working square and the camera, the center of the working square can be
considered as the worker’s location. Thus the distance between the camera and the worker
can be estimated as the distance between the camera and the center of the working square
containing the worker. As we are using a pinhole camera model, the worker actual height

H is proportional to the worker image height /, and the relationship could be described as

H=1Z- (3.14)
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where f1s the focal length of the camera. The relationship is shown in Figure 3.8. As 7 is
calculated above and f could be obtained from the instruction of the camera, the actual
height of the worker then can be obtained. The vertical motion velocity is calculated by the

difference of height in two frames.

Image plane Pinhole plane

Optical axis

Figure 3.8 Pinhole camera model (Forsyth and Ponce, 2011)

3.3.2 Artificial neural network

When the six features of workers’ motion are obtained, a Back Propagation Neural
Network 1s trained to detect the fall. In order to avoid that the propagation fall to some
local minima, a Genetic Algorithm (Whitley, 1994) is used to generate the initial weight
and threshold values. Once the training of the neural network 1s done, the neural network
could detect fall accidents from video automatically.

The neural network is trained with the supervised learning method. The inputs are 7x1
vectors. The former six elements are the above mentioned six features extracted from each
frame and the seventh element 1s the ground truth label identifying the image as fall or not,
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0 for not fall and 1 for fall. The video is extracted to frames of 5 fps, which means the time
between two successive images is 200ms. This time is sufficient for detecting a fall and
discriminating it from other activities. For the last element, the value will be set as 1 if the
previous six features describe a fall and the value will be 0 oppositely.

The neural network is a 1-hidden layer neural network. It consists of three layers. The
first layer is the input layer with six neurons, the second layer is the hidden layer and the
third layer 1s the output layer with one neuron. The activation function of the hidden layer

1s Rectified Linear Unit function which is:

0= 128 619

and the activation function of the output layer 1s the Sigmoid function which is:

1
1+e~*

flx) = (3.16)

The structure of the neural network is shown in Figure 3.9. During the training process, the
neural network is initialized at first. Then the feature vectors are put into the initialed neural
network and the identification results are calculated. The Loss 1s defined as the difference
between the output of the neural network and the ground truth label of frame identifying

fall or not. The parameter of the neural network including the weight w;, w, and the bias

b;, b, are optimized by gradient descent to reach the global minimum of the Loss.

46



A =Relu(Z,) Y = Sigmoid(Z,)

ZI=W1X+ bl ZZ=W2X+b2

Figure 3.9 Structure of fall detection neural network
The neural network would work automatically after the training. The input of the
network are the six features extracted from the videos and the output is the label O or 1, 1
for fall and 0 for other actions. Considering the precision, only if 6 in 10 successive frames
are labelled with 1, a fall accident will be alerted by the algorithm. The time window of 6

frames is about 1.2s which is the average duration of a fall incident.

3.3.3 Multiple cameras fall detection

The fall detection algorithm is conducted by each camera separately and then the single
camera fall detection results are integrated to reach a final result. Suppose that m cameras

are employed for fall detection. If no less than m/2 cameras reported a worker’s fall
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accident at the same time, a fall accident is detected by the proposed framework. In this
way, if the worker is occluded in some camera views, the proposed framework can still

detect the fall accident.
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CHAPTER 4: IMPLEMENTATION AND RESULTS

In order to validate the effectiveness of the proposed framework, three parts of the
framework were implemented and tested. For each part, the implementation environment
and testbed are listed at first, then followed the test results. The results of each part of the

framework are discussed separately as well in each section.

4.1 Localization

4.1.1 Implementation

The proposed method was implemented on the Python platform with the support of
the OpenCYV library (Beyeler, 2015). The OpenCV library provides the critical algorithms,
functions, and tools required for basic image processing operations. The method was tested
on a Mac OS Sierra operating system. The hardware configuration for the test includes an

Intel® Core™ 15 CPU (Central Processing Unit) @ 2.30 GHz, 8 GB memory.

4.1.2 Test results

The images selected from two real construction sites in Toronto, Canada, were used
for the test. The cameras were placed on the top of buildings next to the construction sites
to capture the scene of the construction sites. Two video frames extracted from two videos

were used for testing the accuracy of localization.
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For initialization, 4 landmarks in each construction sites were selected to calculate the
transformation matrix. Then their map coordinates and image coordinates were retrieved
from Google map and the extracted video frames. The selected landmarks are shown in
Figure 4.1-4.2. Based on the selected 8 point pairs, the transformation matrixes of two

construction site views were calculated.

Figure 4.2 Localization scene 2 with selected landmarks

In order to test the accuracy of localization, ten landmarks on each construction site
were selected. The original landmarks are marked on the maps by green points and their
projection positions are marked by blue points. If the green point and the corresponding
blue point are in the same working square, the green point is regarded to be matched

correctly. The localization results are shown in Figure 4.3-4.4; the localization accuracy is
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listed in Table 4.1.
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Figure 4.4 Localization test result 2
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C t localizati
Scene number | Selected points orrect focalization Localization accuracy
results
1 10 9 90%
2 10 9 90%
Total 20 18 90%

Table 4.1 Localization results

4.1.3 Discussion

Besides the working square, the GPS coordinates of 10 selected landmarks were used
to further evaluate the accuracy of the localization method. The accuracy was measured by
the distance between the ground truth and the coordinates calculated by the proposed
method. The GPS coordinate ground truth was retrieved from the Google Map. The
distance was calculated by GPS coordinates (e.g., longitude and latitude) based on the
equations:

C = sin(LatA) * sin(LatB) * cos(LonA — Lonb) + cos(LatA) * cos(LatB) (4.1)

Distance = R * Arccos(C) * /180 4.2)
where (LonA, LatA) is the ground truth coordinate, (LonB, LatB) is the calculated
coordinate, and R is the radius of the Earth which is 6371004m. The average localization
error 1s 1.03m, the maximum localization error is 4.24m and the minimum localization
error 1s 0.15m.

From Figure 14-15, it can be found that the accuracy of the proposed method is
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relative to the position of the point in the image. The localization error of the points in the
image center is small, while the error of the points on the image edges is large. The relation
between the location of points and error is shown in Figure 4.5-4.6. As multiple cameras
are used in the proposed framework, one worker may be captured by multiple cameras. It
1s recommended to select the image in which the worker is in the center of image to do the

localization, in this way the most accurate localization result will be obtained.

Error (m)

200 300 400 500 €00 700 8OO 900
Distance to center (Pixel)

Figure 4.5 Relationship between localization errors and bounding box centers 1

Error (m)

200 400 600 800 1000
Distance to center (Pixel)

Figure 4.6 Relationship between localization errors and bounding box centers 2
Besides the localization of workers, the proposed can also be used for localization of

construction equipment. By localization, the trajectories of the construction equipment or
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workers can be obtained. Figure 4.7 shows the trajectories of construction equipment on a
construction site. The real-time locations and trajectories generated by the proposed

method can be used for other automatic construction management purposes like working

efficiency analysis, collision alert, etc.

Figure 4.7 Trajectory of two construction equipment

4.2 Matching

4.2.1 Implementation

The proposed method has been implemented in the Python platform with the support
of the OpenCV (Beyeler, 2015) and Munkres libraries (Pilgrim, 2017). Both libraries
provide the critical algorithms, functions, and tools required for basic image processing
operations. The method was tested on a Microsoft Windows 10 64-bit operating system.
The hardware configuration for the test includes an Intel® Core™ 17-7700HQ CPU
(Central Processing Unit) @ 2.80 GHz, a 16 GB memory, and a NVIDIA GeForce GTX

1070 GDDRS @ 8.0 GB GPU (Graphics Processing Unit).
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4.2.2 Test results

The images selected from a real construction site in Montreal, Canada, were used for
the tests. A total of four high definition video cameras were placed on the site to record
daily construction activities for a period of 6 months starting from August 2015. The
placement of the cameras on the site is shown in Figure 4.8. Examples of the test images

are shown in Figure 4.9.

Figure 4.9 Matching test example
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Different environmental conditions are considered for testing the performance of the
proposed method. Specifically, the construction site images captured at day and night are
used to evaluate the performance of the proposed method under different lighting
conditions. The construction site images captured under sunshine and snow are used to

evaluate the impact of weather conditions on the performance of the proposed method.

Figure 4.10-4.12. shows the different test conditions.

Figure 4.11 Workers matching at night
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Figure 4.12 Workers matching under snow

The overall matching accuracy of the proposed method i1s 93.01%. Table 4.2
compared the performance of the proposed method when matching workers in daytime and
nighttime. The accuracy for matching the workers in daytime and nighttime are 90% and
93.33%, respectively. Table 4.3 compares the performance of the proposed method on
matching workers under different weather conditions. Their corresponding matching

accuracies are 91.79% and 94.50% under the sunny and snowy conditions respectively.

Correct Matched Pairs Total Pairs Accuracy
Daytime 54 60 90%
Nighttime 56 60 93.33%

Table 4.2 Matching results at daytime and nighttime

Correct Matched Pairs Total Pairs Accuracy
Sunny 54 60 90%
Snowy 103 109 94.50%

Table 4.3 Matching results under different weathers
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4.2 .3 Discussion

The test results showed the effectiveness of the proposed method for matching
workers on construction sites under different environmental conditions. In most cases, the
matching accuracy of the proposed method could reach more than 90%. The matching
accuracy on a sunny day is a little lower than the matching accuracy on a snowy day or at
nighttime because on sunny days more equipment worked on the construction site and thus
occlusions are more common. As the difference between the daytime and the nighttime
condition is 3.33% and the difference between the sunny and the snowy condition is 4.5%,
it can be concluded that the lighting and weather conditions have little effect on the
matching accuracy of the proposed method.

It could be seen from the test results that the number of the workers in each camera
view does not have to be equal. For example, there are 5 workers in the left camera view
and 4 workers in the right camera views in Figure 4.13. The proposed method could
successfully match the 4 out of 5 workers in the left camera view to the ones in the right

camera View.
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Figure 4.13 Matching unequal numbers of workers

On the other hand, it could be found that the matching accuracy of the proposed
method was reduced when the workers are close to each other on the construction sites,
which makes the matching more challenging. In addition, the strategy adopted in the
proposed method is to find a total minimum matching cost between the pairs of workers in
different camera views. When there is one pair of workers matched incorrectly, the error

may be propagated and affect the correct matching of other pairs of workers, as shown in

Figure 4.14.

Figure 4.14 Wrong matching results propagation
Furthermore, it 1s important to match visual feature points correctly, since the finding

of the epipolar lines and the generation of the triangle meshes are both based on the
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matched feature points. In this research, the matching of SIFT features under the different
camera views relies on a threshold, which is a ratio describes the tolerance of the potential
feature matching errors. A larger threshold indicates a higher tolerance of the matching
errors and thus leads to more pairs of matched feature points, covering the larger
overlapping areas. Figure 4.15 shows an example of the triangle meshes generated with
different threshold values (0.5 and 0.9). It could be seen that the triangle mesh cover a
smaller area when the threshold value is set to be 0.5, while the feature points are

incorrectly matched with the threshold value equal to 0.9, although the triangle mesh covers

a larger area.

Figure 4.15 Triangle meshes generated by different thresholds
(Left: Threshold=0.5, middle: Threshold=0.9)
In order to determine the appropriate threshold values in this research study, the
accuracy for matching the construction workers with different threshold values was

evaluated. The values range from 0.5 to 0.9. Figure 4.16 shows the evaluation results. It
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could be seen that the matching accuracy dropped when the threshold value was selected
too large or too small. When the threshold is too large, it introduced many wrongly matched
feature points to generate the triangle meshes, which reduced the accuracy for matching
construction workers. When the threshold is too small, not enough feature points could be
matched to generate the large triangle mesh. As a result, many construction objects of
interest were outside of the mesh, and that affected the final matching accuracy. The
maximum matching accuracy could be achieved when the threshold value is in the range

of 0.6 to 0.8. In this research, the threshold value was selected to be 0.7.

100% 93.01% 93.01% 93.01%
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Figure 4.16 Matching accuracy with different thresholds
Another feature that influences the matching method is the view angle. The
performance of the feature points matching between two opposite camera views was tested
on another construction site, and the result is shown in Figure 4.17. The result demonstrates

that even if the view angles of the camera views are very different, the proposed method
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can still match the objects, as long as sufficient matched feature points are detected.
However, if the view angle is too different that the overlap area of the camera views is very
small, limited feature points on the construction site can be detected and thus the proposed
method is ineffective. The proposed method is effective whenever the target objects are in

the triangle meshes generated by matched feature points.

Figure 4.17 Matching with large camera view angles change

Moreover, the proposed method was compared with the recent research work
conducted by Lee et al. (2016). It was found that the matching accuracy of the method
proposed by Lee et al. (2016) with our tests set could only reach 53.57%. This is mainly
because the method proposed by Lee et al. (2016) are not able to match construction objects
when they are close to the same epipolar lines and/or partially occluded, as shown in Figure
29. These issues were well addressed in the proposed method.

Besides the workers, the proposed method can also be applied for matching other
construction objects. Specifically, excavators, traffic cones are tested to evaluate the
performance of the proposed method. Table 4.4 shows the matching accuracies of matching

construction workers, excavators, and traffic cones. It could be seen that the matching
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accuracies of other construction objects are also very high. With a high matching accuracy,
the proposed method can contribute to automatic construction processes like object

tracking, localization, etc.

Correctly Matched Pairs Total Pairs Accuracy
Workers 213 229 93.01%
Excavators 40 40 100.00%
Traffic cones 100 109 91.74%
Total 353 378 93.39%

Table 4.4 Matching accuracy of different objects

4.3 Fall detection

4.3.1 Implementation

The proposed method has been implemented in the Python platform with the support
of the OpenCV library (Beyeler, 2015). The library provides the critical algorithms,
functions, and tools required for basic image processing operations. The method was tested
on a Mac OS Sierra operating system. The hardware configuration for the test includes an

Intel® Core™ 15 CPU @ 2.30 GHz, 8 GB memory.
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4.3.2 Test results

Videos recorded in a lab in Concordia University by two GoPro4 were used for the
tests. The cameras were placed on the top of the ceiling to simulate the view angle of
cameras on the construction sites. The placement of the cameras 1s shown in Figure 4.18.
Two videos captured by the two GoPro4 including several falls are used as the training set

and test set of the artificial neural network.

Figure 4.18 Fall detection camera placement

To test the proposed method, totally 800 frames including 20 fall accidents are used.
The features of each video frame are labeled with fall/not fall. 600 frames were used as the
training set and 200 frames were used as the test set. For training, the features and labels
of the training set were put into the neural network to find the weight and bias fit the model
best. For testing, the features of the test set were put into the trained neural network and

the fall accidents were counted and displayed. The result of the test is shown in Figure 4.19.
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The green bounding box means that no fall accident was detected and the red bounding

box means that a fall accident was detected.

Figure 4.19 Fall detection result example
In order to evaluate the performance of the fall detection method, the precision and
the recall were employed. They were defined as follows:
Precision=TP/(TP+FP) (4.3)
Recall=TP/(TP+FN) (4.4)
where TP stands for true positive, which is the number of detected fall accidents, FP
stands for false positive, which is the number of other actions detected as fall accidents,
and FN stands for false negative, which 1s the number of not detected fall accidents.
The result of the proposed method is shown in Table 4.5. The proposed method has a

precision of 83% and recall rate of 90%.
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Actions Number Precision Recall

Fall 10 83% 90%

Table 4.5 Fall detection results

4.3.3 Discussion

The test results demonstrate that the proposed method has a high recall rate and a low
precision rate. The high recall rete means that most of the fall accidents can be detected
correctly and the low precision rate means that some other actions will be detected as fall
accidents as well. Higher precision or recall rate can be obtained by changing the threshold
of the fall detection. In this research, if 6 in 10 successive frames were labeled as fall, a fall
accident was detected by the proposed method. If a fall accident were defined when 5 in
10 frames were labeled as a fall, the recall would reduce but the precision would increase
significantly. The result is shown in Table 4.6. The selection of the threshold should be
decided based on the real application environment. If the focus is on the precision rate, the
thresholds should be set higher, thus less non-fall will be detected as fall and hence false
alarms are avoided. Oppositely, if the recall rate is concerned, the thresholds should be set
smaller. Thus although some non-falls will be detected as falls, no fall accident will be

omitted.
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Thresholds Precision Recall

5 of 10 frames 62.5% 100%

6 of 10 frames 83% 90%

Table 4.6 Fall detection results with different thresholds

The parameters of the fall detection neural network influence the accuracy of fall
detection. The most important parameter is the kinds of feature. According to Makantasis
et al.’s work (2015), reduce one or more features will lead to the decrease of fall detection
accuracy and add other features can not increase the fall detection accuracy apparently.
Thus 1in this research, the six selected features including the height-width ratio of the
bounding boxes, the change of height-width ratio between frames, the bounding ellipse
angles, the change of bounding ellipse angle between frames, the actual height and the
vertical motion velocity are used for fall detection.

Besides the parameters of fall detection neural network w and b, the hyperparameters
of the neural network influence the performance of fall detection by influencing the training
efficiency and the performance of the neural network. The hyperparameters include the
number of hidden layers, learning rate, number of neurons and iteration epochs. To evaluate
the influence of hyperparameters and to find the best selection of hyperparameters,

different hyperparameters are tested in this research. Similarly, 600 frames were used as
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the training set and 200 frames were used as the test set. The performance of the trained
neural network is defined by the loss function, which is the difference between the output

of the neural network and the ground truth:

Loss = ——%T, (y' log 9" + (1 — y')log (1 - logy")) (4.5)
where y is the ground truth label of the dataset, § 1is the output of the neural network. The
smaller the loss is, the more accurate the neural network is.

The number of hidden layers influences the performance of the neural network. With
different number of layers, the neural network learns in different degrees. In this research,
different numbers of layers from 1 to 4 were tested. The training results and test results are
shown in Figure 4.20. It can be found that when the neural network only has 1 hidden layer,
the final cost of the neural network is smallest. Also, as the training speed decreases when

the number of hidden layers increases, 1 hidden layer neural network was selected for this

research topic.
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Figure 4.20 Traiming results with different number of hidden layers

The learning rate influences the speed of the gradient descent. If the learning rate is
too large, the gradient descent will go over the mmimum point. If the learning rate is too
small, the gradient descent speed will be too slow that takes too much time for training. To
find an appropriate value, the neural network i1s trained with different learning rates. The
results are shown in Figure 4.21. From the figure, it can be found that if the learning rate
1s selected to be 0.001, the neural network will converge to the minimum at the fastest

speed and won’t be overfitting.

69



Learning rate =0.0001 Learning rate =0.0005

070
068 1 065
0.66 1 0.60 -
064 0.55 1
g g
062 050
0.60 045 -
0.40 4
0.58 1
0is
056 +— r T T T T T r T - T -
] 20 40 60 BO 100 ] 20 40 60 BO 100
iterations {per tens) iterations {per tens)
Learning rate =0.001 Learning rate =0.005
0701 o7 = training
0.65 —— test
0.60 1 06 -
055
% 050 1 % 05
=] 8
045
040 1 04
035 I
030 ] 031
0 20 0 & &0 100 0 P 0 &0 80 100
iterations (per tens) iterations (per tens)
Learning rate =0.01 Learning rate =0.05
07 = fraining 07 = fraining
e fmst e fmst
06 - 0.6 1
05 1
% 051 %
8 8
0.4 1
04
03 1
031 )
02 -
0 2 0 &0 80 100 0 2 0 &0 80 100
iterations (per tens) iterations (per tens)

Figure 4.21 Training results with different learning rates
The iteration epochs influence the completeness of the learning process. If the number
of epochs is too small, the gradient descent may not reach the minimum. If the number of
epochs is too large, the gradient descent time will be too long to the final epoch and the
neural network may be over-fitted. With learning rate set to be 0.001, the neural network

1s trained with different numbers of epochs. Figure 33 shows the training and test results
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with diffident epochs. From Figure 4.22, it 1s easy to find that 7000 iteration epochs are the

best choice when the learning rate is 0.001.
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Figure 4.22 Training results with learning rate=0.001
The number of neurons influences the performance of the neural network. With
different neurons, the neural network learns in different ways. In this research, different
numbers of neurons from 10 to 500 were tested. The training results and test results are
shown in Figure 4.23. It can be found that when the neural network has 50 neurons, the

loss of the the neural network is the smallest and the training speed is fastest.
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Figure 4.23 Training results with different hidden neurons

4.4 Contributions

This research contributed to the fundamental knowledge to retrieve construction
workers’ information on construction sites from videos. The information includes location,
action, etc. This information can be used to support the construction safety management
work on fall detection. Specifically, it can:

1. Provide the information about localization and fall detection without any wearable
sensor or tag attached to the construction workers.

2. Reduce the time and cost of human monitoring by automatic localization and fall

72



detection with video cameras.

3. Report accidents timely to reduce the secondary harm caused by the delayed
rescue actions.

4. Detect potential fall risks for unsafe areas analysis.

In addition to the fall detection, this research is expected to influence the research
efforts in the area of automation in construction, and specifically facilitate:

1. Generating trajectories. With the proposed localization methods, the trajectories
of workers and construction equipment can be obtained. This information can facilitate the
automatic analysis of construction safety, productivity, etc.

2. Visual tracking. The proposed matching method may facilitate the visual tracking
process. With multiple cameras and the proposed matching method, the difficulty of
occlusion can be solved. Also, the proposed matching method makes tracking one object
across multiple camera views possible.

3. Action classification. In this research, the artificial neural network was trained for
fall detection. The neural network can also be trained for classifying other actions of

workers with similar training process.
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CHAPTER 5: CONCLUSIONS

In this chapter, the background and motivation of this research are reviewed first, then
followed by the review of the proposed methodology. After the review, the discussions and
conclusion of this research are presented. The recommendation and future works grow out

of this research are discussed finally.

5.1 Review of background and motivation

According to statistics (BLS, 2015), the construction industry is one of the most
dangerous industries and fall accident is one of the most frequent accidents on the
construction sites. In order to reduce the losses incurred by fall accidents, it is important to
detect them promptly and automatically. This way the rescue actions of the victims can be
done immediately. Also, detecting the potential fall accidents can aid to safety management
on finding dangerous areas on the construction sites. With potential fall detection results,
corresponding measurements can be conducted to prevent fall accidents.

Currently, several kinds of methods have been employed for fall detection on the
construction sites. These methods can be grouped into three categories including wearable
sensor-based fall detection, ambiance based fall detection, and vision based fall detection.
Those state-of-art methods have several limitations and issues when applying on the

construction sites. The wearable sensors are not popular among workers because they don’t
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want their personal data being tracked. The ambiance based fall detection methods are not
applicable because they are only capable of detecting fall accidents in a small area near the
sensor. The vision based fall detection methods face the difficulties like occlusion,
localization, processing speed, etc.

Although existing vision based fall detection methods have some limitations and
issues, they still have significant potential to detect fall accident on construction sites. The
motivation of this research is to solve the existing limitations and issues of vision based
fall detection methods. The objective of this research is to propose a robust method which

could detect and locate fall accident on the construction sites timely and automatically.

5.2 Review of methods

The proposed framework consists of three parts, localization, matching and fall
detection. The objective of localization method is to find the working square of workers on
the construction sites. When fall accidents happen, the injured workers can be found
quickly based on the detected working squares. The objective of the matching method is to
match the same workers in the different camera views. In order to overcome the occlusion,
multiple cameras are used. With multiple cameras, one worker may be captured in several
views, thus matching the same worker in different camera views can avoid the repetitive

counting. The objective of fall detection method is detecting fall accidents based on videos
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using an artificial neural network. The fall detection method can detect fall accident
accurately and timely, and have the ability to detect potential falls.

The localization method locates workers by perspective transformation. Images
coordinates of four corresponding point pairs are selected at first. The coordinate pairs are
then used to calculate the perspective transformation matrix. With the transformation
matrix, the map coordinates of the workers can be transformed from the workers’ image
coordinates in the video frames and then the workers” working squares can be determined.

The matching method is based on the spatial relationship of workers. Some matched
points in different camera views are detected based on their feature first, then matched
triangle meshes are generated by those points. The workers’ triangle coordinates are
calculated based on the generated triangle meshes. Multiple workers are then matched by
combinatorial optimization based on the distance between their triangle coordinates in
different camera views.

The fall detection method utilized an artificial neural network. Six features including
height-weight ratio and its difference between frames, bounding ellipse angle and its
difference between frames, as well as the actual height of workers and the vertical motion
velocity, are used as the input of the neural network and the output is a binary classification
result identifying fall or not fall. A set of videos including fall and other actions are used
to train the neural network. After training, the neural network is able to detect fall accidents

of workers on the construction sites from videos automatically.
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5.3 Discussions and conclusions

The proposed framework was implemented on Python platform. The framework was
separated into three parts for testing. The localization and the matching method were tested
on the real construction sites and the fall detection method was implemented in the lab.
The localization accuracy was 90%. The matching accuracy was 93.01%. The fall detection
precision was 83% and the recall rate was 90%. The test results indicated that the proposed
framework could detect fall accidents on construction sites accurately and timely.

In the localization method, workers were assumed to be on the same plane and then
their working squares can be retrieved from videos. The localization result of workers
whose working squares near the image centers were more accurate than the workers on the
edges of images. Thus if a worker 1s captured in multiple camera views and the localization
results are different, it is more accurate to consider the working square retrieved from the
image, in which the worker is closest to the image center, as its coordinate.

For the matching method, the accuracy was influenced by the quality of triangle
meshes, which relied on the feature matching method thresholds. The matching result will
be more accurate if the triangle meshes are denser and matched more accurate. However,
denser triangle meshes usually contain more incorrect matching point pairs. Thus a balance
point of density and point matching accuracy should be found. In this research, it

demonstrated that 0.7 is the best choice of the SIFT threshold value.
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In the fall detection method, the parameters and the hyperparameters influenced the
accuracy of the result. The parameter here is the number of frames » in 10 successive
frames are detected as fall when the neural network indicates a fall accident. If » is large,
the result’s accuracy increase but recall rate decrease. If » 1s small, the result’s recall rate
increase but accuracy decrease. The hyperparameters (e.g., learning rate, epochs, number
of neurons), are tuned in the research and the test results demonstrated that the best

selections are 0.001, 7000, and 50 respectively.

5.4 Recommendations and future works

This research focuses on the vision based fall detection on construction sites. It
consists of localization, matching, and fall detection. The experiment of this research
provided valuable experiences and indicated the future works for better fall detection
methods.

First, due to the safety constraint, the fall detection test was done in the lab simulating
the environment of a construction site. For more convincible results, the fall detection
neural network should also be trained and tested on data retrieved from real construction
sites in the future.

Second, in this research, the fall detection 1s limited on a flat level surface, which is a

2D space. In the future, the fall detection may be extended to 3D space with other hardware

78



like depth cameras, stereo-camera, and/or with other fall detection algorithms using other
features.

Third, the proposed fall detection neural network is a shallow neural network. With
the development of GPU, it is now possible to work with the deep neural network for
classification. The deep neural networks are usually more fast and accurate. Thus it may
be a good research direction to build fall classifiers with deep neural networks.

Overall, this research study is just a tip of the iceberg in vision based fall detection on
the construction sites. Much more information for automatic fall detection is still stored in

the images and videos and waiting for us to retrieve.
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