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ABSTRACT

Deformation Estimation and Assessment of Its Accuracy in Ultrasound Images

Roozbeh Shams

This thesis aims to address two problems; one in ultrasound elastography and one in

image registration. The first problem entails estimation of tissue displacement in Ultrasound

Elastography (UE). UE is an emerging technique used to estimate mechanical properties of

tissue. It involves calculating the displacement field between two ultrasound Radio Frequency

(RF) frames taken before and after a tissue deformation. A common way to calculate the

displacement is to use correlation based approaches. However, these approaches fail in the

presence of signal decorrelation. To address this issue, Dynamic Programming was used to

find the optimum displacement using all the information on the RF-line. Although taking this

approach improved the results, some failures persisted. In this thesis, we have formulated

the DP method on a tree. Doing so allows for more information to be used for estimating

the displacement and therefore reducing the error. We evaluated our method on simulation,

phantom and real patient data. Our results shows that the proposed method outperforms the

previous method in terms of accuracy with small added computational cost.

In this work, we also address a problem in image registration. Although there is a vast

literature in image registration, quality evaluation of registration is a field that has not received

as much attention. This evaluation becomes even more crucial in medical imaging due to the
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sensitive nature of the field. We have addressed the said problem in the context of ultrasound

guided radiotherapy. Image guidance has become an important part of radiotherapy wherein

image registration is a critical step. Therefore, an evaluation of this registration can play an

important role in the outcome of the therapy. In this work, we propose using both bootstrap-

ping and supervised learning methods to evaluate the registration. We test our methods on 2D

and 3D data acquired from phantom and patients. According to our results, both methods per-

form well while having advantages and disadvantages over one another. Supervised learning

methods offer more accuracy and less computation time. On the other hand, for bootstrapping,

no training data is required and also offers more sensitivity.
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Chapter 1

Introduction

In this chapter, we will first review ultrasound (US) imaging and outline its principles.

We then overview image registration techniques and provide background and fundamental

knowledge on the matter.

1.1 Ultrasound imaging

Ultrasound waves are acoustic waves with frequencies higher than 20 KHz, with medical

ultrasound usually operating in the 1 MHz to 20 MHz. Ultrasound waves propagate into the

tissue, and interact with it in several different ways including reflection, refraction, scattering

and attenuation. Ultrasound imaging is a widely used modality in the medical field. It is the

second most used modality of imaging after X-ray based imaging. This widespread use is

mainly due to it being noninvasive, safe, realtime, easy to use for both patients and operators
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Figure 1.1: Alpinion E-cube 15.

and relatively inexpensive. An ultrasound machine is depicted in Fig. 1.1.

Ultrasound gained practical usage during World War I for detecting submarines; how-

ever, it was first used in the medical field in 1950s. It was initially used in obstetrics and

later in abdominal imaging, field of pelvis, cardiology and orthopedics. It is seeing growing

applications in diagnosis of several pathologies, as well in guiding operations [1].

The first step of ultrasound imaging involves the generation of sound waves by a piezo-

electric transducer which is contained in a probe. The piezoelectric property is the ability of a
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material to generate electricity under mechanical stress and vice versa; meaning upon apply-

ing an electric field, this material will produce a mechanical wave. Electric pulses generated

by the ultrasound machine produce acoustic waves through the transducer. The frequency of

these waves typically vary between 1 MHz to 20 MHz. Lower frequencies are usually used for

imaging deep into the tissue, whereas higher frequencies are used for superficial structures.

The generated sound wave travels through the body and is reflected at the tissue bound-

aries due to the difference in the acoustic impedance of the layers. The reflections are re-

ceived by the transducer, converted to electrical pulses or Radio Frequency (RF) signals and

processed to generate the image. The process mainly includes finding the envelope of the

RF signal and reducing the dynamic range which produces brightness values. This image is

called B-mode and is the image seen as the output of the ultrasound machine. Fig. 1.2 shows

a patient’s knee being imaged and the produced image.

In ultrasound images, a speckle "noise" is present. Although the term noise is used here,

the speckles are not of random nature; they are created due to the micro structures in the tissue

that are much smaller than the wavelength of the ultrasound wave. Although the speckle noise

is considered visually degrading, it also contains information about the tissue and is of use in

tissue tracking applications [2].

There are different types of probes developed for different applications. Linear, curvi-

linear and sector probes are among the most common types. In linear probes, as the name

suggest, the piezoelectric crystals are positioned on a line. These probes scan the tissue with
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(a) (b)

Figure 1.2: Ultrasound imaging using a linear transducer. (a) Imaging the patellar tendon (b)
the image produced.

the same width as the probe and are used for low depth scanning applications, e.g. vascular,

musculoskeletal, breast imaging. In a curved linear probe, the crystals are also placed on a

line but on a curved surface. This allows for wider scanning angles but comes at the cost of

reduced resolution at far field i.e. away from the probe. These probes are used for abdominal

imaging. Sector probes are made with smaller footprints. These type of probes are used in

situations where the imaging window is small, such as echocardiography and neuroimaging.

Ultrasound can be used to acquire both 2D images and 3D volumes. The 3D volumes

can be acquired by a mechanically sweeping transducer or by electronically steered beams

with a 2D phased array transducer. Although the former is slower, is much more price efficient

than the latter.

There are many applications for ultrasound in medicine; in this work, we have focused

on two applications: ultrasound elastography and ultrasound guided radiotherapy. In ultra-

sound elastography the goal is to infer mechanical properties of the tissue including elasticity.
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Figure 1.3: Types of ultrasound probes. (a) is a linear, (b) is a curvilinear and (c) is a sector
probe.

It is based on the fact that pathologies have different elasticity than healthy tissues. It can be

used for diagnosis and monitoring/guiding procedures. Ultrasound is also used during radio-

therapy to track the target organ and ensure that intended dose is received. This also helps

reduce the amount of unwanted radiation applied to healthy tissue and therefore minimize the

side effects of radiotherapy. Fig. 1.4 shows Elekta Clarity ultrasound machine used for motion

management during radiotherapy.

The contributions of others in the papers that formed this thesis is as follows. Yim-

ing Xiao, Francois Hebert, Matthew Abramowitz have contributions in the paper included in

Chapter 3. Y.X. contributed in the writing and data analysis, F.H. contributed in conception

and data analysis and M.A. contributed in conception and data collection. The contribution
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Figure 1.4: Elekta Clarity ultrasound machine for ultrasound guided radiotherapy. Used with
permission from Elekta.

of the author of thesis were in conception of methods and approaches, implementation of the

registration framework based on Elekta’s tools compatible with bootstrapping; also, building

on the previous machine learning framework, carrying out the experiment and data processing

and lastly drafting the manuscript. Chapter 3 has been published in [3]. Parts of chapter 2 were

previously published as [4] and the chapter as presented is lightly edited from a submission to

BioMedical Engineering OnLine journal. In the said paper, the contributions of Hoda Sadat

Hashemi, Paul Martineau and Mathieu Boily were in data collection.

6



Chapter 2

Ultrasound Elastography Using Dynamic

Programming on a Tree

2.1 Introduction

Ultrasound elastography involves imaging mechanical properties of tissue by estimating

tissue deformation due to external or internal sources of deformation [5]. Elastography has

evolved into many different variations with promising results [6], [7], [8], [9]. The focus of

this work is on palpation quasi-static elastography, where the probe is hand-held and tissue

is compressed by manually pressing the ultrasound probe [10], [11]. Analyzing the pre- and

post-compression ultrasound Radio Frequency (RF) data yields a deformation map, which

is then used to estimate strain images. Palpation elastography does not require any special
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equipment, and as such, can be conveniently used in both diagnosis and surgical planning

[11], [12], [13], [14]. However, there are challenges to overcome before it can be widely used

for clinical purposes. Two major issues that need to be addressed are real time constraints and

effects of signal decorrelation between pre-compression and post-compression images.

Methods commonly used for displacement calculation fall into two main categories

based on amplitude [5, 10, 15] or phase of the RF data [16], [17], [18]. In both approaches,

an important parameter is the window size. Larger windows decrease the estimation variance

but suffer from larger decorrelation especially for large compressions. Furthermore, there is

more chance that few samples in a large window are outliers, which can render the window

inadmissible. Finally, correlation methods can be computationally expensive and real-time

performance is sometimes achieved by parallelization [19].

Given these challenges, accurate and robust estimation of the displacement field is an

active field of research. Rao et al. [20] used beam steering to improve the quality of the

displacement field, especially in the lateral direction. Rivaz et al. [14] proposed using three

(or multiple) frames for generating strain images. This was done by deriving biomechanical

constraints on the variation of the displacement field with time, and incorporating those con-

straints with displacement estimation using an Expectation Maximization (EM) framework.

Kuzmin et al. proposed a method [21] wherein three RF data frames are acquired with a force-

controlled ultrasound probe. The calculated displacement from the first two frames is used to

improve the accuracy of the displacement calculation between the first and third frame. Jiang
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& Hall [22] proposed to calculate the iso-contours of Normalized Cross Correlation (NCC) to

find the accurate location of the maximum NCC [23].

An alternative approach to estimate the displacement field is by optimizing a regular-

ized cost function, where the prior information of displacement continuity can be utilized to

overcome signal decorrelation. It is shown that these methods generally outperform methods

that only rely on RF data [24–26]. Dynamic Programming (DP) is an attractive optimization

method, which is computationally efficient and can find the global optimum [24, 27, 28].

DP can be thought of as a "smart brute-force" method for optimization where the results

of calculations are saved and reused. In other words the optimization is solved iteratively and

the result of recurrent calculations are saved and later used in the next steps. More details on

this method will be discussed later in the thesis and also can be found in [24].

All of the aforementioned methods focus on calculating a more accurate displacement

image, but do not address the problem of preventing failure in the displacement map. Previous

work has focused on selecting “good” pairs of ultrasound images to both reduce the chance

of failure and improve the quality of strain images. Foroughi et al. [29] proposed to use

an external tracking device to track the ultrasound probe, and use the tracking information

to select two images that minimize the chance of failure in strain estimation. A different

approach is taken in [30] whereby a one-prediction-one-correction method is developed for

dynamically choosing the pre- and post-compression images in real-time. The goal of the

said work is robust estimation of a strain image by optimizing a cost function, given a pair of

9



ultrasound images that possibly contain outlier data.

Figure 2.1: Calculating ID on an RF-line (left) and on a tree (right). Rectangles indicate
regions with large signal decorrelation. DP will likely fail in left, but will find the correct path
(in green) in right.

Optimization-based displacement estimation methods are usually iterative [28, 31, 32],

and their success relies heavily on the Initial Displacement (ID) field. DP is an efficient opti-

mization method for finding the global optimum, but gives only integer displacements. There-

fore, DP is an ideal method for providing an ID field to a following sub-pixel displacement

estimation technique. Previous work [14, 24, 27, 28] utilizes only a single RF-line for DP

optimization, and as such, can fail if large segments of that RF-line contains large noise or

outlier data. The starting RF-line can be called a seed-line, whose integer displacements are
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the propagated to the entire image. Thereby, robust estimation of ID in the seed-line is crit-

ical. Fleming et al. [33] proposed to run DP on multiple lines and select the best outcome.

While this work significantly improves the performance, it only uses single RF-lines for DP

optimization. Therefore a portion of RF-line with large decorrelation can render the entire DP

displacement inadmissible.

Herein, we propose a technique wherein DP is estimated on a tree instead of a single

RF-line, as shown in Fig. 2.1. Optimizing DP on a tree instead of a line was first proposed

by Veksler [34] in the field of computational stereo. This approach allows us to exploit data

from multiple RF-lines to improve the reliability of ID field estimated from DP. In this figure,

DP will likely fail due to the region with large decorrelation (left line). However, formulating

DP on a tree can overcome this issue by selecting “good parts” of each RF-lines. We call

our method Elastography using Dynamic Programming On a Tree (EDPOT). This chapter is

summarized as follows. In the next section, we illustrate the technical details of our algo-

rithm. We then show the results on simulation, phantom and in-vivo human data, and provide

conclusions and avenues for future work.

2.2 Methods

Let I1 and I2 to be pre- and post-compression ultrasound images of size m ˆ n. The

ultimate goal is to calculate the matrices A and L such thatAij and Lij are the axial and lateral

displacements for pixel pi, jq of the ultrasound image.
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Figure 2.2: Strain images of a tissue mimicking phantom. A correct strain image is shown
in (a), and two examples of incorrect strain images are shown in (b) and (c). The long dark
and bright bands in the top part of (b) and (c) are artifacts and are caused by failure in DP. All
results are generated using the method proposed in [28].

Erroneous ID results create distinct artifacts in the strain images as shown in Fig. 2.2.

The outcome of DP for the seed-line itself very much depends on the RF-line chosen as the

seed-line; for the seed-lines whose out-of-plane and lateral motion is large, DP will likely

fail. To address this problem, our proposed algorithm has two steps: estimation of ID for a

“seed-tree”, followed by estimation of subpixel displacement. For the second step, we use the

technique proposed in to [28]. The focus of this work is on the first step so to improve the

DP estimation of the ID. Our proposed algorithm for estimation of the strain image can be

summarized as following:

1. Calculating ID

(a) Designing a tree to calculate the ID

(b) Constructing a recursive cost function for pixels on the said tree

(c) Using DP to find the optimum displacements

12



(d) Choosing a path on the tree with the most accurate displacement

2. Calculating sub-sample displacement

(a) Deriving the sub-sample displacement of the seed-line by means of AM [28]

(b) Using the sub-sample displacement of the seed-line as an estimate for calculating

the displacement of the neighboring RF-lines and propagating the displacement

3. Calculating the strain image using Kalman filter

Step 1 is the focus of this work and is described below.

2.2.1 Initial Displacement Calculation

Our underlying goal is to exploit more information in the RF data. To achieve this goal,

the information in the neighboring lines of the seed-line is utilized. A general solution to

discrete global optimization of a cost function that considers 4 neighbors of a pixel in the

regularization term is NP-hard [34] and therefore is computationally intractable.

To overcome this issue, Veksler [34] proposed to formulate DP on a tree to take advan-

tage of more information. We adopt a similar approach and calculate DP on a tree instead of a

single RF-line. Fig. 2.1 shows DP on a single seed-line in left, and the method that estimates

DP on a tree in right. LetGHpV,Eq be the graph with vertices V and edgesE. The structure of

the tree and the key vertices can be seen in Fig. 2.3(a). The parameters involving this structure

are the distances between some of the key vertices: Dtm “ distpvt1 , vm1q, distpvm1 , vb1q and

13



distpvm1 , vm2q; Also distpvm2 , vm3q “ distpvm1 , vm2q. Indices t, m and b respectively refer

to top, middle and bottom. The details regarding the structure are further explained in Section

3.3.

Page 1 of 1

(a) (b) (c)

Figure 2.3: Tree structures used. ID is calculated for the pixels on GH , the tree depicted in
(a). GH is broken down to G1 and G2, shown in (b) and (c) for ID calculation.

The next step after deciding on the tree structure is to calculate the ID on the tree. In

this regard, we construct a cost function:

Cpai,j, li,j, i, jq “ ∆pi, j, ai,j, li,jq`

min
δa,δl

tCpδa, δl, ip, jpq ` wSpai,j, li,j, δa, δlqu,

(2.1)

where

∆pi, j, ai,j, li,jq “ |I1pi, jq ´ I2pi` ai,j, j ` li,jq|, (2.2)
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and

Spai,j, li,j, aip,jp , lip,jpq “ |ai,j ´ aip,jp | ` |li,j ´ lip,jp |. (2.3)

∆ is the data term and S is the regularization term of the cost function, C. i and j are integers

from 1 to m and 1 to n respectively. pip, jpq is the coordinate of the parent of the node at pi, jq.

ai,j and li,j are the axial and lateral displacements at pixel pi, jq which is on the tree . Also, w

is the regularization weight which determines the smoothness of the calculated displacement

function. We use DP to optimize this cost function on the tree structure and generate the ID

estimates of the seed-tree.

In order to calculate ID on the tree depicted in Fig. 2.3(a), we break down GH to the

trees in Fig. 2.3(b) and 2.3(c) (G1 and G2). Thereafter, we aggregate the results of each of

the trees to calculate the final displacement. For the G1, assume P1 and P2 to be two paths

on the tree: P1 is the path from vm1 to vb1 and P2 is the path from vm1 to vb2 . The next

step involves choosing the path wherein a more accurate ID can be calculated. Veksler [34]

considers the cost value at vt1 which is calculated based on the pixels on each path and chooses

the path with smaller cost. However, our result showed that this approach does not necessarily

select the best path in ultrasound images due to the following reason. The value of C heavily

depends on intensity values of RF data, which are highly dependent on tissue echogeneity and

wave attenuation. Intensity of RF data can, in fact, vary across an image by three order of

magnitude. Therefore, we propose the following novel approach. The optimum ID is first

calculated for the pixels on P1 and P2. Let pi1, jmaxq and pi2, jmaxq be the coordinates of the
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pixels on P1 and P2 which are on the same row and have the greatest difference in calculated

ID:

jmax “ argmax
j

|aP1pi1, jq ´ aP2pi2, jq| (2.4)

where aP1 and aP2 are the calculated axial displacements on P1 and P2 and i1 and i2 are

the column indexes for pixels on P1 and P2. We then calculate NCC1 and NCC2 for the

mentioned points on P1 and P2 respectively:

NCCp “
1

N

ÿ

x,y

pw1px, yq ´ w̄1qpw2px, yq ´ w̄2q

σw1σw2

(2.5)

where w1 and w2 are 9 ˆ 5 windows, centered at pip, jmaxq , pip ` aip,jmax , jmax ` lip,jmaxq in

I1 and I2 respectively and N is the number of pixels in the window.

The path which contains the point with higher NCC will be chosen and the ID of this

path will be used for the next steps. RF data is the result of modulation of a high-frequency

carrier signal with an input signal, and therefore, NCC can change significantly even with a

small shift of the window (Fig. 2.4). Moreover, presence of small errors in ID is inevitable

due to it being integer. Therefore the changes in NCC with small shifts renders NCC of

RF data ineffective, and therefore, we use envelope data in Equation 2.5. Also, to further

reduce the result of these errors, in practice, we also calculate the NCC for w2 centered at
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Figure 2.4: NCC values in phantom data. The x-axis is the sample number in the lateral
direction (i.e. different RF-lines) and the y-axis is the shift from correct displacement (i.e.
maximum NCC is expected at 0). (a) shows the NCC for a 9 ˆ 5 window with vertical shifts
for pixels of a single row of the envelope data, (b) shows the same for the raw RF-data. The
effect of the carrier wave is clearly visible in (b).

pip ` aip,jmax ` 1, jmax ` lip,jmaxq and pip ` aip,jmax ´ 1, jmax ` lip,jmaxq. The maximum NCC

value between the three will be used to compare the paths. In the next step, the ID on the

core seed-line (the vertical line containing vm2), ID1, is estimated based on the displacement

calculated on the chosen path.

We then proceed to calculating the ID for G2 (ID2). The final ID is selected by compar-

ing ID1 and ID2 in the same manner that we chose either P1 or P2: finding the point where ID

differs the most and verify the accuracy using NCC for the ID of that point. This displacement

is then used in the next step to find a subpixel displacement estimate.
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2.2.2 Subsample Displacement Calculation

In this step, subsample displacement (SD) is first calculated for the core seed-line and

propagated to the left and right using SD of the previous RF-line as the initial displacement, as

proposed in [28]. Therefore, for one line at a time, the goal is to find the optimum ∆ai and ∆li

which make the duple pai `∆ai, li `∆liq the optimum solution for the following function:

Cp∆a1, . . . ,∆am,∆l1, . . . ,∆lmq “

řm
i“1trI1pi, jq ´ I2pi` ai `∆ai, j ` lj `∆ljqs

2u`

αpai `∆ai ´ ai´1 ´∆ai´1q
2
`

βapli `∆li ´ li´1 ´∆li´1q
2
` β1lpli `∆li ´ li,j´1q

2
u,

(2.6)

where li,j´1 is the lateral displacement of the previous line and α, βa and β1l are the regular-

ization terms. Considering the cost is calculated for each RF-line separately, we have dropped

the index j . Hence ai, li, ∆ai and ∆li are in fact ai,j , li,j , ∆ai,j and ∆li,j .

In the final step, Kalman filtering [28] is used to estimate a low noise strain image from

the displacement image(SD). The strain is piecewise smooth except on the boundaries of the

tissues with different mechanical characteristics. This filter takes advantage of this prior and

results in a strain that is smooth within the same tissue and sharp at boundaries.
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2.3 Results

We test EDPOT using simulation, phantom and in-vivo human data. The human data is

composed of RF data of the liver from patients with liver cancer. These datasets are further

described in corresponding sections below.

The main part of the program, i.e. performing DP on the tree and calculating displace-

ments, is written in C++ and used as a Matlab MEX function. The data processing is done on

a 3.40 GHz Core i7 quad core computer. For a 1000 ˆ 100 ultrasound image, EDPOT takes

approximately 0.064 seconds to run and DP takes 0.026 seconds. Our implementation can be

further optimized to reduce this time.

We have empirically chosen Dtm to be half the height of the ultrasound images; where

a good balance is struck between overall improvement and computational complexity. In

our tests, changing this parameter does not result in significant variation in the results. In

an extreme case which Dtm is equal to the height of the image, the tree is reduced to one

horizontal line and we get the same results as [28]. Also, we have chosen distpvm2 , vm3q “

distpvm1 , vm2q “ 1.

We compare the results of EDPOT with those of DP [28]. In order to measure the

improvement of EDPOT over DP, a ground truth displacement field is required. As mentioned

before, failure in DP primarily depends on the choice of seed-line: if shadowing artifact, large

out-of-plane or lateral motion, blood vessels or cysts are present at the seed-line, DP will

likely fail. Failure in DP, results in distinct errors in the displacement and strain images (Fig.
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2.2), and as such, is easy to detect by visual inspection. Therefore, to generate the ground

truth, we run DP on multiple seed-lines and visually select a correct strain image. We use this

displacement image as a ground truth displacement estimate. Note that while this ground truth

is not perfect, it provides sufficient accuracy for our purpose of finding large displacement

errors (Fig. 2.2). In cases where visual inspection is not feasible (Section 2.3.4), another

method calculating ground truth is used. Subsample displacement based on every possible

seed-line is used and the median of these displacement field is used as the ground truth.

In the next step, for every RF-line, ID is calculated with that RF-line as the seed-line.

With the ground truth at hand, we measure the error for both methods in terms of Mean

Squared Error (MSE). We then report the mean and the standard deviation of the squared error

for all seed-lines.

As stated in section 2.2, the impact of the regularization term on the cost function is

governed by w. Thereby, we compare EDPOT and DP over a range of w. It is worth men-

tioning that due to the low lateral resolution of ultrasound images, we do not show lateral

displacement results. Nevertheless, EDPOT estimates 2D displacement maps. Experimental

results are provided below.

2.3.1 Simulation

For simulation evaluation we generate RF-data for a uniform tissue using Field II soft-

ware [35, 36] with 4% strain. The MSE and the variance of the squared error are reported in
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Table 2.1: The MSE and the standard deviation of the squared error for the simulation data
with different noise levels. The minimum values are in bold font.

σ “ 0.0
w 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

DP 0.61˘ 2.67 0.60˘ 2.47 0.62˘ 2.55 0.63˘ 2.61 0.64˘ 2.60 0.67˘ 2.69 0.69˘ 2.78 0.71˘ 2.87 0.72˘ 2.91
EDPOT 0.54 ˘ 2.14 0.52 ˘ 2.09 0.53 ˘ 2.12 0.53 ˘ 2.15 0.54 ˘ 2.19 0.55 ˘ 2.24 0.57 ˘ 2.33 0.59 ˘ 2.40 0.59 ˘ 2.43

σ “ 0.05
w 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

DP 1.26˘ 8.03 0.91˘ 5.01 0.85˘ 4.43 0.83˘ 4.14 0.80˘ 3.84 0.81˘ 3.81 0.83˘ 3.84 0.82˘ 3.68 0.83˘ 3.71
EDPOT 1.03 ˘ 6.83 0.82 ˘ 4.74 0.72 ˘ 3.63 0.69 ˘ 3.30 0.67 ˘ 3.03 0.66 ˘ 2.93 0.67 ˘ 2.92 0.66 ˘ 2.82 0.67 ˘ 2.84

σ “ 0.10
w 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

DP 8.86˘ 53.78 4.38˘ 25.20 2.65˘ 16.64 2.05˘ 13.13 1.73˘ 11.01 1.74˘ 11.79 1.70˘ 11.84 1.70˘ 11.71 1.67˘ 11.15
EDPOT 4.53 ˘ 24.19 2.81 ˘ 19.78 1.84 ˘ 11.23 1.49 ˘ 9.31 1.27 ˘ 7.40 1.24 ˘ 8.56 1.18 ˘ 6.85 1.17 ˘ 6.96 1.17 ˘ 6.85

σ “ 0.15
w 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

DP 95.06˘ 435.93 45.51˘ 235.40 27.34˘ 163.93 18.28˘ 114.43 10.73˘ 80.10 7.13˘ 40.11 7.12˘ 44.48 7.35˘ 46.38 7.43˘ 47.52
EDPOT 33.15 ˘ 206.17 19.17 ˘ 132.24 11.94 ˘ 72.41 7.47 ˘ 54.14 6.63 ˘ 52.31 5.83 ˘ 51.17 4.50 ˘ 44.02 3.31 ˘ 23.95 3.03 ˘ 22.73

Fig. 2.5 and Table 2.1. In order to measure the robustness of our method against signal decor-

relation, we also add Gaussian noise with σ in the range of 0 to 0.15 with 0.05 increments to

the RF data. The results of Table 2.1 and Fig. 2.5 show that EDPOT consistently outperforms

DP.
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Figure 2.5: The MSE error for the simulation data. The figures also show the standard devia-
tion of the error, divided by 10. (a) shows the result without noise and (b) with noise σ “ 0.1
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2.3.2 Phantom Experiments

The phantom data was acquired from a CIRS (Norfolk, VA) breast phantom. The data

was collected with an Antares Siemens system (Issaquah,WA) at a center frequency of 6.67

MHz using A VF10-5 linear array with a 40MHz sampling rate. A B-mode image and a

strain sample of the phantom data can be seen in Fig. 2.6. The MSE and standard deviation

for a range of w is also depicted in Fig. 2.6, and the numerical values are reported in Table

2.2. Compared to DP, EDPOT gives substantially lower MSE over the entire range of w. In

addition, EDPOT has much smaller variance, which means that it consistently estimates the

correct displacement field.
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Figure 2.6: Results of the phantom experiment. (a) shows the B-mode ultrasound image of the
Phantom. (b) shows the axial strain where the DP method has not failed and in (c), the MSE
of DP and EDPOT are compared. σ{10 is used in error bars to ease comparison.

2.3.3 Patients With Liver Cancer

The data was collected from two patients with primary or secondary liver cancer who

underwent open surgical radio-frequency thermal ablation. Data collection was performed at
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Johns Hopkins Hospital and was approved by its ethics board. These patients had unresectable

disease and were recommended for RF ablation after review from Johns Hopkins University

multidisciplinary conference. The RF data was acquired from an Antares Siemens system

(Issaquah, WA) at the center frequency of 6.67 MHz with a VF10-5 linear array at a sampling

rate of 40 MHz. Further details of the data acquisition are available in [28]. B-mode images,

strain images without any artifact and with artifact for Patient 1 and Patient 2 are depicted in

Fig. 2.7. It is clear that EDPOT substantially outperforms DP, and can prevent large artifacts

in the strain image.

Table 2.2: The MSE and the standard deviation of the squared error for the Phantom, Patient
1, Patient 2 and Patellar Tendon data.

Phantom
w 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

DP 15.35˘ 110.81 13.77˘ 105.62 12.95˘ 97.90 14.00˘ 103.89 14.98˘ 106.77 17.11˘ 112.36 20.43˘ 117.92 23.51˘ 121.08 30.03˘ 134.84
EDPOT 2.62˘ 11.14 1.54˘ 7.53 1.03˘ 5.19 0.83˘ 4.02 0.90˘ 4.60 1.07˘ 6.20 1.52˘ 8.72 3.87˘ 42.60 6.03˘ 46.39

Patient 1
w 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

DP 0.49˘ 3.37 0.43˘ 1.99 0.40˘ 1.75 0.40˘ 1.76 0.41˘ 1.80 0.42˘ 1.85 0.42˘ 1.89 0.43˘ 1.90 0.43˘ 1.91
EDPOT 0.31˘ 1.14 0.29˘ 1.11 0.28˘ 1.11 0.26˘ 0.87 0.26˘ 0.88 0.26˘ 0.87 0.26˘ 0.88 0.26˘ 0.87 0.25˘ 0.85

Patient 2
w 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

DP 4.35˘ 11.23 4.84˘ 11.58 5.52˘ 12.61 5.95˘ 13.00 6.39˘ 13.44 6.67˘ 13.57 7.37˘ 14.66 8.11˘ 15.82 9.18˘ 17.84
EDPOT 4.26˘ 11.71 4.54˘ 11.96 4.77˘ 12.38 4.95˘ 12.62 5.27˘ 13.33 5.29˘ 13.26 5.62˘ 13.93 5.98˘ 14.73 6.93˘ 20.10

Patellar Tendon
w 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

DP 4.95˘ 70.33 4.34˘ 55.61 4.40˘ 60.07 3.94˘ 55.57 3.86˘ 52.45 3.77˘ 50.35 3.74˘ 50.23 3.57˘ 49.01 3.56˘ 48.84
EDPOT 4.64˘ 63.13 3.66˘ 39.93 3.65˘ 38.27 3.40˘ 42.07 3.16˘ 38.36 3.17˘ 41.59 3.23˘ 42.60 3.37˘ 46.28 3.14˘ 43.43

2.3.4 Patellar Tendon

This set of data was collected at the PERFORM Centre at Concordia University. The in-

vivo patellar tendon data was collected at using an Alpinion E-Cube (Bothell, WA) ultrasound

machine with an L3-12 linear transducer at the centre frequency of 11MHz and sampling
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Figure 2.7: In-vivo images of human data. (a) and (d) show the B-mode ultrasound images of
patient 1 and patient 2 respectively. (b) and (e) show the axial strains with EDPOT. (c) and (f)
show cases where DP has failed.

frequency of 40MHz. The subjects were asked to flex their knees and their patellar tendon

was imaged during this isometric flexion.

2.4 Discussions and Conclusion

Herein we focused on optimization-based methods of displacement estimation, which

require an ID field. However, a reliable ID is also very useful for correlation-based methods to
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Figure 2.8: Figure (a) shows the B-mode of the patellar tendon which itself can be seen in
the upper half of the image. Figure (b) and (c) show the axial and lateral displacement during
isometric contraction. The tendon in (c) moves laterally by a large amount as expected.

both limit the search range and reduce the chance of peak-hopping. As such, EDPOT can be

utilized in a wide range of displacement estimation techniques such as phase- and amplitude-

based cross-correlation methods, which is a subject of future work.

Another topic for feature work is to analyze which paths on the tree graph were chosen

during ID calculation. This would help in better understanding how much efficiency is gained

by using this method. We can also choose the best regularization coefficient (w) by utilizing

the same approach mentioned in Section 3.3 for calculating ground truth. As for other ways

of calculating ground truth, optical flow can be a an independent method for this purpose.

Although not real-time, it can be used for verification among other applications. Moreover, a

use of calibrated phantom can be investigated which could provide a known ground truth.

In this work we proposed a new method wherein the ID is calculated for pixels on a tree,

contrary to previous work which utilized only a single vertical line. This resulted in exploiting

more information and thus improved the robustness of the ID. We validated the proposed
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method using simulation, phantom and in-vivo human data, and showed that it substantially

outperforms conventional DP.
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Chapter 3

Assessment of Rigid Registration Quality

Measures in Ultrasound-Guided

Radiotherapy

3.1 Introduction

Accurately targeting the pathological loci during radiotherapy is crucial to ensure the

treatment outcomes. However, patient motions limit the precision with which radiation can be

applied, resulting in less effective treatment plans. In modern radiotherapy, image guidance is

used to align and update the patient’s anatomy with the treatment isocenter, proving better tar-

get coverage and in some cases reducing dose to surrounding healthy tissues. Such alignment
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(i.e., patient positioning) can be achieved through widely used image registration algorithms

based on a number of techniques, including external surface motion, implanted markers, X-

ray imaging, and ultrasound imaging [37–39]. Compared with X-ray imaging, ultrasound is

non-ionizing and provides good soft tissue contrast in real time [40], and thus it has become a

popular imaging modality to track patient motions.

Radiotherapy frequently involves the delivery of radiation dose in multiple sessions,

known as fractions. Two types of patient motions can occur, including interfraction motion

(i.e., on each day of treatment, as the patient is positioned for that day), and intrafraction

motion (i.e., short term during radiation delivery). Interfraction positioning affects the entire

treatment fraction. Although it must be completed reasonably quickly, more time is available

for calculation and review. However, intrafraction positioning, or monitoring, must be com-

pleted in near real time to be of use. An operator often has to rapidly verify the positioning

quality during the entire duration of the treatment, which is challenging due to time limitations

and 3D nature of the images. To help ensure the quality of patient positioning and mitigate the

workload of the operator, who may not offer consistent quality assurance, a robust automatic

method for assessing image registration quality is needed.

Most of the previous work in quality evaluation can be broadly categorized into Bayesian

and supervised learning methods [41]. Typically in the former, a Bayesian framework for

the registration problem is proposed and a posterior distribution over the model parameters

is calculated. Next, using the posterior, a measure of uncertainty is given. For instance,
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Risholm et al. [42] proposed a Bayesian non-rigid registration framework using Boltzmann’s

distribution for the prior and likelihood and Markov Chain Monte Carlo (MCMC) to estimate

the most likely deformation and the uncertainty associated with it. Janoos et al. [43] proposed

a similar framework which is used for image registration for multi-modal images. In [44],

the authors introduce ways to summarize the uncertainty of an elastic registration framework

which they proposed in [45]. Simpson et al. [46] try to solve the problem of choosing the

regularization coefficient with a Bayesian approach which also can estimate the uncertainty

in the form of a covariance matrix. As shown in [47], the uncertainty can also be used to

construct a filter to smooth the areas with higher uncertainty.

A supervised classification method was first introduced by Wu and Samant [48] for

automatic detection of unsuccessful registrations during radiotherapy. The authors used one

feature ( e.g. mutual information or cross correlation) as an input for the classifier and the

classifier itself, used a threshold calculated based on the training data to classify different

registrations. Wu and Murphy [49] then improved their previous work by extracting more

features and also using a neural network as the classifier. Muenzing et al. [50] did a compre-

hensive study of different features and classifiers that could be of use for the task at hand and

evaluated their method on lung CT images. Finally, Sokooti et al. [51] constructed a random

regression forest to estimate the registration error of chest CT scans and also classify based on

the estimated error.
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An advantage of learning methods over the Bayesian approach is the lower computa-

tional complexity for classifying the registrations at runtime. This advantage makes these

methods suitable for real-time applications. However, to train such a classifier, an appropri-

ately sized training set is needed and acquiring such training set is not always feasible. An

unsupervised method may prove to be useful in such cases.

In [52], the author has taken a frequentist approach to measuring uncertainty using boot-

strapping. It is assumed that the input images are realizations of random processes. Given

several realizations of the input images, the registration method could be run on these images

and the uncertainty can be calculated based on the results of these registrations. Since only

one realization of the random variable, the image at hand, is available, bootstrapping is used

to simulate different realizations. This method does not require any training which makes it

an attractive candidate for registration quality evaluation that can be readily applied to dif-

ferent ultrasound systems and even other modalities. We will therefore propose a technique

for assessing the quality of ultrasound registration using bootstrapping, and validate it using

phantom and in-vivo data.

In this work, we propose to use bootstrapping and supervised learning methods for as-

sessing the quality of rigid ultrasound image registration in the context of ultrasound-guided
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radiotherapy. More specifically for supervised learning methods, we employed Linear Dis-

criminant Analysis (LDA) [53] and Random Forest (RF) [54] to classify the registration qual-

ity. All methods were compared using both phantom and in-vivo data for intrafractional

prostate motion management. In this work, we have made three major novel contributions

to the field. First, to the best of our knowledge, this is the first work that introduces automatic

registration assessment techniques for ultrasound-guided radiotherapy, and more generally for

registration of ultrasound images. Second, in the context of machine learning techniques, we

introduced new features due to the unique characteristics of ultrasound images. Lastly, we

compared the performance of bootstrap and machine learning techniques for the application,

which has not been reported previously. Given that ultrasound has numerous applications

in image-guided applications, this work can be further extended and utilized in several other

applications. This chapter is organized as follows. In the next section the methodology is

explained. In Section 3.3, the results are presented and are discussed in Section 3.4. The

conclusions are provided in the final section.

3.2 Methods

3.2.1 Registration

Assume f, g : Rm Ñ Rn to be the fixed and moving images. Also, let Ω P Rm be a

set of points from the domain of f . We aim to find a transformation, T px, θq : Rm Ñ Rm,
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with θ P Θ Ď Rd, such that fpxq corresponds to gpT px, θqq. To calculate θ̂, the transform

parameters, a cost function, Jpθq, is constructed and θ̂ is estimated by:

θ̂ “ argmin
θ

Jpθq (3.1)

Jpθq “ Dpfpxq, gpT px, θqqq, (3.2)

where Dp.q is the dissimilarity function.

Both f and g can be considered outcomes of random processes and therefore Jpθq is a

random process and θ̂ is a random variable.

In order to evaluate the registration results, it is necessary to measure how close these

results are to the true value. A popular approach is to use mean Target Registration Error

(mTRE) [55–57]. Since a rigid transformation model is used in our work, mTRE is calcu-

lated on 4 or 6 points for 2D and 3D data respectively. We define the distance between two

transforms, T1 and T2, as follows. Let tPiu be a set of N points in the fixed image near the

center of the transformation, C, and the center itself. The points are selected by moving r

millimeters away from C in each cardinal direction; therefore 4 points in the 2D images and 6

in 3D volumes are chosen. The distance is then defined as:

dpT1, T2q “
1

N

N
ÿ

i“1

||T pPi, θ1q, T pPi, θ2q|| (3.3)
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In other words, the distance between two transformations is the mean distance of the corre-

sponding transformed points. Calculating the distance as explained, instead of doing so on

a grid, reduces the computational complexity of the evaluation while keeping the evaluation

valid because of the rigidness of the transform. Also by using the 4 or 6 point distance mea-

surement method, the comparison between ROIs with different sizes will be equivalent.

Before we present the supervised learning and bootstrapping techniques, it is important

to clearly state what is called a “successful” registration or “poor” registration. During reg-

istration, the optimizer either converges to an optimum or not. If it diverges, the result is a

poor registration. If it converges, but converges to a local optima which is far from the true

parameters, the result is again a poor registration. A successful registration is one that the

optimizer converges to the correct optimum.

3.2.2 Data Preparation

To validate the registration assessment methods, a great number of both cases of poor

and successful registrations were needed. Both phantom and in vivo patient data were utilized

for validation. The following procedure was used to obtain poor and successful registrations.

First, a reference registration was carried out to be used as the true registration. For the phan-

tom data, this registration was known a priori with a robotic system. For the 3D patient data,

as each session represented a tracking sequence, each sequence was made into a video show-

ing anterior-posterior (A-P) and superior-inferior (S-I) cuts through the center of the original
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prostate position. These videos were visually inspected by experts experienced in prostate

radiotherapy to ensure that the reference registration was of high quality. To further evaluate

the automatic registration quality for the ground truths, we selected 2 image pairs from each of

the 7 treatment sessions for the patient, and asked an expert to manually align the image pairs

based on visual inspection. In addition, for each image pair, 10 pairs of homologous anatomi-

cal landmarks were selected, and the mean target registration error (mTRE) was obtained with

these landmarks for both manual and automatic registrations. The mTREs (mean˘sd) from

14 image pairs for manual and automatic registrations are 1.91˘0.83 mm and 1.86˘1.09 mm,

respectively. The difference in the results obtained from the two approaches is not statistically

significant based on a Wilcoxon signed-rank test (p “ 0.358).

Next, the true transform parameters were moved in the parameters space in a random

direction and the registration was restarted from that point. If the result of the new registra-

tion was within a determined distance defined by Eq.3.3 (i.e., the smallest resolution of the

images), the registration result was regarded as "good", and the initial parameters are moved

further away from the true registration result. This was repeated until the new registration

either diverges or converges to another point far from the true result, hence generating a "bad"

registration. Instead of changing the registration parameters with equal step sizes along a di-

rection in the registration parameter space, the parameter steps for each new starting point was

defined as an increase of 2 mm by Eq.3.3. This way, the interpretation was more intuitive

as the metric was the same as the measurement of the image resolution. Furthermore, these
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incremented registrations were selectively inspected by clinical experts who are experienced

in prostate radiotherapy. As such, a set of successful and poor registrations were generated

from an initial limited set of inspected, good registrations. This procedure is depicted in Fig.

3.1, and instances of good and failed registration results for the patient data are demonstrated

in Fig. 3.2. Here, the moving image was moved in the parameter space until a failed regis-

tration occurred while the fixed image was kept the same. The successful registration visibly

improved the alignment of the walls of the bladder and prostate.

3.2.3 Supervised Learning Methods

There are numerous classifiers available in the literature; we chose two for our experi-

ments: LDA [53], a simple classifier, and RF [54] as a state-of-the-art classifier. As with other

supervised learning methods, this requires feature extraction, training and validation.

Feature Extraction

There may be a trade-off between calculation time and discriminative value of a feature.

The ideal feature would cost no additional calculation. We selected a subset of 10 features

from a pool of features for training and classification. This selection was done based on feature

importances (Gini importance [54]) resulting from an RF classifier using all the features.

The registration is implemented by optimizing the negative Normalized Cross Correla-

tion (NCC) between a selected set of pixels in the reference and target images. The resulting
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Figure 3.1: Generating poor and successful registrations. The green dot shows parameters
of the correct registration. Each arrow shows the start of a new registration process. In this
schematic example, three registrations converge to the correct result, and one converges to
an incorrect result (red dot). The green circle shows the area wherein the registration is still
considered successful.

optimal NCC can be used as a criterion for distinguishing between successful and poor regis-

trations. This measure costs no additional computation, as we are already computing it.

Let fi “ fpxiq and gi “ gpT pxi, θ̂q represent the fixed and moving image intensities

where txiu is the set of points used to calculate the NCC and T px, θq : Rm Ñ Rm is the

transformation. N is the number of pixels (i.e. the number of points in txiu. The NCC can be

calculated in a single pass over the image using:

NCC “
Sfm ´ Sf ¨ Sg{N

Cf ¨ Cg
(3.4)
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Figure 3.2: Demonstration of good and bad registration results for the patient US data. The
fixed image (cyan) and moving images (yellow) are overlaid to show the quality of registration.
(a) shows the fixed image along with the anatomical annotation and the orientation of the
image with respect to the patient. (b) shows a failed registration (left: before registration;
right: after registration). (c) shows a case of successful registration (left: before registration;
right: after registration). Here, the white arrows point to the wall of the bladder.
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where

Sf “
ÿ

i

fi Sg “
ÿ

i

gi

Sff “
ÿ

i

fifi Sfg “
ÿ

i

figi

Sgg “
ÿ

i

gigi

These sums can be accumulated during a loop over the pixels. Note that Sff , Sf and N

are not necessarily constant, as some of the reference pixels may map outside of the moving

image and will therefore be excluded from the calculation. From these, we can compute the

contrast of each image, Cx, using:

Cx “
a

Sxx ´ Sx ¨ Sx{N (3.5)

and the NCC using Equation 3.4. An advantage of calculating the NCC this way is that each

part can be used as a feature. It was conceivable that one or more of these measures were

more distinctive than correlation alone. There is no additional cost to these measures as they

are already computed.

The Distinctiveness of Optimum (DO) [58] was used together with Mirror Symmetry

(MS) in [49]. It is an average descriptor of the shape of the dissimilarity function around the

found solution. It requires 2U evaluations of the dissimilarity measure over the registration

38



cost function J with respect to each registration parameter in the positive and negative direc-

tions. Here, U is the number of registration parameters, and U “ 6 for rigid registration.

Therefore, the DO metric is defined as:

DOpsq “
1

2sU

ÿ

u

´Jpθ̂ ´ seuq ` Jpθ̂ ` seuq

2
´ Jpθ̂q

¯

(3.6)

where s is the step size, θ̂ are the optimal parameters, J is the cost function to be optimized

for registration and eu is a unit parameter vector in direction u.

The Mirror Symmetry (MS) [49], [59] is a measure of the evenness of the shape of the

similarity function around the found solution. Letting

J̄u “
Jpθ̂ ´ seuq ` Jpθ̂ ` seuq

2
, (3.7)

MS can be calculated as:

MSpsq “

1

2P

ÿ

u

´

pJpθ̂ ´ seuq ´ J̄uq
2 ` pJpθ̂ ` seuq ´ J̄uq

2

pJpθ̂q ´ J̄uq2

¯

.

(3.8)

It can be generated from the same samples as the distinctiveness of optimum. It’s worth

mentioning that MS may not be an optimal feature to detect some local optimums such as

saddle points.
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An indication of a good registration is that the correlation score at one step size away

in any direction from the found location is significantly worse. Therefore, we also include

individual cost evaluations as features. For the convenience of annotation in the later sections,

we name these evaluations as

tDissimProbesr2ks, DissimProbesr2k ` 1su

where

DissimProbesr2ks “ Jpθ̂ ` seuq

DissimProbesr2k ` 1s “ Jpθ̂ ´ seuq.

and

k “ 0, 1, ..., U ´ 1.

With k “ t0, 1, 2, 3, 4, 5u corresponding to the probing of J in the direction of each of the

transformation parameters (3 rotations and 3 translations), we obtained the evaluations as

DissimProbesr0s to DissimProbesr12s. Here, DissimProbesr.s is short for “Dissimilarity

Probes”.

In a successful registration, it is expected for all the pixels in the ROI to be registered

equally well. To quantify this, the ROI is divided into orthants and the correlation score
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is calculated for each. In a poor registration, the correlation score varies between the or-

thants. Therefore, several measures of quality can be considered regarding this. The indi-

vidual orthant scores (OrthantScores), the maximum and minimum score (MaxOrthantScores

and MinOrthantScores) and finally, the score difference between the maximum and minimum

(OrthantScoreRange).

Instead of treating the two intensity distributions as identical, we can instead examine the

joint distribution of intensity. The Mutual Information (MI) of this joint intensity distribution

is a commonly used similarity measure. We did not use it to construct the cost function because

our work is focused on mono-modal registration. In addition, MI costs more to compute than

the above, as it involves keeping track of a joint distribution.

If the images are correctly aligned, it is reasonable to presume that the correspond-

ing set of pixels in the fixed and the moving images have similar intensity distribution. The

Kullback-Leibler divergence [60] can be used to quantify the difference between the two dis-

tribution functions and therefore is used as a feature.

Training and validation

As mentioned before, we used LDA and RF to classify the registrations. Here, half of the

total data were used as a testing set, and the other half was used to train the classifiers through

a 4-fold cross-validation process (training set vs. validation set ratio = 3:1). The machine
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learning algorithms and validations were implemented in scikit-learn package, version 0.17

[61].

3.2.4 Bootstrapping

Bootstrap resampling is a technique that can be used to estimate the properties of an

estimator, such as mean, variance, etc. [62]. Assume a random variableX withN i.i.d samples

X “ tx1, . . . , xnu drawn from it. A bootstrap resample, Xpbq, is a multiset constructed by

selecting N points from X with replacement. This is repeated B times, thus leading to B

multisets: Xpbq, b “ 1, . . . , N .

Assume a statistic on X , ϑ, and its estimator ϑ̂ « ϕpXq. Our goal is to measure the

reliability of this estimator. This can be done by finding the estimates of ϑ based on each

bootstrap: ϑ̂pbq “ ϕpXpbqq. These bootstrap values can be used to form a non parametric

distribution on the estimates which can be used to express a measure of reliability, such as the

covariance matrix.

3.2.5 Bootstrapping for registration evaluation

Image registration can be thought of as an estimator of the transformation parameters, θ.

Therefore we can use bootstrapping to measure the reliability of this estimator similar to what

was explained in the previous section [52]. In our case, we use the result of bootstrapping to

classify the registration as reliable and unreliable.
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Figure 3.3: An overview of bootstrapping for registration evaluation. Xpbq shows different
multisets, and θ̂pbq denotes the results of the registration using each multiset. The grayed out
pixels on the left show selected pixels for registration (possibly more than once). The green
dots show the correct registration parameters, and the red dots represent registration results
(i.e. θ̂pbq). In a poor registration, θ̂pbq are expected to be more dispersed than a successful case.

To this end, it is needed to solve B registration problems, based on each bootstrap:

J pbqpθq “ Dpfpxq, gpT px, θqqq, x P Ωpbq (3.9)

θ̂pbq “ argmin
θ

J pbqpθq (3.10)

where Ωpbq is a bootstrap resample. From here, the measure of dispersion on θ̂pbq can be

calculated.

d̄B “
1

B

B
ÿ

b“1

dpT px, θpbqq, T px, θ̄Bqq (3.11)
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where θ̄B is the mean of parameters resulting from bootstraps: mean θpbq. In order to exclude

outliers from the calculations, the trimmed mean [52] is used: the furthest 10% of the results

from the mean bootstrap result are taken out and the mean is recalculated accordingly. If

this dispersion measure is higher than a threshold τ , then the registration is poor and if not,

successful. In other words, if we are not able to estimate the registration parameters with suf-

ficient confidence through the sampling process, then a single registration is likely to provide

a bad image alignment that is far off the optimum. Note that for each bootstrap sampling, only

a portion of the pixels/voxels were randomly selected for registration. To facilitate easier in-

terpretation of the dispersion measurement, instead of measuring the metric in the registration

parameter space, we employed Eq3.3 to evaluate the transform distance. This way, the mean

transform distance is in the same spacing unit as the images or volumes, the threshold can be

set based on the resolution of the data and according to what accuracy is needed.

Figure 3.3 shows a general overview of the bootstrapping scheme for classifying regis-

trations and Algorithm 1 describes an in depth implementation.

3.2.6 Experimental setup

We compare the two approaches using experiment data and patient data. For the experi-

mental data, 2D images were acquired with a Clarity (Anticosti Research Version, Elekta AB,

Stockholm, Sweden) monitoring system with a linear ultrasound probe. The patient data was

collected with the Clarity system (Version 3.0) with a wobbler probe, providing a sequence of
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Algorithm 1 Bootstrap resampling for image registration quality evaluation.
1: for b=1 to B do
2: S Ð empty multiset
3: for i=1 to N do
4: Ωpbq Ð Ωpbq Y txku; k „i.i.d t1, . . . , Nu
5: end for
6: J pbqpθq=Dpfpxq, g1pxqq, x P Ωpbq

7: θ̂pbq Ð argmin
θ

J pbqpθq

8: end for
9: Calculate d̄B from {θ̂pbq; b “ 1 . . . N}

10: if d̄B ą τ then
11: poor registration
12: else
13: successful registration
14: end if

2D images in a sweeping pattern and thus forming a 3D volume. The 2D phantom data were

collected using translational motions by a robotic arm. With better controlled ground truths,

this approach is ideal for preliminarily testing the proposed techniques. Then, we further val-

idated the methods with 3D patient data under full rigid body motions in order to reveal their

performance for potential real clinical applications.

3.2.7 Phantom study

We imaged a Clarity QC phantom (Elekta AB), with the ultrasound probe attached to a

Cartesian gantry robot (Velmex, Inc. Bloomfield, NY, USA) to control the probe movements.

A laser level was used to set the orientation of the probe so that a) the image plane and the

motion plane of the probe would be parallel and b) the probe would be perpendicular to the

surface of the phantom. The former is to minimize any movement not on the image plane and
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Figure 3.4: The experiment setup. The phantom, ultrasound probe, the tracked markers and
the robot can be seen.

the latter, to assert only translation in one dimension of the images. The probe was also tracked

with a Polaris Spectra optical tracking system (Northern Digital Inc, Waterloo, ON, Canada);

this was used so that the true probe translation would be available (within the precision of

the tracker). Moreover, the tracking information was used to ensure correct movement of the

probe. Figure 3.4 shows the experimental setup.

The following procedure was used to acquire the images. First between 15 to 20 frames

were captured. The probe was moved then in the lateral direction for 10, 15, or 20 mm. After
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each translation, another 15 to 20 frames were captured and the two image sets, from before

and after the translation, were registered.

This was repeated for 8 different runs. Between runs, the amount of probe movement,

the settings of the ultrasound machine, the part of the phantom which was imaged and the

medium (gel or water) were changed to produce a wide range of images with different quali-

ties. To have more variety in registrations, image sets from different runs were also registered.

These image sets were chosen so that they would be images from the same structure in the

phantom, with the same orientation of the probe. The difference between them being the

settings of the ultrasound machine. Good and bad registrations were generated with the proce-

dure described in Section II.B. As a result, 1688 sets of registrations were used for supervised

learning methods, and 3376 sets for testing bootstrapping. The good vs. bad ratio is about 4:1.

For the supervised learning methods, features were extracted and different classifiers

were trained and evaluated. Bootstrapping was also carried out, with 20 bootstrap resam-

ples and τ “ 0.14 mm. τ was chosen based on the pixel size, which was 0.14 mm in this

experiment.

3.2.8 Patient Trials

For the experiment, ultrasound data were collected from one patient acquired during a

previously scheduled and planned radiotherapy treatment session for the prostate [63]. The

data were acquired using the same scanner mentioned in the previous section, and included
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7 separate treatment sessions to help increase the variability among the images. Imaging in

each session lasted about 4-10 min. The patient images were acquired in the context of an

Institutional Review Board (IRB) approved clinical study, and were not used to make clinical

decisions. The patients were undergoing radiation treatment and as such had bladders com-

fortably full and rectums empty, increasing internal patient anatomy uniformity with radiation

planning CT studies. During each session, the patient was positioned supine, legs akimbo,

with the probe imaging via the perineum. In this scan position, the prostate can be imaged

between the pelvic bones. The probe position was adjusted to obtain a good image of the

prostate with, and fixed in place. The patient was instructed not to voluntarily move dur-

ing the procedure. The probe continuously sweeps the image plane, forming a continuously

updated 3D dataset, and a total of 2193 images were acquired from all the sessions. Intrafrac-

tional target tracking is performed by registering the current 3D dataset to the first reference

dataset and the quality of registration was visually inspected by a clinical expert.Using the

same procedure, we generated a set of good and bad registrations, and used them to compare

the learning methods against bootstrapping. For bootstrapping, 43328 registrations were used,

and for supervised learning, 21664 were used. The ratio between good and bad registrations

is about 4:1. Since the resolution of the volumes were different from that of the experiment

images, the threshold, τ was set to 0.4 mm, which is the axial voxel resolution of the volumes.
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Figure 3.5: Feature importance according to RF. (a) shows the feature importance for the 2D
experimental data and (b) for that of the patient data. The features above the dashed lines are
those chosen for classification.

Registration was performed using the Insight Toolkit (ITK) [64] parametric registration

framework by optimizing the Normalized Cross Correlation (NCC) computed over the se-

lected pixels using gradient descent (specifically the regular step gradient descent optimizer

in ITK was used) and linear interpolation. In the 3D case, the images are collected on a
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fan-shaped geometry. To avoid unnecessary interpolation errors the images were directly reg-

istered as originally sampled (i.e., in the fan shape) using the methodology described in [65].

For the 2D experiment, 35% of the pixels in the ROI were randomly selected to build the cost

function. Also, a translation transformation model was used since the movement was in one

direction. For the 3D data, 20,000 voxels were used to construct the cost function. As for the

transformation model, one was used to accommodate the non-rectilinear image frames which

is the result of using a wobbler probe [65]. The supervised learning methods were imple-

mented in Python using the scikit-learn library [61].

3.3 Results

3.3.1 Feature selection

The feature importances for the 2D and 3D data can be seen in Figures 3.5(a) and 3.5(b)

respectively, and the features shown in the figures above the dashed lines are selected to be

used for the classifiers. Although DO was ranked as the most prominent feature for both cases

classifying good and bad registrations, the rest of the features differ.
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3.3.2 Registration evaluation

The results for registration evaluation using bootstrapping and machine learning meth-

ods are shown in Table 3.1 for both 2D phantom and 3D patient data. In our experiments,

supervised learning methods outperformed the bootstrapping method in terms of accuracy.

An advantage of using bootstrapping is that it does not require training data for classifying at

the expense of lower classification accuracy and higher computation complexity. Another ad-

vantage of the bootstrapping method is the higher sensitivity of 99.92% compared to 96.15%

and 96.95% for LDA and RF respectively for the patient data. This makes bootstrapping a

reliable method for ensuring the registration is yielding correct results. To further demonstrate

the performance of the techniques, their receiver operating characteristics (ROC) curves for

assessing the registrations of patient data are shown in Fig. 3.6.

3.4 Discussions

For supervised learning techniques, we have explored existing features and explored

new ones for classifying good and bad registrations. For the 2D and 3D data, the selected fea-

tures differ greatly, and this is likely a result of the differences in image dimensions, imaging

contents, as well as the degrees of freedoms in registration. From Table 3.1, we have observed

a superior registration assessment quality when using machine learning approaches than boot-

strapping. Besides the inherent power of machine learning techniques, the phenomena may
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2D 3D

BOOT LDA RF BOOT LDA RF

ACC 86.54% 99.35% 99.76% 87.45% 96.97% 97.73%
MCC 66.58% 97.63% 99.14% 75.14% 92.42% 94.29%

TP 16.19% 15.94% 16.47% 26.94% 25.92% 26.14%
TN 70.35% 83.41% 83.29% 60.51% 71.05% 71.59%
FP 12.80% 0.06% 0.18% 12.53% 1.99% 1.45%
FN 0.65% 0.59% 0.06% 0.02% 1.04% 0.82%
N 3376 1688 1688 43328 21664 21664

Sensitivity 96.12% 96.42% 99.64% 99.92% 96.15% 96.95%
Specificity 84.60% 99.93% 99.79% 82.84% 97.28% 98.02%

Table 3.1: ACC and MCC are accuracy and Mathews Correlation Coefficient (MCC) [66];
TP,TN,FP and FN are percentages of true positive, true negative, false positive and false neg-
ative relative to the total number of samples, N. Sensitivity (true positive rate) and Specificity
(true negative rate) of the classifiers are also included

be partially explained by the employed data that lacked high variability. For the 2D data, the

images were collected from the same phantom. Although for the 3D data, the images were ob-

tained from seven different treatment sessions, the variabilities due to diseases and individual

anatomy of the data are relatively low. Thus, we postulate that this limitation may cause the

evaluation results to be slightly better. However, this does not mean that the classifiers were

over-fitted in the scope of the data. We will examine our methods based on multiple patients’

data in the future. In order to translate the proposed machine learning methods to clinical

applications, data will be gathered from more patient cases and also from human volunteers,

and the classifiers will be retrained to improve their generalizability. In the case of volunteers,

a wider range of imaging settings and patient motions can be explored, as there is no risk of
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Figure 3.6: ROC curves of different registration assessment methods for the 3D patient data.

affecting the patient’s treatment. Therefore, it is not required to retrain the system for every

new patient. It’s also worth mentioning that overall in practice , the samples were divided into

two sections, one which the training data were chosen from and the other which training data

were chosen from.

Aside from the distances from the ground truth image alignment, there can be other

factors, such as image noise, that can influence the registration quality. In our experiments,

we have attempted to incorporate variability in image quality in both phantom and patient
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data through varying image settings and obtaining images from different treatment sessions,

thus incorporating the factors in the experiments implicitly. Explicitly analyzing the effect

of individual factors, which require meticulous control during data acquisition and are very

difficult to isolate for patient data, is out of the scope of this work. However, the potential of

the proposed techniques has been demonstrated with real clinical data.

Both approaches mentioned in the thesis have advantages and disadvantages and there-

fore both can be viable choices depending on the application. The supervised learning ap-

proach has higher classification accuracy and is faster. More specifically, for each registration

to be assessed, the bootstrapping takes around 18 seconds while the machine learning methods

take less than 1 second. Note that the algorithms were implemented on a Window7 desktop

computer with a 16GB RAM and an Intel core i7-4770@3.40GHz processor. The bootstrap

method does not require training data, is less accurate, and has a higher computational cost.

As a result, supervised learning methods are a better fit for intrafraction motion management,

where speed and accuracy are critical. Nonetheless, bootstrapping can still be considered for

this application. Since the calculation of each bootstrap result is independent of the other, it is

possible to run the registrations in parallel and reduce the runtime. Moreover, bootstrapping

is also applicable in cases where the timing requirements for registration validation are not as

strict as the target tracking itself, whereby it can be calculated independently from the regis-

tration. Bootstrapping is a more natural fit for interfraction registration wherein the algorithm

does not need to run in real time. Also, as the patient is positioned, if a reliable registration
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can not be performed, the registration setup could be modified until the registration can be

reliably carried out. Due to the variation of the images from each day, acquiring the interfrac-

tion training data for supervised learning methods that generalize well would be a challenging

task, which makes bootstrapping a better choice for this application.

A contributing factor in bootstrapping having lower accuracy is the relatively higher

FP rate. Upon further investigation, we realized these FPs occur at steps close to where the

registration fails when the initial parameter is far from the true registration. However, due to

the randomness involved (the pixel selection), the registration result is successful. An example

of this is given in Figure 3.7. In Figure 3.7(a), a case of TP can be seen. The initial registration

parameter is far away from the true registration parameters (at step 4) and therefore the result

is a poor registration. By inspecting at the mean bootstrap distance, the same can be deduced.

In Figure 3.7(b), the registration is poor at step 4, however, judging by the bootstrap result,

it seems that the registration was poor from step 3 onwards. Although the registration at step

3 was successful, it was not reliable and had a good chance of failing. Using bootstrapping

enables us to detect these cases. From a technical perspective it adds to the number of false

positives, but from a practical perspective it ensures that the registration result is reliable.

It should be acknowledged that bootstrapping cannot detect the bias as briefly mentioned

in [52]. For instance if the minimum of the cost function is at a distance from the true

parameters, caused by the interpolation for example, bootstrapping would fail to detect the

bias. In this work, we have intentionally neglected the bias. As shown in [52] bias of image
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(a) (b)

Figure 3.7: Figures showing the registration error as the initial parameters are moved further
away from the true result. The x-axis shows the number of steps away from the true regis-
tration parameters. (a) and (b) were generated from different bootstrap sampling of the same
image pair.

registration algorithms is often quite small, and in this work, we adopted the same assumption

as in [52]. As for supervised learning methods, the bias is detected through the features that

are independent of the optimization, such as orthant scores, MI, KL-divergence, etc.

We focused on rigid registration to follow the intrafraction motion of the prostate for two

main reasons. First, in most current radiotherapy workflows in the clinic, only 3 dimensional

(translational), or in certain cases, 6 dimensional (3 translations & 3 rotations) patient position-

ing is possible. Adaptation of the dose delivery plan to account for deformed anatomy remains

an open research problem. Second, for the in vivo data collected, no rectal probe or balloon is

used. Under these conditions, while some nonlinear deformation may occur, the majority of

the motion can be described by a combination of rotations and translations [67]. Deformations

of the prostate during treatment are considered relatively small with respect to the margins in
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use. To help select features for supervised learning methods, we employed RF, which has been

employed previously in image feature selection in medical image analysis [68,69] and offered

satisfactory results. While there are also many other techniques for feature selection, a com-

prehensive comparison is out of the scope of this thesis and will be studied in a future work.

Furthermore, the bootstrapping method introduced here is not dependent on the registration

framework, it can be used in any other case where displacement is calculated with minimal

changes. One area this could be of use is for verification of elastography which was presented

in chapter 2.

3.5 Conclusion

In this work, we proposed to use bootstrapping and supervised learning methods (i.e.,

LDA and RF) to assess ultrasound registration quality. By using both phantom and real clinical

data, the two categories of methods were evaluated and compared against each other. While

both bootstrapping and supervised learning methods demonstrate good performance, the latter

showed better accuracy. In addition, we explored existing features and devised new features

that are essential given the unique characteristics of ultrasound images to robustly evaluate

the registration quality using machine learning methods. To the best of our knowledge, it is

the first time that automatic registration assessment techniques are proposed for ultrasound

imaging, which is widely used in image-guided procedures.
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Chapter 4

Conclusion and Future Work

4.1 Conclusion

Ultrasound imaging is a popular modality due to it being safe, non-invasive, easy to

use and relatively cheap compared to other modalities. This thesis was focused on two main

topics. Firstly, estimating deformation in ultrasound images and secondly, verification of an

estimated deformation. In chapter 2, a method for displacement estimation was introduced

for ultrasound elastography. In chapter 3, methods for deformation verification of ultrasound

images were introduced and discussed in the context of ultrasound radiotherapy.

Ultrasound elastography is a technique which is used to estimate the mechanical proper-

ties of the tissue. This is done by estimating the displacement between two RF frames acquired
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before and after a deformation in the tissue. A common method for calculating the displace-

ment is to divide the RF frame into windows and calculate the displacement with correlation

based methods. This method can fail for cases with large signal decorrelation. For this reason,

dynamic programming was used to calculate displacement on all the pixels on an RF-line.

Although this method improved on the previous work, it still fails with signal decorrelation.

Therefore, we proposed a method to calculate the displacement on a tree instead of a single

RF-line. By using more information from the frames, we were able to reduce the displacement

error. We verified this by testing our method on simulation, phantom and patient data. As a

result, the deformation field was more accurate which results in better diagnostics.

Ultrasound is also used during radiotherapy. In case of prostate radiotherapy, the prostate

is imaged transperineally using ultrasound and tracked in the course of the treatment. This

tracking is done by registering the acquired 3D volumes with a reference volume. The quality

of these registration have an important factor in the outcome of the treatment. In order to eval-

uate this quality, we proposed two methods based on supervised learning and bootstrapping.

We evaluated our methods on 2D phantom data and 3D patient data. According to our results,

supervised learning performed better in terms of accuracy and computational time; that is in

cases where enough training data was available. However, availability of training data is not

always guaranteed and in these cases, bootstrapping can be utilized. Bootstrapping also of-

fered higher sensitivity which makes it a tool for ensuring the reliability of registration setups.

The contributions in this chapter was threefold. First, we proposed new features to be used
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with the supervised learning method. To the best of our knowledge, dissimilariy probes and

the orthant scores have not been used as features for registration quality evaluation. Second,

we introduced the utilization of bootstrapping for ultrasound guided radiotherapy. Third, we

compared the two approaches and offered usages for different case scenarios. The combina-

tion of higher computational complexity of bootstrapping and its sensitivity makes it an ideal

candidate for inter-fraction registration. The fact that acquiring training data for this case us-

age is cumbersome also adds to the value of using bootstrapping. However, for inter-fraction

registration, supervised learning methods are more viable due to their better accuracy, runtime

and availability of training data.

4.2 Future work

In chapter 2 we introduced a new method to calculate displacement on a tree. Although

we saw improvement over the previous methods there is room for improvements in terms of

error and computational time. In the proposed method, the tree used has a simple structure.

A structure that covers all the RF frame would use more information from the ultrasound

images and further reduce the error. Also this method can be parallelized to run on Graphical

Processing Units for speedups.

In chapter 3, we introduced bootstrapping and compared it with supervised learning

methods for registration quality evaluation. In the supervised learning methods, the feature

ranking method used can be further improved to choose better features. For instance, by using
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Minimum Redundancy Maximum Relevance (mRMR) technique [70], more relevant features

can be chosen. Also in bootstrapping, the merit used to classify the registration is fairly

simple. A simple classifier can be used to train on the bootstrap results to take advantage of

more information from these results, which should increase the accuracy of the method.
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