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Highlights

− Developing algorithms transforming model checking RTCTLcc into model check-
ing RTCTL

− Implementing a transformation toolkit engine with user interface on top of
NuSMV

− Proving the soundness of the transformation technique

− Analyzing the time and space computational complexity of the RTCTLcc model
checking
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Abstract

A new logical language for real-time conditional commitments called RTCTLcc has
been developed by extending the CTL logic with interval bounded until modalities,
conditional commitment modalities, and fulfillment modalities. RTCTLcc allows us to
express qualitative and quantitative commitment requirements in a convenient way.
These requirements can be used to model multi-agent systems (MASs) employed in
environments that react properly and timely to events occurring at time instants or
within time intervals. However, the timing requirements and behaviors of MASs need
an appropriate way to scale and bundle and should be carefully analyzed to ensure
their correctness, especially when agents are autonomous. In this paper, we develop
transformation algorithms that are fully implemented in a new Java toolkit for au-
tomatically transforming the problem of model checking RTCTLcc into the problem
of model checking RTCTL (real-time CTL). The toolkit engine is built on top of
the NuSMV tool, effectively used to automatically verify and analyze the correctness
of real-time distributed systems. We analyzed the time and space computational
complexity of the RTCTLcc model checking problem. We proved the soundness and
completeness of the transformation technique and experimentally evaluated the valid-
ity of the toolkit using a set of business scenarios. Moreover, we added a capability in
the toolkit to automatically scale MASs and to bundle requirements in a parametric
form. We experimentally evaluated the scalability aspect of our approach using the
standard ordering protocol. We further validated the approach using an industrial
case study.
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1. Introduction

The number of formalisms that purportedly facilitate the specification and mod-
eling of social commitments, commitment actions, and commitment properties for
concurrent and reactive multi-agent systems (MASs) has exploded over the last years.
First-order approaches and temporal logic approaches are the most famous formalisms
that can be effectively used to reason about social notions, specifying and modeling
multi-agent interactions. Choosing one of them is determined by (1) the data do-
mains over which MASs under investigation operate [Chesani et al., 2013; Chopra
and Singh, 2015], (2) the verification techniques, which can be used to verify the
compliance of MASs with specifications [El-Menshawy et al., 2011, 2015; El-Kholy
et al., 2014], and (3) the expressive power, which can consider deadline constraints,
complex expressions, and nested commitments in an integrated framework [Chopra
and Singh, 2015; Torroni et al., 2010].

All the current verification techniques employed in first-order approaches that
have been put forward to reason about and verify the correctness of social notions
were performed at the run-time phase (see, for example, [Chesani et al., 2013]). Be-
cause bugs/faults/errors in real-time reactive MASs can be subtle and are perhaps
life-threatening, it is very critical to verify the correctness of these systems at the
design-time phase. That is, the design of these systems must meet hard real-time
requirements before proceeding to implement them. The consideration of formal ver-
ifications at design-time is recently validated in industrial domain. For example, in
the complex area of avionics, although the standard DO-178B1 has been successfully
operated without producing fatal errors/bugs in the implementation of given software
specifications, the cost of complying with the standard is firmly substantial. This is
not only because “projects can spend up to seven times more on verification than on
other development activities” but also because the model complexity is going grad-
ually to increase [Moy et al., 2013]. Therefore, the avionics industry has updated
DO-178B with a new version termed DO-178C which incorporates a supplement of
formal methods carried out at design-time and known as DO-333.

In this article, we are concerned with the temporal logic approaches. Computation
tree logic (CTL) and linear temporal logic (LTL) are the main sub-classes in these
approaches. Specifically, the LTL-based approach considers time to be a linear se-
quence, while the CTL-based approach adopts a structured tree time in which some
nodes (states) have more than a single successor state. It is known as a fact that
CTL and LTL are incomparable expressive wise [Clarke et al., 1999]. On the one

1It provides the guidance for objectives, activities, and data required to get a certification for
stringent avionics software.
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hand, theoretically, the program-complexity of CTL and LTL model checking is the
same, NLOGSPACE-complete [Schnoebelen, 2002]. However, the formula-complexity
of model checking CTL is only LOGSPACE-complete, while PSPACE-complete for
LTL model checking [Schnoebelen, 2002], which makes CTL in this very particular re-
spect more efficient than LTL. In the literature, an extension of LTL that allows us to
specify quantitative properties has been proposed under the name of metric temporal
logic (MTL). In the MTL logic, the modalities of LTL are enriched with timing con-
straints [Koymans, 1990]. However, the problem of model checking MTL under the
continuous semantics is undecidable [Ouaknine and Worrell, 2008]. Several fragments
of MTL have been introduced with widely different semantic models and complexities.
The most efficient ones are MTL0,∞, the metric interval temporal logic (MITL), and
the bounded MTL (BMTL). MTL0,∞ has an efficient PSPACE-complete model check-
ing algorithm [Alur et al., 1996]. However, its expressive power is restricted because
it requires the constraining timing interval in any temporal modality to have either
left endpoint 0 or right endpoint∞. MITL is a more general and expressive fragment
of MTL and augments the constraining time interval in all temporal modalities with
the aim to be non-singular and to prohibit punctual specifications. However, the
problem of model checking MITL is EXPSPACE-complete [Ouaknine and Worrell,
2008]. BMTL is the subset of MTL in which all constraining time intervals have finite
length. As for MITL, the problem of model checking BMTL is EXPSPACE-complete
[Ouaknine and Worrell, 2008].

On the other hand, we adopt the CTL-based approach because it (1) allows us to
balance between expressiveness and verification complexity as we showed in [El-Kholy
et al., 2014, 2015], and (2) is compatible with the formalism of interpreted systems
used usually to model concurrent and reactive multi-agent systems [Fagin et al., 1995].
The idea is to enrich the standard CTL logic with modalities to represent, model,
and reason about social conditional commitments and their fulfillment. The resulting
commitment language (CTLcc) is a special specification language as it incorporates
modalities required to flexibly model interactions among intelligent and autonomous
agents that cannot be expressed in pure CTL [El-Kholy et al., 2014, 2015]. The
intelligence and autonomy properties refer to the fact that agents are not only reac-
tive, but also proactive and have social abilities and constraints, which are modeled
through social commitments. Moreover, since the antecedent and consequence of a
commitment are arbitrary CTLcc state formulae, they could be commitment formulae
as well, which in turn produces a nested commitment (i.e., a commitment to bring
about another commitment if a particular commitment holds).

1.1. Current challenging issues

The main challenge of MASs modeling is how to express time bounded properties
for autonomous and interacting multi-agent systems employed in environments that
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react properly and timely to events occurring at time instants or within time intervals
in an intuitive and reasonable way. This challenge raises several sub-challenges that
need to be addressed including (1) how to model the autonomy, social interactions
and flexibility of agents, (2) how to balance social and behavioral constraints with the
aspects of intelligence, autonomy, and flexibility of participating agents in the MAS
system, (3) how to model check time bounded properties of MASs, especially when
agents are autonomous and have to interact with other agents in a social setting, and
(4) how to scale up the MAS system.

Regarding the first challenge, the commitment language CTLcc can model success-
fully interactions among agents in a flexible way while preserving their intelligence
and autonomy, as we mentioned above. For example, when an agent is committed
to send the payment, he can send it after or before the ordered goods are delivered
as along as it is acceptable in the business level. The autonomy is preserved as an
agent is only in charge of his commitments, which he created. However, CTLcc still
inherits the main limitation of the pure temporal logics including CTL and LTL. The
limitation is due to deficiently lacking the capability of measuring the response time
(or elapsed time). This time is essentially related to the timing of the event occur-
rence and the receiving response. The most common methods used to measure real
time constraints in the logic context are (1) maximal distance between an event and
the receiving response (simply called time-out or deadline), and (2) exact distance
(simply called delay). The qualitative commitment properties principally consider
the abstract temporal ordering of events using before and after relations. To clarify
and explain this limitation, we present the notation SCC(i, j, ψ, ϕ) to specify a strong
conditional commitment from an autonomous agent i to another autonomous agent
j that if the antecedent ψ holds, then the consequence ϕ will hold as well. Now, we
consider the following example:

Example 1. The control software agent in the landing gear system commits to even-
tually retract gears and close doors to take off the aircraft when the pilot agent has
been pushed up the handle and stays up [Boniol and Wiels, 2014].

The requirement stated in Example 1 can be formally expressed using our previous
CTLcc logic as a qualitative commitment property as follows:

AG(SCC (ContSoft ,Pilot ,AG PushedUp,AF (RetractGears ∧ CloseDoors)))

Clearly, it is not sufficient for the control software to eventually retract gears and close
doors along all paths to take off the aircraft because the timing constraint on when
the events RetractGears and CloseDoors can occur relative to the event PushedUp
should be defined. To address the limitation of CTLcc, we added the bounded until
modalities. The resulting real-time commitment language is so-called RTCTLcc [El-
Kholy et al., 2015].
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Regarding the second challenge, the new modalities are able to express quanti-
tative temporal requirements by adding the timing constraints (e.g., deadlines) on
the behavior of reactive systems. The hard real-time constraints are defined as time
instants or time intervals. Therefore, the multi-modal RTCTLcc logic balances social
and behavioral constraints with the aspects of intelligence, autonomy, and flexibility
of participating agents in the MAS system in a faithful and convenient way. This
is simply because agents can still fulfill or violate their commitments before the ex-
piration of the predefined deadlines. For example, the new modalities contribute in
expressing timing deadlines in the antecedent and consequence properties within the
realm of commitments. Therefore, the above software requirement can be defined as
quantitative commitment property as follows:

AG(SCC (ContSoft ,Pilot ,AG PushedUp,AF≤15 (RetractGears ∧ CloseDoors)))

The time interval superscribing the eventuality operator F restricts the events
RetractGears and CloseDoors of the control software agent to occur in no more than
15 time units (for instance seconds) from the occurrence of the event PushedUp of
the pilot agent. The quantitative requirements can generally help designers of MASs
effectively model time-critical systems such as the landing gear system [Boniol and
Wiels, 2014] and the health-care system for detecting Parkinson patients [Garćıa-
Magariño and Navarro, 2016]. While RTCTLcc permits reasoning about both qual-
itative and quantitative requirements, the MTL, MTL0,∞, MITL and BMTL logics
provide only quantitative properties and the MTL0,∞ and MITL logics do not support
singular/time instants. Moreover, BMTL is not capable of expressing invariance, a
basic safety specification.

1.2. Motivations and contributions

Regarding the third challenge, because agents are autonomous and have to interact
with other agents in a social setting and real-time environments, we need to formally
analyze their behaviors (bounded and unbounded). Different kinds of formal analysis
can be classified into three categories (1) deductive methods such as theorem proving,
(2) model checking, and (3) abstract interpretation. We elected the second class where
the model checking method explores all possible behaviors of an RTCTLcc model to
determine whether an RTCTLcc property is satisfied or not. The first motivation
and contribution is to develop a toolkit for automatically transforming the problem
of model checking RTCTLcc into the problem of model checking RTCTL, a real-time
CTL [Emerson et al., 1992]. RTCTL is an extension of the qualitative CTL logic
to deal with different sorts of real-time applications. To meet this aim, we develop
two algorithms for transforming RTCTLcc model and formulae and these algorithms
are implemented in our toolkit using Java. The toolkit engine is built on top of the
NuSMV model checker [Cimatti et al., 2002]. The second motivation and contribution
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is to analyze the computational complexity of the decision problem of RTCTLcc model
checking. Specifically, we compute the time and space complexity of this decision
problem with respect to explicit models and concurrent programs, respectively. These
two aspects give a meaningful picture of the actual computational difficulty behind the
problem. The space complexity of the RTCTLcc model checking problem is PSPACE-
complete, but the corresponding ones of MITL and BMTL are both EXPSPACE-
complete [Ouaknine and Worrell, 2008], although RTCTLcc supports time instants
and can express invariance. The third motivation and contribution is to test and
evaluate the effectiveness of our toolkit using a set of business scenarios.

Regarding the fourth challenge, our motivation and contribution is to add a ca-
pability in the toolkit to automatically scale MASs. To know the required resources
(e.g., memory), we increase the number of agents requesting services from the system
and bundle automatically the requirements that can check the behaviors of those
agents in a parametric form (see Section 5.3 for more details). The performance of
the toolkit regarding the scalability aspect is evaluated through 12 experiments using
the standard ordering protocol wherein participating agents are increased from 3 to
66. The last motivation is to check the feasibility of our toolkit in industrial domain.
We used a real and industrial case study called aircraft landing gear system [Boniol
and Wiels, 2014] to further validate our technique.

This work continues as follows. In Section 2, we present the syntax and semantics
of RTCTLcc and some details and motivation examples. In Section 3, we present our
transformation technique. In Section 4, we analyze the computational complexity of
the RTCTLcc model checking problem. In Section 5, we present the full implemen-
tation of our transformation toolkit and experimentally test its effectiveness using a
set of business scenarios. In the same section, we show how to add the scalability
aspect into our toolkit and to evaluate its performance and feasibility using a widely
adopted business protocol and real and industrial case study. In Section 6, we discuss
the related work. We conclude and identify future research directions in Section 7.

2. The RTCTLcc logic

2.1. Syntax of RTCTLcc

The direct question is how to integrate timing constraints into an RTCTLcc for-
mula. The literature of real-time systems considered three possible solutions (1)
bounded temporal operators, (2) freeze quantification, and (3) explicit clock variable.
In our previous work, we used the amendment of Emerson et al. [1992] to the solu-
tion of bounded temporal operators. This amendment keeps the qualitative temporal
operators alongside quantitative temporal operators. Specifically, the interval tim-
ing constraints are superscribed the until operators to bound them; so eventuality
modalities will have a known end. For the time domain, we choose the set of positive
natural numbers denoted by N+.
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Definition 1 (Syntax of RTCTLcc ). The syntax of RTCTLcc is inductively defined
as follows:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | EXϕ | EGϕ | E(ϕ U ϕ) | E(ϕ U [m..n] ϕ)

| A(ϕ U [m..n] ϕ) | CC | Fu
CC ::= WCC(i, j, ϕ, ϕ) | SCC(i, j, ϕ, ϕ)

Fu ::= FuW (i,WCC(i, j, ϕ, ϕ)) | FuS(i, SCC(i, j, ϕ, ϕ))

where:

− p ∈ PV is an atomic proposition. ¬ and ∨ are the usual Boolean connectives.

− E and A are the existential and universal quantifiers on paths.

− X, G and U are CTL path modal connectives standing for “next time”, “glob-
ally”, and “until” respectively.

− m and n ∈ N+ denote the bounds of time intervals where m ≤ n.

− U [m..n] stands for bounded until. This operator is used to abbreviate other even-
tuality bounded operators (see Table 1).

− i and j are two interacting agents. WCC, SCC, FuW and FuS stand for weak
and strong conditional commitments and their fulfillments respectively.

The syntactic grammar rules of RTCTLcc have in principle four different but
integrated parts: propositional part, qualitative part, quantitative part, and commu-
nication part.

2.1.1. Propositional part

The propositional part is, in fact, a propositional logic and consists of a set of
atomic propositions and a set of Boolean connectives. Propositions are declarative
statements that can be evaluated into true or false and represent essentially facts.
Each fact is declared using the perfective aspect in the English language. For ex-
ample, with respect to the NetBill protocol, atomic propositions will represent state-
ments such as “the requested goods have been delivered”, “the agreed payment has
been made”, and so on. We can also form more complex statements according to
the Boolean connective rules. The following Boolean connectives can be abbrevi-
ated in terms of the above as usual: ∧ for conjunction, ⇒ for implication, ≡ for
equivalence, and > for the constant true proposition. Because performing actions is
the basic method to make communication among agents, we introduce the following
schema to represent the atomic propositions: Noun(key*,action). The identifi-
cation key is optional; so we can remove it if we do not need it. An example is
p = Payment(pID , sent), meaning that the payment with the key pID has been sent
or simply p = Payment(sent).
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2.1.2. Qualitative part

The temporal part (1) allows us to represent and reason about temporal quali-
tative requirements and to reason about the satisfaction of propositions in the past
and future modes, and (2) uses the quantifiers to restrict the execution of paths. A
survey about the important role of qualitative requirements in developing qualitative
optimization techniques used in software engineering practical problems is introduced
in [Santhanam, 2016]. The formula EXp is read as there exists a path such that at
the next state of the path p holds, EGp is read as there exists a path such that p holds
globally along the path, and E (¬Item(delivered) U ¬Item(delivered) ∧ Payment(sent))
is read as there exists a path such that ¬Item(delivered) ∧ Payment(sent) eventually
holds and ¬Item(delivered) continuously holds until then. That is, the payment will
not send until the requested goods have been delivered. Table 1 defines the abbrevi-
ations of other qualitative operators.

Table 1: Abbreviations of RTCTLcc qualitative operators

EFϕ ≡ E(> U ϕ)
AGϕ ≡ ¬EF¬ϕ
A(ϕ U ψ) ≡ ¬E(¬ϕ U (¬ψ ∧ ¬ϕ)) ∧ ¬EG¬ϕ
AFϕ ≡ A(> U ϕ)
AXϕ ≡ ¬EX¬ϕ

2.1.3. Quantitative part

The quantitative part bounds the eventuality of qualitative operators. E(ϕ
U [m..n] ψ) (respectively, A(ϕ U [m..n] ψ)) can be read as “there exists a path such
that (respectively, along all paths) ψ eventually holds at time instant i within the
interval [m..n] and ϕ continuously holds from m until then”. The sequent is some
examples of the quantitative part.

Example 2. Figure 1 illustrates the models of the following three RTCTLcc formulae:
AG≤3 p, EF≤2 p, and AG≤2 q∧AF≤4 p. The quantitative modalities (AG≤m, EF≤m,
and AF≤m) are defined in Table 2. The timing constraint m in these modalities defines
the “maximum number of permitted transitions along a path before” the propositional
variables (p and q) hold [Emerson et al., 1992]. For example, AF≤4 p means that p
will inevitably occur in at most four time units or steps.

Example 3. RTCTLcc can be accurately used to specify time dependencies. The
formula AG(p ⇒ AF≤20 q) means that p always leads to q in some future moment,
but not later than 20 time units.
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Figure 1: (a) AG≤3 p, (b) EF≤2 p, and (c) AG≤2 q ∧AF≤4 p

Example 4. The formula ¬EF≤2PIN (locked) means that whenever the PIN is locked,
then at least three erroneous tries have been performed. Also, it is not possible to ob-
tain money from the ATM machine in the same session if three mistakes are performed
without issuing intermediate reset: AG¬(E (¬Reset(performed) ∧ Error(performed)
U =3Money(delivered))). By avoiding this situation, the safety property is satisfied in
the ATM system.

Table 2 defines the abbreviations of other quantitative operators. The abbreviated
operators alongside basic operators allow us to define complex quantitative require-
ments. These requirements are relative as they depend on the occurrence of events;
instead of using a fixed reference point. Moreover, these requirements inevitably refer
to a global notion of time which does not need to be identified with the introduction
of a clock. In the table, EF=mϕ can be read as “there is one possible path through
which ϕ eventually holds exactly at time instant m”. Having the bounded opera-

Table 2: Abbreviations of RTCTLcc quantitative operators

EF≤mϕ ≡ E(> U≤m ϕ) ≡ E(> U [0..m] ϕ)

EF=mϕ ≡ E(> U [m..m]ϕ)

AF≤mϕ ≡ A(> U≤m ϕ) ≡ A(> U [0..m] ϕ)

AF [m..n]ϕ ≡ A(> U [m..n]ϕ)
EG≤mϕ ≡ ¬AF≤m¬ϕ
EG[m..n]ϕ ≡ ¬AF [m..n]¬ϕ
AG≤mϕ ≡ ¬EF≤m¬ϕ
AG[m..n]ϕ ≡ ¬EF [m..n]¬ϕ
E(ϕ U=m ψ) ≡ E(ϕ U [m..m] ψ)
E(ϕ U≤0 ψ) ≡ ψ ≡ A(ϕ U≤0 ψ) [Emerson et al., 1992]

tors held in the model, the corresponding unbounded ones can hold as well [Emerson
et al., 1992]. For example, A(ϕ U ψ) ≡ ∃m ≥ 0 s .t . A(ϕ U≤m ψ). In this case,

10
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there is no formal gain of the expressive power because there are direct translations
to get equivalent CTL formulae (e.g., EXϕ ≡ EF=1ϕ). However, when two logics
become equally expressive, there is a way to distinguish between them using a suc-
cinct property: How each logic can concisely express a given specification [Clarke
et al., 2009]. The succinct property is relevant when analyzing the complexity of the
model checking problem, because it might influence the size of a formula expressing
a given specification property, and thus the time needed to model checking it. The
positive result is, bounded operators are exponentially more succinct than CTL. Let
us consider the following example:

Example 5. The formula EF≤mp allows us to express brief specifications, which
would need formulae of exponentially larger size in CTL, formally:

EF≤mp ≡ p ∨ EXp ∨ EXEXp . . . ∨ EX . . . EX︸ ︷︷ ︸
m times

p

2.1.4. Communication part

The communication part focuses on modeling interactions among agents using
social commitments and their fulfillments modalities. By using these modalities to
express interaction requirements, the resulting properties are called communication
properties. The formula WCC(i, j, ψ, ϕ) (respectively, SCC(i, j, ψ, ϕ)) is read as
“agent i weakly (respectively, strongly) commits towards agent j to consequently sat-
isfy ϕ once the antecedent ψ holds”. Because the antecedent ψ and the consequence ϕ
in the context of commitment modality can be any arbitrary CTLcc formula, so they
would be qualitative and/or quantitative formulae. Commitment antecedents can
also express the past using the until operator in the usual way. Moreover, the main
difference between our two types of conditional commitments (weak and strong) is
that an agent can strongly commit only when there is a possibility that the antecedent
could be satisfied given that the model is known at design-time, thanks to the fact
that the model has finite states. The formula FuW (i,WCC(i, j, ψ, ϕ)) (respectively,
FuS(i, SCC(i, j, ψ, ϕ))) is read as “the weak (respectively, strong) conditional com-
mitment WCC(i, j, ψ, ϕ) (respectively, SCC(i, j, ψ, ϕ)) is fulfilled”. Examples of this
part are as follows:

Example 6. AG(SCC (ATM ,Cus ,EF≤2PIN (corrected),EF Money(delivered)))
specifies that the ATM machine always strongly committed to delivering money to the
customer when the PIN has been corrected within at most three attempts.

Example 7. The customer is strongly devoted to paying the rental amount on the
first three days of the rental period:

AG(SCC (Cus ,Age,EF Car(cID , disposed),EF [1 ..3 ]Payment(cID , sent)))
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According to Chopra and Singh’s first-order approach [Chopra and Singh, 2015], this
commitment is safe and expressive because the domain of its propositional variables
is extensionally quantified along execution paths and these variables are bound by
the occurrence of events, which are strongly connected by cID and restricted by the
timing interval. Therefore, the payment is expected for this rental car and every
payment action refers to a disposed of action via cID.

Example 8. After one day from disposing of the rental car, the customer sends the
agreed payment to fulfill its commitment:

EF
(
FuS (Cus , SCC (Cus ,Age,EF Car(cID , disposed),EF [1 ..3 ]Payment(cID , sent)))

)

The syntax of RTCTLcc also allows us to define nested commitments.

Example 9. The agency is strongly committed to the customer to withdraw the broken
car within two days as soon as the customer commitment is satisfied. In this commit-
ment, the customer is obliged to notify the agency for breaking down at exactly one
day when the accident is reported:

AG
(

SCC (Cus ,Age, SCC (Cus ,Age,Accident(reported),EF=1 Notice(cID ,

declared)),EF [1 ..2 ] Withdraw(cID , broken)
)

2.2. Semantics of RTCTLcc

To interpret RTCTLcc-formula, we define a logical model. In fact, this model
is generated from our extended version of the interpreted system formalism. The
formalism of interpreted systems provides a very popular framework to model MASs.
Specifically, in [Bentahar et al., 2012; El-Kholy et al., 2014; El-Menshawy et al.,
2013], we extended the original formalism introduced in [Fagin et al., 1995] with sets
of shared and unshared variables to account for agent communication. The extended
version of interpreted systems is composed of a set A = {1, . . . , n} of n autonomous
agents plus the environment agent e. Each agent i ∈ A is characterized by:

1. A set Li of finite local states. Each private local state li represents the whole
information about the system that the agent has at a given moment.

2. A set Acti of finite local actions available to the agent, including the fulfillment
actions and null action, which refers to the fact of doing nothing.

3. A set V ari of at most n − 1 local variables to model communication channels
with all other agents. Through such channels values are sent and received as in
distributed systems. Intuitively, |V ari| ≤ n−1 as i might not have communica-
tion channels with particular agents.

12
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4. A local protocol function Pi : Li → 2Acti , which represents the decision-making
procedure of i and produces the set of enabled actions that might be performed
by i in a given local state.

5. A set ιi ⊆ Li of initial states.

6. A local transition function τi : Li×Acti → Li, which defines the evolution from
a local state to another local state given a local action a.

The environment agent e, which captures the information that might not pertain
to a specific agent, is characterized by Le, V are, Acte,Pe, ιe and τe. The notion of
social state (termed global state in [Fagin et al., 1995]) represents the screenshot
of all agents in the system at a certain moment. A social state s ∈ S is a tuple
s = (l1, . . . , ln, le) where each element li ∈ Li represents the i’s local state alongside
the environment state le. The set of all social states S ⊆ L1 × . . . × Ln × Le is a
subset of the Cartesian product of all local states of all agents and the environment
agent. All local transition functions are combined together to define a social transition
function τ : S × ACT → S in order to give the overall transition function for the
system where ACT = Act1 × . . . × Actn × Acte is called a joint or shared action
(one for each agent and environment agent) and represents a synchronous action of
the system as a whole. Let li(s) denotes the local state of the agent i in the social
state s and the value of a variable x in the set V ari at li(s) is denoted by lxi (s).
When li(s) = li(s

′), then for all x ∈ V ari we have lxi (s) = lxi (s′). To allow agent
i to communicate with agent j, they should share a channel, which is represented
by a shared variable between them. Formally, a communication channel between
i and j coexists as long as |V ari ∩ V arj| = 1. For the variable x ∈ Vari ∩ Varj ,
lxi (s) = lxj (s′) means that the values of x in li(s) for i and in lj(s

′) for j are the
same. Intuitively, the existence of a communication channel between i in s and j
in s′ means the value of the variable x has been sent by one of them towards the
other, therefore, i and j will have the same value for this variable as a consequence
of the communication between them. The valuation function V : AP → 2S defines
what atomic propositions are true from the set AP at system states. In summary,
the extended version of the formalism of interpreted systems is denoted by the tuple
IS+ =

(
{Li, V ari, Acti,Pi, τi, ιi}i∈A, {Le, V are, Acte,Pe, τe, ιe},V

)
.

Definition 2 (RTCTLcc models). A model M =
(
S, I, T, {∼i→j | (i, j) ∈ A2},V

)

is generated from IS+ =
(
{Li, V ari, Acti,Pi, τi, ιi}i∈A, {Le, Acte,Pe, τe, ιe},V

)
by

synchronising joint actions of n+ 1 agent models as follows:

− S is a set of social states for the system.

− I ⊆ ι1 × . . .× ιn × ιe is a set of initial states for the system such that I ⊆ S.
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− T ⊆ S×S is a total temporal relation (i.e., each state has at least one successor)
defined by (s, s′) ∈ T iff there is a joint action a = (a1, . . . , an, ae) ∈ ACT such
that τ(s, a1, . . . , an, ae) = s′.

− For each pair of autonomous agents (i, j) ∈ A2, ∼i→j⊆ S × S is a social ac-
cessibility relation defined by s ∼i→j s′ iff the following conditions hold (1)
li(s) = li(s

′), (2) (s, s′) ∈ T , (3) ∀x ∈ V ari ∩ V arj such that V ari ∩ V arj 6= ∅
we have lxi (s) = lxj (s′), and (4) ∀y ∈ V arj−V ari we have lyj (s) = lyj (s′).

− V : PV → 2S is a labeling function defined as in IS+.

As in [Emerson et al., 1992], all transitions happen instantaneously in our quantitative
temporal model M , i.e., each transition takes a single time unit for execution from
a source state to a destination state. So, the duration of a transition can be called
either a weight or a cost. The underlying real-time model is discrete and has a tree
structure of states. Each tree represents a real-time system model. The model M is
unwound into a set of execution paths in which each path π = s0, s1, . . . is an infinite
sequence of social states increasing simultaneously over time such that si ∈ S and
(si, si+1) ∈ T for each i ≥ 0. π(k) is the k-th state of the path π. The set of all paths
starting at s is denoted by Π(s).

Definition 3 (Semantics of RTCTLcc). Given the model M , the satisfaction of
RTCTLcc formula ϕ in a state s denoted by (M, s) |= ϕ is recursively defined as
follows:

− (M, s) |= p iff s ∈ V(p),

− (M, s) |= ¬ϕ iff (M, s) 2 ϕ,

− (M, s) |= ϕ ∨ ϕ iff (M, s) |= ϕ or (M, s) |= ϕ,

− (M, s) |= EXϕ iff ∃π ∈ Π(s) such that (M,π(1)) |= ϕ,

− (M, s) |= EGϕ iff ∃π ∈ Π(s) such that ∀k ≥ 0, (M,π(k)) |= ϕ,

− (M, s) |= E(ϕ U ψ) iff ∃π ∈ Π(s) such that ∃k ≥ 0, (M,π(k)) |= ψ and
∀j, 0 ≤ j < k, (M,π(j)) |= ϕ,

− (M, s) |= E(ϕ U [m..n] ψ) iff ∃π ∈ Π(s) such that ∃i,m ≤ i ≤ n, (M,π(i)) |=
ψ and ∀j,m ≤ j < i, (M,π(j)) |= ϕ,

− (M, s) |= A(ϕ U [m..n] ψ) iff ∀π ∈ Π(s) such that ∃i,m ≤ i ≤ n, (M,π(i)) |=
ψ and ∀j,m ≤ j < i, (M,π(j)) |= ϕ,
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− (M, s) |= WCC(i, j, ψ, ϕ) iff ∀s′ ∈ S such that s ∼i→j s′ and (M, s′) |=
ψ, (M, s′) |= ϕ,

− (M, s) |= SCC(i, j, ψ, ϕ) iff (1) ∃s′ ∈ S such that s ∼i→j s
′ and (M, s′) |=

ψ, and (2) (M, s) |= WCC(i, j, ψ, ϕ),

− (M, s) |= FuW (i,WCC(i, j, ψ, ϕ)) iff ∃s′∈S such that s′ ∼i→j s and (M, s′) |=
WCC(i, j, ψ, ϕ) and (M, s) |= ϕ ∧ ¬WCC(i, j, ψ, ϕ),

− (M, s) |= FuS(i, SCC(i, j, ψ, ϕ)) iff ∃s′∈S such that s′ ∼i→j s and (M, s′) |=
SCC(i, j, ψ, ϕ) and (M, s) |= ψ ∧ ¬SCC(i, j, ψ, ϕ).

The meaning of our semantic rules of each modality is introduced in [El-Kholy et al.,
2015].

3. Transformation technique to model check RTCTLcc

The decision problem of RTCTLcc model checking is to check whether or not a
model representing a real-time MAS M satisfies a property expressed as RTCTLcc-
formula ϕ: Does (M, s) |= ϕ for all s ∈ I? where I is a set of initial social states.
In order to address this problem, a transformation has been acknowledged as an
alternative technique that transforms the problem of model checking MASs [Lomuscio
et al., 2007] and protocols [El-Menshawy et al., 2011] into existing model checking
approaches. This transformation technique reveals several advantages. Firstly, it
enables designers to use existing model checking tools rather than developing and
implementing a new tool to tackle the problem, which is not a straightforward task [El-
Menshawy et al., 2011; El-Menshawy et al., 2013]. Secondly, it provides a suitable way
to compare between different verification techniques with respect to the same model
checking problem [El-Menshawy et al., 2011; El-Menshawy et al., 2013]. Current
transformation techniques can be performed formally or informally. El-Menshawy
et al. [2013] criticized informal transformation techniques, as there are no formal rules
that can be semantically used to prove the correctness of the developed transformation
algorithms.

In this section, we present a formal transformation technique to transform the
problem of model checking RTCTLcc into the problem of model checking RTCTL
[Emerson et al., 1992], so that the NuSMV model checker is feasible [Cimatti et al.,
2002]. We selected the branching real-time temporal logic RTCTL for two technical
reasons. The first reason is that the RTCTL model is based on the Kripke structure as
our model. Therefore, the transformation process will only need a logarithmic space
to be performed. The second reason is that RTCTL enables us to use NuSMV to
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automatically verify the correctness of nested temporal modalities, which other real-
time model checkers, such as UPPAAL2, do not support. The sequent BNF grammar
presents the Emerson et al.’s RTCTL syntax [Emerson et al., 1992]:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | EXϕ | E(ϕ U ϕ) | EGϕ | EF [m..n]ϕ | AF [m..n]ϕ

| EG[m..n]ϕ | AG[m..n] | A(ϕ U [m..n] ϕ) | E(ϕ U [m..n] ϕ)

where m and n ∈ N+ define the timing constraint ranges and p ∈ PV is an atomic
proposition. From this syntax, RTCTL is CTL plus bounded modalities.

Definition 4 (RTCTL Models). A model Mt = (St, It, Tt, Lt) is a tuple where St is
a nonempty set of states, It ⊆ St is a set of initial states, Tt ⊆ St× St is a transition
relation, and Lt : St → 2PV is a labeling function assigning to each state a set of
atomic propositions to interpret this state.

The semantics of RTCTL formulae are similar to our semantics of RTCTLcc, except
the semantics of commitments and their fulfillments. Informally, the semantics of
RTCTL bounded modalities are given as follows:

− EF [m..n]p states that there is a path such that p holds in a future time instant
i where m ≤ i ≤ n.

− AF [m..n]p states that along all paths, p holds in a future holds in a future time
instant i where m ≤ i ≤ n.

− EG[m..n]p states that there is a path such that p holds in all future time instants
i where m ≤ i ≤ n.

− AG[m..n]p states that along all paths, p holds in all future time instants i where
m ≤ i ≤ n.

− E(p U [m..n] q) states that there is a path such that q holds in the future time
instant i where m ≤ i ≤ n and p holds in all future time instants j where
m ≤ j < i.

− A(p U [m..n] q) states that along all paths, q holds in a future time instant i where
m ≤ i ≤ n and p hold in all future time instants j where m ≤ j < i.

At this point, we are ready to present our transformation technique. It specifically
consists of two steps: model transformation and formula transformation. Figure 2
illustrates the workflow of our RTCTLcc model checking process using the transfor-
mation technique. Initially, we model the underlying MAS using our model M and
formalize the desirable property using RTCTLcc. By doing so, the transformation
technique starts. The following sections discuss in details this technique.

2http://www.uppaal.org/
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Figure 2: The process of model checking RTCTLcc

3.1. Transforming the RTCTLcc model

In this section, we develop an algorithm that automatically transforms the RTCTLcc

modelM = (S, I, T, {∼i→j | (i, j) ∈ A2},V) into the RTCTL modelMt = (St, It, Tt, Lt)
(see Algorithm 1). In lines 1 and 2, it transforms the set S of the system states and
the set I of initial states into the corresponding ones. The transformation process of
these sets is bijective (one-to-one correspondence). In line 3, the algorithm defines a
new set of atomic propositions by conjoining three sets of atomic propositions. The
description of each set is introduced in the algorithm. The new set is used by the func-
tion Lt to label states. In line 4, the algorithm proceeds to transform the transition
relations in T and the asymmetric closures of the accessibility relations to constitute
the transition relations in Tt according to two conditions. The first condition checks
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that if the two states have a transition relation in T , then this transition relation
becomes a transition relation in Tt. The second condition checks that if the current
state s has an accessible state s′ using the accessibility relation, i.e., s ∼i→j s

′, then
the algorithm checks that (1) if the symmetric closure of the accessibility relation is
not in Tt, then a new transition from s′ into s is added in Tt, (2) a new set of atomic
propositions is added in s′ alongside the atomic proposition labeling s′ using V in
the model M for the interacting agents i and j in order to distinguish the accessible
states s′ from s, and (3) the algorithm adds a new set of atomic propositions into the
label of s defined by V in the model M for the interacting agents i and j in order
to distinguish the asymmetric closure of the accessibility relation and to capture the
semantics of the fulfillment actions.

Algorithm 1 An RTCTLcc model M = (S, I, T, {∼i→j | (i, j) ∈ A2},V): An RTCTL
model Mt = (St, It, Tt, Lt)

1: It := I,
2: St := S,
3: Lt : St → 2PV

′
where PV ′ is defined as the union of the following three sets of

atomic propositions (i.e., PV ′ := PV ∪X ∪ Y ):

− The set PV := {p, q, . . . } of atomic propositions in the model M to capture
the semantics of bounded and unbounded modalities.

− The set X := {α1α1, α1α2, . . . , αnαn} for the social accessibility relation
∼i→j to capture the semantics of commitments.

− The set Y := {β1β1, β2β1, . . . , βnβn} for the symmetric closure of the social
accessibility relation ∼i→j to capture the semantics of fulfillment modalities.

4: The transition relation Tt combines the temporal transition T and asymmetric
closures of the accessibility relations under the sequent conditions: for states
s, s′ ∈ S,

1. If (s, s′) ∈ T , then (s, s′) ∈ Tt,
2. If s ∼i→j s

′, then:

− If (s′, s) /∈ Tt, then Tt := T ∪ {(s′, s)},

− Lt(s
′) := V(s′) ∪ {αiαj}, 1 ≤ i ≤ n and 1 ≤ j ≤ n, and

− Lt(s) := V(s) ∪ {βiβj}, 1 ≤ i ≤ n and 1 ≤ j ≤ n
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3.2. Transforming the RTCTLcc formulae

In this section, we develop an algorithm (refer to Algorithm 2) that automatically
transforms RTCTLcc formula ϕ into RTCTL formula F (ϕ) using a transformation
function F . Our transformation function is recursive with respect to the structure of
ϕ. The fragment of CTL in RTCTLcc is transformed directly into the corresponding
CTL fragment in RTCTL in lines 1, 2, 3, 4, 5, and 6. In lines 7 and 8, the algorithm
transforms the quantitative formulae into the corresponding ones. In lines 9, 10, 11,
and 12, the algorithm proceeds to transform our communication formulae according
to the defined semantics. For example, the weak commitment is transformed into an
RTCTL formula stating that along all paths in the next state if the transformation
of the antecedent ψ and the atomic proposition added to represent the accessibility
relation are true in this state, then the transformation of the consequence ϕ should
hold as well. For the transformation of the two fulfilment formulae, it is important to
add in the next state the proposition βiβj to precisely identify the commitment state
from which the current state is accessible in the original model and distinguish this
next state from any other next state that satisfies the commitment formulae without
having accessibility to the current state.

Algorithm 2 A RTCTLcc formula ϕ: A RTCTL formula F (ϕ)

1: F (p)=p, if p is an atomic proposition,
2: F (¬ϕ) = ¬F (ϕ),
3: F (ϕ ∨ ψ) = F (ϕ) ∨F (ψ),
4: F (EXϕ) = EXF (ϕ),
5: F (E(ϕ U ψ)) = E(F (ϕ) U F (ψ)),
6: F (EGϕ) = EGF (ϕ),
7: F (E(ϕ U [m..n] ψ)) = E(F (ϕ) U [m..n] F (ψ)),
8: F (A(ϕ U [m..n] ψ)) = A(F (ϕ) U [m..n] F (ψ)),
9: F (WCC(i, j, ψ, ϕ)) = AX((F (ψ) ∧ αiαj)⇒ F (ϕ)),

10: F (SCC(i, j, ψ, ϕ)) = EX(F (ψ) ∧ αiαj) ∧F (WCC(i, j, ψ, ϕ)),
11: F (FuW (i,WCC(i, j, ψ, ϕ))) = EX(βiβj ∧ F (WCC(i, j, ψ, ϕ))) ∧ F (ϕ) ∧
¬F (WCC(i, j, ψ, ϕ)),

12: F (FuS(i, SCC(i, j, ψ, ϕ))) = EX(βiβj ∧ F (SCC(i, j, ψ, ϕ))) ∧ F (ψ) ∧
¬F (SCC(i, j, ψ, ϕ)).

Theorem 1 (Soundness and Completeness of F ). Let M and ϕ be respectively an
RTCTLcc model and a formula and let F (M) and F (ϕ) be the corresponding model
and formula in RTCTL. We have M |= ϕ iff F (M) |= F (ϕ).

Proof. The proof of this theorem is by induction with respect to the structure of the
formula ϕ.
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− For RTCTL formulae, the result is straightforward because F (ϕ) = ϕ.

− For the formula ϕ = WCC(i, j, ψ, φ), we have (M, s) |= WCC(i, j, ψ, φ) iff
for every s′ ∈ S such that s ∼i→j s

′ and (M, s′) |= ψ, we have (M, s′) |= φ.
Consequently, from the definition of F (M) and F (ϕ), we obtain (M, s) |=
WCC(i, j, ψ, φ) iff for every s′ ∈ St such that (s, s′) ∈ Tt, α

iαj ∈ Lt(s
′), and

(Mt, s
′) |= F (ψ), we have (Mt, s

′) |= F (φ). By semantics of AX in RTCTL,
we obtain (Mt, s) |= AX((F (ψ) ∧ αiαj)⇒ F (φ)).

− For the formula ϕ = SCC(i, j, ψ, φ), we have (M, s) |= SCC(i, j, ψ, φ) iff (1)
there exists s′ ∈ S such that s ∼i→j s

′, and (M, s′) |= ψ, and (2) (M, s) |=
WCC(i, j, ψ, φ). Consequently, from the definition of F , we get (M, s) |=
SCC(i, j, ψ, φ) iff (1) there exists s′ ∈ St such that (s, s′) ∈ Tt, αiαj ∈ Lt(s

′),
and (Mt, s

′) |= F (ψ), and (2) (Mt, s) |= F (WCC(i, j, ψ, φ)) (which is proved
above). By semantics of EX in RTCTL, we obtain (Mt, s) |= EX(F (ψ) ∧
αiαj) ∧F (WCC(i, j, ψ, φ)).

− For the formula ϕ = FuW (i,WCC(i, j, ψ, φ)), we have (M, s′) |= FuW (i,WCC(i,
j, ψ, φ)) iff:

1. There exists s ∈ S such that:

(a) s ∼i→j s
′, and

(b) (M, s) |= WCC(i, j, ψ, φ), and

2. (M, s′) |= φ, and (M, s′) 2 WCC(i, j, ψ, φ).

Consequently, from the definition of F , we get (M, s′) |= FuW (i,WCC(i, j, ψ, φ))
iff:

1. There exists s ∈ St such that:

(a) (s′, s) ∈ Tt and βiβj ∈ Lt(s), and
(b) (Mt, s) |= F (WCC(i, j, ψ, φ)) (which is proved above), and

2. (Mt, s
′) |= F (φ), and (Mt, s

′) 2 F (WCC(i, j, ψ, φ)) (which is proved
above).

By semantics ofEX in RTCTL, we obtain (Mt, s
′) |= EX(βiβj∧F (WCC(i, j, ψ, φ)))∧

F (φ) ∧ ¬F (WCC(i, j, ψ, φ)).

− For the formula ϕ = FuS(i, SCC(i, j, ψ, φ)), the proof is similar to the case
of ϕ = FuW (i,WCC(i, j, ψ, φ)) by simply replacing F (WCC(i, j, ψ, φ)) and
F (φ) by F (SCC(i, j, ψ, φ)) and F (ψ), respectively, so the theorem.
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It is worth noticing that an RTCTLcc formula holds inM iff the corresponding RTCTL
formula holds in the RTCTL model obtained from M . In fact, we are discussing
heretofore the transformation of the model checking problem, meaning that any orig-
inal RTCTLcc formula ϕ in the original model M is equivalent to the model checking
of the transformed RTCTL formula F (ϕ) in the transformed model F (M), which
does not entail that any RTCTLcc formula can be expressed in RTCTL.

4. Complexity analysis

Given a model M and an RTCTLcc-formula ϕ, the complexity of its model check-
ing can be evaluated in terms of the size of the model |M | and the length of the
formula |ϕ|. The size of the explicit model can be computed by |M | = |S|+ |T |. The
length of ϕ is: |ϕ| = |ϕ′| + c where |ϕ′| is the length of the formula ϕ after deleting
time bounds and c is the summation of the lengths of the bit strings, which represent
the time bounds of ϕ in a binary format as shown by Emerson et al. [1992]. For
example, if ϕ = EF SCC(i, j, AF=5 p, q), then ϕ′ = EF SCC(i, j, AF p, q). So, we
have |ϕ′| = 7. The time bound 5 is represented by 101 in binary, which is a bit string
of length 3. Therefore, |ϕ| = 7 + 3 = 10.

In this section, we analyze the time and space complexities of the RTCTLcc model
checking problem. As our approach is transformation-based, we start by analyzing
the time complexity of transforming the RTCTLcc model and formula with respect
to explicit models, where all states and transitions are enumerated. Specifically, we
prove that these two transformations are linear with respect to the input RTCTLcc

model and formula. For the specific case of the formula transformation, the proof is
based on analyzing the size of the obtained RTCTL formula with respect to the size of
the input RTCTLcc formula. The idea is to show that the size of the output formula
is bounded by the size of the input formula subject to a constant c. The linearity of
these two transformations entails the P-completeness of the model checking problem of
RTCTLcc in explicit models. Given that, we proceed to analyze the space complexity
of the RTCTLcc model checking problem and prove its PSPACE-completeness with
respect to concurrent programs where the model has the form of a synchronized
product of m programs.

Proposition 1. The time complexity of transforming the RTCTLcc model is linear
with respect to the size of the input model M , i.e., O(|M |).

Proof. The proof is straightforward from the model transformation algorithm (see
Algorithm 1). Specifically, Algorithm 1 is an on the fly algorithm, which takes the
RTCTLcc model M as input and writes one by one the states (including the initial
ones), valuation function, accessibility relations, and transitions to produce the cor-
responding RTCTL model. All these transformation steps take a linear time with
respect to the size of the input, so the result.
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Proposition 2. Let ϕ be an RTCTLcc formula and F the transformation function
defined in Algorithm 2. There exists a constant c such that |F (ϕ)| < c|ϕ|.

Proof. The proof is by induction on the structure of the formula.

− For RTCTL formulae, the result is straightforward because |F (ϕ)| = |ϕ|.

− For the formula ϕ = WCC(i, j, ψ, φ), we have |F (ϕ)| = |F (ψ)| + |F (φ)| + 4.
Thus, by assumption that the proposition holds for the formulae ψ and φ, ∃c1, c2
s.t. |F (ϕ)| < c1|ψ|+ c2|φ|+ 4. Because |ψ| < |ϕ|, |φ| < |ϕ| and |ϕ| > 1, we get
|F (ϕ)| < (c1 + c2 + 4)|ϕ|.

− For the formula ϕ = SCC(i, j, ψ, φ), we have |F (ϕ)| = |F (ψ)|+|F (WCC(i, j, ψ, φ))|+
4. Thus, from the previous result and assumption, ∃c1, c2 s.t. |F (ϕ)| <
c1|ψ| + c2|WCC(i, j, ψ, φ)| + 4. Because |ψ| < |ϕ| and |WCC(i, j, ψ, φ)| = |ϕ|,
we obtain |F (ϕ)| < (c1 + c2 + 4)|ϕ|.

− For the formula ϕ = FuW (i,WCC(i, j, ψ, φ)), we have |F (ϕ)| = 2|F (WCC(i, j, ψ, φ))|+
6. Thus, ∃c1 s.t. |F (ϕ)| < 2c1|WCC(i, j, ψ, φ)|+6. Because |WCC(i, j, ψ, φ)| <
|ϕ|, we obtain |F (ϕ)| < (2c1 + 6)|ϕ|.

− For the formula ϕ = FuS(i, SCC(i, j, ψ, φ)), we have |F (ϕ)| = 2|F (SCC(i, j, ψ, φ))|+
|F (ψ)| + 6. Thus, ∃c1, c2 s.t. |F (ϕ)| < 2c1|SCC(i, j, ψ, φ)| + c2|ψ| + 6. So we
obtain |F (ϕ)| < (2c1 + c2 + 6)|ϕ|, so the proposition.

Proposition 3. The time complexity of transforming the RTCTLcc formula is linear
with respect to the length of the input formula ϕ, i.e., O(|ϕ|).

Proof. Algorithm 2 takes the RTCTLcc formula ϕ as input and writes in a recursion
manner the corresponding RTCTL formula according to the structure of ϕ. The
result follows from the fact that (1) the length of the recursion is bounded by the size
of the input formula ϕ, and (2) the size of F (ϕ) is bounded by the size of ϕ subject
to a constant (from Proposition 2).

Theorem 2. There exists a model checking algorithm for RTCTLcc formulae, which
runs in time O(|M | × |ϕ|).

Proof. It is known from Emerson et al. [1992] that RTCTL model checking can be
done in a linear time with respect to the size of the RTCTL model and formula,
i.e., O(|F (M)| × |F (ϕ)|). From Algorithm 1, M and F (M) have the same number
of states and the number of transitions in F (M) is at most 2|T | where |T | is the
number of transitions in M . Consequently, |F (M)| ≤ 2|M |, i.e., the size of F (M)
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is linear with the size of M , and since from Proposition 3 the length of ϕ is linear
with the length of F (ϕ), we conclude that the model checking of RTCTL can run
in O(|M | × |ϕ|). Because the transformations of the RTCTLcc model and formula
into the corresponding RTCTL model and formula are both linear with respect to the
input size (from Propositions 2 and 3), the time complexity of the RTCTLcc model
checking is O(|M | × |ϕ|) +O(|M |) +O(|ϕ|); so the result.

Theorem 3. The problem of RTCTLcc model checking is P-complete.

Proof. The upper bound is P, which follows from Theorem 2. The lower bound is
also P, which follows directly from the P-completeness of the CTL model checking
problem [Schnoebelen, 2002].

WhenM is given under the form of a synchronized product ofm structures/programs/
modules M1,M2, . . . ,Mm as in the symbolic model checker NuSMV, it is suitable to
analyze the problem of model checking RTCTLcc for concurrent modules.

Theorem 4. The space complexity of the RTCTLcc model checking problem is PSPACE-
complete with respect to concurrent programs.

Proof. In [Laroussinie et al., 2003], it is proven that model checking TCTLs (an ex-
tension of CTL with bounded until operators) is PSPACE-complete for concurrent
programs and also shown that TCTLs can subsume RTCTL. Thus, the upper bound of
model checking RTCTL is PSPACE. On the other hand, RTCTL can subsume CTL.
Because model checking CTL is PSPACE-complete for concurrent programs [Sch-
noebelen, 2002], the lower bound of model checking RTCTL is PSPACE as well. We
conclude that model checking RTCTL is PSPACE-complete for concurrent programs.
Moreover, it is proven in [El-Kholy et al., 2014] that CTLcc is PSPACE-complete for
concurrent programs. Thus, the RTCTLcc completeness in PSPACE follows from the
PSPACE-completeness of the two fragments CTLcc and RTCTL.

Remark 1. This result is also confirmed by the fact that (1) model checking RTCTL
is PSPACE-complete for concurrent programs, and (2) the size of respectively the
obtained RTCTL model and the obtained formula after transformation is linear with
the size of respectively the input RTCTLcc model and the input formula.

5. Implementation

We have fully implemented a new toolkit in Java which has two main components:
model transformation and formula transformation3.

3The toolkit with experiments are available at: https://users.encs.concordia.ca/

~bentahar/ISPLtoNuSMVTool.jar
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5.1. Implementing and Evaluating the toolkit

The first component of the toolkit implements Algorithm 1 introduced in Section
3.1. This component is responsible for automatically transforming RTCTLcc models
into RTCTL models. To test and evaluate the efficiency of the toolkit regarding
the model transformation, we adopted two business scenarios which are formalized
using our RTCTLcc model. Figure 3 shows the graphical user interface of the model
transformation process. This interface enables designers to design the local system of
each agent by drawing the required local states using the New State button in the
toolbar. Each drawn state has:

1. An identifier.

2. The values of shared and/or unshared variables.

3. A set of true atomic propositions.

4. A set of allowable actions collected in a pop-up menu such as the Connect

action, which links the source state with its destination state(s).

Figure 3: Screenshot of the graphical user interface of our toolkit

The figure specifically depicts the local system models of the customer and merchant
agents constituting the MAS introduced in the following business scenario:

Scenario 1. Let q=Payment(received) and p=Goods(delivered) be two propositions.
The business scenario formalized as ϕ = AG(WCC (Mer ,Cus , q ,AF≤3p)) specifies
that along with all paths globally the merchant weakly commits to deliver goods to the
customer within at most 3 days once she/he received the agreed payment.
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Notably, the dashed red arrows in the figure are the accessibility relations computed
by the toolkit. When the design process is completed, the designer can automatically
transform the local models of interacting agents into the SMV modules by pressing
the Model Transformation button such that a module name is taken from an agent
name. Moreover, our toolkit adds the main module to:

− Instantiate all SMV modules. In this scenario, the merchant and customer
modules are instantiated.

− Define the required atomic propositions.

− Define formulae

− Define initialization values

The second component of our toolkit implements Algorithm 2, which is responsible
for automatically transforming RTCTLcc formulae into RTCTL formulae. Figure 4

Figure 4: Screenshot of the formula transformation component and parser check

displays the RTCTLcc formula panel and a set of RTCTLcc operators in the form
of command buttons that can help designers write, edit, and modify their desirable
properties. The designers only insert the required atomic propositions. The figure
also shows the quantitative formulae and the local models of the customer and agency
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agents in the business scenario introduced in Example 7. When all the required
properties are added, the designers can use the Formula Transformation button
to transform these properties into RTCTL formulae. Moreover, we implemented a
parser that checks the legality of the RTCTLcc syntax. The parser also supports other
capabilities, such as displaying error messages and suggesting possible solutions to
comply with the defined RTCTLcc grammar. An example of a correct legal RTCTLcc

formula is shown in Figure 4.

5.2. The toolkit engine

The toolkit engine uses the NuSMV model checker as a core component to perform
the verification process. Figure 5 shows, on the left, the generated NuSMV modules
of the business scenario introduced in Example 7. The Launch NuSMV button runs

Figure 5: Screenshot of the generated NuSMV modules alongside verification results

NuSMV with a set of batched commands. Notice from the figure that the present
case study has two quantitative formulae and the inserted atomic propositions are
preceded with the DEFINE keyword, while the transformed formulae are preceded with
the SPEC keyword in the automated main module. The verification results displayed
in the right panel are the number of reachable states and total time in milliseconds.
The total time (2.4994ms) is the summation of (1) the time of transforming the model,
(2) the total time of transforming the formulae, and (3) the time of the verification

26



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

process (or execution time). To show the transformation time of each formula, we
can press on the Time/Formula button which pups up an information dialog box as
shown in Figure 5. It is worth noticing that the time of transforming our model M ,
the total time of transforming the formulae and time of transforming each formula
are linear with respect to the size of the inputs, which confirms our theoretical results
introduced in Section 4.

5.3. Scalability aspect of the toolkit

We added another capability to our toolkit to scale MASs with respect to a certain
modeling interleaved technique. In this technique, each agent is paired with another
agent and all the resulting pairs move in a parallel way. Also, each desirable property
is redefined in a parametric form using the conjunction operator. Our toolkit precisely
starts with reading the encoding of the MAS model and generates automatically the
required SMV modules according to both the given interleaved technique and the
number of interacting agents. These modules are instantiated in the main module
which technically includes initial conditions and atomic propositions, transformed
directly from the input encoding model. The toolkit also transforms automatically
parametric formulae into the corresponding ones with respect to Algorithm 2.

5.3.1. Testing and evaluating the toolkit

To test and evaluate our toolkit with respect to the scalability aspect, we used the
ordering protocol introduced in [Desai et al., 2005]. The protocol specifies the rules
that regulate the interaction between seller and buyer agents. It specifically begins
with the buyer requesting the price quote for certain good items from the seller, which
replies with an offer. The offer means creating a strong conditional commitment to
deliver the requested goods when the seller accepts the buyer’s price quote. The
protocol ends when the buyer sends the acceptance message. The acceptance message
means creating a strong conditional commitment to send the agreed payment to the
seller once the buyer accepts the delivered goods.

Given the protocol specification, we embark to model check the ordering protocol.
This goal is achieved by formalizing the protocol specification using our model M and
by expressing a set of properties in RTCTLcc. The formalized model is then encoded in
the ISPL+ input language of our MCMAS+ tool introduced in [El-Kholy et al., 2014]
wherein the protocol is modeled as the environment agent while participating parties
are modeled as ISPL+ intelligent agents. The main motivation behind encoding
the protocol model in ISPL+ is to (1) achieve the scalability aspect which requires
increasing the state space of the protocol model and this increment will not be easy
to consider in the graphical user interface of our toolkit, and (2) capture all aspects of
our model M such as shared and unshared variables which are directly incorporated
into the ISPL+ language. For the quantitative properties, we expressed the following
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formulae using RTCTLcc:

ϕ1 = EF SCC (Seller ,Buyer , aPrice,EF [0 ..3 ] dGoods)

ϕ2 = EF SCC (Buyer , Seller , dGoods ,EF [0 ..2 ] sPayment)

These formulae are kind of reachability properties. The first formula checks whether
or not there exists a possibility for the seller to strongly commit to delivering the
requested goods to the buyer within at most three days if the buyer accepts the price.
The second formula can be read in the same way. The ISPL+ encoding model is
transformed into the SMV encoding module using the following transformation rules:

− Extract the set of interacting agents (seller, buyer, and environment agents)
in the ISPL+ model and define the same set of SMV modules using MODULE

<Agent-Name>.

− For each ISPL+ agent, we transform:

– Each variable in the Vars...end Vars section in the ISPL+ model into the
SMV variables <v1>, ..., <vn> with the same data types using the VAR

statement. These variables include local states and shared and unshared
variables.

– Local actions in the Actions section in the ISPL+ model into input vari-
ables in the SMV module using the IVAR statement.

– The local transitions between local states into the TTRANS statement. In
this statement, we transform the initial conditions of each ISPL+ agent
into the initial conditions using the TINIT expression and use the next and
case expressions to define transitions wherein the labeled actions are used
as guards to fire these transition.

− The defined SMV modules are instantiated in the main module using the VAR

statement. In the main module, we also:

– Transform the defined atomic propositions in the ISPL+ program into the
set of atomic propositions which are defined by the define statement.

– Define the needed atomic propositions in the accessible states using the
define statement.

The above transformation process is repeated n times where n is the number of
agents and the generated SMV modules should be paired according to our interleaved
technique. To complete the transformation process, we used Algorithm 2 to transform
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the above RTCTLcc formulae (ϕ1 and ϕ2) into RTCTL formulae where each formula
is preceded by the keyword SPEC.

Table 3 reports 12 experiments of verifying the compliance of the ordering protocol
with the transformed formulae of ϕ1 and ϕ2, namely ϕ′1 and ϕ′2 using Algorithm 2.
Our experiments were performed on a Laptop with the following specification: (1)
processor is Intel(R) Core(TM) i7-7820HQ CPU, 4 cores and 8 MB Cache at 2.9 GHz,
(2) installed memory (RAM) is 16 GB (DDR3), and (3) operating system is 64-bit
operating system, Windows 8.1. The transformed formulae ϕ′1 and ϕ′2 are redefined

Table 3: Verification results of 12 experiments

Exp. no. of no. of time of time of avera. total

# agents reachable transf. & param. transf. time

states ϕ1, ϕ2 in ms model in ms in ms

1 3 5 0.118132, 0.113656 07.00690 9.238688

2 6 25 0.118759, 0.117504 10.414627 12.75089

3 9 125 0.124811, 0.122373 12.253960 14.80114

4 12 625 0.131261, 0.133563 17.273747 19.93857

5 15 3125 0.142771, 0.149051 18.381369 21.27313

6 18 15625 0.156720, 0.159151 20.361401 23.67727

7 21 78125 0.167575, 0.164546 20.997321 24.92944

8 24 390625 0.171424, 0.176421 26.318603 30.96645

9 30 9.76563e+06 0.190733, 0.192444 29.235256 34.61843

10 36 2.44141e+08 0.2296500, 0.229650 30.089709 36.64260

11 42 6.10352e+09 0.260013, 0.269451 31.693837 39.22330

12 66 2.38419e+15 0.449892, 0.450746 51.885031 117.0266699

in a parametric form through our experiments. For example, the parametric form of
ϕ′1 in Experiment 7 is generated with the conjunction operator as follows:

ϕ′1 =
n∧

i=1

EF
[
EX (aPrice∧αselleriαbuyeri ) ∧ AX

(
(aPrice∧αselleriαbuyeri )⇒EF [0 ..3 ]dGoods

)]

where the number of agents is 21 (i.e., seven seller agents, seven buyer agents, and
seven environment agents). Analyzing the reported verification results in Table 3 re-
veals that the number of reachable states reflecting the state space increases exponen-
tially when the number of agents increases. The transformation times of the models
and formulae in milliseconds increase polynomially. The increase in the average total

29



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

time (where the total time is the summation of the total time of transforming formu-
lae, time of transforming model, and time of verification process) is also polynomial.
These experimental results confirm the theoretical ones.

5.4. Real and industrial case study

Our real and industrial case study is called aircraft landing gear system (LGS).
This system supports the airplane during the landing, taking off, and taxiing without
human loss and critical damages. Therefore, this system is one of the most critical
subsystems of an aircraft. Boniol and Wiels recently proposed a full description of
the landing gear system in [Boniol and Wiels, 2014]. We summarize and classify their
description as follows:

1. The elementary elements
The basic elements of the LGS system are gears, doors, and software.

− LGS has specifically three landing sets located in the left, front, and right
side of the aircraft. Each one of the landing sets includes a gear which
can be extended, retracted, or maneuvered. Moreover, each landing set
includes a door which can be closed, open, or maneuvered. The LGS
system is governed by a customized software and can be in two modes:
normal or emergency.

− The emergency mode can be detected by the software. In the emergency
mode, the system stops and the mechanical parts start working mechani-
cally.

2. The pilot and its main functions

− The pilot interface has a handle switch with two directional positions:
DOWN and UP. If the gears are retracted and the handle switch is going
from UP to DOWN, the extending process is carried out as follows: open
doors, extend gears, and close doors.

− If the gears are extended and the handle switch is going from DOWN to
UP, the retracting process is carried out as follows: open doors, retract
gears, and close doors.

− At any instant time during the door/gear maneuver, this maneuver can be
terminated and reversed by the pilot via moving the handle switch in the
other direction.

− The pilot interface has three lights in the cockpit: green, orange, and
red. If the gears are extended, the green light is ON and if the gears are
maneuvering, the orange light is ON. In the emergency mode, the red light
is ON.
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3. Mechanical parts

− There are five electro-valves working as follows wherein each electro-valve
can be ON or OFF: one general electro-valve that provides or removes
pressure in the hydraulic circuit and two specific electro-valves that open
or close doors and two specific electro-valves that retract or extend gears.

− If the general electro-valve is ON, the pressure will be eventually provided
in the hydraulic circuit and when it is OFF, the pressure will be removed
from the hydraulic circuit.

− If the status of the handle is changed, the general electro-valve is set to ON
if it is OFF. When a gear operation is complete, the general electro-valve
is set to OFF.

− Any specific electro-valve can be set to ON, only when the pressure in the
hydraulic circuit is provided.

− If the door is closing or opening and the corresponding electro-valves are
ON, the doors will be eventually closed or open. If the gear is retracting or
extending and the corresponding electro-valves are stimulated, the gears
will be eventually retracted or extended.

4. Analogical switch

− There is an analogical switch which is in charge of making the connection
between the software and the general electro-valve. The analogical switch
can be closed or open.

− If the analogical switch is not already closed, it will be mechanically closed
each time there is a change in the pilot’s handle. 40 seconds after the
last handle change, the switch is mechanically turned open. Only when
the switch is closed, the software can send information successfully to the
general electro-valve.

5. Software inputs and outputs

− The software receives the following inputs: (1) one input from the handle,
one input from the analogical switch, and one input from the circuit pres-
surized, and (2) three inputs from the gears extension and three inputs
from the gears retraction. Additionally, three inputs from the doors closed
and three inputs from the doors opened.

− The software sends the following outputs: (1) one output to the general
electro-valve, one output to the closed door electro-valve, and one output
to the open door electro-valve, and (2) one output to the retraction electro-
valve and one output to the extension electro-valve.
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− The software sends the following outputs to the cockpit: when gears are
maneuvering, the orange light is so ON, when gears are locked down, the
green light is so ON, and when anomaly happens, the red light is so ON.

Now, we use our model M = (S, I, T, {∼i→j | (i, j) ∈ A2},V) to formalize the aircraft
landing system whereA = {Pilot, Software, Emergency}. Notice that the behaviors
of gears and doors are included in the software agent and the emergency agent as
they are shared between them. We then proceed to encode the pilot, software, and
emergency agents in the ISPL+ input language of MCMAS+. Specifically, we encode
local states, shared and unshared variables, local protocol/policy, local actions, local
transitions, and initial states for each agent. We validate our modeling using the
capability in the MCMAS+ tool called Explicit Interactive Mode to have the
model as it is intended.

In addition to the description of the landing gear system, Boniol and Wiels in-
troduced a set of requirements in English language [Boniol and Wiels, 2014]. For
example,

“(R11) When the command line is working (normal mode), if the landing
gear command handle has been pushed DOWN and stays DOWN, then
the gears will be locked down and the doors will be seen closed less than
15 seconds after the handle has been pushed.”

The R11 requirement can be expressed in RTCTL as follows:

AG(AG(PressedDown)⇒ AF≤15 (GearsLocked ∧ DoorsClosed))

While the events occurrence and the receiving responses are timely constrained, it
is not clear in this formalization (1) who performs these events (e.g., PressedDown
and GearsLocked), (2) what is the ordering of these events, (3) is there any relation
between the components that could perform these events, and (4) what is the nature of
this relation. This relation exists in the real case study and is performed mechanically
through communication among involved parts. All these questions can be addressed
if we use our RTCTLcc to formalize R11 as follows:

AG WCC ((Software,Pilot ,AG(PressedDown),AF≤15 (GearsLocked ∧ DoorsClosed)))

This formula means that along all paths in all states the software agent commits to
lock gears and close doors in no more than 15 seconds if the pilot agent changes the
handle position from up to down. The communication and direct relation between
interacting agents are modeled using conditional commitments. Such commitments
are obligatory contracts. Moreover, we express the safety and liveness properties in
RTCTLcc as follows:

AG¬(PressedDown ∧ AG(¬GreenLight))
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EF (RedLight ∧ EF GreenLight)

Here, the bad situation in the safety property means that the pilot agent pressed the
handle to down but there is no possibility to lit the green light. The liveness property
means that there is a path in its future when the red light is lit, there is a possibility
to lit the green light by the emergency agent.

By so doing, we used our transformation tool to transform the ISPL+ model
and formulae into the SMV model to be able to start the verification process using
NuSMV. However, the NuSMV tool reported a counterexample showing why the for-
mula AG WCC ((Software,Pilot ,AG(PressedDown),AF≤15 (GearsLocked∧DoorsClosed)))
is false4 (see Figure 6). We used this counterexample to correct our ISPL+ model
and re-run the transformation tool to get the good SMV model.

Figure 6: A counterexample explaining why the formula AG WCC ((Software,Pilot ,
AG(PressedDown),AF≤15 (GearsLocked ∧DoorsClosed))) is false

Moreover, we verified again all tested formulae against the corrected SMV model

4The ISPL+ code of this experiment is available in the sub-folder “CaseStudy” of the
folder “experiments” available in the toolkit at: https://users.encs.concordia.ca/~bentahar/

ISPLtoNuSMVTool.jar
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and illustrated their evaluation in Figure 7. As shown in the figure, all the formulae
hold in the second run. The transformed ISPL+ landing gear system model into the
NuSMV model, the verification results, the time of transforming ISPL+ model, the
total time of transforming RTCTLcc formulae, the time of verification process, the
total time, and the transformation time of each formula are also illustrated in Figure
7.

Figure 7: Screenshot of the generated SMV model (on the left) alongside the verification results,
the transformation times, and the total time (on the right)

6. Related work

6.1. Formal transformation techniques

The approaches that we discuss hereafter should have a formal semantics for social
commitments to be able to (1) implement model checking, and (2) define systematic
rules to transform their semantic definitions. To apply this constraint, commitments
should be modeled as temporal modalities. Therefore, there are merely two for-
mal approaches in the literature that have defined semantics for conditional commit-
ments, which cope with conditional business contracts. The first approach is the one
presented by Singh [2008]. The author specifically extended LTL with two tempo-
ral modalities to represent and reason about two types of conditional commitments
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(called practical and dialectical commitments). The authors in [Baldoni et al., 2015]
built on Singh’s dialectical commitments and introduced an approach to compose
multi-agent protocols and verify the compliance of the participating agents with the
social states. In this approach, the semantics of dialectical commitments (or claims)
are defined using the precedence logic. This logic has three primary operators: choice,
concurrence, and before. Their verification process is theorem proving-like.

In the second approach, we extended CTL with four modalities to represent and
reason about two types of conditional commitments (weak and strong) and their ful-
fillment [El-Kholy et al., 2014]. The resulting logical language is so-called CTLcc. The
model checking problem is addressed by developing symbolic algorithms implemented
on top of MCMAS. Moreover, the proposed technique tackles the open problem of
automatically verifying the Singh’s semantic models. This is because we showed in
[El-Kholy et al., 2014] that the semantics of weak and strong commitments achieve
all the reasoning rules introduced by Singh [2008].

Because unconditional commitments C(i, j, ϕ) can be treated as a special case of
conditional commitments when the antecedent is true, i.e., C(i, j, ϕ) ≡ WCC(i, j,>, ϕ)
≡ SCC(i, j,>, ϕ), we then continue this subsection by discussing the current trans-
formation techniques that have been developed to transform the problem of model
checking unconditional commitment logics. Among these approaches, El-Menshawy
et al. [2011] formally transformed the problem of model checking CTLC (an exten-
sion of CTL with unconditional commitment modality) into the problems of model
checking CTLK (an extension of CTL with knowledge modality) and ARCTL (an ex-
tension of CTL with action formulae), so that the use of the MCMAS and extended
NuSMV model checkers is made possible.

El-Menshawy et al. [2013] improved the definition of the accessibility relation in-
troduced in [El-Menshawy et al., 2011] to have a new semantics for unconditional
commitment and fulfillment modalities. The new logic is called CTLC+. Then, they
formally transformed the problem of model checking CTLC+ into the problems of
model checking ARCTL and GCTL∗ (a generalized version of CTL∗ with action for-
mulae). This transformation technique enabled them to use the extended NuSMV
symbolic model checker and the CWB-NC automata-based model checker as a bench-
mark.

The authors in [El-Menshawy et al., 2013] developed a branching time tempo-
ral logic called ACTL∗c by extending CTL∗ with temporal modalities to represent
and reason about unconditional commitments and all related actions. They formally
transformed the problem of model checking ACTL∗c into the problem of model check-
ing GCTL∗ to make CWB-NC usable.

The authors in [Al-Saqqar et al., 2015] introduced a temporal logic called CTLKC+,
a combination of CTL modalities, knowledge modality and unconditional commitment
modality. The problem of model checking CTLKC+ has been formally transformed
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into the problem of model checking ARCTL and the extended version of NuSMV has
been utilized.

Mallya et al. [2004] enriched CTL with (1) predicates to reason about commit-
ments and fulfillment and violation actions, and (2) two existential and universal
quantifiers to capture temporal deadlines in the unconditional commitment conse-
quences without considering the verification problem. It has been shown in [El-Kholy
et al., 2015], that the interval bound until operators alongside existential and univer-
sal quantifiers on paths can model Mallya et al.’s temporal quantifiers in a reasonable
way. However, our quantified time intervals are not abstracted as propositions, as
done in [Mallya et al., 2004]. Moreover, the model checking problem of the resulting
Mallya et al.’s logic is still an open problem.

On the one hand, it is known that temporal logics are time-abstract with regard to
the occurrence of events in the past and future without referencing the precise timing
of events. Therefore, temporal logic-based approaches discussed above are not suit-
able to represent and reason about deadlines of commitments that incorporate metrics
or real-time constraints as in real-life business scenarios, as argued in [Chesani et al.,
2013]. On the other hand, except [Al-Saqqar et al., 2015], it is not fully discussed
how the transformation tools in the literature are implemented. The authors in [Al-
Saqqar et al., 2015] implemented their tool with a graphical user interface in the form
of questions that are asked to the designers in order to build the CTLKC+ mod-
els. The target of this transformation tool is a labeled transition system, like all the
discussed approaches where transitions are labeled with actions. However, in our pro-
posal, Kripke structures are generated where only states are labeled, which reduces
the size of the transformed models, thanks to the fact of avoiding additional transi-
tions. Because our logic and target model are entirely different, we developed and
implemented a new transformation algorithm along with another algorithm to auto-
matically compute the accessibility relations and accessible states, which would help
designers design, transform and verify RTCTLcc models in an easy way. Moreover,
we developed a parser, visual local system representations of agents and an automatic
way to scale MASs, which are missing in [Al-Saqqar et al., 2015]. For example, miss-
ing the automatic capability of reading the input model in [Al-Saqqar et al., 2015]
makes the transformation technique arduous and time-consuming because it is based
on asking the user for each component of each agent a set of predefined questions
(thinking of how many questions are needed to transform several agents). By com-
paring the current approach with the discussed approaches that use transformation
techniques in terms of the number of agents, we found that our approach supports
more agents, 66 agents, compared to only four agents in [El-Menshawy et al., 2011],
6 agents in [El-Menshawy et al., 2013], 8 agents in [El-Menshawy et al., 2013], and 9
agents in [Al-Saqqar et al., 2015], thanks to the reduced size of the obtained model
in our approach. Furthermore, all the discussed approaches neglected to investigate
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the computational complexity of the transformation algorithms.

6.2. Modeling deadlines of commitments

The literature of agent communication covers run-time and design-time verifica-
tion techniques. Unlike our design-time technique, in run-time verification techniques,
unconditional commitments are modeled as fluents in executable action languages
[Chesani et al., 2013; Desai and Singh, 2007; Yolum and Singh, 2004] such as event
calculus and causal logic C+. A fluent is a property, which can have different values
at different time points or can hold within time intervals. The current approaches use
Boolean fluents, which have two possible values: true (hence commitments hold) and
false (hence commitments do not hold). The operational semantics of commitment
actions is defined by a set of axioms. In the event calculus formalism, this opera-
tional semantics is as follows: action occurrences are defined by the use of happens
predicate, the effects of actions are defined by the use of initiates and terminates pred-
icates and the fluents values are defined by the use of initially, holdsAt and holdsFor
predicates. Although these executable action languages are very easily and efficiently
implemented for executable system specifications, there is no formal semantics for
unconditional commitments that can be model checked.

Chesani et al. [2013] extended the event calculus formalism with data, variables
and metric time to deal with temporal aspects (e.g., deadlines). The authors then used
event calculus axioms to define operational semantics of unconditional commitments
and their actions where commitments are modeled as fluents. We showed in [El-Kholy
et al., 2015] that these axioms can be defined using the RTCTLcc logic. However,
because Chesani et al.’s formalism is, in fact, a first-order logic, it is then undecidable,
i.e., we cannot write a program that can work for all kinds of formulae. Moreover,
Chesani et al. stated that it is hard to verify commitment protocol properties (e.g.,
safety and liveness) which are typically checked using model checking techniques.

Chopra and Singh [2015] recently proposed a first-order language called Cupid to
specify conditional commitments with respect to the information-centric aspect. This
language is able to systematically treat commitment instances and supports features
such as deadlines, nested conditional commitments, and complex event expressions. It
can also be mapped into relational database queries to retrieve commitment instances
(violated and discharged). However, this language suffers from the same limitations
as Chesani et al.’s formalism [Chesani et al., 2013]. Other contributed approaches
that model deadlines of unconditional commitments are evaluated and reviewed in
[Chopra and Singh, 2015]. To this end, we argue that our approach can complement
run-time verification techniques in which the designers can begin with model checking
to verify the compliance of MASs with desirable properties expressed in our logic
before starting to track the behaviors of agents at run-time. The idea is to ensure
that the observed bad behaviors do not result from errors in the design specifications.
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7. Conclusion and future work

The main contributions of the present article are to analyze the computational
complexity of the problem of model checking RTCTLcc and to develop two trans-
formation algorithms for addressing this problem. The analyzed time and space
complexities of this problem are P-complete and PSPACE-complete for explicit mod-
els and concurrent programs. These results cope with the corresponding ones of the
problem of model checking CTL. Our algorithms are implemented in a new toolkit to
automatically transform the problem of model checking RTCTLcc into the problem
of model checking RTCTL. This toolkit is implemented on top of the NuSMV model
checker. The soundness and completeness of our transformation technique are proved.
Moreover, the validity and usability of the toolkit are demonstrated through a set of
business scenarios. The toolkit also has a capability to automatically scale MASs
using the modeling interleaved technique and automatically verify their correctness
against transformed parametric formulae. The scalability aspect is evaluated using
the standard ordering protocol with 66 agents having a large state-space (approxi-
mately 2.38419e+15 states). It is not only the first time to study this number of
interacting agents and reachable states, but the work also provides an efficient way of
dealing with the timing requirements and behaviors of MASs. Finally, the feasibility
of our toolkit is successfully checked using the critical aircraft landing gear system,
which gives further validation to the proposed approach.

As future work, we plan to consider other conditional commitment actions such
as withdraw, release, and delegate. We also plan to develop symbolic algorithms for
bounded operators and other actions and then implement them on top of our symbolic
model checker MCMAS+ introduced in [El-Kholy et al., 2014] in order to compare
between direct and indirect verification techniques. We subsequently plan to consider
arbitrary transitions in our logical model to reduce extra verification work resulting
from the use of unit transition steps.
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