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Abstract

Exploratory Experiments on Oil Vortices Produced inside a Cylindrical Container

Pooya Soltanian Sedeh

This thesisreportsthe findings of exploratory tests performedth oil vortices produced
inside apartially filled cylindrical tank with a rotating base. Three different liquids i.e. Spindle
(22.69 cS), H-22 (46.8 cSyand H32 (64.75 cStoils are useds the working fluid. The tests are
conducted under relatively shallow liquid conditions with heights of 8, 10, and 12mm. The
present observations show that the topology of the emerging equilibrium states in oils exhibits a
considerably richer morphologitan that of water. During a quasatic spirup and spirdown
of the flow, states ranging frod = 2 to 19 are discovered. Algpalsating N = 0) and wobbling
(N =1) modes aralsodetected. In the case of22 a retrograde pentagonal € 5) equilibrium
stateis found to materialize. Both the spup and spirdown testsare marked with strong
hysteresis where in some sectors of the state manifold flow bifurcations exist. These are more
prominent in the Spindle Oil than in both22 and H32. Inaddition, for thisoil, the equilibria

first appear at lower disk speeds than 22Hand H32.

A procession of one oa group with more than one (up to 6) safy waves arranged
symmetrically in a circle around the vortex pattenoving at highe speeds than thiduid, are

identified.



Finally, pattern lockn is found to occur at a frequency of about-tereth the frequency of
the rotating disk. Having a coefficient of variation less that onegrie¢enthvalue is deemed to

be acceptable.
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1 Introduction

1.1 Problem Statement

The subject matter of this thesis is based on a classical topic, which was first studied
theoretically in 880 by William Thomson (Lord Kelvin). Kelvin in search of atinerealatomic
theory of matter investigated the vibration of columnar vortices postulating that the core is able
to harbor threelimensional perturbations with various wave numb&mson (188)]. Their
motion, being frictionless and stable, once p

Fig. 1.

Figurel. A schematic of Kelvinds Vort e



As a result of he MichelsonMor | ey (1887) e X p especiahmrelativity and E
(1905)against the existence ether(a hypothetical ideal fluid) the initial notion was abandoned
for a prolonged period timédowever, a rekindled interest the subject was promptday its
significance in many scientific areas such as stlpatity [Williams (1974)] plasma physics
[Durkin andFajans(2000)] atmospheric and oceanographic scien&evjart (1943), Carnevale
and Kloosterzie(1995)]. The possibility that unusus henomena such as Satu
North pole vortex structurédodfrey (1988)Polvani (1993),BarbosaAguiar 2010), Morales
Juberias et al. (2001thed o ub | e v o r Sautkh polefayld™ €006)ssdction vortices
in tornados [Fujita (1972),Bedard (2005)], meswortices in hurricanes and typhoorrqun et
al. (2006),Lewis (1982),Schubert, (1999)]volcanic revolving columns [Chakraborty (1999)],
or in galactic hydrodynamics [Fridmamn (1985)] could have a simiat made this subject

moreappealing

Flow conditions can change from laminar to turbulesrditionsinto two manners The
first involves a precipitous switci€lassical paradigm of this sort of flow transformation is the
HagenPoiseuille flowin a circularpipe At low Reynolds nmberstheflow field is classified as
laminarhavingthe highest degree of symmetry. Beyond a critical value of the Reynolds number
(of about 2,000), the flow transfersto the turbulent statetraversingfirst a narrowsector

(Reynolds numbearbetweer2,000- 3,000)wherethe flowis in transiion.

The second route of changeover involves a slow alteration wheeellyeaReynolds
number increasethe system is passing through different laminar flow stdidsmately, a
further increase of the Reynoldsmber the dynamical noise intensifigeadually andfinally

overwhelmsthe flow destroyingits symmetry giving rise to turbulence. Twolearexamples of

2



the slow transition arbows within two concentric cytiders (TayloitGoertler flow)and spheres
[Sawatzki(1970)] Another example of slow transition can be observed utilizing a rotating disk

submerged invater[Vatistas (1990)]

1.2 Previous Work with a Low Viscosity Liquid (W ater)

The origins of thehydrodynamic theoretical side of the probJemth an inviscid fluid
could be found i n He lwhdhdealtwitlire stabiity & oneandtwo r t i c i
vortices in annfinite fluid. Kelvin dealt with the stabilityf threevortices.J.J. Thomso1i1883)
examined the situations of threeeseven, predicting instability set infor any ensemblé&l > 6.
Cabraland Schmidt (199%nd Kurakinand Yudovich (2008 showed that th&l = 7 system is

stable.

The first experimental tests related to the same theme were perfornt@ediyryet al
(1955 revealingthe existence oN = 6 vortices.Yarmchuket al (1979) found similar vortex
arrays in superfluid heliumHg with a small amount (0.8%f “He). Utilizing the Malmberg
Penningelectrontrap, Durkin and FajansalidatedH a v e | @93XK)analytical predictionsThe
completesets of these polygonal structures walso observed earlieby Vatistas (1990using

the experimental apparatus shown in Fig. 3

Subsequento the original discovery by Vatistas (1990), the studésvatistaset al.
(2008) disclosed that waves developed dre tfree liquid surfacepossessd all the basic

attributesof Kelvin's equilibria (Thomson (1875)).

Therevolvingfluid motion generates a centrifugal fottatpushes the liquid towards wall



photographic
Cam:ra? [ or video ]

D = 285 mm 2| ez

d = 202 mm
H = 459 mm | ]
d=9mm 1
ﬂ [z Electric
i motor
_ ‘ >

Figure 2. A schematic of the apparatusilized by Vatistas (1990)

of the cylindrical reservoir. The retreating liquid makes the vortices to touch thetflisk
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revealingpart of its surface to atmospheric air. Ttmmmonline of the sold, liquid, andair
designategshe form of the core. For contrast, the fluid was coloreith a bluedye Under
shallow water conditions and low disk speeds the vortex core is cirdufaj. Increasing the
disk rotation, the vortex flownovesinto another stateharacterizey a precessing core. A
gradualaugmentatiorof the disk speed, yieldacrementallywortex cores wittiN=2,N=3,N =

4,N=5, andN = 6, see Fig. 2



Figure 3. Actual equilibria (Courtesy of Professors Vatistas andAhitlerrahmane).



The power spectrum shown in F§.showsthat between equilibriurshapespatternsof
mixed statesexist. Theinterval of resilienceof the different equilibrium patterns and mixed
states reduce witimcreasing\. It is important to notéencidentallythat Kelvin (Thomson 1875
6) had accuratelgredictedthe expectectores ofN = 2 to 5.No lastingN = 7 was able tappear
ThemissingN = 7 in thetestswas attributed to the narrowess of theange of speeds where the
N = 7 couldsurvive [Vatistas et al(2008]), see Fig3. Using ahigh-speedcamera Véastas and
Ait-Abderrahmane (2l2) were ultimately able to obtain severalconsecutiveimages of the
heptagon see Fid; but it was short lived (~ 1/10 sec). The pattern appeared to tempaally

from N = 7to 8 and vice versdprming in between patterns ohidentifiableshape

Spectrawater

transition il _
3&4 N=571 V=7

N=3 I

Y | -
transition j @,
4&5 transition
transition 6 &7
5&6

Figure 4. Schematic of typical equilibrium and transitional (mixed states) gaps spectrumd. The
= 7 is in real settings unstable (Courtesy of Professor Vatistas).



N=7 N=8

Figure 5. The heptagon must live theoretically in an exceedingly very thin range of disk speeds
or in realsettingsunstable (Courtesy Prof. Vatistas).

In 2006 Janssonet al. (2006)confirmedVat i s t a s fndings(usirgy 9a0s)milar
experimentalarrangement, but with a rotatirgpttom (The ratio of the disk diameter to the
container was much lower than Vatistas woBpntinuingtheir investigationsthe Concordia
group, confirmed using theParticle Image Velocimetry (PIV) techniqulat theautorotation
property of threevortex ensemble coule approximated bythe old idealized point vortex

theory[Ait-Abderrahmanet al (213)].

1.3 Previous Work with Intermediate Viscosity Liquid (Oil)

Higher viscosity vorticeproduceconsiderably richemanifestationsand consequently
are more complex in nature than watenefie is only one journal paper batistas et al(1992)

and a doctoral thesis by Wang (1995) that death the previous problem using silwith

kinematic viscosities¥ uv& pm —andi @8 p m — as the working fluid The



experiments however were conducted relying on primitnatruments;a low resolution low-
speedvideo camera,a photographiccamerafor still pictures, a stroboscopeas well on visual
inspections.In the case of water, the order in whithe equilibria evolveis sequentially,
traversingalmostthe sameouteduring the spirup and spirdown schedule. In the case of oil
vortices, not only the flow patterns during the ascending and descesulirdulesare not in
sequence but also one encounters multiple states tinelesameboundary conditionsThe
transition from one stationary equilibrium state to another happbngptly Steady vortex
patterns with polygasifrom one to elevewereobserved, see Fi§.for the case oN =8 and 10
while in a recent imag@urrent work)anN = 16 showed upStates wherebgne wavanodulate
harmonicallyanother, and states whewsae or two wave packets (solitary wavegriodically
encircledthe base wave core were also visualized. Also peculiar is that there exist retrograde

equilibria that were never observedviary low viscosity liquids such as watdn the case of
higher viscosity oil witht @& p m — the vortex corewas circular and stableFor very
large initial oil heights K, >100mm) and disk speedgiy, >800 rpm), significantly dispersed

waves emergedAll these results were obtained visually using an ordinary video camera, an

optical speedometer and a stroboscope.

Figure6. 01 | Kel vi nd N=8dQaandl16 (N = 8 aad1®friorh \fatistaset
al. (1992), N = 16recent observation.
9



1.4 Contribution of the Thesis

The present study ia continuationof the Vatistaset al. (1992 principal finding along
with the studies reportedy Wang in (1995. The currenttests wereconducted using three
different oils with viscodies rangingfrom 22 to 65 centiwkes Observation illustrate the
dynamic of the flowevolutionduringthe spinup and spirdown tests More precisely the goal
hereis to examinehow theflow unfolds during a sequential quasatic increase and decrease
vis-a-vis the governingdimensionlesgroups.All experimental runsstart from rest (zero disk
velocity) and the ascending sequence continues up to a point where the flow is noundee
laminarconditions Thenthe spindown processakes placevhere thedisk rotation is decreased
gradually tozero.The evolutionanhistoryof the differentequilibrium statespectras presented.
Applying image processinghe contour of each pattern extracted amd estimation othe
pattern s peed as Taylorifsu ncu mhenr difiesnewty liscaverederatating

clusters of solitary waves arsa investigated

10



2 Dimensional Analysis

Past observations with water and oil along with present exploratory experiments
using different viscosity al suggest that the problem depends functionally on the

following parameters

N=f{n w, R, h} D

There ared independent dimensional variables in the above functional relatioBghip

(n, wy, Ryand h,, noteN is dimensionless), involving 2 basic dimensiolesngth () and time

(T). Therefore, according to dimensional analyatd dimensionless numbers amqguired to

describe the problem

p= "
o R
2
pr= YR _pe
n

11



p=lt
and
ps=N

Hence the phenomenon can be stated equivalently with the following functional

relationship,

h
N=fniRe, o
ﬁ'{ekd}

Si nce Tay | Dardénstesrihe rato efrcentfifugal viscous forces

2 pt Mo 7y 2 2\ 2
| ,,f,,) :4(@,12&)

v? v v

Then

12



Ta=4Re? - Re=2+Ta

Therefore,

h
N=fn{Ta 2
ﬁ'{“’R,,}

If the aspect ratio is kept constaht ( Ry = const) then

N = fn{Ta}
or
N = fn{Re}

We now assume that the speed of the pattern depends on

n, g, w, R, h,, andN, or

w,=f{n g w, R, h, N} =0 2)
There are 6 independent dimensional variables in the above functional relatiegsRip

(n, 9wy, w,, R,, and h,, noteN is dimensionless), involving 2 basic dimensidesgth () and
time (T).

Therefore, according to dimensional analysis 4+1 dimensionless numbers are required to

describe the problemquivalently

13
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W
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Where Fr' is the reduced Froude number.
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aspect ratio,
b=l
Ry
and
p:=N
is the state number.

Hence the phenomenon can be stated equivalently with the following functional
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Previous experiments using water have shown that the dispersion velocityyydtig
was constant and equal to 1/3. This will éeamined in thesection (4.2, results) for the oils

under consideration.
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3 Experimental Apparatus Instrumentation and Procedure

3.1 The Experimental Apparatus

The presenéexploratoryexperimentavere conducted at the Concordigluid Dynamics

Researchaboratoryusing the apparatug/hich is schematically shown Fg. 6.

Theliquid vortex agitatompparatugonsists of a D@lectric motoris linkedto the shaft
using a beltA flywheelattached to the shafftampens any possible fluctuations of the angular
velocity of theaxle An aluminum disk with the specificatiomgvenin Fig. 6,is firmly attached
to axle,which impartsangular velocity to the fluiglacedinside aplexiglasscontainer The gap
between the disk anthe wall of the containing vesse284 mm) is relatively small in
comparisonto the disk diameter 286 mm. Since the lastclearance is indeed small .i.e

(B, - D,)/D,=0.007 the evolving phenomenon unfalth a stationary vessel with practically

rotating bottom plateThe flow evolution 6r the case where the disk does not cover the entire
bottomcan be found iVatistas et al. (1992) and Wang (19983 mentioned abovéhe shaft is
driven through a belt pullegssemblypy a DC motorwhere its speewasregulatedoy a variac

The nominal specifications of the Dfiotor are

M1 3/4 Horse Power

1 Speed range from 0 to 1750 RPM

Liquid can be poured into the container from thedod drained through a small hole a

the bottomof thecontainer.

A paperstripwas placed at the centef the diskin order to calculatés rotational speed
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accuratelythroughimage processinghich will be described later.

A ruler, placed on the sidef the container, as well asvarniercaliper, determined the

l'iquid initial height, above the diskb6s surfa

;] high speed camera

B fluorescent
illk Sl ( bulbs
ol q9
Ol Ot
Cf 1O ol

LRI

speed controller

Figure 7. Diagramof the experimental apparatig,= 143 mm and¥ = 142 mm.The
clearance between the disk and the bottom pteas 28 mm whi |l e t he di sk
9.525 mm.

3.2 The High-Speed Camera

As shownin Fig. 6, a PCO 1200hbkigh-speed camera was mounted and centered on top
of the container with the specificatioggven below is usedto capture images of different

patterns duringhe experiments:
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A 636 fps at 1.3 MPixels full resolution

A 50 ns- 5 s exposure time range

A 75 ns intefframing time

A 1280 x 1024 pixel

A USB 3.0, Camera Link, GigE / USB 2.0, IEE1394

The Camware64 software was ugedperatethe camera Using the previoussoftware,
basedon the rotational speed of the fluid and digle exposure timavas setappropriately to

have the best possiblesolution for the images and videos

It needs to benentioned that due to lack of internal memory of the camérech was 4
GB, each time only a set of 4000 imagjeatcovered a period of 7.1 to 8 secongrecaptured
for each equilibriunstate. The frequency ofhe camera wasynchronizedo the frequency of the

disk.

3.3 The Lighting System

In order totakeimages with the best quality anteximumresolutionit was necessary to
have an appropriate lightingsystem This is epeciallytrue when recording at high frequency,
whenthe exposure tim islow (close to 0.0125 seconddVith the assistancef two students
from the Studio Arts Department of Concordia University, a lighting system dogsiétthree

circular fluorescent bulbsach with 2600 lumersutput werausedin the experiments.
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3.4 Degription of the Oils

Three different oils made by the Exxon Mobile Company with the following

specifications were usddr the experiments:

A Spindle Oil with 22.69 ¢St Kinematic Viscosity,

A H-22 Hydraulic Oil with 46.8 cSt Kinematic Viscosity,

A H-32 Hydaulic Oil with 64.75 ¢St Kinematic Viscosity.

For each oil, three set of experiments il initial heights of 8, 10 and 12 mm were

conducted.

The viscosities of the oils were measured the Fluid Mechanics Laboratory of

Concordia UniversityisingOstwald(or capillary)viscometes.

3.5 Procedure

3.5.1 General Description

As mentioned eaidr, three different oils with viscosities ranging from 22 cSt to 65 cSt

wereinvolvedin the experiments.

During each set of experimentgo sequences were conducted

1 Ascendingor spirup sequence,

1 Descendingor spindown sequence
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Prior to starting the ascendingin and then setting the disk into rotation, the container
wasfilled partially with one of the oils up to a certain initial height relative touppersurface
of disk. Then, rotationvasimparted to the fluid by the disKhis caused the central part of klis
surface to be exposed to air and consequéméinterfacial lineof oil, the disk surfaceand air
outlinedthe equilibrium statesThe diskspeedwas increasedoy smallamounts(~5 rpm each

time) with a pause in between

In the begging, as the disk stdto rotate in the counterclockwisedirection the central
portion of the oil free surface touetithe disk and a circular shapppearedAs the speewvas
increasedslowly, the circle gt wider, and its radiusenlargedproportionaly to the disk s
velocity. Lateron, two warpedcurvesemergedone on top of the other.n@ is the interface
bet ween the fluid and t Wwasacuonethataciedaethedsundarg | |
betweerthe two elevations Hence,a further speed increment results in appearance of a circular
region in whichbehavedas a ropelater on, the rope started tohave torsion while rotating in
sane direction as the diskThis behaviorcould be understood to be the result of liquid
movement inthreedimensions The first wasthe | i q uratadydnstion in the radiatazimuth
plane while the othe that taking placén the axial directionlt is thefirst thatcausesheforming

of thedifferentequilibriumpatternghat will be described later.

3.5.2 Estimation of Experimental Uncertainties Associated with the Measurements

During the tests differenparameters were recorded. Sineach variable had its own

percentage of uncertaintiyey mustbe estimated separately.

In orderto measure the liquid initial height abotre diskd spper surface, a ruleplaced
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on the side of the containeand a vernig caliper were used.Therefore there must be a
percentageincertaintyassociated with themeasuremenBased on the providespecifications by
the manufactureithe Vernierhad anaccuracy of 0.02 m. Since three different heights were
consideredin the experiment, there will be rie different uncertaintiesassociated with the
measuementas following calculations:

spa a  yBrq as
Pa

TBITICITEITIC UPp TITT ] WP

spT@a pBIQas
p Th &

TBITEg TMNC PN TGP

spPQ@a p @ aqas
p QA

TBUTT PHX TBLTT P XP TUTT TP ¥
The other parameter has do with the disk speed. In order to determaceuratelythe
rotational speedf the disk, a bandwas placed acrogbe center of the diskee Fig.7. Having
t he camer afformt i@ eqameacyds s of twasem@oyedacalbai€ L AB ¢
the disk speed. By comparing the strip location in the first imagigetonage in whichthe strip
undewent a full revolution (the band returning tthe sameocation) the speed of diskvas

computed. The figure belo(Fig. 7)illustrates the procedufer one of the cases

One Complete Revolution

Image No. 1

Figure 8. One Complete Revolution of the Pattern
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Int hi s case, h avi n g thdfdile@vingcalculatiorsssarsbe €ondeiaged e nc y ,

to determine thepeed of the disk:

Ol L TAUOdH Y %l BT Pe U & Em G106 GO0 T U
FYQOE@ 4t REANADOR a0 NOBSTIp Pg TR T Ww
S P U U PR, (] L,
Y (0]
t EwéE e LVE @ & T[&anu?(ﬁ“pna

Based on the aboveomputationstherecould be an errof +1 imagein detecting the
correct image number in which a complete revolutimturred. For instance, in the above
example the full revolutioncould havehappenedn the image number 44éhstead of 445

Therefore, the uncertainty is calculated as foltows

STTUTTS
TTT

TIMCCWYNNTE ¢ B

Of course, he uncertainties wildepend on theisk speed. Overalhowever, itwas found
to lie between 0.1420.714%.To sum up the maximum amount afncertaintyfor this type of

measuremer(in all the cases) was found not to exceed 1%
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4 Results and Discussion

Pastexperiments with smaller diskgsing water as the working fluid have shown that the
equilibrium patterns show up in sequence with the disk spgkatithey were also markday
intervals of mixedstates see Fig.. & small degree of hysteresis5%) also existedluring the
spinup andspindown scheduleVatistas et al. (2001 his will be shown here that it is not the

case in oil vortices

4.1 Evolution of Equilibrium States

4.1.1 Spindle QOil
4.1.1.1 Spindle Oil 8 mminitial heighti AscendingSequence

First, theevents during the spinp procesausingspindle oil andaninitial height (h,) of

8 mmare tobe describedPrior to the experimenstarting from restthe free surface of theil
surface wasorizontal(no centrifugal forcavas present The diskwasthenset into rotation by
gradualadjustmerg of the vari& in steps of 5 rpmDue to the combination of gravitational and
centrifugal accelerationsié centrapart of theliquid level waslowered it touchedthe disk, and

at 41.7 rpma diffusedcircular contact linavasformedas shownn Fig. 9(a). As the disk speed
waselevatedo 52 rpm, the oitdisk-air interfacemigratedt owar d s ¢ o andthameanr 6 s
radiusof the circular pattern enlargeahdthenbecame moreoticeableas it is illustrated irFig.

9(b). One moreimageof the circular shapat a higher disk speed6@ rpm) with even larger

radiuswasobtained se€&ig. 9(c).

Continuing to increase the speed to 76, the circular shape losts stability and

transformedinto the smoothfi f asteauytriangle pattern oN = 3+ shown inFig. 9(d). The
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numberrefers to the statand the plus sign indicates that the wastates in the same direction
as the fluid (or it is cgradé). The shapehada lower anglar velocity than the disk, which
increasd with the disk speedAs aresultof larger centrifugal forcehe patterrgot largerwhen

the disk speed was increaged5.3rpms see Fig9(e).

At approximately 91.2 rpm, the coteecame once mora drcle see Fig.9(f). The
circular shape lastagp to 109.3 rpnat which pointthe pattern underwent a fast transitiorNte
15+ The new equilibriunstatewasstable with sharp edges ilastratedin Fig. 9(g). In order to
investigate the bifurcations at a specific equilibrium, the fluid was disturbed by the introduction
of a cylindrical rodinto the rotating fluid. In case that the existing pattern underwent notable
change in its structure, it was concluded thatthis specific speed, multiple patterns (or
bifurcations) exisuinderthe same boundary conditiorkby disturbingtheflow field four times
did not produceanysignificantchangeto the patterd s s h a pecencludedtthativei@vsere no

more posgile equilibra at the samespeed.

Continuing the ascendingrocessthe patternlost its stability giving riseto anN =15+
possessin@ higherangularvelocity. Therewereno more changes the last pattern up tgust
before120.7 rpm At the end of thenterval the patterswitchedrapidly into a stabléN = 18+
polygonal shapevith sharp edgess shown inFig. 9(h). Disturbing the pattern at this point
forcedthe 18+ equilibim state totransforminto the 19+ stationarypolygonalpatternshownin
Fig. 9(i). Once more, thbarwas introduceadnto the fluid andhe 19+ equilibrium statechanged
into anN = 18+ patternsee Fig.9(j). Reintroducing the external disturbance four times did not

make anyfurtherchanges in the existing equilibriustate,andthereforeit was concluded that

1 A negative sign after the number will indicate retrogradedganter rotating) state.
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this speedhere wereno more bifurcad states

TheN = 18+ pattern remained stable up to 143.5 rpm. At this speed, it was observed that
theN = 18+ was replaced lahe stationary hexagor\N(= 6+) shown in Fig. 7(k). Thiast basic
pattern includedhree solitary waves dn shortsolitong (having only atroughand nocres)
sliding along the base equilibriurevolving with a constant velocity aroundsitown inFig. 8.

These were found tonove in unison around the pattern with higher (than the pattern) but

constant speedince this is aemarkabldinding it will be discussed separately in sectdbh.2.

—

e

Figure 9. One image of a set of three rotating solitary waves
Increasing thelisk speed, forcethe N = 6+ to be replaced bgn N = 7+ pattern at-150
rpms as demonstrateid Fig. 9(1). Again, a solitary wave, but this tinevenweaker than before
rotating around the main pattenrasobservedOnemore set of imagesf thesame 7+ pattern at

152.8 rpmwas capturegeeFig. 9(m).

Augmentingthe disk speedfurther leadto the appearance odn N = 8+ asymmetric
polygonal pattern at 166.2 rpm as shown Firg. 9(n). This equilibrium state persistedp to

approximagly 175.2 rpm and appeared téose stabilitydue to strong secondary waves rotating

2 One and two wave packets [Vatistas et al. (199]ch laterwere classified as solitary waves [Wang
(1995)] encircling the main pattern werencountered. These however wesespectedbut never
substantiated
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around the main patteras illustrated in Fig. 9(0). Beyond this pointthe flow-field became
turbulentand the pattermasplagued by a varietgf different superimpogkepatternsOne more
set of images was taken at 188.4 rpm as demonstratdegin9(p) exhibited the same
characteristicsAt this point, theascending proeswasterminated.Table 1 provides the datd

whatwasdescribed bfore.

Table 1. Spindle Oili 8mm Ascending Sequence Equilibria

Disk Velocity | Equilibria State | Bifurcation Figure
(rpm) (N) ©)
41.7 Circle NO a
52 Circle NO b
62 Circle NO c
76.5 3+ NO d
85.3 3+ NO e
91.2 Circle NO f
109.3 15+ NO g
120.7 18+ YES h
120.7 19+ YES [
120.7 18+ YES ]
143.5 6 - Stationary NO k
150.5 7+ NO I
152.8 7+ NO m
166.2 8+ NO n
175.2 8+ NO 0
188.4 8+ NO p
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Figure 10. Spindle Oil (8mm) Ascending Sequence Actual Equilibria
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