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ABSTRACT 

Excavator Pose Estimation for Safety Monitoring by Fusing Computer Vision and RTLS 

Data 

Mohammad Mostafa Soltani, Ph.D. 

Concordia University, 2017 

 

 

The construction industry is considered as a hazardous industry because of its high number of 

accidents and fatality rates. Safety is one of the main requirements on construction sites since an 

insecure site drops the morale of the workers, which can also result in lower productivity. To 

address safety issues, many proactive methods have been introduced by researchers and equipment 

manufacturers. Studying these methods shows that most of them are using radio-based 

technologies that perform based on the locations of the attached sensors to the moving objects, 

which could be expensive and impractical for the large fleet of available construction equipment. 

Safety monitoring is a sensitive task and avoiding collisions requires a detailed information of the 

articulated equipment (e.g. excavators) and the motion of each part of that equipment. Therefore, 

it is necessary to install the location sensors on each moving part of the equipment for estimating 

its pose, which is a difficult, time consuming, and expensive task. On the other hand, the 

application of Computer Vision (CV) techniques is growing and becoming more practical and 

affordable. However, most of the available CV-based techniques evaluate the proximity of the 

resources by considering each object as a single point regardless of its shape and pose. Moreover, 

the process of manually collecting and annotating a large image dataset of different pieces of 

equipment is one of the most time consuming tasks. Furthermore, relying on a single source of 
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data may not only decrease the accuracy of the pose estimation system because of missing data or 

calculation errors, but it may also increase the computation time. Moreover, when there are 

multiple objects and equipment in the field of view of each camera, CV-based algorithms are under 

a higher risk of false recognition of the equipment and their parts. Therefore, fusing the cameras’ 

data with data from Real-Time Location System (RTLS) can help the pose estimation system by 

limiting the search area for the parts’ detectors, and consequently reducing the processing time and 

improving the accuracy by reducing the false detections. 

This research aims to estimate the excavator pose by fusing CV and RTLS data for safety 

monitoring and has the following objectives: (1) improving the CV training by developing a 

method to automatically generate and annotate around-view synthetic images of equipment and 

their parts using the 3D model of the equipment and the real images of the construction sites as 

background; (2) developing a guideline for applying  stereo vision system in construction sites 

using regular surveillance cameras with long baseline at a high level; (3) improving the accuracy 

and speed of CV detection by fusing RTLS data with cameras’ data; and (4) estimating the 3D 

pose of the equipment for detecting potential collisions based on a pair of Two Dimensional (2D) 

skeletons of the parts from the views of two cameras.   

To support these objectives, a comprehensive database of the synthetic images of the excavator 

and its parts are generated, and multiple detectors from multiple views are trained for each part of 

the excavator using the image database. Moreover, the RTLS data, providing the location of the 

equipment, are linked with the corresponding video frames from two cameras to fuse the location 

data with the video data. Knowing the overall size of the equipment and its location provided by 

the RTLS system, a virtual cylinder defined around the equipment is projected on the video frames 

to limit the search scope of the object detection algorithm within the projected cylinder, resulting 
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in a faster processing time and higher detection accuracy. Additionally, knowing the equipment 

ID assigned to each RTLS device and the cameras’ locations and heights, it is possible to select 

the suitable detectors for each equipment. After detecting a part, the background of the detected 

bounding box are removed to estimate the location and orientation of each part. The final skeleton 

of the excavator is derived by connecting the start and end points of the parts to their adjacent parts 

knowing the kinematic information of the excavator. Estimating the skeleton of the excavator from 

each camera view on one hand, and knowing the extrinsic and intrinsic parameters of all available 

cameras on the construction site, on the other hand, are used for estimating the 3D pose by 

triangulating the estimated skeleton from each camera.  In order to use the available collision 

avoidance systems, the 3D pose of the excavator is sent to the game environment and the potential 

collisions are detected followed by generating a warning.  

The contributions of this research are: (1) developing a method for creating and annotating the 

synthetic images of the construction equipment and their parts using the equipment 3D models and 

the real images of the construction sites; (2) creating and training the HOG-based excavator’s parts 

detectors using the database of the synthetic images developed earlier and automatically produced 

negative samples from the other excavator parts in addition to the real images of different 

construction sites while the target object is cut from these; (3) developing a data fusion framework 

after calibrating two regular surveillance cameras with the long baseline to integrate the RTLS 

data received from GPS with the video data from the cameras to decrease the processing efforts 

for detecting excavator parts while increasing the detection accuracy by limiting the search scope 

for the detectors; (4) developing a clustering technique to subtract parts’ background and extracting 

the 2D skeleton of the excavator in each camera’s view and to estimate the 3D pose of the 

excavator; and (5) transferring the 3D pose data of the excavator to the game environment using 
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TCP/IP connection and visualizing the near real-time pose of the excavator in the game engine for 

detecting the potential collisions. 
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CHAPTER 1 INTRODUCTION 

1.1 General Background 

The construction industry is considered as a hazardous industry because of its high number of 

accidents and fatality rates (Haupt, 2001; Blough, 1983; Churcher & Alewani-Starr, 1997; Brown, 

1997). Safety is one of the main requirements in construction sites since an insecure site drops the 

morale of the workers, which can result in lower productivity and may affect their personal lives. 

On the other hand, any accident may put the company in financial troubles (Zhang et al., 2012a). 

According to an article presented by the Centre for Construction Research and Training, 6,678 

deaths have been reported from 1992 through 2010 in the USA, which means more than two 

persons per day (CPWR, 2013). The main portion of work-related fatalities is caused by the 

collisions of the workers with the objects and equipment. The statistics confirms that there is a 

serious need for introducing new approaches in order to increase the safety of construction sites 

and to reduce the risk of accidents. The cultural and the educational training programs for the 

workers are also necessary to develop the pro-active safety measurement and avoidance. 

Additionally, the construction industry, with the annual revenues of more than CA$110 billion in 

Canada (Government of Alberta, 2011) and US$1.7 trillion in the USA (AEIOHS, 2011), plays a 

significant role in the economy of North America. The economic and daily execution challenges 

are motivating efforts in practice and academia to improve productivity of construction operations 

while keeping them safe.  

Addressing the aforementioned concerns, many studies were done to help the construction industry 

reducing the number of accidents by taking advantages of the available and emerging technologies. 
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These technologies, which are adapted to the specialized safety purposes includes: Building 

Information Modelling (BIM) (Guo, 2002; Akinci et al., 2002; Kiviniemi et al., 2011), vision-

based systems (Chi & Caldas, 2011; Kandil et al., 2012a; Kandil et al., 2012b), serious games (Xie 

et al. 2006; Zhao et al. 2009; Charsky, 2010; Lin et al. 2011; Rüppel and Schatz, 2011), location-

based systems such as Ultra-Wideband (UWB) (Zhang & Hammad, 2011), Radio Frequency 

Identification (RFID) technology (Helmus, 2007; Friedlos, 2008; Swedberg, 2008; Soltani, 2010; 

Chae and Yoshida, 2010; Kelm & Laussat, 2010 ; Helmus et al., 2011;);  Global Positioning 

System (GPS) ( Oloufa et al., 2003; Pradhananga & Teizer, 2013), and laser scanners (Wang et al., 

2014). These technologies have been used in many research to address safety concerns (Fullerton 

et al., 2009; Hammad et al., 2011; Zhang et al., 2012a; Safety Shield Systems, 2012; Zhang & 

Hammad, 2012; Zhang et al., 2012b; Zhang et al., 2013). 

1.2 Problem Statement and Research Gaps 

In spite of the abovementioned technologies in the previous section, collisions between the static 

and the dynamic objects are still the main source of accidents in the construction industry. 

Therefore, there is a vital need for investigating more effective solutions that can detect collisions 

on the construction sites. The Near Real-Time (NRT) pose of the equipment is one of the most 

valuable requirements for evaluating the equipment safety.  

In the earth moving operations, which are highly dependent on the equipment such as excavator, 

monitoring the safety can be determined by extracting the three Dimensional (3D) pose of the 

equipment. For this purpose, each part or joint of the equipment must be recognized and tracked. 

Although the accuracy of some of these systems is high, deploying on construction sites is difficult 

and sometimes impossible. Another challenge with radio-based technologies is sending and 
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receiving omnidirectional signals in the construction site environment, which has different 

unpredictable objects (e.g. metallic objects) that can block or absorb the signals. The main 

limitation for applying any kind of the aforementioned technologies is the need to install tags, 

sensors, or markers on each individual resource, which is costly and/or time consuming (Teizer et 

al., 2007). Moreover, the high cost of the laser devices makes their deployment unaffordable for 

many construction contractors.  

One of the growing technologies is Computer Vision (CV) based monitoring and tracking system, 

which is easier and cheaper to deploy compared to other technologies. The recent growth of CV-

tracking systems is not limited to research and academia. Service providers are offering fully 

automated solutions for monitoring the safety and productivity in construction sites using CV-

based methods. For instance, indus.ai, a Canadian service provider, is offering CV-based 

performance and safety analytics system for construction sites (indus.ai, 2016). The popularity of 

CV-based methods shows the applicability and affordability of these methods in construction 

industry. CV techniques for the pose estimation depend on detecting the parts of an articulated 

equipment (e.g. excavator). However, most studies in this area focused on using CV methods for 

detecting and localizing the construction equipment as one object regardless of the orientations of 

its parts (Zou & Kim, 2007; Park & Brilakis, 2012a; Azar & McCabe, 2011; Zhang et al., 2012b). 

Additionally, the main prerequisite for object recognition is to train the object detectors so that 

they will be able to find similar objects in the new images. Usually, training the detectors is a time 

consuming and sensitive task, which has a direct effect on the accuracy of the object recognition 

results. Furthermore, the blind training of a detector with a large number of samples without a 

solid structure can make the detector confused and create other problems such as fewer true 
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positive detections or more false positive detections even after spending a lot of time in training 

with those samples. Studying the process of training the object detectors shows that annotating the 

Region of Interest (ROI) within each image needs a lot of time and effort (Jeon et al., 2003; Yan 

et al., 2008). Moreover, relying only on cameras’ data may not only decrease the accuracy of the 

pose estimation system because of missing data or calculation errors but also it may increase the 

computation time. Therefore, integrating additional source of data such as Real-Time Location 

Systems (RTLS) should be investigated. 

1.3 Research Objectives 

The absence of a system with the ability to track the pose of construction equipment and to avoid 

collision, brings the attention of this research to investigate the possible methods. This research 

aims to achieve the following objectives: (1) improving the CV training by developing a method 

to automatically generate and annotate around-view synthetic images of equipment and their parts 

using the 3D model of the equipment and the real images of the construction sites as background; 

(2) developing a guideline for applying  stereo vision system in construction sites using regular 

surveillance cameras with long baseline at a high level; (3) improving the accuracy and speed of 

CV detection by fusing RTLS data with cameras’ data; and (4) estimating the 3D pose of the 

equipment for detecting potential collisions based on a pair of Two Dimensional (2D) skeletons 

of the parts from the views of two cameras.  

1.4 Thesis Organization 

The structure of this study is presented as follows: 
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Chapter 2 Literature Review: This chapter reviews the current state of the concepts, statistics, 

technologies, methods, and alternative solutions that may be used in this research. 

Chapter 3 Research Framework: The overview of this research and the overall proposed 

framework are discussed briefly in this chapter. It includes the explanation of the three main 

modules that are used in the research. 

Chapter 4 Auto Annotation of Synthetic Images: This chapter goes through the details of the 

proposed method for auto generation and annotation of the synthetic images and demonstrates the 

feasibility of the method using a proof-of-concept case study. 

Chapter 5 Data Fusion and Excavator Parts Detection: The methods and techniques proposed to 

fuse the RTLS and video data followed by the process of detecting the excavator’s parts are 

introduced and validated in this chapter. 

Chapter 6 Skeleton Extraction and 3D Pose Estimation: In this chapter, the proposed method for 

subtracting the background and extracting the skeleton of the equipment is explained in detail. 

Moreover, the approach of estimating the 3D pose of the excavator and transferring the 3D pose 

data into game environment is introduced. These methods are used for detecting the potential 

collisions and finally the proposed method is evaluated through the case studies. 

Chapter 7 Summary, Contributions, and Future Work: The summary of the work done in this 

research is provided in this chapter followed by the contributions. The further possibilities for 

extending and improving the current research are explained in the future work section. 

  



6 

 

CHAPTER 2 LITERATURE REVIEW 

2.1 Introduction 

In this chapter, the status of the current practices in construction projects’ safety, available 

localization and RTLS, and CV methods are reviewed. The applications of Multi-Sensory Data 

Fusion (MSDF) and serious games for improving safety in construction sites. Finally, the 

limitations and research gaps in the available methods are highlighted. 

2.2 Safety status and monitoring in Construction Projects 

Reviewing the work-related fatalities in Canada shows that the construction industry has the 

highest rank of the accidents in Canada. Association of Workers’ Compensation Boards of Canada 

(AWCBC) announced that a total number of 616 fatalities occurred in the construction industry 

between 2011 and 2013, which is 22% of the total work-related fatalities in Canada (AWCBC, 

2014). Furthermore, AWCBC mentioned that the province of Alberta had the highest fatality rate 

in construction while Ontario, British Columbia, and Quebec had the highest number of fatalities 

after Alberta during that period of time. 

Investigating the statistics provided by Alberta Occupational Health and Safety confirms that the 

construction industry in this province had the highest rate of the work-related fatalities between 

2009 and 2013 with the rate of 37% among all industries in Alberta (WCB – Alberta, 2014).  

Figure 2-1 shows the percentage of the construction industry’s fatalities by the type of event 

between 2001 and 2010 in Alberta. Contacts with objects and equipment were the main of source 

of fatalities with 31% of all types of fatalities (Government of Alberta, 2011).  
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Figure 2-1. Fatalities in Alberta by type of event (Government of Alberta, 2011) 

Moreover, 14% of the total number of fatalities between the years 1996 and 2003 in the U.K. have 

been caused by being struck by a moving vehicle (Howarth & Watson, 2009). Wu et al. (2010) 

stated that 428 equipment-related struck by and caught-in/between accidents were reported 

between 1995 and 2008 in the USA. 

While studying the recorded accident scenarios that led to the fatality due to collision with the 

equipment on the construction sites in Alberta, a tragic accident report was found, which it is titled 

“Construction Foreman Killed in Motor Vehicle Collision”. Studying this report shows that 

although there was a traffic control flag man at the construction zone but the lack of 

communication between the foreman and the equipment operator caused the accident. However, 

the operating procedure did not specify any communication requirements (AEIOHS, 2011). From 

this report, it can be understood that if there was a safety monitoring system, with the ability to 

observe and analyze the interactions between the equipment, vehicles, and workers and catch the 
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potential collisions and warning the related people beforehand, could eliminate the need of 

continues communications between the operators, drivers, and workers. Therefore, automated 

monitoring technologies are greatly needed to improve the safety of construction projects. 

Vahdatikhaki and Hammad (2015a) developed a method for generating Dynamic Equipment 

Workspaces (DEWs) to improve earthwork safety using RTLS. As shown in Figure 2-2, DEWs 

are generated virtually around the excavator, depending on the movement’s speed of the parts and 

the dimension of the excavator. The location and pose information of the equipment are obtained 

from a UWB system. However, deploying the UWB system on the construction site requires 

installing multiple tags on the parts of the excavator and multiple sensors on the site to collect the 

location information of the tags. Moreover, the generated DEW may not be efficient since it only 

relies on the information of each equipment individually while it does not consider the risks’ 

priorities in 3D space resulted from the interactions between each equipment and its adjacent 

equipment. For instance, when the excavator is loading its bucket, there will be a lower risk of 

accident for the objects behind the excavator. 

 

Figure 2-2. Schematic 3D representation of DEW of an excavator in swinging state (Vahdatikhaki 

& Hammad, 2015a) 

 



9 

 

Vahdatikhaki and Hammad (2015b) proposed generating equipment risk maps based on the 

proximity-based and visibility-based risks using the pose and state data of the equipment relative 

to its adjacent equipment and NRT simulation. Moreover, they used the equipment risk maps to 

generate Look-Ahead Equipment Workspaces (LAEWs) that can be used to identify the potential 

collisions. The system allows the user to customize the acceptable risk level. This would help to 

reduce the number of false alarms when two equipment (e.g. excavator and truck shown in 

Figure 2-3(a)) have to work very close to each other by increasing the level of acceptable risks 

(result is shown in Figure 2-3(b)). In another scenario, the user can select a lower acceptable risk 

for the interactions between the workers and the equipment to make the system more sensitive to 

the potential collisions. It should be mentioned that the CV-based methods for monitoring the 

safety of the construction projects are explained in Section 2.6.3. 

  

(a) Risk level of 0.8 (b) Risk level of 0.9 

Figure 2-3. Side views of LAEW of the truck (Vahdatikhaki & Hammad, 2015b) 

2.3 Productivity Monitoring in Construction Projects 

The construction industry, with the annual revenues of more than $110 billion in Canada (Statistics 

Canada, 2016) and $1.7 trillion in USA (Statistic Brain, 2016), plays a significant role in the 

economy of North America. The economic and the daily execution challenges are motivating 

efforts in practice and academia to improve the productivity of construction operations. Monitoring 

the construction equipment occupies a great portion of the aforementioned effects (Motwani et al., 
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1995; Pradhan et al., 2011). Knowing the location and pose of the equipment can help construction 

companies track their productivity by translating the location and pose information into pre-

defined states of the equipment (Rodriguez, 2010). Vahdatikhaki and Hammad (2014) proposed a 

rule-based system that converts sensory data to states and comprises a knowledge base and a 

reasoning mechanism. The system covers all the rules and heuristics, which identify the states and 

their current phase in the operation. The productivity of the excavator can be estimated using the 

states of the excavator and the duration spent in each state. Knowing that the activity recognition 

methods have a direct relationship with the productivity estimation methods, these methods using 

CV algorithms are explained in Section 2.6.2 

2.4 Localization and RTLS Technologies 

The localization problem has received considerable attention in the area of pervasive computing 

as many applications need to know where the objects are located. Location information is central 

to personalized applications in areas such as transportation, manufacturing, logistics, and 

healthcare, and it is the basis for the delivery of personalized and Location-Based Services  

(Papapostolou & Chaouchi, 2011; Li & Becerik-Gerber, 2011). Furthermore, the precise objects 

location information can be used for several applications (Zhou & Shi , 2009) such as finding 

missing items in a storehouse (Hariharan, 2006), locating equipment in construction sites (Song et 

al., 2006), mobile users localization inside a building (Ji et al., 2006), collision prevention between 

vehicles (Tong & Zekavat, 2007), and rescuing persons in underground mines (Zhang & Yuan, 

2006). Monitoring personnel movements, material locations, and construction equipment can 

effectively make the management of projects more productive (Khoo, 2010; Ibn-Homaid, 2002; 

Fan et al., 2008; Yagi et al., 2005; Grau et al., 2009). 



11 

 

2.4.1 Localization Levels 

Papapostolou and Chaouchi (2011) defined localization as the procedure of estimating the current 

position of a user or an object within a specific region, indoor or outdoor. The determined position 

can be represented in various ways (e.g., coordinates, region, cell, hierarchical) based on the 

desired application or the positioning system specifications. 

Razavi and Haas (2011) discussed two methods of localization: fine-grained localization using 

detailed information and coarse-grained localization using minimal information. Minimal 

techniques are easier to perform, need fewer resources and have lower equipment costs; however 

their accuracy is lower than detailed information techniques. Fine-grained node localization using 

measurement techniques can be classified into broad types based on time of flight, received signal 

strength, lateration and angulation, distance-estimation using time difference of arrival, pattern 

matching, and Radio Frequency (RF) sequence decoding techniques (Razavi & Haas, 2011). 

Coarse-grained node localization uses range-free or connectivity-based localization algorithms 

with no needs for any measurement techniques. In this class, some anchor sensors have stored 

information about their own location. Therefore, the locations of other sensors can be calculated 

based on connectivity information, such as detecting which sensor is within the broadcasting range 

of which other sensors. The methods in this class determine the closest known locations to the 

object instead of measuring the distance between an object and reference points (Bulusu et al., 

2000; Simic and Sastry, 2002; Song et al., 2006). Also, tracking the physical phenomena that have 

limited range (e.g., physical contact with a magnetic scanner or communication connectivity to 

Access Point in a wireless cellular network) helps to determine the presence of an object within a 

specific range (Razavi & Haas, 2011). 
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2.4.2 Localization Technologies 

Basically, localization systems rely on ultrasound, magnetic, infrared, vision, RF technology, 

and/or CV (Pradhan et al., 2009; Hightower & Borriello, 2001). Ultrasound-based systems include 

a transmitter to emit the ultrasound pulses and a receiver to collect the emitted pulses and to 

estimate the distance between the receiver and the transmitter (Pradhan et al., 2009; Want et al., 

1992). Although ultrasound-based systems have high accuracy, they need a large number of 

sensors, which are costly compared to RF systems (Pradhan et al., 2009; Hightower and Borriello, 

2001). 

Magnetic approaches are based on the measurement of the motion with the help of accelerometers, 

gyroscopes, and magnetometer. The rate of the motion (i.e., acceleration) comes from an 

accelerometer and the type and direction of the motion are provided by gyroscopes (Fraden, 2011). 

Additionally, a magnetometer helps the system to find the direction of motion with respect to the 

earth’s magnetic field. Performing dead reckoning technique (Gelb, 1974) with a known rate, type 

and direction of motion estimates the location of an object based on an Inertial Measurement Unit 

(IMU). In recent years, Pradhan et al. (2009) and Jimenez Ruiz et al. (2012) proposed 

combinatorial methods using RFID to improve the accuracy of IMU-based localization methods. 

Similar to ultrasound, infrared-based systems include a transmitter and a receiver, but they utilize 

electromagnetic radiation of wavelength greater than the visible light instead of sound waves to 

determine the distance (Pradhan et al., 2009M). Furthermore, image-based localization 

technologies rely on edge detection, feature recognition, and landmark detection using visual tags 

or image matching (Sim & Dudek, 2003) but they are mainly suitable for self-localization. 
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The systems that use RF in different ways to localize the position of a target are called RF-based 

solutions. GPS, RFID, Wireless Local Area Network (WLAN), Bluetooth, and ZigBee are some 

of the popular RF-based technologies used for localization. Due to their communication range and 

the possibility to work without any line of sight (except GPS), there is a strong trend to use these 

solutions for localization. Instead, GPS does not required any local infrastructure for calculating 

its position and is easy to deploy compared to other RF-based solutions which rely on the fixed 

local recievers. Figure 2-2 depicts a general overview of the current wireless-based positioning 

systems (Liu et al., 2007; Vossiek et al., 2003). 

 

Figure 2-4. Outline of current wireless-based positioning systems (Liu et al., 2007) 

2.5 Computer Vision Methods and Applications 

Basically, subjects under the application of CV cover by object recognition, object tracking, and 

activity recognition, which is usually advancement of integration between the object recognition 

and the object tracking. Object recognition focuses on detecting and recognizing the object within 

the images. Following the movement of the specific pixels within the consequent frames is called 
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object tracking. Tracking the objects starts by detecting the objects and then tracking it. 

Furthermore, analyzing the output of the object recognition and tracking methods help the system 

to recognize the ongoing activity. In the following, the studies related to the application of CV in 

construction project are reviewed. 

2.5.1 Object Recognition and its Applications 

Currently, there are few extensive reviews on the available object recognition methods in CV. 

Andreopoulos and Tsotsos (2013) explained the development of these algorithms in the past 50 

years including the requirements for the applications of these algorithms in the area of construction 

sites’ monitoring. Matas and Obdrzalek (2004) and Yang (2009) divided these methods to 

geometry-based, appearance-based, and local feature-based methods, which are briefly discussed 

in the following (Tajeen & Zhu, 2014). 

2.5.1.1 Geometry-Based Methods 

The primitive elements of the objects such as lines, circles, etc., are the main focus of these 

methods. The extracted primitives of the object are hierarchically organized in the bags of 

boundaries (Payet & Todorovic, 2011) as the objects’ templates for further comparison with the 

query images. These methods are invariant to the viewpoint and illumination under small degrees 

of occlusions, background clutter, or light variations (Mundy, 2006). The Edge detection methods 

such as Sobel, Prewitt, Canny, Laplacian of Gaussian, Expectation-Maximization algorithm, etc., 

are the main part of geometry-based methods (Ramadevi et al., 2010). 

2.5.1.2 Appearance-Based Methods 

The main elements in this class are the color and the texture of the object, which are extracted from 

the images and represented as a histogram. Then, the classifier is trained using the histograms of 
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the object under the different illumination and pose variations. Although the appearance-based 

methods are robust to the variations of the object orientations and scales, they suffer from big 

changes of the lighting conditions and cluttered backgrounds (Matas & Obdrzalek, 2004; Tajeen 

& Zhu, 2014). 

2.5.1.3 Local Feature-Based Methods 

The local features of an object are typically invariant to the scale, illumination, and affine 

transformation (Matas & Obdrzalek, 2004; Grauman & Leibe, 2011; Carr et al., 2012; Tajeen & 

Zhu, 2014). The Scale-Invariant Feature Transformation (SIFT) (Lowe, 1999), the Histogram of 

Oriented Gradients (HOG) (Dalal & Triggs, 2005), and the Speeded-Up Robust Features (SURF) 

(Bay et al., 2006) are the common examples of local feature-based methods. The basic concept of 

these methods is that the descriptor first learns the interest points of the objects from the training 

dataset and then searches for the similar objects within the query images (Yang, 2009). 

Considering the nature of the construction projects with cluttered backgrounds and the continuous 

change in the light conditions, this class is expected to provide a better and more reliable results 

on the construction sites while the first two classes may outperform in the environments where the 

illumination condition is under control and there are few changes in the background (e.g. 

production line of factories). 

2.5.2 Image Annotation Techniques 

For creating the supervised object detectors, the training process of the object detectors starts by 

annotating many positive samples, which contain that object. Typically, the samples are observed 

one by one and the target object in each sample is identified by a rectangular bounding box to 

indicate the regions that are occupied by the object. The coordinates of the bounding box are 
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considered as ROI during the training phase. In the following, different approaches for image 

annotation are studied; however they suffer from the long required time for manual annotation by 

the human. 

There are a few toolboxes available for annotating and labeling the images that can be used for the 

training purpose. Von Ahn and Dabbish (2004) and Von Ahn et al. (2006) proposed an online 

computer game named Peekaboom for labeling images through an interactive system. The game 

is arranged so that the user determines the contents of the images by choosing the meaningful 

labels for them. 

LabelMe is one of the well-known web-based tools in this area (Russell et al., 2008). (Fellbaum, 

1998), discover the object parts, recover the depth ordering of the objects in a scene, and increase 

the number of the labels using minimum human supervision. A semi-automatic labeling tool in 

this application is able to suggest the additional labels in the new images once there are enough 

annotations of a particular object class. However, to achieve good results, it is necessary first to 

annotate many images for the target object class, which needs a lot of time, then to train a descriptor 

based on the annotated images. Furthermore, the user has to read the suggested labels for the new 

images and approve them manually, which also requires more time. There is another annotation 

tool that was developed by researchers at the University of Bonn based on the LabelMe toolbox 

(Kor & Schneider, 2007). This tool is a Matlab-based software and the user is able to manually 

draw a boundary around the object. Afterward, the user defines the class of the object, the view, 

and the sub- or super-classes of the object. At the end, an XML (Extensible Markup Language) 

file containing the coordinates of the boundary lines and related information is provided to the 

user. 
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Kläser (2007) created the Image Annotation Tool for the image annotation with the pixel wise 

masks. This software is able to label the objects by manually defining bounding boxes. 

Furthermore, the users can apply simple modifications such as rotation, alignment, etc. However, 

this tool does not have much more advantages than the tools mentioned earlier and it still suffers 

from the long required time for annotating each object. 

Amazon Mechanical Turk (Sorokin, 2009) is another web-based annotation tool. In this tool, the 

user defines an annotation protocol out of four existing ones and determines what objects need to 

be labeled. The four protocols are two coarse object segmentation protocols, polygonal labeling, 

and 14-point human landmark labeling. Sorokin and Forsyth (2008)claimed that the effort cost of 

their tool is lower than the other existing ones. However, this tool still relies on a large amount of 

human efforts. 

Mathworks (2014a) provides an easy way for annotating positive samples named Training Image 

Labeler, which is a simplified version of other tools within Matlab. The user can specify ROIs 

within each image interactively and receive a .mat file containing the name of the images and the 

corresponding bounding boxes in each image. 

2.5.3 Image Segmentation Techniques  

One of the methods for annotating the images automatically is the image segmentation to separate 

the target object from the background to do the further processing steps; therefore the image 

segmentation is the first important step of low-level vision (Pal & Pal, 1993). It is a process of 

partitioning the image into non-intersecting regions using automatic thresholding, edge-based 

methods, and/or morphology-based methods. Assuming an excavator as the target object, the 
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image has to be partitioned so that the whole body of the excavator appears in one segment and 

the rest of the image appears in the other segments. One of the necessary steps in segmentation is 

to detect the edges of the object. The main edge detection algorithms are Sobel, Prewitt, Roberts, 

and Canny (Aybar, 2006).  To make the edges more consistent, the output of edge detection should 

be dilated (Mathworks, 2014b). This way, the holes within partitioned segments could be filled 

through a connectivity mask based on morphological reconstruction (Soille, 1999). In this regard, 

JMicrovision (Roduit, 2006) provides a wide range of functions for morphology operating, 

filtering, and segmentation. Furthermore, Shoelson (2012) developed another Matlab-based 

application named SegmentTool, which is an interactive Graphical User Interface for segmenting 

images. However, both tools need efforts from the users for selecting the required thresholds to 

partition the target correctly. There are other tools, which have the function for segmenting the 

target object based on the predefined classes but they need first to be trained by different positive 

samples. However, these tools are not useful here because they assumed that there was no model 

of the target object and the segmentation results would be directly used for training. 

2.5.4 Model-based Synthetic Images 

Generally, the images, which are created using an artificial process such as computer-graphics 

techniques are called synthetic images. In contrast with the images taken by a camera from real 

scenes, synthetic images can be taken by a virtual camera within a 3D environment developed in 

a computer software. One of the early attempts to use the images of 3D models was done by Blanz 

et al. (1996), where they compared two object recognition algorithms using realistic 3D models. 

However, the images taken from the 3D models are used for both training and testing, which shows 

that their main focus was on the object recognition. Later, Blanz et al. (2002) proposed the fitting 
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of a single image of a face to the 3D model of the face to identify the faces across different poses 

and illuminations. 

Heisele et al. (2009; 2013) proposed an active learning method for object classification using 3D 

models. In this patent, the classifier was trained based on the synthetic images rendered from 

realistic 3D computer graphics models. However, the generated images had single background 

color, which could represent a natural scene. This research clearly showed the benefits of learning 

from 3D models, which are the possibility of obtaining a ground truth and controlling the synthetic 

image generation process through a small number of rendering parameters.  

Liebelt and Schmid (2010 ) introduced a method for including the 3D geometry from synthetic 

Computer-Aided Design (CAD) models into a 2D appearance detection method. They generated 

the synthetic images to support their multi-view object dataset. This approach relies exclusively 

on a database of synthetic 3D models to represent both the appearance and the geometry of the 

object class (Schels et al., 2011). However, the created images using this method still do not look 

natural since they do not contain any real backgrounds. 

In summary, none of the above-mentioned studies focused on the annotation of synthetic images 

for the training of the object detectors in order to reduce the time and human efforts required in 

manual annotation methods. 

2.5.5 Camera Calibration 

Although qualitative analysis of the videos can be done using uncalibrated cameras (Hartley, 1993; 

Salvi et al., 2002), the camera calibration is necessary for the quantitative analysis. Extracting 

useful information from the video frames requires the calculation of camera parameters 
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(Nehemiah, 2016). The situation becomes more critical when the analysis is within the stereo 

vision or multi-vision domain. In this case, not only the cameras have to be calibrated individually 

but also they have to be externally calibrated relative to each other (translation and rotation of each 

camera from an origin point). 

Salvi et al. (2002) divided the process of camera calibration into two phases, the mathematical 

modeling of the camera by using a set of parameters, and estimating the values of the cameras’ 

parameters (known as intrinsic and extrinsic parameters). Basically, intrinsic parameters refer to 

the coordinates of the principal point, scale factors, and skewness of two image axes (Zhang Z. , 

2000), and extrinsic parameters represent the position and orientation of the camera with respect 

to a world coordinate system (Salvi et al., 2002). One of the widely used methods for estimating 

camera parameters is the flexible camera calibration by viewing a plane from unknown 

orientations (Zhang Z. , 1999). According to this method, a pattern (e.g. checker board) is used to 

detect the feature points in the images. These points are used to estimate camera parameters using 

Equation 2-1,  

𝑠[𝑥 𝑦 1]  =  [𝑋 𝑌 𝑍 1] [
𝑅
𝑡

] 𝐾 where 𝐾 = [

𝛼 ϲ 𝑢0

0 𝛽 𝑣0

0 0 1
] Equation 2-1 

where X, Y, and Z are the world coordinates of each point, x and y are the coordinates of the 

corresponding image point, s is the arbitrary scale factor, R is the 3D rotation matrix of the camera, 

t is the translation of the camera relative to the world coordinate system, and K is camera intrinsic 

matrix. Within K, (𝑢0, 𝑣0) are the coordinates of the principal point, a and β represent the scale 

factors in image 𝑢 and 𝑣 axes, and ϲ represents the skewness of the two axes. The intrinsic and 

extrinsic parameters are estimated using the closed-form method explained in (Zhang Z. , 1999). 
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Later on, the distortion coefficients are approximated using nonlinear least-square minimization 

technique. 

2.5.6 Stereo Vision 

As shown in Figure 2-5, stereo vision uses two or more cameras with overlapping views (Torr & 

Zisserman, 2000). The relationship between two views is represented by the vector [
𝑅
𝑡

] where R 

and t are the rotation and translation of the coordinate system of camera 2 from that of camera 1. 

This relationship can be extracted based on the motion of points between the two views.  
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Figure 2-5. Stereo vision basic concept 

In simple words, each camera can have its own world coordinate system (e.g. o1 is the origin of 

camera 1 and o2 is the origin of camera 2) but when they are working together to provide 3D 

information, their individual coordinate systems should be unified (new world coordinate system 

with the origin of o), which is called stereo cameras calibration. Assuming that the parameters of 

each camera are extracted by individual calibration of the cameras and the image coordinates from 

each camera are normalized, then the essential matrix E shows the relations between the two 
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cameras. Knowing the fundamental matrix F for any pair of corresponding points 𝑝1 ↔ 𝑝2 

(Equation 2-2), the equation for the essential matrix, which is the special case of the fundamental 

matrix for the normalized image coordinates, is defined by Equation 2-3 for any pair of normalized 

image coordinates for corresponding points  �̂�1 ↔ �̂�2 (Hartley & Zisserman, 2003). The methods 

proposed by (Nistér, 2004; Kukelova et al., 2008) are among the widely used approaches for 

solving Equation 2-3. Finally, point p can be estimated using the linear triangulation method used 

in (Hartley et al., 1992). 

𝑝2
𝑇 × 𝐹 × 𝑝1 = 0 Equation 2-2 

�̂�2
𝑇 × 𝐸 × �̂�1 = 0 Equation 2-3 

Reviewing the ongoing related research shows a lot of interests and demands for the articulated 

equipment pose tracking using CV-based methods. The current state-of-art methods open new 

challenges to apply such methods on real construction sites with reliable performance. This 

research considers the available object detection methods and stereo vision methods for detecting 

the excavator parts and estimating the excavator 3D pose. 

2.5.7 Applications of High Performance Computing in CV 

National Institute for Computational Science (NICS) defined High Performance Computing (HPC) 

as the capabilities of supercomputers for solving the computational problems that are either too 

large for standard computers or would require a long processing time (NICS, 2011). These 

problems can come up from various research fields or industries including medicine, economics, 

engineering, entertainment, etc. One of the high-demand areas is CV and the image processing 

algorithms. Developing self-driving cars is an example application of HPC. A car driver observes 

the road while he/she is driving, and by recognizing a pedestrian who is crossing the road, the 
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driver should estimate the required distance not to hit the person while predicting the future 

location of that person (Eagan, 2012). The whole process happens in real-time everyday within 

our brain. To model the mentioned process in the computer using the camera(s) or other sensors, 

the computer has to process the input data within millisecond(s) to avoid an accident. Therefore, 

there is a high demand of HPC when a process is supposed to be done in a very short time with 

the maximum accuracy. Basically, HPC can be developed on Personal Computers including 

desktops, laptops, and workstations, smartphones, supercomputers, grids, clouds, and/or any 

combination of these systems. The main point in HPC is the ability to handle the multiple functions 

efficiently and as quick as possible while receiving a large amount of data (Meneses, 2015).  

In addition to the parallelism, the special hardware accelerators represent another HPC category 

that can perform a particular class of functions more efficiently. Graphical Processing Units 

(GPUs) are the popular example of the special-purpose hardware for increasing the performance 

of the image processing and CV processes. In simple words, GPUs are widely used for numerous 

simple mathematical and generic computations and deal with the large data while Central 

Processing Units (CPUs) are preferred to be used for less number but more complicated 

calculations. 

As shown in Figure 2-6(a), CPUs take benefit of a more powerful processors unit, supported by 

the cache memory. A GPU consists of hundreds of small CPUs supported by their own memories 

(Figure 2-6(b)). Pulli et al. (2012) introduced the advantages of using GPU for running CV 

algorithms. Applying GPU can speed up the image processing and CV methods’ processes from 

six to 30 times.  
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In the field of construction, Azar (2013) compared the performance of GPU versus CPU while 

applying HOG detectors on the video collected from the construction site and he achieved a 

significant improvement in terms of processing speed by using GPU. The results of this research 

confirmed the speedup of 25 times while using GPU during the object recognition process. 

  

(a) CPU (Multiple Cores) (b) GPU (Hundreds of Cores) 

Figure 2-6. Hardware structures of CPU and GPU (Reese & Zaranek, 2011) 

2.6 Applications of CV in Construction Projects 

Although there is no solid structure for categorizing the applications of CV in the construction 

industry, reviewing the studies in this area highlights three main categories: recognition of the 

construction resources, tracking their movements, and determining their current actions. In the 

following, each category is introduced and discussed to highlight the current research gaps and to 

narrow the scope of this research. 
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2.6.1 Object Recognition Methods for Monitoring the Construction Resources 

As explained in Section 2.6.1, an object can be detected and categorized through its shape, color, 

and/or motion characteristics (Park & Brilakis, 2012a). The following studies take advantage of 

each of these characteristics (or a combination of them) to recognize the workers and/or equipment 

in construction projects. 

Zou and Kim (2007) had an early attempt that studied the application of Hue, Saturation, and Value 

(HSV) color space to estimate the idle time of hydraulic excavators. Comparing Red, Green, and 

Blue (RGB) color space with HSV shows that the RGB color space is easy to understand, but it 

brings many difficulties to differentiate the object of interest from the background (especially when 

the light conditions change from bright to dark) since the histogram of RGB values of the target 

object usually overlap with the histogram of its background. On the other hand, the characteristics 

of hue change less by changing the light conditions in open fields since the HSV color space relies 

on the dominant wavelength of the perceived color. One of the assumptions in (Zou & Kim, 2007) 

is selecting the object of interest in the original image manually by the user, which limits the 

application of the proposed method. 

Weerasinghe and Ruwanpura (2009) proposed detecting the workers through their hardhats. The 

algorithm searches for the hardhats with a known color (e.g. yellow). However, this method is not 

reliable for complex construction sites with a cluttered background. 

Template matching is another way to detect the appearance of an entity (Cole et al., 2004), which 

can be applied using object eigen-image (Turk & Pentland, 1991; Monwar et al, 2007), an active 

shape or appearance model (Cootes et al., 1995; Cootes et al., 2001; Matthews & Baker, 2004), 
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and a bag of words or textons (Julesz, 1981; Csurka et al., 2004; Shotton et l., 2008). Brilakis et 

al. (2011) used a Semantic Texton Forests (SFTs) method, which learns the appearance features 

of the object and context information (Shotton et al., 2008). 

Another research done by Chi and Caldas (2011) introduces the background subtraction method 

developed first by Li et al. (2003) for detecting the construction resources. This method detects 

the objects by finding and removing the static pixels (background) out of the moving pixels 

(foreground). Knowing the foreground pixels can be used to find the moving object but it does not 

provide any further information about the object (whether it is a worker, a backhoe, or a truck). 

Therefore, the foreground pixels are passed through a pre-trained object classifier (i.e., a Bayes 

classifier or a neural network) and the classifier determines the type of the moving object. As a 

limitation, this method needs the object to be moving in the subsequent frames to be detected; but 

if the object is stationary, it is not recognized. 

Haar-like features supported by the Adaptive Boosting algorithm (Viola & Jones, 2001; Freund & 

Schapire, 1997), HOG features coupled with a Support Vector Machine (SVM) developed by 

(Dalal & Triggs, 2005), color histogram (Swain & Ballard, 1991), and Eigen-images including 

color and shape information, can be adapted for construction resources' recognition (Park & 

Brilakis, 2012a). Park and Brilakis (2012b) proposed applying the background subtraction method 

coupled with Haar-cascade features. Moreover, they used HSV color space to minimize the false 

detections by considering the colors of the objects. They also investigated the combination of 

background subtraction method, HOG features with SVM classifier, and color histogram with k-

NN (k Nearest Neighbors) in subsequent levels to recognize the worker at construction sites. 

However, both methods are limited to the moving objects. 
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Azar and McCabe (2012a) studied the recognition result by using HOG and Haar-Like features on 

the static images (Haar-HOG). They trained eight detectors to cover all views around the 

equipment. Moreover, they applied a Haar detector in combination with an HOG detector on the 

video of the site. In another scenario, the foreground object of the video was detected and then the 

HOG detector searches for the target object within the foreground pixels (Blob-HOG). The results 

show that Haar-HOG performs slightly better than Blob-HOG, while the Blob-HOG is less 

intensive in terms of computation. 

Memarzadeh et al. (2013) proposed using HOG features in association with Histogram of Color 

(HOC) and their results show that HOG-HOC slightly outperformed HOG. In the research done 

by Tajeen and Zhu (2014), two methods previously developed by Torralba et al. (2004; 2007) and 

by Felzenszwalb et al. (2010) were compared in the construction environment. The idea that 

Torralba et al. (2004; 2007) presented is to use the shared patches of different classes through a 

machine learning process Figure 2-7. This concept helped to run the classifier faster while it 

requires less data to train since it uses the shared data across the classes.  

 

Figure 2-7. Example of shared objects’ features (Torralba et al., 2007) 
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Felzenszwalb et al. (2010) proposed the discriminatively trained part-based model, which not only 

uses HOG features of the whole deformable object, but also considers HOG features of each 

attached subpart of that object. It also applies a latent SVM to formulate the relations between the 

features of the object and its parts. The comparison results provided by Tajeen and Zhu (2014) 

show that the part-based model performs better and is more robust to occlusions; while the sharing 

features method performs faster. 

The investigation on the methods explained in this section shows that they suffer from the long 

annotation time in addition to the limited available views of the equipment. 

2.6.2 Pose Estimation and Activity Recognition of Construction Resources 

One of the methods for estimating the pose of articulated objects is using Time-of-Flight (ToF) 

camera integrated by Charged-Coupled Camera (Son & Kim, 2012); however, the ToF camera’s 

operating range is limited to 7.5 m while much longer range is expected for applying on 

construction sites. Kashani et al. (Kashani et al., 2010) proposed the laser-based method for 

tracking the pose of shovel’s dipper using the depth information received from the laser scanner. 

In addition to high the cost of deployment, the method is effective when the target object specified. 

In other word, for tracking more than one target object, it is necessary to identify each object and 

differentiate them from each other. Moreover, a model-based automatic dynamic object 

recognition and registration method was proposed by Cho and Gai (2013) using CAD models of 

the excavator parts. Although, the accuracy of the registration was from 27 to 34 mm but it still 

suffers from the high cost of the laser scanner deployment. 
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Lundeen et al. (2015; 2016) and Feng et al. (2015) proposed an optical marker-based method for 

estimating the pose of the excavators. They attached multiple markers on the surfaces of the 

equipment parts (Figure 2-8) and a stationary reference marker on the available permanent 

structure on the construction site. Recently, they claimed achieving an accuracy of 2.5 cm in their 

latest study (Lundeen, et al., 2016). This method can become practical after reducing the required 

size of the makers and addressing the challenges with dirt on the markers and stability of the 

markers. 

 

Figure 2-8. Markers installed on backhoe (Lundeen, et al., 2016) 

Recently, Yuan et al. (2016) proposed using hybrid kinematic shapes and key nodes for tracking 

the pose of excavators. The joints of the excavator were detected using the template matching 

approach based on the edge detection algorithm. The method shows an error of about 0.5 m on the 

x and y axes and 1.0 m on the z axis when the target is 15 m far from the cameras. However, the 

results show that when the target was over 20 m far from the cameras, the error increased to over 

6.0 m. Moreover, since the cameras are installed close to each other, there is a high risk that the 

angle between the excavator’s side view and the cameras becomes close to 180˚, which results in 

self-occlusion of the excavator parts. These problems can be avoided by installing the stereo 

cameras several meters far from each other. Additionally, the method should be evaluated in 
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scenarios where the cameras are installed high from the ground level since in most construction 

sites the cameras are located at the highest level to maximize the coverage. 

Other alternatives for estimating the pose of the excavators are the commercial machine control or 

guidance systems. Basically, both systems are taking advantage of the sensory devices attached to 

the parts of an excavator. Trimble as one of the solution providers in this area claimed that their 

product can provide the angle of the parts with an error of up to 4% (Trimble, 2017). Although 

these systems can provide reliable results, attaching multiple sensors on each excavator is not only 

time consuming but also costly. 

2.6.3 Applications of CV for Analysing Health and Safety on Construction Sites 

Basically, the application of CV for the safety purposes can be studied from two aspects. The first 

context focuses on the workers and the methods for extracting the pose of human bodies. The other 

aspect focuses on the interactions between the moveable construction resources (e.g. worker and 

equipment) to avoid the hazardous situations. 

According to the comparative study done by Han et al. (2014), the steps toward the recognition of 

unsafe human actions are: deriving the human body motion information, reducing the motion data 

dimension, creating the trajectory of the motions, and recognizing the determined action class. 

Moreover, the motion data are usually described in rotation angles, joint angles, position vectors, 

and movement directions. The results of their experiments show that the rotation angle performs 

better than the joint angle and the position vector.  

Li and Lee (2011) developed a method to reconstruct the 3D human skeletons by obtaining 3D 

coordinates of each body joint from the multiple ordinary network cameras for the ergonomic 
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analyses. Their approach elaborated on the motion identification, motion recognition, motion 

analysis, and motion visualization. Han et al. (2011) extended this research by applying kernel 

Principal Component Analysis with polynomial kernel and by using the supervised classification 

techniques to detect unsafe motions (Han et al., 2012). 

In addition to the health related aspects, there are many studies focused on the applications of CV 

for the construction site’s safety. Chi and Caldas (2011) proposed an image-based safety 

assessment approach, which elaborates on the automated spatial safety risk identification of the 

surface mining activities. In this research, the main earthmoving activities (e.g. loading, hauling, 

and dumping) and their related accidents were introduced. By investigating the causes of those 

accidents, all related risk factors for each accident were classified within three categories: operator 

error, poor operating condition, and mechanical/hydraulic failure. Reviewing the risk factors, 

safety regulations, and best practices showed that the data related to moving speed, proximity to 

dangerous areas, and proximity to other object and stopping distances are the fundamental spatial 

information required for developing a safe work area. Furthermore, selecting an accurate and 

reliable data collection device can directly affect the applicability of the proposed safety system. 

Chi and Caldas (2011) compared different data collection devices and the results are shown in 

Table 2-1. The table clearly shows that the stereo vision camera is more reliable than the other 

devices because of its high frame rate and long reading range.  

Table 2-1. Comparison of data collection devices (Chi & Caldas, 2011) 

Devices Frame rate 
Outdoor 

application 

Maximum 

reading range 

Object 

localization 
3D modeling 

LADAR Slow (< 1 Hz) Yes Very long (> 100 m) Yes Yes 

Flash LADAR Fast (> 10 Hz) No Short (< 10 m) Yes Yes 

Video camera Fast (> 10 Hz) Yes Long (>50 m) No No 

Stereo vision camera Fast (> 10 Hz) Yes Long (>50 m) Yes Yes 
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Moreover, it is able to provide the 3D coordinates of the localized object in the outdoor 

environment. The overview of their proposed object recognition and tracking framework is shown 

in Figure 2-9. By receiving the real-time video from the construction site, the background 

subtraction algorithm detects the moving objects and the pixels involved for each object are formed 

together as one segmented region. Moreover, the corresponding RGB pixels of the segmented 

regions are passed through the object classification module to classify the foreground segment. 

 

Figure 2-9. Overview of object identification and tracking process (Chi & Caldas, 2011) 

The proposed framework aimed to control the speed limit, dangerous access, and close proximity 

violations by knowing the location of the resources and applying a set of safety rules achieved 

from the regulation and interviews with the expert. As a future opportunity, they suggested the 

integration of GPS or UWB system to the current image-based method to improve the object 

identification and tracking results. Moreover, an optimized camera allocation plan with proper 

cameras’ location were recommended for the future research. 
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Ferrer et al. (2013) investigated the application of high-speed cameras (500 fps) and image 

processing methods for safety assessment on construction sites. In this research, they applied 

morphological image filtering and Hough transform to follow the falling objects on the sites. 

Recently, Seo et al. (2015) reviewed the current status of CV techniques for construction safety 

and health monitoring. They studied the related research under three categories: object recognition, 

object tracking, and action recognition. As shown in Figure 2-10, the data can be provided by 2D 

or 3D images using surveillance cameras, portable cameras, Flash LADAR, RGD-D sensors, or 

stereo cameras. The safety and health risk identification can be investigated based on scenes, 

locations and actions by analyzing the collected data. 

 

Figure 2-10. General framework for CV-based safety and health monitoring (Seo et al., 2015) 

2.6.4 Applications of Stereo Vision in Construction Projects 

Extracting information through a single RGB camera does not provide enough insight about the 

real scene since the 3D information are projected on a 2D image plane and some information is 

lost during this transition. Therefore, when there is a need to have access to 3D information of the 

scene, applying stereo imaging techniques using the 2D views from two or more cameras becomes 

necessary. Park et al. (2011) investigated the performance of 3D location estimation of 
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construction workers and a vehicle. In the first configuration, two video cameras were installed at 

the distance of 3.8 m and in the second configuration they were installed at the distance of 8.3 m 

from each other. The workers and the vehicle passed in front of the cameras mostly perpendicular 

to the cameras focal axis within the distance of approximately 30-40 m from the cameras’ baseline. 

A moving checkerboard was used for camera calibration and the board contained 7 by 9 blocks of 

65 × 65 mm. The average localization error of 0.32 m and maximum error of 1.51 m were achieved 

for the 8.3 m baseline and the average error of 0.62 m and maximum error of 2.55 m were the result 

of 3.8 m baseline. Comparing the results shows that using the long baseline outperformed the 

configuration of shorter baseline, which proves the statement of Okutomi and Kanade (1993) 

explained in Section 6.1. Similar to Park et al. (2011), Cordova and Brilakis (2008) proposed a 3D 

vision system for tracking the construction personnel using two cameras. Recently, Zhu et al. 

(2016) designed a Kalman filter and applied on the location data achieved by Park et al. (2011). 

The results after applying the filter shows an improvement of 50%. 

2.7 Multi-Sensor Data Fusion Applications in Construction Projects 

Integration of data from the multiple sensors to improve the reliability and the accuracy of the final 

results is known as MSDF. Missing data and noisy data may significantly drop the accuracy of a 

system. Sensor data fusion can overcome these limitations by using the data collected from the 

different sensors. In case of missing data, the system is able to complement the missing data from 

one sensor, which failed from acquiring data at a certain point of time, by similar target data 

received from other sensors at the same time (Luo et al., 2002). In another scenario, all data 

collected at the certain time may be compared to converge the output toward a more reliable result. 
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Focusing on the location and the pose data, the fusion process can be summarized in four phases: 

(1) data alignment toward a common coordinates system, (2) data association using a set of rules 

to relate the data measured from the different sensors, (3) position estimation based on the 

associated data, and (4) identity estimation, which finds the sources of fed measurements for the 

investigated estimation (Smith & Singh, 2006; Hall, 1992). 

During the last few years, many researchers investigated the applications and the benefits of MSDF 

on construction processes. Luo et al. (2013) studied the effect of the location-aware sensor data 

imperfections on the jobsite safety monitoring. Moreover, they proposed data fusion from various 

sources to improve the precision and recall rates. 

Shahi (2012) and Shahi et al. (2014) proposed a multi-source data fusion system for the automated 

progress tracking of construction activities. The proposed system, which mainly focused on the 

activities’ tracking instead of objects’ tracking, integrated volumetric and positioning data with the 

project control information (e.g. foreman reports, schedule information, and other information 

sources). The results of their experiments show that their approach can improve the existing object 

tracking and recognition algorithms. However, the validation of the method was limited to piping 

activities in an industrial building project and it should to be tested on a full scale project including 

various activities.  

El-Omari & Moselhi (2011) developed an Information Technology platform to acquire data from 

various technologies set on construction sites for the progress measurement purposes. The platform 

includes bar coding, RFID, 3D laser scanning, photogrammetry, multimedia, and pen-based 

computers. In addition to the automated data acquisition technologies, a planning and scheduling 
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software system, a relational database, and AutoCAD were added to the proposed platform to assist 

project management teams for the decision making. 

Razavi & Haas (2010) studied a modified functional data fusion model for an on-site materials 

tracking on the construction yard. This hybrid solution was used for automated identification, 

location estimation, and dislocation detection of the construction materials. They used various 

physical sensors, different location estimation algorithms, location contexts from the automated 

data collection technologies (Received Signal Strength Indicator, Positional Dilution of Precision), 

time and BIM (site map/layout and 3D models) as the data sources. Moreover, Dempster-Shafer 

theory applied in their model was found promising to the materials dislocation detection.  

An automated construction activity monitoring platform was introduced by Rebolj et al. (2008) 

integrating image recognition-based tracking, BIM-based material tracking and the Dynamic 

Communication Environment (DyCE) supported by mobile computing. However, the system 

requires to set multiple cameras to solve the problems of obstructed elements and BIM technology 

has to be used to its full extent. 

Rafiee et al. (2013) proposed the MSDF method for fusing data from BIM, UWB, and surveillance 

cameras to improve the security for indoor environments. The method estimated the locations of 

people in the video and compared them with the locations provided by UWB system to detect the 

intruders. Dibitonto et al. (2011) introduced a fusion method for tracking people. They integrated 

radio-based and video-based localization systems to increase the accuracy and reliability of 

location estimation results. 
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2.8 Applications of Serious Games in Construction 

Serious games use video game elements for purposes other than pure entertainment (Djaouti et al., 

2011). Serious games attempt to create instructionally sound and relevant learning experiences for 

a wide variety of industries such as defense, education, healthcare, emergency management, city 

planning, engineering, etc. (Charsky, 2010). 

Different studies were done to explore the potential of serious games within the construction 

industry using game engines and virtual environments. These studies mainly focused on training 

or evaluating the architectural design of the building (Deshpande & Huang, 2011; Oerter et al, 

2013). Al-Jinouri et al. (2005) investigated a simulation model, which was developed in the form 

of a management game as an alternative way for teaching construction planning and control. Xie 

et al. (2006) proposed the creation of a Virtual Reality (VR) safety-training system to assess the 

perceptual and behavioral impacts of the VR environments on the trainees. This system, which 

was reconfigurable and reusable, made it possible to create 3D virtual images and produced 

memorable experiences for the trainees. Additionally, the virtual environment factors, such as 

temperature, air composition, and visibility, were also studied and simulated in their system. Zhao 

et al. (2009) studied the issues concerning the electrical-related accidents within the construction 

industry. They discussed the benefits of using an active training approach such as VR simulation 

and its effects on the cognitive abilities of the users. 

A Safety Inspector 3D video game was proposed by Lin et al. (2011) to provide a comprehensive 

safety training environment in which the user can understand the safety roles and walk through the 

game site to identify the potential hazards. A small group of students were asked to use the 

preliminary game system to evaluate the effectiveness of the designed system. 



38 

 

Under the research project of “Serious Human Rescue Game” at Technische Universität 

Darmstadt, Rüppel & Schatz (2011) proposed a serious gaming approach using BIM for the 

exploration of the effect of building conditions on the human behavior during the evacuation 

process since it is impossible to conduct the rescue tests during a real fire. 

Ku and Mahabaleshwarkar (2011) described the concept of Building interactive Modeling, which 

provided the capability of interaction with BIM, to enhance the collaborative information and 

knowledge sharing. Goedert et al. (2011) proposed a framework for a Virtual Interactive 

Construction Education system named VICE, taking advantage of the new technologies in 

simulation, modeling, and semantic web and software engineering. 

Amr and Mohamed (2011) proposed the utilization of video game technologies for construction 

operation simulation visualization; however their main focus was on the managerial level of the 

projects and it was limited to the visualization capability of the game engines. Furthermore, an 

approach for integrating the workspace management within the planning process using a serious 

game was proposed by Chavada et al. (2012).  

Hammad et al. (2014) proposed using the game engine for integrating the macro and micro path 

planning methods for monitoring the safety of excavation operations. Langari and Hammad (2015) 

extended the study of Hammad et al. (2014) by developing a new algorithm for the path planningof 

the excavators. This study attempted to improve the safety and productivity by providing a higher 

level of support to the excavator operators. Vahdatikhaki et al. (2017) proposed a Multi-Agent 

System (MAS) for enhancing the coordination and safety of the earthwork operations using the 

game environment. Figure 2-11 shows Unity implementation of MAS and represents the captured 

information from Operator Agents (OAs) to be used by Team Coordinator Agents (TCAs). This 
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system is able to provide the productivity related information such as the equipment idle time, 

moving time, waiting time, and the soil volume moved by the equipment. 

 

Figure 2-11. Unity implementation representing typical information OAs report to TCAs (adapted 

from Vahdatikhaki et al., 2017) 

From the safety point of view, this system applies LAEWs for collision-free path planning. The 

system generates the risk map of the excavator with higher assigned priority and LAEW is created 

for the adjacent equipment. In the example shown in Figure 2-12, Excavator 1 has higher priority; 

therefore the LAEW of Excavator 2 is generated relative to the risk map of Excavator 1. 

 

Figure 2-12. LAEW of Excavator 2 (adapted from Vahdatikhaki et al., 2017) 

 

Excavator 1 

Excavator 2 
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Concluding of applications of the serious games in construction shows that the games were mainly 

used for the safety training practices in construction industry. However, the recent study of 

Vahdatikhaki et al. (2017) opened a new chapter for applying MAS on the earthwork projects 

using the serious game. This would allow the other researchers to collect NRT data from the 

construction sites and feed them into the game environment for identifying the equipment states 

and detecting the potential collisions. 

2.9 Summary 

In this chapter, the current status of the safety on the construction sites was studied and the statistics 

showed the demand of more investigations in this area. Moreover, the collisions between the 

construction resources including both equipment and humans were found as high risk events on 

the construction sites. Moreover, the available localization and RTLS technologies were studied 

to select the most beneficial technologies for this research. CV-based systems were considered as 

the main technology for supporting the proposed method because of its ease of access and 

availability in addition to the high accuracy and reliability. The second selected technology was 

the RF-based RTLS system because of the wide coverage range while it is less dependent on 

having the line of sight to the tracking objects. Both GPS and UWB have their own benefits and 

capabilities that the user can select one of them or even both of them based on the scope and the 

environment of the project. 

Furthermore, the general methods and applications of CV were studied and explained. The current 

methods for the object recognition and tracking, and image processing and segmentations were 

introduced. Additionally, the current applications of CV to be used on construction site were 

investigated for improving the safety. However, most of the previous CV-based methods in 
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construction are dependent on the motion of the equipment. Knowing that the excavator pose 

estimation is limited to the marker-based methods, there is no available image archive for training 

the excavator parts’ detectors. Moreover, the applications of MSDF were discussed as a potential 

area for supporting the current research considering the high requirements for real-time and 

accurate pose estimation in safety monitoring. In addition, the current configuration of the stereo 

cameras are not designed for the large construction sites. 

 Finally, the current applications of serious games on construction sites were introduced and the 

potentials of the game engines and LAEW were acknowledged. These kind of applications are 

effective in detecting potential collisions in the scope of safety monitoring. 
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CHAPTER 3 RESEARCH FRAMEWORK 

3.1 Introduction 

In Chapter 2, the fatality rate of work-related accidents in construction projects was reviewed. The 

statistics showed the importance of the active measurements of proximity among equipment and 

workers on construction sites. Avoiding collisions between construction resources requires NRT 

monitoring of the equipment and the workers’ movements. For equipment with articulated parts 

(e.g. excavators), the scenario is more complicated since the NRT poses of the parts have to be 

monitored in addition to the equipment itself. The 3D pose information is used to detect the 

potential collisions through the methods explained in Section 2.2. Moreover, the pose information 

can be used for estimating the productivity. However, estimating the productivity is out of scope 

of this research and it remains as future work.  

3.2 Overview of the Research Framework 

Reviewing the available technologies shows that depending on one single technology may not 

result in an effective and accurate performance. For example, using GPS, UWB, Bluetooth, Active 

RFID, or CV can provide the approximate location of the equipment. However, calculating the 

NRT pose of the equipment using a single source brings a large error, which is not reliable enough 

for safety purposes. 

Figure 3-1 schematically shows the proposed framework with the following steps: (a) construction 

site configuration, (b) auto-annotation of the synthetic images, (c) data fusion and the excavator 

parts recognition, and (d) skeleton extraction and 3D pose estimation. 



43 

 

As shown in Figure 3-1(a), two main technologies, that are suggested to be used in this research, 

are RTLS and CV. Within the RTLS category, the users can choose GPS tracker, UWB, Bluetooth, 

or active RFID which are four types of RTLS that can provide the location of the equipment as the 

initial step toward pose tracking. In addition to the RTLS system, at least two cameras are required 

with a reasonable distance from each other, with a full coverage of the target area and full 

overlapping views. Steps (b), (c), and (d) are explained in the following sections. 

3.3 Auto Annotation of Synthetic Images 

Since currently there is no comprehensive archive for the equipment parts’ images available, it is 

proposed to generate the images of these parts from the 3D virtual model of the equipment. 

Investigating the potential of using a 3D model of the construction equipment (e.g. excavators) 

instead of the images of the equipment to automatically generate annotations for object recognition 

training is the first priority of this research. As shown in Figure 3-1(b), the 3D model can be 

automatically integrated with different backgrounds of the construction sites to improve the 

training quality. Moreover, these images need to be annotated for the training of the detectors. 

Therefore, an auto-annotation algorithm is proposed to accurately annotate the parts within the 

synthetic image. This method can save time by not involving the human efforts during the 

annotation process. The resulting high quality training with the well-structured annotation could 

significantly improve the object recognition. Moreover, this method helps the industry to have 

access to numerous image datasets for different equipment from different manufactures and to 

customize the object detectors for each target object. 
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Figure 3-1. Schematic demonstration of the proposed framework 

 

In addition, collecting an effective negative dataset is another challenge for training a detector 

model. The importance of negative samples is not less than positive samples since a robust detector 

not only needs to detect the target object correctly but also it has to reject the false detection. 

Generating negative samples related to construction projects can be automated by randomly 

cropping images taken from construction sites. Moreover, HPC can greatly help the proposed 

method to reduce the processing time for the auto-annotation and the negative sample generation 

by dividing the tasks between the multiple CPUs. After all, the knowledge of generating and 

annotating the synthetic images from 3D model is transferred to the next section for training the 

excavator parts’ detectors. The details of the proposed method will be explained in Chapter 4. 

3.4 Data Fusion and Excavator Parts Recognition  

As mentioned in Section 1.3, one of the main objectives of this research is to estimate the NRT 

pose of the construction equipment. The proposed pose estimation method starts with collecting 

the real-time video data and RTLS data from the construction site after calibrating the on-site 

cameras. The RTLS data are linked with the corresponding video frames to fuse the location data 

with the video data. Knowing the overall size of the equipment and its location provided by the 

RTLS system, the cameras that are covering the equipment during its operation are selected. A 3D 

virtual cylinder is added at the center location of the target excavator in each camera’s view based 

on the dimensions of the excavator (Figure 3-1(c)). Consequently, the video frames collected by 

the cameras are processed and a rectangle bounding box is cropped around the projected cylinder 

in each view as shown in Figure 3-1(c). Cropping the frames limits the search scope of the object 
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detection algorithm resulting in a lower computation load and faster processing time while 

achieving more accurate results. Using the method explained in Section 3.3, the synthetic images 

of each equipment’s part (e.g. dipper, boom, and body) are generated and annotated automatically. 

The multiple detectors from different views are trained for each part and then applied on the 

cropped frames to recognize the parts. The information of the detected parts is provided to the 

skeleton extraction methods explained in Section 3.5. Moreover, Chapter 5 will go through the 

details of the proposed data fusion and parts recognition methods.  

3.5 Skeleton Extraction and 3D Pose Estimation  

The background of each detected bounding box is removed and the pixel-wise location of each 

part is estimated. Then, knowing the location of each part and the kinematic relationships of the 

excavator’s parts, the 2D skeleton of the excavator is extracted from each camera’s view. The 3D 

pose of the equipment is calculated using the skeletons information of the excavator and the 

intrinsic and extrinsic parameters of the covering cameras.  

The ultimate target of this research is to provide the 3D pose of the excavator using the proposed 

framework to the collision avoidance systems proposed by Vahdatikhaki et al. (2017) for avoiding 

the potential collisions. These systems were designed in a way to take advantage of a game 

environment. In the final phase, the NRT 3D pose of the excavator is sent to the game environment 

(shown in Figure 3-1(d)) and a collision avoidance system is used to detect any potential collisions 

and generate a warning. The steps required for supporting the skeleton extract and 3D pose 

estimation methods are further explained in Chapter 6. 
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3.6 Summary  

In this chapter, the overview of the proposed framework was presented. The required technologies 

including CV and RTLS were briefly explained. Moreover, the configurations of the technologies 

and the methods to support the framework were discussed. In addition to the configuration of the 

proposed framework in Figure 3-1(a), three modules were defined toward enabling the ready-to-

use data for monitoring safety of the excavators. In Chapters 4 to 6, the methods proposed in each 

module are explained in detail. The methods are developed and validated using real-world case 

studies.  
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CHAPTER 4 AUTO ANNOTATION OF SYNTHETIC IMAGES 

4.1 Introduction 

As explained in Section 2.5.2, there are several limitations of using the current annotation tools, 

which indirectly cause a low accuracy in object recognition. For instance, since the required time 

and efforts for preparing a rich positive dataset are high, the users may rely on a smaller dataset, 

which can result in lower accuracy of the object detection compared to a detector trained by a very 

larger dataset. The main difficulty for the annotation is the long time required for this task. 

Moreover, the required time is dramatically increased by adding more samples from different 

views, which represent different occlusion levels and light conditions. Additionally, training a 

model for each object’s type within a category (e.g. if the object is an excavator, it can be 

manufactured by Caterpillar, Volvo, Komatsu, etc.) can make the situation more complicated. As 

explained in Section 3.3 and shown in Figure 3-1(b), generating the synthetic images from the 3D 

models and annotating them automatically are the proposed solutions in this chapter to address the 

afore-mentioned problems. 

This chapter aims to achieve the following objectives: (1) to automatically generate equipment 

synthetic images using the 3D model of the equipment and real images of the construction sites as 

background to automatically annotate these images; (2) to consider different sizes and illumination 

conditions for the target object; (3) to automatically annotate the generated images of the 3D 

model; (4) to generate effective negative samples for training the detectors; (5) to evaluate the 

results of object recognition using the proposed method and to compare them with the results 

achieved using manual annotation of the real objects; and (6) to apply sensitivity analyses to 
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determine the effect of the number of step angles for each detector and the effect of the Covered 

Range of Angles View (CRAV) within each detector.  

4.2 Developing Auto Annotation Tool 

Training many samples to cover all types in a systematic way may be time consuming; but on the 

other hand, it provides a specific descriptor for each type. This can be useful when the information 

about the specific type of the equipment in the scene is available. Figure 4-1 conceptually shows 

the data set for training an excavator descriptor. Various images are taken from many construction 

sites where different types of excavators are used. Additionally, they are from different positions 

and angles. 

Excavator

 

Figure 4-1. Schematic dataset for a tradition detector model 

As shown in Figure 4-2, the proposed framework is divided into three phases: preprocessing, 

processing, and post-processing. Preprocessing starts by choosing the desired equipment and then 

the type. A 3D model of that specific equipment is assumed to be available and can be imported 

into a 3D modeling tool (e.g. 3Ds Max (Autodesk, 2015) or Google Sketchup (Trimble Navigation, 
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2013)). Moving to the processing phase, a virtual camera is moved around the 3D model and 

images of the object are captured (Figure 4-3).  
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Figure 4-2. Framework of the proposed method 

This camera can take around-views images at different angles from the horizon. Since the data set 

is generated within the virtual environment, it is possible to include images from the same view 

but with different light conditions, visibility, and backgrounds. In the post-processing, the image 

of the construction site can be extracted from any construction image archive or from Google Earth 

and can be used as the background for the object’s images. 

 

Figure 4-3. Spherical position of the camera 
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The captured images are transferred to the CV environment with the programming tools, such as 

Matlab (Mathworks, 2016) or OpenCV (Bradski., 2000), for further analysis and annotation. The 

images will be annotated through the method explained in the following. As shown in 

Figure 4-4(a), the captured image of an excavator in the virtual environment is used as foreground 

of the image of a construction site. Any background can be added to the foreground model of 

equipment to provide more images as shown in Figure 4-4(b). The same annotation information 

used for the raw images with the single background can be applied to the new synthetic images 

(Figure 4-4(c)). 

(a)

(b)
(c)

 

Figure 4-4. Creating synthetic image of construction equipment (adapted from Calfayan 

Construction, 2010) 

4.2.1 Segmentation and Annotation of Images 

Basically, in the current research, the 3D model renderer and the developed auto-image annotation 

tool work independently. In other words, the images of the 3D model of the equipment are first 

generated outside of the proposed toolbox using the available rendering software in the market. 

Since it is assumed that there is no previous knowledge about the color code and the pixels’ 
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uniformity of the single color background of the created images, these issues are considered in the 

development of the proposed toolbox. When the raw images coming from the 3D modeling tool 

with single color background are ready (Figure 4-5(a)), the annotation process starts by applying 

the image segmentation to recognize and separate the equipment from the single-color background. 

As shown in Figure 4-5(c), the edges of the target object can be calculated by applying Sobel-filter 

to the converted gray image (Figure 4-5(b)) from the original RGB image. Applying Dilate-filter 

reduces the black gaps between the surrounding edges of the object as shown in Figure 4-5(d). An 

algorithm presented by Soille (1999) is applied to fill the void area within the surrounding edge 

(Figure 4-5(e)).  

 

 

 

 

 

 

 

 

(a)  (b)  (c)  (d)  

 

 

 

 

 

 

 

 

(e)  (f)  (g)  (h)  

Figure 4-5. Segmenting and annotating the target object 

Those groups of pixels, which are lighter than their surrounding are connected to the image border 

(Mathworks, 2014b; Soille, 1999). Furthermore, the area of the remaining groups of pixels other 

than the image background is sorted and the cluster with maximum area is chosen as the target 

object (Figure 4-5(f)). Figure 4-5(g) shows the calculated border of the object. A rectangular box 
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plus a margin of m (should be defined by the user) is applied to surround the object as shown in 

Figure 4-5(h). 

4.2.2 Adding the Background 

The assumption for adding the background image is that both the image of the object and the image 

of the background have the same size. However, in case the sizes are not the same, the initial image 

containing the desired object can be scaled to fit in the background image. First, the single color 

background of the training data set (Figure 4-6(a)) should be removed. This task can be done by 

applying a similar approach to the one used in the previous image segmentation part resulting in 

Figure 4-6(b). In the next step, the corresponding pixels of the target object in the background 

image (Figure 4-6(c)) are changed to zero as shown in Figure 4-6(d).  
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color background  
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subtracted 

background  
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background 
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Figure 4-6. Process of generating synthetic images 
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The final image shown in Figure 4-6(e) is achieved by combining the object image without 

background and the new background with a void area of the target object. Since the position of the 

object is not changed from the original image to the image with the new background, the same 

bounding-box can be considered for the new image to cover the object within the image. 

4.2.3 Generating Large Positive and Negative Datasets 

Training the positive samples with different sizes and qualities can improve the true positive rate 

of the detectors. Therefore, a pyramid structure is proposed to reduce the size of the object in the 

synthetic image by 50% in each step. The number of steps is defined based on the user preference. 

In this process, the determined bounding box is applied to the related original size of the image of 

the object with a single background color. The size reduction is applied only on the content of the 

original bounding box. The reduced box is added to a single background color with the same 

dimension of the original image. 

Another possibility to improve the accuracy of the proposed method is to consider various 

illuminations, contrasts, and sharpness levels of the object while creating the synthetic images. For 

each feature, a wide range of values can be applied. For instance, Figure 4-7 shows three steps of 

illumination reduction applied on the original image. A similar function can be applied for contrast 

and sharpness levels. The process of changing the values of appearance variables of the images is 

developed before the process of adding the background. The appearance of object without 

background (Figure 4-7(a)) is revised based on the new illumination, contrast, and sharpness levels 

and the rest of the process for adding the background is followed as before. 
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(a) Original illumination (b) First reduction (c) Second reduction (d) Third reduction 

Figure 4-7. Illumination changes 

Improving the quality of positive samples has a great effect on the accuracy of the detector using 

these samples. Moreover, choosing the appropriate negative samples can also help the detector to 

reject the wrong detections. The negative samples can be parts of background images of the 

construction sites or any object other than the target object for detection. Although this process 

looks simple, the lack of related negative sample scan lead the detector to choose totally unrelated 

negative samples (e.g. a flower as negative sample for construction site). In this research, an auto-

generation method is used to create many negative samples with random sizes, by providing a 

small number of images from the desired construction site excluding the target object (Figure 4-8).  

 

  
 

  
 

 

 

(a) Original Image (b) Randomly generated negative samples from original image 

Figure 4-8. Randomly generated negative sample 

The negative image sampler receives multiple images as input, which do not include the target 

object. The number of required negative samples, and the minimum and maximum sizes of each 
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sample are defined by the user. The algorithm starts cropping rectangle boxes randomly out of 

each input image while satisfying the user-defined sizes. 

4.3 Implementation and Case Study 

Two case studies are provided to evaluate the proposed method. The first case study compares the 

detection results using real images for training the detector and using synthetic images with and 

without the images of the construction site as background. Moreover, the available image 

annotation in Matlab is used to annotate the real images manually and the required time is recorded 

using a stop watch (the Matlab codes are provided in Appendix A, Appendix B, Appendix C, 

and Appendix D). The time for manual annotation is recorded from the point that the user starts to 

annotate the first image and ends by finishing the last image. The second case study checks the 

effect of the CRAV within each detector and the number of step angles for each detector (e.g. 

including one image at one degree step within the CRAV, or one image every two or more degrees 

within the same CRAV) on the detection accuracy. 

4.3.1 Initial Validation 

The following case study was done to validate the proposed method. The 3D model of an excavator 

was taken from Google Warehouse and it was imported to Autodesk 3Ds Max for the visualization 

purpose. The lighting and reflection conditions are manually set to reflect realistic conditions as 

much as possible based on the user judgment. The background of the excavator is set to white. The 

virtual camera is set on the circle path around the object tilted by 75˚ from the horizon. The images 

were taken every 3.6˚. On the other hand, a Matlab toolbox was developed for the auto-annotation 

of construction equipment images generated in Autodesk 3Ds Max. Following the proposed 
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methods, the developed toolbox is able to find the equipment in the image and then calculate the 

coordinates of the bounding box. Additionally, the toolbox is able to add various backgrounds and 

regenerate new images in addition to the white-background images. 

A number of 765 (45×17) synthetic images with 16 additional backgrounds (e.g. Figure 4-9) are 

generated and then annotated using the proposed method. The annotation data (generated bounding 

box around the target object) are visually checked for all images. The evaluation shows that all 

synthetic images were annotated correctly, which means that the accuracy of the auto-annotation 

of the synthetic images is 100% as it was expected. 

Four detectors are trained and evaluated in this test in which the first three detectors are prepared 

using the proposed method. The first object detector is trained based on HOG using the bounding-

box for all the generated images with single background color. Basically, the positive samples 

contain 45 images of an excavator. The automatic annotation took 1.42 seconds. The negative 

samples used in the training are 650 images for this test and the following tests. The negative 

samples are the same as the negative samples in INRIA Person dataset (Dalal & Triggs, 2005). All 

samples have the side-view of the excavator either from the right or left side since the view of the 

excavator from the right side is different from its left side.  

The second detector adds two new backgrounds to the positive sample set. The number of the 

positive samples increased to 135 (45×3) images in the second test and they took eight seconds to 

be annotated. In the third detector, 765 (45×17) images with 16 additional backgrounds (e.g. 

Figure 4-9) were used, which consumed 37 seconds for annotation. These 16 backgrounds contain 

8 general views of a construction sites and eight pictures zoomed on the same views. The forth 

detector is based on 200 real images, which were annotated manually. The time that the user 
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needed to annotate all images is 2,387 seconds (approximately 40 minutes). These real images are 

taken from different construction sites introduced in the research of Tajeen and Zhu (2014). 

    

Figure 4-9. Sample of synthetic images generated by the proposed method 

The results shown in Table 4-1 highlight the remarkable improvement in the computation time for 

the equipment images annotation. In this table, the numbers of positive samples for each type of 

equipment, that were used in the different research projects reviewed in Section 2.6. The estimated 

time for annotating each dataset is calculated by assuming 11 seconds for each image (the average 

time it took in this research to manually annotate each image). In the last row, the time spent for 

the auto-annotation of the dataset generated in this research is provided. Comparing the estimated 

times in this table clearly shows that the proposed method is able to greatly reduce the time and 

the human efforts. Moreover, the number of the images in the last row can be increased in the 

future by considering multiple horizontal angles of views, various types of excavators, and more 

background images while the required time will continue to be much shorter compared with the 

previous studies.  

Sixty images are selected for the detection testing part. Fifty images are taken from the Internet 

containing an excavator from a different brand. 10 images, which do not include any excavator, 

are selected to verify the true negative value of the model. 
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Table 4-1. Comparison of estimated annotation time between the equipment image datasets 

Papers Equipment 
Number of 

Positive Images 

Estimated 

Time (s) 

Park & Brilakis (2012a) Wheel Loader 1,015 11,165 

Chi and Caldas (2011) Wheel Loader 150 1,650 

Chi and Caldas (2011) Dump Truck 150 1,650 

Chi and Caldas (2011) Tractor Truck 150 1,650 

Chi and Caldas (2011) Car 150 1,650 

Azar and McCabe (2011) Dump Truck 4,558 50,138 

Memarzadeh et al. (2013) Excavators 1,895 20,845 

Memarzadeh et al. (2013) Dump Truck 1,212 13,332 

Tajeen and Zhu (2014) Excavator 800 8,800 

Tajeen and Zhu (2014) Loader 300 3,300 

Tajeen and Zhu (2014) Dozer 300 3,300 

Tajeen and Zhu (2014) Roller 300 3,300 

Tajeen and Zhu (2014) Backhoe 300 3,300 

Proposed Method 
Excavator (only 

side views) 
765 37 

As shown in Table 4-2, (True Positive) TP refers to the positive instances, which are recognized 

correctly (more than 50% overlap between the detected bounding box and the ground truth), (True 

Negative) TN refers to the negative instances, which are correctly labeled as negative, (False 

Positive) FP refers to the negative instances, which are wrongly considered as positive, and (False 

Negative) FN refers to the negative recognitions, which are wrongly labeled as negative. 
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Moreover, the precision, recall, and accuracy values are calculated using Equation 4-1, 

Equation 4-2, and Equation 4-3 (Tajeen & Zhu, 2014; Taylor, 1997). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃 + 𝑇𝑁)
 Equation 4-1 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 Equation 4-2 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
 Equation 4-3 

Comparing the tests with real images and virtual images with a single background color shows 

improvement in precision but reduction in recall and accuracy (Table 4-2). Precision and accuracy 

are increased by adding two backgrounds but still the recall is lower than the detector based on 

real images. The problem with recall is solved when 16 images are used as background.  

Table 4-2. Comparison of excavator detection results 

Type of images 
Number of 

positive images 
TP TN FN FP 

Precision 

(%) 

Recall 

(%) 

Accuracy 

(%) 

Annotation 

Time (s) 

Real Images 200 27 7 15 11 71 64 57 2,387 

3D Model with Single 

Background 
45 23 10 26 1 96 47 55 1.42  

3D Model with  2 

Backgrounds 
135 29 9 19 3 91 60 63 8  

3D Model with 16 

Backgrounds 
765 42 3 1 14 75 98 75 37 

This results also in a reasonable improvement in precision and accuracy. Based on the results of 

the tests, it can be concluded that training positive samples using a 3D model of the construction 

equipment can make the detectors more accurate. Obviously, the time spent for training using the 

virtual samples is dramatically lower than the time spent for training using real images. 
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4.3.2 Sensitivity Analysis 

This case study aims to determine the effect of the CRAV and the number of step angles for each 

detector on the precision, recall, and accuracy of each detector. The same basic setting of the first 

case study is used. In the first analysis, the left view of the excavator is selected with a 90˚ CRAV. 

As shown in Figure 4-10 the camera is relocated every one, two, four, eight, sixteen, and thirty-

two degrees within the 90˚. Four scale sizes are considered and each one is half of the previous 

one. Moreover, the illumination condition is increased in three levels from shiny to dark and 14 

background images are added to each raw image. Six detectors are trained individually using the 

HOG method and the same testing dataset used in Section 4.3.1 is used to evaluate each detector. 

 

Figure 4-10. Guide plan for step divisions 

The results of the analysis are summarized in Table 4-3. Increasing the angle between image 

collection locations reduced the number of true positives. Consequently, precision, recall, and 

detection accuracy were decreased. Based on the achieved performances, relocating the camera at 

every one degree shows the maximum accuracy of the detector. 
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Another analysis is done to determine the effect of increasing the CRAV for each detector. While 

the focus of all images in this test are on the left-side of the excavator as shown in Figure 4-11, the 

CRAV is decreased from 90˚ to 6˚. 

Table 4-3. Results of excavator detection for different step divisions 

Degree (s) 

Number of 

positive 

images 

TP TN FN FP 
Precision 

(%) 

Recall 

(%) 

Accuracy 

(%) 

1 16,200 46 3 0 11 81 100 82 

2 8,100 42 3 1 14 75 98 75 

4 4,140 40 5 3 12 77 93 75 

8 2,160 34 5 9 12 74 79 65 

16 1,080 24 8 19 9 73 56 53 

32 540 19 10 21 10 66 48 48 

Based on the results in Table 4-4, using a wider CRAV in training of the detector results in higher 

detection rate; however, both true positive and false positive values increased at the same time. 

These increments raised the recall value and accuracy but reduced the precision of the detector. 

Overall, it can be said that it is more promising to have at least 45˚ CRAV to achieve reasonable 

results. 

 

Figure 4-11. Guide plan for tested CRAV 
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With respect to the results provided in this section, the object detectors, which were trained using 

the synthetic images showed promising accuracy. Moreover, the auto generation of the negative 

sample, combined with different target object sizes and illumination levels boosted the 

performance of the detectors. 

Table 4-4. Results of excavator detection for different CRAV 

Field of View 
Number of 

positive images 
TP TN FN FP 

Precision 

(%) 

Recall 

(%) 

Accuracy 

(%) 

90˚ 16,200 46 3 0 11 81 100 82 

45˚ 8,100 42 5 4 8 84 91 80 

23˚ 4,140 30 7 17 6 83 64 62 

11˚ 1,980 24 8 22 6 80 52 53 

6˚ 1,080 29 8 13 10 74 69 62 

4.4 Summary and Conclusions 

This chapter investigated a new approach of generating and annotating synthetic images 

automatically using a 3D model of the equipment to recognize in the images of construction sites. 

The results show that the proposed automatic annotation method using synthetic images is able to 

play the role of real images captured from the construction site for training propose This method 

could be used to create comprehensive image datasets for various construction equipment that can 

be applied for training of vision-based equipment detectors. Since the synthetic images do not need 

the users to go to the construction sites and to capture the images of the equipment under various 

conditions, it can save a lot of time to apply a system for monitoring the equipment on sites. 

Moreover, the automatic annotation significantly reduced the required time for defining ROI 

compared to traditional annotation methods. The synthetic images based on the 3D model of 

construction equipment can be used for training the detector, which was able to recognize the target 
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object within a new dataset. The accuracy of true positive detections, precision, and recall were 

increased by generating more synthetic images with more backgrounds related to the construction 

environment.  

The main advantage of the proposed method is that it can significantly reduce the time required 

for annotating the images of construction equipment. On the other hand, well-structured annotation 

results help the detector algorithm to provide a higher true detection rate. Furthermore, the results 

show that selecting appropriate negative samples helps the detector distinguish the true positive 

from the false negative correctly. For instance, to differentiate an excavator from a mobile crane 

in the same construction site, it is necessary to use the mobile crane as a negative sample in training 

the detector model.  

The conclusions of this chapter are as follows: (1) The rendered 3D model of the construction 

equipment can be used to produce images with a single color background that can be annotated 

automatically using the proposed method; (2) Synthetic images can be produced by integrating the 

images of the 3D model with the desired background from different construction sites, different 

size of the objects, and different illumination conditions for the training phase; (3) The auto-

annotation process can be used for the synthetic images based on the annotation results of the 

images with the single-color background; (4) A large number of negative samples can be produced 

from the image of different construction sites automatically while the target object is cut from 

these images; and (5) The results of the HOG detectors using the proposed method were better 

than those obtained from a detector based on manual annotation of real images of construction 

equipment. The results showed that the proposed method is able to reduce the annotation time by 
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more than 90% while the accuracy of the object recognition is improved by training more synthetic 

images. 

However, the proposed method has the following limitations: (1) The created images using a 

random background may sometimes look far from the reality. For instance, the background image 

could be taken at the street level but the image of the 3D model could be taken from the height of 

two meters above the street level; therefore a mismatch appears in the synthetic image; (2) Weather 

conditions are another difficulty for creating this kind of synthetic images. Foggy and rainy 

weathers will cause the scene to look different than when the weather is clear; and (3) The efficient 

number of detectors, which can cover all views around the objects needs to be determined. These 

limitations should be investigated to make the synthetic images of the construction site more 

natural and the detectors should be trained using different sizes of images to cover various qualities 

and sizes of the target image. Additionally, using Augmented Reality (AR) techniques can help by 

matching the view of the 3D model and the background (Furht, 2011). 
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CHAPTER 5 DATA FUSION AND EXCAVATOR PARTS DETECTION  

5.1 Introduction 

In order to estimate the pose of excavators, the video obtained from stereo cameras are used as the 

main source of data. However, off-the-shelf stereo cameras usually have a short baseline (i.e. less 

than 1 m). Okutomi and Kanade (1993) stated that having two cameras close to each other 

decreases the accuracy of the depth estimation for the objects far from the cameras. The proposed 

pose estimation approach uses two surveillance cameras as stereo cameras that can be installed at 

a distance of more than 10 m from each other, and at a level of more than 10 m from the average 

ground level of the construction site. This setting of the stereo cameras requires special attention 

to the calibration process of the cameras. Moreover, relying on a single source of data may not 

only decrease the accuracy of the pose estimation system because of missing data or calculation 

errors, but it also may increase the computation time.  

The objectives of this chapter are: (1) to fuse the RTLS data and two or more cameras data by 

synchronizing the time and the coordinate systems of the cameras and RTLS; (2) to evaluate the 

applicability of stereo cameras with long baseline at a high level; (3) to generate the database of 

the synthetic images for the excavator’s parts and to annotate the images automatically for the 

training purpose; and (4) to train multiple detectors from different views for each part and then 

apply on the target images and video frames to recognize the parts from any point of view around 

the excavator. 

As earlier pointed in Section 3.4 and shown in Figure 3-1(c), applying RTLS is proposed as another 

source of data, which are fused with cameras’ data to improve the speed and accuracy of CV 
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processing. The RTLS data, providing the location of the equipment, are linked with the 

corresponding video frames from two cameras to fuse the location data with the video data. 

Knowing the overall size of the equipment and its location provided by the RTLS system, the 

related part of the frame is cropped to focus only on the pixels that show the equipment. Cropping 

the frames limits the search scope of the object detection algorithm, resulting in a lower 

computation load and faster processing time. 

This method is not limited to the use of specific cameras or RTLS devices. They may be selected 

depending on the available budget, configuration of the site, the required quality of the results, and 

their other possible applications on the site. For instance, the fixed IP cameras are widely used for 

the surveillance propose; spherical cameras are more suitable for providing maximum coverage; 

and Pan-Tilt-Zoom cameras provide the flexibility of rotating and zooming of the view.  RTLS 

technologies such as GPS, UWB, RFID, Bluetooth, etc., are applicable technologies for localizing 

the equipment using radio waves. It is assumed that all operational areas of the construction site 

are covered by at least two camera views and the RTLS infrastructure. As shown in Figure 3-1(a), 

one RTLS transmitter (e.g. GPS tracker or UWB tag) with a Unique-Identification (UID) number 

is assigned to each equipment. The name, type, and specifications of each equipment are stored in 

a database based on the equipment UID. Moreover, all of the trained detectors are stored in the 

same database. Using the location of the RTLS transmitter installed near the center point of the 

target equipment, the cameras containing the transmitter in their Field of Views (FoVs) are selected 

for further analysis. In the example shown in Figure 3-1(b), Camera 2 and Camera 3 are selected. 

A 3D virtual cylinder is added at the center location of the target excavator in each camera view 

based on the dimensions of the excavator. Comparing the size of the cylinder in the view of Camera 
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2 and the view of Camera 3 shows that the cylinder in the view of Camera 2 is smaller than the 

one in the view of Camera 3 due to the longer distance between the target excavator and Camera 

2. In the next step, part detection is shown in Figure 3-1(c). A rectangle bounding box is cropped 

around the cylinder in each view. Within each bounding box, multiple object detectors trained for 

the excavator parts are applied. The details of each phase are explained in the following 

subsections. 

Moving from data fusion phase to the parts recognition phase, this step is to process each frame of 

the video captured from each camera individually for recognizing the part, which is the pre-

requisite for extracting the skeleton of the excavator from the view of that camera. Using the auto-

annotation method explained in Section 4.2, the synthetic images of the excavator parts are 

generated and multiple parts’ detectors are trained. 

5.2 Data Collection and Fusion Phase 

This phase is invariant to the type of the target equipment, which means that it will be the same 

for any construction equipment. Accurate superimposing of the RTLS data on video frames is 

highly dependent on the precise calibration of the cameras. As shown in Figure 5-1, this phase has 

the following processes: (1) The calibration phase starts by preparing the checker board.  The size 

of the squares on the checker board should be large enough to be visible when the board is far from 

the cameras. As explained in Section 2.5.5, the camera calibration process in this chapter is based 

on a checker board pattern, which has odd number of black squares on one direction and even 

number on the other direction. The interest points are the intersections of the squares. (2) Many 

synchronized images are captured from the available cameras. (3) A local coordinate system is 

defined to transform all the cameras and RTLS coordinate systems into a single one. (4) The 
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interest points are used to estimate the intrinsic parameters of each camera. After calibrating each 

camera separately, the next step is the estimation of the extrinsic parameters of each camera based 

on the unified coordinate system. In this process, the rotation and translation of each camera are 

estimated relative to this system. In case of more than two cameras, every set of two cameras are 

calibrated together. 
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Figure 5-1. Processes of data collection and fusion phase 

Fusing the RTLS and cameras data can reduce the search area during localization of each part. In 

order to support the claim that limiting the search area during localization of each part can decrease 

the computation time, the processing time for searching for each part when increasing the size of 

the search area can be estimated. As shown in Figure 5-2, ℎ𝑖 is the height and 𝑤𝑖is the width of the 

image at the ith level of the scale pyramid (𝑖 → {1, 2, … , 𝑛}) and n is the highest level of the 

pyramid, hʹ is the height (hʹ ≤ hi) and wʹ is the width (wʹ ≤ wi) of the sliding window, and q is the 

overlap length of the sliding window with its predecessor or successor windows. The ratio of the 

searching area of the image at ith level over the area of the sliding window si is calculated using 

Equation 5-1. Equation 5-2 is used to calculate the number of sliding windows (𝑟𝑖) that have to be 
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checked for detecting the target object. Assuming that for checking each sliding window ε amount 

of time is required, the total time for all sliding windows is 𝑟𝑖 × 𝜀. 

 

Figure 5-2. Configuration of image pyramid and sliding window (adapted from Felzenszwalb et al., 

2008) 

𝑠𝑖 =  √
ℎ𝑖 × 𝑤𝑖

ℎʹ × 𝑤ʹ
 

Equation 5-1 

𝑟𝑖 =  (
(𝑠𝑖 − 1)

(1 −
𝑞
𝑤ʹ

)
+ 1)

2

 Equation 5-2 

Equation 5-2 can be used to estimate the processing time for searching for each part when 

increasing the size of the search area. The processing time for three scenarios are investigated 

when there are zero, 50%, and 75% overlaps between the sliding windows and i is 1. Figure 5-3 

shows the relation between increments in the rate of the image’s searching area and processing 

time for all sliding windows within each frame. The rate is varied from 1 to 40. Having the rate of 

one means that the size of frame is equal to the size of sliding window. The vertical axis shows the 

processing time for each increment rate. For instance, when the size of the frame in pixels is 1920 
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× 1080 (ℎ1  ×  𝑤1) and the size of sliding window in pixels is 96 × 54 (hʹ × wʹ), 𝑠1 is 20. From 

Figure 5-3, it can be determined that for this size ratio, the processing time will 400 ε, 1,521 ε, and 

5,929 ε, for no overlap, 50% overlap, and 75% overlap, respectively. Assuming that the size of 

each sliding window is fixed, when the size of image is increased, the processing time is increased 

dramatically. Therefore, having smaller search area to apply each detector can save a lot of time. 

 

Figure 5-3. Relationship between increment rate and processing time 

(5) After calibrating the cameras and RTLS, an RTLS transmitter with a Unique Identification 

(UID) number is assigned to an equipment. (6) The next step is collecting the videos from each 

camera and the location data of all RTLS transmitters. It should be noticed that the following 

process requires precise time synchronization between video frames and RTLS data. (7-9) The 

cameras that are shooting the location of the target equipment are selected and the related parts’ 

detectors and the specifications of that equipment are retrieved from the database based on the 

UID of the transmitter. (10) A 3D virtual cylinder centered at the equipment location at time t 

should be generated using the dimensions of the equipment. The cylinder should cover the extreme 
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poses of the excavator including the poses corresponding to the maximum digging depth 

(Figure 5-4(a)) and maximum reach length (Figure 5-4(b)). The required information regarding 

the extreme poses can be extracted from the specifications document of each excavator. A sample 

data sheet for an excavator is provided in Figure 5-5(a), which shows the dimensions of the 

excavator at different poses. 

  

(a) Maximum digging pose  (E-digging, 2016) (b) Maximum reach pose  (KUBO-SK, 2015) 

Figure 5-4. Extreme poses of excavator 

The most important variables for creating the virtual cylinder shown in Figure 5-5(b) are A 

(maximum reach length), B (maximum digging depth), and C (maximum cutting height). 

Additionally, it is assumed that the ground does not have slope within the excavator contact surface 

with the ground. (11) After creating the 3D virtual cylinder using the aforementioned variables, 

the cylinder should be projected on the video frame at time t of each selected camera. There are 

two main options for this task. The first one is to project the virtual cylinder first onto the 2D pixels 

coordinates of the video frame at time t and then re-project from this camera onto the view of the 

next camera using the relative translation and rotation between these two cameras. The second 

approach is to project the virtual cylinder onto the view of each camera separately. However, the 

first approach may suffer from the errors included in estimating the relative translation and rotation 
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between two cameras. (12) The next step is to define a bounding box around the projected cylinder 

on each view. (13) The content of the bounding box is cropped from the original image and passed 

to the next phase. 

 

A

C

B

G
round Plane

 

(a) Excavator specification  (SUMITOMO, 2017) (b) Cylinder dimensions 

Figure 5-5. Defining virtual cylinder based on excavator specifications 

5.3 Excavator Parts Detection Phase 

As schematically shown in Figure 3-1(c), the method creates synthetic images of an excavator and 

its parts using the 3D model of the excavator and some images from different construction sites to 

be used as background. Knowing that each part of the excavator looks different from different 

points of view, it is necessary to have multiple detectors for each part. Each detector should cover 

a range of views that are close to each other. In this research, the around view of the excavator is 

divided into six zones as shown in Figure 5-6 (left, right, front-left, front-right, back-left, and back-

right). The idea of dividing the around view into six zones came from Azar and McCabe (2011) 
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and Rybski et al. (2010) where the range of views was divided into eight zones. In the 

aforementioned research, passenger vehicles and dump trucks were the target of recognition. After 

investigating the difference between those object and the excavators that are going to be recognized 

in the current research, it was found that six zones are enough to provide similar results. Moreover, 

training the detectors also requires many effective negative samples that can reduce the chances of 

false detections. The detectors are then applied on the video frames from the construction site to 

find the parts of the excavator.  

Front-Left

Front-Right

Back-Left

Back-Right

Right

Left

 

Figure 5-6. Camera view zones around the excavator 

5.3.1 Generation of Positive Images 

As it was mentioned earlier, the 3D model of the excavator is used for creating the around-view 

images. This research assumes that the background of these images is set to a single color. The 

images are overlaid on the real images of the construction sites as background to create the 

synthetic images. The same process is repeated for each part of the excavator. 



75 

 

First, the image of each part with the single color background (Figure 5-7(a)) is segmented to 

recognize the part, and a bounding box is drawn around each part (Figure 5-7(b)). Then, the 

generated boxes are added to the image of the whole excavator (Figure 5-7(c)) from the same view, 

and the background image (Figure 5-7(d)) is added to the image. As a result, Figure 5-7(e) shows 

the annotated image of the excavator’s part (dipper in this example). 

 
 

 

 

 

(e) 

(a)  (b) 

 

 

 

(c)  (d) 

Figure 5-7. Parts auto-annotation process 

5.3.2 Generation of Negative Images 

Knowing that effective negative images can greatly help with the reduction of false positive rate, 

the method of auto-generation of negative samples proposed in Section 4.2.3 is used. Additionally, 

the negative samples should be extended so that it is possible to differentiate each part of from 

other parts. The need for extra negative samples is fulfilled by using the bounding boxes around 

the parts other than the target in the previous steps. As an example, the images of the boom, bucket, 

and body of the excavator (Figure 5-8(a)) are used as negative samples for training the detector for 

the dipper (Figure 5-8(b)).  
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(a) Negative Samples (b) Positive Sample 

Figure 5-8. Training samples for the dipper detector 

5.3.3 Part Detection Strategy 

The detectors should be applied on each frame from each camera view independently. The process 

flow of the proposed approach is shown in Figure 5-9. One of the difficulties for detecting the 

excavator parts is to have a robust system for detecting the boom and dipper while their orientations 

are changing. A common practice is to apply a sliding window on the image and each window is 

checked for whether it contains the target object or not. For instance, the dipper detector is designed 

for the vertical pose of the dipper as shown in Figure 5-10(a) but having a rotated dipper as shown 

in Figure 5-10(b), the previous detector is not able to localize the dipper anymore.  

Basically HOG-based detectors are not invariant to rotation, which means that if the trained object 

appears with a different orientation than the one in the training dataset, the detector will not be 

able to detect the object. Three methods are possible for this case: (1) Training more detectors to 

cover various orientations of the part. Since there should be a rectangle box around the dipper in 

the training images, by rotating the dipper, the shape of the vertical rectangle around the dipper is 

changed to a nearly square shape where the dipper looks like a diagonal element within the 

bounding box (as shown in Figure 5-10(b)). However, this may decrease the accuracy of the 
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background subtraction since the portion of the background that needs to be processed for 

subtraction is increased.  

Go to Next Frame

Part(s) Detected? 
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No

Yes
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θ = 0

No

 for each part

θ > 360˚ 

Yes

No

Store Current θ 

 

Figure 5-9. Proposed processes for 3D pose estimation phase 

(2) Applying multi-phase classifier to detect and estimate the orientation of the object (Villamizar 

et al., 2010) and training detectors for orientation-related feature then applying rotation invariant 

detectors (Liu, et al., 2014 and Kittipanya-ngam & Lung, 2010) are among the popular solutions 

for recognizing the rotated objects (as shown on Alternative 2 in Figure 5-10(b)). However, 

training the features other than the appearance related features adds more uncertainties to the 

detectors. (3) Another method proposed by Chiang and Wang (2014 ) uses the common HOG 

detector without considering the rotation features during the training phase. Rather, this method 

rotates the given image successively and it applies the detector at each angle step as shown in 
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Figure 5-10(c). It should be considered that this method has a high computational cost since it 

requires to test the classifier several times over the image (Liu, et al., 2014 and Kittipanya-ngam 

& Lung, 2010). In this research, the method of Chiang and Wang (2014 ) is selected in spite of the 

high computation cost since this method is expected to provide a more robust system.  

Detected

 

Alternative 1 Alternative 2

 

(a) Dipper with vertical pose 

Detected

 

(b) Dipper with diagonal pose 

(c) Rotating image inverse to rotation angle of dipper  

Figure 5-10. Detection complication due to changes in dipper orientation 

Having a detector for the initial pose of each part is proposed while it is trained to have lower 

number of false positive detection by sacrificing for the higher number of false negatives. This 

helps the detector to only catch the parts very close to the training dataset. As shown in Figure 5-9, 
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if the detector cannot find any dipper in the first trial with 𝜃 = 0°, a ∆θ is added to θ and the new 

θ is checked whether it is allowed to be increased or if all the possibilities for rotating the frame 

have been tried. In case that there is no more chance for rotating the frame, the algorithm will go 

to the next frame otherwise the detector is re-applied on the rotated frame. Moreover, for the parts 

that underwent rotations during the detection phase, those rotations have to be inversed at the time 

of moving from the local to global coordinate systems. 

5.4 Implementation and Validation 

The proposed framework was evaluated by implementing the aforementioned methods in Matlab 

9.1 (Mathworks, 2016). This section covers the implementation and validation of the proposed 

method in three aspects: cameras calibration, data fusion, and part detection. The implementation 

process for each of them is explained in a separate subsection followed by the validation for each 

phase. Moreover, three datasets are used to validate the proposed method: (1) the validation dataset 

of the static images, (2) the consecutive frames extracted from a video, and (3) stereo views from 

two cameras. The first test aims to evaluate the performance of the parts detectors on various 

images with different resolutions. Another objective of the first test is to apply the proposed 

method on different types of excavators from different manufacturers and observing the results of 

using a general model of the excavator. The second test focuses on an excavator similar to the one 

used in the training dataset where the excavator in the video performs a full cycle of its tasks. The 

last test covers all the aforementioned aspects using the data collected from a construction site in 

Montreal, Canada. As shown in Figure 5-11, four High Definition (HD) cameras were installed on 

the top of the adjacent building at the height of 13.10 m and the distance between each two adjacent 

cameras was 13.85 m. The distance between the cameras and the excavator varied from 20 to 50 
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m. Knowing that the excavator was moving within the blue circle marked as Target, Camera 1 and 

Camera 2 selected since the excavator is within their FoVs. 

 

Figure 5-11. Site layout and cameras’ configuration 

A GPS tracker (QSTARZ BT-Q1000eX (2016)) was used in the experiment as the RTLS 

technology. It could log the location data at a maximum rate of 10 Hertz (Hz) for 24 hours or at 

the rate of 1 Hz for 42 hours. The data were stored in the internal memory and then transferred to 

the server for further processing using a Universal Serial Bus (USB) cable. However, it is possible 

to add a Bluetooth, WiFi module, or Raspberry Pi single board computer (2017) that can make it 

possible to stream the data directly to the server in real time. The tracker was placed in the cabin 

of the excavator operator close to the front window to have better visibility of the satellites. The 

implementation was done on a workstation with Intel i7 Quad-Core processor, 16 gigabytes 

Random-Access Memory (RAM), and NVIDIA Quadro 600 graphics card. 
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5.4.1 Cameras Calibration 

The first step for estimating the 3D pose was to calibrate each camera individually and then to find 

the orientation and translation from one camera to other camera. The origin of the world coordinate 

system was assumed at the center of camera 1. For calibrating the cameras, four checker boards 

were printed with the square sizes of 20×20 cm, 30×30 cm, 40×40 cm, and 50×50 cm and they 

were attached on a panel with the dimension of 2.44 m × 1.22 m as shown in Figure 5-12. The 

reason behind the use of four boards was to compare the errors for each pattern size. The results 

can be further used as a guideline, which can help future studies in selecting the appropriate square 

size of the checker board pattern.  

  

(a) View of Camera 2 (Left) (b) View of Camera 1 (Right) 

Figure 5-12. Example of four checker boards with four square sizes 

In each trial, one checker board was used and it was placed at different locations with different 

orientations. It was tried to locate the board within the overlapping view of both cameras at various 

distances from the cameras. This process was repeated for the four checker boards and at each trial 

about 100 images were recorded by each camera. After checking each image visually, a smaller 

number of the images were selected based on the clear visibility of the board in each pair of images. 
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After collecting the image data, the intersecting points between the squares on the board were 

extracted manually using Camera Calibration Toolbox for Matlab developed by Bouguet (2004). 

The actual and the pixel distances between the points were used for estimating the extrinsic and 

intrinsic parameters of each camera using Equation 5-1. The stereo parameters of the two cameras 

were estimated using the parameters of each camera individually and the locations of the 

intersecting points on each image pair using Equation 5-2. The cumulative probabilities of the 

calibration errors of each checker board for Camera 1 and Camera 2 are shown in Figure 5-13 and 

Figure 5-14, respectively.  

  

Figure 5-13. Cumulative calibration errors of 

Camera 1 

Figure 5-14. Cumulative calibration errors of 

Camera 2 

The checker board with the squares size of 20×20 cm shows lower averaged error. The results of 

Camera 1 have a notable difference compared to Camera 2 where the errors for different boards 

are close to each other. This may be because the checker boards in Camera 1 views were close to 

perpendicular to the camera focal axis, which helped the algorithm in estimating the distances 

between the intersecting points more accurately than the situation with inclined views of the 

checker boards. 
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After calibrating each camera separately, the rotation and orientation of Camera 2 were calculated 

relative to Camera 1 as the origin of the world coordinate system. Four sets of stereo cameras 

parameters were calculated for the four types of the checker boards. Evaluating the accuracy of 

the stereo parameters was done by triangulating the intersecting points of each checker board. The 

distance between the estimated 3D points were calculated and compared with the actual values 

(i.e. 20, 30, 40, or 50 cm). The cumulative probabilities of errors for all four checker boards are 

shown in Figure 5-15. The best accuracy was achieved when using the checker board with 50×50 

cm squares and the lowest belonged to the board with 20×20 cm squares.  

 

Figure 5-15. Triangulation errors using four different stereo camera parameters 

It was expected to have more accurate outcome when using the checker board with the smaller 

square size but having the best results by using the larger square sizes shows that for the large 

areas like construction sites, having a checker board with smaller size of squares is not necessarily 

helpful. This is because when the squares are smaller, the intersecting points are closer to each 
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other and the calibration algorithm cannot differentiate these small distances. The camera’s 

parameters obtained using the 50×50 cm checker board are used in the next steps of the case study. 

5.4.2 GPS and Video Data Fusion 

In order to project the GPS data on the video frames of each camera, the coordinate systems of the 

GPS and the two cameras have to be aligned. Camera 1 on the construction site is defined as a 

reference point for this purpose and the three coordinate systems were adjusted to that point to 

have the same origin. The GPS data was stored as .kmz file in the memory of the tracker during 

the experiment. After finishing the experiment, the data were transferred to the computer using the 

USB port. Since the update rate of the GPS tracker was 10 Hz and the update rate of the cameras 

was 30 Hz, a common rate of 10 frames per second with the lag of 6 milliseconds between two 

consecutive frames is used. This adjustment is necessary to synchronize the GPS data with the 

correct video frames at a specific time. 

The excavator working on this construction site during the data collection was Deere-290G with 

the maximum reach length of 10.27 m, maximum cutting height of 10.26 m, and maximum digging 

depth of 7.05 m (John Deere, 2016), which represent A, B, and C shown in Figure 5-5(b), 

respectively. The origin location of the cylinder was set by the coordinates of the GPS at time t. 

The next step is to project the virtual cylinder for each collected GPS coordinates on the 

corresponding frames of camera 1 and camera 2. As shown in Figure 5-16, a box was defined 

around the projected cylinder on each frame and the content of this box was cropped for further 

processes.  
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 Camera 2 (Left) Camera 1 (Right) 

(a) Adding 

Cylinders 

  

(b) Adding 

boxes 

(c) Cropping 

Figure 5-16. Cropping frames based on GPS data 

5.4.3 Part Detection 

The implementation starts by importing the 3D model of the excavator, which is taken from Google 

Warehouse, in to Autodesk 3Ds Maxs (Autodesk, 2015) for rendering. Since the lighting condition 

should be set to match the brightness level of the selected background images, the lighting of the 

model is visually set to produce close effect to the brightness level of the background images. For 

instance, when the background is dark, the lighting level of the added virtual excavator cannot be 

bright. As shown in Figure 5-17, 17 virtual cameras, every 10˚ latitude from the equatorial plane 

of the sphere are defined to capture the around-view images. The first top camera is set at the 

altitude of 85˚ on the north direction and the last one at 75˚ on the south direction. Each camera 
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takes the images while turning around the excavator every 1˚ with a white color background. In 

the first round, all cameras capture the excavator while the whole body is shown. In the second, 

third, forth, and fifth rounds, only the body, boom, dipper, and bucket is shown, respectively, at a 

time while the other parts are whitened. As shown in Figure 5-18, whitening is preferred over 

hiding the other parts in order to consider the possible blockage of the target part by the other parts. 

 

  

(a) Hidden boom (b) Whitened boom 

Figure 5-17. Spherical positions of the 

camera 

Figure 5-18. Excavator image generation 

alternatives 

Figure 5-19 shows the data architecture within the database of the excavator images. The first layer 

of the database consists of five children datasets, each for the body, dipper, boom, bucket, and all 

parts together. In the second layer, 17 datasets are created for every 10˚ latitude under each of the 

five aforementioned children starting at +85˚ and finishing at -75˚. Considering each latitude angle 

as a parent at the third level, the children are all the horizontal around-views every one degree. 

Figure 5-20 shows how the latitude and horizontal angles are defined as a and β, respectively, 

whenever the camera is focusing on the center point of the excavator.  

N 
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Figure 5-19. Excavator image data structure 

 
 

(a) Latitude (b) Horizontal angle 

Figure 5-20. Attributes definition 

As provided in Table 5-1, at each latitude angle there are 360 images for every one horizontal 

angle, and each part dataset includes 17 latitude angles with 6,120 images in total. The root layer 

has five divisions containing 30,600 raw images. In order to have a comprehensive database, all 

views of the excavator are recorded. However, some views are used depending on the site 

conditions. For instance, the images stored for the view of the excavator at latitudes -65˚ or -75˚ 
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are mainly applicable in the case that the excavator is working on top of a hill while the camera is 

shooting the scene from the bottom of the hill. 

Table 5-1. Excavator image database layers 

Data Layers  Excavator  Divisions  Latitudes 

Content  5 Divisions  17 Latitudes  360 Horizontal Angles 

Number of Images  30,600  6,120  360 

The first test is designed to evaluate three cases for each part using a validation dataset of static 

images of the excavators as explained in Table 5-2. Testing on static images help to evaluate the 

performance of the detectors on different images from different construction sites with different 

brands of the excavator while using the video frames limits the test to one brand and one 

construction site. Fourteen images from different real construction sites (in addition to one white 

color background) are selected as background to generate the synthetic images. Moreover, three 

lighting conditions are set for each case. It is assumed that the camera is installed at a higher 

elevation and the initial range of the latitude angles is between +55˚ and -5˚.  

Table 5-2. Tests configurations 

 
Latitude Range 

(a) 

 Horizontal Angle 

(β) 

 Size(s)  Positive 

Images 

 Negative 

Images 

Case 1 -5˚ ̶  55˚   45˚ ̶  135˚   1   28,665  116,260 

Case 2 5˚ ̶  45˚   45˚ ̶  135˚   1  20,475  83,500 

Case 3 5˚ ̶  45˚   45˚ ̶  135˚   3   61,425  247,300 

Moreover, this range is reduced to +5˚ to +45˚ for exploring the effect of shorter range on the 

detection results. In addition to the latitude, there are 360 possible horizontal angles for the camera 

at each elevation and it can be divided into six zones (as explained in Section 5.3).  
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However, in the test on the static images, most of the images were from the right and left views. 

Therefore, it was sufficient to apply two detectors (i.e. from right and left) The first detector for 

Case 1 uses the images viewed from the latitude of -5˚ to +55˚ and the range of 45˚ to 135˚ of the 

horizontal angle for its training and the size of the excavator in each image is set to the largest 

possible size of the excavator in one image (i.e. the maximum size of the excavator that can be 

shown in an 800 by 600 pixels image). The 91 images from one quarter of the around-view 

multiplied by 3 lighting conditions, 15 backgrounds, and 7 latitudes result in generating 28,665 

synthetic images. In Case 2, the latitude is changed from the range of -5˚ to +55˚ to the range of 

+5˚ to +45˚ while the other parameters are kept the same. The reduction in the upper bound of the 

latitude focuses the detector more to the side view. In Case 3, two more sizes of the excavator are 

added to Case 2 (as shown in Figure 5-21, half, and quarter in addition to the original size of the 

excavator shown in the image). This change increases the number of the synthetic images for Case 

3 to 61,425 images (91 images from one quarter of the around-view multiplied by 3 light 

conditions, 15 backgrounds, 5 latitudes, and 3 sizes).  

   
100% scale 50% scale 25% scale 

Figure 5-21. Target object multiple sizes for training 

Considering 3 sizes helps the detector to recognize the target at different distances from the camera. 

These three cases are repeated for the dipper, boom, and body but the bucket is taken out of the 

test because it is usually covered by dirt and soil and it is very hard to differentiate it from the soil. 
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As mentioned in Section 5.3.2, the auto negative sampler generates 1,600 images randomly out of 

14 backgrounds (15 minus one white color background) as the fixed negative dataset. Moreover, 

the positive images of the parts, other than the target part, are added to the negative sample dataset. 

The algorithm provided by Dalal and Triggs (2005) is used for extracting and training HOG 

features of the training image dataset. These features are used for training the detectors with 

automatic template size. It means that the algorithm uses the median size of the annotated target 

as the template size. However, the dimensions of all training images are fixed to 800 by 600 pixels. 

The detectors for each part and each case are trained and applied on a set of 100 different real 

images including 75 images of real excavators (there are one to three excavators in each image) 

and 25 image without any excavator to evaluate the performance of the proposed method. The size 

of these images is about 250 by 190 pixels. As shown in Table 5-3, the precision and accuracy for 

detecting the dipper are reduced by decreasing the latitude angles and increasing the number of 

sizes of the dipper.  

Table 5-3. Results of tests on static images 

   Precision (%)  Recall (%)  Accuracy (%) 

Dipper Detector  

 Case 1  61  41  47 

 Case 2  74  35  46 

 Case 3  85  79  76 

Boom Detector  

 Case 1  84  95  83 

 Case 2  87  79  76 

 Case 3  94  63  70 

Body Detector  

 Case 1  75  94  75 

 Case 2  76  36  46 

 Case 3  77  56  58 
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The best results for the dipper detector was achieved in Case 3. The boom detector and body 

detector have their best performances in Case 1. The best detector for each part is selected to be 

used in the next tests on the video frames. 

5.4.3.1 Tests on Video Frames 

The second test is applied on 250 consequent frames of a video captured from a construction site 

in Vancouver. The size of the frames are 380 by 360 pixels. There is an excavator and a truck in 

this video and the excavator is digging, hauling and dumping the soil. The cycle of the mentioned 

process contains the body’s rotation of about 180˚ for 𝜃1. Knowing that the excavator in this video 

can be watched from different views, six detectors for each part are trained to cover all views of 

the excavator. For each part and each view, the dimensions of the training windows are different. 

The sizes of the training windows for each detector and each part are provided in Table 5-4.  

Table 5-4. Sizes of detection windows (pixels) 

  Front-Left/ 

Front-Right 

 Left/ 

Right 

 Back-Left/ 

Back-Right 

Dipper Detector   110×32  60×32  80×24 

Boom Detector   62×32  32×50  33×32 

Body Detector   32×37  32×42  32×47 

Observing the video frames shows that the angles of the boom and the dipper (referred as 𝜃2 and 

𝜃3  in Figure 6-2) are approximately in the range of 0˚ to 45˚. The results in Table 5-5 show the 

achieved precision, recall, and accuracy for detecting the dipper, boom, and body. The detection 

accuracies are 79%, 88%, and 85% for the dipper, boom, and body, respectively. 
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Table 5-5. Results of parts detection on video frames in the first test 

  Precision (%)  Recall (%)  Accuracy (%) 

Dipper Detector   80  88  79 

Boom Detector   85  86  88 

Body Detector   85  89  85 

Figure 5-22 shows the sample output of the detection algorithm after recognizing the parts and 

adjusting their bounding boxes. In addition to this construction site, a number of short videos from 

other construction sites were analyzed and similar results were achieved on those videos. 

    

Figure 5-22. Output of the parts’ detection module 

5.4.3.2 Test on Stereo Cameras 

The third test was applied on the cropped frames done in Section 5.4.2. The part detectors were 

applied on each frame to find the boom and the dipper of the excavator. The process is done 

simultaneously on the corresponding frames of both cameras. Moreover, γ is assumed to be 5% 

but further sensitivity analysis can be done for selecting this value. 

In order to show the effect of cameras and GPS data fusion on the detection accuracies, two 

scenarios were tested. In the first scenario, the data were fused and in the second scenario the 

detectors were applied on the original frames without including the GPS data. The precision, recall, 

and accuracy of the detectors for the boom and the dipper are shown in Table 5-6. The comparison 

between fused and unfused data shows the improvement of the accuracies after fusion. The 
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detection accuracies of both parts with fusion are close to each other for both cameras (i.e. 94% 

for the dipper and 96% for the boom).  

Table 5-6. Results of boom and dipper detection on video frames in the second test  

   Precision (%)  Recall (%)  Accuracy (%) 

  Left 

Camera 

Right 

Camera 

 Left 

Camera 

Right 

Camera 

 Left 

Camera 

Right 

Camera 

Boom 
With Fusion 97 96  94 98  94 94 

No Fusion 46 69  33 66  24 51 

Dipper 
With Fusion 98 98  98 98  96 96 

No Fusion 52 69  58 80  50 72 

5.5 Discussion 

Calibrating two independent cameras with the long baseline installed at the high level was a 

challenging task. Using the checker boards with the squares’ size of 50×50 cm address this 

challenge. However, since the size of 50×50 cm was the maximum size used in this research, it is 

not clear whether a larger size can improve the calibration results or not. There is always a trade-

off between the resolution of a photo and the maximum recognizable points far from the camera. 

As shown in Figure 5-23, it is assumed that the distance in reality between the points P1 and P2 is 

dP while the distance between the camera and the two points is dOP, the distance on the image plane 

between the projected point Q1 and Q2 is dQ, and f is the focal length of the camera. In the 

calibration process, dP is referred to the size of the squares’ printed on the checker board. 

Depending on the specification of the camera, if dP is so small and dOP is so large that dQ is smaller 

than a pixel on the image plane then calibrating the camera for the points further than dOP from the 

camera and closer to each other than dP is meaningless. To overcome the aforementioned problem, 

either dQ should be increased or dOP has to be reduced. 
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Figure 5-23. Relationship between points and their projections on the image plane 

A rough comparison between the tests on the static images and the video shows that applying the 

detectors on both tests results in almost similar results. The only remaining concern is that when 

the parts appear smaller than the training sizes shown in Table 5-4, they cannot be detected and if 

the training sizes are decreased, then there is a chance of increasing the false detections.  

5.6 Summary and Conclusions 

Reviewing the literature showed the limitations and requirements of the available technologies for 

estimating the pose of the equipment and that CV-based technologies are great candidates for this 

purpose. However, relying on a single technology can result in missing some data and/or lowering 

the accuracy of estimations. Therefore, CV combined with a RTLS were proposed in this research 

to address these problems. Installing a GPS tracking device in the cabin of the excavator was 

helpful to narrow down the search scope of the CV-based detectors for recognizing the boom and 

dipper of the excavator. 

Calibrating the stereo cameras with the long baseline was another challenge in this research. Using 

different checker boards with the different sizes of squares proved that lower calibration error can 

be achieved by using the board with larger squares. The average calibration error of each camera 

was and the average error of stereo calibration was less than 100 mm while the error was less than 

500 mm with the confidence level of 95%. Projecting the GPS data on each camera view was 
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another task done in this study and the locations of the excavator obtained from the GPS were 

correctly shown on each frame. The boom and the dipper were detected on the video frames with 

the accuracy of 94% for the boom detector and the accuracy of 96% for the dipper detector. 

This chapter also investigated a new approach of detecting the excavator parts using the concept 

of synthetic images, followed by extracting the skeleton of the excavator. The results show that 

the synthetic images can play the role of real images captured from the construction site for training 

the excavator parts’ detectors. A comprehensive image database for various parts of the excavator 

was developed for training the vision-based excavator parts’ detectors. This method can save a lot 

of time during the training phase not only because it does not require the users to go to the 

construction sites and to capture the images of the excavator under various conditions but also 

because it does not require the users to annotate the training dataset manually. The best accuracies 

of the detectors trained by the synthetic images for the dipper, boom, and body were 79%, 88%, 

and 85%, respectively. The average accuracies of detecting the boom and the dipper on the stereo 

frames after fusion the cameras data with RTLS data were 94% and 96%. 

The conclusions of this chapter are as follows: (1) Two regular surveillance cameras were 

successfully used as a stereo vision system on a large construction site and a guideline was 

developed for calibrating multiple cameras with long baseline using sensitivity analysis; (2) Data 

fusion was effectively used to integrate RTLS and video images to decrease the processing efforts 

for detecting excavator parts while increasing the detection accuracy by limiting the search scope 

for the detectors; (3) The parts’ detectors were trained using the database of the auto-annotated 

synthetic images for the excavator’s parts; and (4) The data fusion and part detection methods were 

tested in three case studies and the results proved the applicability of the proposed methods. 
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However, the proposed method has the following limitations: Detecting the bucket of the excavator 

is a challenge since the appearance of the buckets may change considerably by contacting the soil. 

One of the possible solutions can be the use of moving object detector as a preliminary step while 

searching for the bucket. This would help to limit the search space for the bucket detector. 

Furthermore, the frames are currently processed individually and this sometimes causes missing 

data. Object tracking algorithms (e.g. Kalman Filter or Particle Filter) can help the proposed 

method in handling the missing or noisy data. Another limitation of this research is that it assumes 

the location of the excavator on a flat terrain with no slope and it defines the virtual cylinder based 

on this assumption. However, in reality, the excavator may be on a slope; therefore the cylinder 

has to have the same angle as the slope of the terrain. To overcome this limitation, it is 

recommended to include an IMU as an additional source of data, which not only can address the 

aforementioned problem related to the slope but also can provide information about the direction 

of the excavator, which can help the CV algorithm to select the detector matching the actual 

relative direction of the equipment with respect to the cameras out of multiple detectors. 

CHAPTER 6 SKELETON EXTRACTION AND 3D POSE 

ESTIMATION  

6.1 Introduction  

After fusing RTLS and CV data and applying the parts’ detectors on the images received from two 

cameras that have overlapping FoV, this chapter mainly focuses on extracting the skeleton of the 

excavator and estimating the 3D pose of the excavator. Within the bounding box of each detected 

part provided by the methods in Chapter 5, the background of each part is subtracted. The 
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foreground pixels belonging to each part are segmented and the skeleton of the excavator from the 

view of each camera is extracted. The 3D pose of the equipment is calculated by applying 

triangulation between the pixels coordinates of each joint of the skeleton using the cameras’ 

parameters. Finally the 3D pose of the excavator is transferred into a game environment for safety 

measurements. 

This chapter aims to achieve the following objectives: (1) to develop a clustering technique to 

subtract the background of the detected part and create a binary segment from the foreground; (2) 

to extract the skeleton of each part by applying morphological operations on the binary segments 

and find the joints of the excavator parts from each camera’s view; (3) to estimate the 3D pose of 

the excavator by triangulating each pair of joints from two cameras’ views; and (4) to transfer the 

estimated pose into the game engine and detect the potential collisions. 

6.2 Process of Estimating 3D Pose of Excavator using Stereo Vision 

As shown in Figure 6-1, the process of estimating the 3D pose of an excavator is divided into three 

steps. Step one focuses on subtracting the background, step two highlights the method of skeleton 

extraction, and step three explains the process of estimating the 3D pose and transferring the data 

into the game environment for safety monitoring.  

An excavator has four degrees of freedom when it is stationary, which are represented by the angles 

shown in Figure 6-2 (𝜃1, 𝜃2, 𝜃3, and 𝜃4). It is necessary to mention that in this research it is 

assumed that the center of the camera view is set to watch the gravity center of the excavator. 

This is mainly defined to set the target object in the middle of the synthetic image. Moreover, this 

configuration is only set for creating the images from the 3D virtual model before the training 
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phase while in the testing phase there is no special configuration. Therefore, the transformation 

between the coordinate systems of the camera and the excavator has rotational relationship in three 

dimensions while the translation between them can be considered as zero. Estimating all the 

mentioned orientations is required for providing the excavator skeleton in addition to the relative 

location of one of the four joints (considering the top-left corner of the original frame to be the 

origin point of the 2D image coordinate system). As mentioned in Section 6.1, since the current 

study is based on the video received from one camera, estimating the four angles in 3D real 

environment by analyzing only the 2D frames is not possible. Alternately, the 2D orientations of 

the skeletons for the boom and the dipper can be estimated upon analyzing the video frames from 

one camera. 
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Figure 6-1. Process of estimating 3D pose of excavator using stereo vision 

The corresponding angles required for providing the 2D orientation (i.e. the projection of the 

angles on the plan of the image) are shown in Figure 6-3 (𝜃′2, 𝜃′3, and 𝜃′4). Obviously, it is not 

meaningful to estimate 𝜃1 when the images cover more the long side view of the excavator and 

less the top view. 
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Figure 6-2. 3D kinematic representation of an 

excavator 

Figure 6-3. Image-based 2D kinematic 

representation of an excavator  

6.2.1 Background Subtraction 

In an ideal situation (Figure 6-4(a)) it is expected that each detected bounding box should surround 

its target object and be in contact with the bounding box of the adjacent parts (if applicable). 

However, this expectation does not happen in many situations even if each part is detected 

correctly. As shown in Figure 6-4(b) or (c), it is possible that the bounding boxes are larger or 

smaller than the expectation. The difference in the sizes causes serious problems for estimating the 

skeleton of the target part by wrongly considering a portion of the adjacent parts in the estimation 

process. For instance, as shown in Figure 6-4(b), the bounding box around the boom covers a 

portion of the dipper, which ultimately results in a wrong shape of boom’s skeleton. Also, this 

problem may be produced when the bounding box is smaller than expectation. As a result, there is 

no contact on the borders of two connected parts. Addressing the aforementioned problems, the 

order of connections between every two parts are considered and checked to adjust the size of the 

bounding boxes to avoid unacceptable overlaps (i.e. Figure 6-4(b)) or gaps between two adjacent 

parts (i.e. Figure 6-4(c)). 
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(a) Ideal situation 

  

(b) Bounding boxes with overlaps in between (c) Bounding boxes with gaps in between 

Figure 6-4. Bounding boxes with/without gaps and overlaps 

When facing an overlap between the dipper and the boom, the dipper has higher priority because 

it gives better detection results therefore the intersected side of the boom’s bounding box is moved 

to reach to the intersected side of the dipper. In a scenario that the boom and the body have an 

overlap, the boom receives higher priority and the side of the body bounding box is moved to touch 

the intersected border of the boom with the body. When there is a gap between the dipper and the 

boom, the boom bounding box is extended to reach to the intersection side of the dipper. In cases 

that the gap is between the boom and the body, the body’s bounding box is extended to touch the 

intersecting border of the boom with the body. 
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After detecting each part, it is required to find the skeleton of that part in order to estimate its 

orientation. The initial step for creating this skeleton is to remove the unnecessary pixels of the 

detected area known as background of the part. The pixels occupied by each part within the 

recognized bounding box should be segmented as one area. Knowing the pixel-wise location of 

the part area helps to find the orientation and position of the part in the image coordinate system. 

As it was proposed in the research of Yuan et al (2016), the edge detection algorithm might be 

useful for extracting and segmenting excavator parts. However, the cluttered construction 

scenarios significantly affect its segmentation effectiveness. For example, the Sobel-filter and 

Dilate-filter were applied to the converted gray image (Aybar, 2006; Mathworks, 2014b). As 

shown in Figure 6-5(a) and Figure 6-5(b), the RGB image was converted into gray image, then the 

Sobel-filter is applied on the gray image (Figure 6-5(c)). Dilate-filter processes the result of the 

previous step and the new outcome (Figure 6-5(d)) was processed by the hole-filling filter 

(Figure 6-5(e)) (Soille, 2013).  

 

 

 

 

 

 

 

 

 

(a)  (b)  (c)  (d)  (e) 

Figure 6-5. Part background subtraction based on edge detection 

Unfortunately, the preliminary result was not reliable since applying the edge detection methods 

on the images with a cluttered background does not provide a precise segmented result. Since the 
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edge detection does not provide reliable results, another segmentation technique is explored. This 

method, which is a color-based segmentation, uses k-Means clustering technique (Lloyd, 1982). 

The first step in this method is to convert the RGB color space to CIE L*a*b* color space, which 

is visually more distinguishable (Figure 6-6). CIE L*a*b* refers to the color space where L stands 

for lightness and a and b for the color-opponents green-red and blue-yellow (Hunter, 1958). Then, 

k-means clustering for two clusters is applied on the converted color space to divide the image into 

two separate areas. The reason that two clusters are considered is based on the assumption that 

within any detected bounding box there is one excavator part as foreground and the rest of the 

pixels are part of the background.  

 

(a) 

 

 

(b) 

 

 

(c) 

  

 

(d) 

Figure 6-6. Part background subtraction using k-Means clustering 

This process is repeated for the dipper, boom, and body. Knowing that there are two clusters for 

each part, the algorithm has to accept one cluster for each part and reject the other. Reviewing the 
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specifications of the different excavator’s manufacturers shows that usually the dipper and boom 

have the same color (e.g. both are yellow, orange, black, etc.) but the body can be in a different 

color (e.g. Volvo). 

Observing the content of the detected bounding boxes shows that their backgrounds have the 

maximum contact with the borders of the bounding boxes (Figure 6-7(b)) compared to their 

foreground areas (Figure 6-7(a)). This rule can be applied on the clustering results of dipper and 

boom. In an ideal situation, the excavator part with color unity is distinguishable from the 

background but in reality the foreground cluster may include areas other than the target part, which 

need to be removed as much as possible. To address this problem, the morphological operations 

(Soille, 1999; Soille, 2013) are used to segment the content of the foreground cluster and to select 

the segment with the largest area as the input of the skeleton estimation algorithm. 

  

(a) Foreground (b) Background 

Figure 6-7. Correct cluster selection 

As shown in Figure 6-8, the content of each detected box has to be divided into two clusters based 

on the CIE L*a*b* color space, one as foreground and the other one as background. The content 

of the detected box is divided into two clusters, which have the farthest distance between their 

color median. As a result, the pixels with the colors close to the median color of the shiny object 
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are considered as one cluster and the remaining pixels go for the second cluster. Therefore, when 

the color of the parts are not shiny enough to be considered under the first cluster, they will be 

considered as part of the second cluster, which is named as background.  

This limitation happens when there is another object with bright color in addition to the part and 

the background resulting in some difficulties in subtracting the background correctly. For example, 

as shown in Figure 6-9, the area surrounded by the green line belongs to the boom and the rest 

should be subtracted as background. However, since the letters written on the boom, the worker 

safety vest and light blue pant look brighter than the other objects in this scene, each of them may 

take the winner cluster for itself. 

 

Figure 6-8. Single recognizable foreground 

 

Figure 6-9. Multiple recognizable foregrounds 

Assuming that these confusing objects are most probably smaller than the excavator parts, in this 

research it is proposed to add another constraint to the clustering algorithm to tackle this problem. 

This constraint defined by increasing the number of clusters from two to a larger number n (e.g. 

10). The number of clusters can be further studied by applying a sensitivity analysis. The content 

of the detected box is divided into n clusters with n median colors. The cluster with the largest 

contact with the border of the bounding box is removed as the main background then the 

differences between the color median of the remaining clusters are calculated. The clusters with 
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differences lower than λ% are merged together. This threshold adds an additional constraint. 

Moreover, it helps to avoid false division of one object into multiple clusters because of small 

contrasts. Finally, the cluster with the largest surface area among the remaining clusters is selected 

as foreground and it is converted to a binary image for skeleton extraction purpose. 

6.2.2 Skeleton Extraction 

Extracting the skeleton of the part is the next step toward estimating the orientation of each part. 

Skeletonizing or thinning the binary images is the process of removing the boundary pixels of a 

segmented object without allowing the segment to break apart (Mathworks, 2016; Lam et al., 1992; 

and Pratt, 1991). As shown in Figure 6-10, the boom of the excavator (Figure 6-10(a)) is segmented 

in black color (Figure 6-10(b)). The thinning algorithm is then applied on the segmented area to 

extract the skeleton of the boom using the morphological operations (Soille, 1999; Soille, 2013). 

The end point of the boom on the left side and right side are named a and c, respectively.  

  

(a) (b) 

 

 

 

 𝜃𝑎  
 

a

c

 

(c) (d)  

Figure 6-10. Process of boom orientation estimation 
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The same process is repeated for the dipper of the excavator to be skeletonized as shown in 

Figure 6-11. The end point of the dipper at the upper and lower sides are named d and e, 

respectively, while the branch point of the dipper (usually in contact with the boom) is named c. 

Knowing the start and end points for the boom and the dipper can be used to calculate the 

configuration of their skeletons. 

   
e

d

c

 

(a)  (b)  (c) (d)  

Figure 6-11. Process of dipper orientation estimation 

Generally, the skeleton of the excavator mainly depends on the skeletons of the boom and the 

dipper. Considering the boom and the dipper together as the arm of excavator, the skeleton of this 

arm can be presented by 𝜃𝑎 and 𝜃𝑐 as shown in Figure 6-12. 𝜃𝑎 is the same as the orientation angle 

of the boom but 𝜃𝑐 is calculated using 𝜃𝑒 and the following Equation 6-1. 

𝜃𝑐 =  𝜃𝑒 − 𝜃𝑎  Equation 6-1 

However, this method suffers a lot from noisy images, especially those images of the excavator 

captured from a far distance since it directly relies on the binary pixels of the foreground that may 

be mixed with the background during the clustering phase. Therefore, in this research, extracting 

the skeleton of each part is performed by applying the ultimate erosion (Maintz, 2005) of the 

segment. The remaining points are then used for representing the skeleton of the part. 

cʹ 
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Figure 6-12. Excavator arm representative angles 

The representation can be done by fitting the points to an individual curve for each part. Observing 

the appearance of the dipper shows that a linear polynomial is the best fitting trend line while for 

the boom there are two scenarios. In the first scenario, the boom is being watched from the back 

of the excavator (Figure 6-13(a)) and it is closer to a linear polyline with the residual value of 

𝑅𝐿𝑖𝑛𝑒𝑎𝑟 𝑀𝑜𝑑𝑒𝑙.  

y = dʹ×x + fʹ

a

b

c

a

b
y = w×x

2
 + d×x + f

RLinear Model < RPower Model 

y

x

 

a

b

c

y = dʹ×x + fʹ

a

b
y = w×x

2
 + d×x + f

RLinear Model > RPower Model 

y

x

 

(a) Back view (b) Side v iew 

Figure 6-13. Interest points of excavator skeleton 
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When the boom appears from the side of the excavator, a power trend line with the residual value 

of 𝑅𝑃𝑜𝑤𝑒𝑟 𝑀𝑜𝑑𝑒𝑙 is better fitted (Figure 6-13(b)). The proposed method compares 𝑅𝐿𝑖𝑛𝑒𝑎𝑟 𝑀𝑜𝑑𝑒𝑙 and 

𝑅𝑃𝑜𝑤𝑒𝑟 𝑀𝑜𝑑𝑒𝑙 and then selects the fitting trend line with the smaller residual value. Having one line 

for the dipper and one for the boom, the intersection of two curves is calculated to find the 

coordinates of the intersection point (point b). The other ends of the two curves are selected (i.e. 

point a for the boom and point c the dipper). In some cases where the boom or the dipper is 

occluded by each other (watching the excavator from back or front) the aforementioned process 

will be slightly different. 

6.2.3 3D Pose Estimation and Transferring into Game Environment for Monitoring 

As shown in Figure 6-14, the 3D pose of the excavator is calculated by triangulating the 2D 

coordinates of three interest points from each camera (e.g. points mL, pL, and nL from the left view 

and mR, pR, and nR from the right view) using the cameras’ parameters.  It should be mentioned 

that the upper body detector is not used since the body has only rotation around its z axis and this 

rotation is equal to the rotation of the boom around the same axis. Furthermore, the bucket detector 

is not applied on the frame as the preliminary tests in Section 5.4.3 showed that the detection 

results of the bucket were not reliable because the bucket is usually covered with soil. 

Although the 3D pose estimation of the excavator is the main target of this research, the estimated 

pose should be further used for safety monitoring applications. As mentioned in Section 2.8, the 

excavator state identification and LAEW, proposed by Vahdatikhaki et al. (2017), are two suitable 

applications that can use the pose information for monitoring safety.  
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Figure 6-14. Joints triangulation between two views 

Reviewing the work of Vahdatikhaki et al. (2017) shows that the supporting methods are 

developed in a game environment since the games can simulate various real-life scenarios that can 

be very costly and dangerous. In order to apply state identification and LAEW, the processes of 

parts recognition, skeleton extraction and 3D pose estimation can be developed inside the game 

engines directly. Moreover, all the location and dimensions data of the static and moving object 

can be replicated in the game engine. However, sometimes these processes might be better 

implemented in other platforms using special tools. In these situations, the estimated 3D poses 

should be transferred into the game engine. This data-transfer requires a stable communication 

between the game engine and the data processing platform. This communication can be established 

using 3-Way Handshake method and then the data is transferred under Transmission Control 

Protocol using Internet Protocol (TCP/IP) (Postel, 1981). This protocol is widely used by many 

tools, devices, and programs between the client and server. The client usually refers to the program 
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which requests a service or resource and server refers to the program, which provides the service 

or resource to the client(s) (Bender, 2009).  

Additionally, the 3D models of the equipment, the safety tools, and the temporary structure and 

offices can be imported into the game engine to consider the static objects on the site for evaluating 

the potential collisions with the moving objects. 

6.2.4 Avoiding Collisions using 3D pose data 

In this research, a simplified form of LAEW is adapted from the work of Vahdatikhaki et al. (2017) 

as proof-of-concept for monitoring the safety of the excavator using the fused RTLS and cameras 

data. As shown in Figure 6-15, a bounding box around each part of the excavator is created. A 

safety buffer, defined by the user, is added to each rectangle. This buffer should be defined based 

on the minimum required time for the operators or workers to avoid the collision after receiving a 

warning. Figure 6-15(a) shows the configuration of the buffer from the side-view of the excavator 

and Figure 6-15(a) shows it from the top-view. 

 

 

(a) Side-view (b) Top-view 

Figure 6-15. Defining a safety buffer 

 

The rectangle-shape of the safety buffer is used for the representation in Figure 6-15 while a more 

realistic approach is to off-set the boundary of the excavator shape relative to the required size of 
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the buffer. Additionally, a more detailed safety buffer discussed earlier as LAEW can be used. 

LAEW also considers the movement speed of each part and the low visibility risk of the operator 

for generating LAEW. Another concern while using the concept of safety buffers is the close 

proximity of the equipment working together. For instance, when the excavator is loading a truck, 

a close proximity between the excavator and the truck is unavoidable. Therefore, it is necessary to 

define the equipment that need to work in a close proximity. This would help to avoid false hazard 

detection. 

6.3 Implementation and Validation 

Since estimating the 3D pose of the excavator includes multiple steps, the implementation and 

validation in this chapter is divided into four steps in order to calculate the error at each step 

separately. 

6.3.1 Background Subtraction 

The algorithm developed in Matlab (Mathworks, 2016) starts by receiving the output of the part 

detection algorithm along with the relative location of the detected box to the top-left corner of the 

original frame. Out of the three detectors for the dipper, boom, and body, the results of the body’s 

detector are not used for skeleton estimation since the body includes other parts with different 

color and shape (e.g. cabin and engine cab), which makes the skeleton estimation difficult for the 

proposed algorithm. As part of the clustering method explained in Section 6.2.1, the content of 

each box is converted from RGB to CIE L*a*b* color. In the first test, the outcome of the test on 

video frames discussed in Section 5.4.3 is used and background of each detected part is divided 

into two clusters and the cluster with the minimum contact with the border of the box is considered 
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as foreground (cluster containing the part pixels). In this video there was no bright object on the 

scene except the yellow excavator. As shown in Table 6-1, background subtraction precision and 

recalls for the dipper and boom are 97% and 81%, respectively. The achieved accuracies for the 

dipper and boom are 94% and 69%, respectively. 

Table 6-1. Results of foreground segmentation in the first test 

  Precision (%)  Recall (%)  Accuracy (%) 

Dipper   97  97  94 

Boom   81  81  69 

In the second test, the results of the test on stereo cameras introduced in Section 5.4.3.2 are 

investigated and the background of each detected part is subtracted using the two methods 

explained in Section 6.2.1. The parts of the excavator in this test are black and there are multiple 

bright moving object on the site. The first method divides the content of the detected bounding 

box into two clusters while the second method divides the content into 5 initial clusters. The results 

are shown and compared in Table 6-2. The achieved accuracies proved the claim explained earlier 

in Section 6.2.1 regarding the limitations of using two cluster in presence of bright objects. 

Table 6-2. Results and comparison of background subtraction methods in the second test 

 Two-Clusters Method  n-Clusters Method 

 Camera 1 Camera 2  Camera 1 Camera 2 

Boom 76% 68%  80% 100% 

Dipper 66% 48%  96% 100% 

6.3.2 Skeleton Extraction 

The developed process is applied on the detection results achieved in Section 6.3.1 to evaluate the 

performance of the proposed skeleton estimation algorithm (skeletons shown in Figure 6-16). The 
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errors are measured by calculating the difference of the actual values of 𝜃𝑎, 𝜃𝑐, and 𝜃𝑒 and the 

values estimated by the proposed method. The actual values (ground-truth) are extracted manually.  

    

(a) (b) (c) (d) 

    

(e) (f) (g) (h) 

Figure 6-16. Output of the skeleton estimation 

The actual values (ground-truth) of the excavator skeleton is prepared by first extracting the pixel-

wise coordinates of the points a, b, and c (shown in Figure 6-13) manually and then calculating 

the angles 𝜃𝑎, 𝜃𝑐, and 𝜃𝑒. 

As shown in Figure 6-17, the orientation of the dipper and the angle between the dipper and the 

boom were estimated with error less than 4˚ with confidence level of close to 95%. The orientation 

estimated for the boom reached to the same confidence level with the error of 8˚. The maximum 

error of 18˚ was obtained in this test. 
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Figure 6-17. Results of the estimated parts orientations error in the first test 

Moreover, the extracted parts were segmented and the skeleton of the boom and the dipper were 

extracted separately. The global points representing the skeleton of the dipper were fitted to a linear 

polynomial model while the global points of the boom may be fitted to a linear polynomial model 

or power model depending on the criteria explained in Section 6.2.2. After finding the intersection 

point of the boom and dipper using the aforementioned mathematical models and selecting the end 

point of each part, the 2D skeleton of the excavator can be represented by three points including 

the intersecting point. The results skeleton extraction based on n-clusters background subtraction 

method are shown in Table 6-3 and compared with results achieved by extracting the skeleton 

based on the two-clusters method. The 2D angles of 𝜃𝑎 and 𝜃𝑏 were measured and compared with 

the ground truth and the average errors with standard deviations in parentheses are shown in 

Table 6-3. The results shows that relying on n-clusters background subtraction method 

outperforms. Moreover, the example of skeleton estimation process can be found in Appendix I. 
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Table 6-3. Results and comparison of skeleton extraction methods in the second test 

 Two-Clusters Method  n-Clusters Method 

 Camera 1 Camera 2  Camera 1 Camera 2 

Boom - 𝜽𝒂 
μ 76.2 34.3  3.8 4.6 

σ (45.8) (7.3)  (6.1) (7.2) 

Dipper - 𝜽𝒃  
μ 28.7 14.7  5.3 15.6 

σ (20.3) (16.5)  (12.3) (9.4) 

6.3.3 Triangulating 2D Cameras Image Coordinates to 3D Coordinates 

At time t, there were two 2D skeletons for the right and left cameras. Each skeleton had its 

corresponding points in the other camera image. Therefore, three pairs of points were triangulated 

using the stereo camera parameters estimated in Section 5.4.1. The outputs after using stereo 

parameters were three points representing the pose of the excavator in the 3D environment. In 

order to evaluate the performance of estimated poses, three metrics used in (Lundeen et al., 2015; 

Lundeen, et al., 2016; Feng et al., 2015; and Yuan et al., 2016) are considered. The first metric 

compares the actual lengths of the boom and the dipper (i.e. 𝑎𝑏̅̅ ̅ and 𝑏𝑐̅̅ ̅ in Figure 6-18), which are 

known for the excavator used in this experiment, with the estimated lengths after the triangulation 

of the 2D skeletons using the proposed method.  

The pose of the excavator can be presented by the coordinates of one point (i.e. point a in 

Figure 6-18) and the angles of each part (𝜃𝑎 and 𝜃𝑏). The ground truth for this step was achieved 

by extracting the three interest points (i.e. a, b, and c) from each frame manually and triangulating 

between the left and the right views to find the 3D coordinates of the interest points. The second 

metric is the error of the location of point a and the calculated point using the proposed method 

compared with the location based on identifying this point manually. The third metric shows the 

difference between manually extracted angles of each part and the estimated angles of each part 
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using the proposed method. For 100 frames, the average error and the standard deviation for each 

part is calculated. 

a

c

b

θa 

θb 

 

Figure 6-18. Pose representation notation 

Table 6-4 shows the abovementioned averaged errors (μ) with standard deviations (σ) in 

parentheses. In Table 6-4, there are two groups of results (i.e. before and after). The first group 

includes the frames with falsely segmented parts (22 frames out of total of 100 frames) from the 

previous step and the second group were achieved by excluding the frames with false segmentation 

in either the right or left view. Therefore, the error of the second group are smaller than the first 

group. Focusing on the second group, the average error of estimated length of the dipper and the 

boom are 76 cm and 41 cm, respectively. The coordinates of point a is estimated with the average 

error of 60 cm while 2.9˚ and 4.2˚ are the average error of the estimated 𝜃𝑎 and 𝜃𝑏. 

Table 6-4. Pose estimation errors in the second test 

  Absolute Length 

Error (cm) 
  

Location Error 

(cm) 

  Part Angle       

Error (degrees) 

  Before After   Before After   Before After 

Dipper  
μ 

 
188  76  

 
 

𝜽𝒂 
4.7 2.9 

σ (124) (75)   (6.1) (4.3) 

Boom  
μ 

 
157 41  Point 

a 

1022  60   
𝜽𝒃 

6.2 4.2 

σ (67) (50)  (94) (58)  (7.5) (6.8) 
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6.3.4 Transferring Pose Data into Game Environment  

As mentioned in Section 6.2.3, when the process of estimating the 3D pose of the excavators 

should be transferred into the 3D environment of a game engine for further processing related to 

safety. In the research, the methods leading to the estimation of 3D pose of the excavator were 

developed in Matlab. Therefore, it is necessary to integrate Matlab as the processing platform with 

the game engine. Due to free access and ease of use of Unity (Unity, 2017), it is used as the game 

engine in this research. This integration is developed through TCP/IP communication model as 

shown in Figure 6-19. As mentioned in Section 6.2.3, a communication channel is created between 

the data processing unit (in this research is Matlab) and Unity. A specific IP with free socket is 

defined in Matlab. 

Matlab is defined as the server and Unity is considered as the client. There is one-time connection 

establishment between the server and the client. Afterward, data is sent to the game engine until 

there is no more data for transmission. At that point, the communication is terminated. 

After the ready-to-use pose data of the excavators are transferred to Unity, the 3D model of the 

excavator (Figure 6-20 (a)) is imported into the game environment. In order to make the 3D 

environment developed in the game engine as close as possible to the reality, the 3D models of the 

static objects and the temporary equipment can be modeled in Autodesk 3Ds Maxs or Google 

SketchUp or can be purchased from online virtual stores such as Asset Store of Unity (Figure 6-20 

(b)). 



119 

 

Legend

SYN

ACK

SYN ACK

Data Acknowledged

Data Sent

FIN

ACK

ACK

FIN

C
o

n
n

ec
ti

o
n

 S
et

-U
p

(3
-W

ay
 H

an
d

sh
ak

e)
D

at
a 

T
ra

n
sf

er
C

o
n

n
ec

ti
o

n
 C

lo
se

SynchronizeSYN

AcknowledgeACK

FinishFIN

Server

(Data Processing Unit)

Client

(Game Engine)

 

Figure 6-19. Communication model used in this research (adapted from Fall & Stevens, 2011) 

Before starting to process the data, the socket is opened and it waits for Unity to send a starting 

signal. On the other side, a script in C# is developed in Unity and the address of the server and its 

open socket is stored in the script. By running the script, Unity sends a communication request 

with a synchronization code to Matlab and the communication is established and synchronized 

when Unity receives the acknowledgement of the accepted communication from Matlab. At this 

moment, Matlab can start processing the cameras and GPS data. Whenever the 3D pose at time t 

is ready, it will be sent to Unity for visualization and processing. This process continues untill 

there is no more data for transferring from Matlab to the Unity and Matlab sends a connection 

termination request to Unity. 
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(a) Equipment model in Google Sketchup (b) Temporary site equipment 

Figure 6-20. 3D models used in the game environment 

By receiving the termination signal, the server acknowledges the request and returns it termination 

signal to the client. The communication channel is closed the moment that the server receives the 

termination acknowledgement from the client. There was no communication issue or packet lost 

during the data transmission since both the server and client were on the same computer. However, 

when each side of the communication are far from each other and use a wireless connection, there 

are chances for packet lost or data corruptions. 

As mentioned in Section 6.2.3, the safety buffers should be created around each object. These 

buffers are known as colliders in Unity. They can be defined using primitive shapes (e.g. boxes, 

cones, cylinders, etc.), off-set meshes of the object, or finite cells generated based on the equipment 

risk maps proposed by Vahdatikhaki & Hammad (2015b). 

This research uses the off-set meshes of the static and moving objects except for the workers. The 

pose of the workers can change very fast; therefore a capsule-shaped collider is considered as the 

safety buffer of the workers. A diameter of 1 m for the buffer is considered for off-setting the 

meshes and capsules colliders. It should be mentioned that selecting the required size of the buffer 

is not the interested of this research and 1 m is only used as an example. The example of the 
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generated collider for the excavator shown in Figure 6-21(a) can be found in Figure 6-21(b). The 

integrated collider around the excavator is shown in Figure 6-21(c). 

 

 

(a) 3D model (b) Safety collider 

 

(c) Integrated safety collider around the excavator 

Figure 6-21. Example of mesh collider used as safety buffer 

In the following case study, the 3D pose data estimated in Section 6.3.3 are transferred from Matlab 

into Unity. The pose data is mapped to the three corresponding joints of the excavator model in 

Unity. Since it is not possible to create a real scene of accident, a hypothetical scenario is created 

in Unity to evaluate the performance of the system in detecting potential collisions. 

In order to identify the potential collisions, a rule is defined within the game engine to continuously 

check if the exterior surface of two colliders from two different objects are touching each other. In 

this case, the game engine generates a warning for a potential danger. In the example shown in 
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Figure 6-22(a), two virtual workers are standing at a safe distance from the excavator and they are 

not in danger at the beginning of the excavator operation. 

  

(a) No potential accident (b) Potential accident 

Figure 6-22. Example scenario for detecting potential collision 

While the excavator is rotating clockwise and approaching Worker 1, the collider of the bucket 

hits the collider of worker 1. As shown in Figure 6-22(b), the game catches the event and considers 

it as a potential accident. Additionally, the game is able to provide the objects involved in the 

potential accident. Some possibilities for notifying the involved workers and operators are: using 

the audio alarm, the vibration alarm (e.g. wristband vibrating alarm or smart phone), and/or the 

visual alarm (e.g. on the display installed in the cabin of the excavator).   

On the tests for detecting the potential collisions, false collisions and false states were detected 

and identified, respectively, whenever there was a large error on the estimated pose.  As expected, 

this shows the direct influence of the pose estimation errors on the collision detection and state 

identification results.  
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6.4 Discussion 

Regarding the skeleton detection phase, it was found that the proposed method is reliable most of 

the time; however, the results are dependent to some factors. A vital factor for estimation the 

skeleton with high accuracy is a correct part detection result. In other words, when the true positive 

rate of a detector is low, it is not possible to achieve a good estimation of the skeleton. Another 

critical point is the problem of overlaps or gaps between the detected bounding boxes. Minimizing 

the overlap or gap may cause removing a portion of a part incorrectly. Focusing on estimating the 

2D skeleton of the excavator includes a high error when the yaw angle of the excavator is large. 

Therefore, better accuracy can be reached when the boom’s plane is parallel to the image plane. 

Depending on the size of the excavator the errors provided in Figure 6-16 can have different 

interpretations. For instance, assuming that the reach length of the boom is 7m (hypotenuse of a 

right angle triangle), when 𝜃𝑎 has 2˚ error, the impact of this error on the opposite side of the 

triangle is approximately 24 cm (vertical displacement of the node c in Figure 6-12) while 10˚ 

error results in 122 cm vertical displacement. 

Federal Standard 1037C (1996) defines real-time as “pertaining to the performance of a 

computation during the actual time that the related physical process occurs, in order that results of 

the computation can be used in guiding the physical process” while it defines near real-time as 

“pertaining to a delay introduced, by automated data processing, between the occurrence of an 

event and the use of the processed data”. Knowing the aforementioned definitions, the process of 

estimating the skeleton of the excavator, which is computationally extensive, is considered as a 

NRT event; however, the recognition step is the most time-consuming step and it takes between 

one to two seconds. The remaining steps including background subtraction and skeleton estimation 
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take approximately two seconds altogether. In order to use the proposed method for NRT purposes, 

the computation time should be reduced. In this research, the efficiency in developing the computer 

codes was not considered since the interest of this paper was to present a robust method. In the 

future studies, it is necessary to not only to make the increase the efficiency of the codes but also 

to divide the computation load between several GPUs to accelerate the speed of computation and 

save time. 

The collision detection phase evaluated in this research was limited to the collisions between the 

workers and the excavators. In that scenario, the workers were not required to work within the 

safety buffer of the excavator. However, if the scenario includes the interaction between an 

excavator and a truck (e.g. process of loading a truck by an excavator), then the truck may enter 

into the safety buffer of the excavator and the system generates a false alarm. In such scenarios, it 

might be better to use LAEW (Vahdatikhaki & Hammad, 2015b) using the equipment risk maps.  

As mentioned in Section 2.2, the flexibility for increasing the accepted risk level in that method 

can be helpful in reducing the false alarms. Moreover, any error on the estimated pose can result 

in false state identification and collision detection.  

6.5 Summary and Conclusions 

In this chapter, the detected bounding box for each part was passed through the k-mean clustering 

algorithm to subtract the background and segment the part as a single foreground. Initially, k was 

set to two, which means there were two clusters, one for the background pixels and the other one 

for the foreground pixels. Later on, the background subtraction was improved by assigning a larger 

number of clusters (e.g. five in this research) instead of two clusters to overcome the false 

foreground selection in case that multiple shiny objects appeared within the detected bounding 
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box. The average accuracies for subtracting the background of the dipper and boom For Camera 1 

were 96% and 80%, respectively, while there was no false subtraction from Camera 2. The 

segmented foregrounds for each view were fitted to two curves for finding the intersecting point 

between the dipper and the boom. The skeleton of the excavator from each camera was represented 

by three points including the calculated intersecting point. Knowing the stereo cameras parameters 

and the pair of the excavator skeletons from both cameras, the 3D pose of the excavator was 

triangulated. The absolute error of the estimated length of the boom was 41 cm and for the dipper 

was 76 cm. The origin of the pose was estimated with 60 cm error and the relative angles errors 

for the boom and the dipper were 4.2˚ and 2.9˚, respectively. The estimated data were transferred 

into game environment using TCP/IP connection between Matlab and Unity. The 3D pose data in 

the game engine was used for detecting a potential collision, artificially created in the game. 

The contributions of this chapter are: (1) A clustering technique (k-mean) was applied on the 

detected parts’ boxes to subtract their background, and the skeleton of each part was extracted 

from the background using morphological operations; (2) The 2D location of each joint of the arm 

of the excavator from each view were calculated to provide the skeleton of the excavator; (3) The 

3D pose of the excavator was estimated having the 2D skeletons of the excavator from each 

camera’s views, then it was sent into game engine for further safety analysis; and (4) The skeleton 

extraction and 3D pose estimation methods were tested in a case study and the results proved the 

applicability of the proposed methods. Additionally, the 3D pose data was used for detecting a 

potential collision in the game engine. 

There are some limitations of the current chapter that need further studies: (1) The current work 

focused on estimating the pose of a single excavator. However, there are many cases where 
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multiple excavators work close to each other. Processing the data in congested areas brings new 

challenges for estimating the pose of the equipment, especially in case of partial or full occlusions. 

(2) Moreover, the proposed method performs at its best only when the pairs of skeletons are 

available from both cameras. In other words, when the data of one or more joints of the skeleton 

are not available temporarily (whether they were not detected or they were occluded in the specific 

frame(s)), the proposed framework failed to provide the pose. (3) Additionally, no dependency is 

defined for relating the pose of the same excavator in the subsequent frames. It means that the 

current framework detects the excavator as a new equipment in each frame. Applying tracking 

algorithms (e.g. Kalman Filter) can address the aforementioned issues by tracking each joint, 

which will help in case of temporary missing joints. Also, the estimated path of the joints will be 

smoother with fewer sudden jumps from one frame to the next due to the calculation errors. (4) 

More than two cameras with an overlapping view can be applied and the accuracy of the 3D pose 

estimation can be investigated using multiple cameras. (5) The 3D pose data of the excavator was 

used to evaluate a potential collision scenario. Further research is needed to distinguish the 

scenarios where close interaction between the excavators and other equipment is necessary (e.g. a 

truck loaded by an excavator). 
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CHAPTER 7 SUMMARY, CONTRIBUTIONS, AND FUTURE WORK 

7.1 Summary of Research 

This research covered the review of the related literature, the current research gaps, the overview 

of the proposed framework, and detailed explanation of the proposed methods followed by the 

case studies to validate and evaluate the applicability of the proposed framework.  

In the proposed framework of this research, the method of generating the synthetic images of the 

construction equipment and their parts, and the auto-annotation method were introduced. These 

methods were able to reduce the required time and efforts for the positive sample preparation. 

Moreover, the methods improved the performance and accuracy of the object detectors trained by 

the synthetic images. Furthermore, the developed negative sample generator helped the detectors 

to decrease the number of false detections. The on-site cameras with the overlapping views were 

calibrated using a large checker board. The videos collected from the site combined with the RTLS 

data could narrow down the search scope for the excavator’s parts detectors. The background of 

the detected parts were subtracted using k-mean clustering technique and the foreground images 

were segmented. The proposed skeleton extraction method was applied on the segmented 

foregrounds and the 2D skeleton of the excavator was derived from each camera’s view knowing 

the kinematic relationship between all parts of the excavator. The 3D pose of the excavator was 

estimated using the stereo cameras parameters and a triangulation algorithm. The near real-time 

pose and location of the equipment were sent to the game environment using TCP/IP connection 

between the computation unit and the game engine. The 3D pose data in the game engine was used 
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for detecting a potential collision, artificially created in the game. Additionally, the pose data was 

used for identifying the states of the excavator using a rule-based system. 

7.2 Research Contributions and Conclusions 

By doing this research, the following contributions were achieved:  

(1) Developing a method for creating and annotating the synthetic images of the construction 

equipment and their parts using the equipment 3D models and the real images of the 

construction sites instead of taking the images of the equipment and annotating them 

manually, which is a very time consuming task. With regard to this contribution the 

following conclusions can be drawn: 

  The rendered 3D model of the construction equipment were used to produce images 

with a single-color background that these images were annotated automatically using 

the proposed method. 

  Synthetic images were produced by integrating the images of the 3D model with the 

desired background from different construction sites, different size of the objects, 

and different illumination conditions for the training phase. 

  Synthetic images were annotated automatically without user interference based on 

the annotation results of the images with the single-color background. 

  A large number of negative samples were produced from the image of different 

construction sites automatically while the target object is cut from these images. 
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Moreover, the synthetic images of the parts were partially used as negative sample 

by removing the target part from these images. 

(2) Creating and training the HOG-based excavator’s parts detectors using the database of the 

synthetic images developed earlier and automatically produced negative samples from the 

other excavator parts in addition to the real images of different construction sites while the 

target object is cut from these. The following conclusions are achieved: 

  The results of the HOG detectors using the proposed method were better than those 

obtained from a detector based on manual annotation of real images of construction 

equipment. 

  The results showed that the proposed method is able to reduce the annotation time by 

more than 90% while the accuracy of the object recognition is improved by training 

more synthetic images. 

  Part detectors were tested in three case studies and the results proved the applicability 

of the proposed methods. 

(3) Developing a data fusion framework after calibration two regular surveillance cameras with 

the long baseline to integrate the RTLS data received from GPS with the video data from 

the cameras to decrease the processing efforts for detecting excavator parts while increasing 

the detection accuracy by limiting the search scope for the detectors. The following 

conclusions are drawn: 
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  Two regular surveillance cameras were successfully used as a stereo vision system 

on a large construction site and a guideline was developed for calibrating multiple 

cameras with long baseline using sensitivity analysis. 

  Data fusion was effectively used to integrate RTLS and video images to decrease the 

processing efforts for detecting excavator parts while increasing the detection 

accuracy by limiting the search scope for the detectors.  

  The data fusion method was tested in a case study and the results proved the 

applicability of the proposed method. 

(4) Developing a clustering technique to subtract their background and extracting the 2D 

skeleton of the excavator in each camera’s view and estimating the 3D pose of the 

excavator. With regard to this contribution the following conclusions can be drawn: 

  k-mean clustering technique was applied on the detected parts’ boxes to subtract their 

background and the skeleton of each part was extracted using morphological 

operations. 

  The 2D location of each joint of the arm of the excavator from each view were 

calculated to provide the skeleton of the excavator.  

  The 3D pose of the excavator was estimated by triangulating between the 2D 

skeletons of the excavator from each camera’s views. 
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(5) Transferring the 3D pose data of the excavator to the game environment using TCP/IP 

connection and visualizing the near real-time pose of the excavator in the game engine for 

detecting the potential collisions. The following conclusions are achieved: 

  The 3D pose data was sent into game engine for further safety analysis. 

  The 3D pose data was used for detecting an artificial collision in the game engine 

and the states of the excavator was identified using a rule-based system. 

 

7.3 Limitations and Future Work 

While this research has successfully achieved its objectives, the following limitations still remains 

to be addressed in the future:  

(1) The synthetic images created using the backgrounds with the random views of the cameras 

may sometimes look far from the reality. For instance, the background image could be 

taken at the street level but the image of the 3D model could be taken from the height of 

two meters above the street level; therefore a mismatch appears in the synthetic image. 

This limitation can be addressed in the future by: 

  Using AR techniques can help by matching the view of the 3D model and the 

background (Furht, 2011). 
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(2) Weather conditions are another difficulty for creating this kind of synthetic images. Foggy 

and rainy weathers will cause the scene to look different than when the weather is clear. 

For the future studies, it is recommended to 

  Take the advantages of the game engine for simulating the weather conditions 

while generating the synthetic images. 

(3) Detecting the bucket of the excavator and estimating it pose are other challenges since the 

appearance of the buckets may change considerably by contacting with the soil. One of the 

potential solutions can be: 

  The use of moving object detector as a preliminary step while searching for the 

bucket. This would help to limit the search space for the bucket detector. 

(4) Although the part detectors achieved an average accuracy of 95% in Section 5.4.3.2, but 

the results of the test in Section 5.4.3.1 show that the detectors may perform lower than 

their best performances in some construction sites. It is highly recommended in the future 

to: 

  Investigate the potential of the emerging object detection algorithms (e.g. 

Convolutional Neural Network based methods (Soltani et al., 2017)) to achieve 

more accurate detections. 

(5) The scope of this research for estimating the 3D pose was limited to the excavators. The 

future studies should aim to: 
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  Expand the proposed framework to estimate the 3D pose of other construction 

equipment (e.g. loaders, dozers, etc.). 

(6) The proposed framework performs at its best only when the pairs the skeletons are 

available from both cameras. In other words, when the data of one or more joints of the 

skeleton are not available temporarily (whether they were not detected or they were 

occluded in the specific frame(s)), the method fails to provide the pose. Processing the data 

in congested areas brings new challenges for estimating the pose of the equipment, 

especially in case of partial or full occlusions. Moreover, this research focused on 

estimating the 3D pose of one excavator. There are many scenarios where multiple 

excavators are working close to each other. Moreover, no dependency is defined for 

relating the pose of the same excavator in the consequent frames. It means that the current 

method detects the excavator as a new equipment in each frame. The future studies should 

focus on: 

  Applying object trackers (e.g. Kalman Filter, Particle Filter, etc.) to predict the 

location of each missing joint of the excavator skeleton. Also, the estimated path 

of the joints will be smoother with fewer sudden jumps from one frame to the next 

due to the calculation errors. 
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  Using multiple object trackers to follow and record the motion of each part. 

Considering proximity-based and feature matching rules can be the solution for 

assigning the parts to their corresponding trackers. 

Investigating simulation-based optimization methods (Albahri & Hammad, 2017) 

for calculating camera coverage and planning the cameras’ locations considering 

the configuration of the site depending on the schedule of the project. 

(7) Another limitation of this research is that it assumes the location of the excavator on a flat 

ground with no slope and it defines the virtual cylinder based on this assumption. However, 

in reality, the excavator may be on a slope; therefore the cylinder has to have the same 

angle as the slope of the ground. It is highly recommended in the future to: 

  Include IMU as an additional source of data, which not only can address the 

aforementioned problem related to the slope but also can provide information 

about the direction of the excavator, which can help the CV algorithm to select 

the detector matching the actual relative direction of the equipment out of multiple 

detectors. 

(8) The accuracy of the proposed framework is limited to about a meter when the excavator is 

at a maximum distance of 50 m from the cameras. In other words, this accuracy may not 

be achieved when the excavator is further than 50 m from one camera. More accurate 

results can be achieved in the future by: 
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  Deploying cameras with higher resolution and using the checker boards with 

smaller square sizes. 

  Evaluating the use of the checker boards with the larger square sizes, when the 

HD cameras similar to those that has been used in this research are deployed. In 

this scenario, accuracy can also be evaluated for the distances longer than 50 m. 

  The accuracy of the 3D pose estimation can be investigated using more than two 

cameras with an overlapping view. 

(9) The 3D pose data of the excavator was evaluated in an artificial collision scenario. In the 

future it is necessary to: 

  Evaluate the effectiveness of detecting the potential collisions in real scenarios. 

Evaluate different scenarios where the close interaction between the excavators 

and other equipment are mandatory (e.g. a truck loaded by an excavator). 

(10) The process of estimating the 3D pose of the excavator was utilized in the off-line mode. 

It means that the RTLS and cameras data were collected during the operation of the 

excavator but they were processed later on. Knowing that the achieved processing time of 

about four seconds is not enough for collision avoidance, it is highly recommended to 

consider: 

  Applying HPC (e.g. using GPUs) to increase the processing speed of data for the 

near real-time applications. 
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APPENDICES 

Appendix A. Matlab Code of Auto Annotation 

clc 
clear 
% Margine 
m = 20; 
% Number of Conditions 
CD = 3; 
tic 
MainBackImg = 'C:\Users\umroot\Documents\MATLAB\My PhD 

Codes\Papers\Conference\Excavator3DModel\BackGround\'; 
JPG = '*.jpg'; 
BackImList = dir(fullfile(MainBackImg,JPG)); 
% Number of Backgrounds 
NoG = length(BackImList); 

  
MainImg = 'C:\Users\umroot\Documents\MATLAB\My PhD 

Codes\Papers\Conference\SensivityAnalysis\8of16\+45\'; 
JPG = '*.jpg'; 
ImList = dir(fullfile(MainImg,JPG)); 
% Number of Images 
NoI = length(ImList); 

  
NewImgBG = 'C:\Users\umroot\Documents\MATLAB\My PhD 

Codes\Papers\Conference\SensivityAnalysis\8of16\+45\NewGenImg\'; 

  
parfor i=1:NoI 
    imgfile = fullfile(MainImg,ImList(i).name); 
    I1 = imread(imgfile); 
    I = rgb2gray(I1); 
    DipperMat(i).imageFilename = strrep (imgfile, '/', '\'); 
    figure, imshow(I1), title('original image'); 

    I = rgb2gray(imread('Dipper.jpg')); 

    figure, imshow(I), title('gray image'); 

     
    se90 = strel('line', 3, 90); 
    se0 = strel('line', 3, 0); 

     
    [~, threshold] = edge(I, 'sobel'); 
    fudgeFactor = 0.1; 
    BWs = edge(I,'sobel', threshold * fudgeFactor); 
    figure, imshow(BWs), title('binary gradient mask'); 

     
    BWsdil = imdilate(BWs, [se90 se0]); 
    figure, imshow(BWsdil), title('dilated gradient mask'); 

     
    BWdfill = imfill(BWsdil, 'holes'); 
    figure, imshow(BWdfill);title('binary image with filled holes'); 

     

    BWnobord = imclearborder(BWdfill, 4); 
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    figure, imshow(BWnobord), title('cleared border image'); 

     
    seD = strel('diamond',1); 
    BWfinal = imerode(BWnobord,seD); 
    BWfinal = imerode(BWfinal,seD); 
    figure, imshow(BWfinal), title('segmented image'); 

     

    BWoutline = bwperim(BWfinal,8); 

    Segout = I; 

    Segout(BWoutline) = 100; 

    figure, imshow(BWoutline), title( ); 

     

    regdata = regionprops(BWfinal,'BoundingBox','Area'); 
    Area = cat(1, regdata.Area); 
    BoundingBox = cat(1, regdata.BoundingBox); 
    Best = find(Area(:) == max(Area(:))); 
    bbox = BoundingBox(Best,:); 
    DipperMat(i).objectBoundingBoxes = [bbox(1,1)-m bbox(1,2)-m bbox(1,3)+2*m  

     bbox(1,4)+2*m]; 
    x = bbox(1, 1); y = bbox(1, 2); w = bbox(1, 3); h = bbox(1, 4); 
    bboxPolygon = [x-m, y-m, x+w+m, y-m, x+w+m, y+h+m, x-m, y+h+m]; 
    videoFrame = insertShape(I1, 'Polygon', bboxPolygon,'Color','black'); 
    figure, imshow(videoFrame), title(' Bounding Box'); 
end 
 

parfor i=1:NoG 
    BG = []; 
    BG = imread(fullfile(MainBackImg,BackImList(i).name)); 
    figure, imshow(LogZero) 
    for j=1:NoI 
        LogOne = []; 
        LogOne = imread(fullfile(MainImg,ImList(j).name));   

        figure, imshow(LogOne) 

        I = rgb2gray(LogOne); 

        figure, imshow(I) 

        I2 = []; 

        I2 = ~im2bw(I,0.95); 

        I2 = repmat(I2,[1 1 3]); 

        LogOne(I2==0)=0; 

        figure, imshow(LogOne) 

        I3 = []; 
        I3 = ~I2; 
        LogZero = BG; 
        LogZero(I3==0)=0; 
        figure, imshow(LogZero) 

        for k=1:CD 
            LogOne = imadjust(LogOne,[0; 1],[(k-1)*0.1; (1.1-(k*0.1))],(1.1-

(k*0.1))); 
            figure, imshow(LogOne) 

            LogOne(I2==0)=0; 

            figure, imshow(LogOne) 

            K=imadd(LogZero,LogOne); 
            figure, imshow(K) 

            New_k = k + (CD*(j-1)) + (NoI*CD*(i-1)); 
            imwrite(K,fullfile(NewImgBG,sprintf('IMAGE%04d.jpg',New_k))); 
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            NewTemp(i,j,k).imageFilename =  

             fullfile(NewImgBG,sprintf('IMAGE%04d.jpg',New_k)); 
NewTemp(i,j,k).objectBoundingBoxes = 

DipperMat(j).objectBoundingBoxes 
        end 
    end 
end 
New_k=0; 
for i=1:NoG 
    for j=1:NoI 
        for k=1:CD 
            New_k = New_k+1; 
            Temp(New_k).imageFilename = NewTemp(i,j,k).imageFilename; 
            Temp(New_k).objectBoundingBoxes =  

             NewTemp(i,j,k).objectBoundingBoxes; 
        end 
    end 
end 
toc 
DipperMat = [DipperMat, Temp]; 
save(fullfile(MainImg,sprintf('ROI.mat')),'DipperMat'); 
% 0 on background 1 on foreground 
% I gray original image 
% I2 Background with logical One on foreground 
% I3 Background with logical Zero on foreground 
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Appendix B. Matlab Code of Multiple Scales Generator 

clear 
clc 

  
% Minimum number of scale reduction 
FD = 3; 

  
MainBackImg = 'C:\Users\umroot\Documents\MATLAB\My PhD 

Codes\Papers\Conference\SensivityAnalysis\8of16\-45\Original\'; 
JPG = '*.jpg'; 
ImList = dir(fullfile(MainBackImg,JPG)); 
% Number of Backgrounds 
NoG = length(ImList); 

  
NewImg = 'C:\Users\umroot\Documents\MATLAB\My PhD 

Codes\Papers\Conference\SensivityAnalysis\8of16\-45\'; 
NB = 0; 
for i=1:NoG 
    Res_Sample = []; 
    Res_Sample = imread(fullfile(MainBackImg,ImList(i).name)); 
    ImgData = imfinfo(fullfile(MainBackImg,ImList(i).name)); 
    W = ImgData.Width; 
    H = ImgData.Height; 
    NB = NB + 1; 
    imwrite(Res_Sample,fullfile(NewImg,sprintf('Pyramid %04d.jpg',NB))); 
    for j=1:FD       
       Res_Sample = impyramid(Res_Sample, 'reduce'); 
       [M,N] = size(Res_Sample(:,:,1)); 
       New_Sample = padarray(Res_Sample,[floor((H-M)/2), ((W-N)/2)]); 
       [M,N] = size(New_Sample(:,:,1)); 
       if H ~= M  
           New_Sample = padarray(New_Sample,[H-M, 0],'post'); 
       elseif W~=N 
           New_Sample = padarray(New_Sample,[0, W-N],'post'); 
       end 
       New_Sample(New_Sample==0) = 255; 
       NB = NB + 1; 
       imwrite(New_Sample,fullfile(NewImg,sprintf('Pyramid %04d.jpg',NB))); 
       New_Sample = []; 
    end 
end 
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Appendix C. Matlab Code of Negative Samples Generator 

clc 

  
% Minimum number of pixels for negative samples 
FD = 100; 
% Number of samples 
NS = 100; 
MainBackImg = 'C:\Users\umroot\Documents\MATLAB\My PhD 

Codes\Hassan\LabTest09162014\Snapshots-Sep16-DataFusion\ClearShop\'; 
JPG = '*.jpg'; 
BackImList = dir(fullfile(MainBackImg,JPG)); 
% Number of Backgrounds 
NoG = length(BackImList); 

  
NegImg = 'C:\Users\umroot\Documents\MATLAB\My PhD 

Codes\Hassan\LabTest09162014\Snapshots-Sep16-DataFusion\Negative\'; 

  
for i=1:NoG 
    BG_Org = []; 
    BG_Org = imread(fullfile(MainBackImg,BackImList(i).name)); 
    ImgData = imfinfo(fullfile(MainBackImg,BackImList(i).name)); 
    W = ImgData.Width; 
    H = ImgData.Height; 
    for j=1:NS 
       New_Neg = []; 
       X1 = randi([1 (W-(FD+1))],1,1); 
       X2 = randi([(X1+FD) (W-1)],1,1); 
       Y1 = randi([1 (H-(FD+1))],1,1); 
       Y2 = randi([(Y1+FD) (H-1)],1,1); 
       rect = [X1 Y1 (X2-X1) (Y2-Y1)]; 
       New_Neg = imcrop(BG_Org,rect); 
       imwrite(New_Neg,fullfile(NegImg,sprintf('Negative_IMAGE%04d.jpg',(((i- 

        1)*NS)+j)))); 
    end 
end 
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Appendix D. Matlab Code of Auto Cropping 

clc 
clear 

  
tic 
load('C:\Users\umroot\Documents\MATLAB\My PhD 

Codes\Papers\PartRecognition\ExcavatorCompleteModel\Dipper\E\OnlyDipper\E-5-

55D45-135\ROI.mat'); 

  
MainImg = 'C:\Users\umroot\Documents\MATLAB\My PhD 

Codes\Papers\PartRecognition\ExcavatorCompleteModel\Dipper\E\OnlyDipper\E-5-

55D45-135\NewGenImg\'; 
JPG = '*.jpg'; 
ImList = dir(fullfile(MainImg,JPG)); 
% Number of Images 
NoI = length(ImList); 

  
PreImg = 'C:\Users\umroot\Documents\MATLAB\My PhD 

Codes\Papers\PartRecognition\ExcavatorCompleteModel\Dipper\E\OnlyDipper\E-5-

55D45-135\'; 
JPG = '*.jpg'; 
ImPreList = dir(fullfile(PreImg,JPG)); 
% Number of Images 
NoPI = length(ImPreList); 

  
NewImgBG = 'C:\Users\umroot\Documents\MATLAB\My PhD 

Codes\Papers\PartRecognition\ExcavatorCompleteModel\Dipper\E\OnlyDipper\E-5-

55D45-135\Cropped\'; 

  

  
parfor i=1:NoI+NoPI 
        imgfile = DipperMat(i).imageFilename; 
        I1 = imread(imgfile); 
        bbox = DipperMat(i).objectBoundingBoxes; 
        Icrop = imcrop(I1, bbox); 
        imwrite(Icrop,fullfile(NewImgBG,sprintf('Cropped%04d.jpg',i)));         
end 
toc 
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Appendix E. Matlab Code of Parts Detection 

 

clc 
clear 

  
%% Step 1: Read Image 
% MainImg = 'C:\Users\umroot\Documents\MATLAB\My PhD 

Codes\Papers\PartRecognition\DiggingFrames\'; 
MainImg = 'C:\Users\umroot\Documents\MATLAB\My PhD 

Codes\CameraCalibration\CALIB\Logan\Cam_01\FarCropped\'; 
JPG = '*.jpg'; 
ImList = dir(fullfile(MainImg,JPG)); 
% Number of Images 
NoI = length(ImList); 

  
XMLDipper = 'C:\Users\umroot\Documents\MATLAB\My PhD 

Codes\Papers\PartRecognition\ExcavatorCompleteModel\Dipper\S\S5-25D135-

225\S5-25D135-225.xml'; 
DipperDetector = vision.CascadeObjectDetector(XMLDipper); 
%DipperDetector = vision.CascadeObjectDetector(XMLDipper); 
XMLBoom = 'C:\Users\umroot\Documents\MATLAB\My PhD 

Codes\Papers\PartRecognition\ExcavatorCompleteModel\Boom\E\E5-45D45-135\E-5-

55D45-135.xml'; 
BoomDetector = vision.CascadeObjectDetector(XMLBoom); 
scl = 1; 
scr = 1; 
q= 1; 
figure('OuterPosition',get(0,'screensize')) 
 

for i=1:896 
    clf 
    i 
    Estimated(q).Name = i; 
    imgfile = fullfile(MainImg,ImList(i).name); 
    I = imread(imgfile); 
    Dipperbbox = step(DipperDetector, I); 
    DipperArea = Dipperbbox(:,3).*Dipperbbox(:,4); 
    DipperBest = find(DipperArea(:) == max(DipperArea(:)));     
    DipperMaxBox = Dipperbbox(DipperBest,:); 
    DipperImg = imcrop(I, DipperMaxBox(1,:)); 
    DipperX = DipperMaxBox(1, 1); DipperY = DipperMaxBox(1, 2);  
    DipperW = DipperMaxBox(1, 3); DipperH = DipperMaxBox(1, 4); 
    DipperbboxPolygon = [DipperX, DipperY, DipperX+DipperW, DipperY,... 
        DipperX+DipperW, DipperY+DipperH, DipperX, DipperY+DipperH]; 

     
    Boombbox = step(BoomDetector, I); 
    BoomArea = Boombbox(:,3).*Boombbox(:,4); 
    BoomBest = find(BoomArea(:) == max(BoomArea(:)));     
    BoomMaxBox = Boombbox(BoomBest,:); 
    BoomImg = imcrop(I, BoomMaxBox); 
    BoomX = BoomMaxBox(1, 1); BoomY = BoomMaxBox(1, 2);  
    BoomW = BoomMaxBox(1, 3); BoomH = BoomMaxBox(1, 4); 
    BoombboxPolygon = [BoomX, BoomY, BoomX+BoomW, BoomY, BoomX+BoomW,... 
        BoomY+BoomH, BoomX, BoomY+BoomH]; 
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    DipperI = insertShape(I, 'Polygon', DipperbboxPolygon,'Color','blue'); 
    imshow(DipperI); title('Detected Dipper'); 

     
    BoomDipperI = insertShape(DipperI, 'Polygon', 

BoombboxPolygon,'Color','blue'); 
    imshow(BoomDipperI); title('Detected Dipper'); 

         
    BoundingBoxes = [DipperMaxBox; BoomMaxBox]; 
    overlapRatio = bboxOverlapRatio(DipperMaxBox,BoomMaxBox,'min'); 
    if overlapRatio == 0 
        [xLeft, yLeft] = find(BoundingBoxes(:,1) == min(BoundingBoxes(:,1))); 
        [xRight, yRight] = find(BoundingBoxes(:,1) == 

max(BoundingBoxes(:,1))); 
        dist = BoundingBoxes(xRight,1) - (BoundingBoxes(xLeft,1) ... 
            + BoundingBoxes(xLeft,3));  
        if xLeft == 1 
            % Dipper Left-side 
            BoomMaxBox = [BoomX-(scl*dist),BoomY,BoomW+(2*scr*dist),BoomH]; 
            BoomX = BoomMaxBox(1, 1); BoomY = BoomMaxBox(1, 2);  
            BoomW = BoomMaxBox(1, 3); BoomH = BoomMaxBox(1, 4); 
            BoombboxPolygon = [BoomX, BoomY, BoomX+BoomW, BoomY, 

BoomX+BoomW,... 
                BoomY+BoomH, BoomX, BoomY+BoomH]; 
            BoomImg = imcrop(I, BoomMaxBox); 
        else 
            % Boom Left-side 
            BoomMaxBox = [BoomX-(scr*dist),BoomY-

(scr*dist),BoomW+(2*scl*dist),BoomH+(1*scl*dist)]; 
            BoomX = BoomMaxBox(1, 1); BoomY = BoomMaxBox(1, 2);  
            BoomW = BoomMaxBox(1, 3); BoomH = BoomMaxBox(1, 4); 
            BoombboxPolygon = [BoomX, BoomY, BoomX+BoomW, BoomY, 

BoomX+BoomW,... 
                BoomY+BoomH, BoomX, BoomY+BoomH]; 
            BoomImg = imcrop(I, BoomMaxBox); 
        end 
    elseif overlapRatio > 0.2 
        [xLeft, yLeft] = find(BoundingBoxes(:,1) == min(BoundingBoxes(:,1))); 
        [xRight, yRight] = find(BoundingBoxes(:,1) == 

max(BoundingBoxes(:,1))); 
        dist = BoundingBoxes(xRight,1) - (BoundingBoxes(xLeft,1) ... 
            + BoundingBoxes(xLeft,3)); 
        if xLeft == 1 
            % Dipper Left-side 
            BoomMaxBox = [BoomX+dist,BoomY,BoomW,BoomH]; 
            BoomX = BoomMaxBox(1, 1); BoomY = BoomMaxBox(1, 2);  
            BoomW = BoomMaxBox(1, 3); BoomH = BoomMaxBox(1, 4); 
            BoombboxPolygon = [BoomX, BoomY, BoomX+BoomW, BoomY, 

BoomX+BoomW,... 
                BoomY+BoomH, BoomX, BoomY+BoomH]; 
            BoomImg = imcrop(I, BoomMaxBox); 
        else 
            % Boom Left-side 
            BoomMaxBox = [BoomX,BoomY,BoomW+dist,BoomH]; 
            BoomX = BoomMaxBox(1, 1); BoomY = BoomMaxBox(1, 2);  
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            BoomW = BoomMaxBox(1, 3); BoomH = BoomMaxBox(1, 4); 
            BoombboxPolygon = [BoomX, BoomY, BoomX+BoomW, BoomY, 

BoomX+BoomW,... 
                BoomY+BoomH, BoomX, BoomY+BoomH]; 
            BoomImg = imcrop(I, BoomMaxBox); 
        end   
    end 

     
    overlapRatio = bboxOverlapRatio(DipperMaxBox,BoomMaxBox); 
    if overlapRatio > 0 
        BoomMaxBox(1, 3)= BoomMaxBox(1, 3) - ((BoomMaxBox(1, 1) + ... 
            BoomMaxBox(1, 3)) - DipperMaxBox(1, 1)); 
    end 

 
    % Draw the returned bounding box around the detected face. 
    DipperI = insertShape(I, 'Polygon', DipperbboxPolygon,'Color','blue'); 
    imshow(DipperI); title('Detected Dipper'); 

     
    BoomDipperI = insertShape(DipperI, 'Polygon', 

BoombboxPolygon,'Color','blue'); 
    imshow(BoomDipperI); title('Detected Dipper'); 

     
    %% Step 2: Convert Image from RGB Color Space to L*a*b* Color Space 
    % Convert the image to L*a*b* color space using |makecform| and 

|applycform|. 

  
    cform = makecform('srgb2lab'); 
%     lab_Dipper = applycform(DipperImg,cform); 
    lab_Dipper = rgb2lab(DipperImg); 
    lab_Boom = applycform(BoomImg,cform); 
    lab_Merge = applycform(I,cform); 

     
    %% Step 3: Classify the Colors in 'a*b*' Space Using K-Means Clustering 
    Dipper_ab = double(lab_Dipper(:,:,2:3)); 
    Dipper_nrows = size(Dipper_ab,1); 
    Dipper_ncols = size(Dipper_ab,2); 
    Dipper_ab = reshape(Dipper_ab,Dipper_nrows*Dipper_ncols,2); 

     
    Boom_ab = double(lab_Boom(:,:,2:3)); 
    Boom_nrows = size(Boom_ab,1); 
    Boom_ncols = size(Boom_ab,2); 
    Boom_ab = reshape(Boom_ab,Boom_nrows*Boom_ncols,2); 

     
    Merge_ab = double(lab_Merge(:,:,2:3)); 
    Merge_nrows = size(Merge_ab,1); 
    Merge_ncols = size(Merge_ab,2); 
    Merge_ab = reshape(Merge_ab,Merge_nrows*Merge_ncols,2); 

     
    nColors = 3; 
    % repeat the clustering 3 times to avoid local minima 
    [Dipper_cluster_idx Dipper_cluster_center] = kmeans(Dipper_ab,... 
        nColors,'distance','sqEuclidean','Replicates',3); 
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    [Boom_cluster_idx Boom_cluster_center] = kmeans(Boom_ab,... 
        nColors,'distance','sqEuclidean','Replicates',3); 

     
    [Merge_cluster_idx Merge_cluster_center] = kmeans(Merge_ab,... 
        nColors,'distance','sqEuclidean','Replicates',3); 

     
    %% Step 4: Label Every Pixel in the Image Using the Results from KMEANS 
    Dipper_pixel_labels = 

reshape(Dipper_cluster_idx,Dipper_nrows,Dipper_ncols); 
    imshow(Dipper_pixel_labels,[]), title('image labeled by cluster index'); 

     
    Boom_pixel_labels = reshape(Boom_cluster_idx,Boom_nrows,Boom_ncols); 
    imshow(Boom_pixel_labels,[]), title('image labeled by cluster index'); 

     
    Merge_pixel_labels = reshape(Merge_cluster_idx,Merge_nrows,Merge_ncols); 
    imshow(Merge_pixel_labels,[]), title('image labeled by cluster index'); 

     
    %% Step 5: Create Images that Segment the H&E Image by Color. 
    Merge_segmented_images = cell(1,3); 
    Merge_rgb_label = repmat(Merge_pixel_labels,[1 1 3]); 

  
    for k = 1:nColors 
        Merge_color = I; 
        Merge_color(Merge_rgb_label ~= k) = 0; 
        Merge_segmented_images{k} = Merge_color; 
    end 

     
    subplot(3,5,11) 
    imshow(Merge_segmented_images{1}), title('Cluster 1'); 
    subplot(3,5,12) 
    imshow(Merge_segmented_images{2}), title('Cluster 2'); 
    Merge_Temp_1 = rgb2gray(Merge_segmented_images{1}); 
    Merge_Temp_1(2:end-1,2:end-1)=0; 
    MC_1 = length(find(Merge_Temp_1 ~= 0)); 
    Merge_Temp_2 = rgb2gray(Merge_segmented_images{2}); 
    Merge_Temp_2(2:end-1,2:end-1)=0; 
    MC_2 = length(find(Merge_Temp_2 ~= 0)); 
    if MC_1 < MC_2 
        subplot(3,5,13) 
        imshow(Merge_segmented_images{1}), title('Total'); 
        Merge_img = Merge_segmented_images{1}; 
        MC = 1; 
    else 
        subplot(3,5,13) 
        imshow(Merge_segmented_images{2}), title('Total'); 
        Merge_img = Merge_segmented_images{2}; 
        MC = 2; 
    end 

     
    [counts_Merge_img,x_Merge_img] = imhist(rgb2gray(Merge_img)); 
    counts_Merge_img(1) = 0; 
    pd_Merge_img = fitdist(x_Merge_img, 'extreme 

value','freq',counts_Merge_img); 
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    Dipper_segmented_images = cell(1,3); 
    Dipper_rgb_label = repmat(Dipper_pixel_labels,[1 1 3]); 

  
    for k = 1:nColors 
        Dipper_color = DipperImg; 
        Dipper_color(Dipper_rgb_label ~= k) = 0; 
        Dipper_segmented_images{k} = Dipper_color; 
    end 

     
%     figure,  
    subplot(3,5,1) 
    imshow(Dipper_segmented_images{1}), title('Cluster 1'); 
    subplot(3,5,2) 
    imshow(Dipper_segmented_images{2}), title('Cluster 2'); 
    Dipper_Temp_1 = rgb2gray(Dipper_segmented_images{1}); 
    Dipper_Temp_1(2:end-1,2:end-1)=0; 
    DC_1 = length(find(Dipper_Temp_1 ~= 0)); 
    Dip_Temp_2 = rgb2gray(Dipper_segmented_images{2}); 
    Dip_Temp_2(2:end-1,2:end-1)=0; 
    DC_2 = length(find(Dip_Temp_2 ~= 0)); 
    if DC_1 < DC_2 
        subplot(3,5,3) 
        imshow(Dipper_segmented_images{1}), title('Dipper'); 
        Dipper_img = Dipper_segmented_images{1}; 
        DC = 1; 
    else 
        subplot(3,5,3) 
        imshow(Dipper_segmented_images{2}), title('Dipper'); 
        Dipper_img = Dipper_segmented_images{2}; 
        DC = 2; 
    end 

     
    [counts_Dipper_img,x_Dipper_img] = imhist(rgb2gray(Dipper_img)); 
    counts_Dipper_img(1) = 0; 
    pd_Dipper_img = fitdist(x_Dipper_img, 'extreme 

value','freq',counts_Dipper_img); 

     
    Boom_segmented_images = cell(1,3); 
    Boom_rgb_label = repmat(Boom_pixel_labels,[1 1 3]); 

  
    for k = 1:nColors 
        Boom_color = BoomImg; 
        Boom_color(Boom_rgb_label ~= k) = 0; 
        Boom_segmented_images{k} = Boom_color; 
    end 

     
    subplot(3,5,6) 
    imshow(Boom_segmented_images{1}), title('Cluster 1'); 
    subplot(3,5,7) 
    imshow(Boom_segmented_images{2}), title('Cluster 2'); 
    Boom_Temp_1 = rgb2gray(Boom_segmented_images{1}); 
    Boom_Temp_1(2:end-1,2:end-1)=0; 
    BC_1 = length(find(Boom_Temp_1 ~= 0)); 
    Boom_Temp_2 = rgb2gray(Boom_segmented_images{2}); 
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    Boom_Temp_2(2:end-1,2:end-1)=0; 
    BC_2 = length(find(Boom_Temp_2 ~= 0)); 
    if BC_1 < BC_2 
        subplot(3,5,8) 
        imshow(Boom_segmented_images{1}), title('Boom'); 
        Boom_img = Boom_segmented_images{1}; 
        BC = 1; 
    else 
        subplot(3,5,8) 
        imshow(Boom_segmented_images{2}), title('Boom'); 
        Boom_img = Boom_segmented_images{2}; 
        BC = 2; 
    end 

     
    [counts_Boom_img,x_Boom_img] = imhist(rgb2gray(Boom_img)); 
    counts_Boom_img(1) = 0; 
    pd_Boom_img = fitdist(x_Boom_img, 'extreme 

value','freq',counts_Boom_img); 

     
    % Second Time 
    se90 = strel('line', 3, 90); 
    se0 = strel('line', 3, 0); 

     
    [~, Dipper_threshold] = edge(rgb2gray(Dipper_img), 'sobel'); 
    fudgeFactor = 0.5; 
    Dipper_BWs = edge(rgb2gray(Dipper_img),'sobel', Dipper_threshold * 

fudgeFactor); 
    Dipper_Base = ones(size(Dipper_BWs));   
    Dipper_BWsdil = imdilate(Dipper_BWs, [se90 se0]);   
    Dipper_BWdfill = imfill(Dipper_BWsdil, 'holes'); 
    Dipper_New_BW = Dipper_Base - Dipper_BWdfill; 
    Dipper_New_img = Dipper_img.*repmat(uint8(Dipper_New_BW), [1 1 3]); 
    Dipper_regdata = regionprops(im2bw(Dipper_New_img,0.01),'Area',.... 
        'FilledImage','PixelList'); 
    Dipper_Area = cat(1, Dipper_regdata.Area); 
    Dipper_Best = find(Dipper_Area(:) == max(Dipper_Area(:))); 
    Dipper_PixelList = cat(1, Dipper_regdata(Dipper_Best).PixelList); 
    Dipper_BWnobord = zeros(size(Dipper_New_BW)); 
    for j=1:length(Dipper_PixelList) 
        Dipper_BWnobord(Dipper_PixelList(j,2),Dipper_PixelList(j,1)) = 1; 
    end 

     
    seD = strel('diamond',1); 
    Dipper_BWfinal = imerode(Dipper_BWnobord,seD); 
    Dipper_BWfinal = imerode(Dipper_BWfinal,seD); 
    subplot(3,5,4) 
    [Dipper_x, Dipper_y] = size(Dipper_BWfinal); 
    Dipper_q = boundary(Dipper_PixelList(:,1),Dipper_PixelList(:,2),0.99); 
    plot(Dipper_PixelList(Dipper_q,1),Dipper_PixelList(Dipper_q,2)); 
    Dipper_mask = poly2mask(Dipper_PixelList(Dipper_q,1), ... 
        Dipper_PixelList(Dipper_q,2),Dipper_x,Dipper_y); 
    imshow(Dipper_mask), title('Segmented Dipper'); 
    %Second Time End 
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    [~, Boom_threshold] = edge(rgb2gray(Boom_img), 'sobel'); 
    fudgeFactor = 0.5; 
    Boom_BWs = edge(rgb2gray(Boom_img),'sobel', Boom_threshold * 

fudgeFactor); 
    imshow(Boom_BWs), title('binary gradient mask'); 
    Boom_Base = ones(size(Boom_BWs));   
    Boom_BWsdil = imdilate(Boom_BWs, [se90 se0]); 
    imshow(Boom_BWsdil), title('dilated gradient mask'); 
    Boom_New_BW = Boom_Base - Boom_BWsdil; 
    imshow(Boom_New_BW) 
    Boom_New_img = Boom_img.*repmat(uint8(Boom_New_BW), [1 1 3]); 
    imshow(Boom_New_img) 
    Boom_regdata = regionprops(im2bw(Boom_New_img,0.01),'Area',.... 
        'FilledImage','PixelList'); 
    Boom_Area = cat(1, Boom_regdata.Area); 
    Boom_Best = find(Boom_Area(:) == max(Boom_Area(:))); 
    Boom_FilledImage = cat(1, Boom_regdata(Boom_Best).FilledImage); 
    Boom_PixelList = cat(1, Boom_regdata(Boom_Best).PixelList); 
    Boom_BWnobord = zeros(size(Boom_New_BW)); 
    for j=1:length(Boom_PixelList) 
        Boom_BWnobord(Boom_PixelList(j,2),Boom_PixelList(j,1)) = 1; 
    end 

  
    Boom_BWfinal = imerode(Boom_BWnobord,seD); 
    Boom_BWfinal = imerode(Boom_BWfinal,seD); 
    subplot(3,5,9) 
    [Boom_x, Boom_y] = size(Boom_BWfinal); 
    Boom_q = boundary(Boom_PixelList(:,1),Boom_PixelList(:,2),0.7); 
    plot(Boom_PixelList(Boom_q,1),Boom_PixelList(Boom_q,2)); 
    Boom_mask = poly2mask(Boom_PixelList(Boom_q,1), ... 
        Boom_PixelList(Boom_q,2),Boom_x,Boom_y); 
    imshow(Boom_mask), title('Segmented Boom'); 

    
    [~, Merge_threshold] = edge(rgb2gray(Merge_img), 'sobel'); 
    fudgeFactor = 0.5; 
    Merge_BWs = edge(rgb2gray(Merge_img),'sobel', Merge_threshold * 

fudgeFactor); 
    Merge_Base = ones(size(Merge_BWs));   
    Merge_BWsdil = imdilate(Merge_BWs, [se90 se0]); 
    Merge_BWdfill = imfill(Merge_BWsdil, 'holes'); 
    Merge_New_BW = Merge_Base - Merge_BWdfill; 
    Merge_New_img = Merge_img.*repmat(uint8(Merge_New_BW), [1 1 3]); 
    Merge_regdata = regionprops(im2bw(Merge_New_img,0.01),'Area',.... 
        'FilledImage','PixelList'); 
    Merge_Area = cat(1, Merge_regdata.Area); 
    Merge_Best = find(Merge_Area(:) == max(Merge_Area(:))); 
    Merge_PixelList = cat(1, Merge_regdata(Merge_Best).PixelList); 
    Merge_BWnobord = zeros(size(Merge_New_BW)); 
    for j=1:length(Merge_PixelList) 
        Merge_BWnobord(Merge_PixelList(j,2),Merge_PixelList(j,1)) = 1; 
    end 

     
    seD = strel('diamond',1); 
    Merge_BWfinal = imerode(Merge_BWnobord,seD); 
    Merge_BWfinal = imerode(Merge_BWfinal,seD); 
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    subplot(3,5,14) 
    imshow(Merge_BWfinal), title('Segmented Body'); 

     
    %% Step 6: Segment the Nuclei into a Separate Image 
    Dipper_mean_cluster_value = mean(Dipper_cluster_center,2); 
    [Dipper_tmp, Dipper_idx] = sort(Dipper_mean_cluster_value); 
    Dipper_blue_cluster_num = Dipper_idx(1); 

  
    Dipper_L = lab_Dipper(:,:,1); 
    Dipper_blue_idx = find(Dipper_pixel_labels == Dipper_blue_cluster_num); 
    Dipper_L_blue = Dipper_L(Dipper_blue_idx); 
    Dipper_is_light_blue = im2bw(Dipper_L_blue,graythresh(Dipper_L_blue));    
    Dipper_nuclei_labels = repmat(uint8(0),[Dipper_nrows Dipper_ncols]); 
    Dipper_nuclei_labels(Dipper_blue_idx(Dipper_is_light_blue==false)) = 1; 
    Dipper_nuclei_labels = repmat(Dipper_nuclei_labels,[1 1 3]); 
    Dipper_blue_nuclei = DipperImg; 
    Dipper_blue_nuclei(Dipper_nuclei_labels ~= 1) = 0; 
    Boom_mean_cluster_value = mean(Boom_cluster_center,2); 
    [Boom_tmp, Boom_idx] = sort(Boom_mean_cluster_value); 
    Boom_blue_cluster_num = Boom_idx(1);  
    Boom_L = lab_Boom(:,:,1); 
    Boom_blue_idx = find(Boom_pixel_labels == Boom_blue_cluster_num); 
    Boom_L_blue = Boom_L(Boom_blue_idx); 
    Boom_is_light_blue = im2bw(Boom_L_blue,graythresh(Boom_L_blue)); 
    Boom_nuclei_labels = repmat(uint8(0),[Boom_nrows Boom_ncols]); 
    Boom_nuclei_labels(Boom_blue_idx(Boom_is_light_blue==false)) = 1; 
    Boom_nuclei_labels = repmat(Boom_nuclei_labels,[1 1 3]); 
    Boom_blue_nuclei = BoomImg; 
    Boom_blue_nuclei(Boom_nuclei_labels ~= 1) = 0; 

  
    %% Step 7: Skeleton 
    [Dipper_skr,Dipper_rad] = skeleton(Dipper_mask); (Howe, 2006) 
    Dipper_skel = bwmorph(Dipper_skr > 35,'skel',inf); 
    subplot(3,5,5) 
    imshow(Dipper_skel), title('Skeleton Dipper'); 
    % try different thresholds besides 35 to see the effects 

  
    % anaskel returns the locations of endpoints and junction points 
    [Dipper_dmap,Dipper_exy,Dipper_jxy] = anaskel(Dipper_skel); (Howe, 2006) 
    hold on 
    plot(Dipper_exy(1,:),Dipper_exy(2,:),'go') 
    plot(Dipper_jxy(1,:),Dipper_jxy(2,:),'ro') 

     
    [Boom_skr,Boom_rad] = skeleton(Boom_mask); 
    Boom_skel = bwmorph(Boom_skr > 35,'skel',inf); 
    subplot(3,5,10) 
    imshow(Boom_skel,'InitialMagnification','fit'), title('Skeleton Boom'); 
    [Boom_dmap,Boom_exy,Boom_jxy] = anaskel(Boom_skel); (Howe, 2006) 
    hold on 
    plot(Boom_exy(1,:),Boom_exy(2,:),'go') 
    plot(Boom_jxy(1,:),Boom_jxy(2,:),'ro') 

     
    [Merge_skr,Merge_rad] = skeleton(Merge_BWfinal); 
    Merge_skel = bwmorph(Merge_skr > 35,'skel',inf); 
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    subplot(3,5,15) 
    imshow(Merge_skel,'InitialMagnification','fit'), title('Segmented 

Merge'); 
    [Merge_dmap,Merge_exy,Merge_jxy] = anaskel(Merge_skel); (Howe, 2006) 
    hold on 
    plot(Merge_exy(1,:),Merge_exy(2,:),'go') 
    plot(Merge_jxy(1,:),Merge_jxy(2,:),'ro') 
    D_Min = find(Dipper_exy(2,:)==min(Dipper_exy(2,:))); 
    Dipper_Skel = Dipper_exy(:,D_Min); 
    if Dipper_jxy ~= 0 
        D_Center = Dipper_jxy(:,1); 
    else 
        D_Center = Dipper_Skel; 
    end 
    Dipper_Skel = [Dipper_Skel,D_Center]; 
    D_Max = find(Dipper_exy(2,:)==max(Dipper_exy(2,:))); 
    Dipper_Skel = [Dipper_Skel,Dipper_exy(:,D_Max)]; 
    Dipper_Skel(1,:) = Dipper_Skel (1,:) + DipperMaxBox(1,1); 
    Dipper_Skel(2,:) = Dipper_Skel (2,:) + DipperMaxBox(1,2); 
    Estimated(q).Dipper = [Dipper_Skel(1,:)',Dipper_Skel(2,:)']; 
    B_Min = find(Boom_exy(1,:)==max(Boom_exy(1,:))); 
    if B_Min ~= 0 
        Boom_Skel = Boom_exy(:,B_Min); 
    else 
        Boom_Skel = [0;0]; 
    end 
    if Boom_jxy ~= 0 
        B_Center = Boom_jxy(:,1); 
    else 
        B_Center = Boom_Skel; 
    end 
    Boom_Skel = [Boom_Skel,B_Center]; 
    B_Max = find(Boom_exy(2,:)==max(Boom_exy(2,:))); 
    if length(B_Max) > 1 
        B_Max(B_Max == B_Min) = []; 
    end 
    if B_Max ~= 0 
        Boom_Skel = [Boom_Skel,Boom_exy(:,B_Max)]; 
    else 
        Boom_Skel = [Boom_Skel,[0;0]]; 
    end 
    Boom_Skel(1,:) = Boom_Skel (1,:) + BoomMaxBox(1,1); 
    Boom_Skel(2,:) = Boom_Skel (2,:) + BoomMaxBox(1,2); 
    Boom_Skel(:,1) = Dipper_Skel(:,2); 
    Estimated(q).Boom = [Boom_Skel(1,:)',Boom_Skel(2,:)']; 
    Estimated(q).Skel = [Estimated(q).Dipper(3,:);... 
        Estimated(q).Dipper(1,:);Estimated(q).Boom(2,:);... 
        Estimated(q).Boom(3,:)]; 
    subplot(3,5,14:15) 
    imshow(I,'InitialMagnification','fit'), title('Segmented Merge'); 
    hold on 
    plot(Dipper_Skel(1,:),Dipper_Skel(2,:)) 
    plot(Dipper_Skel(1,1),Dipper_Skel(2,1),'go') 
    plot(Dipper_Skel(1,3),Dipper_Skel(2,3),'go') 
    plot(Dipper_Skel(1,2),Dipper_Skel(2,2),'ro') 
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    plot(Boom_Skel(1,:),Boom_Skel(2,:)) 
    plot(Boom_Skel(1,1),Boom_Skel(2,1),'ro') 
    plot(Boom_Skel(1,3),Boom_Skel(2,3),'go') 
    plot(Boom_Skel(1,2),Boom_Skel(2,2),'ro') 

  
    q = q + 1;    

     
end 
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Appendix F. Matlab Code of Enhanced Part Segmentation and Skeleton Extraction 

 

clc 
clear 

  
%% Step 1: Read Image 
RootMainImg = 'C:\Users\umroot\Documents\MATLAB\My PhD 

Codes\CameraCalibration\CALIB\Logan\Cam_02\Cropped\Parts\'; 
Part = 'Dipper\'; 
MainImg = fullfile(RootMainImg,Part); 
JPG = '*.jpg'; 
ImList = dir(fullfile(MainImg,JPG)); 
% Number of Images 
NoI = length(ImList); 
scl = 1; 
scr = 1; 
q= 1; 
figure('OuterPosition',get(0,'screensize')) 
addpath('C:\Users\umroot\Documents\MATLAB\My PhD 

Codes\Papers\PartRecognition\ExcavatorCompleteModel\Skeleton\') 
for i=21:1:NoI 
    clf 
    i 
    Estimated(q).Name = i; 
    imgfile = fullfile(MainImg,ImList(i).name); 
    I = imread(imgfile); 
    %% Step 2: Convert Image from RGB Color Space to L*a*b* Color Space 
    % Convert the image to L*a*b* color space using |makecform| and 

|applycform|. 

  
    cform = makecform('srgb2lab'); 
    lab_I = applycform(I,cform); 
    imshow(lab_I); 
     %% Step 3: Classify the Colors in 'a*b*' Space Using K-Means Clustering 
    I_ab = double(lab_I(:,:,2:3)); 
    I_nrows = size(I_ab,1); 
    I_ncols = size(I_ab,2); 
    I_ab = reshape(I_ab,I_nrows*I_ncols,2); 
    nColors = 4; 
    % repeat the clustering 3 times to avoid local minima 
    [I_cluster_idx I_cluster_center] = kmeans(I_ab,... 
        nColors,'distance','sqEuclidean','Replicates',3); 
     %% Step 4: Label Every Pixel in the Image Using the Results from KMEANS 
    I_pixel_labels = reshape(I_cluster_idx,I_nrows,I_ncols); 
    imshow(I_pixel_labels,[]), title('image labeled by cluster index'); 
    %% Step 5: Create Images that Segment the H&E Image by Color. 
    I_segmented_images = cell(1,3); 
    I_rgb_label = repmat(I_pixel_labels,[1 1 3]); 

  
    for k = 1:nColors 
        I_color = I; 
        I_color(I_rgb_label ~= k) = 0; 
        I_segmented_images{k} = I_color; 
        I_Temp = rgb2gray(I_segmented_images{k}); 
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        BW = im2bw(I_Temp, 0.01); 
        I_Temp(2:end-1,2:end-1)=0; 
        DC(k,1) = length(find(I_Temp ~= 0)); 
        DC(k,2) = bwarea(BW); 
    end 
    Temporary_Segment = I_segmented_images; 
    temp_DC = DC; 
    MaxBorder = find(temp_DC(:,1)==max(temp_DC(:,1))); 
    temp_DC(MaxBorder,:) = 0; 
    MaxArea = find(temp_DC(:,2)==max(temp_DC(:,2))); 
    I_img = I_segmented_images{MaxArea}; 
    temp_DC(MaxArea,:) = 0; 
    Second_MaxArea = find(temp_DC(:,2)==max(temp_DC(:,2))); 
    D = 

pdist2([I_cluster_center(MaxArea,1),I_cluster_center(Second_MaxArea,1)],... 
        [I_cluster_center(MaxArea,2),I_cluster_center(Second_MaxArea,2)]); 
    Base_D = 

sqrt(I_cluster_center(MaxArea,1)^2+I_cluster_center(MaxArea,2)^2); 
    while nColors > 2 && (D/Base_D) < 0.05 
        nColors = nColors - 1; 
        I_cluster_idx = []; 
        I_cluster_center = []; 
        I_pixel_labels = []; 
        I_segmented_images = []; 
        I_rgb_label = []; 
        I_color = []; 
        I_Temp = []; 
        BW = []; 
        DC = []; 
        Temporary_Segment = []; 
        temp_DC = []; 
        I_img = []; 
        [I_cluster_idx I_cluster_center] = kmeans(I_ab,... 
        nColors,'distance','sqEuclidean','Replicates',3); 
         %% Step 4: Label Every Pixel in the Image Using the Results from 

KMEANS 
        I_pixel_labels = reshape(I_cluster_idx,I_nrows,I_ncols); 
        imshow(I_pixel_labels,[]), title('image labeled by cluster index'); 
        %% Step 5: Create Images that Segment the H&E Image by Color. 
        I_segmented_images = cell(1,3); 
        I_rgb_label = repmat(I_pixel_labels,[1 1 3]); 

  
        for k = 1:nColors 
            I_color = I; 
            I_color(I_rgb_label ~= k) = 0; 
            I_segmented_images{k} = I_color; 
            I_Temp = rgb2gray(I_segmented_images{k}); 
            BW = im2bw(I_Temp, 0.01); 
            I_Temp(2:end-1,2:end-1)=0; 
            DC(k,1) = length(find(I_Temp ~= 0)); 
            DC(k,2) = bwarea(BW); 
        end 
        Temporary_Segment = I_segmented_images; 
        temp_DC = DC; 
        MaxBorder = find(temp_DC(:,1)==max(temp_DC(:,1))); 
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        temp_DC(MaxBorder,:) = 0; 
        MaxArea = find(temp_DC(:,2)==max(temp_DC(:,2))); 
        I_img = I_segmented_images{MaxArea}; 
        if nColors > 2 
            temp_DC(MaxArea,:) = 0; 
            Second_MaxArea = find(temp_DC(:,2)==max(temp_DC(:,2))); 
            D = 

pdist2([I_cluster_center(MaxArea,1),I_cluster_center(Second_MaxArea,1)],... 
                

[I_cluster_center(MaxArea,2),I_cluster_center(Second_MaxArea,2)]); 
            Base_D = 

sqrt(I_cluster_center(MaxArea,1)^2+I_cluster_center(MaxArea,2)^2); 
        end 
    end 
    subplot(4,5,1) 
    imshow(I_segmented_images{MaxBorder}), title('Cluster 1'); 
    subplot(4,5,2) 
    imshow(I_segmented_images{MaxArea}), title('Cluster 2'); 
    subplot(4,5,3) 
    imshow(I_img), title('Winner') 
    [counts_I_img,x_I_img] = imhist(rgb2gray(I_img)); 
    counts_I_img(1) = 0; 
    pd_I_img = fitdist(x_I_img, 'extreme value','freq',counts_I_img); 

     
    % Second Time 
    se90 = strel('diamond',3); 
    se0 = strel('diamond',1); 

     
    [~, I_threshold] = edge(rgb2gray(I_img), 'sobel'); 
    fudgeFactor = 0.5; 
    I_BWs = edge(rgb2gray(I_img),'sobel', I_threshold * fudgeFactor); 
    I_Base = ones(size(I_BWs));   
    I_BWsdil = imdilate(I_BWs, [se90 se0]); 
    I_BWdfill = imfill(I_BWsdil, 'holes'); 
    I_New_BW = I_BWdfill; 
    I_New_img = I_img.*repmat(uint8(I_New_BW), [1 1 3]); 
    I_regdata = regionprops(I_New_BW,'Area',.... 
        'FilledImage','PixelList'); 
    I_Area = cat(1, I_regdata.Area); 
    I_Best = find(I_Area(:) == max(I_Area(:))); 
    I_PixelList = cat(1, I_regdata(I_Best).PixelList); 
    I_BWnobord = zeros(size(I_New_BW)); 
    for j=1:length(I_PixelList) 
        I_BWnobord(I_PixelList(j,2),I_PixelList(j,1)) = 1; 
    end 

     
    seD = strel('diamond',1); 
    I_BWfinal = imerode(I_BWnobord,seD); 
    I_BWfinal = imerode(I_BWfinal,seD); 
    [I_x, I_y] = size(I_BWfinal); 

 
    switch Part 
        case 'Dipper\' 
            subplot(4,5,4) 
            hold on 
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            imshow(I_BWfinal), title('Segmented I'); 
            I_closed = imclose(I_BWfinal,strel('disk',15)); 
            I_thin = bwmorph(I_closed,'thin',100); 
            subplot(4,5,5) 
            hold on 
            imshow(I_thin), title('Skeleton I'); 
            I_q = boundary(I_PixelList(:,1),I_PixelList(:,2),0.99); 
            plot(I_PixelList(I_q,1),I_PixelList(I_q,2)); 
            I_mask = poly2mask(I_PixelList(I_q,1), ... 
                I_PixelList(I_q,2),I_x,I_y); 
            imshow(I_mask), title('Segmented I'); 
            I_mask = bwconvhull(I_mask); 
            imshow(I_mask), title('Segmented I');  
            I_skel=bwmorph(skeleton(I_mask) > 35,'skel',inf); 
            imshow(I_thin), title('Segmented I');  
            [dmap,exy,jxy] = anaskel(I_skel); (Howe, 2006) 

  
            D_Min = find(exy(2,:)==min(exy(2,:))); 
            P_Skel = exy(:,D_Min); 
            if jxy ~= 0 
                D_Center = jxy(:,1); 
            else 
                D_Center = P_Skel; 
            end 
            D_Max = find(exy(2,:)==max(exy(2,:))); 
            P_Skel = [P_Skel,exy(:,D_Max)]; 
            X = P_Skel(1,:)'; 
            Y = P_Skel(2,:)'; 
            [xData, yData] = prepareCurveData( X, Y ); 

                 
            % Set up fittype and options. 
            ft = fittype( 'poly1' ); 
            opts = fitoptions( 'Method', 'LinearLeastSquares' ); 
            opts.Robust = 'Bisquare'; 

  
            % Fit model to data. 
            [fitresult, gof] = fit( xData, yData, ft, opts ); 
        case 'Boom\' 
            subplot(4,5,4) 
            hold on 
            imshow(I_BWfinal), title('Segmented I'); 
            I_closed = imclose(I_BWfinal,strel('disk',15)); 
            I_thin = bwmorph(I_closed,'thin',1); 
            lutfun = @(x)(sum(x(:))==4); 
            lut = makelut(lutfun,2); 
            I_ult = bwulterode(bwlookup(I_thin,lut)); 
            subplot(4,5,5) 
            hold on 
            imshow(I_ult), title('Skeleton I'); 
            [Y X] = find(I_ult==1); 
            [xData, yData] = prepareCurveData( X, Y ); 
            if length(X)<4 
                plot(I_PixelList(I_q,1),I_PixelList(I_q,2)); 
                I_mask = poly2mask(I_PixelList(I_q,1), ... 
                    I_PixelList(I_q,2),I_x,I_y); 
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                imshow(I_mask), title('Segmented I'); 
                I_mask = bwconvhull(I_mask); 
                imshow(I_mask), title('Segmented I');  
                I_skel=bwmorph(skeleton(I_BWfinal) > 35,'skel',inf); 
                imshow(I_skel), title('Segmented I');  
                [dmap,exy,jxy] = anaskel(I_skel); (Howe, 2006) 
                X = jxy(1,:)'; 
                Y = jxy(2,:)'; 
            End 

 
            % Set up fittype and options. 
            ft1 = fittype( 'power2' ); 

  
            % Fit model to data. 
            [fitresult1, gof1] = fit( xData, yData, ft1 ); 

  
            % Set up fittype and options. 
            ft2 = fittype( 'poly1' ); 
            opts = fitoptions( 'Method', 'LinearLeastSquares' ); 
            opts.Robust = 'Bisquare'; 

  
            % Fit model to data. 
            [fitresult2, gof2] = fit( xData, yData, ft2, opts ); 
            gof1.rsquare 
            gof2.rsquare 
            if gof1.rsquare >= gof2.rsquare || gof1.rsquare >= 0.75 
                fitresult = fitresult1; 
                gof = gof1; 
            else 
                fitresult = fitresult2; 
                gof = gof2; 
            end 
    end 
    subplot(3,5,[9 10 14 15]) 
    imshow(I,'InitialMagnification','fit'), title('Segmented Merge'); 
    hold on 
    X_plot = linspace(1,I_y); 
    Y_plot = fitresult(X_plot); 
    XY_plot = [X_plot',Y_plot]; 
    out_points = []; 
    if XY_plot(XY_plot(:,1)>I_y,:) 
        out_points = find(XY_plot(:,1)>I_y); 
        XY_plot(out_points,:) = []; 
    end 
    out_points = []; 
    if XY_plot(XY_plot(:,2)>I_x,:) 
        out_points = find(XY_plot(:,2)>I_x); 
        XY_plot(out_points,:) = []; 
    end 
    scatter(XY_plot(:,1),XY_plot(:,2)); 
    scatter(X,Y); 
end 
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Appendix G. Matlab Code of GPS Coordinates Projection 

 

P2Du=[]; 
projected=[]; 
[HQ_G2_X,HQ_G2_Y,HQ_G2_Z]  = read_kml('HQ_G2.kmz'); (Farris, 2016) 
HQ_G2 = []; 
j = 1; 
for i=220:1:size(HQ_G2_X) 
    HQ_G2(j,1) = (10e2*(HQ_G2_Z(i)+0)+14000); 
    HQ_G2(j,2) = ((10e6*((HQ_G2_Y(i)-45.52)/0.417))-195500); 
    HQ_G2(j,3) = (10e6*(HQ_G2_X(i)+73.55))+65000; 
    j = j+1; 
end 
HQ_G2(1,:)=[]; 
figure 
subplot(2,4,[1,2,5,6]) 
scatter3(HQ_G2(1:5000,1),HQ_G2(1:5000,2),HQ_G2(1:5000,3)); 
title('Subplot 1: 3D view') 
hold on 

  
X=[]; 
Y=[]; 
Z=[]; 
[X,Y,Z] = cylinder(200); 
X=X+HQ_G2(1,1); 
Y=Y+HQ_G2(1,2); 
Z=(20*Z)+(HQ_G2(1,3)-10); 
subplot(2,4,[1,2,5,6]) 
surf(X,Y,Z) 
num = '2'; 
parameter = sprintf('Camera_Param_%c0x%c0_P.mat',num,num); 
load(fullfile('C:\Users\umroot\Documents\MATLAB\My PhD 

Codes\CameraCalibration\CALIB\Logan\Camera_Parameters\',parameter)); 
wpConvexHull = params.CameraParameters1.WorldPoints'; 
wpConvexHull(3,size(wpConvexHull,2)) = 0; 
worldBoardCoords = [];   
for boardIdx = 1:size(active_images_index,2)             
    R = params.CameraParameters1.RotationMatrices(:, :, boardIdx)'; 
    t = params.CameraParameters1.TranslationVectors(boardIdx, :)';  
    worldBoardCoords = [worldBoardCoords;bsxfun(@plus, R * wpConvexHull, 

t)'];     
end  
subplot(2,4,[1,2,5,6]) 
scatter3(worldBoardCoords(:,1),worldBoardCoords(:,2),worldBoardCoords(:,3)) 
P3D = []; 
P3D(1,:) = 4*(-HQ_G2(5091:5591,1)')+4000; 
P3D(2,:) = (HQ_G2(5091:5591,2)')+3000; 
P3D(3,:) = (HQ_G2(5091:5591,3)')+2000; 
P2Dw=[]; 
P2Du=[]; 
transform1 = sprintf('T%c0x%c0P.mat',num,num); 
load(fullfile('C:\Users\umroot\Documents\MATLAB\My PhD 

Codes\CameraCalibration\CALIB\Logan\Transformations\',transform1)); 
transform2 = sprintf('Cam2T%c0x%c0P.mat',num,num); 
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load(fullfile('C:\Users\umroot\Documents\MATLAB\My PhD 

Codes\CameraCalibration\CALIB\Logan\Transformations\',transform2)); 
P2Dw=A*[P3D(1,:);P3D(2,:);P3D(3,:);ones(1,length(P3D))]; 
P2Du(1,:)=P2Dw(1,:)./P2Dw(3,:); 
P2Du(2,:)=P2Dw(2,:)./P2Dw(3,:); 
[projected(:,1),projected(:,2)] = 

transformPointsForward(A2,P2Du(1,:)',P2Du(2,:)'); 
P2Du2 = projected'; 
v1 = VideoReader('C:\Users\umroot\Documents\MATLAB\My PhD 

Codes\Papers\LoganVideos\Camera 1\355-98to891.43.wmv'); 
v2 = VideoReader('C:\Users\umroot\Documents\MATLAB\My PhD 

Codes\Papers\LoganVideos\Camera 2\355-98to891.43.wmv'); 
sf=1; 
for i=sf:1:50 
    P2C = []; 
    P2Cy = []; 
    projected =[]; 
    video1 = read(v1,(ceil(v1.FrameRate)*((i)-1)+450)); 
    subplot(2,4,3) 
    hold on 
    imshow(video1); 
    video2 = read(v2,(ceil(v2.FrameRate)*((i)-1)+450)); 
    subplot(2,4,7) 
    hold on 
    imshow(video2); 
    [X,Y,Z] = cylinder(16000); 
    X = X+P3D(1,(10*(i-1)+1)); 
    Y =Y+P3D(2,(10*(i-1)+1)); 
    Z = (20000*Z)+(P3D(3,(10*(i-1)+1))-4000); 
    X=reshape(X,size(X,1)*size(X,2),1); 
    Y=reshape(Y,size(Y,1)*size(Y,2),1); 
    Z=reshape(Z,size(Z,1)*size(Z,2),1); 
    P2C  =A*[X';Y';Z';ones(1,length(X))]; 
    P2Cy(1,:)=P2C(1,:)./P2C(3,:); 
    P2Cy(2,:)=P2C(2,:)./P2C(3,:); 
    subplot(2,4,3) 
    scatter((P2Cy(1,:)),P2Cy(2,:),50,'filled') 
    if min(P2Cy(1,:)) < 1 
        rect_x = 1; 
    else 
        rect_x = min(P2Cy(1,:)); 
    end 
    if max(P2Cy(1,:)) > 1920 
        rect_w = 1920 - rect_x; 
    else 
        rect_w = max(P2Cy(1,:)) - rect_x; 
    end 

     
    if min(P2Cy(2,:)) < 1 
        rect_y = 1; 
    else 
        rect_y = min(P2Cy(2,:)); 
    end 
    if max(P2Cy(2,:)) > 1080 
        rect_h = 1080 - rect_y; 
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    else 
        rect_h = max(P2Cy(2,:)) - rect_y; 
    end 
    subplot(2,4,4) 
    imshow(imcrop(video1,[rect_x rect_y rect_w rect_h])); 
    P2Cy2 = transformPointsForward(A2,P2Cy(1,:),P2Cy(2,:)); 
    subplot(2,4,7) 
    scatter((P2Cy(1,:)+450),P2Cy(2,:),50,'filled') 
    points = bbox2points([rect_x rect_y rect_w rect_h])'; 
    [projected(1,:),projected(2,:)] = 

transformPointsForward(A2,points(1,:),points(2,:)); 
    if min(projected(1,:)) < 1 
        rect_x = 1; 
    else 
        rect_x = min(projected(1,:)); 
    end 
    if max(projected(1,:)) > 1920 
        rect_w = 1920 - rect_x; 
    else 
        rect_w = max(projected(1,:)) - rect_x; 
    end   
    if min(projected(2,:)) < 1 
        rect_y = 1; 
    else 
        rect_y = min(projected(2,:)); 
    end 
    if max(projected(2,:)) > 1080 
        rect_h = 1080 - rect_y; 
    else 
        rect_h = max(projected(2,:)) - rect_y; 
    end 
    figure 
    imshow(imcrop(video2,[rect_x+450 rect_y rect_w rect_h])); 
end 
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Appendix H. Matlab Code of Merging the Outputs of Parts’ Detection 

 

 

clc 
clear 

  
%% Step 1: Read Image 
RootMainImg = 'C:\Users\umroot\Documents\MATLAB\My PhD 

Codes\CameraCalibration\CALIB\Logan\Cam_02\Cropped\'; 
PartsMainImg = 'C:\Users\umroot\Documents\MATLAB\My PhD 

Codes\CameraCalibration\CALIB\Logan\Cam_02\Cropped\Parts\'; 
JPG = '*.jpg'; 

  
% Cropped Images 
CroppedList = dir(fullfile(RootMainImg,JPG)); 
Cropped_Data=xlsread('E:\MATLAB\My PhD 

Codes\PartDetection\CropRotation.xlsx','Cropped'); 

  
% Dipper Images 
Dipper = 'Dipper\'; 
DipperImg = fullfile(PartsMainImg,Dipper); 
DipperList = dir(fullfile(DipperImg,JPG)); 
Dipper_Data=xlsread('E:\MATLAB\My PhD 

Codes\PartDetection\CropRotation.xlsx','Dipper'); 

  
% Boom Images 
Boom = 'Boom\'; 
BoomImg = fullfile(PartsMainImg,Boom); 
BoomList = dir(fullfile(BoomImg,JPG)); 
Boom_Data=xlsread('E:\MATLAB\My PhD 

Codes\PartDetection\CropRotation.xlsx','Boom'); 

  
% Number of Images 
NoI = length(CroppedList); 

  
scl = 1; 
scr = 1; 
q= 1; 
figure('OuterPosition',get(0,'screensize')) 
addpath('C:\Users\umroot\Documents\MATLAB\My PhD 

Codes\Papers\PartRecognition\ExcavatorCompleteModel\Skeleton\') 
for i=1:1:NoI 
    clf 
    i 
    imgfile = fullfile(RootMainImg,CroppedList(i).name); 
    Root_I = imread(imgfile); 
    [Rt_y, Rt_x, Rt_z] = size(Root_I); 
    subplot(3,5,[11 12 13 14 15]) 
    imshow(Root_I,'InitialMagnification','fit'), title('Segmented Merge'); 
    hold on 
    XY_plot_boom = []; 
    XY_plot_dipper = []; 
    fitresult_dipper = []; 
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    fitresult_boom = []; 

     
    %% Dipper Proccesing 
    if ~isnan(Dipper_Data(i,2)) 
        Dipper_imgfile = fullfile(DipperImg,DipperList(i).name); 
        I = imread(Dipper_imgfile); 

         
        % Step 2: Convert Image from RGB Color Space to L*a*b* Color Space 
        % Convert the image to L*a*b* color space using |makecform| and 

|applycform|. 
        cform = makecform('srgb2lab'); 
        lab_I = applycform(I,cform); 
        subplot(4,5,1) 
        hold on 
        imshow(lab_I); 

         
        % Step 3: Classify the Colors in 'a*b*' Space Using K-Means 

Clustering 
        I_ab = double(lab_I(:,:,2:3)); 
        I_nrows = size(I_ab,1); 
        I_ncols = size(I_ab,2); 
        I_ab = reshape(I_ab,I_nrows*I_ncols,2); 
        nColors = 4; 
        % repeat the clustering 3 times to avoid local minima 
        [I_cluster_idx I_cluster_center] = kmeans(I_ab,... 
            nColors,'distance','sqEuclidean','Replicates',3); 

         
        % Step 4: Label Every Pixel in the Image Using the Results from 

KMEANS 
        I_pixel_labels = reshape(I_cluster_idx,I_nrows,I_ncols); 
        imshow(I_pixel_labels,[]), title('image labeled by cluster index'); 

         
        % Step 5: Create Images that Segment the H&E Image by Color. 
        I_segmented_images = cell(1,3); 
        I_rgb_label = repmat(I_pixel_labels,[1 1 3]); 

  
        for k = 1:nColors 
            I_color = I; 
            I_color(I_rgb_label ~= k) = 0; 
            I_segmented_images{k} = I_color; 
            I_Temp = rgb2gray(I_segmented_images{k}); 
            BW = im2bw(I_Temp, 0.01); 
            I_Temp(2:end-1,2:end-1)=0; 
            DC(k,1) = length(find(I_Temp ~= 0)); 
            DC(k,2) = bwarea(BW); 
        end 
        Temporary_Segment = I_segmented_images; 
        temp_DC = DC; 
        MaxBorder = find(temp_DC(:,1)==max(temp_DC(:,1))); 
        temp_DC(MaxBorder,:) = 0; 
        MaxArea = find(temp_DC(:,2)==max(temp_DC(:,2))); 
        I_img = I_segmented_images{MaxArea}; 
        temp_DC(MaxArea,:) = 0; 
        Second_MaxArea = find(temp_DC(:,2)==max(temp_DC(:,2))); 
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        D = 

pdist2([I_cluster_center(MaxArea,1),I_cluster_center(Second_MaxArea,1)],... 
            

[I_cluster_center(MaxArea,2),I_cluster_center(Second_MaxArea,2)]); 
        Base_D = 

sqrt(I_cluster_center(MaxArea,1)^2+I_cluster_center(MaxArea,2)^2); 
        while nColors > 2 && (D/Base_D) < 0.05 
            nColors = nColors - 1; 
            I_cluster_idx = []; 
            I_cluster_center = []; 
            I_pixel_labels = []; 
            I_segmented_images = []; 
            I_rgb_label = []; 
            I_color = []; 
            I_Temp = []; 
            BW = []; 
            DC = []; 
            Temporary_Segment = []; 
            temp_DC = []; 
            I_img = []; 
            [I_cluster_idx I_cluster_center] = kmeans(I_ab,... 
            nColors,'distance','sqEuclidean','Replicates',3); 
            % Step 4: Label Every Pixel in the Image Using the Results from 

KMEANS 
            I_pixel_labels = reshape(I_cluster_idx,I_nrows,I_ncols); 
            imshow(I_pixel_labels,[]), title('image labeled by cluster 

index'); 
            % Step 5: Create Images that Segment the H&E Image by Color. 
            I_segmented_images = cell(1,3); 
            I_rgb_label = repmat(I_pixel_labels,[1 1 3]); 

  
            for k = 1:nColors 
                I_color = I; 
                I_color(I_rgb_label ~= k) = 0; 
                I_segmented_images{k} = I_color; 
                I_Temp = rgb2gray(I_segmented_images{k}); 
                BW = im2bw(I_Temp, 0.01); 
                I_Temp(2:end-1,2:end-1)=0; 
                DC(k,1) = length(find(I_Temp ~= 0)); 
                DC(k,2) = bwarea(BW); 
            end 
            Temporary_Segment = I_segmented_images; 
            temp_DC = DC; 
            MaxBorder = find(temp_DC(:,1)==max(temp_DC(:,1))); 
            temp_DC(MaxBorder,:) = 0; 
            MaxArea = find(temp_DC(:,2)==max(temp_DC(:,2))); 
            I_img = I_segmented_images{MaxArea}; 
            if nColors > 2 
                temp_DC(MaxArea,:) = 0; 
                Second_MaxArea = find(temp_DC(:,2)==max(temp_DC(:,2))); 
                D = 

pdist2([I_cluster_center(MaxArea,1),I_cluster_center(Second_MaxArea,1)],... 
                    

[I_cluster_center(MaxArea,2),I_cluster_center(Second_MaxArea,2)]); 
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                Base_D = 

sqrt(I_cluster_center(MaxArea,1)^2+I_cluster_center(MaxArea,2)^2); 
            end 
        end 
        imshow(I_segmented_images{MaxBorder}), title('Cluster 1'); 
        subplot(4,5,2) 
        imshow(I_segmented_images{MaxArea}), title('Cluster 2'); 
        subplot(4,5,3) 
        imshow(I_img), title('Winner') 
        [counts_I_img,x_I_img] = imhist(rgb2gray(I_img)); 
        counts_I_img(1) = 0; 
        pd_I_img = fitdist(x_I_img, 'extreme value','freq',counts_I_img); 

  
        % Second Time 
        se90 = strel('diamond',3); 
        se0 = strel('diamond',1); 

  
        [~, I_threshold] = edge(rgb2gray(I_img), 'sobel'); 
        fudgeFactor = 0.5; 
        I_BWs = edge(rgb2gray(I_img),'sobel', I_threshold * fudgeFactor); 
        I_Base = ones(size(I_BWs)); 
        I_BWsdil = imdilate(I_BWs, [se90 se0]); 
        I_BWdfill = imfill(I_BWsdil, 'holes'); 
        I_New_BW = I_BWdfill; 
        I_New_img = I_img.*repmat(uint8(I_New_BW), [1 1 3]); 
        I_regdata = regionprops(I_New_BW,'Area',.... 
            'FilledImage','PixelList'); 
        I_Area = cat(1, I_regdata.Area); 
        I_Best = find(I_Area(:) == max(I_Area(:))); 
        I_PixelList = cat(1, I_regdata(I_Best).PixelList); 
        I_BWnobord = zeros(size(I_New_BW)); 
        for j=1:length(I_PixelList) 
            I_BWnobord(I_PixelList(j,2),I_PixelList(j,1)) = 1; 
        end 

  
        seD = strel('diamond',1); 
        I_BWfinal = imerode(I_BWnobord,seD); 
        I_BWfinal = imerode(I_BWfinal,seD); 
        [I_x, I_y] = size(I_BWfinal); 
        subplot(4,5,4) 
        hold on 
        imshow(I_BWfinal), title('Segmented I'); 
        I_closed = imclose(I_BWfinal,strel('disk',15)); 
        I_thin = bwmorph(I_closed,'thin',100); 
        subplot(4,5,5) 
        hold on 
        I_q = boundary(I_PixelList(:,1),I_PixelList(:,2),0.99); 
        plot(I_PixelList(I_q,1),I_PixelList(I_q,2)); 
        I_mask = poly2mask(I_PixelList(I_q,1), ... 
            I_PixelList(I_q,2),I_x,I_y); 
        imshow(I_mask), title('Segmented I'); 
        I_mask = bwconvhull(I_mask); 
        imshow(I_mask), title('Segmented I');  
        I_skel=bwmorph(skeleton(I_mask) > 35,'skel',inf); 
        imshow(I_thin), title('Segmented I');  
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        [dmap,exy,jxy] = anaskel(I_skel); (Howe, 2006) 

  
        D_Min = find(exy(2,:)==min(exy(2,:))); 
        P_Skel = exy(:,D_Min); 
        if jxy ~= 0 
            D_Center = jxy(:,1); 
        else 
            D_Center = P_Skel; 
        end 
        D_Max = find(exy(2,:)==max(exy(2,:))); 
        P_Skel = [P_Skel,exy(:,D_Max)]; 

         
        % Translation and Rotation 
        Tr_P_Skel = P_Skel + [Dipper_Data(i,2); Dipper_Data(i,4)]; 
        if Dipper_Data(i,6) < 0              
            Cent_P_Skel(1,:) = Tr_P_Skel(1,:); 
            Cent_P_Skel(2,:) = 

Tr_P_Skel(2,:)+(Rt_x*sin(deg2rad(Dipper_Data(i,6))));            
            [THETA,R] = cart2pol(Cent_P_Skel(1,:),Cent_P_Skel(2,:)); 
            THETA = THETA+deg2rad(-Dipper_Data(i,6)); 
            [yr,xr] = pol2cart(THETA,R); 
            X = yr; 
            Y = xr; 
        elseif Dipper_Data(i,6) > 0              
            Cent_P_Skel(1,:) = Tr_P_Skel(1,:)-

(Rt_y*sin(deg2rad(Dipper_Data(i,6)))); 
            Cent_P_Skel(2,:) = Tr_P_Skel(2,:);            
            [THETA,R] = cart2pol(Cent_P_Skel(1,:),Cent_P_Skel(2,:)); 
            THETA = THETA+deg2rad(-Dipper_Data(i,6)); 
            [yr,xr] = pol2cart(THETA,R); 
            X = yr; 
            Y = xr; 
        else 
            X = Tr_P_Skel(1,:)'; 
            Y = Tr_P_Skel(2,:)'; 
        end 
        [xData, yData] = prepareCurveData( X, Y ); 

  
        % Set up fittype and options. 
        ft = fittype( 'poly1' ); 
        opts = fitoptions( 'Method', 'LinearLeastSquares' ); 
        opts.Robust = 'Bisquare'; 

  
        % Fit model to data. 
        [fitresult_dipper, gof_dipper] = fit( xData, yData, ft, opts );   
        subplot(3,5,[11 12 13 14 15]) 
        imshow(Root_I,'InitialMagnification','fit'), title('Segmented 

Merge'); 
        hold on 
        X_plot = linspace(min(X),max(X)); 
        Y_plot = fitresult_dipper(X_plot); 
        XY_plot_dipper = [X_plot',Y_plot];    
        scatter(XY_plot_dipper(:,1),XY_plot_dipper(:,2)); 
        scatter(X,Y); 
    end 



181 

 

     
    %% Boom Proccesing 
    if ~isnan(Boom_Data(i,2)) 
        Boom_imgfile = fullfile(BoomImg,BoomList(i).name); 
        I = imread(Boom_imgfile); 

         
        % Step 2: Convert Image from RGB Color Space to L*a*b* Color Space 
        % Convert the image to L*a*b* color space using |makecform| and 

|applycform|. 
        cform = makecform('srgb2lab'); 
        lab_I = applycform(I,cform); 

         
        % Step 3: Classify the Colors in 'a*b*' Space Using K-Means 

Clustering 
        I_ab = double(lab_I(:,:,2:3)); 
        I_nrows = size(I_ab,1); 
        I_ncols = size(I_ab,2); 
        I_ab = reshape(I_ab,I_nrows*I_ncols,2); 
        nColors = 4; 
        % repeat the clustering 3 times to avoid local minima 
        [I_cluster_idx I_cluster_center] = kmeans(I_ab,... 
            nColors,'distance','sqEuclidean','Replicates',3); 

         
        % Step 4: Label Every Pixel in the Image Using the Results from 

KMEANS 
        I_pixel_labels = reshape(I_cluster_idx,I_nrows,I_ncols); 
%         imshow(I_pixel_labels,[]), title('image labeled by cluster index'); 

         
        % Step 5: Create Images that Segment the H&E Image by Color. 
        I_segmented_images = cell(1,3); 
        I_rgb_label = repmat(I_pixel_labels,[1 1 3]); 

  
        for k = 1:nColors 
            I_color = I; 
            I_color(I_rgb_label ~= k) = 0; 
            I_segmented_images{k} = I_color; 
            I_Temp = rgb2gray(I_segmented_images{k}); 
            BW = im2bw(I_Temp, 0.01); 
            I_Temp(2:end-1,2:end-1)=0; 
            DC(k,1) = length(find(I_Temp ~= 0)); 
            DC(k,2) = bwarea(BW); 
        end 
        Temporary_Segment = I_segmented_images; 
        temp_DC = DC; 
        MaxBorder = find(temp_DC(:,1)==max(temp_DC(:,1))); 
        temp_DC(MaxBorder,:) = 0; 
        MaxArea = find(temp_DC(:,2)==max(temp_DC(:,2))); 
        I_img = I_segmented_images{MaxArea}; 
        temp_DC(MaxArea,:) = 0; 
        Second_MaxArea = find(temp_DC(:,2)==max(temp_DC(:,2))); 
        D = 

pdist2([I_cluster_center(MaxArea,1),I_cluster_center(Second_MaxArea,1)],... 
            

[I_cluster_center(MaxArea,2),I_cluster_center(Second_MaxArea,2)]); 
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        Base_D = 

sqrt(I_cluster_center(MaxArea,1)^2+I_cluster_center(MaxArea,2)^2); 
        while nColors > 2 && (D/Base_D) < 0.05 
            nColors = nColors - 1; 
            I_cluster_idx = []; 
            I_cluster_center = []; 
            I_pixel_labels = []; 
            I_segmented_images = []; 
            I_rgb_label = []; 
            I_color = []; 
            I_Temp = []; 
            BW = []; 
            DC = []; 
            Temporary_Segment = []; 
            temp_DC = []; 
            I_img = []; 
            [I_cluster_idx I_cluster_center] = kmeans(I_ab,... 
            nColors,'distance','sqEuclidean','Replicates',3); 
            % Step 4: Label Every Pixel in the Image Using the Results from 

KMEANS 
            I_pixel_labels = reshape(I_cluster_idx,I_nrows,I_ncols); 
            % Step 5: Create Images that Segment the H&E Image by Color. 
            I_segmented_images = cell(1,3); 
            I_rgb_label = repmat(I_pixel_labels,[1 1 3]); 

  
            for k = 1:nColors 
                I_color = I; 
                I_color(I_rgb_label ~= k) = 0; 
                I_segmented_images{k} = I_color; 
                I_Temp = rgb2gray(I_segmented_images{k}); 
                BW = im2bw(I_Temp, 0.01); 
                I_Temp(2:end-1,2:end-1)=0; 
                DC(k,1) = length(find(I_Temp ~= 0)); 
                DC(k,2) = bwarea(BW); 
            end 
            Temporary_Segment = I_segmented_images; 
            temp_DC = DC; 
            MaxBorder = find(temp_DC(:,1)==max(temp_DC(:,1))); 
            temp_DC(MaxBorder,:) = 0; 
            MaxArea = find(temp_DC(:,2)==max(temp_DC(:,2))); 
            I_img = I_segmented_images{MaxArea}; 
            if nColors > 2 
                temp_DC(MaxArea,:) = 0; 
                Second_MaxArea = find(temp_DC(:,2)==max(temp_DC(:,2))); 
                D = 

pdist2([I_cluster_center(MaxArea,1),I_cluster_center(Second_MaxArea,1)],... 
                    

[I_cluster_center(MaxArea,2),I_cluster_center(Second_MaxArea,2)]); 
                Base_D = 

sqrt(I_cluster_center(MaxArea,1)^2+I_cluster_center(MaxArea,2)^2); 
            end 
        end 
        subplot(4,5,6) 
        imshow(I_segmented_images{MaxBorder}), title('Cluster 1'); 
        subplot(4,5,7) 
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        imshow(I_segmented_images{MaxArea}), title('Cluster 2'); 
        subplot(4,5,8) 
        imshow(I_img), title('Winner') 
        [counts_I_img,x_I_img] = imhist(rgb2gray(I_img)); 
        counts_I_img(1) = 0; 
        pd_I_img = fitdist(x_I_img, 'extreme value','freq',counts_I_img); 

  
        % Second Time 
        se90 = strel('diamond',3); 
        se0 = strel('diamond',1); 

  
        [~, I_threshold] = edge(rgb2gray(I_img), 'sobel'); 
        fudgeFactor = 0.5; 
        I_BWs = edge(rgb2gray(I_img),'sobel', I_threshold * fudgeFactor); 
        I_Base = ones(size(I_BWs)); 
        I_BWsdil = imdilate(I_BWs, [se90 se0]); 
        I_BWdfill = imfill(I_BWsdil, 'holes'); 
        I_New_BW = I_BWdfill; 
        I_New_img = I_img.*repmat(uint8(I_New_BW), [1 1 3]); 
        I_regdata = regionprops(I_New_BW,'Area',.... 
            'FilledImage','PixelList'); 
        I_Area = cat(1, I_regdata.Area); 
        I_Best = find(I_Area(:) == max(I_Area(:))); 
        I_PixelList = cat(1, I_regdata(I_Best).PixelList); 
        I_BWnobord = zeros(size(I_New_BW)); 
        for j=1:length(I_PixelList) 
            I_BWnobord(I_PixelList(j,2),I_PixelList(j,1)) = 1; 
        end 

  
        seD = strel('diamond',1); 
        I_BWfinal = imerode(I_BWnobord,seD); 
        I_BWfinal = imerode(I_BWfinal,seD); 
        [I_x, I_y] = size(I_BWfinal); 

         
        subplot(4,5,9) 
        hold on 
        imshow(I_BWfinal), title('Segmented I'); 
        I_closed = imclose(I_BWfinal,strel('disk',15)); 
        I_thin = bwmorph(I_closed,'thin',1); 
        lutfun = @(x)(sum(x(:))==4); 
        lut = makelut(lutfun,2); 
        I_ult = bwulterode(bwlookup(I_thin,lut)); 
        subplot(4,5,10) 
        hold on 
        imshow(I_ult), title('Skeleton I'); 
        P_Skel = []; 
        [P_Skel(2,:), P_Skel(1,:)] = find(I_ult==1); 

         
        if length(P_Skel(1,:))<4 
            P_Skel = []; 
            plot(I_PixelList(I_q,1),I_PixelList(I_q,2)); 
            I_mask = poly2mask(I_PixelList(I_q,1), ... 
                I_PixelList(I_q,2),I_x,I_y); 
            imshow(I_mask), title('Segmented I'); 
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            I_mask = bwconvhull(I_mask); 
            imshow(I_mask), title('Segmented I');  
            I_skel=bwmorph(skeleton(I_BWfinal) > 35,'skel',inf); 
            imshow(I_skel), title('Segmented I');  
            [dmap,exy,jxy] = anaskel(I_skel); (Howe, 2006) 
            P_Skel = jxy;           
        end 

         
        % Translation and Rotation 
        Tr_P_Skel = P_Skel + [Boom_Data(i,2); Boom_Data(i,4)]; 
        if Boom_Data(i,6) < 0              
            Cent_P_Skel(1,:) = Tr_P_Skel(1,:); 
            Cent_P_Skel(2,:) = 

Tr_P_Skel(2,:)+(Rt_x*sin(deg2rad(Boom_Data(i,6))));            
            [THETA,R] = cart2pol(Cent_P_Skel(1,:),Cent_P_Skel(2,:)); 
            THETA = THETA+deg2rad(-Boom_Data(i,6)); 
            [yr,xr] = pol2cart(THETA,R); 
            X = yr; 
            Y = xr; 
        elseif Boom_Data(i,6) > 0              
            Cent_P_Skel(1,:) = Tr_P_Skel(1,:)-

(Rt_y*sin(deg2rad(Boom_Data(i,6)))); 
            Cent_P_Skel(2,:) = Tr_P_Skel(2,:);            
            [THETA,R] = cart2pol(Cent_P_Skel(1,:),Cent_P_Skel(2,:)); 
            THETA = THETA+deg2rad(-Boom_Data(i,6)); 
            [yr,xr] = pol2cart(THETA,R); 
            X = yr; 
            Y = xr; 
        else 
            X = Tr_P_Skel(1,:)'; 
            Y = Tr_P_Skel(2,:)'; 
        end 
        [xData, yData] = prepareCurveData( X, Y ); 
        ft1 = fittype( 'power1' ); 

  
        % Fit model to data. 
        [fitresult1, gof1] = fit( xData, yData, ft1 ); 

  
        % Set up fittype and options. 
        ft2 = fittype( 'poly1' ); 
        opts = fitoptions( 'Method', 'LinearLeastSquares' ); 
        opts.Robust = 'Bisquare'; 

  
        % Fit model to data. 
        [fitresult2, gof2] = fit( xData, yData, ft2, opts ); 
        gof1.rsquare 
        gof2.rsquare 
        if gof1.rsquare >= gof2.rsquare || gof1.rsquare >= 0.75 
            fit_type = 'power1'; 
            fitresult_boom = fitresult1; 
            gof_boom = gof1; 
        else 
            fit_type = 'poly1'; 
            fitresult_boom = fitresult2; 
            gof_boom = gof2; 
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        end       
        subplot(3,5,[11 12 13 14 15]) 
        hold on 
        X_plot = linspace(Boom_Data(i,2),Boom_Data(i,2)+Boom_Data(i,7)); 
        Y_plot = fitresult_boom(X_plot); 
        XY_plot_boom = [X_plot',Y_plot]; 
        XY_plot_boom(XY_plot_boom(:,2)>(Boom_Data(i,4)+Boom_Data(i,7)),:)=[]; 
        XY_plot_boom(XY_plot_boom(:,2)<(Boom_Data(i,4)),:)=[]; 
        scatter(XY_plot_boom(:,1),XY_plot_boom(:,2)); 
        scatter(X,Y); 
    end 

     
    syms x 
    if ~isempty(fitresult_dipper) && ~isempty(fitresult_boom) 
        switch fit_type 
            case 'power1' 
                eqn_dipper = fitresult_dipper.p1*x + fitresult_dipper.p2; 
                eqn_boom = fitresult_boom.a*x^fitresult_boom.b; 
                intersect(1,:) = vpasolve(eqn_dipper-eqn_boom,x,[1, Rt_x]); 
                intersect(2,:) = fitresult_boom(double(intersect(1,:))); 
            case 'poly1' 
                eqn_dipper = fitresult_dipper.p1*x + fitresult_dipper.p2; 
                eqn_boom = fitresult_boom.p1*x + fitresult_boom.p2; 
                intersect = vpasolve(eqn_dipper-eqn_boom,x,[1, Rt_x]); 
                intersect(2,:) = fitresult_boom(double(intersect(1,:))); 
        end 

         
        if intersect(2,:) > Rt_y || intersect(2,:) < 0 
            intersect = []; 
            temp_dist(1) = pdist([XY_plot_boom(1,:);XY_plot_dipper(1,:)]); 
            temp_dist(2) = pdist([XY_plot_boom(end,:);XY_plot_dipper(1,:)]); 
            temp_dist(3) = pdist([XY_plot_boom(1,:);XY_plot_dipper(end,:)]); 
            temp_dist(4) = 

pdist([XY_plot_boom(end,:);XY_plot_dipper(end,:)]); 
            min_dist = find(temp_dist==min(temp_dist)); 
            switch min_dist 
                case 1 
                    P = XY_plot_boom(1,:); 
                case 2 
                    P = XY_plot_boom(end,:); 
                case 3 
                    P = XY_plot_boom(1,:); 
                case 4 
                    P = XY_plot_boom(end,:); 
            end 

  
            A = XY_plot_dipper(1,:); 
            B = XY_plot_dipper(end,:); 
            % Direction vector  
            M = B - A; 

  
            % Running parameter t0 defines the intersection point of line 

through A and B 
            % and the perpendicular through P 
            t0  = dot(M, P - A) / dot(M, M); 
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            % Intersection point of the perpendicular and line through A and 

B 
            intersect = (A + t0 * M)'; 
        end 
        bd1 = pdist([intersect(:,1)';XY_plot_boom(1,:)])'; 
        bd2 = pdist([intersect(:,1)';XY_plot_boom(end,:)])'; 
        if bd1 < bd2 
            sklt = [XY_plot_boom(end,:);intersect(:,1)']; 
        else 
            sklt = [XY_plot_boom(1,:);intersect(:,1)']; 
        end 
        dd1 = pdist([intersect(:,1)';XY_plot_dipper(1,:)])'; 
        dd2 = pdist([intersect(:,1)';XY_plot_dipper(end,:)])'; 
        if dd1 < dd2 
            sklt = double([sklt; XY_plot_dipper(end,:)]); 
        else 
            sklt = double([sklt; XY_plot_dipper(1,:)]); 
        end 
    elseif isempty(XY_plot_boom) 
        upper_pt = find(XY_plot_dipper(:,2)==min(XY_plot_dipper(:,2))); 
        lower_pt = find(XY_plot_dipper(:,2)==max(XY_plot_dipper(:,2))); 
        sklt = [XY_plot_dipper(lower_pt,:);XY_plot_dipper(upper_pt,:); ... 
            XY_plot_dipper(lower_pt,:)]; 
    elseif isempty(XY_plot_dipper) 
        upper_pt = find(XY_plot_boom(:,2)==min(XY_plot_boom(:,2))); 
        lower_pt = find(XY_plot_boom(:,2)==max(XY_plot_boom(:,2))); 
        sklt = [XY_plot_boom(lower_pt,:);XY_plot_boom(upper_pt,:); ... 
            XY_plot_boom(lower_pt,:)]; 
    end     

     
    SkelMat(i).imageFilename = CroppedList(i).name; 
    SkelMat(i).LocalSkeleton = sklt; 
    SkelMat(i).GlobalSkeleton = Cropped_Data(i,2:3)+sklt; 
    i 
end 
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Appendix I. Matlab Code of Coordinates Triangulation and Transferring to Unity 

 

clear 
figure('OuterPosition',get(0,'screensize')) 
load('C:\Users\umroot\Documents\MATLAB\My PhD 

Codes\Papers\DataFusion\Cam1_Close_Skeleton.mat'); 
load('C:\Users\umroot\Documents\MATLAB\My PhD 

Codes\Papers\DataFusion\Cam2_Close_Skeleton.mat'); 
load('C:\Users\umroot\Documents\MATLAB\My PhD 

Codes\CameraCalibration\CALIB\Logan\Camera_Parameters\Camera_Param_50x50_P.ma

t'); 
RightMainImg = 'C:\Users\umroot\Documents\MATLAB\My PhD 

Codes\CameraCalibration\CALIB\Logan\Cam_01\Close\'; 
LeftMainImg = 'C:\Users\umroot\Documents\MATLAB\My PhD 

Codes\CameraCalibration\CALIB\Logan\Cam_02\Close\'; 
JPG = '*.jpg'; 
Boom_Length = 5207; 
Dipper_Length = 3033; 
RightList = dir(fullfile(RightMainImg,JPG)); 
LeftList = dir(fullfile(LeftMainImg,JPG)); 
t = tcpip('127.0.0.1', 55100, 'NetworkRole', 'server'); 
fopen(t); 
for i=1:1:50 
    point3d = triangulate(Cam1(i).GlobalSkeleton, Cam2(i).GlobalSkeleton, 

params);      
    subplot(1,3,2) 
    pcshow(point3d, 'VerticalAxis', 'y', 'VerticalAxisDir', 'down', 

'MarkerSize', 950); 
    Skel_Dim(i,1) = abs(pdist([point3d(:,1)';point3d(:,2)'])); 
    Skel_Dim(i,2) = abs(pdist([point3d(:,2)';point3d(:,3)'])); 
    Skel_Dim(i,3) = abs(Boom_Length - Skel_Dim(i,1)); 
    Skel_Dim(i,4) = abs(Boom_Length - Skel_Dim(i,2)); 
    hold on; 
    plot3(point3d(:,1),point3d(:,2),point3d(:,3));  
    hold off;    
    Right_imgfile = fullfile(RightMainImg,RightList(i).name); 
    Right_I = imread(Right_imgfile); 
    subplot(1,3,3) 
    imshow(Right_I,'InitialMagnification','fit'), title('Right Camera');    
    Left_imgfile = fullfile(LeftMainImg,LeftList(i).name); 
    Left_I = imread(Left_imgfile); 
    subplot(1,3,1) 
    imshow(Left_I,'InitialMagnification','fit'), title('Left Camera'); 

     
    if i>1 
        Unity.X = point3d(1,1); 
        Unity.Y = point3d(2,1); 
        Unity.Z = point3d(3,1); 
        new_point3d = [point3d(:,2)-point3d(:,1),point3d(:,3)-point3d(:,2)]; 
        rBoom = vrrotvec(prev_point3d(:,1)',new_point3d(:,1)'); 
        mBoom = vrrotvec2mat(rBoom); 
        Unity.rxBoom = rBoom(1); 
        Unity.ryBoom = rBoom(2); 
        Unity.rzBoom = rBoom(3); 
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        rDipper = vrrotvec(prev_point3d(:,2)',new_point3d(:,2)'); 
        mBoom = vrrotvec2mat(rDipper); 
        Unity.rxDipper = rDipper(1); 
        Unity.ryDipper = rDipper(2); 
        Unity.rzDipper = rDipper(3);        
        message = sprintf('%d,%d,%d,%d,%d,%d,%d,%d,%d',Unity.X,Unity.Y,... 
            Unity.Z ,Unity.rxBoom,Unity.ryBoom,Unity.rzBoom,... 
            Unity.rxDipper,Unity.ryDipper,Unity.rzDipper); 
        fwrite(t, message,'char') 
        pause(1); 
    end 
    prev_point3d = [point3d(:,2)-point3d(:,1),point3d(:,3)-point3d(:,2)]; 
end 
mean(Skel_Dim(:,3)) 
mean(Skel_Dim(:,4)) 
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Appendix J. Example of Orientation Estimation Process 

Camera 2 (Left) Camera 1 (Right) 

    
Original images 

    
Backgrounds 

    
Foregrounds 

    
Segmented parts 

    
Skeletons 

    
Estimated orientations 

 


