Tracker-Independent Drift Detection and Correction
Using Segmented Objects and Features

Tarek Ghoniemy

A Thesis
in the Department
of
Electrical and Computer Engineering

Presented in Partial Ful llment of the Requirements
For the Degree of
Doctor of Philosophy (Electrical and Computer Engineering) at
Concordia University
Montreal, Quebec, Canada

August 2017

¢ Tarek Ghoniemy, 2017

This is to certify that the thesis prepared

Concordia University
School of Graduate Studies

By: Tarek Ghoniemy
Entitled: Tracker-Independent Drift Detection and Correction Us-
ing Segmented Objects and Features

and submitted in partial ful liment of the requirements for the degree of

Doctor of Philosophy (Electrical and Computer Engineering)

complies with the regulations of this University and meets the accepted standards with
respect to originality and quality.

Signed by the nal examining committee:

Dr.

Subhash Rakheja

Dr.

Stephane Coulombe

Dr.

Thomas G. Fevens

Dr.

Wei-Ping Zhu

Dr.

Hassan Rivaz

Dr.

Maria A. Amer

Chair

External Examiner

Concordia External Examiner

Examiner

Examiner

Supervisor

Approved by:

29 Sept. 2017

Dr. Wei-Ping Zhu, Graduate Program Director

Dr. Amir Asif, Dean, Faculty of Engineering and Computer Science

Abstract

Tracker-Independent Drift Detection and Correction
Using Segmented Objects and Features

Tarek Ghoniemy, Ph.D.
Concordia University, 2017

Object tracking has been an active research topic in the eld of video processing.
However, automated object tracking, under uncontrolled environments, is still di cult
to achieve and encounters various challenges that cause the tracker to drift away from
the target object. Toe ectively handle object or environment tracking challenges, recent
powerful tracking approaches are learning-based, meaning they learn object appearance
changes while tracking online. The output of such trackers is, however, limited to
a bounding box representation, the center of which is considered as the estimated
object location. Such bounding box may not provide accurate foreground/background
discrimination and may not handle highly non-rigid objects. Moreover, the bounding
box may not surround the object completely, or it may not be centered around it,
which a ects the accuracy of the overall tracking process. Our main objective in this
work is to reduce drifts of state-of-the-art tracking algorithms (trackers) using object
segmentation so to produce more accurate bounding box.

To enhance the quality of state-of-the-art trackers, this work investigates two main
venues: rst tracker-independent drift detection and correction using object features
and second, selection of best performing parameters of Graph Cut object segmentation
and of support vector machines using arti cial immune system. In addition, this work
proposes a framework for the evaluation and ranking of di erent trackers using easily
interpretable performance measures, in a way to account for the presence of outliers.

For tracker-independent drift detection, we use saliency features or objectness using
saliency, the ratio of the salient region corresponding to the target object with respect
to the estimated bounding box is used to indicate the occurrence of tracking drift with
no prior information about the target model. With objectness measures, we use both

relative area and score of the detected candidate boxes according to the objectness
measure to indicate the occurrenece of the tracking drift. For drift correction, we
investigate the application of object segmentation on the estimated bounding box to
re-locate it around the target object. Due to its ability to lead to a global near optimal
solution, we use the Graph Cut object segmentation method. We modify the Graph Cut
model to incorporate an automatic seed selection module based on interest points, in
addition to a template mask, to automatically initialize the segmentation across frames.
However, the integration of segmentation in the tracking loop has its computational
burden. In addition, the segmentation quality might be a ected by tracking challenges,
such as motion blur and occlusion. Accordingly, object segmentation is applied only
when a drift is detected. Simulation results show that the proposed approach improves
the tracking quality of ve recent trackers.

Researchers often use long and tedious trial and error approaches for determining the
best performing parameter con guration of a video-processing algorithm, particularly
with the diverse nature of video sequences. However, such con guration does not
guarantee the best performance. A little research attention has been given to study
the algorithm’s sensitivity to its parameters. Arti cial immune system is an emergent
biologically motivated computing paradigm that has the ability to reach optimal or
near-optimal solutions through mutation and cloning. This work proposes the use of
arti cial immune system for the selection of best performing parameters of two video
processing algorithms: support vector machines for object tracking and Graph Cut based
object segmentation.

An increasing number of trackers are being developed and when introducing a new
tracker, it is important to facilitate its evaluation and ranking in relation to others,
using easy to interpret performance measures. Recent studies have shown that some
measures are correlated and cannot re ect the di erent aspects of tracking performance
when used individually. In addition, they do not incorporate robust statistics to account
for the presence of outliers that might lead to insigni cant results. This work proposes a
framework for e ective scoring and ranking of di erent trackers by using less correlated
quality metrics, coupled with a robust estimator against dispersion. In addition, a uni ed
performance index is proposed to facilitate the evaluation process.

ACKNOWLEDGMENTS

I wish to express my sincere gratitude and indebtedness to Dr. Maria A. Amer for
her supervision, guidance, and encouragement throughout this study. Her invaluable
suggestions and constructive criticism during the preparation of this thesis enabled me
to present the thesis in this form.

I would like also to thank my Vidpro group members and dear friends including but
not limited to, Julien Valognes, Prabhakaran Ravindran, and Saeid Vosoughi for their
support and encouragement during the course of this study.

This thesis is dedicated to my parents and my brothers who have supported me all the
way since the beginning of my studies.

Also, this thesis is dedicated to my outstanding wife and my children, who have been a
great source of motivation and inspiration.

Finally, this thesis is dedicated to all those who believe in the richness of learning.

Vi

Contents

List of Figures Xi
List of Tables Xiv
Nomenclature XV
1 Introduction 1
1.1 Motivation 1
1.2 Problem Statement 2
1.3 Research Objectives. 3
1.4 Summary of Contributions 3
1.5 ThesisOutlines e 4

2 Background 6
2.1 OVEIVIEW o e e 6
2.2 Object Tracking e 6
2.2.1 Introduction 6

2.2.2 Classi cation of Object Tracking Approaches. 7

2.2.2.1 Fixed Appearance Modeling Based Tracking 8
2.2.2.2 Adaptive Appearance Modeling (Learning) Based Tracking 9

2.2.3 Object Tracking System Components 11

2.2.3.1 Target Modeling (Prediction) Module 12

2.2.3.2 Target Tracking Module 12

2.2.3.3 DetectionModule. 12

2.2.3.4 Feature Extraction Module 14

2.3 Common Tracking Performance Evaluation Measures 15
2.4 Arti cial Immune System 16
25 Summary ... 20

3 Tracker-independent Drift Detection and Correction 21
3.1 Abstract 21

Vil

3.2 Listof Symbols 22

3.3 Introduction 22
3.4 Prior Work 24
3.4.1 Segmentation-based Trackers. 24
3.4.2 Learning-based Trackers 25
3.4.3 Trackers with Drift Detection and Correction 27
3.4.4 Di erences to Our Approach 28
3.5 Proposed Method 28
3.5.1 Saliency-based Drift Detection 28
3.5.2 Dirift Correction Using Seeded Segmentation 31
3.6 Resultsand Analysis e 34
3.6.1 Experimental Setup. 34
3.6.2 ObjectiveResults 35
3.6.3 Subjective Results 53
3.6.4 Proposed vs. Segmentation-based Tracking Methods 57
3.6.5 Computational Costs 58
3.6.6 Advantages and Limitations 59
3.7 Conclusion 60

Arti cial Immune System Based Parameter Optimization of SVM in

Object Tracking 62
4.1 Abstract 62
4.2 Listof Symbols 63
4.3 Introduction e 63
4.4 Prior Work L e 64
4.5 Proposed AIS Approach for SVM Optimization 66
451 Background 66
452 OurApproach 68
46 Results. e 72
4.6.1 AIS Model Simulation 72
4.6.2 Experimental Setup. 75
4.6.3 Objective and Subjective Tracking Improvement 76
4.7 Conclusion 80

Arti cial Immune System Based Parameter Optimization of Graph

Cut Segmentation 82
5.1 Abstract e 82
52 Listof Symbols 82
5.3 Introduction 83

viii

5.4 Prior Work

5.5 Proposed AlS-based G-Cut Optimization
55.1 Background
55.2 OQur Approach

56 Results.
5.6.1 Experimental Setup.
5.6.2 Objective and Subjective Results

57 Conclusion

Robust Scoring and Ranking of Object Tracking Techniques
6.1 Abstract

6.2 Listof Symbols
6.3 Introduction
6.4 Prior Work
6.4.1 RankingMethods,
6.4.2 Related Performance Measures
6.5 Proposed Performance Measures
6.5.1 Proposed Uni ed Performance Index
6.5.2 Proposed Recovery and Drift Measures
6.6 Proposed Evaluation Framework
6.6.1 OVerview e
6.6.2 Scoring Mechanism o
6.6.3 Sequence-pooled Ranking Mechanism
6.7 Resultsand Analysis e
6.7.1 Experimental Setup o
6.7.2 Scoring and Ranking using AORand FR
6.7.3 I10F RankingResults
6.7.4 Recoveryand Drift Results.
6.7.5 Stability of the Proposed Framework
6.76 Speed Ranking
6.8 Conclusion

Conclusion and Future Work

7.1 Conclusion e
7.2 Future Work e
References

94
94
95
95
97
97
98
99
99
100
101
101
102
103
104
104
105
106
109
111
111
112

113
113
115

116

Appendix A Objectness-based Tracker Drift Detection 131

A.1l Introduction and Related Work 131
A.2 Proposed Method 132
A.3 Objective Results 135
A4 Conclusion e 138
A.5 Ground-Truth based Reference to Drift Detection 139

Appendix B Framework for Parameter Weighting and Selection for Ob-

ject Tracking Algorithms 143
B.1 Abstract 143
B.2 Listof Symbols 144
B.3 Introduction 144
B.4 Prior Work 145
B.5 Proposed Framework 146
B.5.1 Parameter Weighting 147
B.5.2 Con guration Selection and Scoring 148
B.6 Resultsand Analysis 150
B.6.1 Experimental Setup. 150
B.6.2 Parameter Weighting, 151
B.6.3 Con guration Scoring. 152
B.7 Conclusion e 158

List of Figures

2.1
2.2
2.3
2.4

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15

4.1
4.2
4.3
4.4
4.5
4.6

Learning-based object tracking system.
Object tracking system components.
Clonal selection algorithm.
Non-Uniform mutation process of antibodies [1].

Block diagram of the proposed drift detection and correction method. . .
Scale-variant versus scale-invariant example frames.
Automatic seed masks for segmentation.
Distance d versus the average intensity , of AF region.
Interest points Itering process and segmentation output.
Average precision plot using automatic drift detection and correction. . .
Average success plot using automatic drift detection and correction. . . .
Precision plot of all trackers over all test videos per challenge.
Success plot of all trackers over all test videos per challenge.
AOR of base and modi ed trackers over all sequences.
CLE of base and modi ed trackers over all sequences.
FR of base and modi ed trackers over all sequences.
Recovery-failure (drift) plot of base and modi ed trackers.
Subjective results using the proposed drift detection and correction. . . .
Base tracker related limitations.

Block diagram of the proposed AIS method for SVM optimization.
Functions for the evaluation of the AISmodel.
Convergence rate of Test function with di erent AIS parameters..
Search range of the CLONALG-based AIS model using Test function. . .
AOR plot of base and modi ed STRUCK trackers over all test videos. . .
CLE plot of base and modi ed STRUCK trackers over all test videos. . .

Xi

10

29
31
32
33
34
46
46
48
50
50
51
51
52
55
60

69
74
74
75
76
77

4.7
4.8

4.9
4.10

5.1
5.2
5.3

5.4

5.5

5.6
5.7

5.8

6.1

6.2
6.3
6.4
6.5
6.6

Al
A2

A3
A4
A5
A.6

FR plot of base and modi ed STRUCK trackers over all test videos. . . 77
Precision plot of base and modi ed STRUCK trackers over all test

SEOUENCES. . & v v v e e e e e e e e e e e e e 78
Success plot of base and modi ed STRUCK trackers over all test sequences. 78
Subjective results of the proposed AIS method applied to STRUCK. . . . 79
Block diagram of the proposed AlS-based G-Cut optimization. 88
AIS selection of the best performing segmentation parameters. 90

Example of G-Cut-AlS-based segmentation parameters: input image and
seeds (left); segmentation using AlS selected parameters (middle); ground
truth (right). 90
Precision plot of the default and AlS-based parameters of G-Cut

segmentation. e 91
Accuracy plot of the default and AIlS-based parameters of G-Cut
segmentation. L 91
G-Cut segmentation samples using default vs. AIS parameters. 92
Tracking improvement (in %) of AlS-based vs. manual segmentation
parameters when using STRUCK [2] 92
Tracking improvement (in %) of AlS-based vs. manual segmentation
parameters when using STAPLE [3] 93

The behavior of the proposed 1OF performance index (left) versus CoTPS

measure (right). 100
Block diagram of proposed scoring and ranking framework. 102
AOR vs FR as a reference measure to evaluate the proposed measures. . 105
IOF Rank-score plot. 107
Ranking using 1OF index. 107
Recovery (R) vs. drift (D) plot. 111

Block diagram of the proposed edge-based objectness for drift detection. 133
Candidate box of maximum area and maximum score using edge-based

ObJECtNESS. e 134
AOR of base and modi ed KCF tracker using objectness. 136
CLE of base and modi ed KCF tracker using objectness. 136
FR of base and modi ed KCF tracker using objectness. 137
AOR of base and modi ed STAPLE tracker using objectness. 137

Xii

A.7 CLE of base and modi ed STAPLE tracker using objectness. 138

A.8 FR of base and modi ed STAPLE tracker using objectness. 138
A.9 Ground truth based drift detection. 139
A.10 AOR plot of ground-truth based drift detection (KCF-GDD) versus drift
correction at each frame (KCF-N1) for KCF. 141
A.11 CLE plot of ground-truth based drift detection (KCF-GDD) versus drift
correction at each frame (KCF-N1) for KCF. 141
A.12 FR plot of ground-truth based drift detection (KCF-GDD) versus drift
correction at each frame (KCF-N1) for KCF. 142

B.1 Block diagram of the proposed parameter selection and weighting
framework. 147
B.2 Precision and Success plots of default and proposed selected con guration

of STAPLE tracker. 155
B.3 AOR of default and best performing con guration of STAPLE tracker. . 156
B.4 FR of default and best performing con guration of STAPLE tracker. . . 156

Xiii

List of Tables

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

4.1

6.1

6.2
6.3
6.4
6.5
6.6

Al

B.1

B.2
B.3
B.4
B.5

The overlap ratio of base and modi ed trackers per sequence. 36
The center location error of base and modi ed trackers per sequence. . . 38
The failure rate of base and modi ed trackers per sequence. 40
The number of drifts of base and modi ed trackers per sequence. 42
The number of recovery of base and modi ed trackers per sequence. . . . 44
Average improvement of the proposed drift detection and correction method. 53
Comparison of proposed method vs. JOTS. 58
Frame rate of the proposed drift detection and correction method. 59
Tracking quality of base and modi ed (AIS) STRUCK. 80

Scoring and ranking of the tested trackers based on AOR and FR

individually. 106
IOF Scoring and ranking based on 10F index according to MAD measure.106
IOF Scoring and ranking of the tested trackers for individual test sequences.108

Average recovery-based ranking over all 100 videos. 110
Average drift-based ranking over all 100 videos. 110
pRD-based ranking over all 100 videos. 110

Average improvement of the proposed objectness-based drift detection
and correction method. Lo 135

Ranges and increments of the parameters of STRUCK, KCF, and

STAPLE trackers. 151
Generated parameters’ weights wy. 152
Scoring of parameter sets of STRUCK. 153
Scoring of parameter sets of STAPLE. 154
Scoring of parameter setsof KCF. 157

Xiv

Nomenclature

Acronyms

AIS

AOR

BB

CLE

CLONALG

CoTPS

FPS

FR

G-Cut

MAD

MRF

NCLE

SVM

Arti cial Immune System
Average Overlap Ratio

Bounding Box

Center Location Error

Clonal Selection Algorithm
Combined Tracking Performance Score
Frame Per Seconds

Failure Rate

Graph Cut

Median Absolute Deviation
Markov Random Field
Normalized Center Location Error

Support Vector Machine

XV

Chapter 1

Introduction

1.1 Motivation

In general, given the initialized location of an object in the rst frame of a
video sequence, object tracking is meant to estimate the state of the target object
in subsequent frames. Interests in object tracking continue to increase widely with
the availability of high speed computing machines, high quality video cameras,
and the need for automated video analysis in many applications such as robotics,
video surveillance, and tra ¢ management. Despite the fact that much progress
has been made in recent years, developing a robust tracking algorithm is still a
challenging problem due to numerous uncontrolled factors that can be object-related
(appearance and scale change, deformation, fast motion, and motion blur), tracking
environment-related (non-stationary scenes, cluttered scenes, and illumination change),
or even tracking-system-related (real-time, automation, and low resolution constraints).
These challenges can negatively a ect the tracking accuracy, and a drifting problem may
occur in which the tracker drifts away from the target object, or false detection may be
encountered [4{7].

To handle object appearance variations e ectively, adaptive methods have been
proposed to update the representation of a target incrementally over time. Recent
powerful tracking algorithms [2,8{13], are learning-based methods that can deal with

such appearance variations. However, the output of such tracking algorithms is limited

to a bounding box (BB) representation. This BB may not handle highly non-rigid
objects, or may not be centered correctly around the target object, leading to a tracking
drift. The investigation of suitable approaches of drift detection and correction is thus
necessary for enhanced object tracking.

A common problem in video processing algorithms, such as Graph Cut (G-Cut)
object segmentation or support vector machines (SVM) in object tracking, is the
parameter selection that signi cantly a ects the algorithm accuracy. Adopting
optimization techniques, such as using arti cial immune system (AIS), for parameter
selection reduces the experimental work to spend for selecting the best parameters,
reduces the bias of human intervention, and leads to optimal or near-optimal parameters

that achieve better segmentation quality [14, 15].

1.2 Problem Statement

In spite of exhaustive research work, developing a robust object tracking algorithm is
still a challenging task for complex and dynamic scenes, due to the drastic appearance
changes caused by illumination changes, pose changes, and shape deformation. Two
main problems can be highlighted; the limitation of the tracking output of learning-based
object trackers to a BB, the center of which is considered as the estimated object location,
and the di erent environmental challenges that result in tracking drift or failure. The
integration of recent powerful object segmentation into object tracking to relocate the
estimated output BB around the target object, when a drift is detected, may lead to
better tracking.

As tracking and segmentation algorithms incorporate numerous parameters, it
is important to study the in uence of each parameter on the quality. Using AIS
optimization techniques for the adaptive parameter selection can be a solution.

Recent benchmarks for tracking evaluation and ranking do not include robust
statistical measures to account for the presence of outliers that might lead to insigni cant
results. It is useful to present a framework for scoring and ranking of trackers using

e ective quality metrics, coupled with a robust estimator against outliers. A single

(uni ed) performance index, in addition to new performance metrics can facilitate the

ranking process.

1.3 Research Objectives

The rst objective of this work is to investigate the e ect of integrating
tracker-independent drift detection and object segmentation for drift correction, on the
overall accuracy of learning-based tracking algorithms.

The second objective is to investigate the use of AIS optimization for adaptive
parameter selection in the domains of object tracking and segmentation.

The third objective is to propose a framework for scoring and ranking of trackers,
using known quality metrics, coupled with a robust estimator against dispersion. The
investigation of new performance metrics that facilitate trackers’ evaluation is to be

investigated.

1.4 Summary of Contributions

The contributions of this thesis are:

1. A method for tracker-independent saliency-based drift detection where we use
the saliency features of the target object inside the estimated BB to indicate the
occurrence of tracking drift without prior information about the target model
(Chapter 3).

2. A method for tracker-independent drift detection using edge-based objectness
measure (Appendix A).

3. A method for segmentation-based drift correction where we use an automatic
seeded G-Cut segmentation and propose a two-layer seed selection method based
on SIFT points and foreground/background intensity relation (Chapter 3).

4. A method for adaptive selection of parameters of SVM using the AIS clonal

selection-based optimization for enhanced object tracking (Chapter 4).

5. A method for optimal selection of parameters of G-Cut segmentation using the
AIS clonal selection-based optimization (Chapter 5).

6. A framework for scoring and ranking of di erent trackers using known quality
metrics, coupled with a robust estimator to account for the presence of outliers
(Chapter 6).

7. New tracking evaluation measures where we propose a uni ed overlap-failure
performance index, recovery, drift, and pure recovery-to-drift measures to facilitate
trackers’ evaluation and ranking (Chapter 6).

8. A framework for the selection of the best performing con guration (parameter set),
and weighting all parameters according to their in uence on the tracking quality.

(Appendix B).

1.5 Thesis Outlines

Chapter 2 presents object tracking approaches. The principal components of an object
tracking system are brie y described. Common tracking performance measures are
presented. Finally, arti cial immune systems are presented.

Chapter 3 introduces the proposed tracker-independent drift detection method using
saliency features prior work. Automatic seed selection and segmentation for on demand
drift correction is then discussed. Objective and subjective experimental results of the
proposed method, applied to ve state-of-the-art trackers on a publicly available data
set classi ed into di erent challenging attributes, are analyzed *.

Chapter 4 introduces the use of arti cial immune system optimization for object
tracking. A method for adaptive parameter selection of SVM for enhanced object
tracking is proposed. The objective and subjective experimental results of the proposed
approaches, applied to STRUCK tracker, are presented.

Chapter 5 introduces a method for the selection of near-optimal Graph Cut
segmentation parameters using arti cial immune system, and the obtained results are

summarized.

1The author wishes to thank Prabhakaran Ravindran for his help in running simulations of JOTS
method.

Chapter 6 presents the proposed object tracking scoring and ranking framework, and
the corresponding ranking measures. The objective and subjective experimental results,
applied to ten state-of-the-art di erent performing trackers on a publicly available data
set, are presented.

Chapter 7 concludes the thesis and poses possible avenues for future research work.

Appendix A presents a proposed tracker-independent drift detection method using
edge-based objectness. The objective experimental results of the proposed method
applied to di erent trackers on a data set of various challenges show promising results.

Appendix B 2 presents a proposed framework for the selection, scoring, and weighting
of the parameters of the tracking algorithms. The objective experimental results of
the proposed framework applied to three di erent performing tracking algorithms are
discussed.

Due to di erent contributions in the thesis, the symbols of each contribution are
proprietary to each contributing chapter and we give a list of symbols at the start of

each chapter.

2The author wishes to acknowledge the partial contribution of Julien Valognes to Appendix B and
Chapter 6, as part of his "Concordia Undergraduate Student Research Award". Julien helped with
developing the methods in sections B.5.1, B.5.2, 6.6.2, and 6.6.3 as well as in running related simulations.

5

Chapter 2

Background

2.1 Overview

In this chapter, object tracking approaches are introduced and categorized from
appearance modeling and segmentation points of view as discussed in section 2.2.2.
Components of a generic object tracking system are brie y described in section 2.2.3.
Common tracking performance measures are introduced in section 2.3. Arti cial immune
system (AIS) algorithm, as a powerful and adaptive machine learning tool that can be
investigated to enhance the accuracy of visual object tracking, is introduced in section

2.4.

2.2 Object Tracking

2.2.1 Introduction

Visual object tracking, concerned with the problem of estimating the trajectory of
an object in the image plane, has many important applications. Such applications
include, but not limited to automated surveillance, tra ¢ analysis, video indexing,
human computer interaction, as well as autonomous navigation. Interests in object
tracking increased widely with the availability of ultra-high speed computing machines,
super-high quality video cameras, and the need for automated video analysis.

Automated analysis of videos is a sophisticated operation that starts by detection

of object(s) of interest, then tracking the trajectory of such object(s) across frames,
and ending by trajectory analysis to understand the behavior of objects and their
corresponding interactions. Even though tracking is considered an important part of
the above process, it is the most error prone component.

Di culties in object tracking arise from a variety of uncontrolled factors in the
tracking environment that probably appear in the form of information loss. Loss
of information may be due to scene projection, noise e ect, complex object motion,
camera motion, deformable object shapes, mutable object appearance, illumination
changes, occlusions, and real-time constraints which impose extra level of di culty on
the tracking systems. While recent researches have introduced a signi cant progress in
the domain-speci ¢ visual tracking, developing tracking systems that can bene t the
cognitive abilities of human beings is still a challenging research problem. Typically,
most existing tracking systems impose various constraints in order to simplify the
tracking problem and hence, such tracking systems cannot adaptively t in various
environments. Accurate tracking requires e ective modeling and representation of the
tracking environment.

Numerous approaches for object tracking have been proposed. They primarily di er
from each other based on the way they approach the following questions: Which object
representation is suitable for tracking?, Which image features should be used?, and
How should the motion, appearance, and shape of the object be modeled? Answers to
these questions depend on the context/environment in which the tracking is performed
and the end use for which the tracking information is being sought. Several tracking
methods, that attempt to answer these questions for a variety of scenarios, have been
published [4,5, 16].

2.2.2 Classi cation of Object Tracking Approaches

Visual object tracking algorithms can be categorized according to di erent points of
view. Recent studies adopt the classi cation of object tracking approaches into xed
and adaptive appearance modeling based methods [6]. Fixed appearance modeling

based tracking methods can be sub-categorized into non-segmentation-based and

7

segmentation-based methods. Learning-based tracking methods [6, 8{11, 13,17, 18] do
not incorporate segmentation in their tracking framework and hence, can be categorized

as non-segmentation-based methods.

2.2.2.1 Fixed Appearance Modeling Based Tracking

Tracking methods with xed models of a target prior to the start of tracking task
use di erent methods to represent the appearance of objects such as templates and
density-based approaches [4]. Template matching is the most commonly used approach
in the case of single object tracking due to its simplicity. Templates, however, only
encode the object appearance generated from a single view. Parametric density has
been used for object representation in many tracking algorithms. Using probability
density, object appearance can be estimated either parametrically, such as mixture
of Gaussian (MoG), or non-parametrically, such as histograms. Mean-shift tracking
approach uses a mixture of both spatial information and color histogram for object
representation [19]. An obvious advantage of the Mean-shift tracker over the template
matching is the elimination of an exhaustive search and accordingly, it has a good
contribution for real-time applications. However, such tracking methods may fail as a
result of the inevitable appearance variations that can be from the object itself such as
non-rigid structure, shape deformation, posture changes and abrupt motion, or from the
surrounding environment such as illumination variation, camera motion, camera scale
and occlusion [6].

In general, object tracking algorithms start by detection of object of interest and then,

nding the object correspondence across frames. In [4], point tracking algorithms that
use probabilistic approach [20,21] to solve the correspondence problem, represent objects
as points, and the association of such points is based on the previous object state which
can include object position and motion. These approaches do not include a segmentation
step in the tracking algorithm itself and can be categorized as segmentation-free
methods. In this work, we will categorize tracking algorithms that do not incorporate
a segmentation step in the tracking loop as non-segmentation-based tracking [22]. The

accuracy of such approaches is coupled with the assumptions and constraints followed

by the tracking algorithm.

While object segmentation is meant to partition image pixels into meaningful regions
based on certain characteristics such as color or texture in a spatial domain, object
tracking aims to partition such pixels based on consistence properties in a temporal
domain and hence, the two tasks facilitate each other and are found to be closely related
and both can be greatly improved if they are solved jointly. Accordingly, a new class of
object tracking approaches, that combines tracking and segmentation in an integrated
framework, is found to improve the performance of tracking systems. While solving the
segmentation problem helps precluding the tracking failures, tracking at the same time
provides an important input that can guide segmentation and enhance its performance.
Integration of segmentation and tracking approaches is found to enhance the target
localization performance, leading to a reduced tracking drift [23{27]. Such approaches
are also found to use probabilistic methods or kernel based tracking methods integrated
with a proper segmentation technique. However, many of such approaches impose few
assumptions about object contours that must be given in the rst frame. Such methods
focus on explicitly integrating segmentation methods, such as graph-cuts and active
contours, into object tracking in each frame to enhance the tracking accuracy [28{30]. In
such approaches, segmentation algorithms are used to support the tracking rather than
separating the object accurately from its surrounding. These approaches will be referred
to as segmentation-based tracking approaches. These object tracking approaches apply

xed object models, and are more likely to fail as a result of inevitable appearance

changes.

2.2.2.2 Adaptive Appearance Modeling (Learning) Based Tracking

To handle the appearance variations e ectively, adaptive methods have been
proposed to update (learn) the representation of a target incrementally over time.
Recent tracking algorithms [6, 8{11, 13, 17, 18], are learning-based methods that can
deal with such appearance variations, thus achieving more accurate tracking compared
with xed model-based ones. An appearance model is used to represent the object

of interest (target) while the motion model predicts the likely states of target over

time. In general, a learning-based object tracking system interconnects four main
modules: object initialization, appearance modeling, motion estimation, and object
localization as illustrated in Figure 2.1, where F; represents the rst frame in a given
video sequence and N represents the number of frames. The tracking process starts
by object initialization that can be manual (user annotates object location using BB)
or automatic through detection mechanism. Once the object is initialized, several
factors need to be considered for a robust appearance modeling. First, the object of
interest has to be e ciently represented, which concentrates on how to robustly describe
the spatio-temporal characteristics of object appearance. Visual object representation
can be either local (encodes local statistical information such as interest points) or
global (re ects the global statistical characteristics such as color histogram). For robust
tracking, adaptive methods have been proposed to update the representation of a target

using statistical learning techniques.

Model
Update

Fu SR Appearance Modelne ___,

F i]
1 Object 1 Visual Statistical : Motion Object

=> Initialization => : Representation Modeling ==> Estimation : Localization
[By i Eep——— 1
—> Local —> Generative
Input Video Signal L > Global —> Discriminative
L—> Hybrid

Figure 2.1: Learning-based object tracking system.

From point of view of statistical appearance modeling, recent tracking algorithms use
an updating scheme to update the target model and hence, referred to as learning-based
tracking algorithms. Such schemes can be generative, discriminative, or hybrid methods.
For generative methods [8], tracking is formulated as searching for the region of the
highest similarity with the object in neighborhood. For discriminative methods [17,31],
tracking is formulated as a classi cation problem that aims to discriminate the object
of interest from its background. Discriminative classi ers often outperform generative
models given enough training data, while generative methods often have better

generalization for small size of training data. Discriminative learning is also refereed

10

to as Tracking-By-Detection. Recently, hybrid discriminative generative methods have
opened a promising direction to bene t from both types of methods [9].

After appearance modeling, motion estimation is formulated as a dynamic state
estimation problem. The task of motion estimation is usually completed by utilizing a
prediction module using Kalman or particle Itering [4,32]. Kalman Iter simply nds
the exact solution, given a simple model under assumption that the state space model is
linear and the noise follows the statistical Gaussian distribution. Such limitations can be
overcome by using Particle Iters. Finally, a greedy search based on motion estimation

can be used for object localization and the target model is then updated.

2.2.3 Object Tracking System Components

Object tracking is a sophisticated process concerned with the estimation of target(s)
trajectory. An object tracking system comprises several complementary interconnected
modules as illustrated in Figure 2.2. It starts by initializing the object(s) in the rst
frame F; in the form of a bounding box B;. Target modeling is then adopted for object
state estimation through prediction. The target tracking-by-learning (learning module)
is then employed to update the adaptive model over time in order to discriminate the
object of interest at each frame F; in the form of B;. During tracking, the object
detection and feature extraction modules provide the required information to improve

the tracking process.

Tracking
B1 Target Modeling Target Tracking B:
F, (Prediction) (Learning)
F A A
Support
Object Detection Feature Extraction

Figure 2.2: Object tracking system components.

11

2.2.3.1 Target Modeling (Prediction) Module

In addition to observed measurements, other information can contribute to the target
state estimation. Some information may result from motion constraints of the moving
object and its interaction with the environment [13]. Motion estimation is formulated as
a dynamic state estimation problem and is usually adopted by utilizing a prediction
module using Kalman or particle Itering [33, 34]. Kalman Iter simply nds an
exact solution, under assumption that the state space model is linear and the noise
is statistically Gaussian. On the contrary, particle Itering can deal with nonlinear
models and di erent forms of noise. Particle Itering simulates the state space of the
system using certain number of random particles, each of which is weighted through

approximation of the probability density function (PDF).

2.2.3.2 Target Tracking Module

Given the object regions in the image, it is then the trackers task to perform object
correspondence across frames to generate the corresponding trajectories. Recently,
object tracking is posed as a learning-based problem, where adaptive appearance
models are adopted for target modeling. Such learning-based tracking can handle
drastic appearance changes caused by illumination change, camera motion, pose change,
and object shape deformation. In learning-based approaches, the tracking is posed
as a classi cation problem to discriminate between the object and its surrounding.
The learning strategy is embedded in the tracking framework to update the target
appearance model adaptively in response to appearance variations. The essential phase
of the learning module is the update phase, in which the close neighborhood of the
current estimated object location is used to sample positive training examples, distant
surrounding of such location is used to sample negative examples, and both are used to

update the classi er over time during tracking.

2.2.3.3 Detection Module

The object detection mechanism, needed by any tracking system, is of utmost importance

and can a ect the performance of tracking results, especially for objects that employ a

12

small motion across frames. A common approach for object detection is to make use of
the temporal information computed across frames to detect the change in object location
relative to its surroundings. Such temporal information is usually in the form of frame
di erencing, which highlights changing regions in consecutive frames. Object detection
can be performed in a variety of ways. The most commonly known approaches for object

detection are Interest points, Background modeling, and object segmentation [4].

Common detectors follow the sliding window paradigm [35,36]. A classi er is rst
trained to distinguish windows containing instances of a given class from all other
windows. The classi er is then used to score every window in a test image. Local maxima
of the score localize instances of the class. However, this approach is class speci ¢, and is
not appropriate for automated applications such as object tracking that track di erent
types of objects. In addition, it is computationally intensive. Objectness measures
attempt to generate a small set (few hundreds or thousands) of object regions that cover
every object in the input image, regardless of the speci ¢ categories of those objects
(generic over classes). Compared with traditional sliding window approach, estimating
object proposals in a pre-processing stage has the following advantages: 1) better accords
with our human visual system behavior which perceives objects before identifying them;
2) speeds up the computation by reducing the search locations, especially when the

number of object classes that need to be detected is high [37].

Recently, objectness measures [38] and saliency models [39] have occupied major
research areas in object detection. Objectness approaches are related to several research
strands such as interest point detectors (IPS) and saliency models (class-speci ¢ and
class-generic). IPS respond to local textured image neighborhoods, and focus on
individual points instead of the entire object(s) in the image scene [40]. Class-speci ¢
saliency models de ne, as a salient region, the visual characteristics that best distinguish
a speci c object class, such as vehicle or human, from others [41]. Class-generic saliency
models [42{45] measure the saliency of pixels as the degree of uniqueness of their

neighborhood relative to the surrounding region.

13

2.2.3.4 Feature Extraction Module

Feature extraction and description is an essential step in the tracking pipeline and allows
us to highlight information of interest to represent a target. Extracted features can be
grouped into three main classes that are low-level (color and motion), mid-level (edges,
interest points, and regions), and high-level (object models) [4]. The most widely used
features for object description include color, edge, optical ow, and texture. Color is
one of the most widely used features for tracking, however, color spaces are sensitive
to noise and illumination changes [46]. Edges are commonly used as a representative
feature for applications of boundary tracking [47]. An important property of edges is
that they are less sensitive to illumination changes compared to color features. Corner is

closely related to algorithms that use edge analysis to nd rapid changes in direction [48].

The terms corners and interest points are used interchangeably and refer to point-like
features in an image, which have a local two dimensional structure. Blob provides
a complementary description of image structures in terms of silhouettes [49]. Blob
may sometimes also be regarded as interest point descriptors as they often contain
point structures. However, Blob detectors can detect too smoothed image areas that
cannot be detected by a corner detector. Optical ow is commonly used as a feature
in motion-based segmentation and tracking applications [50]. Optical ow is a dense

eld of displacement vectors that de nes the translation of each pixel in a region under
constant intensity assumption constraint. Texture is a measure of the intensity variation
of a surface which quanti es properties such as smoothness and regularity. Compared
to color and edges, texture requires a processing step to generate the descriptors [49].
Interest-point detectors such as Scale-invariant Feature Transform (SIFT) [51], speeded
up robust features (SURF) [52], oriented FAST and rotated BRIEF (ORB) [53] aim at
selecting highly distinctive local image features that can be accurately localized across

multiple image frames under pose and illumination variation.

14

2.3 Common Tracking Performance Evaluation
Measures

Several performance metrics of the tracking algorithms use empirical discrepancy
methods [54] that compare o -line ground-truth data with the estimated trajectories.
Among such metrics, the average overlap ratio (accuracy), center location error,
normalized center location error, failure rate (robustness), or derivatives thereof, such

as success and precision plots are commonly used [55].

The average overlap ratio (AOR) measures the overlap ratio between the estimated

BB predicted from the tracker (B{) and the annotated BB (B{) according to
B:\ B/

AOR =)
B: [BY

The center location error (CLE) is a widely used metric that computes the average
Euclidean distance between the centers €, and €y of the estimated B; and the
annotated BY. However, when the tracker loses the target, the output location

might be random and thus the measure does not re ect the actual tracking quality.

The normalized center location error (NCLE) computes the normalized Euclidean
distance between the centers €, and ¢; of the estimated B; and the annotated B

with respect to the ground truth BB dimensions.

The failure rate (FR) is the percentage of the number of failures per sequence

. N .

based on the overlap between the B, and B} according to FR = N_Z where Nz is
F

the number of frames where AOR = 0 and N is the total number of frames per

sequence.

The success plot is a widely used metric for the evaluation of di erent tracking
algorithms [56,57]. It represents the percentage of frames for which the overlap

measure exceeds a certain threshold, with respect to di erent thresholds.

The precision plot is commonly used to measure the percentage of frames in which

the estimated locations are within a certain threshold distance of the ground-truth

15

positions. Such plot is measured with respect to di erent thresholds in a speci ¢

range.

2.4 Arti cial Immune System

Arti cial Immune System (AIS) is an emergent biologically motivated computing
paradigm. Its main concept is the extraction of principles from the natural immune
system (NIS) in order to design alternative computational tools for complex problem
solving. The main role of the immune system is to recognize and discriminate an
organism from foreign elements. The capability to recognize and eliminate speci ¢
(non-self) patterns serves as a good source of inspiration to develop novel computational
mechanisms for machine learning and pattern recognition [58,59]. AIS algorithms are
considered highly robust, adaptive, self-organized, and inherently parallel structured
[60]. They have the ability to escape the local optimum region through mutation, and
strong local search capability through cloning. They also add diversi cation by replacing
the worst performing individuals in the population. Several AIS techniques have been
developed for optimization and machine learning problems, each of which mimics a
certain principal in the NIS. Among such techniques, the clonal selection algorithm
(CLONALG) [59] is a widely employed AIS approach. In optimization problems,
CLONALG learns to recognize patterns through an evolutionary-like procedure and
is capable of solving complex engineering tasks, such as multi-modal and combinatorial
optimization [59]. CLONALG algorithm is used in diverse applications including image
classi cation [15,61] and segmentation [62,63]. A nity proportional reproduction and
mutation are two important features of the CLONALG algorithm.

In AIS terminology, the optimization problem to be solved is the antigene, generated
solutions are the antibodies, tness value (objective function evaluation) is the a nity,
cloning is the reproduction of solutions, mutation is the random modi cation of solutions,
and receptor editing is the diversi cation of solutions. For CLONALG-based AIS [1], a

population of antibodies (solutions) ab is randomly generated of certain size Ps as

16

PS =nNn Nd = PM + PR, (21)

where Ps is the size of the population, n is a small number, Ny is the total number
of design variables, Py is the number of best candidate solutions, and Pr is the
number of candidate solutions to be replaced by randomly created solutions. Each
antibody represents a combination of alternatives of all design variables in the form of
chromosomal representation. The antibodies are sorted according to their a nity into
either non-dominated (superior among all antibodies) or dominated. The dominance
is checked and the best Py, antibodies are selected which go through a cloning process
that forms the local search tool of the algorithm. The number of clones N, to all the

antibodies is selected as

Nein = Ne Ps; (2.2)

where n; is a small number. The antibodies with the highest a nity are subjected
to higher clones, so they are more likely to be selected as the best solutions in the
next generations. Then a subset of the cloned antibodies undergoes hyper-mutation
and diversi cation operations that form the basis of the global search mechanism of the
algorithm. To perform the mutation process, the antibodies are encoded into binary
strings and the mutation rate is kept inversely proportional to antigene a nity. A
percentage of the worst members of the previous population of antibodies is replaced with
some randomly generated new solutions which will add diversity to the population. The
cloning and mutation processes increase the tendency to achieve the optimal solution.
The memory (archive) of size As is utilized to store the best candidate antibodies among

generations and is de ned as

As >divk (div 1)K+ 2k; (2.3)

where div > 2Kk, is the number of divisions used to identify the crowdedness of the

17

solutions and k is the number of objectives in the optimizatiion problem. When copying
the best antibodies to the archive, if the archive is not full, all the non-dominated
antibodies are allowed to enter the archive. If the archive is full, the best antibodies which
belong to the lowest crowded region are allowed to enter the archive, and spontaneously
make random elimination of the antibodies which belong to the most crowded regions
with the same rate of the newly introduced antibodies. The length I, of the encoded

binary string for each antibody is calculated as in

2'e > U; (2.4)

where U, is the upper boundary of the corresponding design variable.

Figure 2.3 illustrates the detailed owchart of the clonal selection algorithm, which
randomly generates Ps solutions of the optimization problem. The best antibodies
according to a pre-de ned size go through cloning and mutation process to construct
new candidate solutions. These solutions are evaluated and a percentage of the best
solutions Py, is added to the population. Further, a percentage of worst Pr antibodies
are discarded and replaced with new randomly created solutions. Note that symbols
in Figure 2.3 represent the number of solutions. We aim to show that the number
of solutions is the same and the candidate solutions may be changed to nd the near
optimal ones. In the owchart, we add the non-best solutions, fraction of the best
solutions (where we applied clonning and hyper-mutations), and fraction of the rest of

the best solutions to form the solutions in the current iteration.

The CLONALG undergoes four steps to reach the nal near optimal solution [64]:

generation of random population which is a pool of antibodies or immune cells,
proliferation of best antibodies which is simply performed through cloning process,
hyper-mutation of clones (blind variation) to maintain diversity by applying
random genetic changes, and

a nity of antigene antibody interaction through the evaluation of the objective

function and elimination of low a nity antibodies.

18

Generate Ps solutions
‘ P5= PM + PR

Calculate Affinity

Yes No

Best N
solutions

r

Clonning

)

— Hyper-mutation

}

Calculate Affinity

Form Py,

. Replace worst solutions
solutions

¥
+

PSZ PM + PR

No Stopping Yes

toriad » Best solutions
criteria®

Figure 2.3: Clonal selection algorithm.

Consequently, the best antibody or group of design variables which achieve the best
objective function value will continue for more processes in the algorithm and the
rest with low a nity will be removed. The CLONALG possesses the following three
techniques to maintain diversity that improves the ability to nd a solution closer or at

the global optimal, preventing from stuck into local minima [1, 65]:

hyper-mutation,
receptor editing, which is called non-uniform mutation, and
a fraction of new antibodies are added to the generated solutions.

19

The diversity maintained by the non-uniform mutation helps the antibody-antigene
a nity to escape from local minima in the a nity landscape as shown in Figure 2.4. As
illustrated, the uniform mutation allows an antibody A to search small local searches
of antibodies with higher a nities (A!), because low a nities are eliminated, while
non-uniform mutation allows large search area steps, where the a nity might be lower

(an antibody A to an antibody B) or higher (A to C), in which mutation will lead to

reach a solution near to the global optimum.

Affinity

Antigen-binding sites

Figure 2.4: Non-Uniform mutation process of antibodies [1].

2.5 Summary

In this chapter, object tracking approaches are presented, with a focus on the adaptive
appearance modeling-based approaches. The principal components of object tracking

systems are introduced. Common performance measures are then introduced. The

CLONALG arti cial immune system algorithm is then presented.

20

21

Chapter 3

Tracker-independent Drift Detection

and Correction

3.1 Abstract

Accurate object tracking is still a challenging problem due to numerous factors, that may
cause the tracker to drift away from the target object. Some trackers use segmentation
to enhance the tracking quality. Recent learning-based trackers perform much better
than segmentation-based ones. However, their output is a bounding box that may
not well discriminate foreground and background and may not be centered correctly
around the target object. This chapter proposes a method that detects drift of a tracker,
using saliency features of the target objects. If the tracker tends to drift or shows
inaccuracies, we propose a method that applies automatic seeded object segmentation
on the estimated tracking output to correct the drift. Such segmentation is meant
to re-locate the bounding box around the target object. As seeds for segmentation,
we propose to use SIFT interest points conditioned they are non-background pixels.
Results on a publicly available benchmark of 100 sequences that cover various tracking
challenges show the ability of the proposed method to improve the tracking quality of

ve recent, and di erent performing, trackers. Simulation also show that the proposed

method outperforms segmentation-based trackers.

3.2 List of Symbols

Symbol Description

W Width of bounding box

H Height of bounding box

\'s Half of minimum dimension of object bounding box
M

C

S

Segmentation mask at frame F;

Target object contour at frame F;
Seed Mask of the estimated bounding box

Bt Estimated bounding box at frame F;

By Relocated bounding box at frame F;

B Ground-truth bounding box at frame F;

d Distance from the bounding box boundary toward center
o Average intensity of object

L Average intensity of background

Sk Saliency map of the target at frame F;

{bi} Binary mask of saliency map at frame F;

o Ratio of binary salient pixels inside saliecy map

n; Number of pixels in region r;

Diab(re i) Color distance in LAB color space between region r, and regionr;
E(ry,r:) Spatial distance between centers of region r, and region r;
[Term to control the strength of spatial weighting

Np Number of binary pixels of the salient object

P; Interest point number i

3.3 Introduction

Object tracking is a demanding application. Given the initial location of a target in the

rst frame, it estimates the states of the target in subsequent frames. Despite the fact
that much progress has been made in recent years, developing a robust (no-drift) tracking
algorithm is still a challenging problem due to numerous uncontrolled factors. Such
factors can be object-related (appearance and scale change, deformation, fast motion,
motion blur, or occlusion), environment-related (non-stationary scenes, cluttered
background, or illumination changes), system-related (real-time and automation
constraints), or combinations thereof [4]. The above-mentioned factors may cause the
tracker to drift away from the target object [4]. Drift detection is crucial, as it allows
the tracking algorithm to start a recovery (drift correction) process in order to maximize

the tracking accuracy. Drift detection can be based either on prior information about

22

the target object and tracking environment [66,67], or on features of the target object
such as visual saliency.

This chapter rst proposes a method for drift detection using saliency features.
Visual saliency is the perceptual quality that makes an object stands out relative to its
surrounding and thus captures attention. Detection of salient regions of an image has
diverse applications, including object detection and segmentation [68{70], recognition
[71], and image retrieval [72]. Saliency is also used as cue to measure how likely an image
window contains an object [38]. Using saliency features for drift detection has several
advantages. First, no prior information is needed. Second, the saliency detection process
is not computationally expensive. Finally, one can still get the saliency information even
under challenging conditions such as occlusion and illumination variations [73].

Object segmentation can be used to improve the accuracy of object tracking [74].
Segmentation-based tracking approaches provide segmentation input to the tracking
algorithm in a closed loop form, for successful tracking [23{27]. However, such
approaches are not competitive in accuracy with learning-based tracking approaches
such as [2,10{13]. On the other side, the output of learning-based trackers is, limited
to a bounding box (BB). Such BB may not accurately discriminate foreground and
background, handle non-rigid objects, or be centered accurately around the target
object, which a ects the accuracy of the overall tracking process. This chapter
thus proposes drift correction by applying automatic seeded object segmentation
on the tracker’s output BB for enhanced tracking quality through drift reduction.
Applying object segmentation on each output BB of the tracker is assumed to provide
more accurate BB location with respect to the target object. However, running the
segmentation each frame has two main drawbacks: rst, it is computationally intensive;
second, segmentation result may become inaccurate under video challenges such as
motion blur or occlusion. Accordingly, we propose to apply object segmentation only

when a tracking drift is detected.

In the rest of the chapter, section 3.4 presents prior work, and its relation to the

proposed approach, which is introduced in section 3.5; section 3.6 presents the analysis

23

and discussion of the obtained results; and section 3.7 concludes the work and proposes

future work.

3.4 Prior Work

Various approaches have been used for enhancing object tracking quality such
as integrating segmentation and tracking in a closed loop as well as template
matching. Object tracking approaches can be divided into those explicitly using object
segmentation [23{27], and those not making explicit use of it, such as learning-based
tracking methods [2,10{13]. In the following, we review both categories and also methods

that explicitly handle drift detection and correction.

3.4.1 Segmentation-based Trackers

Segmentation-based tracking approaches use segmentation to initialize the tracking per
frame in a closed loop form. In [23], a ne Random-Walker (R-Walk) segmentation of an
object at any frame is used to initialize the tracking for the next frame. In [24], a closed
loop interaction between EM-like color-histogram tracking and R-Walk segmentation has
enhanced the accuracy of object localization. The spatial properties and appearance of
segmented objects are exploited to initialize the tracking algorithm in the next step. In
[25], G-Cut segmentation is applied to mean-shift tracking in a closed loop. Integrating
G-Cut within the optical ow tracker in [26] showed the ability to track articulated
objects under challenging conditions. These methods require user input at the rst
frame.

In [74], Wen et al. presented a joint tracking and segmentation (JOTS) algorithm
which integrates multi-part tracking and segmentation into a uni ed energy optimization
framework. The multi-part tracking and segmentation are carried out iteratively to
minimize an objective function using a RANSAC-style approach. JOTS uses the SLIC
super pixel for multi-part segmentation and the segmentation is used to initialize the
tracking at next incoming frame. In such approaches, the segmentation is crucial

to initialize the tracking algorithm at each frame for successful tracking. However,

24

running segmentation at each frame has two main drawbacks: rst, it is computationally
intensive; second, segmentation may become inaccurate under video challenges such as
motion blur which may mislead the tracking process.

In the above methods, seeds through interactive user input are required. Interactive
seeded segmentation has appealing results [75{78] which require input seeds to represent
both object and background through user interaction. However, it is impractical for
automated tracking applications. [79] presented a method of object recognition and
segmentation using Scale-Invariant Feature Transform (SIFT) and G-Cut. However,
this method assumes that the object models, used for Itering of the interest points,
are pre-selected, which is not always available. In [80], J. Shan et al., presented a new
automatic seed point selecting method for region growing algorithm for breast lesion’s
images. One of the limitations of this method is that results are a ected by shadow
with similar intensity of the lesion region, which is a case that can commonly occur in
tracking environment. [81] used the initial contour (not seed points) close to the object
boundary to initialize the active contour segmentation. The initial contour of the level set
segmentation is a closed curve. Therefore, the convex-hull polygon is chosen to embody
the salient object points. However, the active contour segmentation is computationally
intensive. In [82], Yang et al. presented an automatic color image segmentation using
G-Cut and color SIFT (CSIFT) features. They assume that pre-captured models of the

colored target object are available.

3.4.2 Learning-based Trackers

The last few years have witnessed the emergence of several learning-based high
performing trackers [2,3,8{11,13,18,83{85]. STRUCK tracker [2] is an adaptive tracker
based on kernelized structured output prediction using support vector machine, which
is learned incrementally over time. Sequential minimal optimization (SMO) is adopted
to nd the optimal support vectors from samples around estimated object location to
update the classi er for target prediction. ASLA tracker [8] uses a structural local
sparse appearance model that exploits both partial and spatial information from sampled

candidate patches around estimated object location. A dictionary learning based on a

25

structured sparse representation is combined with robust sparse coding in which the
learned classi er is employed to separate the object from background. SCM tracker [9]
uses a collaborative model with an updating scheme that considers both the latest
observations and the original template, thereby handles appearance changes e ectively.
KCF tracker [10] is a Kernelized Correlation Filter operating on simple HOG features
that performs training and detection to discriminate an object appearance from its
surrounding. SAMF tracker [11] is a correlation Iter (CF) based tracker that uses a
scale adaptive scheme to tackle the problem of the xed template size in the CF. LOT
tracker [12] automatically estimates and adapts, on-line, to the rigidity of the tracked
object through a probabilistic model to handle appearance variations over time. DSST
tracker [13] extends the Minimum Output Sum of Squared Errors tracker [86] with robust
scale estimation. In addition, DSST learns a one-dimensional discriminative scale Iter
to estimate target size. STAPLE tracker [3] combines two image patch representations
to learn a model that is inherently robust to both color changes and deformations. Two
independent ridge regression problems are solved, exploiting the inherent structure of
each representation to maintain real-time performance. STAPLE combines the scores
of template and histogram models in a dense translation search, that are learned
independently, enabling greater accuracy. CCOT [84] introduced a formulation for
training continuous convolution Iters. It employs an implicit interpolation model to
pose the learning problem in the continuous spatial domain which enables the e cient
integration of multi-resolution deep feature maps. T-CNN [83] presented an online
visual tracking algorithm by managing multiple appearance models in a tree structure.
Such algorithm employs Convolutional Neural Networks (CNNs) to represent target
appearances. It is convenient to handle multi-modality in appearances and preserve
model reliability through smooth updates along tree paths.

Deep learning is one of the most successful research directions in machine learning
and computer vision. In object tracking, it detects candidate targets in consecutive
frames in which deep learning is used to recognize the object of interest among such
candidates. The power of deep learning appears in its ability for automatic feature

expression. Through a multi-layered learning architecture, the deep networks can achieve

26

both high dimensional and abstraction level with obvious distinction. One of the most
popular deep-learning architectures is the convolution neural network (CNN) [87]. Due
to its superiority among other architectures, CNN becomes the mainstream model in
visual tracking. Generally, an o -line trained large-scale CNN is adopted for both
classi cation and tracking. The common approaches of CNN-based tracking are both
fully CNN (FCNT) [85] and multi-domain CNN (MD-Net) [18]. FCNT constructs a
feature selection network in addition to prediction networks. In addition, such networks
are found to use irreverent image data to reduce the training demand, which causes
deviation from tracking to some extent [87]. In the pre-training phase, the object of
certain class in one video can be a background in another video. As a result MD-Net
de nes a domain to be a set of videos that contain same kind of objects and proposes
to use a multi-domain structure to distinguish between the object and background in
each domain independently. Deep learning approaches have some limitations. First,
the pre-training is ine cient for on-line training that a ects the tracking performance.
Second, it incorporates a large number of parameters that are not shared among di erent
layers. Third, MD-Net does not fully utilize video information in temporal domain.
Recent network models, such as recurrent neural networks, are being discovered and
showed to outperform the FCNT and MD-Net.

Learning-based trackers output a BB that is not adaptive to object boundaries and
shape, specially when the target object undergoes drastic appearance changes. Also once
the tracker starts drifting, the location and overlap error accumulate quickly, distorting

object model recursively and eventually leading up to a total failure.

3.4.3 Trackers with Drift Detection and Correction

Drift detection allows the tracking algorithm to start a drift correction (recovery)
process. To detect drift from the target object, object detection methods can be used.
State-of-the-art object detectors follow the sliding window paradigm [35,36]; they classify

rst windows containing instances of a given class. The classi er is then used to score
every window in a test image in which a local maximum of the score localizes instances

of such class. After drift detection, a recovery process is important to correct the

27

drift. In [67], Schreiber proposed a modi ed Lucas-Kanade template matching with
drift correction, in which an object is tracked by extracting a template in the rst frame
and then nding the region which matches the template as closely as possible in the
remaining frames. The underlying assumption is that the object appearance remains
the same. In [66] the current estimated template is updated using naive algorithm and
then, aligned with the retained rst frame template to give the nal update. Such drift
correcting algorithm is still sensitive to variations in the object appearance relative to

the rst template.

3.4.4 Di erences to Our Approach

Our proposed method 1) is tracker independent, and can be applied to any tracking
algorithm; 2) requires no prior information about the target object for automatic drift
detection; 3) uses automatic segmentation with robust seed selection through both SIFT
and intensity features to Iter out seeds related to the background regions; and 4)
outputs a BB more adaptive to object boundaries and shape. Our method di ers from
segmentation-based tracking, as it applies segmentation only when a drift is detected

and hence, it can achieve both better quality as well as higher frame rate.

3.5 Proposed Method

The proposed method comprises two main components as shown in Figure 3.1 drift
detection using saliency features and drift correction using seeded segmentation. At
current frame Fy, given the estimated tracking output BB from previous frame F; 1, an
object tracker estimates the BB (By) around the target. If a drift is detected, the drift

correction relocates the BB around the target through automatic seeded segmentation.

3.5.1 Saliency-based Drift Detection

Saliency object detection, sometimes called salient segmentation, is interpreted in

computer vision as the process that incorporates detection of the most salient region(s)

28

Bt Sk b; s

|
Bt Object g Saliency Saliency Saliency Drift
F; Tracking : Detection Thresholding Ratio Detection
_____________________________________ |

Drift Detection

SIFT Interest Point
extraction

Saliency Filter

Average Intensity
Filter
Seed Selection

|
|
|
|
|
|
|
|
|
|
|
|
I and
|
|
|
|
|
|
|
|
|
|
|

Seeds S

Segmentation

B;

]

Object Segmentation

Contour Selection

Contour C

Drift Correction

Figure 3.1: Block diagram of the proposed drift detection and correction method.

in an image and then segmenting the boundary of such region(s). For saliency of a
region, a high contrast to its surrounding regions is usually stronger evidence than that
of far-away regions. Generally, an object is more likely to be salient than a region on the
background, as image background is usually more structured and homogeneous (thus
less salient) than objects [88].

While most of saliency models [42, 43, 45] employ local contrast, we calculate
the saliency map more robustly [44] using global contrast di erences and spatial
coherence. However, directly introducing the spatial relation among individual pixels
is computationally expensive and thus, we partition the BB B; into K regions (e.g.,
using [89]) and calculate the saliency sy of each region r as a weighted sum of
corresponding regions’ contrast according to the spatial distance among them. For this,

we rst nd the histogram of each region ry and then calculate the saliency sy of r¢ as

X e,
Sk = Ni Dia(ri; ri) e 5Cer=s; (3.1)
(i6k)

29

where n; is the number of pixels inside region rj and D (ri; ri) is the color distance
between regions ry and rj in LAB color space, E(r; ;) is the Euclidean spatial distance
between centers of ry and rj, and ¢ controls the strength of spatial weighting. s =

|DN -
=P s the average of di erences between pixels pairs of the frame F;, where dp;

N
is the average of absolute intensity di erences between pixel p; and its four neighbors
and N is the number of pixels in F;. We calculate the number of regions K using the
super-pixel segmentation, which groups pixels of B into regions with similar values.
With fs,g, each pixel p, of B¢ has a saliency value. To reduce complexity, we apply a
saliency thresholding of sk to get the binary mask b,

8

<<
1l :s >
b =] k(pl) S (3.2)
- 0 :otherwise

with tg global to B¢ de ned as

P
to= P S, (3.3)

KM
where ny is the number of pixels in ry. Finally, our drift detector determines whether
the target object inside B¢ has drifted from its expected position depending on ¢, the
ratio of the binary salient pixels inside fb,g, as follows

8

< . N
TDrift =] 1 (s<Csl)_((s>C52) (s<Cs3)) (3.4)

- 0 :otherwise:

Meaning if ¢ the ratio of binary pixels in By is within the range (Csz; Cs3), such as 0:6

and 0:9, or smaller than cg1, such as 0:2, then drift is detected with
s = BP— (3.5)

F)
where Ny is the number of binary pixels (i.e., pixels p; with by = 1) of By, Ny is
the total number of pixels in all K regions (or the number of pixels in B¢). Cs1, Cs,
and cg3 are experimentally selected constants that decide whether the target saliency

is low and hence a drift starts to occur. As shown in Figure 3.2, such constants are

30

selected according to tracker’s scale property. Scale variant trackers, such as DSST [13],
SAMF [11] , and STAPLE [3], adapt the estimated BB to the target size (Figure 3.2.
a), while scale-invariant ones, such as KCF [10] and STRUCK [2], have a xed size

estimated BB (Figure 3.2. b).

(a) Scale-variant. (b) Scale-Invariant.

Figure 3.2: Scale-variant versus scale-invariant example frames.

3.5.2 Drift Correction Using Seeded Segmentation

To correct drift, we relocate B; using seeded G-Cut segmentation that has appealing
results as it compromises between the computational complexity and the ability to
achieve global solution [78]. The input parameters of interactive seeded segmentation
[75{78], such as G-Cut, are seeds that represent both object and background as hard
constraints through user interaction. Interactive seed selection has shown to improve
the tracking quality [29]. However, interactivity is impractical for automated tracking
applications. We thus propose to automatically select seeds for G-Cut using two-layer
Iter: SIFT interest points and non-background pixels inside B;.

SIFT is able to nd distinctive interest points that are invariant to location, scale and
rotation, and robust to a ne transformation and illumination changes [90]. Among the
SIFT points, there exist interest points that are more likely to belong to the background
(not the target) which may mislead the segmentation. Accordingly, we propose a
two-layered Iter such that SIFT interest points used to initialize the segmentation are

more likely to belong to the target. The rst layer uses the already generated saliency

31

map fskg to Iter out all points outside the saliency map of the target object. We select
only those interest points that intersect with the most salient pixels of the binarized
saliency map b,. The second layer Iters out the interest points that belong to the
background. We de ne the background as illustrated in Figure 3.3; Given the base
tracker BB (green), we divide the frame into four regions: absolutely foreground (AF),
probably foreground (PF), probably background (PB), and absolutely background
(AB). The AF region is inside BB and belongs to the object as a hard constraint.
The PB is a margin to handle segmentation of irregular object parts outside the BB.
Seeded segmentation expands from AF through PF (and possibly PB) regions until
it reaches BB boundaries. In the proposed method, PB and AB outside the BB are

considered background. Thus the nal interest points exclude those in PB and AB.

il il

- .

(a) Input frame. (b) Seed masks. (c) Segmentation.

Figure 3.3: Automatic seed masks for segmentation.

Seeded segmentation is sensitive to seed quantity and placement. It is important
to select seeds that have a low probability of false alarm. As a consequence, our seeds
selection in region AF avoids boundaries of BB and places the seeds starting from the
center of the output BB of a tracker. Low-light (or dark) objects surrounded with a dark
background are a challenge for segmentation and we thus select less seeds for such BB to
decrease false alarm. To this end, we use the average intensities , of AF region and
of its immediate neighbour pixels (e.g., in a radius of 10 pixels). The idea is to determine
the appropriate AF region inside B; centered at a distance d from its boundaries as

8

< . _ A .
d= 1 01y (o<C)™(o b <C) (3.6)

- (1 2.+ 3 : otherwise;

32

where = min(W; H)=2 with W and H as the width and height of B;. Then d is upper
bounded to 1, which is the maximum distance to move from any B; boundary to
reach the center of B;. ¢, = 0:35 represents dark objects and ¢ = 0:03. Dark objects
on low intensity background are a challenge for segmentation; we thus assume that dark
objects on low intensity background, e.g., Figure 3.14 (third row), require lower AF
region (i.e., less seeds) for accurate segmentation. This is because lower AF at the B,
center allows the segmentation, not the seeds, to decide what are the object parts inside
B,. Figure 3.4 shows the relation between d (in pixels) and : for high , (bright BB),

small d (i.e., more seeds) are required as the object boundaries are more distinguishable.

|1t - 1| < 0.03

30

20

Distance d

10

0
0.05 0.15 025 035 045 055 065 0.75 085 0.95

Average Intensity TR

Figure 3.4: Distance d versus the average intensity , of AF region.

Thus the output of our two-layer Iter are seeds S that is a set of pixels p, in By that
are SIFT interest points Itered by the binary saliency map and at the same time fall
inside the AF region,

S=1p 2(SIFT MAF) ™ (b = 1)g: 3.7)

AF isinside By and de ned by d in (3.6) as illustrated in Figure 3.3. Figure 3.5 illustrates

the Itering process of SIFT points and segmentation result.

33

(a) Input BB. (b) SIFT points. (c) Filtered (d) Segmenta-
SIFT. tion.

Figure 3.5: Interest points Itering process and segmentation output.

The object segmentation initialized with seeds S produces the object mask M that
represents the target object. Due to various tracking and segmentation challenges, the
object mask M from G-Cut is likely to include noisy blobs. Thus we apply contour
selection, that uses the ood lling to Il small holes in M through connected component
algorithm, calculates the contour length of all regions inside M, selects the largest
contour as C, and removes other small blobs. The BB is then relocated around the

center of C.

3.6 Results and Analysis

3.6.1 Experimental Setup

For experiments, we have evaluated the results of our approach on a publicly available
dataset of 100 sequences provided by Wu et al. [56] that covers 11 di erent tracking
challenges. We test our approach on ve recent trackers, STRUCK, KCF, SAMF, DSST,
and STAPLE [2,3,10,11,13], that are di erent performing from view point of tracking
accuracy, performance, and methodology [55{57,91{95].

34

For evaluation, we use the average precision and success plots, and three evaluation
measures: overlap ratio AOR, center location error CLE, and failure rate FR. Moreover,
we use the number of recovery and drift in the form of recovery-drift plot to further
investigate the achieved improvement by the proposed method (recovery and drift
measures are de ned in section 6.5.2).

The suitable selection of G-Cut segmentation parameters plays an important role
in the accuracy of the resulting segmentation. These parameters are that represents
a weighting term to control both over and under segmentation and that represents
the camera noise. We propose to select such G-Cut parameter using CLONALG-AIS as
described in chapter 5. In all the simulations that follows, we used the values derived in
chapter 5, which are =218 and = 10.

The only parameters that we use depending on the tracker category are those in (3.4)
which we selected according to the scale property of the tracker as follows: cs; = 0:375,
Cs2 = 0:625, and cs3 = 0:925 for scale-variant trackers (such as SAMF, DSST, and
STAPLE) and ¢5; = 0:2, ¢, = 0:6, and cs3 = 0:9 for scale-invariant trackers (such as

STRUCK and KCF).

3.6.2 Objective Results

Tables 3.1, 3.2, 3.3, 3.4, and 3.5 show the overlap ratio, center location error, failure
rate, drift, and recovery measures of the original trackers vs. the proposed framework
for each of the 100 test sequences. Better results are shown in bold. Averages over all

test sequences are also given. As can be seen, the proposed method improves the quality

(R_D)

in all aspects. In table 3.5, we give the a pure recover-to-drift measure pRD = © 100)

where R is the sum of individual recoveries of all 100 test videos, D is the sum of
individual drifts of all 100 test videos, and L is the total number of frames of all test
videos. Note that we subtract 100 as we skip the rst frame in each video. As can be
seen, with our method all trackers achieved better pPRD and SAMF tracker achieved the
best improvement. Note that pRD is between 1 and -1, where positive values mean the
tracker well recovered from drifts on average. For example, pRD = 0:333 indicates good

performance since the tracker shows more recoveries than drifts.

35

Table 3.1: The overlap ratio of base and modi ed trackers per sequence.

Tracker

Sequence STRUCK STRUCK- KCF KCF- SAMF SAMEF- DSST DSST- STAPLE STAPLE-

SegTrack SegTrack SegTrack SegTrack SegTrack
Deer 0.740 0.740 0.622 0.687 0.671 0.710 0.642 0.805 0.641 0.783
Shaking 0.448 0.443 0.039 0.660 0.225 0.735 0.716 0.724 0.039 0.730
Sylvester 0.732 0.735 0.643 0.625 0.629 0.649 0.628 0.632 0.566 0.570
David 0.226 0.301 0.538 0.527 0.713 0.714 0.818 0.808 0.794 0.761
Walking2 0.510 0.508 0.395 0.454 0.662 0.680 0.800 0.800 0.777 0.769
Card 0.490 0.487 0.483 0.482 0.747 0.729 0.896 0.839 0.873 0.833
Girl 0.741 0.744 0.545 0.540 0.674 0.653 0.441 0.448 0.503 0.538
Trellis 0.612 0.623 0.631 0.629 0.846 0.798 0.773 0.770 0.845 0.816
Biker 0.254 0.237 0.249 0.243 0.244 0.299 0.274 0.273 0.256 0.344
Dudek 0.654 0.664 0.727 0.728 0.823 0.808 0.788 0.792 0.656 0.730
Human9 0.113 0.148 0.393 0.389 0.321 0.339 0.319 0319 0.454 0.369
BasketBall | 0.058 0.043 0.676 0.676 0.544 0.525 0.578 0.594 0.694 0.751
Birdl 0.136 0.168 0.052 0.243 0.165 0.209 0.104 0.256 0.286 0.286
BlurBody 0.722 0.697 0.672 0.674 0.690 0.721 0.461 0.462 0.727 0.711
BlueCar2 0.753 0.709 0.759 0.742 0.868 0.822 0.903 0.872 0.890 0.875
BlurFace 0.593 0.601 0.836 0.848 0.869 0.881 0.872 0.888 0.849 0.871
BlurOwl 0.775 0.808 0.194 0.193 0.666 0.666 0.184 0.188 0.426 0.742
Bolt2 0.139 0.125 0.011 0.291 0.011 0.258 0.011 0.548 0.681 0.689
Box 0.620 0.577 0.302 0.275 0.325 0.320 0.344 0.337 0.355 0.351
Carl 0.108 0.138 0.139 0.167 0.468 0.450 0.630 0.627 0.659 0.644
CarDark 0.891 0.856 0.614 0.614 0.757 0.731 0.845 0.841 0.871 0.872
CarScale 0.412 0.392 0.419 0.427 0.499 0.550 0.743 0.742 0.780 0.752
ClifBar 0.198 0.197 0.259 0.400 0.380 0.616 0.653 0.656 0.462 0.682
Couple 0.507 0.503 0.200 0.348 0.481 0.491 0.090 0.449 0.530 0.545
Crowds 0.088 0.371 0.793 0.800 0.735 0.691 0.732 0.732 0.803 0.763
Diving 0.292 0.332 0.318 0.332 0.236 0.259 0.214 0.331 0.244 0.332
DragonBaby| 0.233 0.249 0.312 0.312 0.168 0.180 0.056 0.146 0.501 0.538
Football 0.324 0.550 0.552 0.567 0.599 0.589 0.553 0.553 0.582 0.566
Freemand 0.119 0.181 0.175 0.397 0.447 0.413 0.456 0.459 0.408 0.384
Human3 0.014 0.014 0.005 0.224 0.005 0.291 0.023 0.023 0.024 0.023
Human4 0.208 0.369 0.370 0.353 0.671 0.626 0.645 0.643 0.666 0.584
Humané 0.200 0.226 0.207 0.199 0.484 0.461 0.376 0.377 0.805 0.779
Ironman 0.036 0.072 0.140 0.129 0.157 0.140 0.123 0.122 0.086 0.042
Jump 0.208 0.260 0.097 0.185 0.053 0.159 0.091 0.091 0.059 0.092
Jumping 0.640 0.569 0.274 0.282 0.253 0.655 0.136 0.172 0.246 0.542
Liquor 0.609 0.703 0.436 0.421 0.575 0.730 0.407 0.414 0.655 0.764
Matrix 0.228 0.296 0.119 0.125 0.269 0.269 0.136 0.127 0.242 0.339
MotorRollin| 0.424 0.298 0.092 0.112 0.091 0.097 0.091 0.098 0.096 0.108
Panda 0.527 0.496 0.158 0.264 0.323 0.441 0.126 0.127 0.313 0.309
RedTeam 0.489 0.485 0.500 0.456 0.655 0.655 0.564 0.562 0.567 0.567
Singer2 0.043 0.080 0.732 0.718 0.772 0.749 0.781 0.763 0.783 0.765
Skatingl 0.393 0.412 0.489 0.496 0.594 0.562 0.527 0.536 0.410 0.600
Skiing 0.034 0.031 0.050 0.050 0.050 0.055 0.065 0.065 0.105 0.102
Soccer 0.149 0.131 0.422 0.422 0.177 0.157 0.434 0.440 0.224 0.555
Surfer 0419 0.419 0.465 0.504 0.677 0.687 0.323 0.326 0.219 0.500
Tiger2 0367 0.374 0.351 0.341 0.674 0.686 0.325 0.340 0.686 0.699
Walking 0.566 0.559 0.530 0.536 0.709 0.707 0.744 0.741 0.741 0.732
Woman 0.728 0.728 0.705 0.714 0.687 0.638 0.693 0.697 0.749 0.759
Skating2 1| 0240 0.239 0.419 0.434 0.243 0.308 0.382 0.380 0.479 0.460
Skating2 2 | 0.405 0.392 0.374 0.374 0.441 0.434 0.143 0.158 0.254 0.279

36

Tracker

Sequence STRUCK- KCF- SAMF- DSST- STAPLE-

STRUCK SegTrack KCF SegTrack SAMF SegTrack DSST SegTrack STAPLE SegTrack
Face Occ2 0.765 0.740 0.751 0.737 0.753 0.768 0.780 0.775 0.762 0.782
Singerl 0.358 0.358 0.355 0.355 0.539 0.336 0.824 0.831 0.822 0.813
Boy 0.763 0.770 0.777 0.799 0.780 0.782 0.839 0.835 0.819 0.787
Board 0.647 0.645 0.648 0.649 0.685 0.653 0.718 0.710 0.603 0.692
BlurCarl 0.802 0.793 0.802 0.798 0.820 0.814 0.767 0.758 0.527 0.537
Dancer2 0.752 0.727 0.773 0.781 0.775 0.784 0.771 0.768 0.784 0.783
Car2 0.687 0.684 0.683 0.686 0.855 0.836 0.912 0.908 0.858 0.919
Dogl 0.543 0.543 0.550 0.540 0.688 0.685 0.757 0.760 0.817 0.733
FaceOccl 0.723 0.769 0.774 0.784 0.791 0.786 0.765 0.772 0.793 0.527
Freemanl 0.370 0.374 0214 0.229 0.262 0.259 0.244 0.247 0.657 0.646
MountainBike | 0.701 0.702 0.711 0.715 0.700 0.714 0.730 0.731 0.717 0.753
Skater2 0.509 0.562 0.566 0.574 0.564 0.574 0.517 0.529 0.425 0.482
Skater 0.621 0.612 0.610 0.610 0.606 0.601 0.586 0.588 0.604 0.614
Gym 0.248 0.254 0.426 0.424 0.501 0.477 0.253 0.253 0.337 0.257
Bird2 0.559 0.566 0.575 0.671 0.605 0.581 0458 0.459 0.781 0.783
BlueCar3 0.821 0.811 0.810 0.817 0.856 0.864 0.841 0.844 0.831 0.839
BluCar4 0.841 0.841 0.839 0.758 0.859 0.853 0.897 0.895 0.888 0.894
Bolt2 0.139 0.125 0.011 0.291 0.011 0.258 0.011 0.548 0.681 0.689
Car24 0.300 0.292 0.426 0.426 0.524 0.524 0.467 0.466 0.432 0.474
Coke 0.556 0.554 0.549 0.577 0.648 0.655 0.573 0.585 0.569 0.588
Coupon 0.868 0.863 0.944 0.944 0.942 0.942 0.898 0.897 0.899 0.942
Crossing 0.646 0.606 0.710 0.704 0.761 0.770 0.787 0.783 0.776 0.778
Dancer 0.637 0.643 0.646 0.648 0.730 0.736 0.771 0.771 0.776 0.787
David2 0.873 0.869 0.827 0.820 0.805 0.830 0.810 0.812 0.788 0.793
David3 0.296 0.293 0.772 0.777 0.781 0.779 0.484 0483 0.778 0.796
Dog 0.328 0.330 0.350 0.342 0.486 0.429 0.540 0.543 0.528 0.5460
Doll 0.548 0.549 0.534 0.563 0.579 0.571 0.847 0.842 0.834 0.839
Fish 0.850 0.844 0.839 0.756 0.825 0.825 0.803 0.743 0.783 0.780
FleetFace 0.588 0.558 0.589 0.591 0.636 0.645 0.634 0.645 0.658 0.635
Footballl 0.324 0.550 0.552 0.567 0.599 0.589 0553 0.553 0.582 0.566
Freeman3 0.247 0.204 0.324 0.324 0.294 0.240 0336 0.336 0.337 0.345
Girl2 0.163 0.229 0.057 0.250 0.064 0.559 0.095 0.093 0.110 0.123
Human2 0.639 0.649 0.248 0.248 0.716 0.716 0416 0.429 0.732 0.245
Human5 0.343 0.336 0.183 0.187 0.443 0.443 0.199 0.316 0.486 0.628
Human7 0.483 0481 0.283 0.280 0.327 0.319 0.360 0.349 0.810 0.804
Human8 0.124 0.121 0.510 0.511 0.543 0.546 0.807 0.800 0.768 0.805
KiteSurf 0.381 0.536 0.474 0.310 0.304 0.273 0.322 0.327 0.742 0.704
Lemming 0.491 0.487 0.384 0.408 0.756 0.751 0327 0.327 0.238 0.360
Man 0.883 0.827 0.831 0.835 0.818 0.834 0.842 0.831 0.852 0.854
Mhyang 0.812 0.810 0.796 0.793 0.865 0.843 0.806 0.808 0.779 0.799
Rubik 0.453 0.454 0.613 0.336 0.572 0.574 0.648 0.649 0.635 0.681
Subway 0.640 0.660 0.754 0.769 0.748 0.777 0.182 0.183 0.743 0.803
Suv 0.560 0.577 0.880 0.879 0.858 0.835 0.811 0.824 0.844 0.845
Tigerl 0.613 0.616 0.785 0.727 0.782 0.777 0.620 0.629 0.764 0.759
Toy 0412 0.412 0.475 0.473 0.612 0.607 0.702 0.702 0.649 0.687
Trans 0.516 0.516 0.384 0.362 0.563 0.563 0.461 0.481 0.551 0.544
Twinnings 0.586 0.585 0.565 0.565 0.702 0.703 0.788 0.797 0.765 0.781
Vase 0.309 0.307 0316 0.316 0.448 0.442 0.540 0.540 0.580 0.575
Jogging1 0.672 0.632 0.185 0.183 0.786 0.786 0.185 0.184 0.174 0.178
Jogging2 0.136 0.133 0.124 0.124 0.140 0.269 0.139 0.139 0.138 0.138
Average 0.465 0.477 0.481 0.5 0.559 0.579 0.528 0.543 0.586 0.613

37

Table 3.2: The center location error of base and modi ed trackers per sequence.

Tracker
S : : . . -
equence STRUCK STRUCK KCF KCF SAMF SAMF DSST DSST STAPLE STAPLE
SegTrack SegTrack SegTrack SegTrack SegTrack
Deer 5.265 4.978 2139 | 9.222 | 1445 9.864 16.66 4.394 19.72 4.905

Shaking 27.80 47.75 1125 | 10.50 | 41.86 8.656 8.363 7.126 138.0 7.312
Sylvester 5.879 5.890 12.91 13.27 | 15.16 17.60 13.52 13.42 14.15 14.62
David 64.92 42.28 8.061 | 9.038 | 3.857 4.026 3.645 3.948 3.835 3.759
Walking2 11.98 12.18 2898 | 23.18 | 4.060 3.202 2.949 2.702 3.428 4.144
Car4 8.056 6.635 9.877 | 9.575 | 2.206 4.082 1.718 3.891 2.369 4.002
Girl 2.684 2.671 11.48 | 11.25 | 6.331 6.942 11.11 10.35 12.18 11.02
Trellis 6.125 6.328 7.763 | 6.998 | 2.480 5.501 2.593 2.802 3.228 3.097
Biker 25.55 25.77 77.17 | 82.00 | 89.56 80.68 74.72 74.717 79.43 22.45
Dudek 29.19 28.34 12.03 | 11.42 | 8.649 10.26 13.45 12.36 13.85 10.67
Human9 41.11 4431 14.76 | 13.73 | 16.88 14.30 28.15 26.28 11.31 16.20
BasketBall | 184.6 214.8 7.889 | 7.889 | 1835 18.02 10.92 10.41 16.88 5.796
Bird1 1224 156.2 194.8 | 74.19 | 97.47 108.6 144.0 154.5 65.56 65.40
BlurBody 15.43 18.41 1498 | 14.98 | 18.65 9.588 90.85 86.98 6.182 7.514
BlueCar2 7.991 10.08 5917 | 7.378 | 3.593 6.611 2.876 4.638 3.646 4.407
BlurFace 29.80 29.42 5.577 | 4.569 | 5.449 4.813 5.184 4.069 6.230 5.033
BlurOwl 7.043 4.884 1834 | 79.31 | 2735 27.35 196.1 195.7 123.9 9.861
Bolt2 376.8 377.0 6.365 | 6365 | 4.447 5.023 4.508 4.360 4.047 3.227
Box 15.88 24.64 89.12 | 1213 | 91.23 93.92 106.8 108.5 90.84 91.35
Carl 58.21 33.03 39.71 | 2175 | 1.504 2.012 1.653 1.695 1.123 1.151
CarDark 1.003 1.449 6.046 | 6.046 | 2.796 3.367 1.466 1.540 1.176 1.131
CarScale 36.48 36.20 16.14 | 14.11 | 78.30 10.19 19.08 19.17 8.127 17.59
ClifBar 76.12 76.16 36.72 | 14.87 | 2511 4.464 5.326 5.083 29.16 4.588
Couple 22.92 23.21 4755 | 22.33 | 17.69 15.89 1255 30.91 34.15 13.90
Crowds 374.7 193.1 3.069 | 2.992 | 3.705 4.321 3.752 3.751 2.890 3.067
Diving 34.76 22.16 3952 | 26.37 | 71.30 32.65 73.61 15.91 76.48 22.46
DragonBaby | 64.18 60.74 50.39 | 5039 | 72.08 65.08 1423 161.7 18.98 2521
Football 1394 14.61 14.60 | 13.93 | 13.36 13.58 15.75 15.75 13.00 14.14
Freeman4 51.58 38.96 27.11 | 8.006 | 10.19 6.275 5.603 5.534 18.02 17.31
Human3 2313 240.9 260.1 | 98.13 | 269.7 78.40 3325 245.7 303.7 289.5
Human4 234.5 94.14 131.7 | 138.2 | 4.546 8.853 5.658 5.696 5.105 12.00
Human6 102.5 38.40 107.6 | 140.8 | 11.93 12.57 167.3 151.6 5.744 7.412
Ironman 171.8 151.5 158.8 | 1922 | 64.05 64.35 206.1 205.4 81.95 86.59
Jump 51.79 30.71 84.11 | 52.65 | 1564 51.84 92.35 89.61 158.0 89.26
Jumping 5971 7.679 26.11 | 258.36 | 26.95 6.874 36.86 27.18 26.68 8.029
Liquor 52.54 21.45 88.17 | 88.73 | 34.12 16.49 98.70 96.22 8.392 7.331
Matrix 106.8 63.15 76.42 | 69.00 | 65.95 65.95 70.05 70.29 74.14 37.72
MotorRolling | 28.87 61.65 2029 | 1753 | 226.3 180.1 296.9 142.5 1822 146.7
Panda 6.783 7.534 42.05 | 48.00 | s6.16 9.688 43.57 43.56 51.55 60.16
RedTeam 4.037 4.221 3.807 | 4.668 | 3.084 3.084 2.855 2.873 3.040 2.705
Singer2 171.8 81.25 10.28 | 10.82 | 8.104 10.67 7772 8.802 7.597 8.066
Skatingl 55.90 36.41 7.668 | 6.548 | 5.685 5.566 8.325 7.889 70.61 6.155
Skiing 256.8 252.8 260.0 | 257.0 | 2512 253.8 195.6 195.6 2444 242.2
Soccer 85.31 95.95 1537 | 1573 | 82.82 55.15 20.28 19.62 65.64 9.445
Surfer 9.495 9.495 8.737 | 5.496 | 4.219 4.036 20.06 19.91 27.51 4.879
Tiger2 46.18 45.55 48.42 | 49.14 | 12.13 11.62 41.44 40.41 10.67 9.860
Walking 3.689 3.413 3.970 | 3.596 | 2.013 2.269 1.602 1.747 1.871 1.976
Woman 3.938 3.938 10.06 | 11.25 | 9.883 11.56 9.962 10.03 2.464 2.873
Skating? 1 | 58.25 61.22 2400 | 23.82 | 56.59 52.34 34.66 3551 23.07 29.52
Skating? 2 | 38.40 49.02 42.10 | 43.13 | 28.98 33.78 196.1 191.1 68.43 61.41

38

Tracker

Sequence STRUCK STRUCK- KCF KCF- SAMF SAMF- DSST DSST- STAPLE STAPLE-

SegTrack SegTrack SegTrack SegTrack SegTrack
Face Occ2 | 7.079 1.292 7.666 | 0.286 | 8.429 0.239 6.796 0.203 7.942 0.206
Singerl 12.17 16.34 10.76 | 11.50 | 3.160 5.010 3.303 3.845 3.384 4.125
Boy 3.810 3.608 2.867 | 2.292 | 3.022 2.654 1.969 2.090 2.493 3.117
Board 34.02 34.25 38.33 | 3835 | 41.76 45.64 30.83 3245 31.88 33.94
BlurCarl 4.885 5.454 4.336 | 4491 | 3.746 4311 4.215 5.031 56.33 97.14
Dancer2 9.395 11.44 6412 | 6.114 | 6.244 6.319 6.667 7.293 7.302 7.374
Car2 3.131 3.878 3967 | 3.805 | 1.816 2.090 1.523 1.602 1.610 1.296
Dogl 5.692 5.519 4.233 | 5076 | 3.944 4.201 4331 4.248 4.595 4.538
FaceOccl 18.84 13.16 13.90 | 12.16 | 11.38 10.67 13.77 12.24 13.48 69.27
Freemanl 11.11 10.54 94.88 | 24.53 | 61.75 61.42 117.7 115.7 6.638 6.985
MountainBike | 9.013 8.966 7.661 | 7.533 | 8.690 8.409 7.763 7.742 8.943 7.491
Skater2 23.51 17.58 17.90 | 16.59 | 19.14 19.84 26.86 25.54 15.19 16.91
Skater 9.081 10.24 10.69 | 10.69 | 9.427 9.535 8.363 8.115 11.48 9.112
Gym 61.47 61.12 16.25 | 1598 | 8.118 9.493 13.60 13.67 8.593 10.81
Bird2 20.49 19.82 2137 | 12.82 | 19.22 21.05 55.57 55.50 6.805 6.329
BlueCar3 3.229 3.892 4.137 | 3.748 | 3.490 3.187 3.267 2.931 3.757 2.887
BluCar4 5.521 5.521 6.487 | 15.26 | 5.592 6.310 3.846 4.032 4.458 3.853
Bolt2 110.8 163.6 274.2 | 6041 | 286.8 61.15 115.5 9.267 6.984 6.400
Car24 57.33 57.74 4.097 | 2.297 | 9.683 9.683 1.696 1.759 1.852 1.593
Coke 18.21 18.44 18.65 | 17.63 | 9.791 10.12 12.78 12.48 12.19 16.28
Coupon 3.992 4.330 1.568 | 1.568 1.597 1.597 3.227 3.228 2.839 1.742
Crossing 3.390 3.787 2.249 | 2464 | 1.861 2.025 1.430 1.951 1.485 1.901
Dancer 7.922 7.813 6.234 | 6.244 | 7.493 7.136 7.247 7.417 6.400 6.342
David2 1.498 1.507 2.082 | 2222 | 2.647 2.130 2.044 2.021 2.531 2.435
David3 104.6 105.8 4.302 | 4429 | 4.726 5.094 88.25 86.16 3.932 3.583
Dog 10.80 10.55 5.216 | 7.652 | 7.249 7.614 7.417 7.304 6.882 5.997
Doll 8.796 8.609 8.322 | 5.388 | 4.373 4.312 2.859 3.233 3.503 3.612
Fish 3.853 4.041 4.077 | 7475 | 5.338 5.338 4.107 6.895 4.048 6.160
FleetFace 27.25 32.17 25.55 | 2571 | 2461 23.79 27.58 26.82 27.45 29.47
Footballl 20.88 6.175 5473 | 4158 | 2191 11.23 9.337 8.865 3.161 2.443
Freeman3 15.51 13.62 19.25 | 19.25 | 21.63 22.61 16.39 16.39 14.56 14.10
Girl2 177.7 131.5 263.3 | 1358 | 371.5 14.39 128.2 127.5 114.1 130.3
Human2 28.38 28.06 100.9 | 100.9 | 14.31 14.31 101.9 78.25 12.67 100.7
Human5 8.306 8.958 174.5 | 2259 | 8.553 8.553 302.5 95.70 4.201 4.448
Human7 7.635 6.532 47.14 | 48.16 | 45.02 44.33 25.73 26.64 2.231 3.246
Human8 74.19 75.18 3.842 | 3.619 | 2.902 2.599 2.232 2.720 2.148 2.520
KiteSurf 28.25 9.787 17.26 | 51.20 | 38.44 3145 2536 25.28 2.819 2.973
Lemming 76.94 77.32 77.86 | 76.50 | 7.592 8.669 81.90 81.46 155.1 79.06
Man 1.505 2.412 2.259 | 2450 | 2.329 2.089 1.568 1.926 1.703 1.850
Mhyang 2.774 3.068 3.921 | 4.054 | 2.459 3.608 2.213 2.162 2.695 2.226
Rubik 24.54 24.21 9.383 | 40.59 | 15.34 23.33 5.882 5.836 4.945 5.390
Subway 5.380 5511 2.969 | 2.864 | 3.083 3.079 146.8 140.5 2.677 2.099
Suv 39.03 28.71 3510 | 3.042 | 3.699 3.732 3.817 2.970 3.110 2.317
Tigerl 16.91 16.77 8.052 | 15.73 | 6.830 7.282 18.05 17.61 8.096 7.700
Toy 18.82 18.95 7.796 | 8.267 | 8.201 8.944 8.862 8.862 9.382 8.167
Trans 27.43 26.70 93.09 | 101.5 | 37.60 35.62 67.07 61.52 26.43 26.50
Twinnings 6.731 6.745 6.767 | 7.212 | 3.582 3.991 3.635 3.373 4.252 3.881
Vase 16.64 16.50 1242 | 12.31 | 12.72 15.15 12.21 12.30 11.80 12.23
Joggingl 5.815 5.812 87.89 | 88.45 | 4.551 4.551 110.6 101.6 90.73 90.90
Jogging2 114.9 109.1 137.7 | 1399 | 138.0 33.05 150.8 136.6 139.1 135.3
Average 48.94 41.95 44.32 35.6 35.04 22.76 48.31 40.33 31.36 25.48

39

Table 3.3: The failure rate of base and modi ed trackers per sequence.

Tracker
Sequence STRUCK STRUCK- KCF KCF- SAMF SAMF- DSST DSST- STAPLE STAPLE-
SegTrack SegTrack SegTrack SegTrack SegTrack
Deer 0 0 0.154 | 0.014 0.112 0.028 [0.084 0 0.098 0
Shaking 0.042 0.171 0.835 0 0 0 0 0 0.832 0
Sylvester 0 0 0.078 | 0.076 0.124 0.140 |0.071| 0.071 0.010 0.019
David 0423 0.175 0 0 0 0 0 0 0 0
Walking2 0 0 0 0 0 0 0 0 0 0
Car4 0 0 0 0 0 0 0 0 0 0
Girl 0 0 0.092 | 0.075 0 0 0.064| 0.064 0.1 0.064
Trellis 0.014 0 0 0 0 0 0 (4] 0 0
Biker 0.496 0.492 0.535 | 0.542 0.542 0.535 |0.535| 0.535 0.535 0.478
Dudek 0.049 0.049 0 0 0 0 0 (4] 0 0
Human9 0.526 0.321 0 0 0 0 0 0 0 0
BasketBall | 0.861 0.897 0 0 0 0 0 0 0.085 0
Bird1 0.629 0.618 0.879 | 0.504 0.639 0.5 0.686| 0.612 0.379 0.379
BlurBody 0 0 0.035 | 0.035 0.038 0 0215 0.212 0 0
BlueCar2 0 0 0 0 0 0 0 0 0 0
BlurFace 0 0 0 0 0 0 0 0 0 0
BlurOwl 0 0 0.763 | 0.424 0.161 0.161 |0.755| 0.755 0.404 0.017
Bolt2 0.97 0.97 0 0 0 0 0 (4] 0 0
Box 0.015 0.045 0.431 0.543 0.484 0.498 [0.529| 0.530 0.505 0.503
Carl 0.537 0.181 0.238 0 0 0 0 (4] 0 0
CarDark 0 0 0 0 0 0 0 0 0 0
CarScale 0 0 0 0 0.321 0 0 0 0 0
ClifBar 0.544 0.543 0463 | 0.004 0.046 0 0 0 0262 0
Couple 0.167 0.167 0.664 | 0.357 | 0.192 0.192 |0.878| 0.35 0.307 0.164
Crowds 0.874 0.442 0 0 0 0 0 (4] 0 0
Diving 0.076 0 0.172 | 0.051 0.502 0.162 [0.502 0 0.502 0.009
DragonBaby | 0.314 0.283 0300 | 0.300 0.469 0.292 |0.867| 0.752 0.061 0.141
Football 0.570 0.066 0.080 | 0.066 0.071 0.063 |0.091| 0.091 0.063 0.019
Freeman4 0.727 0.512 0452 | 0.053 0.116 0 0.042] 0.042 0.289 0.300
Human3 0.958 0.958 0987 | 0.541 0.987 0.243 |0.965| 0.965 0.961 0.961
Human4 0.691 0.436 0.461 0.469 0.043 0.110 |0.071| 0.071 0.041 0.136
Human6 0.563 0.068 0.599 | 0.688 0.051 0.053 |0.510| 0.506 0 0
Ironman 0.858 0.725 0722 | 0.722 0.536 0.481 |0.777| 0.777 0.765 0.740
Jump 0.176 0 0.622 0 0.893 0 0.729| 0.713 0.901 0.680
Jumping 0 0 0.204 | 0.166 0.204 0.041 |0.003| 0.035 0.191 0.019
Liquor 0.240 0.102 0360 | 0.350 0.171 0 0290 0.286 0 0
Matrix 0.575 0.325 0.71 0.58 0.51 0.51 0.76 0.76 0.59 0.27
MotorRolling| 0.073 0225 0.762 | 0.585 0.798 0.695 [0.798| 0.664 0.731 0.676
Panda 0 0 0.544 | 0.479 0.396 0 0.552] 0.545 0.382 0.407
RedTeam 0 0 0 0 0 0 0 0 0 0
Singer2 0.846 0.598 0 0 0 0 0 0 0 0
Skatingl 0.215 0.126 0 0 0 0 0 (4] 0.362 0
Skiing 0.925 0.938 0.888 | 0.888 0.901 0.888 [0.864| 0.864 0.802 0814
Soccer 0.608 0.696 0.015 | 0.015 0.607 0.451 [0.053| 0.048 0.635 0.028
Surfer 0.013 0.013 0.071 0 0 0 0.151] 0.143 0.515 0
Tiger2 0.172 0.167 0276 | 0.273 0 0 0.117| 0.115 0 0
Walking 0 0 0 0 0 0 0 0 0 0
‘Woman 0 0 0.060 | 0.060 0.060 0.060 [0.060| 0.060 0 0
Skating? 1 | 0.308 0.343 0.059 | 0.033 0.283 0.202 [0.141| 0.141 0.010 0
Skating2 2 | 0.050 0.016 0.124 | 0.120 0.002 0 0.604| 0.513 0.215 0.131

40

Tracker

Sequence STRUCK STRUCK- KCF KCF- SAMF SAMF- DSST DSST- STAPLE STAPLE-
SegTrack SegTrack SegTrack SegTrack SegTrack
Face Occ2 0 0 0 0 0 0 0 0 0 0
Singerl 0 0 0 0 0 0 0 0 0 0
Boy 0 0 0 0 0 0 0 0 0 0
Board 0.016 0.015 0.051 | 0.053 | 0.055 0.054 [0.048| 0.050 0.047 0.050
BlurCarl 0 0 0 0 0 0 0.002| 0.002 0.292 0.283
Dancer2 0 0 0 0 0 0 0 0 0 0
Car2 0 0 0 0 0 0 0 0 0 0
Dogl 0 0 0 0 0 0 0 0 0 0
FaceOccl 0 0 0 0 0 0 0 0 0 0.321
Freemanl 0.006 0 0.441 | 0.138 | 0.518 0.515 |0.441| 0.441 0 0
MountainBike 0 0 0 0 0 0 0 0 0 0
Skater2 0 0 0 0 0 0 0 0 0 0
Skater 0 0 0 0 0 0 0 0 0 0
Gym 0.379 0.379 0.110 | 0.110 0 0 0 0 0 0
Bird2 0 0 0.010 1] 0 0 0.343| 0343 0 0
BlueCar3 0 0 0 0 0 0 0 0 0 0
BluCar4 0 0 0 0 0 0 0 0 0 0
Bolt2 0.535 0.597 0.969 | 0.563 | 0.969 0.525 [0.972 0 0 0
Car24 0.335 0.366 0 0 0 0 0 0 0 0
Coke 0 0 0.051 | 0.051 0 0 0 0 0 0.051
Coupon 0 0 0 0 0 0 0 0 0 0
Crossing 0.016 0.016 0 0 0 0 0 0 0 0
Dancer 0 0 0 0 0 0 0 0 0 0
David2 0 0 0 0 0 0 0 0 0 0
David3 0.623 0.621 0 0 0 0 0376 0376 0 0
Dog 0.007 0.007 0 0 0 0 0 0 0 0
Doll 0.010 0.006 0 0 0 0 0 0 0 0
Fish 0 0 0 0 0 0 0 0 0 0
FleetFace 0 0 0 0 0 0 0 0 0 0
Footballl 0.256 0 0.013 | 0.013 | 0.270 0.013 0 0 0 0
Freeman3 0.111 0.060 0.086 | 0.086 | 0.093 0.089 [0.086| 0.086 0.082 0.080
Girl2 0.722 0.59 0.926 | 0.496 0.91 0 0.588| 0.584 0.626 0.582
Human? 0.007 0.005 0.373 | 0.373 0 0 0.414| 0.387 0 0.586
Human3 0 0 0.680 | 0.725 | 0.071 0.071 |0.755| 0.300 0 0
Human7 0 0 0.528 | 0.528 | 0.548 0.552 [0.512| 0.512 0 0
Humang8 0.816 0.820 0 0 0 0 0 0 0 0
KiteSurf 0.470 0.142 0.214 | 0.547 | 0.559 0.547 [0.583| 0.583 0 0
Lemming 0.216 0.216 0.309 | 0.306 0 0 0.338| 0.337 0.654 0.333
Man 0 0 0 0 0 0 0 0 0 0
Mhyang 0 0 0 0 0 0 0 0 0 0
Rubik 0 0 0 0 0 0 0 0 0 0
Subway 0.002 0.002 0 0 0 0 0.742| 0.742 0 0
Suv 0.180 0.102 0 0 0 0 0 0 0 0
Tigerl 0 0 0 0.016 0 0 0.025| 0.025 0 0
Toy 0.047 0.047 0 0 0 0 0 0 0 0
Trans 0 0 0 0 0 0 0 0 0 0
Twinnings 0.002 0.002 0.002 | 0.002 | 0.002 0.002 [0.002| 0.002 0.002 0.002
Vase 0 0 0 0 0 0 0 0 0 0
Jogging1 0.009 0.009 0.742 | 0.745 | 0.009 0.009 [0.755| 0.755 0.755 0.755
Jogging2 0.775 0.780 0.817 | 0.817 | 0.798 0.312 |0.801| 0.801 0.791 0.794
Average 0.206 0.164 0.199 | 0.146 0.15 0.098 0.21 0.175 0.148 0.108

41

Table 3.4: The number of drifts of base and modi ed trackers per sequence.

Tracker
Sequence STRUCK- KCF- SAMF- DSST- STAPLE-
SERUGE SegTrack KCF SegTrack SANF SegTrack sl SegTrack Slaris SegTrack
Deer 0 0 10 0 i 1 5 0 6 0
Shaking 0 0 303 0 0 0 0 304 0
Sylvester 0 0 104 101 165 189 95 95 13 24
David 211 108 0 0 0 0 0 0 0 0
Walking? 0 0 0 0 0 0 0 0 0 0
Car4 0 0 0 0 0 0 0 0 0 0
Girl 0 0 45 31 0 0 2 32 47 32
Trellis g 0 0 0 0 0 0 0 0 0
Biker 69 68 76 77 77 76 76 76 76 68
Dudek 0 0 0 0 0 0 0 0 0 0
Human9 142 84 0 0 0 0 0 0 0 0
BasketBall 574 663 0 0 0 0 0 0 62 0
Birdl 192 253 358 203 261 199 279 250 150 150
BlurBody 0 0 10 10 11 0 65 64 0 0
BlueCar2 0 0 0 0 0 0 0 0 0 0
BlurFace 0 0 0 0 0 0 0 0 0 0
BlurOwl 0 0 478 21 88 88 473 473 254 9
Bolt2 338 338 0 0 0 0 0 0 0 0
Box 0 0 461 628 553 574 613 614 583 582
Carl 543 183 243 0 0 0 0 0 0 0
CarDark 0 0 0 0 0 0 0 0 0 0
CarScale 0 0 0 0 81 0 0 0 0 0
ClifBar 253 247 210 1 18 0 0 0 121 0
Couple 10 10 89 41 24 21 122 46 42 20
Crowds 302 302 0 0 0 0 0 0 0 0
Diving 0 0 36 9 108 33 108 0 108 1
DragonBaby 46 30 31 31 47 25 94 84) 14
Football 204 23 28 22 23 18 31 31 21 6
Freemand 200 135 122 15 31 0 12 12 81 83
Human3 1626 1626 1677 913 1677 413 1639 1639 1633 1633
Human4 467 290 308 313 29 74 48 48 28 91
Human6 433 50 469 541 39 41 404 399 0 0
Ironman 142 117 120 120 81 75 129 129 117 112
Jump 28 0 74 0 109 0 89 85 110 80
Jumping 0 0 36 27 36 12 0 8 32 3
Liquor 384 173 623 598 296 0 500 494 0 0
Matrix 63 12 67 53 48 48 74 74 57 26
MotorRolling 0 22 124 93 131 112 131 106 119 108
Panda 0 0 540 476 396 0 549 542 382 407
RedTeam 0 0 0 0 0 0 0 0 0 0
Singer2 315 214 0 0 0 0 0 0 0 0
Skating1 81 63 0 0 0 0 0 0 143 0
Skiing 74 5 72 72 73 72 70 70 65 66
Soccer 243 286) 0 233 163 19 17 245 11
Surfer 4 4 25 0 0 0 51 47 183 0
Tiger2 19 13 88 87 0 0 36 35 0 0
Walking 0 0 0 0 0 0 0 0 0 0
Woman 0 0 36 36 36 36 36 36 0 0
Skating? 1 133 150 26 14 126 93 61 61 3 0
Skating2 2 11 6 58 56 0 0 281 242 95 59

42

Tracker

Sequence STRUCK- KCF- SAMF- DSST- STAPLE-
STRUCK SegTrack KCF SegTrack SAMF SegTrack DSST SegTrack STAPLE SegTrack
Face Occ2 0 0 0 0 0 0 0 0 0 0
Singerl 0 0 0 0 0 0 0 0 0 0
Boy 0 0 0 0 0 0 0 0 0 0
Board 1 1 36 37 39 38 34 35 33 35
BlurCarl 0 0 0 0 0 0 1 1 215 209
Dancer2 0 0 0 0 0 0 0 0 0 0
Car2 0 0 0 0 0 0 0 0 0 0
Dogl 0 0 0 0 0 0 0 0 0 0
FaceOccl 0 0 0 0 0 0 0 0 0 285
Freemanl 1 0 144 39 168 167 144 144 0 0
MountainBike 0 0 0 0 0 0 0 0 0 0
Skater2 0 0 0 0 0 0 0 0 0 0
Skater 0 0 0 0 0 0 0 0 0 0
Gym 0 0 85 83 0 0 0 0 0 0
Bird2 0 0 1 0 0 0 32 32 0 0
BlueCar3 0 0 0 0 0 0 0 0 0 0
BluCar4 0 0 0 0 0 0 0 0 0 0
Bolt2 152 151 284 164 284 153 285 0 0 0
Car24 875 1169 0 0 0 0 0 0 0 0
Coke 0 0 15 15 0 0 0 0 0 15
Coupon 0 0 0 0 0 0 0 0 0 0
Crossing 1 1 0 0 0 0 0 0 0 0
Dancer 0 0 0 0 0 0 0 0 0 0
David2 0 0 0 0 0 0 0 0 0 0
David3 156 154 0 0 0 0 95 95 0 0
Dog 0 0 0 0 0 0 0 0 0 0
Doll 47 9 0 0 0 0 0 0 0 0
Fish 0 0 0 0 0 0 0 0 0 0
FleetFace 0 0 0 0 0 0 0 0 0 0
Footballl 14 0 1 1 20 1 0 0 0 0
Freeman3 33 24 40 40 43 41 40 40 38 37
Girl2 1062 1063 1390 742 1364 0 878 870 934 859
Human?2 8 0 417 417 0 0 467 435 0 657
Human5 0 0 480 515 48 672 539 213 0 0
Human7 0 0 132 132 136 136 118 118 0 0
Human8 103 103 0 0 0 0 0 0 0 0
KiteSurf 41 1 17 45 46 44 49 49 0 0
Lemming 287 287 408 405 0 0 448 447 871 441
Man 0 0 0 0 0 0 0 0 0 0
Mhyang 0 0 0 0 0 0 0 0 0 0
Rubik 0 0 0 0 0 0 0 0 0 0
Subway 0 0 0 0 0 0 130 130 0 0
Suv 160 74 0 0 0 0 0 0 0 0
Tigerl 0 0 0 4 0 0 6 6 0 0
Toy 0 0 0 0 0 0 0 0 0 0
Trans 0 0 0 0 0 0 0 0 0 0
Twinnings 1 1 1 1 1 1 1 1 1 1
Vase 0 0 0 0 0 0 0 0 0 0
Joggingl 2 2 227 228 2 2 232 232 232 232
Jogging? 248 249 251 251 245 95 246 246 243 244
Average 103 88 108 79 72 37 98 89 76 66

43

Table 3.5: The number of recovery of base and modi ed trackers per sequence.

Tracker
Sequence STRUCK- KCF- SAMF- DSST- STAPLE-
ARICK SegTrack L SegTrack S SegTrack DaaT SegTrack STAPE SegTrack
Deer 71 71 1 | 1 1 3 71 1 71
Shaking 365 365 2 365 365 365 365 365 0 365
Sylvester 1345 1345 1 1 2 0 1 1 1 2
David 0 0 471 471 471 471 471 471 471 471
Walking2? 500 500 500 500 500 500 500 500 500 500
Card 659 659 659 659 659 659 659 659 659 659
Girl 500 500 1 0 500 500 0 0 3 0
Trellis 1 569 569 569 569 569 569 569 569 569
Biker 0 0 0 0 0 0 0 0 0 0
Dudek 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145
Human9 0 14 305 305 305 305 305 305 305 305
BasketBall 0 0 725 725 725 725 725 725 0 725
Birdl 44 8 1 3 0 5 1 0 5 3
BlurBody 334 334 2 2 2 334 7 7 334 334
BlueCar2 585 585 585 585 585 585 585 585 585 585
BlurFace 493 493 493 493 493 493 493 493 493 493
BlurOwl 631 631 4 47 14 14 4 4 1 2
Bolt2 0 0 350 350 350 350 350 350 350 350
Box 1161 1161 40 3 10 5 2 2 4 3
Carl 0 2 0 1020 1020 1020 1020 1020 1020 1020
CarDark 393 393 393 393 393 393 393 393 393 393
CarScale 252 252 252 252 0 252 252 252 252 252
ClifBar 3 6 9 1 4 472 472 472 3 472
Couple 0 0 4 9 3 6 1 3 1 3
Crowds 0 0 347 347 347 347 347 347 347 347
Diving 215 215 1 2 0 2 0 215 0 1
DragonBaby 1 0 3 3 6 8 4 1 2 2
Football 0 1 1 2 3 5 2 2 2 1
Freeman4 10 10 6 0 2 283 0 0 1 2
Human3 0 0 0 7 0 1 0 0 0 0
Human4 0 1 0 0 0 0 0 0 0 0
Human6 1 4 6 4 2 1 0 2 792 792
Ironman 3 4 0 0 8 5 0 0 10 11
Jump 0 122 2 122 0 122 0 2 0 3
Jumping 313 313 28 25 28 1 1 3 28 3
Liquor 1 5 4 13 3 1741 5 4 1741 1741
Matrix 0 2 4 5 3 3 2 2 2 1
MotorRolling 164 1 1 3 0 2 0 3 1 3
Panda 1000 1000 4 3 0 1000 3 3 0 0
RedTeam 1918 1918 1918 1918 1918 1918 1918 1918 1918 1918
Singer2 0 5 366 366 366 366 366 366 366 366
Skating 0 0 400 400 400 400 400 400 2 400
Skiing 1 1 1} 0 0 0 0 0 0 0
Soccer 6 2 1 1 5 14 2 2 4 0
Surfer 1 1 2 376 376 376 6 7 11 376
Tiger2 1 1 13 13 365 365 7 7 365 365
Walking 412 412 412 412 412 412 412 412 412 412
Woman 597 597 0 0 0 0 0 0 597 597
Skating2 1 0 5 2 2 8 3 6 6 2 473
Skating? 2 2 2 1 1 1 473 1 i 3

44

Tracker

Sequence STRUCK STRUCK- KCF KCF- SAMF SAMEF- DSST DSST- STAPLE STAPLE-
SegTrack SegTrack SegTrack SegTrack SegTrack
Face Occ2 812 812 812 812 812 812 812 812 812 812
Singerl 351 351 351 351 351 351 351 351 351 351
Boy 602 602 602 602 602 602 602 602 602 602
Board 0 0 0 0 0 1] 0 0 0 0
BlurCarl 742 742 742 742 742 742 1 1 2 1
Dancer2 150 150 150 150 150 150 150 150 150 150
Car2 9213 913 913 913 913 913 913 913 913 913
Dogl 1350 1350 1350 1350 1350 1350 1350 1350 1350 1350
FaceOccl 892 892 892 892 892 892 892 892 892 2
Freemanl 1 326 0 6 1 1 0 0 326 326
MountainBike | 228 228 228 228 228 228 228 228 228 228
Skater2 435 435 435 435 435 435 435 435 435 435
Skater 160 160 160 160 160 160 160 160 160 160
Gym 767 767 0 0 767 767 767 767 767 767
Bird2 99 99 0 99 99 99 2 2 99 99
BlueCar3 357 357 357 357 357 357 357 357 357 357
BluCar4 380 380 380 380 380 380 380 380 380 380
Bolt2 0 0 350 350 350 350 350 350 350 350
Car24 0 0 3059 3059 3059 3059 3059 3059 3059 3059
Coke 291 291 0 0 291 291 291 291 291 0
Coupon 327 327 327 327 327 327 327 327 327 327
Crossing 1 1 120 120 120 120 120 120 120 120
Dancer 225 225 225 225 225 225 225 225 225 225
David2 537 537 537 537 537 537 537 537 537 537
David3 1 1 252 252 252 252 0 0 252 252
Dog 127 127 127 127 127 127 127 127 127 127
Doll 1 3872 3872 3872 3872 3872 3872 3872 3872 3872
Fish 476 476 476 476 476 476 476 476 476 476
FleetFace 707 707 707 707 707 707 707 707 707 707
Footballl 1 74 0 0 0 1] 74 74 74 74
Freeman3 3 4 0 0 0 0 0 0 0 0
Girl2 0 0 0 2 1 1500 5 6 5 14
Human?2 1 1128 4 4 1128 1128 0 2 1128 5
Human3 713 713 5 2 3 0 0 1 713 713
Human7 250 250 0 0 1 2 10 10 250 250
Human8 0 0 128 128 128 128 128 128 128 128
KiteSurf 0 1 1 1 1 2 0 0 84 84
Lemming 0 0 6 5 1336 1336 4 4 4 5
Man 134 134 134 134 134 134 134 134 134 134
Mhyang 1490 1490 1490 1490 1490 1490 1490 1490 1490 1490
Rubik 1997 1997 1997 1997 1997 1997 1997 1997 1997 1997
Subway 175 175 175 175 175 175 0 0 175 175
Suv 5 9 945 945 945 945 945 945 945 945
Tigerl 354 354 354 2 354 354 3 3 354 354
Toy 271 271 271 271 271 271 271 271 271 271
Trans 124 124 124 124 124 124 124 124 124 124
Twinnings 0 0 0 0 0 0 0 0 0 0
Vase 271 271 271 271 271 271 271 271 271 271
Joggingl 1 1 1 1 1 1 0 0 0 0
Jogging? 0 0 0 0 0 1 0 0 0 0
Average R 298 357 330 346 389 451 344 349 399 405
Average pRD| 0.331 0.456 0376 | 0.453 | 0.537 0.702 0417 | 0.441 0.548 0.575

45

In the following results and to make gures clear, we systematically select the best
three trackers according to Tables 3.1, 3.2, 3.3, 3.4, and 3.5 for comparison. The average
success and precision plots shown in Figures 3.6 and 3.7, con rm that the proposed
method outperforms the base trackers, for all sequences in both measures. SAMF

(black), KCF (blue), and STAPLE (green) trackers show the best enhancement.

0.8
S 06
7}
2
& 04r
g -0- KCF
! -8- KCF-SegTrack
-0- SAMF
0.2 -~ SAMF-SegTrack
STAPLE
STAPLE-SegTrack
0") 1 1 1 |
0 10 20 30 40 50

Error Threshold

Figure 3.6: Average precision plot using automatic drift detection and correction.

! -0- KCF
-&- KCF-SegTrack
0.8 -0- SAMF
’ -0- SAMF-SegTrack
STAPLE
STAPLE-SegTrack
a 0.6
L
2
O 04"
021
O 1 1 1
0 0.2 0.4 0.6
Overlap Threshold

Figure 3.7: Average success plot using automatic drift detection and correction.

46

Figures 3.8 and 3.9, show the e ectiveness of the proposed method on various

challenge attributes, such as fast motion, occlusion, background clutter, etc. It is clear

that the performance of the proposed method outperforms the corresponding original

ones, as they e

Precision

Precision

Precision

Scale Variation

0.8
0.6
0.4
-e- KCF-SegTrack
0.2 -0- SAMF
h -0- SAMF-SegTrack
STAPLE
STAPLE-SegTrack
0 | | | T |
0 10 20 30 40 50
Error Threshold
1 Occlusion
0.8
0.6
04
- KCF
-&- KCF-SegTrack
2 -- SAMF
0. -0- SAMF-SegTrack
STAPLE
STAPLE-SegTrack
IR . . . I)
0 10 20 30 40 50
Error Threshold
; Out-of-Plane Rotation
0.8
06
0.4F
- KCF
-=- KCF-SegTrack
0.2 ~0- SAMF
) -0- SAMF-SegTrack
STAPLE
STAPLE-SegTrack|
0 I T
0 10 40 50

20 30
Error Threshold

47

Precision

Precision

Precision

ectively handle the di erent challenging situations.

Out-of-View

-o- KCF
- KCF-SegTrack
- SAMF
- SAMF-SegTrack
STAPLE
/ STAPLE-SegTrack
0% | e
0 10 20 30 40 50
Error Threshold
’ Motion Blur
0.8
0.6~
0.4
-e- KCF-SegTrack
| - SAMF
0.2 -0- SAMF-SegTrack
STAPLE
STAPLE-SegTrack
0 . e —
0 10 20 30 40 50

20 30
Error Threshold

Error Threshold

Low Resolution

-o- KCF

-=- KCF-SegTrack
~0- SAMF

-0- SAMF-SegTrack
STAPLE
STAPLE-SegTrack

40 50

Figure 3.8: Precision plot of all trackers over all test videoper challenge.

48

