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Abstract

Tracker-Independent Drift Detection and Correction

Using Segmented Objects and Features

Tarek Ghoniemy, Ph.D.

Concordia University, 2017

Object tracking has been an active research topic in the field of video processing.

However, automated object tracking, under uncontrolled environments, is still difficult

to achieve and encounters various challenges that cause the tracker to drift away from

the target object. To effectively handle object or environment tracking challenges, recent

powerful tracking approaches are learning-based, meaning they learn object appearance

changes while tracking online. The output of such trackers is, however, limited to

a bounding box representation, the center of which is considered as the estimated

object location. Such bounding box may not provide accurate foreground/background

discrimination and may not handle highly non-rigid objects. Moreover, the bounding

box may not surround the object completely, or it may not be centered around it,

which affects the accuracy of the overall tracking process. Our main objective in this

work is to reduce drifts of state-of-the-art tracking algorithms (trackers) using object

segmentation so to produce more accurate bounding box.

To enhance the quality of state-of-the-art trackers, this work investigates two main

venues: first tracker-independent drift detection and correction using object features

and second, selection of best performing parameters of Graph Cut object segmentation

and of support vector machines using artificial immune system. In addition, this work

proposes a framework for the evaluation and ranking of different trackers using easily

interpretable performance measures, in a way to account for the presence of outliers.

For tracker-independent drift detection, we use saliency features or objectness using

saliency, the ratio of the salient region corresponding to the target object with respect

to the estimated bounding box is used to indicate the occurrence of tracking drift with

no prior information about the target model. With objectness measures, we use both
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relative area and score of the detected candidate boxes according to the objectness

measure to indicate the occurrenece of the tracking drift. For drift correction, we

investigate the application of object segmentation on the estimated bounding box to

re-locate it around the target object. Due to its ability to lead to a global near optimal

solution, we use the Graph Cut object segmentation method. We modify the Graph Cut

model to incorporate an automatic seed selection module based on interest points, in

addition to a template mask, to automatically initialize the segmentation across frames.

However, the integration of segmentation in the tracking loop has its computational

burden. In addition, the segmentation quality might be affected by tracking challenges,

such as motion blur and occlusion. Accordingly, object segmentation is applied only

when a drift is detected. Simulation results show that the proposed approach improves

the tracking quality of five recent trackers.

Researchers often use long and tedious trial and error approaches for determining the

best performing parameter configuration of a video-processing algorithm, particularly

with the diverse nature of video sequences. However, such configuration does not

guarantee the best performance. A little research attention has been given to study

the algorithm’s sensitivity to its parameters. Artificial immune system is an emergent

biologically motivated computing paradigm that has the ability to reach optimal or

near-optimal solutions through mutation and cloning. This work proposes the use of

artificial immune system for the selection of best performing parameters of two video

processing algorithms: support vector machines for object tracking and Graph Cut based

object segmentation.

An increasing number of trackers are being developed and when introducing a new

tracker, it is important to facilitate its evaluation and ranking in relation to others,

using easy to interpret performance measures. Recent studies have shown that some

measures are correlated and cannot reflect the different aspects of tracking performance

when used individually. In addition, they do not incorporate robust statistics to account

for the presence of outliers that might lead to insignificant results. This work proposes a

framework for effective scoring and ranking of different trackers by using less correlated

quality metrics, coupled with a robust estimator against dispersion. In addition, a unified

performance index is proposed to facilitate the evaluation process.
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Chapter 1

Introduction

1.1 Motivation

In general, given the initialized location of an object in the first frame of a

video sequence, object tracking is meant to estimate the state of the target object

in subsequent frames. Interests in object tracking continue to increase widely with

the availability of high speed computing machines, high quality video cameras,

and the need for automated video analysis in many applications such as robotics,

video surveillance, and traffic management. Despite the fact that much progress

has been made in recent years, developing a robust tracking algorithm is still a

challenging problem due to numerous uncontrolled factors that can be object-related

(appearance and scale change, deformation, fast motion, and motion blur), tracking

environment-related (non-stationary scenes, cluttered scenes, and illumination change),

or even tracking-system-related (real-time, automation, and low resolution constraints).

These challenges can negatively affect the tracking accuracy, and a drifting problem may

occur in which the tracker drifts away from the target object, or false detection may be

encountered [4–7].

To handle object appearance variations effectively, adaptive methods have been

proposed to update the representation of a target incrementally over time. Recent

powerful tracking algorithms [2, 8–13], are learning-based methods that can deal with

such appearance variations. However, the output of such tracking algorithms is limited



to a bounding box (BB) representation. This BB may not handle highly non-rigid

objects, or may not be centered correctly around the target object, leading to a tracking

drift. The investigation of suitable approaches of drift detection and correction is thus

necessary for enhanced object tracking.

A common problem in video processing algorithms, such as Graph Cut (G-Cut)

object segmentation or support vector machines (SVM) in object tracking, is the

parameter selection that significantly affects the algorithm accuracy. Adopting

optimization techniques, such as using artificial immune system (AIS), for parameter

selection reduces the experimental work to spend for selecting the best parameters,

reduces the bias of human intervention, and leads to optimal or near-optimal parameters

that achieve better segmentation quality [14, 15].

1.2 Problem Statement

In spite of exhaustive research work, developing a robust object tracking algorithm is

still a challenging task for complex and dynamic scenes, due to the drastic appearance

changes caused by illumination changes, pose changes, and shape deformation. Two

main problems can be highlighted; the limitation of the tracking output of learning-based

object trackers to a BB, the center of which is considered as the estimated object location,

and the different environmental challenges that result in tracking drift or failure. The

integration of recent powerful object segmentation into object tracking to relocate the

estimated output BB around the target object, when a drift is detected, may lead to

better tracking.

As tracking and segmentation algorithms incorporate numerous parameters, it

is important to study the influence of each parameter on the quality. Using AIS

optimization techniques for the adaptive parameter selection can be a solution.

Recent benchmarks for tracking evaluation and ranking do not include robust

statistical measures to account for the presence of outliers that might lead to insignificant

results. It is useful to present a framework for scoring and ranking of trackers using

effective quality metrics, coupled with a robust estimator against outliers. A single
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(unified) performance index, in addition to new performance metrics can facilitate the

ranking process.

1.3 Research Objectives

The first objective of this work is to investigate the effect of integrating

tracker-independent drift detection and object segmentation for drift correction, on the

overall accuracy of learning-based tracking algorithms.

The second objective is to investigate the use of AIS optimization for adaptive

parameter selection in the domains of object tracking and segmentation.

The third objective is to propose a framework for scoring and ranking of trackers,

using known quality metrics, coupled with a robust estimator against dispersion. The

investigation of new performance metrics that facilitate trackers’ evaluation is to be

investigated.

1.4 Summary of Contributions

The contributions of this thesis are:

1. A method for tracker-independent saliency-based drift detection where we use

the saliency features of the target object inside the estimated BB to indicate the

occurrence of tracking drift without prior information about the target model

(Chapter 3).

2. A method for tracker-independent drift detection using edge-based objectness

measure (Appendix A).

3. A method for segmentation-based drift correction where we use an automatic

seeded G-Cut segmentation and propose a two-layer seed selection method based

on SIFT points and foreground/background intensity relation (Chapter 3).

4. A method for adaptive selection of parameters of SVM using the AIS clonal

selection-based optimization for enhanced object tracking (Chapter 4).
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5. A method for optimal selection of parameters of G-Cut segmentation using the

AIS clonal selection-based optimization (Chapter 5).

6. A framework for scoring and ranking of different trackers using known quality

metrics, coupled with a robust estimator to account for the presence of outliers

(Chapter 6).

7. New tracking evaluation measures where we propose a unified overlap-failure

performance index, recovery, drift, and pure recovery-to-drift measures to facilitate

trackers’ evaluation and ranking (Chapter 6).

8. A framework for the selection of the best performing configuration (parameter set),

and weighting all parameters according to their influence on the tracking quality.

(Appendix B).

1.5 Thesis Outlines

Chapter 2 presents object tracking approaches. The principal components of an object

tracking system are briefly described. Common tracking performance measures are

presented. Finally, artificial immune systems are presented.

Chapter 3 introduces the proposed tracker-independent drift detection method using

saliency features prior work. Automatic seed selection and segmentation for on demand

drift correction is then discussed. Objective and subjective experimental results of the

proposed method, applied to five state-of-the-art trackers on a publicly available data

set classified into different challenging attributes, are analyzed 1.

Chapter 4 introduces the use of artificial immune system optimization for object

tracking. A method for adaptive parameter selection of SVM for enhanced object

tracking is proposed. The objective and subjective experimental results of the proposed

approaches, applied to STRUCK tracker, are presented.

Chapter 5 introduces a method for the selection of near-optimal Graph Cut

segmentation parameters using artificial immune system, and the obtained results are

summarized.

1The author wishes to thank Prabhakaran Ravindran for his help in running simulations of JOTS
method.
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Chapter 6 presents the proposed object tracking scoring and ranking framework, and

the corresponding ranking measures. The objective and subjective experimental results,

applied to ten state-of-the-art different performing trackers on a publicly available data

set, are presented.

Chapter 7 concludes the thesis and poses possible avenues for future research work.

Appendix A presents a proposed tracker-independent drift detection method using

edge-based objectness. The objective experimental results of the proposed method

applied to different trackers on a data set of various challenges show promising results.

Appendix B 2 presents a proposed framework for the selection, scoring, and weighting

of the parameters of the tracking algorithms. The objective experimental results of

the proposed framework applied to three different performing tracking algorithms are

discussed.

Due to different contributions in the thesis, the symbols of each contribution are

proprietary to each contributing chapter and we give a list of symbols at the start of

each chapter.

2The author wishes to acknowledge the partial contribution of Julien Valognes to Appendix B and
Chapter 6, as part of his ”Concordia Undergraduate Student Research Award”. Julien helped with
developing the methods in sections B.5.1, B.5.2, 6.6.2, and 6.6.3 as well as in running related simulations.
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Chapter 2

Background

2.1 Overview

In this chapter, object tracking approaches are introduced and categorized from

appearance modeling and segmentation points of view as discussed in section 2.2.2.

Components of a generic object tracking system are briefly described in section 2.2.3.

Common tracking performance measures are introduced in section 2.3. Artificial immune

system (AIS) algorithm, as a powerful and adaptive machine learning tool that can be

investigated to enhance the accuracy of visual object tracking, is introduced in section

2.4.

2.2 Object Tracking

2.2.1 Introduction

Visual object tracking, concerned with the problem of estimating the trajectory of

an object in the image plane, has many important applications. Such applications

include, but not limited to automated surveillance, traffic analysis, video indexing,

human computer interaction, as well as autonomous navigation. Interests in object

tracking increased widely with the availability of ultra-high speed computing machines,

super-high quality video cameras, and the need for automated video analysis.

Automated analysis of videos is a sophisticated operation that starts by detection
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of object(s) of interest, then tracking the trajectory of such object(s) across frames,

and ending by trajectory analysis to understand the behavior of objects and their

corresponding interactions. Even though tracking is considered an important part of

the above process, it is the most error prone component.

Difficulties in object tracking arise from a variety of uncontrolled factors in the

tracking environment that probably appear in the form of information loss. Loss

of information may be due to scene projection, noise effect, complex object motion,

camera motion, deformable object shapes, mutable object appearance, illumination

changes, occlusions, and real-time constraints which impose extra level of difficulty on

the tracking systems. While recent researches have introduced a significant progress in

the domain-specific visual tracking, developing tracking systems that can benefit the

cognitive abilities of human beings is still a challenging research problem. Typically,

most existing tracking systems impose various constraints in order to simplify the

tracking problem and hence, such tracking systems cannot adaptively fit in various

environments. Accurate tracking requires effective modeling and representation of the

tracking environment.

Numerous approaches for object tracking have been proposed. They primarily differ

from each other based on the way they approach the following questions: Which object

representation is suitable for tracking?, Which image features should be used?, and

How should the motion, appearance, and shape of the object be modeled? Answers to

these questions depend on the context/environment in which the tracking is performed

and the end use for which the tracking information is being sought. Several tracking

methods, that attempt to answer these questions for a variety of scenarios, have been

published [4, 5, 16].

2.2.2 Classification of Object Tracking Approaches

Visual object tracking algorithms can be categorized according to different points of

view. Recent studies adopt the classification of object tracking approaches into fixed

and adaptive appearance modeling based methods [6]. Fixed appearance modeling

based tracking methods can be sub-categorized into non-segmentation-based and
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segmentation-based methods. Learning-based tracking methods [6, 8–11, 13, 17, 18] do

not incorporate segmentation in their tracking framework and hence, can be categorized

as non-segmentation-based methods.

2.2.2.1 Fixed Appearance Modeling Based Tracking

Tracking methods with fixed models of a target prior to the start of tracking task

use different methods to represent the appearance of objects such as templates and

density-based approaches [4]. Template matching is the most commonly used approach

in the case of single object tracking due to its simplicity. Templates, however, only

encode the object appearance generated from a single view. Parametric density has

been used for object representation in many tracking algorithms. Using probability

density, object appearance can be estimated either parametrically, such as mixture

of Gaussian (MoG), or non-parametrically, such as histograms. Mean-shift tracking

approach uses a mixture of both spatial information and color histogram for object

representation [19]. An obvious advantage of the Mean-shift tracker over the template

matching is the elimination of an exhaustive search and accordingly, it has a good

contribution for real-time applications. However, such tracking methods may fail as a

result of the inevitable appearance variations that can be from the object itself such as

non-rigid structure, shape deformation, posture changes and abrupt motion, or from the

surrounding environment such as illumination variation, camera motion, camera scale

and occlusion [6].

In general, object tracking algorithms start by detection of object of interest and then,

finding the object correspondence across frames. In [4], point tracking algorithms that

use probabilistic approach [20,21] to solve the correspondence problem, represent objects

as points, and the association of such points is based on the previous object state which

can include object position and motion. These approaches do not include a segmentation

step in the tracking algorithm itself and can be categorized as segmentation-free

methods. In this work, we will categorize tracking algorithms that do not incorporate

a segmentation step in the tracking loop as non-segmentation-based tracking [22]. The

accuracy of such approaches is coupled with the assumptions and constraints followed
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by the tracking algorithm.

While object segmentation is meant to partition image pixels into meaningful regions

based on certain characteristics such as color or texture in a spatial domain, object

tracking aims to partition such pixels based on consistence properties in a temporal

domain and hence, the two tasks facilitate each other and are found to be closely related

and both can be greatly improved if they are solved jointly. Accordingly, a new class of

object tracking approaches, that combines tracking and segmentation in an integrated

framework, is found to improve the performance of tracking systems. While solving the

segmentation problem helps precluding the tracking failures, tracking at the same time

provides an important input that can guide segmentation and enhance its performance.

Integration of segmentation and tracking approaches is found to enhance the target

localization performance, leading to a reduced tracking drift [23–27]. Such approaches

are also found to use probabilistic methods or kernel based tracking methods integrated

with a proper segmentation technique. However, many of such approaches impose few

assumptions about object contours that must be given in the first frame. Such methods

focus on explicitly integrating segmentation methods, such as graph-cuts and active

contours, into object tracking in each frame to enhance the tracking accuracy [28–30]. In

such approaches, segmentation algorithms are used to support the tracking rather than

separating the object accurately from its surrounding. These approaches will be referred

to as segmentation-based tracking approaches. These object tracking approaches apply

fixed object models, and are more likely to fail as a result of inevitable appearance

changes.

2.2.2.2 Adaptive Appearance Modeling (Learning) Based Tracking

To handle the appearance variations effectively, adaptive methods have been

proposed to update (learn) the representation of a target incrementally over time.

Recent tracking algorithms [6, 8–11, 13, 17, 18], are learning-based methods that can

deal with such appearance variations, thus achieving more accurate tracking compared

with fixed model-based ones. An appearance model is used to represent the object

of interest (target) while the motion model predicts the likely states of target over
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time. In general, a learning-based object tracking system interconnects four main

modules: object initialization, appearance modeling, motion estimation, and object

localization as illustrated in Figure 2.1, where F1 represents the first frame in a given

video sequence and N represents the number of frames. The tracking process starts

by object initialization that can be manual (user annotates object location using BB)

or automatic through detection mechanism. Once the object is initialized, several

factors need to be considered for a robust appearance modeling. First, the object of

interest has to be efficiently represented, which concentrates on how to robustly describe

the spatio-temporal characteristics of object appearance. Visual object representation

can be either local (encodes local statistical information such as interest points) or

global (reflects the global statistical characteristics such as color histogram). For robust

tracking, adaptive methods have been proposed to update the representation of a target

using statistical learning techniques.

Figure 2.1: Learning-based object tracking system.

From point of view of statistical appearance modeling, recent tracking algorithms use

an updating scheme to update the target model and hence, referred to as learning-based

tracking algorithms. Such schemes can be generative, discriminative, or hybrid methods.

For generative methods [8], tracking is formulated as searching for the region of the

highest similarity with the object in neighborhood. For discriminative methods [17,31],

tracking is formulated as a classification problem that aims to discriminate the object

of interest from its background. Discriminative classifiers often outperform generative

models given enough training data, while generative methods often have better

generalization for small size of training data. Discriminative learning is also refereed
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to as Tracking-By-Detection. Recently, hybrid discriminative generative methods have

opened a promising direction to benefit from both types of methods [9].

After appearance modeling, motion estimation is formulated as a dynamic state

estimation problem. The task of motion estimation is usually completed by utilizing a

prediction module using Kalman or particle filtering [4, 32]. Kalman filter simply finds

the exact solution, given a simple model under assumption that the state space model is

linear and the noise follows the statistical Gaussian distribution. Such limitations can be

overcome by using Particle filters. Finally, a greedy search based on motion estimation

can be used for object localization and the target model is then updated.

2.2.3 Object Tracking System Components

Object tracking is a sophisticated process concerned with the estimation of target(s)

trajectory. An object tracking system comprises several complementary interconnected

modules as illustrated in Figure 2.2. It starts by initializing the object(s) in the first

frame F1 in the form of a bounding box B1. Target modeling is then adopted for object

state estimation through prediction. The target tracking-by-learning (learning module)

is then employed to update the adaptive model over time in order to discriminate the

object of interest at each frame Ft in the form of Bt. During tracking, the object

detection and feature extraction modules provide the required information to improve

the tracking process.

Figure 2.2: Object tracking system components.
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2.2.3.1 Target Modeling (Prediction) Module

In addition to observed measurements, other information can contribute to the target

state estimation. Some information may result from motion constraints of the moving

object and its interaction with the environment [13]. Motion estimation is formulated as

a dynamic state estimation problem and is usually adopted by utilizing a prediction

module using Kalman or particle filtering [33, 34]. Kalman filter simply finds an

exact solution, under assumption that the state space model is linear and the noise

is statistically Gaussian. On the contrary, particle filtering can deal with nonlinear

models and different forms of noise. Particle filtering simulates the state space of the

system using certain number of random particles, each of which is weighted through

approximation of the probability density function (PDF).

2.2.3.2 Target Tracking Module

Given the object regions in the image, it is then the trackers task to perform object

correspondence across frames to generate the corresponding trajectories. Recently,

object tracking is posed as a learning-based problem, where adaptive appearance

models are adopted for target modeling. Such learning-based tracking can handle

drastic appearance changes caused by illumination change, camera motion, pose change,

and object shape deformation. In learning-based approaches, the tracking is posed

as a classification problem to discriminate between the object and its surrounding.

The learning strategy is embedded in the tracking framework to update the target

appearance model adaptively in response to appearance variations. The essential phase

of the learning module is the update phase, in which the close neighborhood of the

current estimated object location is used to sample positive training examples, distant

surrounding of such location is used to sample negative examples, and both are used to

update the classifier over time during tracking.

2.2.3.3 Detection Module

The object detection mechanism, needed by any tracking system, is of utmost importance

and can affect the performance of tracking results, especially for objects that employ a
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small motion across frames. A common approach for object detection is to make use of

the temporal information computed across frames to detect the change in object location

relative to its surroundings. Such temporal information is usually in the form of frame

differencing, which highlights changing regions in consecutive frames. Object detection

can be performed in a variety of ways. The most commonly known approaches for object

detection are Interest points, Background modeling, and object segmentation [4].

Common detectors follow the sliding window paradigm [35, 36]. A classifier is first

trained to distinguish windows containing instances of a given class from all other

windows. The classifier is then used to score every window in a test image. Local maxima

of the score localize instances of the class. However, this approach is class specific, and is

not appropriate for automated applications such as object tracking that track different

types of objects. In addition, it is computationally intensive. Objectness measures

attempt to generate a small set (few hundreds or thousands) of object regions that cover

every object in the input image, regardless of the specific categories of those objects

(generic over classes). Compared with traditional sliding window approach, estimating

object proposals in a pre-processing stage has the following advantages: 1) better accords

with our human visual system behavior which perceives objects before identifying them;

2) speeds up the computation by reducing the search locations, especially when the

number of object classes that need to be detected is high [37].

Recently, objectness measures [38] and saliency models [39] have occupied major

research areas in object detection. Objectness approaches are related to several research

strands such as interest point detectors (IPS) and saliency models (class-specific and

class-generic). IPS respond to local textured image neighborhoods, and focus on

individual points instead of the entire object(s) in the image scene [40]. Class-specific

saliency models define, as a salient region, the visual characteristics that best distinguish

a specific object class, such as vehicle or human, from others [41]. Class-generic saliency

models [42–45] measure the saliency of pixels as the degree of uniqueness of their

neighborhood relative to the surrounding region.
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2.2.3.4 Feature Extraction Module

Feature extraction and description is an essential step in the tracking pipeline and allows

us to highlight information of interest to represent a target. Extracted features can be

grouped into three main classes that are low-level (color and motion), mid-level (edges,

interest points, and regions), and high-level (object models) [4]. The most widely used

features for object description include color, edge, optical flow, and texture. Color is

one of the most widely used features for tracking, however, color spaces are sensitive

to noise and illumination changes [46]. Edges are commonly used as a representative

feature for applications of boundary tracking [47]. An important property of edges is

that they are less sensitive to illumination changes compared to color features. Corner is

closely related to algorithms that use edge analysis to find rapid changes in direction [48].

The terms corners and interest points are used interchangeably and refer to point-like

features in an image, which have a local two dimensional structure. Blob provides

a complementary description of image structures in terms of silhouettes [49]. Blob

may sometimes also be regarded as interest point descriptors as they often contain

point structures. However, Blob detectors can detect too smoothed image areas that

cannot be detected by a corner detector. Optical flow is commonly used as a feature

in motion-based segmentation and tracking applications [50]. Optical flow is a dense

field of displacement vectors that defines the translation of each pixel in a region under

constant intensity assumption constraint. Texture is a measure of the intensity variation

of a surface which quantifies properties such as smoothness and regularity. Compared

to color and edges, texture requires a processing step to generate the descriptors [49].

Interest-point detectors such as Scale-invariant Feature Transform (SIFT) [51], speeded

up robust features (SURF) [52], oriented FAST and rotated BRIEF (ORB) [53] aim at

selecting highly distinctive local image features that can be accurately localized across

multiple image frames under pose and illumination variation.
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2.3 Common Tracking Performance Evaluation

Measures

Several performance metrics of the tracking algorithms use empirical discrepancy

methods [54] that compare off-line ground-truth data with the estimated trajectories.

Among such metrics, the average overlap ratio (accuracy), center location error,

normalized center location error, failure rate (robustness), or derivatives thereof, such

as success and precision plots are commonly used [55].

• The average overlap ratio (AOR) measures the overlap ratio between the estimated

BB predicted from the tracker (Bt) and the annotated BB (Bg
t ) according to

AOR =
Bt ∩ Bg

t

Bt ∪Bg
t

.

• The center location error (CLE) is a widely used metric that computes the average

Euclidean distance between the centers ĉe and ĉg of the estimated Bt and the

annotated Bg
t . However, when the tracker loses the target, the output location

might be random and thus the measure does not reflect the actual tracking quality.

The normalized center location error (NCLE) computes the normalized Euclidean

distance between the centers ĉe and ĉg of the estimated Bt and the annotated Bg
t

with respect to the ground truth BB dimensions.

• The failure rate (FR) is the percentage of the number of failures per sequence

based on the overlap between the Bt and Bg
t according to FR =

NZ

NF

where NZ is

the number of frames where AOR = 0 and NF is the total number of frames per

sequence.

• The success plot is a widely used metric for the evaluation of different tracking

algorithms [56, 57]. It represents the percentage of frames for which the overlap

measure exceeds a certain threshold, with respect to different thresholds.

• The precision plot is commonly used to measure the percentage of frames in which

the estimated locations are within a certain threshold distance of the ground-truth
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positions. Such plot is measured with respect to different thresholds in a specific

range.

2.4 Artificial Immune System

Artificial Immune System (AIS) is an emergent biologically motivated computing

paradigm. Its main concept is the extraction of principles from the natural immune

system (NIS) in order to design alternative computational tools for complex problem

solving. The main role of the immune system is to recognize and discriminate an

organism from foreign elements. The capability to recognize and eliminate specific

(non-self) patterns serves as a good source of inspiration to develop novel computational

mechanisms for machine learning and pattern recognition [58, 59]. AIS algorithms are

considered highly robust, adaptive, self-organized, and inherently parallel structured

[60]. They have the ability to escape the local optimum region through mutation, and

strong local search capability through cloning. They also add diversification by replacing

the worst performing individuals in the population. Several AIS techniques have been

developed for optimization and machine learning problems, each of which mimics a

certain principal in the NIS. Among such techniques, the clonal selection algorithm

(CLONALG) [59] is a widely employed AIS approach. In optimization problems,

CLONALG learns to recognize patterns through an evolutionary-like procedure and

is capable of solving complex engineering tasks, such as multi-modal and combinatorial

optimization [59]. CLONALG algorithm is used in diverse applications including image

classification [15, 61] and segmentation [62, 63]. Affinity proportional reproduction and

mutation are two important features of the CLONALG algorithm.

In AIS terminology, the optimization problem to be solved is the antigene, generated

solutions are the antibodies, fitness value (objective function evaluation) is the affinity,

cloning is the reproduction of solutions, mutation is the random modification of solutions,

and receptor editing is the diversification of solutions. For CLONALG-based AIS [1], a

population of antibodies (solutions) ab is randomly generated of certain size PS as
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PS = n ·Nd = PM + PR, (2.1)

where PS is the size of the population, n is a small number, Nd is the total number

of design variables, PM is the number of best candidate solutions, and PR is the

number of candidate solutions to be replaced by randomly created solutions. Each

antibody represents a combination of alternatives of all design variables in the form of

chromosomal representation. The antibodies are sorted according to their affinity into

either non-dominated (superior among all antibodies) or dominated. The dominance

is checked and the best PM antibodies are selected which go through a cloning process

that forms the local search tool of the algorithm. The number of clones Ncln to all the

antibodies is selected as

Ncln = nc · PS, (2.2)

where nc is a small number. The antibodies with the highest affinity are subjected

to higher clones, so they are more likely to be selected as the best solutions in the

next generations. Then a subset of the cloned antibodies undergoes hyper-mutation

and diversification operations that form the basis of the global search mechanism of the

algorithm. To perform the mutation process, the antibodies are encoded into binary

strings and the mutation rate is kept inversely proportional to antigene affinity. A

percentage of the worst members of the previous population of antibodies is replaced with

some randomly generated new solutions which will add diversity to the population. The

cloning and mutation processes increase the tendency to achieve the optimal solution.

The memory (archive) of size AS is utilized to store the best candidate antibodies among

generations and is defined as

AS > divk − (div − 1)k + 2k, (2.3)

where div > 2k, is the number of divisions used to identify the crowdedness of the
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solutions and k is the number of objectives in the optimizatiion problem. When copying

the best antibodies to the archive, if the archive is not full, all the non-dominated

antibodies are allowed to enter the archive. If the archive is full, the best antibodies which

belong to the lowest crowded region are allowed to enter the archive, and spontaneously

make random elimination of the antibodies which belong to the most crowded regions

with the same rate of the newly introduced antibodies. The length le of the encoded

binary string for each antibody is calculated as in

2le > Ub, (2.4)

where Ub is the upper boundary of the corresponding design variable.

Figure 2.3 illustrates the detailed flowchart of the clonal selection algorithm, which

randomly generates PS solutions of the optimization problem. The best antibodies

according to a pre-defined size go through cloning and mutation process to construct

new candidate solutions. These solutions are evaluated and a percentage of the best

solutions PM is added to the population. Further, a percentage of worst PR antibodies

are discarded and replaced with new randomly created solutions. Note that symbols

in Figure 2.3 represent the number of solutions. We aim to show that the number

of solutions is the same and the candidate solutions may be changed to find the near

optimal ones. In the flowchart, we add the non-best solutions, fraction of the best

solutions (where we applied clonning and hyper-mutations), and fraction of the rest of

the best solutions to form the solutions in the current iteration.

The CLONALG undergoes four steps to reach the final near optimal solution [64]:

• generation of random population which is a pool of antibodies or immune cells,

• proliferation of best antibodies which is simply performed through cloning process,

• hyper-mutation of clones (blind variation) to maintain diversity by applying

random genetic changes, and

• affinity of antigene antibody interaction through the evaluation of the objective

function and elimination of low affinity antibodies.
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Figure 2.3: Clonal selection algorithm.

Consequently, the best antibody or group of design variables which achieve the best

objective function value will continue for more processes in the algorithm and the

rest with low affinity will be removed. The CLONALG possesses the following three

techniques to maintain diversity that improves the ability to find a solution closer or at

the global optimal, preventing from stuck into local minima [1, 65]:

• hyper-mutation,

• receptor editing, which is called non-uniform mutation, and

• a fraction of new antibodies are added to the generated solutions.
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The diversity maintained by the non-uniform mutation helps the antibody-antigene

affinity to escape from local minima in the affinity landscape as shown in Figure 2.4. As

illustrated, the uniform mutation allows an antibody A to search small local searches

of antibodies with higher affinities (A1), because low affinities are eliminated, while

non-uniform mutation allows large search area steps, where the affinity might be lower

(an antibody A to an antibody B) or higher (A to C), in which mutation will lead to

reach a solution near to the global optimum.

Figure 2.4: Non-Uniform mutation process of antibodies [1].

2.5 Summary

In this chapter, object tracking approaches are presented, with a focus on the adaptive

appearance modeling-based approaches. The principal components of object tracking

systems are introduced. Common performance measures are then introduced. The

CLONALG artificial immune system algorithm is then presented.
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Chapter 3

Tracker-independent Drift Detection

and Correction

3.1 Abstract

Accurate object tracking is still a challenging problem due to numerous factors, that may

cause the tracker to drift away from the target object. Some trackers use segmentation

to enhance the tracking quality. Recent learning-based trackers perform much better

than segmentation-based ones. However, their output is a bounding box that may

not well discriminate foreground and background and may not be centered correctly

around the target object. This chapter proposes a method that detects drift of a tracker,

using saliency features of the target objects. If the tracker tends to drift or shows

inaccuracies, we propose a method that applies automatic seeded object segmentation

on the estimated tracking output to correct the drift. Such segmentation is meant

to re-locate the bounding box around the target object. As seeds for segmentation,

we propose to use SIFT interest points conditioned they are non-background pixels.

Results on a publicly available benchmark of 100 sequences that cover various tracking

challenges show the ability of the proposed method to improve the tracking quality of

five recent, and different performing, trackers. Simulation also show that the proposed

method outperforms segmentation-based trackers.



3.2 List of Symbols

3.3 Introduction

Object tracking is a demanding application. Given the initial location of a target in the

first frame, it estimates the states of the target in subsequent frames. Despite the fact

that much progress has been made in recent years, developing a robust (no-drift) tracking

algorithm is still a challenging problem due to numerous uncontrolled factors. Such

factors can be object-related (appearance and scale change, deformation, fast motion,

motion blur, or occlusion), environment-related (non-stationary scenes, cluttered

background, or illumination changes), system-related (real-time and automation

constraints), or combinations thereof [4]. The above-mentioned factors may cause the

tracker to drift away from the target object [4]. Drift detection is crucial, as it allows

the tracking algorithm to start a recovery (drift correction) process in order to maximize

the tracking accuracy. Drift detection can be based either on prior information about
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the target object and tracking environment [66, 67], or on features of the target object

such as visual saliency.

This chapter first proposes a method for drift detection using saliency features.

Visual saliency is the perceptual quality that makes an object stands out relative to its

surrounding and thus captures attention. Detection of salient regions of an image has

diverse applications, including object detection and segmentation [68–70], recognition

[71], and image retrieval [72]. Saliency is also used as cue to measure how likely an image

window contains an object [38]. Using saliency features for drift detection has several

advantages. First, no prior information is needed. Second, the saliency detection process

is not computationally expensive. Finally, one can still get the saliency information even

under challenging conditions such as occlusion and illumination variations [73].

Object segmentation can be used to improve the accuracy of object tracking [74].

Segmentation-based tracking approaches provide segmentation input to the tracking

algorithm in a closed loop form, for successful tracking [23–27]. However, such

approaches are not competitive in accuracy with learning-based tracking approaches

such as [2, 10–13]. On the other side, the output of learning-based trackers is, limited

to a bounding box (BB). Such BB may not accurately discriminate foreground and

background, handle non-rigid objects, or be centered accurately around the target

object, which affects the accuracy of the overall tracking process. This chapter

thus proposes drift correction by applying automatic seeded object segmentation

on the tracker’s output BB for enhanced tracking quality through drift reduction.

Applying object segmentation on each output BB of the tracker is assumed to provide

more accurate BB location with respect to the target object. However, running the

segmentation each frame has two main drawbacks: first, it is computationally intensive;

second, segmentation result may become inaccurate under video challenges such as

motion blur or occlusion. Accordingly, we propose to apply object segmentation only

when a tracking drift is detected.

In the rest of the chapter, section 3.4 presents prior work, and its relation to the

proposed approach, which is introduced in section 3.5; section 3.6 presents the analysis
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and discussion of the obtained results; and section 3.7 concludes the work and proposes

future work.

3.4 Prior Work

Various approaches have been used for enhancing object tracking quality such

as integrating segmentation and tracking in a closed loop as well as template

matching. Object tracking approaches can be divided into those explicitly using object

segmentation [23–27], and those not making explicit use of it, such as learning-based

tracking methods [2,10–13]. In the following, we review both categories and also methods

that explicitly handle drift detection and correction.

3.4.1 Segmentation-based Trackers

Segmentation-based tracking approaches use segmentation to initialize the tracking per

frame in a closed loop form. In [23], a fine Random-Walker (R-Walk) segmentation of an

object at any frame is used to initialize the tracking for the next frame. In [24], a closed

loop interaction between EM-like color-histogram tracking and R-Walk segmentation has

enhanced the accuracy of object localization. The spatial properties and appearance of

segmented objects are exploited to initialize the tracking algorithm in the next step. In

[25], G-Cut segmentation is applied to mean-shift tracking in a closed loop. Integrating

G-Cut within the optical flow tracker in [26] showed the ability to track articulated

objects under challenging conditions. These methods require user input at the first

frame.

In [74], Wen et al. presented a joint tracking and segmentation (JOTS) algorithm

which integrates multi-part tracking and segmentation into a unified energy optimization

framework. The multi-part tracking and segmentation are carried out iteratively to

minimize an objective function using a RANSAC-style approach. JOTS uses the SLIC

super pixel for multi-part segmentation and the segmentation is used to initialize the

tracking at next incoming frame. In such approaches, the segmentation is crucial

to initialize the tracking algorithm at each frame for successful tracking. However,
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running segmentation at each frame has two main drawbacks: first, it is computationally

intensive; second, segmentation may become inaccurate under video challenges such as

motion blur which may mislead the tracking process.

In the above methods, seeds through interactive user input are required. Interactive

seeded segmentation has appealing results [75–78] which require input seeds to represent

both object and background through user interaction. However, it is impractical for

automated tracking applications. [79] presented a method of object recognition and

segmentation using Scale-Invariant Feature Transform (SIFT) and G-Cut. However,

this method assumes that the object models, used for filtering of the interest points,

are pre-selected, which is not always available. In [80], J. Shan et al., presented a new

automatic seed point selecting method for region growing algorithm for breast lesion’s

images. One of the limitations of this method is that results are affected by shadow

with similar intensity of the lesion region, which is a case that can commonly occur in

tracking environment. [81] used the initial contour (not seed points) close to the object

boundary to initialize the active contour segmentation. The initial contour of the level set

segmentation is a closed curve. Therefore, the convex-hull polygon is chosen to embody

the salient object points. However, the active contour segmentation is computationally

intensive. In [82], Yang et al. presented an automatic color image segmentation using

G-Cut and color SIFT (CSIFT) features. They assume that pre-captured models of the

colored target object are available.

3.4.2 Learning-based Trackers

The last few years have witnessed the emergence of several learning-based high

performing trackers [2,3,8–11,13,18,83–85]. STRUCK tracker [2] is an adaptive tracker

based on kernelized structured output prediction using support vector machine, which

is learned incrementally over time. Sequential minimal optimization (SMO) is adopted

to find the optimal support vectors from samples around estimated object location to

update the classifier for target prediction. ASLA tracker [8] uses a structural local

sparse appearance model that exploits both partial and spatial information from sampled

candidate patches around estimated object location. A dictionary learning based on a
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structured sparse representation is combined with robust sparse coding in which the

learned classifier is employed to separate the object from background. SCM tracker [9]

uses a collaborative model with an updating scheme that considers both the latest

observations and the original template, thereby handles appearance changes effectively.

KCF tracker [10] is a Kernelized Correlation Filter operating on simple HOG features

that performs training and detection to discriminate an object appearance from its

surrounding. SAMF tracker [11] is a correlation filter (CF) based tracker that uses a

scale adaptive scheme to tackle the problem of the fixed template size in the CF. LOT

tracker [12] automatically estimates and adapts, on-line, to the rigidity of the tracked

object through a probabilistic model to handle appearance variations over time. DSST

tracker [13] extends the Minimum Output Sum of Squared Errors tracker [86] with robust

scale estimation. In addition, DSST learns a one-dimensional discriminative scale filter

to estimate target size. STAPLE tracker [3] combines two image patch representations

to learn a model that is inherently robust to both color changes and deformations. Two

independent ridge regression problems are solved, exploiting the inherent structure of

each representation to maintain real-time performance. STAPLE combines the scores

of template and histogram models in a dense translation search, that are learned

independently, enabling greater accuracy. CCOT [84] introduced a formulation for

training continuous convolution filters. It employs an implicit interpolation model to

pose the learning problem in the continuous spatial domain which enables the efficient

integration of multi-resolution deep feature maps. T-CNN [83] presented an online

visual tracking algorithm by managing multiple appearance models in a tree structure.

Such algorithm employs Convolutional Neural Networks (CNNs) to represent target

appearances. It is convenient to handle multi-modality in appearances and preserve

model reliability through smooth updates along tree paths.

Deep learning is one of the most successful research directions in machine learning

and computer vision. In object tracking, it detects candidate targets in consecutive

frames in which deep learning is used to recognize the object of interest among such

candidates. The power of deep learning appears in its ability for automatic feature

expression. Through a multi-layered learning architecture, the deep networks can achieve
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both high dimensional and abstraction level with obvious distinction. One of the most

popular deep-learning architectures is the convolution neural network (CNN) [87]. Due

to its superiority among other architectures, CNN becomes the mainstream model in

visual tracking. Generally, an off-line trained large-scale CNN is adopted for both

classification and tracking. The common approaches of CNN-based tracking are both

fully CNN (FCNT) [85] and multi-domain CNN (MD-Net) [18]. FCNT constructs a

feature selection network in addition to prediction networks. In addition, such networks

are found to use irreverent image data to reduce the training demand, which causes

deviation from tracking to some extent [87]. In the pre-training phase, the object of

certain class in one video can be a background in another video. As a result MD-Net

defines a domain to be a set of videos that contain same kind of objects and proposes

to use a multi-domain structure to distinguish between the object and background in

each domain independently. Deep learning approaches have some limitations. First,

the pre-training is inefficient for on-line training that affects the tracking performance.

Second, it incorporates a large number of parameters that are not shared among different

layers. Third, MD-Net does not fully utilize video information in temporal domain.

Recent network models, such as recurrent neural networks, are being discovered and

showed to outperform the FCNT and MD-Net.

Learning-based trackers output a BB that is not adaptive to object boundaries and

shape, specially when the target object undergoes drastic appearance changes. Also once

the tracker starts drifting, the location and overlap error accumulate quickly, distorting

object model recursively and eventually leading up to a total failure.

3.4.3 Trackers with Drift Detection and Correction

Drift detection allows the tracking algorithm to start a drift correction (recovery)

process. To detect drift from the target object, object detection methods can be used.

State-of-the-art object detectors follow the sliding window paradigm [35,36]; they classify

first windows containing instances of a given class. The classifier is then used to score

every window in a test image in which a local maximum of the score localizes instances

of such class. After drift detection, a recovery process is important to correct the
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drift. In [67], Schreiber proposed a modified Lucas-Kanade template matching with

drift correction, in which an object is tracked by extracting a template in the first frame

and then finding the region which matches the template as closely as possible in the

remaining frames. The underlying assumption is that the object appearance remains

the same. In [66] the current estimated template is updated using naive algorithm and

then, aligned with the retained first frame template to give the final update. Such drift

correcting algorithm is still sensitive to variations in the object appearance relative to

the first template.

3.4.4 Differences to Our Approach

Our proposed method 1) is tracker independent, and can be applied to any tracking

algorithm; 2) requires no prior information about the target object for automatic drift

detection; 3) uses automatic segmentation with robust seed selection through both SIFT

and intensity features to filter out seeds related to the background regions; and 4)

outputs a BB more adaptive to object boundaries and shape. Our method differs from

segmentation-based tracking, as it applies segmentation only when a drift is detected

and hence, it can achieve both better quality as well as higher frame rate.

3.5 Proposed Method

The proposed method comprises two main components as shown in Figure 3.1: drift

detection using saliency features and drift correction using seeded segmentation. At

current frame Ft, given the estimated tracking output BB from previous frame Ft−1, an

object tracker estimates the BB (Bt) around the target. If a drift is detected, the drift

correction relocates the BB around the target through automatic seeded segmentation.

3.5.1 Saliency-based Drift Detection

Saliency object detection, sometimes called salient segmentation, is interpreted in

computer vision as the process that incorporates detection of the most salient region(s)
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Figure 3.1: Block diagram of the proposed drift detection and correction method.

in an image and then segmenting the boundary of such region(s). For saliency of a

region, a high contrast to its surrounding regions is usually stronger evidence than that

of far-away regions. Generally, an object is more likely to be salient than a region on the

background, as image background is usually more structured and homogeneous (thus

less salient) than objects [88].

While most of saliency models [42, 43, 45] employ local contrast, we calculate

the saliency map more robustly [44] using global contrast differences and spatial

coherence. However, directly introducing the spatial relation among individual pixels

is computationally expensive and thus, we partition the BB Bt into K regions (e.g.,

using [89]) and calculate the saliency sk of each region rk as a weighted sum of

corresponding regions’ contrast according to the spatial distance among them. For this,

we first find the histogram of each region rk and then calculate the saliency sk of rk as

sk =
∑

(i 6=k)

ni ·Dlab(rk, ri) · e
−E(rk,ri)/σ

2
s , (3.1)
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where ni is the number of pixels inside region ri and Dlab(rk, ri) is the color distance

between regions rk and ri in LAB color space, E(rk, ri) is the Euclidean spatial distance

between centers of rk and ri, and σs controls the strength of spatial weighting. σs =
∑N

j=1 dpj

N
is the average of differences between pixels pairs of the frame Ft, where dpj

is the average of absolute intensity differences between pixel pj and its four neighbors

and N is the number of pixels in Ft. We calculate the number of regions K using the

super-pixel segmentation, which groups pixels of Bt into regions with similar values.

With {sk}, each pixel pl of Bt has a saliency value. To reduce complexity, we apply a

saliency thresholding of sk to get the binary mask bl

bl =







1 : sk(pl) > ts,

0 : otherwise
(3.2)

with ts global to Bt defined as

ts =

∑

k (nk · sk)
∑

k nk

, (3.3)

where nk is the number of pixels in rk. Finally, our drift detector determines whether

the target object inside Bt has drifted from its expected position depending on αs, the

ratio of the binary salient pixels inside {bl}, as follows

TDrift =







1 : (αs < cs1) ∨ ((αs > cs2) ∧ (αs < cs3))

0 : otherwise.
(3.4)

Meaning if αs the ratio of binary pixels in Bt is within the range (cs2, cs3), such as 0.6

and 0.9, or smaller than cs1, such as 0.2, then drift is detected with

αs =
Nb

∑

k nk

, (3.5)

where Nb is the number of binary pixels (i.e., pixels pl with bl = 1) of Bt,
∑

k nk is

the total number of pixels in all K regions (or the number of pixels in Bt). cs1, cs2,

and cs3 are experimentally selected constants that decide whether the target saliency

is low and hence a drift starts to occur. As shown in Figure 3.2, such constants are
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selected according to tracker’s scale property. Scale variant trackers, such as DSST [13],

SAMF [11] , and STAPLE [3], adapt the estimated BB to the target size (Figure 3.2.

a), while scale-invariant ones, such as KCF [10] and STRUCK [2], have a fixed size

estimated BB (Figure 3.2. b).

(a) Scale-variant. (b) Scale-Invariant.

Figure 3.2: Scale-variant versus scale-invariant example frames.

3.5.2 Drift Correction Using Seeded Segmentation

To correct drift, we relocate Bt using seeded G-Cut segmentation that has appealing

results as it compromises between the computational complexity and the ability to

achieve global solution [78]. The input parameters of interactive seeded segmentation

[75–78], such as G-Cut, are seeds that represent both object and background as hard

constraints through user interaction. Interactive seed selection has shown to improve

the tracking quality [29]. However, interactivity is impractical for automated tracking

applications. We thus propose to automatically select seeds for G-Cut using two-layer

filter: SIFT interest points and non-background pixels inside Bt.

SIFT is able to find distinctive interest points that are invariant to location, scale and

rotation, and robust to affine transformation and illumination changes [90]. Among the

SIFT points, there exist interest points that are more likely to belong to the background

(not the target) which may mislead the segmentation. Accordingly, we propose a

two-layered filter such that SIFT interest points used to initialize the segmentation are

more likely to belong to the target. The first layer uses the already generated saliency
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map {sk} to filter out all points outside the saliency map of the target object. We select

only those interest points that intersect with the most salient pixels of the binarized

saliency map bl. The second layer filters out the interest points that belong to the

background. We define the background as illustrated in Figure 3.3; Given the base

tracker BB (green), we divide the frame into four regions: absolutely foreground (AF ),

probably foreground (PF ), probably background (PB), and absolutely background

(AB). The AF region is inside BB and belongs to the object as a hard constraint.

The PB is a margin to handle segmentation of irregular object parts outside the BB.

Seeded segmentation expands from AF through PF (and possibly PB) regions until

it reaches BB boundaries. In the proposed method, PB and AB outside the BB are

considered background. Thus the final interest points exclude those in PB and AB.

(a) Input frame. (b) Seed masks. (c) Segmentation.

Figure 3.3: Automatic seed masks for segmentation.

Seeded segmentation is sensitive to seed quantity and placement. It is important

to select seeds that have a low probability of false alarm. As a consequence, our seeds

selection in region AF avoids boundaries of BB and places the seeds starting from the

center of the output BB of a tracker. Low-light (or dark) objects surrounded with a dark

background are a challenge for segmentation and we thus select less seeds for such BB to

decrease false alarm. To this end, we use the average intensities µo of AF region and µb

of its immediate neighbour pixels (e.g., in a radius of 10 pixels). The idea is to determine

the appropriate AF region inside B1 centered at a distance d from its boundaries as

d =







(1− 0.1µo) · υ : (µo < co) ∧ (|µo − µb| < cµ)

(1− 2µo + µ2
o) · υ : otherwise,

(3.6)
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where υ = min(W,H)/2 with W and H as the width and height of B1. Then d is upper

bounded to υ − 1, which is the maximum distance to move from any B1 boundary to

reach the center of B1. co = 0.35 represents dark objects and cµ = 0.03. Dark objects

on low intensity background are a challenge for segmentation; we thus assume that dark

objects on low intensity background, e.g., Figure 3.14 (third row), require lower AF

region (i.e., less seeds) for accurate segmentation. This is because lower AF at the B1

center allows the segmentation, not the seeds, to decide what are the object parts inside

B1. Figure 3.4 shows the relation between d (in pixels) and µo: for high µo (bright BB),

small d (i.e., more seeds) are required as the object boundaries are more distinguishable.

Figure 3.4: Distance d versus the average intensity µo of AF region.

Thus the output of our two-layer filter are seeds S that is a set of pixels pl in Bt that

are SIFT interest points filtered by the binary saliency map and at the same time fall

inside the AF region,

S = {pl ∈ (SIFT ∧ AF ) ∧ (bl = 1)}. (3.7)

AF is inside Bt and defined by d in (3.6) as illustrated in Figure 3.3. Figure 3.5 illustrates

the filtering process of SIFT points and segmentation result.
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(a) Input BB. (b) SIFT points. (c) Filtered
SIFT.

(d) Segmenta-
tion.

Figure 3.5: Interest points filtering process and segmentation output.

The object segmentation initialized with seeds S produces the object mask M that

represents the target object. Due to various tracking and segmentation challenges, the

object mask M from G-Cut is likely to include noisy blobs. Thus we apply contour

selection, that uses the flood filling to fill small holes in M through connected component

algorithm, calculates the contour length of all regions inside M , selects the largest

contour as C, and removes other small blobs. The BB is then relocated around the

center of C.

3.6 Results and Analysis

3.6.1 Experimental Setup

For experiments, we have evaluated the results of our approach on a publicly available

dataset of 100 sequences provided by Wu et al. [56] that covers 11 different tracking

challenges. We test our approach on five recent trackers, STRUCK, KCF, SAMF, DSST,

and STAPLE [2, 3, 10, 11, 13], that are different performing from view point of tracking

accuracy, performance, and methodology [55–57,91–95].

34



For evaluation, we use the average precision and success plots, and three evaluation

measures: overlap ratio AOR, center location error CLE, and failure rate FR. Moreover,

we use the number of recovery and drift in the form of recovery-drift plot to further

investigate the achieved improvement by the proposed method (recovery and drift

measures are defined in section 6.5.2).

The suitable selection of G-Cut segmentation parameters plays an important role

in the accuracy of the resulting segmentation. These parameters are λ that represents

a weighting term to control both over and under segmentation and σ that represents

the camera noise. We propose to select such G-Cut parameter using CLONALG-AIS as

described in chapter 5. In all the simulations that follows, we used the values derived in

chapter 5, which are λ = 218 and σ = 10.

The only parameters that we use depending on the tracker category are those in (3.4)

which we selected according to the scale property of the tracker as follows: cs1 = 0.375,

cs2 = 0.625, and cs3 = 0.925 for scale-variant trackers (such as SAMF, DSST, and

STAPLE) and cs1 = 0.2, cs2 = 0.6, and cs3 = 0.9 for scale-invariant trackers (such as

STRUCK and KCF).

3.6.2 Objective Results

Tables 3.1, 3.2, 3.3, 3.4, and 3.5 show the overlap ratio, center location error, failure

rate, drift, and recovery measures of the original trackers vs. the proposed framework

for each of the 100 test sequences. Better results are shown in bold. Averages over all

test sequences are also given. As can be seen, the proposed method improves the quality

in all aspects. In table 3.5, we give the a pure recover-to-drift measure pRD = (R−D)
(L−100)

where R is the sum of individual recoveries of all 100 test videos, D is the sum of

individual drifts of all 100 test videos, and L is the total number of frames of all test

videos. Note that we subtract 100 as we skip the first frame in each video. As can be

seen, with our method all trackers achieved better pRD and SAMF tracker achieved the

best improvement. Note that pRD is between 1 and -1, where positive values mean the

tracker well recovered from drifts on average. For example, pRD = 0.333 indicates good

performance since the tracker shows more recoveries than drifts.
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Table 3.1: The overlap ratio of base and modified trackers per sequence.
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Table 3.2: The center location error of base and modified trackers per sequence.
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Table 3.3: The failure rate of base and modified trackers per sequence.
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Table 3.4: The number of drifts of base and modified trackers per sequence.

42



43



Table 3.5: The number of recovery of base and modified trackers per sequence.
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In the following results and to make figures clear, we systematically select the best

three trackers according to Tables 3.1, 3.2, 3.3, 3.4, and 3.5 for comparison. The average

success and precision plots shown in Figures 3.6 and 3.7, confirm that the proposed

method outperforms the base trackers, for all sequences in both measures. SAMF

(black), KCF (blue), and STAPLE (green) trackers show the best enhancement.

Figure 3.6: Average precision plot using automatic drift detection and correction.

Figure 3.7: Average success plot using automatic drift detection and correction.
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Figures 3.8 and 3.9, show the effectiveness of the proposed method on various

challenge attributes, such as fast motion, occlusion, background clutter, etc. It is clear

that the performance of the proposed method outperforms the corresponding original

ones, as they effectively handle the different challenging situations.
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Figure 3.8: Precision plot of all trackers over all test videos per challenge.
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Figure 3.9: Success plot of all trackers over all test videos per challenge.

It is worth noting that, although the quality of STAPLE base tracker outperforms

that of the remaining four trackers under test, according to VOT2016 [96], we found

that the quality of the modified SAMF tracker outperforms that of STAPLE tracker

for different challenges such as scale variation, low resolution, out-of-plane rotation, and

occlusion as shown in Figures 3.8 and 3.9. In addition, the quality of the modified

STRUCK tracker is better than that of DSST tracker, which is originally better than

STRUCK, for low resolution, fast motion, and occlusion challenges.

Figures 3.10, 3.11 , and 3.12 show the improvement in AOR, CLE, and FR, by

the proposed method applied to the all trackers over all 100 test sequences. As can

be seen, the quality of our proposed method (continuous lines) outperforms that of the

corresponding original trackers (dashed lines) for AOR, CLE, and FR.

Figure 3.10: AOR of base and modified trackers over all sequences.
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Figure 3.11: CLE of base and modified trackers over all sequences.

Figure 3.12: FR of base and modified trackers over all sequences.

For more investigation, we calculated the number of times that each tracker recovers

from drift (or failure). We defined drift and recovery measures in section 6.5.2. In

case of successful tracking without failures (Bt has overlap with the ground truth BB

Bg
t ) for certain sequence, we consider the tracker has recoveries by the total number of

frames of that sequence). In addition, the pure number of failures for each tracker is

calculated as the difference between number of recoveries and number of failures. As

shown in Figure 3.13, the proposed method (filled symbols) has achieved higher recovery

numbers, compared with the corresponding original trackers (clear symbols), that in
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turn leads to lower tracking failures. In addition, this plot facilitates the evaluation of

the achieved improvement of the proposed method in both tracking failures and number

of recoveries. It shows that while the quality of the original SAMF and STAPLE

trackers is better than that of KCF, the proposed method decreased the failures of

the KCF tracker (KCF-SegTrack) that becomes lower than that of both SAMF and

STAPLE. Also STRUCK-SegTrack has achieved lower number of failures than KCF

and DSST trackers which are originally better than STRUCK.

Figure 3.13: Recovery-failure (drift) plot of base and modified trackers.

Table 3.6 summarizes the average improvement in AOR, CLE, and FR, using the

proposed method (better quality is shown in bold), for the five trackers relative to

their corresponding original tracking quality over all test sequences. Over all frames,

the proposed method gives better quality; no outliers were noted. As can be seen,

all trackers have achieved better tracking quality compared with their corresponding

original versions. Hightest improvement is achieved with SAMF followed by STAPLE

tracker. We notice the ranking of the five trackers based on AOR remains the same,

while based on FR, the ranking is changed (best SAMF and worse DSST).
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Table 3.6: Average improvement of the proposed drift detection and correction method.

3.6.3 Subjective Results

Figure 3.14 shows examples of Deer, Car1, Shaking, Couple, Bird1, Diving, Tiger2,

Jumping, Skating2, Bolt2, and Football sequences and explores how the proposed

method applied to all trackers (continuous boxes) reduces the tracking drift and

successfully tracks the target object while the corresponding original trackers (dashed

boxes) drift away from the target object.
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Figure 3.14: Subjective results using the proposed drift detection and correction.

As shown in Figure 3.14, different base trackers bounding boxes (KCF, SAMF, DSST,

and STAPLE in the first video, KCF and STRUCK in second video, KCF, SAMF, and

STAPLE in third video, KCF, and DSST in fourth video, STRUCK, KCF, and DSST

in fifth video, STRUCK, SAMF, DSST, and STAPLE in sixth video) are drifted from

the target object, while the proposed method successfully tracks the objects of interest

for different challenges.

Low Resolution: The Deer sequence is used to evaluate the effectiveness of the

trackers in dealing with scenarios of low contrast between the target and background.

As shown in Figure 3.14 (1st row), the proposed method allows all tested trackers

to successfully track the target object. On the contrary, all base trackers, except of

STRUCK tracker, are get distracted and drifted away from the target object.

Scale Variation: Car4 sequence is used to investigate the stability of the proposed

method under the scale change challenge. Figure 3.14 (2nd row) shows that the proposed

method successfully tracks the target object without drift for all tested trackers, while

STRUCK and KCF base trackers drift out of the target object at the middle of the

sequence.

Illumination Variation: To study the effect of the illumination variation on the

tracking quality, Shaking video sequence is used. Figure 3.14 (3rd row) shows that

the proposed method allows all tested trackers to effectively locate the target object,

while KCF, SAMF, and STAPLE base trackers have lost the target after the drastic

illumination change, and only SAMF could recover at the middle of the sequence.

Object Deformation: Figure 3.14 (4st row) clarifies the effectiveness of the

proposed method in handling object deformation. All tested trackers succeeded in

handling the drastic deformation in the object under test, while KCF and DSST base

trackers gradually drifted away from the target object at the beginning of the sequence.

55



Out-of-View: As shown in Figure 3.14 (5th row), both KCF and DSST trackers

drifted off the target of the Bird 1 sequence when it is out-of-view with no recovery,

while all modified trackers have succeeded to track the target object without drift.

In-plane Rotation: For the Diving sequence, Figure 3.14 (6th row), both SAMF

and STAPLE base trackers drifted off the target after the beginning of the sequence until

the end. On the other hand, all modified trackers tracked the target object without drift.

While the base STRUCK tracker can track the target object successfully, the proposed

method allows the modified STRUCK to locate more accurate BB around the target

object.

Occlusion: The seventh row of Figure 3.14, for Tiger 2 sequence, shows that all

base trackers and their corresponding modified versions successfully located the target

object under occlusion.

Motion Blur: For the Jumping sequence, Figure 3.14 (8th row), KCF, DSST, and

STAPLE base trackers have big drifts as a result of motion blur in the image scene.

However, the modified KCF, SAMF, and STAPLE trackers effectively locate and track

the target object. The modified DSST tracker shows slightly better estimated BB than

the base one. Both base and modified STRUCK trackers show successful tracking of the

target object through the sequence.

Fast Motion: For the Skating 2 sequence, Figure 3.14 (9th row), all base trackers are

distracted by the fast motion of the target object. However, the proposed method allows

the modified trackers to estimate bounding boxes that are closer to the ground-truth

than the base trackers, especially STRUCK, DSST, and STAPLE trackers that drift off

the target at the middle of the sequence. In addition to fast motion, the similar object

near the target distracts most of the trackers to some extent.

Background Clutters: The tenth row of Figure 3.14, for Bolt 2 sequence, shows

that KCF, SAMF, and DSST base trackers drift off the target object at the beginning

of the sequence and their corresponding modified versions could successfully locate the

target object in spite of high background clutters.

Out-of-Plane Rotation: Figure 3.14 (11th row) shows the Football sequence in

which STRUCK base tracker gradually drifts off the target at the beginning of the
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sequence and lost it at the end, while the modified version kept tracking the target

object. The out-of-plane rotation challenge distracts the trackers as the target size

changes. The modified STRUCK shows successful tracking, while other trackers (both

base and modified) partially locate the target at the end of the sequence after successful

tracking.

3.6.4 Proposed vs. Segmentation-based Tracking Methods

[74] tested their segmentation-based tracker (JOTS) using two data sets SegTrackv1 [97]

and SegTrackv2 [98], and reported the average pixel error per frame for SegTrackv1

dataset and the intersection-over-union overlap metric is reported for SegTrackv2.

These experiments demonstrate that JOTS performs favorably against state-of-the-art

methods. However, authors manually selected different parameters for individual

videos to achieve the best tracking quality assuming a user annotation followed by the

interactive segmentation is provided in the first frame.

For fair comparison with our automated method on the publicly available OTB

benchmark [56], we experimented with a common parameter set for experiments over all

videos of both SegTrackv1 and SegTrackv2 data sets. On average, we achieved better

quality than that achieved using the selected authors parameters for individual videos.

The common parameters are labeling ratio that controls the size of the surrounding

region of the target object (LR) and the outliers distance threshold that controls the

maximum distance for outliers (TOD). For simulation, both LR and TOD are selected

as 0.76 and 25 respectively. In addition, we tested an automatic segmentation of the

target object in the original BB at the first frame using two approaches. The first

approach uses OTSU threshold to segment the target object from the background. In the

second approach, we used our automated seeded segmentation in section 3.5.2 to segment

the target object. Experiments on both data sets showed that our seeded segmentation

has achieved better tracking quality according to the two metrics suggested by authors

of JOTS.

For comparison, the original KCF tracker, the proposed KCF tracker

(KCF-SegTrack), and JOTS are compared over 35 videos from OTB benchmark. Table
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3.7 shows that our tracker outperforms JOTS according to AOR, CLE, and FR measures.

In addition, our KCF-SegTrack has clearly better tracking performance (28.04 FPS)

compared with JOTS tracker (0.074 FPS).

Table 3.7: Comparison of proposed method vs. JOTS.

3.6.5 Computational Costs

The computational burden for detecting and correcting the tracking drift remains a

significant goal in order not to sacrifice the tracking system performance. In Table 3.8,

we show the frame rate (the actual average number of frames processed per second) of

each base tracker compared with the modified version using our proposed method over

100 test videos. In addition, we included the frame rate of all individual components of
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our method including seed selection and segmentation SS − Seg, drift detection DD,

and drift correction DC. As shown, the SS−Seg (implemented in C++) has relatively

higher frame rate for STRUCK (implemented in C++) than other trackers (implemented

in Matlab and use Mex files for seed selection and segmentation). The table also shows

that for modified STRUCK tracker, the frame rate is lower compared with its individual

components since integrating the segmentation with the tracking for all test sequences

consumes more memory resources that affects the overall performance. The DD has

high frame rate which shows that using saliency feature slightly affects the tracking

performance. Finally, the DC has achieved very high frame rate as it considers only the

relocation of the tracker position.

Table 3.8: Frame rate of the proposed drift detection and correction method.

3.6.6 Advantages and Limitations

The modified trackers generate a BB that is better-placed (in terms of objective

measures) than the BB of the base trackers. This is because we 1) restrict object seeds to

be always inside the original output BB; 2) adapt the seeds to the BB itself; and 3) use

a powerful segmentation approach [75]. Our method achieves better improvement when

the output BB deviates reasonably, i.e., not too much, from its true position. When

the original BB deviation is high, (e.g., when off-target as in Figure 3.15(e)), or when

the size of BB is wrongly estimated as in Figure 3.15(b-d), the improvement is small.

For example, deviations of the LOT tracker [12] output BB are high; Figure 3.15; and

thus the improvement using the proposed method is small (AOR at 1.29% and CLE

at 1.80%). Our proposed method has lower FPS as shown in Table 3.8; the use of fast

G-Cut segmentation methods [78, 99–101] can increase the overall FPS.
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(a) Abrupt change. (b) Too large BB.

(c) Small on-target. (d) Small off-target.

Figure 3.15: Base tracker related limitations.

Our drift detection uses the saliency information of the target inside the Bt to

detect if it starts to drift, then it relocates the Bt around the target object by applying

segmentation of that object. Experiments show that the base trackers may have random

behavior at certain frames that causes the tracker to suddenly drift off the target

immediately in next frame. As a result, the proposed tracker may wrongly switch to

another object that might have different segmentation and saliency characteristics. Such

behavior may mislead the proposed approach.

3.7 Conclusion

This chapter proposed a method for drift detection, using saliency features of the target

objects, integrated with a drift correction mechanism through seeded segmentation of

the estimated tracking output bounding box to improve the tracking quality. Instead of

applying segmentation at each frame, the proposed method applies segmentation only

at the occurrence of tracking drift. Our tracker-independent method is applied to five

recent different performing trackers on a large publicly available data set of 100 test
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sequences. Results indicate that our method reduces the tracking drifts that in turn

leads to an improved overall tracking quality of all tested trackers according to various

evaluation criteria.

As future work, it is intended to study the effect of using different saliency detection

algorithms for drift detection and to study the effect of using fast segmentation on the

tracking performance. In addition, it is desirable to integrate both saliency features and

objectness measures in a unified framework for automatic drift detection.
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Chapter 4

Artificial Immune System Based

Parameter Optimization of SVM in

Object Tracking

4.1 Abstract

Little research attention has been given to study the use of artificial immune system

(AIS) optimization in computer vision. Support vector machine (SVM) classification

approach has been widely and successfully used for diverse applications including

object tracking and segmentation. Establishing an efficient SVM model requires careful

selection of its penalize and kernel parameters that have strong influence on the

classification accuracy. Long and tedious trial and error approaches are usually used

for the selection of SVM parameters for a specific application, and these approaches do

not guarantee best performing parameters. This chapter proposes a method for adaptive

selection of SVM parameters for enhanced object tracking using AIS optimization. This

method incorporates a complementary SVM model, that is trained on-line, in which

the AIS is used to automatically select the near-optimal parameter set for the tracking

model without human intervention. The proposed method is tested on the STRUCK

tracking algorithm which uses SVM [2]. The obtained results show that the performance



of the proposed approach well outperforms the original STRUCK.

4.2 List of Symbols

4.3 Introduction

Object tracking has many uses [4, 102] such as surveillance, robotics, and augmented

reality. Many powerful approaches treat the tracking problem as a classification task and

use on-line learning techniques to update the object model [2,9,103–106]. A structured

output learning with SVM enables adaptive tracking [2,104,106]. SVM, as a supervised

learning method, constructs a classification model using training data [107]. SVM uses

the kernel function to map the input data into a high-dimensional feature space and

find a near-optimal hyperplane for classification. Different kernel functions can be used

to select such support vectors along the surface of the hyperplane including linear,

polynomial, sigmoid and radial basis function. Although SVM has been successfully

applied in many fields such as object recognition [108,109], and tracking [2,17,110], there

63



is a conspicuous problem in the practical application of SVM. Selection of appropriate

kernel function and its parameters affects learning and generalization performance of

SVM and is important to obtain the best classification performance that in turn leads

to minimal prediction error.

This chapter proposes to use AIS-based parameter selection of SVM algorithm.

For SVM-based object tracking such as STRUCK [2], we use AIS for the selection

of near-optimal kernel and penalize parameters according to the selected features of

the tracking model. The proposed method incorporates a complementary SVM model

that is trained on-line using the features of the current frame in which the classification

accuracy is considered as an evaluation function.

The rest of the chapter is organized as follows. Section 4.4 presents prior work and

its relation to the proposed approach. Section 4.5 introduces the proposed approach for

enhanced SVM-based object tracking using AIS. The experimental results are presented

in Section 4.6, followed by a conclusion in Section 4.7.

4.4 Prior Work

Powerful tracking approaches use on-line learning techniques to update the object

model. In [17], S. Hare et al. presented a framework for adaptive visual object

tracking (STRUCK) based on structured output prediction using a kernelized SVM.

In their work, the authors predefined the SVM model with fixed parameters regardless

of the varying nature of video signals. In [110], Zhang et al. proposed a multi-view

learning framework using multiple SVMs, based on multiple views of features and a

novel combination strategy. For comprehensive representation, the authors selected

three different types of features to train the corresponding SVMs. However, the fixed

parameter set used by such approach may affect the tracking accuracy due to the varying

nature of video signals from which the features are extracted. In [111], Keerthi proposed

an algorithm to find the optimal parameters of the least-squares SVM by gradient descent

method. However, gradient descent is sensitive to initial parameters and may converge

to local optimum if initialization is far from the optimal solution. Lessmann et al. [112]
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optimized the SVM parameters by two genetic algorithm methods. Compared with

genetic algorithms, AIS can effectively avoid the premature convergence and guarantee

the variety of solution [113].

Numerous researches have applied AIS to improve the performance of classification

algorithms such as SVMs [14, 15, 61, 114]. But, all of these use static and pre-defined

parameters for SVM. They do not select the SVM parameters on-line, meaning adaptive

to the current state of the system. In [114], Aydin et al. proposed an AIS-based SVM

algorithm for fault diagnosis of induction motors. In their method, the number of the

miss-classified data is considered as an evaluation function and a radial basis kernel

is used. An off-line training stage is adopted to find the optimal SVM parameters

to be used for testing. Lin and Chen [14] applied the AIS algorithm to enhance the

classifying capacity of the case-based reasoning algorithm. In [15], Aydin et al. proposed

a multi-objective AIS to optimize the radial based kernel and penalize parameters of

SVM. In their method, a training stage of SVM is done off-line in which multiple solutions

are found by using AIS model and then these parameters are evaluated in a test stage.

In [61], Wu et al. proposed an AIS-based SVM approach for classifying ultrasound breast

tumor images. Their method adopts both parameter tuning and feature selection to

achieve higher lesion classification accuracy. The results showed that some lesions still

have similar characteristics that cause the CAD system to fail. Moreover, an off-line

training is used in order to find the best performing parameters.

The above-mentioned approaches apply the AIS using pre-defined features prior to

the testing phase, which is impractical for object tracking due to the varying nature

of video signals. Accordingly, an on-line parameter selection framework is important.

In [115], Chau et al., training video sequences are classified off-line according to their

contextual features and then once a context change is detected, the tracking parameters

are tuned using the learned values. However, it is impractical for automated object

tracking. The method learns how to tune the tracker parameters to cope with the

tracking context (set of features) variations.

To the best knowledge of the author of this work, no method exists that selects

the SVM parameters fully on-line, that is adaptive to the state of the system. Current
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AIS approaches for SVM optimization [14, 15, 61, 114] apply the training off-line with

pre-determined features and then use the resulting parameters for testing. Our proposed

method applies the training of SVM in an on-line manner, that is when a variation in the

features between consecutive frames is detected, with no restriction about the feature

type used for training. The proposed method automatically selects a configuration

that is best performing according to this variation in newly captured features between

consecutive frames.

4.5 Proposed AIS Approach for SVM Optimization

4.5.1 Background

In object tracking, SVM-based classification aims to learn margin-based discriminative

classifiers for maximizing the separability between object and background. Kernel

selection and efficient kernel computation are important for robust tracking. STRUCK

[2,17] directly links the tracking to learning; it learns a prediction function f to directly

estimate the new object position ŷ between frames based on the feature vector x of

y. It learns f in a structured output SVM framework, that uses a discriminant (or

scoring) function F for prediction as ŷ = f(x) = arg max
y

F (x, y). Thus it performs

a maximisation so to predict the new object position, and the discriminant function

F includes y explicitly in the learning algorithm. To update the prediction function

online, STRUCK supplies a labelled example y relative to the new tracker location.

STRUCK consists of the following main steps: estimate change in target position,

update discriminant function, Sequential Minimal Optimization (SMO), and budgeting.

STRUCK learns discriminatively a scoring function F over input-output example set

{(xi, yi)}. F maps the output BB y and its corresponding feature x to a scalar label.

Once F is learned, the prediction of the output ŷ highest compatible with the input x

is obtained by maximizing F over all possible outputs y as ŷ = arg max
y

F (x, y).

The scoring function is in the form F (x, y) = 〈w,Φ(x, y)〉, where the weight vector

w is learned with sequentially obtained example pairs in the set of training examples,

Φ(x, y) is a joint feature map, and 〈·, ·〉 is the inner product. The scoring function
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F can be learned by minimizing a constrained convex objective function subject to

〈w, δΦi(y)〉 ≥ ∆(yi, y)−ξi with the slack variables ξi allowing the examples to violate the

constraint of being outside of the margin, δΦi(y) = Φ(xi, yi)−Φ(xi, y). Instead of solving

the primal optimization using a convex objective function, its dual formulation using

the Lagrangian function is obtained as given in (4.1), where the Lagrangian multiplier α

corresponds to the margin constraint δΦi(y) in the convex objective function. In SVM,

it is crucial to carefully design the kernel function k(x, y, x̄, ȳ) = 〈Φ(x, y),Φ(x̄, ȳ)〉 for

the optimization problem.

When equipped with kernel functions, SVM learning algorithms encounter a problem

of dimensionality that causes unbounded linear growth in model size and update time

with the amount of training data. Therefore, it is important to upper bound the

number of support vectors that are generated during tracking. STRUCK uses an on-line

budgeting mechanism to solve such problem. During tracking, a pool of support vectors

S is maintained after the on-line budgeting process in each frame. During SMO, for each

sample xi with corresponding BB y in S, the coefficient αy
i is incrementally updated.

The only support vectors that correspond to non-zero αy
i are kept in pool S. As an

advantage of budgeting mechanism, given a new training example (xi, yi), the algorithm

is optimized to maximize the margin of the SVM based on αi, keeping the number

of maintained support vectors at upper bound. Using standard Lagrangian duality

techniques, STRUCK uses an objective function in dual form as

max
αy
i

(

∑

i,y 6=yi

△(y, yi)α
y
i −

1

2

∑

i,y 6=yi,j,ȳ 6=yj

αy
iα

ȳ
j 〈Φ(xi, y),Φ(xj, ȳ)〉

)

s.t. αy
i ≥ 0, ∀i, ∀y 6= yi and

∑

y 6=yi

αy
i ≤ C, ∀i,

(4.1)

where △(y, yi) is a loss function between the BB y of object of interest and the sample

yi, α
y
i is the α parameter of sample yi with BB y, αȳ

j is the α parameter of sample

j with BB ȳ, k(x, y, x̄, ȳ) = 〈Φ(x, y),Φ(x̄, ȳ)〉 is the kernel similarity function which

is defined as simple inner product between samples xi of BB y and sample xj of BB

ȳ, and C is a penalize (regularization) parameter. Using the loss function △(y, yi)
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between sample pair of BB y and yi allows the discrimination function (that internally

discriminates between the two classes of data) to treat a test sample yi according to its

closeness to the object of interest y instead of treating all samples equally. The SMO is

an iterative method that jointly optimize pairs of α parameters that are chosen so as to

maximize the objective function in (4.1). SMO adjusts the bias parameter that is used

for the construction of the discrimination function of SVM. SMO repeats such steps until

convergence. Results show that STRUCK is able to identify distinct appearances of the

object over time. Moreover, the budgeting mechanism maintains support vectors from

the entire tracking sequence and does not discard old appearance information which

helps prevent drift during tracking.

In STRUCK [2,17], Hare et al. use a fixed budget size C = 100 and define the feature

responses as a feature vector x of sample image patch y, and apply a Gaussian similarity

kernel k(x, x̄) = exp(−σ ‖x− x̄‖2) between the two pairs (x, y) and (x̄, ȳ), with fixed

σ = 0.2. The use of fixed SVM parameters C and σ does not consider the varying

nature of video signals which affects the tracking quality. Accordingly, we propose to

adaptively select the best performing penalize C and kernel σ parameters of STRUCK

tracker using AIS optimization according to the current image features.

4.5.2 Our Approach

At a given frame Ft, the original STRUCK tracking model extracts different positive and

negative sample patches around the estimated Bt−1 in Ft−1, that incorporates a number

Np of positive samples and a numberNn of negative samples. In our approach, we extract

the feature sets {v+t } and {v−t } corresponding to the positive and negative samples

respectively, to train the SVM model (SVM1) with pre-defined C and σ parameters to

find the estimated object location. To update these parameters, we propose an adaptive

parameter selection approach as shown in Figure 4.1. We use an AIS based optimization

approach to estimate the near-optimal parameter set of the main SVM model (SVM1),

based on the training of an additional SVM (SVM2). At frame Ft (t ≥ 1), we train

SVM2 on-line using the extracted features of the already generated sample patches (in

Ft), and we optimize its parameters by implementing a CLONALG algorithm. The
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obtained parameter set {Ct, σt} is then used by SVM1 of the tracking model at frame Ft.

Figure 4.1: Block diagram of the proposed AIS method for SVM optimization.

We calculate the positive v+∆t and negative v−∆t feature variation parameters based on

the similarity of the corresponding features between frames Ft and Ft−1 as

v+∆t = 1− Sim({v+t }, {v
+
t−1}). (4.2)

v−∆t = 1− Sim({v−t }, {v
−
t−1}), (4.3)

where Sim is the similarity function that measures the ratio between the number of

similar features and the number of all distinctive features of Ft and Ft−1, measured for

positive and negative features separately. For simplicity, in (4.2) and (4.3), we use terms
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{v−t } and {v−t−1} without indicating the number of elements in each set as it might be

different between Ft−1 and Ft. v
−
∆t and v+∆t are used to control the use of the AIS-based

optimization as

vAIS =







1 : (v+∆t > cv) ∨ (v−∆t > cv)

0 : otherwise,
(4.4)

where cv is a constant for the acceptable variation in either positive or negative features.

Depending on the extracted features {v+t } and {v−t } we train SVM2 for AIS to calculate

the best parameter set for SVM1 of the tracking model at current frame Ft. For AIS

optimization, the corresponding range Cr and σr of C and σ parameters, the maximum

number of iterations Kmax, population size PS, and the archive size AS are required. Our

objective function here is to maximize the classification accuracy of the trained SVM2

model as

max
{αk}

(

K
∑

k=1;αk∈{v
+
t ∪v−t }

Nαk
(Ct, σt)/M

)

K

s. t. σt ∈ σr, Ct ∈ Cr,

(4.5)

where Nαk
(Ct, σt) is the number of correctly classified data in SVM2 trained model

according to (Ct, σt) candidate antibody, {αk} is a set of M randomly selected features

from the set of all features extracted in Ft, and K represents the number of times the

classification is performed. The accuracy of SVM2 is calculatedK times and the average

of the K tests is to be maximized to avoid the randomness effect. If no feature variation,

no AIS is used and the tracking continues with the {Ct−1, σt−1} parameter set.

Algorithm 4.1 details the steps of the proposed method. We start the AIS

optimization process by setting the model parameters: the population size PS, the

archive size AS, the maximum iterations Kmax, and parameters ranges Cr, and σr.

We set ca a constant to decide if the accuracy obtained is good enough to terminate the

optimization process and cv a constant to decide if change in the features is significant.
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At frame Ft, we then measure the similarity of features between Ft and Ft−1 (both

positive and negative features are considered separately) in order to calculate the feature

variation v+∆t (for positive features) and v−∆t (for negative features). If either v
+
∆t or v

−
∆t is

above cv, then SVM2 is trained on-line using both positive {v+t } and negative features

{v−t } extracted from Ft. The AIS uses the trained SVM2 model (SVM2tr) to select

the near-optimal parameter set {Ct, σt} at Ft that maximizes the classification accuracy

of SVM2 according to (4.5). This parameter set is used by SVM1 tracking model for

the Ft. AIS randomly generates a population of PS antibodies ab as pairs of (C, σ)

according to the selected ranges Cr, and σr of both kernel and penalize parameters,

respectively. Such population is considered as an initial generation. After the initial

antibody population is produced, SVM2 is trained for each antibody by SMO. In this

step, our objective function is the classification accuracy as defined in (4.5) and we find

the affinity set {ai} of all PS antibodies and antigens. In line 9 of Algorithm 4.1, we

evaluate for each candidate antibody if it can be selected as one of the problem candidate

solutions according to the given objective function (4.5). We have many candidate

solutions and the evaluation scores (affinity) are stored in {ai} where i represents the

antibody (candidate solution) i. Here, our goal is to select the C and σ that maximize

the classification accuracy of the SVM model. We evaluate the objective function for

all candidate antibodies. The dominance of all antibodies is checked to obtain the

best (C, σ) pair that best matches the objective function in (4.5). The non-dominated

antibody ab (the ab that perfectly match the objective function) are selected as the best

ab to up-date the archive of best solutions. The cloning process clones the non-dominated

solution as well as the dominated ones in order to ensure the diversity in the optimization.

Then, each ab is encoded as a binary string and the mutation process is applied. At

the end of each generation, the archive is updated with the best solutions. After Kmax

iterations or if the affinity ai of an antibody exceeds ca = 0.95, the algorithm terminates

and the best parameter set is found in the archive.
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Algorithm 4.1: AIS-based SVM parameter optimization.

Data: Population size PS; Archive size AS; Maximum iterations Kmax;
Parameters ranges Cr and σr; constants ca and cv

Result: Optimal parameters Ct and σt at frame Ft

1 vAIS = 0;
2 for frame Ft do

3 v+∆t = 1− Sim({v+t }, {v
+
t−1});

4 v−∆t = 1− Sim({v−t }, {v
−
t−1});

5 if (v+∆t > cv ∨ v−∆t > cv)
6 SVM2tr = Train(SVM2, {v

+
t }, {v

−
t });

7 History = initial population {Ci , σi}; i=1, ..., PS;
8 for k = 1 to Kmax do
9 {ai} = Evaluate(SVM2tr, {v

+
t }, {v

−
t }, Ci, σi) ;

10 Dominance ({ai});
11 {Ci, σi}clone = Clone ( {Ci, σi} ) ;
12 Archive = Update-Archive ({Ci, σi}clone) ;
13 {Ci, σi}binary = Encoding ({Ci, σi}clone) ;
14 {Ci, σi}mutate = Mutation ( {Ci, σi}binary );
15 History = Update-History ({Ci, σi}mutate);

16 if (Max({ai}) > ca)
17 break ;
18 end

19 k = k + 1;

20 {Ct , σt} = Max (Archive);
21 STRUCK(Ft, SV M1, Ct, σt, {v

+
t }, {v

−
t });

22 else
23 STRUCK(Ft, SV M1, Ct−1, σt−1, {v

+
t }, {v

−
t });

24 end;

4.6 Results

4.6.1 AIS Model Simulation

To examine the convergence to the near-optimal solution, we test CLONALG-based

AIS model using two functions: Test and Rastrigin’s [116]. These functions are used

as objective functions to evaluate solutions (see line 9 of Algorithm 4.1). To test if the

proposed AIS model can successfully find the near global optimal of certain problem, we

use a function (e.g., Test) with known global maximum/minimum and check if our model

can find these. For this, we first run the AIS model after defining its objective function to
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be the maximizing of the Test function. To verify, we apply then the same on the Rastri-

gin function. In both cases, our AIS model was able to confirm the maxima/minima. For

speed considerations (performance), we changed the parameters (population size, archive

size, maximum iterations, parameters ranges) of the AIS model for each of the Test and

Rastrigin functions and we checked the convergence rate of the solution (how quickly

the AIS model finds the near optimal solution) and then, we choose those parameters

that allow the model to find the near global solution with fast convergence rate (quickly

find the solution in least iteration), see Figure 4.3.

The function Test is defined as

Test(x, y) = (15xy)(1− x)(1− y)sin(9πx)sin(9πy). (4.6)

As shown in Figure 4.2a, the function Test has many local minimums and maximums,

and is evaluated by generating numbers in the range from 0 to 1 in steps of 0.01 for the

two dimensions. The global maximum and minimum values for this function are 0.9375

and −0.89168, respectively. The Rastrigin function, Figure 4.2 (b), is a non-convex

function used as a performance test problem for optimization algorithms. Finding the

minimum of this function is a fairly difficult problem due to its large search space and

its large number of local minima. It is defined on an n-dimensional domain as

Rastrigin(x, y) = 10n+
n
∑

i=1

[x2
i − 10cos(2πxi)] (4.7)

The test area is restricted to hypercube 0 ≤ xi ≤ 1; i = 1, . . . , n. Its global minimum

equal zero is obtainable for xi = 0, i = 1, . . . , n. As mentioned, the CLONALG-based

AIS model converges successfully to the global maximum and minimum optimum

solution for both Test and Rastrigin functions.

We tested the AIS model with both Test and Rastrigin functions with different AIS

parameters and we selected those parameters that show near global solution with fast

convergence rate for better performance as illustrated in Figure 4.3: using a population

size of either PS = 20 and PS = 30 with archive size of AS = 4 (dotted magenta
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(a) Test function. (b) Rastrigin function.

Figure 4.2: Functions for the evaluation of the AIS model.

and black) leads to near global solution under the Test function. Other PS values do

not reach the near global solution. For our SVM/STRUCK simulations, we selected

PS = 20 as it achieves better performance with large feature vectors. Based on our

simulations with Test and Rastrigin, we propose to use the AIS model parameters as

default parameters in all our SVM/STRUCK simulations in section 4.6.3. Note that in

Figures 4.3 and 4.4, ”Fitness” refers to the output of the objective function evaluation

in Algorithm 4.1.

Figure 4.3: Convergence rate of Test function with different AIS parameters.

For the Test function in (4.6), Figure 4.4 shows the search range used by the

CLONALG-based AIS model to find a near-optimal solution. The figure shows how the
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AIS search space covers diverse of candidate solutions to find the near optimal solution.

For each iteration (x axis), the fitness value obtained by the AIS model (z axis) is drawn

for each population (y axis). We developed the model in a way so it can find the near

global solution of different optimization problems given the objective function.

Figure 4.4: Search range of the CLONALG-based AIS model using Test function.

4.6.2 Experimental Setup

For experiments, we select the AIS model parameters that achieve both better accuracy

and performance (see section 4.6.1) as follows: Population size PS = 20; Archive

size AS = 4; Maximum iterations Kmax = 20; Parameters ranges Cr = [1, 255] and

σr = [0.01, 1]. We set cv = 0.5 as variation threshold and ca = 0.95 as an acceptable

accuracy to terminate the optimization process. For SVM2, the classification accuracy

is calculated five times on the trained model to obtain fair objective statistics.

For the training of SVM1, 6 different types of Haar-like features are used. These

features are arranged at 2 scales on a 4 × 4 grid, resulting in 192 features, where each

feature is normalized to give a value in the range [−1, 1] as used by STRUCK. For

SVM2, we used the same features in order to match the same information given by

STRUCK without adopting external source of information. For original STRUCK, we

used a budget size of 100, C = 100, and σ = 0.2.
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We used a dataset of 35 video sequences that cover 11 tracking challenges [56]. We

run each experiment three times on each sequence to obtain fair objective statistics.

To assess tracking quality, we use: overlap ratio AOR, center location error CLE,

failure rate FR. the success and precision plots of [56, 57]. Success plot represents the

percentage of frames for which the overlap exceeds a certain threshold. Thresholds in

the range [0, 1] with an increment step of 0.05 are used. The precision plot measures the

percentage of frames in which the estimated locations are within a certain distance of

the ground-truth positions. Such plot is measured in the range [0, 50] with an increment

step of 5 pixels.

4.6.3 Objective and Subjective Tracking Improvement

Figures 4.5, 4.6, and 4.7 show the AOR, CLE, and FR plots of the improvement

achieved by the proposed method over all test sequences. As can be seen, the quality

of the modified STRUCK has achieved an average improvement of 20.0% (0.44 vs.

0.528), 54.5% (57.73 vs. 26.26), and 51.6% (0.248 vs. 0.12) for AOR, CLE, and FR,

respectively. This shows that the proposed AIS-based model parameters have improved

the classification accuracy, leading to an enhanced tracking quality. Concerning Precision

and Success plots, Figures 4.8 and 4.9 show that the modified STRUCK tracker (blue)

achieves better quality than the base STRUCK over a wide range of thresholds.

Figure 4.5: AOR plot of base and modified STRUCK trackers over all test videos.
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Figure 4.6: CLE plot of base and modified STRUCK trackers over all test videos.

Figure 4.7: FR plot of base and modified STRUCK trackers over all test videos.

Table 4.1 shows the AOR, CLE, and FR quality measures of the modified STRUCK

compared with the base STRUCK for individual test sequences; better results (higher

AOR, lower CLE, or lower FR) are shown in bold and similar results are in italic.

The modified STRUCK has significantly reduced the FR of the base STRUCK for

challenging videos such as Board, David, Shaking, BlurFace Crowds, and Ironman.

The CLE and FR metrics show better improvement than AOR metric due to the fact

that STRUCK tracking algorithm is scale invariant and hence, it is expected that the

AOR will achieve lower improvement, especially when the target object is far from the

camera (small size) and the estimated BB is larger than its corresponding ground truth

BB. Our proposed method has low frame rate (0.01 FPS) compared with the base

tracking algorithm (26.82 FPS).
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Figure 4.8: Precision plot of base and modified STRUCK trackers over all test sequences.

Figure 4.9: Success plot of base and modified STRUCK trackers over all test sequences.

Figure 4.10 shows subjective examples of improvement (STRUCK-AIS) using the

proposed method applied to the STRUCK tracker [2] of different challenges: the modified

STRUCK has better estimated BB (dotted blue) that are closer to that of the ground

truth (yellow), while the base STRUCK (dashed red) drifts away from the target object.

In addition, the modified STRUCK is shown to reduce the tracking drift that in turn

leads to better tracking quality.
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Figure 4.10: Subjective results of the proposed AIS method applied to STRUCK.
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Table 4.1: Tracking quality of base and modified (AIS) STRUCK.

4.7 Conclusion

In this chapter, we use AIS-based optimization to adaptively select the best performing

parameters of SVM of the STRUCK tracking model. The proposed method overcomes

the bias of human intervention and the tedious work adopted for parameter selection.

For tracking, the proposed AIS takes the advantage of the already generated sample
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patches in which their corresponding features are used for training. The obtained results

show that the proposed framework applied to STRUCK tracker outperforms the original

algorithm according to various objective measures. However, it works at low frame rate

since AIS parameter optimization is done on-line. For future work, we plan to study

the effect of using different features such as SURF, ORB, and HOG for the training of

the complementary SVM model on the tracking accuracy. We plan to enhance the AIS

model to achieve faster convergence rate in order to improve the speed of the proposed

method.
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Chapter 5

Artificial Immune System Based

Parameter Optimization of Graph

Cut Segmentation

5.1 Abstract

Little research attention has been given to study the use of optimization using

artificial immune system in computer vision. Long and tedious trial and error

approaches are usually used for the selection of object segmentation such as Graph

Cut parameters for a specific application. However, these approaches do not guarantee

best performing parameters. This chapter proposes the use of artificial immune system

based optimization for adaptive selection of the near-optimal parameters of Graph Cut

segmentation method. The obtained results show an enhanced segmentation quality,

from points of view of precision and accuracy, and an enhanced object tracking quality

in methods that use object segmentation for tracking.

5.2 List of Symbols

.



5.3 Introduction

Object segmentation has many uses in computer vision [117, 118]. Interactive

segmentation has appealing results and is used in diverse applications [75–78]. There are

different approaches to interactive segmentation, such as snakes [119], level sets [120],

and Graph Cut (G-Cut) [75, 78]. A common problem in segmentation algorithms is

the parameter selection that significantly affects the accuracy of results. Optimization

techniques for the selection of near-optimal parameters is advantageous. First, it reduces

the tedious experimental work spent for selecting the best performing parameters.

Second, it has the ability to find the near-optimal parameters that lead to better

segmentation quality.

G-Cut segmentation [75] has appealing results as it compromises between the

computational complexity and the ability to achieve global solution for binary

labeling [78]. Inappropriate choice of G-Cut parameters may result in unsatisfactory

segmentation. This chapter proposes to use artificial immune system (AIS) based
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parameter selection of G-Cut segmentation algorithm off-line. AIS is used to find the

parameters that simultaneously minimize both false positives and negatives based on

ground truth, that in turn leads to better segmentation quality.

The rest of the chapter is organized as follows. Section 5.4 presents prior work and

its relation to the proposed approach. Section 5.5 introduce the proposed approach. The

experimental results are presented in Section 5.6, followed by a conclusion in Section 5.7.

5.4 Prior Work

Several approaches have addressed the selection of segmentation parameters in literature

[62, 63, 121, 122]. Some of these approaches [62, 121, 122] cannot be applied to general

scene images. In [121], Peng and Veksler presented a parameter selection approach

for G-Cut segmentation using a measure based on different features that are combined

using AdaBoost. The G-Cut is run for different parameter values and those of highest

quality according to the learnt measure are selected. The efficiency of this approach

depends on the number of images used in the training model and the accuracy of the

manual labeling used. In [62], the authors investigated the use of AIS in aerial and

satellite image segmentation. Although AIS can locate road pixel candidates using

simple local detectors and a small amount of hand-classified sample imagery, such

application-specific work has assumed high resolution images. Also, [62] did not verify

the quality of the segmentation objectively. In [122], an adaptive parameter selection

for cell segmentation using G-Cut is presented. The cell boundary extraction is fused

into the G-Cut parameter value, which alter pixel weights in the graph formulation.

This approach is designed for a specific type of images. For generic scene images, AIS

is investigated in [63] for the selection of segmentation parameters where Cuevas et

al. presented a multi-threshold mixture-of-Gaussian segmentation based on AIS. In

this approach, 1D histogram of one image is approximated through a Gaussian mixture

model whose parameters are calculated through AIS.

AIS is not yet, up to our knowledge, applied for optimization of G-Cut segmentation,

of generic scene images, as we propose.
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5.5 Proposed AIS-based G-Cut Optimization

5.5.1 Background

G-Cut represents an image I as a graph G = (V,E), where V includes a set of nodes

Vp corresponding to the pixels in I and another set of terminal nodes Vt that represent

possible classes for labeling of image pixels, V = Vp ∪ Vt. Edges E comprise a set of

edges connecting adjacent pixels En, and a set of edges Et connecting every pixel to

terminal node that represents the corresponding pixel’s affinity to each possible class

label, E = En ∪ Et. The weights on these edges correspond to energies defined by a

markov random field (MRF) formulation. G is partitioned into two separate groups

called (cuts) C as a subset of edges that, when removed, separates the terminal nodes

from each other. The cost of C is defined to be |C| =
∑

c∈C Wc, where Wc is the weight

of the edge c. In G-Cut, the main interest is to find the cut of minimum cost by applying

the max-flow min-cut algorithm [123]. Given an image I with set of pixels {p}, the goal

is to assign the most likely label l ∈ L = {lfg, lbg} for each pixel. It is assumed that I has

labeling that is consistently smooth along the image with discontinuity at boundaries.

The smoothness as well as the prior knowledge (strokes) that is automatically generated

are encoded as a function of energy EG over I, where EG is a linear combination of

boundary smoothness term Bp,q over each pair of neighboring pixels p, q and regional

term Rp that encodes the energy assigned to pixel p of label l. The solution to the

segmentation problem is assumed to be the joint assignment of pixels {p} to labels l ∈ L

in a way that minimizes the energy function EG formulated as

EG =
∑

(p,q)∈N

λABp,q +
∑

p∈P

Rp, (5.1)

where λA is a relative weighting term and Bp,q is the boundary smoothness term that

assigns high energy to adjacent pixels of similar intensity to encourage them to belong

to the same side of cut C and the energy decreases as the pixels become more dis-similar

according to
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Bp,q = exp

(

−(Ip − Iq)
2

2δ2A

)

, (5.2)

where Ip and Iq are the intensities of p and q pixels, respectively, and δA represents camera

noise. Such formulation penalizes the separation between pixels of similar intensity

(|Ip − Iq| < δA).

5.5.2 Our Approach

We address the use of clonal selection-based AIS optimization [59] to find the best

parameters for G-Cut segmentation off-line. As an objective function, we used

both precision and recall measures [124]. Given the ground truth and the output

segmentation, we construct a confusion matrix that represents the number of positive

tp, negative tn cases correctly classified, and the number of negative fn, and positive fp

cases incorrectly classified. We use this matrix under the supervision of AIS to estimate

the best segmentation parameters as illustrated next.

We estimate both λA and δA parameters in (5.1) and (5.2) using the clonal

selection-based AIS optimization [59] by maximizing the precision and recall measures

simultaneously in order to achieve the best segmentation quality according to

(λA, δA) = maximize
(λ,δ)

(

tp
tp + fp

.
tp

tp + fn

)

s.t. δ ∈ δr and λ ∈ λr,

(5.3)

where tp, fp, and fn are the numbers of true positives, false positives, and false negatives,

respectively. λr = [1, 255] and δr = [0, 10] are the search ranges used by AIS optimization

for both λ and δ parameters. The goal of the AIS optimization is to find the (λ, δ) pair

that maximizes both the precision and recall measures simultaneously to achieve the best

segmentation quality. Algorithm 5.1 shows the detailed steps of our AIS optimization

process. The detailed flowchart of the optimization process is shown in Figure 5.1. Note

that in our simulation, the seeds Sf and Sb are selected interactively at first time and

stored in off-line file and then re-loaded for any use of segmentation for fair results.
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AIS algorithm starts by randomly generating an initial population with number of PS

antibodies (ab) as pairs of (λ, δ) according to the selected ranges δr and λr of δ and λ,

respectively. Such population is considered as an initial generation to update the history

of solution during the optimization process.

Algorithm 5.1: AIS-based optimization of G-Cut parameters.

Data: Population size PS; Archive size AS; Maximum iterations Kmax;
Parameters ranges λr and δr; image I; image ground truth segmentation Ig

Result: Best parameter pair (λA , δA)
1 Select interactive seeds Sf and Sb ;
2 History = initial population {(λi , δi)}; i=1, ..., PS;
3 for k = 1 to Kmax do
4 Output = G-Cut(I, Sf , Sb, (λi , δi)); ∀i;
5 {ai} = Evaluate(Output, Igi); ∀i;
6 Dominance ({ai});
7 {(λi , δi)}clone = Clone ( {(λi , δi)} ) ∀i;
8 Archive = Update-Archive ({(λi , δi)}clone) ;
9 {(λi , δi)}binary = Encoding ({(λi , δi)}clone) ∀i ;

10 {(λi , δi)}mutate = Mutation ( {(λi , δi)}binary );
11 History = Update-History ({(λi , δi)}mutate);
12 k = k + 1;

13 (λA , δA) = Max (Archive);

We calculate the value of the objective function (5.3) by applying the segmentation

using the candidate (λ, δ) pairs. The affinity {ai} between the antibodies and antigens

is obtained by calculating the product of both precision and recall to maximize the

segmentation quality by minimizing fp and fn simultaneously. The dominance of

ab is checked to obtain the best (λ, δ) pair that best matches the objective function

as in (5.3). The cloning process clones the non-dominated solution as well as the

dominated ones in order to ensure the diversity in the optimization. To this end, the

non-dominated ab (that perfectly match the objective function) are selected as the

best ab to update the archive of best solutions. Then, each ab is encoded as a binary

string and the mutation process is applied. At the end of each generation, the archive

is updated with best solutions and the history of solutions is updated. After Kmax

iterations, the algorithm terminates and the best parameter pair (λA , δA) is found as

the pair of highest objective function in the archive.
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Figure 5.1: Block diagram of the proposed AIS-based G-Cut optimization.

5.6 Results

5.6.1 Experimental Setup

We developed our proposed AIS model in section 4.6.1 in a way so it can be used

for parameter optimization of any computer vision/video processing method with its

own objective function. Accordingly, for experiments in this chapter, the AIS model

parameters are the same as in chapter 4: Population size PS = 20; Archive size AS = 4;

Maximum iterations Kmax = 20.

The performance of the object segmentation, with default and AIS parameters, is

measured using the precision P and accuracy A metrics [124], defined as
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P =
tp

tp + fp
and A =

tp
tp + fp

.
tp

tp + fn
. (5.4)

tp is the number of positive cases correctly classified, fn is the number of negative

cases incorrectly classified, and fp is the number of positive cases incorrectly classified.

High values of P and A indicate good segmentation. The preformance of object tracking

is measured using well-known AOR, FR, and CLE measures.

5.6.2 Objective and Subjective Results

To verify the effectiveness of the proposed AIS approach, we first use precision and

accuracy metrics to measure the improvement in segmentation quality using the

proposed AIS approach. Then, we integrated the G-Cut into a segmentation-based

tracking method (such as in chapter 3) and verify the tracking quality with and without

AIS selected parameters, using the tracking performance metrics AOR and FR (defined

in section 2.3).

Figure 5.2 shows an example plot for the iterative AIS process to select the best

performing parameter set, that has the highest recall and precision measures, for the

image shown in Figure 5.3 (left). AIS generates candidate parameter sets and evaluates

the corresponding recall and precision measures (red circles). Several parameter sets

can lead to similar segmentation quality. The AIS search strategy proceeds to find

parameter sets of higher precision and recall measures, and selects the best performing

parameter set (top right corner black filled circle) that maximizes both precision and

recall measures simultaneously.

Figure 5.3 (middle) shows the segmentation result using the achieved parameter set

compared with the ground-truth image shown in Figure 5.3 (right).

As shown in Figures 5.4 and 5.5, the segmentation results using the obtained

AIS-parameters, for 50 images from DUT-OMRON data set [125], show better quality

according to the precision and recall measures (the higher the better) than using the

default parameters. The proposed method achieved 14.31% improvement according to

the P measure, and the A measure shows an improvement of 8.65%.
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Figure 5.2: AIS selection of the best performing segmentation parameters.

Figure 5.3: Example of G-Cut-AIS-based segmentation parameters: input image and
seeds (left); segmentation using AIS selected parameters (middle); ground truth (right).

Figure 5.6 gives examples of the enhanced segmentation quality gained by the

proposed AIS-based G-Cut parameter optimization, from the DUT-OMRON data

set [125]. Figure 5.6 (1st column) shows four original images with interactive selected

seeds, (2nd column); segmentation results using the default parameters, (3rd column);

segmentation results using AIS-parameters, and (4th column); the corresponding ground

truth images.
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Figure 5.4: Precision plot of the default and AIS-based parameters of G-Cut
segmentation.

Figure 5.5: Accuracy plot of the default and AIS-based parameters of G-Cut
segmentation.

We integrated G-Cut with the AIS selected parameters into our DDC approach

in Chapter 3 in order to evaluate the achieved tracking improvement compared with

the default G-Cut parameters. The improvement in AOR, CLE, and FR over all

100 test sequences of OTB benchmark [56] in Figures 5.7 and 5.8 show that using

AIS-based segmentation parameters lead to better tracking quality for both STRUCK [2]

and STAPLE [3] trackers. The same tracking environment is used for both tests and

the only change is the segmentation parameters.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) Seeds (n) Default (o) AIS (p) Ground-
truth

Figure 5.6: G-Cut segmentation samples using default vs. AIS parameters.

Figure 5.7: Tracking improvement (in %) of AIS-based vs. manual segmentation
parameters when using STRUCK [2]
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Figure 5.8: Tracking improvement (in %) of AIS-based vs. manual segmentation
parameters when using STAPLE [3]

5.7 Conclusion

In this chapter, artificial immune system based optimization is used to adaptively select

the best performing parameters of Graph Cut segmentation offline. The proposed

method overcomes the bias of human intervention and the tedious work for parameter

selection. A better segmentation quality and a better tracking quality have been verified

according to related objective measures. The obtained results show that the proposed

artificial immune system can effectively serve as an attractive tool for the selection of

the best performing Graph Cut segmentation parameters.
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Chapter 6

Robust Scoring and Ranking of

Object Tracking Techniques

6.1 Abstract

Object tracking is an active research area and a large number of tracking techniques,

or trackers for short, have been proposed recently with demonstrated success. When

introducing a new tracker, its quality is compared against existing trackers based on

objective performance measures. Recent studies have shown that these performance

measures are correlated and cannot reflect the different aspects of tracking performance

when used individually. In addition, they do not use robust statistics to account for

the presence of outliers that might lead to insignificant results. This chapter presents a

framework for scoring and ranking of trackers using known quality metrics (overlap ratio

and failure rate), coupled with a robust estimator against dispersion and outliers (median

absolute deviation). We also propose a unified (overlap and failure) performance index,

as well as recovery, and pure drift measures to facilitate the evaluation process. Ten

state-of-the-art different performing trackers are scored and ranked using the proposed

framework on a public benchmark of 100 video sequences. The obtained results show

how the proposed framework facilitates the evaluation of the relative performance of

different trackers.
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6.2 List of Symbols

6.3 Introduction

Video object tracking plays an important role in an increasing number of applications

like augmented reality, visual surveillance, and robotics. A variety of trackers (such as

STRUCK [2], ASLA [8], SCM [9], KCF [10], SAMF [11], LOT [12], DSST [13], Staple [3],

TCNN [83], and CCOT [84]) have been developed to investigate challenges related to

object tracking with their code available for evaluation. Evaluation and ranking of

tracking algorithms (trackers) are of critical importance for both the comparison and

further development and enhancement of algorithms. A variety of benchmark papers

have been presented to evaluate the performance of trackers [16, 56, 57,91–94].

One of the important features of a good performance model is the robustness

against both outliers and deviations from model assumptions. In statistics, outliers

are observation points that are distant and do not fit other observations. They usually

result from variability or randomness in measurements or model assumptions that occur

commonly in different tracking algorithms, or it may indicate experimental error [126].

Classical estimation methods rely heavily on assumptions such as the normal distribution

of errors as in statistical mean. Unfortunately, when there are outliers in the data, such

estimators often have very poor performance, when judged using known measures such

as the breakdown point (BP ), which is one of the most popular measures of both
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reliability and robustness of a statistical procedure [127, 128]. It is often the first and

most important number to be looked at before going into the details of local robustness

properties. Among scale estimators, range, standard and mean deviation all have

BP = 0, the interquartile range has BP = 1/4, while the median has BP = 1/2.

The counterpart of the median among scale estimators is the median absolute deviation

(MAD) [129]. MAD, the median of the absolute differences of the data elements from

their median, represents a useful basis for reliable rejection of outliers [130]. This chapter

proposes a strategy for effective scoring and ranking of different trackers that uses the

MAD to effectively quantify the statistical dispersion in a given set of numerical (quality)

data.

Several performance metrics of the tracking algorithms use empirical discrepancy

methods [54] that compare off-line ground-truth data with the estimated trajectories.

Among such metrics, the average overlap ratio (accuracy), center location error,

failure rate (robustness), or derivatives thereof, such as success and precision plots

are commonly used [55]. Recent studies [55, 131] have shown that different measures

are correlated and cannot reflect different aspects of tracking performance when used

individually. Investigating the correlation between different performance measures,

Cehovin et al. in [131] concluded that the average overlap ratio on re-initialized

trajectories”, and the failure rate are the least correlated. The basic performance

measures used in recent evaluation benchmarks [56, 91, 92] are accuracy, that measures

how well the predicted bounding box (BB) overlaps with the ground truth, and

robustness, that measures how many times the tracker loses the target (fails) during

tracking based on the overlap ratio. This chapter proposes new performance measures

(drift, recovery, and unified index) to evaluate and rank trackers.

The rest of the chapter is organized as follows. In Section 6.4, we present related

work and differentiation to our approach. Section 6.5 introduces the proposed ranking

measures. Section 6.6 presents the proposed evaluation framework. Section 6.7 discusses

the obtained results. Section 6.8 concludes the work.
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6.4 Prior Work

6.4.1 Ranking Methods

Prior work can be divided into ”evaluation” and ”ranking” methods. Evaluation

methods [56, 57, 94] report values of performance measures; ranking methods [91–93,

96,132] rank trackers using some scale. Wu et al., in [56], used the precision and success

plots for overall performance evaluation of trackers in addition to temporal robustness

evaluation (TRE). As trackers are sensitive to initialization, TRE starts the tracking

algorithms at different frames (temporally) and evaluates the tracking performance

accordingly. In [57], the authors proposed the one-pass evaluation with restart (OPER)

measure that re-initializes the tracker once it fails during tracking. In addition, they

proposed the spatial robustness evaluation with restart (SRER) that evaluates how the

tracker is sensitive to spatial perturbations during tracking. In [94], Li et al., evaluated

trackers via online system based on criteria to calculate the overlap ratio based on

occlusion level that is incorporated as a criterion for performance evaluation with the

NUSPRO database. In addition, as a criterion for computing the overlap, they used

different thresholds to determine whether a frame is successfully tracked.

In VOT2013 [91], 27 trackers were evaluated and ranked by averaging the

performance on test sequences using accuracy and robustness measures. A tracker was

re-initialized several frames after a failure occurs. They evaluated each tracker separately

for each performance measure on each attribute sequence, and by averaging the

evaluations over the different attributes, the ranking with respect to such performance

measure was obtained. In [132], Pang and Ling used a ranking approach to analyze

the reported results of different trackers. A shortcoming of such approach is the limited

experimental evaluations in terms of number of sequences and performance metrics used.

In VOT2014 [92], M. Kristan et al. used the same methodology for ranking in [91] and

introduced a new unit for reporting the tracking speed without being influenced by

the used hardware. VOT2015 [93] combined the raw values of per-frame accuracies

and failures for evaluation. The VOT2016 [96] used accuracy, robustness, and speed

for ranking. VOT2016 also introduced a sub-challenge (VOTTIR2016) to tracking in
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thermal and infrared imagery.

In some applications, outliers can be subjectively removed from the sampled

observations [133]. However, such subjective selection of outliers is difficult. In [91],

authors mentioned that a significant novelty of the proposed evaluation protocol is that

it explicitly addresses the statistical significance of the results. However authors do

not tackle the presence of outliers that may lead to insignificant results. In [91–93], the

authors run each tracker on each sequence 15 times to obtain a better statistic, using the

mean to average such multiple results. However, the mean is not robust against outliers.

To our knowledge, the state-of-the-art ranking methods [91–93,96] do not incorporate a

robust statistical measure to account for the presence of outliers that are commonly to

accrue in most of the tracking algorithms.

To summarize, recent ranking methods have three limitations; First, they use

evaluation measures that can be correlated to some extent and hence, will not reflect the

different aspects of tracking performance. Second, such measures can be highly affected

with outliers in the data set. Third, they do not use a robust statistical measure to

account for the presence of outliers that might lead to insignificant results, that in turn

will affect the ranking accuracy.

This chapter presents a framework for scoring and ranking of different trackers using

less correlated quality metrics (overlap ratio and failure rate), coupled with a robust

statistical estimator (MAD) against dispersion and outliers.

6.4.2 Related Performance Measures

Numerous performance measures have been proposed in literature for the evaluation of

object tracking algorithms. Such measures range from basic ones like center location

error [134], overlap ratio, tracking length, failure rate, and Fscore [55], to more

sophisticated measures, such as CoTPS [135], which combines several metrics. An

advantage of the combined measures is that they provide a single score to rank different

trackers. However, they are not always easily interpretable.

Nawaz and Cavallaro [135] proposed a hybrid measure called the Combined Tracking

Performance Score (CoTPS) that combines the information on tracking accuracy and
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failure into a single score as a weighted sum of accuracy and failure scores. However, as

per [55], the proposed CoTPS combines the quality measures in a rather complicated

manner, prohibiting a straightforward interpretation.

Different from related work, we propose a performance index, that combines accuracy

(overlap ratio) and robustness (failure rate) in a unified measure, as a novel means for

ranking of object trackers. In addition, we propose two new performance measures;

recovery and drift, that rank of different trackers in these two aspects.

6.5 Proposed Performance Measures

In this section, we introduce a unified performance index that combines both overlap

ratio and failure rate into one metric to facilitate ranking of different tracking algorithms.

We also present two new metrics; recovery and pure drift metrics; as two separate ranking

measures that support the proposed index measure.

6.5.1 Proposed Unified Performance Index

An ideal tracker creates a BB which is completely coinciding with that of the ground

truth (AOR = 1). In addition, it continuously tracks the object without failure (FR =

0). Our performance index IOF is defined as

IOF = AOR · (1− FR). (6.1)

Ideally IOF = 1, and the worst case has IOF = 0. Figure 6.1 illustrates the behavior

of both the proposed IOF index and CoTPS measure index [135]. Different than

the complicated CoTPS measure, as shown in [55], the proposed index can be easily

interpreted. Figure 6.1 shows that IOF reaches its highest quality when the AOR is

maximized and FR is minimized, which confirms both measures theoretically. However,

CoTPS can achieve its highest quality when AOR is maximized regardless of FR.
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Figure 6.1: The behavior of the proposed IOF performance index (left) versus CoTPS
measure (right).

6.5.2 Proposed Recovery and Drift Measures

For a tracking algorithm, the ability to recover after the occurrence of a failure (or drift)

is important, particularly when the tracking algorithm is evaluated among set of other

ones. We define recovery R of tracker ti on test sequence vl, as the number of frames

the tracker successfully recovers from failure, meaning the tracker went from AOR = 0

to AOR 6= 0 over the whole video sequences. We define drift R as the number of frames

a tracker goes from the state AOR 6= 0 to AOR = 0, over the whole video sequence. We

define pure drift (or pure recovery) (pRD) per a video sequence as

pRD =
R−D

Nl − 1
. (6.2)

where Nl is the total number of frames in video sequence vl. Algorithm 6.1 illustrates

calculating recovery R, drift D, and pure drift pRD measures. At frame Ft, using ground

truth data AOR is 0 if no overlap occurs between the output BB Bt and ground truth

BB Bg
t . We start the algorithm from frame F2 as the first frame is the ground-truth

data (no drift). Then the recovery and drift events are checked using the AOR data

between two consecutive frames Ft and Ft−1 and the corresponding counters (D) and

(R) are updated. The pure drift (pRD) is calculated as in (6.2) and is between 1 and

−1, where negative values mean the tracker went through more drifts than recoveries

and positive values mean the tracker, well recovered from drifts over the whole video

sequences. A good tracker should give high positive pRD values: pRD = 1 indicates

the best performance since the tracker shows no drift throughout the video sequence;
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pRD > 0.333 indicates good performance, meaning the tracker shows more recoveries

than drifts.

Algorithm 6.1: Recovery and drift calculation of a tracker on sequence l.
Data: Quality data AOR for a tracker and sequence vl with Nl frames
Result: Recovery R, drift D, and pure drift pRD measures

1 D = 0;
2 R = 0;
3 for frames Ft = 2 to Nl do

4 if ( AORt ! = 0 ∧AORt−1 ! = 0 )
5 R++;
6 else if ( AORt == 0 ∧AORt−1 ! = 0 )
7 D ++;
8 else if ( AORt ! = 0 ∧AORt−1 == 0 )
9 R++;

10 else if ( AORt == 0 ∧AORt−1 == 0 )
11 D ++;
12 end

13 pRD = (R−D)/(Nl − 1);

6.6 Proposed Evaluation Framework

6.6.1 Overview

The proposed framework comprises three steps as shown in Figure 6.2: data entry,

scoring, and sequence-pooled ranking. The data entry step reads the following: a) output

bounding box (BB), for all N trackers, ti, i = 1, · · ·N ; b) the performance evaluation

metrics pj, j = 1, · · ·Np, Np is the number of metrics used to calculate the quality values

qijl for tracker ti according to metric pj over a test sequence {vl; l = 1, · · · , Nv}, Nv is the

number of test sequences; c) the dispersion metric to use; and d) the ground truth BBs.

For each pj, for each vl, the scoring step applies the dispersion measure on the vector

qijl, for the N trackers and assigns score vector {sij, i = 1, · · ·N} for each ti according

to pj as the sum of scores over all sequences where 1 ≤ sij ≤ Nv. Then, the ranking step

calculates the mean values of qijl over all sequences based on pj separately and applies

the MAD dispersion measure to assign rank vector {rij, i = 1, · · ·N} to all N trackers

according to metric pj, where 1 ≤ rij ≤ N . We use MAD dispersion measure of the
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quality vector qijl of tracker ti for sequence vl using performance pj as

dq = MAD{qijl} = Median( |qijl −Median({qijl})| ) i = 1, · · ·N. (6.3)

Figure 6.2: Block diagram of proposed scoring and ranking framework.

6.6.2 Scoring Mechanism

Due to outliers, counting the number of best and second best scores in numerical data

of a tracker’ s measure is not reliable to measure performance, as doing so neglects the

deviation that may exist in the data. For each test sequence, we, therefore, define a

deviation threshold dq based on the MAD dispersion as in (6.3), which evaluates a set’ s

close affiliation to either a best score or a second best score. The process of the scoring

mechanism for the N trackers over all {vl} sequences can be summarized in Algorithm

6.2. The video sequences are processed sequentially, and for every sequence, we score

all trackers, and count all scores over all sequences for a specific quality metric. In

Algorithm 6.2, Best{qijl; i = 1, . . . , N} is the best value (e.g., the maximum value for

AOR), among the quality values of all N trackers for a vl; {sj} is a vector of scores

for the N trackers over all vl for a pj; and Scores is the final scores for the N trackers

according to metric pj. For the quality values of the N trackers, scores are summed for

each tracker over all sequences to find scores (Scores) for each performance measure pj.

Then, the tracker(s) with the maximum count is (are) selected as the best tracker(s).
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The rest of the trackers that are not scored as best contributes to another round to

choose the second best tracker(s) using same Algorithm 6.2 with a new threshold dq

selected based on the remaining trackers’ quality values. This is repeated till all N

trackers are scored.

Algorithm 6.2: Scoring of N Trackers for a metric and all test videos.

Data: Quality data qijl; {i = 1, · · · , N} of all test sequences {vl; l = 1, · · · , Nv} for a
metric pj

Result: Scores = {s1j , · · · , sNj} for a tracker ti and a pj
1 for a performance measure j do

2 for a tracker i do
3 sij = 0;

4 for a test sequence l do
5 dq = MAD{qijl};
6 O = Best{qijl};
7 for a tracker i do
8 if |qijl −O| < dq
9 score = 1;

10 else
11 score = 0;
12 end;
13 sij = sij + score;

14 Scores = {sij};

6.6.3 Sequence-pooled Ranking Mechanism

All trackers are ranked according to their mean over all sequences. The ranking of N

trackers is performed as follows. Given qijl of all vl, the mean quality µij for each tracker

ti is calculated as an average of qijl over all test sequences according to performance

measure pj. At the beginning, all trackers are marked as unranked and each tracker

keeps contributing to the ranking process until it is assigned a rank. The best mean

value O among all unranked trackers is selected according to pj (e.g., the maximum value

for AOR), and any tracker ti that has a mean quality closer to the best O within dq is

marked as a ranked tracker and assigned a first rank level in the first round. The same

process is repeated but only for the rest of the unranked trackers and a counter (countj)

is incremented at each round to keep the rank level updated. The ranking for the N

trackers is summarized in Algorithm 6.3, where Ranksj is the rank vector assigned to all
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N trackers according to pj. In the first round, the quality of the N trackers is compared

with the best quality of all trackers Oj according to metric pj, and the closest ones,

within a specific threshold dq, are ranked the first. The counter countj is incremented

by 1 and the rest of the trackers that are not ranked contributes to the next round to

assign the second rank in a similar way but with a threshold dq calculated based on

the quality values qijl of the remaining unranked trackers. This is repeated until all N

trackers are ranked.

Algorithm 6.3: Ranking of N Trackers.

Data: Quality data qijl; {i = 1, · · · , N} of all test sequences {vl; l = 1, · · · , Nv} for a
metric pj

Result: Ranksj{r1j , · · · , rNj} for each tracker ti and each pj
1 for a performance measure j do

2 for a tracker i do
3 rij = 0;

4 countj = 0;
5 {µij} = average of {qijl} ∀i, l;
6 do

7 dq = MAD({µij}) of unranked trackers i;
8 O = Best({µij});
9 for each µij of unranked tracker i do

10 if |µij −O| < dq
11 rij = countj + 1;
12 mark tracker i as ranked;
13 end

14 countj = countj + 1;

15 while There exist unranked trackers;
16 Ranksj = {rij};

6.7 Results and Analysis

6.7.1 Experimental Setup

We run each tracker with its published source code and default parameters, five times

on each video sequence to obtain fair statistics. We have tested our framework with

ten known trackers (STRUCK [2], ASLA [8], SCM [9], KCF [10], SAMF [11], LOT

[12], DSST [13]), STAPLE [3], TCNN [83], and CCOT [84] using five performance

measures (AOR, FR, IOF , R, and D), MAD dispersion estimator, and 100 video
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sequences [56] (that include the 11 challenges: illumination variation, scale variation,

occlusion, deformation, motion blur, fast motion, in-plane rotation, out-of-plane

rotation, out-of-view, background clutters, and low resolution). We tried two other

dispersion measures, interquartile range and median maximal distance, and found that

the scores they assigned to trackers do not well discriminate among trackers; but MAD

does. In order to evaluate different trackers, we used the actual AOR and FR measures

as a reference measure for the true order of all trackers. The plot of AOR vs. FR of

each tracker, Figure 6.3 reflects the true tracking quality of all trackers, and will be used

to support the validity of our new measures IOF , R, D. According to Figure 6.3, we

can rank the ten trackers as follows: 1. CCOT, 2. TCNN, 3. STAPLE, 4. SAMF, 5.

DSST, 6. KCF, 7. STRUCK, 8. SCM, 9. ASLA, 10. LOT.

Figure 6.3: AOR vs FR as a reference measure to evaluate the proposed measures.

In addition to the AOR and FR individually as per table 6.1, our obtained IOF

results showed that the ranking according to VOT2013 [91] contradicts with the reference

measure of Figure 6.3, as it swapped the ranking of STRUCK (ranked 6th) and KCF

(ranked 7th). On the contrary, the proposed IOF is found to match perfectly the

ground-truth results in Figure 6.3.

6.7.2 Scoring and Ranking using AOR and FR

Table 6.1 shows the scoring and ranking results of the ten tested trackers based on

AOR and FR individually. As shown, the number of best and second-best scores over
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all video sequences are assigned to each tracker based on MAD dispersion measure.

The proposed ranking method based on AOR matches the ranking based on FR except

for DSST tracker. According to the best scores assigned to each tracker, the ranking

based on FR can be considered closer to the reference plot in Figure 6.3. However, the

ranking based on FR assigns the same rank for STRUCK, KCF, and DSST trackers.

Moreover, the ranking based on the individual AOR and FR do not discriminate among

closely performing trackers.

Table 6.1: Scoring and ranking of the tested trackers based on AOR and FR individually.

6.7.3 IOF Ranking Results

Table 6.2 shows the scoring and ranking of the trackers based on IOF index according

to MAD measure. As can be seen, the IOF ranking is 1. CCOT and TCNN, 2.

STAPLE and SAMF, 3. DST and KCF, 4. STRUCK and SCM, and 5. LOT. This

matches the ranking of the reference Figure 6.3. According to the number of best

scores, as expected, the LOT tracker has been assigned the worst score, while CCOT is

assigned as the highest scored tracker.

Table 6.2: IOF Scoring and ranking based on IOF index according to MAD measure.
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Figure 6.4 shows how the IOF Rank-score plot perfectly matches the ranking results

achieved using our proposed IOF measure as per table 6.2.

Figure 6.4: IOF Rank-score plot.

Figure 6.5 plots the IOF measure for all trackers; it does not only illustrate the ranking

of the tested trackers, but also their relative quality. In addition, the quality of any

tracker can be easily inferred relative to the best one. For example, the quality of the

DSST is 0.958% that of SAMF.

Figure 6.5: Ranking using IOF index.

Table 6.3 shows the IOF ranking for individual test sequences including the deviation

thresholds (right two columns) that are used in the ranking process.
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Table 6.3: IOF Scoring and ranking of the tested trackers for individual test sequences.
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6.7.4 Recovery and Drift Results

Table 6.4 shows the ranking of all trackers based on recovery measure according to MAD

dispersion measure. The assigned ranks based on recovery exactly matches the ranks

given in the reference Figure 6.3. Table 6.5 shows the ranking of all trackers based on

the drift metric according to MAD measure. The assigned ranks based on the drifts

metric exactly match the ranks given by reference ranking of Figure 6.3. In table 6.6, we
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give the recover-to-drift measure pRD = (R−D)
(L−100)

where R is the sum of recoveries over

all 100 videos, D is the sum of drifts over all videos, and L is the total number of frames

of the videos. Note that we subtract 100 as we skip the first frame in each video. As can

be seen, proposed pRD finely distinguishes the 10 tested trackers in term of pure drift

(or pure recovery). It perfectly matches the ranking in the reference figure 6.3, that is:

1. CCOT, 2. TCNN, 3. STAPLE, 4. SAMF, 5. DSST, 6. KCF, 7. STRUCK, 8. SCM,

9. ASLA, 10. LOT. We notice how the LOT tracker has negative pRD value since (as

per tables 6.4 and 6.5) it has higher drift than recovery.

Table 6.4: Average recovery-based ranking over all 100 videos.

Table 6.5: Average drift-based ranking over all 100 videos.

Table 6.6: pRD-based ranking over all 100 videos.

For more investigation, we created a plot that shows the relation between the R

vs. D for each tracker as shown in Figure 6.6. This plot presents detailed information

about trackers quality and well agrees with the reference measure given in Figure 6.3.

It well distinguishes the ten trackers as follows: 1. CCOT and TCNN, 2. STAPLE,

3. SAMF, 4. DSST, 5. KCF, 6. STRUCK and SCM, 7. ASLA, 8. LOT. The plot

clusters trackers into five separated groups (separated by dashed lines) which facilitate

the ranking process based on tracking characteristics such as the number of drifts and

recoveries of each tracker.
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Figure 6.6: Recovery (R) vs. drift (D) plot.

6.7.5 Stability of the Proposed Framework

To test the stability of our framework, we selected the trackers such that some of which

have similar performance, and the others have fully different performance. Comparing

Tables 6.1 and 6.2, we can see that using the unified metric IOF , instead of individual

metrics, trackers are less scattered. In addition, IOF shows to discriminate between

closely performing trackers better than AOR and FR when used individually. This is

also shown in the IOF scatter plot of Figure 6.4 for the ranks and scores of the tested

trackers. As seen, both CCOT and TCNN trackers show the best quality (highest rank

and scores) at the top left corner, while LOT tracker shows the worst quality (lowest

rank and scores) at the bottom right corner. IOF shows that the top ranked trackers

(same rank) also have the highest scores. Since IOF is a simple and effective metric, we

thus propose to use the IOF index as a unified metric for tracker evaluation.

6.7.6 Speed Ranking

The speed of all evaluated trackers, in FPS, is shown in Table 6.2. The tracking

algorithms are run on Intel Xeon(R) 3.6 GHz PC with 16 GB memory; all but STRUCK

(C/C++) are coded in Matlab. As can be seen, the TCNN and CCOT trackers, ranked
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the first, have the lowest FPS (0.446 and 0.581), while DSST and STAPLE trackers

have the best FPS (58.81 and 55.25) among all trackers. Combining the rate, score, and

rank for all trackers, we can obviously conclude that the best of all tested trackers is

STAPLE.

6.8 Conclusion

In this chapter, a framework is presented for effective scoring and ranking of trackers

using known as well as three proposed performance measures coupled with a statistical

dispersion metric (MAD) to account for the presence of outliers. The framework is

verified on ten state-of-the-art different performing trackers from view points of accuracy

and performance. Results on publicly available data set of 100 test sequences showed

that the scoring process provides detailed information about trackers’ quality that

complements the ranking. The proposed index measure (combining overlap and failure

rate) aims to measure the quality of trackers using a unified metric to facilitate ranking

and scoring. The proposed index is shown to better replace the individual overlap and

failure rate metrics. The proposed recovery and pure drift metrics facilitate the ranking

process and support the results of the unified index.

For future work, we plan to extend the proposed framework to use multi-objective

optimization techniques such as artificial immune systems for ranking to reflect the

different aspects of the tracking performance.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

Object tracking is a sophisticated process inevitably causing frequent tracking drift or

even failure as a result of various challenges in the tracking environment. Adaptive

appearance modeling has attracted significant attention as it accounts for drastic

appearance changes. The output of such trackers is a bounding box representation, the

center of which is considered as the estimated object location. Such bounding box may

not provide accurate foreground/background discrimination and may not be centered

correctly around the target object, which affects the accuracy of the overall tracking

process.

This work has investigated approaches for enhancing the quality and facilitating the

evaluation of tracking algorithms. First, an automatic drift detection approach, using

saliency features of the target object, integrated with a drift correction mechanism

through an automatic seeded segmentation, was investigated. The proposed approach

was evaluated on a publicly available dataset of 100 video sequences that cover 11

different tracking challenges, using five recent trackers that have different attributes

from points of view of tracking accuracy, performance, and methodology. It was

found that the proposed approach successfully tracks the target object under different

challenge conditions, while the base trackers drifted away from the target object.



The second approach for enhancing the tracking quality was the investigation of using

the clonal selection-based artificial immune system optimization for the selection of the

best performing configurations of support vector machines and object segmentation.

The obtained results show that the proposed method applied to STRUCK tracker

has led to an enhanced quality that outperforms the original algorithm according to

various objective measures. In addition, the selection of the parameters of graph cut

segmentation using artificial immune system optimization was explored. A better

segmentation quality has been achieved according to different objective measures. The

proposed method overcomes the bias of human intervention and the tedious work

adopted for parameter selection, while achieving global near optimal configurations

that in turn lead to better tracking quality. It can be concluded that the artificial

immune system optimization can effectively serve as an attractive tool for computer

vision applications such as segmentation and tracking.

For facilitating the evaluation of object tracking algorithms, this work introduced

a framework for scoring and ranking of object trackers, using known quality metrics,

coupled with a robust estimator against dispersion and outliers. Three new performance

measures were proposed to facilitate trackers’ evaluation: A simple and straight forward

performance index, that facilitates the ranking and scoring process, was proposed.

Two other measures; recovery and pure drift measures, were also introduced. Ten

state-of-the-art different performing trackers are scored and ranked using the proposed

framework on a public benchmark of 100 video sequences. The obtained results show

that the proposed framework facilitates the evaluation of the relative performance of

different trackers. The proposed unified index does not only illustrate the ranking of the

tested trackers, but also their relative quality. The quality of any tracker can be easily

inferred relative to the best one. The proposed recovery and pure drift metrics facilitate

the ranking process and support the results of the unified index.
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7.2 Future Work

In addition to the use of saliency features for automatic drift detection, we propose to

investigate the application of different saliency models for drift detection, and study

their effect on the tracking performance and accuracy.

G-Cut object segmentation is a computationally expensive method. We propose to

investigate the use of fast object segmentation methods so to improve the speed of drift

correction.

Recent approaches in object detection incorporate the use of objectness measures.

We propose to investigate the use of objectness for automatic drift detection (preliminary

results showed a promising improvement of the tracking quality using objectness

measures (Appendix B)). An interesting future work could include the integration of

both saliency features and objectness measures in a unified framework for automatic

drift detection.

To enhance the performance of the proposed AIS tracking method, we propose to

enhance the artificial immune system model to achieve faster convergence rate. In

addition, it is intended to study the effect of using different features for the online

training of the complementary support vector machine model on the tracking accuracy.

For the proposed ranking framework, we plan to investigate using multi-objective

optimization techniques such as artificial immune systems for ranking to reflect the

different aspects of the tracking quality.
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Appendix A

Objectness-based Tracker Drift

Detection

A.1 Introduction and Related Work

Object detection can significantly support object tracking. Objects can be detected using

saliency, sliding window, and objectness approaches. Saliency object detection [42–45]

identifies the location of objects based on image information such as contrast. It has been

widely used in different applications, including object recognition, image segmentation,

and video summarization. In sliding window paradigm [35], a classifier is first trained

to distinguish windows containing instances of a given class from all other windows, and

then used to score every window in a test image. Local maxima of the score localize

instances of the class. This approach detects specific class of objects, such as vehicles or

humans, which is not appropriate for automated applications such as object tracking that

track different types of objects. In addition, it is computationally intensive. Recently,

objectness measures have become an active research area in object detection [38, 136].

Objectness measures attempt to generate a small set (few hundreds or thousands) of

object regions that cover every object in the input image, regardless of the specific

categories of those objects (generic over classes). Compared with traditional sliding

window approach, estimating object proposals in a pre-processing stage has the following

advantages: 1) better accords with our human visual system behavior which perceives



objects before identifying them [38]; 2) speeds up the computation by reducing the

search locations, especially when the number of object classes that need to be detected

is high [37].

Objectness approaches [38, 136] are related to interest point detectors (IPS) and

saliency models. IPS respond to local textured image neighborhoods and are widely

used for finding image correspondences [40] and focus on individual points instead of

the entire object(s) in image scene. Generally, the object proposals such as objectness

approaches consider saliency as a useful cue for measuring objectness of a region [38].

Class-specific saliency models define, as a salient region, the visual characteristics that

best distinguish a specific object class such as vehicle or human from others [41].

Class-generic saliency models [42–45] measure the saliency of pixels as the degree of

uniqueness of their neighborhood relative to the surrounding region.

The objectness-based object detection approach in [38], the model is explicitly

trained to distinguish objects with a well-defined boundary in space, from amorphous

background elements, such as grass and road. The objectness measure [38] combines, in

a Bayesian framework, several image cues measuring characteristics of objects, such as

those appearing different from their surroundings and having a closed boundary. The

object detection process in [38] is computationally intensive and shows inaccuracy when

applied to low resolution images.

The estimated tracking output is a bounding box (BB) and in this appendix, we

propose to use objectness measures to quantify how likely such BB contains an object

(of any class) in order to detect if tracking drift tends to occur, and hence drift correction

can be applied. Our method uses both the relative area and relative score of the detected

candidate box among all objectness candidates to detect if the target inside the estimated

BB is likely an object.

A.2 Proposed Method

Edge-based Objectness (EBP) [136] detects candidate object windows (or boxes) using

edges which provides a sparse yet informative representation of an image. The number
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of contours that are wholly contained inside a box is used as an indication of the

likelihood of the box to contain an object. EBP measures the number of edges that

exist inside the box minus those that are members of contours that overlap the box

boundary returning a ranked set of a few thousand top-scoring boxes. EBP in [136]

is significantly more accurate while being twelve times faster to compute than the

current state-of-the-art objectness measues [38]. We propose to use the maximum

scored window in the estimated BB Bt to decide if the target started to drift, as shown

in Figure A.1.

Figure A.1: Block diagram of the proposed edge-based objectness for drift detection.

The EBP candidate boxes have two pieces of information: area and score. The

candidate box of maximum area and the candidate box of maximum score have shown

to be complementary to each other (meaning if used together they will provide more

information than using each separately) as shown in examples in Figure A.2. As can be

seen, for different video sequences, the candidate box with maximum area and maximum

score relative to other boxes at frame 40 shows two important regions of the target object

inside the estimated tracking output box. Figure A.2 shows that the objectness measure

can detect the box that includes the target object inside the estimated Bt without prior

information. Hence, the two regions with maximum score and maximum area can be

used to detect tracking drift, as we show next.

We select the box BE among all candidate boxes, having largest area as it is more

likely to include the target object (able to capture the whole object inside). We use

the relative area ar of BE to the area of Bt to indicate the importance of the selected

candidate box as
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Figure A.2: Candidate box of maximum area and maximum score using edge-based
objectness.

ar = Area(BE)/Area(Bt), (A.1)

where Area(BE) is the area of the selected candidate box of maximum area inside

Bt and Area(Bt) is the area of the estimated Bt. Since the maximum score is not

upper-bounded, we thus use the relative score sr of BE to the maximum score among

all candidate boxes to indicate the importance of the selected candidate box as

sr = score(BE)/smax, (A.2)

where score(BE) is the score of the selected candidate box of maximum area inside Bt

and smax is the maximum score over all detected candidate boxes inside Bt. We correct

drift, if both sr and ar are high according to some selected constants as

oDrift =







1 : (sr ≤ cs) ∧ (ar < ca),

0 : otherwise
(A.3)

The constants cs and ca are selected as 0.8 and 0.5, respectively for scale invariant
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trackers (such as STRUCK [2] and KCF [10]) and 0.95 and 0.65 for scale variant trackers

(such as SAMF [11], DSST [13], and STAPLE [3]). When the drift is detected, a drift

correction can be applied (such as the proposed method in chapter 3)

A.3 Objective Results

Table A.1 shows the improvement in AOR, CLE, and FR, using the proposed

objectness-based drift detection (and segmentation-based drift correction as in chapter

3, for five trackers relative to their corresponding original tracking quality over 11

different test sequences (Deer, FaceOcc2, Boy, Sylvester, David, Car4, Girl, Singer1,

Shaking, Walking2, and Board) that cover different challenges [56] (better quality is

shown in bold). Over all frames of all test video sequences, the proposed method

gives better quality; no outliers were noted. As can be seen, all trackers have achieved

better tracking quality compared with their corresponding original versions. KCF and

STAPLE trackers showed the best improvement among all tested trackers.

Table A.1: Average improvement of the proposed objectness-based drift detection and
correction method.

Figures A.3, A.4, and A.5 show the improvement in AOR, CLE, and FR, by the

proposed method applied to the KCF tracker over frames of the above mentioned test
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sequences. We compare the achieved improvement with our proposed saliency-based

drift detection and correction in chapter 3 (blue solid curve). As shown, the proposed

objectness-based has achieved on average a slightly better tracking quality in AOR and

CLE and slightly worse in FR.

Figure A.3: AOR of base and modified KCF tracker using objectness.

Figure A.4: CLE of base and modified KCF tracker using objectness.
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Figure A.5: FR of base and modified KCF tracker using objectness.

Figures A.6, A.7, and A.8 show the improvement in AOR, CLE, and FR, by

the proposed method applied to the STAPLE tracker. As can be seen, the quality

of our proposed method (green) outperforms that of the corresponding original

trackers (dashed red) for AOR, CLE, and FR, while being similar to the results of

saliency-based drift detection and correction proposed in chapter 3.

Figure A.6: AOR of base and modified STAPLE tracker using objectness.
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Figure A.7: CLE of base and modified STAPLE tracker using objectness.

Figure A.8: FR of base and modified STAPLE tracker using objectness.

A.4 Conclusion

In conclusion, we can see that the use of objectness for drift detection gives slightly

better results compared to using saliency features. The difference is that saliency

features use the global contrast differences and spatial coherence of the given image

while the objectness uses the number of contours extracted from edges which provides

a sparse yet informative representation of an image. Both saliency and objectness are

computationally efficient. The objectness measure and saliency features capture different

pieces of information about the target object and the integration of both objectness
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and saliency together for drift detection is expected to achieve better results than the

individual features.

A.5 Ground-Truth based Reference to Drift Detec-

tion

Tracking algorithms need to address possible drifts to take recovery measures in order to

re-guide the tracker. To provide a reference for drift detection and correction methods,

in this sectoin we propose to detect the tracking drifts based on the ground truth

annotations, using two thresholds ca and cc based on the average overlap ratio (AOR)

and the normalized center location error (NCLE), respectively [57]. At Ft, the NCLE

is the CLE in x and y directions relative to the dimensions of the ground truth BB.

Figure A.9 illustrates the flowchart of the ground-truth based drift detection.

Figure A.9: Ground truth based drift detection.

As shown, given the annotated BB Bg
t and the estimated BB Be

t at frame Ft, drift

is detected as

GDFlagt =







1 : (AORt < ca) ∨ (NCLEt > cc)

0 : otherwise,
(A.4)

where AORt = AOR(Be
t , B

g
t ) and NCLEt = NCLE(Be

t , B
g
t ) at Ft. Once drift is

detected, the flag GDFlagt is set to trigger the drift correction process. ca and cc are

calculated as follows. For each tracker i, for video sequence j, the minimum overlap
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value AORfj over all video frames is calculated and then, the average of all minima of

all videos is calculated as (A.5).

tmin
AORi

=
1

J

J
∑

j=1

min
1≤f≤F

(AORfj) (A.5)

where J is the number of video sequences, f is the frame number, and F is total number

of frames. The process is repeated for T trackers and, the threshold ca is calculated as

the minimum average value over all trackers as (A.6 ).

ca = min
1≤i≤T

(tmin
AORi

) (A.6)

cc is set as follows. For each tracker, for each video sequence, the average NCLE

between Be
t and Bg

t over all frames is calculated. The average of such normalized error

over all sequences is then calculated for that tracker as (A.7).

tavgNCLEi
=

1

J

J
∑

j=1

(NCLE(vj)), (A.7)

where NCLE(vj) is the normalized error of video j according to tracker i. Then the

average of the videos whose NCLE is below the calculated average is found as (A.8).

tNCLEi
=

1

J ′

J ′

∑

j=1

(NCLE(vj))1≤j≤J ′∧(NCLE(vj)<Tavg
NCLEi

) (A.8)

where J ′ is the number of videos of error below T avg
NCLEi

. The process is repeated for

all trackers. cc is then selected as half of the minimum average value in all trackers as

(A.9).

cc =
1

2
. min
1≤i≤T

(TNCLEi
) (A.9)

For the KCF, SAMF, STRUCK, and DSST trackers, and the 11 test videos that

cover all challenging attributes, it was found that ca = 0.220 and cc = 0.066. The

drift correction is applied through segmentation as illustrated. The obtained results

show that applying segmentation only when a drift is detected has led to both better
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tracking quality and performance than applying segmentation at each frame. Figures

A.10, A.11. and A.12 show the AOR, CLE, and FR plots of the proposed ground

truth-based drift detection and correction applied to KCF tracker (dashed red) vs.

applying the segmentation-based drift correction at each frame (dotted blue). As

illustrated, applying segmentation only when a drift is detected shows better tracking

quality over all sequences as well as better tracking performance.

Figure A.10: AOR plot of ground-truth based drift detection (KCF-GDD) versus drift
correction at each frame (KCF-N1) for KCF.

Figure A.11: CLE plot of ground-truth based drift detection (KCF-GDD) versus drift
correction at each frame (KCF-N1) for KCF.
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Figure A.12: FR plot of ground-truth based drift detection (KCF-GDD) versus drift
correction at each frame (KCF-N1) for KCF.
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Appendix B

Framework for Parameter

Weighting and Selection for Object

Tracking Algorithms

B.1 Abstract

A little research attention has been given to study tracking algorithms’ sensitivity

to the tracking parameters, and to select the best performing parameter sets (or

configurations). Long and tedious parameter fine tuning process is usually adopted

to choose the best configuration that has a strong influence on the tracking quality,

particularly with the diverse nature of video signals. This chapter proposes a framework

for selecting the best configurations of a tracking algorithm using three quality metrics

(failure rate, average overlap ratio, and normalized center location error) coupled with

the median absolute deviation. Our framework weights the parameters of the tracking

algorithm according to their sensitivity to each of these parameters with respect to

performance measures and uses a scoring mechanism to suggest the best and second

best configurations. We tested our framework on different trackers and found that it

either suggests a new configurations that outperforms the default one or confirms the

tracker default configuration.



B.2 List of Symbols

B.3 Introduction

Video object tracking has remained a challenging task due to its diverse applications,

scene conditions, and parameters that often require manual fine tuning for acceptable

tracking results. A variety of trackers have been developed to address these challenges

[2, 8–13]. Tracking algorithms are usually more sensitive to certain parameters than

others. The selection of the best tracking parameter configuration (set of parameter

values) is important for fair comparison of tracking algorithms. However, little research

attention has been given to select the best configuration. The performance evaluation

methodologies, such as Online Tracking Benchmark OTB [57], Visual Object Tracking

challenge VOT [91–93, 96], and NUSPRO [94], use the default configurations (given by

the respective authors) for evaluating object tracking algorithms. A tedious effort is

usually spent by authors to fine tune the parameters during the experimental phase to

achieve the best results. Manual fine tuning [137] does not however guarantee optimal

results.

The rest of this Appendix is organized as follows. Section B.4 presents related work

and its differentiation to the proposed approach, which is introduced in Section B.5.

Section B.6 discusses the obtained results. Section B.7 concludes the work.
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B.4 Prior Work

Few research papers have addressed parameter selection, scoring, and weighting for

object tracking algorithms. PETS [138] and CAVIAR [139] workshops are among

the earliest ones to put efforts on comparing different trackers. They provided

public datasets with different aspects of tracking scenarios to facilitate testing of

different trackers, so that certain evaluation metrics can be used to compare the

results. VOT2013 [91] has introduced a ranking-based methodology that accounted

for statistical significance of the results. VOT2013 used accuracy and robustness as

two weakly-correlated performance measures for the trackers’ evaluation. However, the

default parameter configurations were used for evaluation, or, when not available, were

set to ”reasonable” values without rigorous testing. VOT2014 [92] and VOT2015 [93]

followed the same procedure as VOT2013 to select the parameters’ configuration for all

trackers. In [94], Y. Wu et al. used the overlap ratio for evaluation and ranking of the

tracking performance in which the trackers were set to their default parameters.

In [115], Phu et al. proposed an approach that learns how to tune the tracker

parameters online to cope with the tracking context variations. However, it needs an

off-line training step in order to learn such variations from different sequences. Moreover,

the effect of different parameters on the tracking quality (parameter sensitivity) is not

measured. In [137], Adenso and Laguna presented a support tool (CALIBRA) for

fine-tuning algorithms based on fractional factorial experimental design coupled with

local search procedure to facilitate the task of finding parameter values for algorithms.

Specifically, CALIBRA attempted to find the best values for up to five parameters based

on local search procedure. However, the significance of interactions among parameters is

not exploited. The difference between [137] and our framework is that a) ours supports

any number of parameters, and b) ours excludes any configuration that has minor effect

on the tracking performance, and hence can reflect the importance of interactions among

parameters. In [140], Patricio et al. proposed a formulation of the data association

problem in visual tracking systems as a discrete optimization where for every frame,

the detected blobs are assigned to active tracks in such way to maximize the tracking
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accuracy. They used different search algorithms to find the best tracking configuration

to match hypothesis over time during tracking. However, they mentioned that they are

willing to develop a self-tuning version of the local search algorithms to choose the right

parameters for every instance of a problem.

Our work differs from those in the literature. It searches the best parameter

configuration of a tracking algorithm without human intervention. The best

configuration is searched based on the quality values according to different evaluation

metrics. The selected configurations are scored to find the one with the highest possible

tracking quality with respect to performance measures. The proposed framework then

assigns a weight to each parameter based on its influence on the performance of the

tracking algorithm. In addition, it has the flexibility to control the search range

and increments of all parameters according to the reqired accuracy of the selected

configurations.

B.5 Proposed Framework

The proposed framework comprises three steps as shown in Figure B.1: data entry,

parameter weighting, configuration scoring. The data entry step reads the following:

the tracker parameters {βk; k = 1, · · · , Nβ}, Nβ is the number of parameters; the range

of each parameter yk = [ykmin
, ykmax

]; parameters’ variation (increment) step y∆k ; the

ground truth bounding boxes (BBs); the performance evaluation metrics pj, j = 1, · · ·Np,

Np is the number of metrics used to calculate the quality values qijl for each configuration

{ci; i = 1, · · · , N}, N is the number of chosen configurations from the pool of all possible

configurations according to metric pj over a test sequence {vl; l = 1, · · · , Nv}, Nv is the

number of test sequences; and the dispersion estimator measure. Then the parameters’

weighting step calculates a sensitivity weight vector {wk} for all parameters. For each pj,

for each vl, the scoring step applies the dispersion measure on the vector of quality values

{qijl} for the N configurations and assigns score vector {sij} for each configuration ci

according to metric pj as the sum of scores over all sequences, where 1 ≤ sij ≤ Nv. The

proposed framework uses three known evaluation measures: the average overlap ratio
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(AOR), the normalized center location error (NCLE), and the failure rate (FR).

Figure B.1: Block diagram of the proposed parameter selection and weighting
framework.

B.5.1 Parameter Weighting

Tracking algorithms usually incorporate parameters that need to be tuned to get

better results. Some parameters may have slight or no influence on a tracker’ s

quality. We propose a parameter weighting mechanism which tests all parameters

of the tracking algorithm separately and evaluates their sensitivity weights. Given a

certain tracker with set of parameters {βk; k = 1, · · · , Nβ}, each parameter with a range

yk = [ykmin
, ykmax

] and increment step y∆k , our weighting mechanism first creates a set

of all Nk =
ykmax−ykmin

y∆
k

possible configurations {cm;m = 1, · · · , Nk} with respect to

each parameter βk by varying its range yk by an increment step of y∆k , while keeping all

other parameters constant to a value from their respective range and increment. Thus

the total number of all possible configurations of all parameters is
∏Nβ

k=1 Nk. Then, our

weighting mechanism scores each configuration cm according to performance measure j

for parameter k as
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tmjk =











1, max{Qmjk} −min{Qmjk} ≥ dw, ∀m

0, otherwise,

(B.1)

where tmjk is the score of configuration cm according to performance measure j for

parameter k, {Qmjk} is the set of individual quality values Qmjk of configuration m

according to performance measure j for parameter k, and the threshold dw is defined as

dw =
|max{Qmjk} −min{Qmjk}|

a
, ∀m, k (B.2)

where a =
∑Nβ

k=1
Nk

Nβ
is the average number of variations of all parameters. Next, the

weight wk of parameter βk is calculated as the average of scores sijk assigned to each

configuration i according to metric j as

wk =

∑Nk

k=1 sijk
Nk

. (B.3)

The process is repeated over all set of parameters {βk}. Finally, a weight vector

w =
{

w1, w2, . . . , wNβ

}

is calculated. Then, the framework outputs normalized weights

wk as w̄k =
wk

∑Nβ
k=1

wk

to obtain the final sensitivity weight for each parameter.

B.5.2 Configuration Selection and Scoring

The variation of all parameters, with their ranges and increments, creates a large number

of configurations. We thus need to filter out less performing ones. We select the N

configurations among all possible configurations that either maximize AOR or minimize

NCLE or FR. We pick any configuration which yields a quality value within a threshold

from the quality value of the best configuration, which is the one that gives the highest

(or lowest) quality value among all configurations according to selected metric pj.

Due to the possible presence of outliers in numerical data of configurations’ measures,

counting the number of best and 2nd best scores is not reliable to measure their
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performance, because it neglects the deviation that may exist in the data. For each test

sequence, we therefore define a deviation threshold dq based on a dispersion measure

of the vector of quality values {qijl} of N configurations which evaluates a set’ s close

affiliation to either the best or the second best score. We use the median absolute

deviation (MAD) dispersion measure of the quality vector {qijl} for the N configurations

using performance measure j on the sequence l as

dq = Median|qijl −Median{qijl}|, i = 1, · · · , N, (B.4)

where qijl is the individual quality value for the configuration i according to performance

measure j for sequence l. We process sequences separately and for each sequence, we

score all configurations and then count scores over all sequences for each quality metric.

The process of the scoring mechanism for the N configurations over all sequences is

summarized in Algorithm B.1.

Algorithm B.1: Scoring of N configurations for a metric pj.

Data: Quality values {qijl}; {i = 1, · · · , N, j = 1, · · · , Np} of all {vl}
Result: Scores {sij} = {s1j, · · · , sNj} for all N configurations with respect to

each pj
1 for a performance measure pj do
2 for a tracker i do
3 sij = 0;

4 for each test sequence vl do
5 dq = MAD{qijl};
6 O = Best{qijl};
7 for each unscored configuration ci do
8 if |qijl −O| < dq
9 score = 1;

10 else
11 score = 0;
12 end;
13 sij = sij + score;

Best{qijl} is the best value among the set of quality values of all N configurations for the

test sequence vl (either the maximum value for AOR or the minimum for both NCLE

and FR); {sij} is a score vector that counts the scores of each configuration i over all
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test sequences according to metric j. Scores for each configuration are aggregated over

all sequences to find the scores vector {sij} for each metric j. Then, the configuration(s)

with the maximum count is (are) selected as the best configuration(s). The ones that

are not scored as best, contribute to another round in order to choose the second best

configuration(s) using the same Algorithm B.1 with a new threshold dq selected based

on the remaining configurations’ quality values. This is repeated till all N configurations

are scored.

B.6 Results and Analysis

B.6.1 Experimental Setup

We run each simulation five times on each test sequence to obtain fair statistics on the

mentioned performance measures. We then determine the results for every configuration

over all sequences. We have tested our framework with three well-known trackers,

STRUCK [2], KCF [10], and STAPLE [3] and three performance measures on 50 test

sequences [56]. Struck [2] is a framework for adaptive visual object tracking based

on structured output prediction. The framework uses a kernelized structured output

support vector machine (SVM), which is learned on-line to provide adaptive tracking.

STAPLE tracker [3] combines two image patch representations to learn a model that

is inherently robust to both color changes and deformations. Two independent ridge

regression problems are solved, exploiting the inherent structure of each representation

to maintain real-time performance. STAPLE combines the scores of template and

histogram models in a dense translation search, that are learned independently, enabling

greater accuracy. For the KCF [10] tracker, it performs training and detection to

discriminate an object’ s appearance from its environment. Henriques et al. in [10],

used analytical tools of circulant matrices to reduce data storage and increasing the

tracking speed.

STRUCK parameters are search radius (SR), budget size (BS), and regularization

(RP), which are set by default to 30, 100, and 100, respectively. The authors in [2] stated
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that the RP parameter of STRUCK Tracker has little influence on tracking quality and

thus is not included in our simulations. STAPLE parameters are template learning rate

(TLR), histogram learning rate (HLR), histogram bins (NBIN), merge factor (MF),

fixed area (FA), and hog cell size (HCS), which are set to 0.01, 0.04, 32 × 32 × 32,

0.3, 150 × 150, and 4 × 4. KCF parameters are feature bandwidth (FB), adaptation

rate (AR), spatial bandwidth (SB), and regularization (RP), which are by default set to

0.5, 0.02, 0.1, and 0.0001. Table B.1 gives the parameters’ ranges and increments used

in our simulations for STRUCK, KCF, and STAPLE. HCS and NBIN parameters use

multiplicative increments.

Table B.1: Ranges and increments of the parameters of STRUCK, KCF, and STAPLE
trackers.

B.6.2 Parameter Weighting

Our parameter weighting mechanism assigned a normalized sensitivity weight to each

parameter and separated non-sensitive parameters from their sensitive counterparts. We

applied the weighting in (B.3) to measure the parameters’ sensitivity of STRUCK, KCF,

and STAPLE trackers. Weights of these trackers’ parameters are listed in Table B.2

on a per-metric basis. As can be seen, for STRUCK, SR has more weight than BS

across all metrics. For STAPLE, results showed that our weighting mechanism indicates

that the HLR parameter has no influence, while the other parameters have different

weights for each quality metric view point. For AOR, STAPLE depends entirely on
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TLR, FA, and HCS parameters. For NCLE, STAPLE also depends on TLR, HCS, and

MF that assigned higher weight than FA. For FR, STAPLE shows to depend mainly

on both TLR and NBIN parameters. For KCF, the obtained results show that AR

and SB parameters are the most effective, with SB having the highest weight (most

influential) across all three metrics. Parameter weighting is important for improvement

of the tracking algorithms as it focuses on parameters to which the algorithm is more

sensitive.

Table B.2: Generated parameters’ weights wk.

B.6.3 Configuration Scoring

Table B.3 shows the scoring results of the N best configurations for STRUCK tracker.

The first column (set 30/100) in the table indicates the default set as given by

respective authors. As can be seen, all configurations are scored according to their

effect on the quality of each performance measure. In order to facilitate interpretation

of scoring using the three separate performance measures NCLE, AOR, and FR, we

combined their scoring as follows. For each configuration ci, the median M1 of best

scores {sij} across the NCLE, AOR, and FR is calculated as M1 = Median{sij},

where {sij} is a set of best scores according to metric j. Such median is useful as an

estimator of central tendency and is robust against outliers. Similarly, the median of

2nd best scores M2 is calculated for each configuration ci. As can be seen in Table B.3,
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among the N selected configurations, the two best scored configurations from tracking

quality view point (c1 and c2) are ranked (bold) and they outperform the default

STRUCK configuration according to NCLE, AOR, and FR. For example, the 40/80

configuration with best score has higher tracking quality according to M1 and M2. We

also calculated a combined relative rank (Rank) of configurations ci in Table B.3 as

Rank = 0.85M1 + 0.15M2, which weights best scores higher than second best scores.

As shown in Table B.3, this ranking measure confirms the M1 scoring for the selected

best configurations. The two best sets ranked as top also have the highest ranks among

all trackers.

Table B.3: Scoring of parameter sets of STRUCK.

Table B.4 shows the scoring results of the N best configurations for STAPLE

tracker. The first set 0.04/0.01/0.3/150/32/4 in the table indicates the default set
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as given by authors. As shown, all configurations are scored according to their

quality values from each performance measure view point. As shown in Table

B.4, among the N selected configurations, the two best scored ones (c4 and c9)

according to the tracking quality are ranked (bold) and they outperform the default

STAPLE configuration according to NCLE, AOR, and FR metrics. For example,

the 0.04/0.02/0.35/150/64/2 configuration with best score has higher tracking quality

according to Rank measure and has achieved an improvement of 9.94%, 15.53%,

and 30.43% for NCLE, AOR, and FR respectively. In addition, the selected 2nd

best configuration 0.04/0.02/0.35/175/64/2 shares the same values with parameters

of the best configuration except for FA parameter and slightly differs in tracking

quality than the best one which reflects the accuracy of the weighting mechanism that

has assigned a small weight to such FA parameter as per NCLE, AOR, and FR

metrics. Table B.4 also shows that most of other selected configurations outperform

the default one differently with respect to each metric which shows that the default

configuration does not guarantee the best performance according to the tracking quality.

Table B.4: Scoring of parameter sets of STAPLE.
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Concerning Precision and Success plots, Figures B.2. a) and B.2. b) show that

the tracking quality of STAPLE tracker using the best performing configuration (blue)

achieves better quality than using the default configuration (dashed red) with respect

to different thresholds.

(a) Precision plot. (b) Success plot.

Figure B.2: Precision and Success plots of default and proposed selected configuration
of STAPLE tracker.

Figures B.3 and B.4 show the AOR and FR plots for the best performing

configuration compared with the default one over all test sequences. As shown, the

selected configuration has better tracking quality along all test sequences.
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Figure B.3: AOR of default and best performing configuration of STAPLE tracker.

Figure B.4: FR of default and best performing configuration of STAPLE tracker.

Table B.5 shows the scoring results of configurations for KCF tracker. The set

(0.5/0.02/0.1/0.0001) is the default as given by respective authors. Our framework

confirms this set as the best set with the highest rank and best M1 quality. Results show

that the best scores measure is valuable and can reflect the actual tracking quality than

the second best scores from all individual measure view points. As shown in Table B.5,

the default configuration (bold) assigned the highest best score (best tracking quality)

among all selected configurations.
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Table B.5: Scoring of parameter sets of KCF.

From the above-mentioned discussion, it is clear that the proposed framework either

confirms the default configuration of the tracking algorithm as in the case of KCF tracker,

or selects a better configuration that significantly outperforms the default one as in

STAPLE tracker.
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B.7 Conclusion

This Appendix presents a framework is presented for selection and scoring of best

performing set of control parameters of different tracking algorithms to achieve the

highest tracking quality. The framework automatically weights all the parameters

of selected tracker with respect to their influence on tracking quality from different

performance measures view points. The proposed framework has been verified on three

trackers, STRUCK, KCF, and STAPLE using three performance measures coupled with

a MAD statistical dispersion metric. Results on 50 test sequences showed that the

proposed scoring mechanism either suggests new configurations that outperform the

default one or confirms the default configuration as being the best.

For future work, a multi-objective optimization approach that maximizes the AOR

and minimizes the NCLE and FR simultaneously is to be used to select the best

configurations for a tracker.
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