
Tracker-Independent Drift Detection and Correction

Using Segmented Objects and Features

Tarek Ghoniemy

A Thesis

in the Department

of

Electrical and Computer Engineering

Presented in Partial Ful�llment of the Requirements

For the Degree of

Doctor of Philosophy (Electrical and Computer Engineering) at

Concordia University

Montr�eal, Qu�ebec, Canada

August 2017

c
 Tarek Ghoniemy, 2017



Concordia University
School of Graduate Studies

This is to certify that the thesis prepared

By: Tarek Ghoniemy

Entitled: Tracker-Independent Drift Detection and Correction Us-

ing Segmented Objects and Features

and submitted in partial ful�llment of the requirements for the degree of

Doctor of Philosophy (Electrical and Computer Engineering)

complies with the regulations of this University and meets the accepted standards with

respect to originality and quality.

Signed by the �nal examining committee:

Chair

Dr. Subhash Rakheja

External Examiner

Dr. Stephane Coulombe

Concordia External Examiner

Dr. Thomas G. Fevens

Examiner

Dr. Wei-Ping Zhu

Examiner

Dr. Hassan Rivaz

Supervisor

Dr. Maria A. Amer

Approved by:
Dr. Wei-Ping Zhu, Graduate Program Director

29 Sept. 2017

Dr. Amir Asif, Dean, Faculty of Engineering and Computer Science



Abstract

Tracker-Independent Drift Detection and Correction

Using Segmented Objects and Features

Tarek Ghoniemy, Ph.D.

Concordia University, 2017

Object tracking has been an active research topic in the �eld of video processing.

However, automated object tracking, under uncontrolled environments, is still di�cult

to achieve and encounters various challenges that cause the tracker to drift away from

the target object. To e�ectively handle object or environment tracking challenges, recent

powerful tracking approaches are learning-based, meaning they learn object appearance

changes while tracking online. The output of such trackers is, however, limited to

a bounding box representation, the center of which is considered as the estimated

object location. Such bounding box may not provide accurate foreground/background

discrimination and may not handle highly non-rigid objects. Moreover, the bounding

box may not surround the object completely, or it may not be centered around it,

which a�ects the accuracy of the overall tracking process. Our main objective in this

work is to reduce drifts of state-of-the-art tracking algorithms (trackers) using object

segmentation so to produce more accurate bounding box.

To enhance the quality of state-of-the-art trackers, this work investigates two main

venues: �rst tracker-independent drift detection and correction using object features

and second, selection of best performing parameters of Graph Cut object segmentation

and of support vector machines using arti�cial immune system. In addition, this work

proposes a framework for the evaluation and ranking of di�erent trackers using easily

interpretable performance measures, in a way to account for the presence of outliers.

For tracker-independent drift detection, we use saliency features or objectness using

saliency, the ratio of the salient region corresponding to the target object with respect

to the estimated bounding box is used to indicate the occurrence of tracking drift with

no prior information about the target model. With objectness measures, we use both

iii



relative area and score of the detected candidate boxes according to the objectness

measure to indicate the occurrenece of the tracking drift. For drift correction, we

investigate the application of object segmentation on the estimated bounding box to

re-locate it around the target object. Due to its ability to lead to a global near optimal

solution, we use the Graph Cut object segmentation method. We modify the Graph Cut

model to incorporate an automatic seed selection module based on interest points, in

addition to a template mask, to automatically initialize the segmentation across frames.

However, the integration of segmentation in the tracking loop has its computational

burden. In addition, the segmentation quality might be a�ected by tracking challenges,

such as motion blur and occlusion. Accordingly, object segmentation is applied only

when a drift is detected. Simulation results show that the proposed approach improves

the tracking quality of �ve recent trackers.

Researchers often use long and tedious trial and error approaches for determining the

best performing parameter con�guration of a video-processing algorithm, particularly

with the diverse nature of video sequences. However, such con�guration does not

guarantee the best performance. A little research attention has been given to study

the algorithm’s sensitivity to its parameters. Arti�cial immune system is an emergent

biologically motivated computing paradigm that has the ability to reach optimal or

near-optimal solutions through mutation and cloning. This work proposes the use of

arti�cial immune system for the selection of best performing parameters of two video

processing algorithms: support vector machines for object tracking and Graph Cut based

object segmentation.

An increasing number of trackers are being developed and when introducing a new

tracker, it is important to facilitate its evaluation and ranking in relation to others,

using easy to interpret performance measures. Recent studies have shown that some

measures are correlated and cannot re
ect the di�erent aspects of tracking performance

when used individually. In addition, they do not incorporate robust statistics to account

for the presence of outliers that might lead to insigni�cant results. This work proposes a

framework for e�ective scoring and ranking of di�erent trackers by using less correlated

quality metrics, coupled with a robust estimator against dispersion. In addition, a uni�ed

performance index is proposed to facilitate the evaluation process.

iv



ACKNOWLEDGMENTS

I wish to express my sincere gratitude and indebtedness to Dr. Maria A. Amer for

her supervision, guidance, and encouragement throughout this study. Her invaluable

suggestions and constructive criticism during the preparation of this thesis enabled me

to present the thesis in this form.

I would like also to thank my Vidpro group members and dear friends including but

not limited to, Julien Valognes, Prabhakaran Ravindran, and Saeid Vosoughi for their

support and encouragement during the course of this study.

v



This thesis is dedicated to my parents and my brothers who have supported me all the

way since the beginning of my studies.

Also, this thesis is dedicated to my outstanding wife and my children, who have been a

great source of motivation and inspiration.

Finally, this thesis is dedicated to all those who believe in the richness of learning.

vi



Contents

List of Figures xi

List of Tables xiv

Nomenclature xv

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.5 Thesis Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background 6

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Object Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.2 Classi�cation of Object Tracking Approaches . . . . . . . . . . . . 7

2.2.2.1 Fixed Appearance Modeling Based Tracking . . . . . . . 8

2.2.2.2 Adaptive Appearance Modeling (Learning) Based Tracking 9

2.2.3 Object Tracking System Components . . . . . . . . . . . . . . . . 11

2.2.3.1 Target Modeling (Prediction) Module . . . . . . . . . . . 12

2.2.3.2 Target Tracking Module . . . . . . . . . . . . . . . . . . 12

2.2.3.3 Detection Module . . . . . . . . . . . . . . . . . . . . . . 12

2.2.3.4 Feature Extraction Module . . . . . . . . . . . . . . . . 14

2.3 Common Tracking Performance Evaluation Measures . . . . . . . . . . . 15

2.4 Arti�cial Immune System . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Tracker-independent Drift Detection and Correction 21

3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

vii



3.2 List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4 Prior Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4.1 Segmentation-based Trackers . . . . . . . . . . . . . . . . . . . . . 24

3.4.2 Learning-based Trackers . . . . . . . . . . . . . . . . . . . . . . . 25

3.4.3 Trackers with Drift Detection and Correction . . . . . . . . . . . 27

3.4.4 Di�erences to Our Approach . . . . . . . . . . . . . . . . . . . . . 28

3.5 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5.1 Saliency-based Drift Detection . . . . . . . . . . . . . . . . . . . . 28

3.5.2 Drift Correction Using Seeded Segmentation . . . . . . . . . . . . 31

3.6 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.6.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.6.2 Objective Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.6.3 Subjective Results . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.6.4 Proposed vs. Segmentation-based Tracking Methods . . . . . . . 57

3.6.5 Computational Costs . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.6.6 Advantages and Limitations . . . . . . . . . . . . . . . . . . . . . 59

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4 Arti�cial Immune System Based Parameter Optimization of SVM in

Object Tracking 62

4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2 List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.4 Prior Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.5 Proposed AIS Approach for SVM Optimization . . . . . . . . . . . . . . 66

4.5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.5.2 Our Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.6.1 AIS Model Simulation . . . . . . . . . . . . . . . . . . . . . . . . 72

4.6.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.6.3 Objective and Subjective Tracking Improvement . . . . . . . . . . 76

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5 Arti�cial Immune System Based Parameter Optimization of Graph

Cut Segmentation 82

5.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2 List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

viii



5.4 Prior Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.5 Proposed AIS-based G-Cut Optimization . . . . . . . . . . . . . . . . . . 85

5.5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.5.2 Our Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.6.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.6.2 Objective and Subjective Results . . . . . . . . . . . . . . . . . . 89

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6 Robust Scoring and Ranking of Object Tracking Techniques 94

6.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.2 List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.4 Prior Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.4.1 Ranking Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.4.2 Related Performance Measures . . . . . . . . . . . . . . . . . . . 98

6.5 Proposed Performance Measures . . . . . . . . . . . . . . . . . . . . . . . 99

6.5.1 Proposed Uni�ed Performance Index . . . . . . . . . . . . . . . . 99

6.5.2 Proposed Recovery and Drift Measures . . . . . . . . . . . . . . . 100

6.6 Proposed Evaluation Framework . . . . . . . . . . . . . . . . . . . . . . . 101

6.6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.6.2 Scoring Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.6.3 Sequence-pooled Ranking Mechanism . . . . . . . . . . . . . . . . 103

6.7 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.7.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.7.2 Scoring and Ranking using AOR and FR . . . . . . . . . . . . . 105

6.7.3 IOF Ranking Results . . . . . . . . . . . . . . . . . . . . . . . . 106

6.7.4 Recovery and Drift Results . . . . . . . . . . . . . . . . . . . . . . 109

6.7.5 Stability of the Proposed Framework . . . . . . . . . . . . . . . . 111

6.7.6 Speed Ranking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7 Conclusion and Future Work 113

7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

References 116

ix



Appendix A Objectness-based Tracker Drift Detection 131

A.1 Introduction and Related Work . . . . . . . . . . . . . . . . . . . . . . . 131

A.2 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

A.3 Objective Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

A.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

A.5 Ground-Truth based Reference to Drift Detection . . . . . . . . . . . . . 139

Appendix B Framework for Parameter Weighting and Selection for Ob-

ject Tracking Algorithms 143

B.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

B.2 List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

B.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

B.4 Prior Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

B.5 Proposed Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

B.5.1 Parameter Weighting . . . . . . . . . . . . . . . . . . . . . . . . . 147

B.5.2 Con�guration Selection and Scoring . . . . . . . . . . . . . . . . . 148

B.6 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

B.6.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 150

B.6.2 Parameter Weighting . . . . . . . . . . . . . . . . . . . . . . . . . 151

B.6.3 Con�guration Scoring . . . . . . . . . . . . . . . . . . . . . . . . . 152

B.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

x



List of Figures

2.1 Learning-based object tracking system. . . . . . . . . . . . . . . . . . . . 10

2.2 Object tracking system components. . . . . . . . . . . . . . . . . . . . . 11

2.3 Clonal selection algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Non-Uniform mutation process of antibodies [1]. . . . . . . . . . . . . . . 20

3.1 Block diagram of the proposed drift detection and correction method. . . 29

3.2 Scale-variant versus scale-invariant example frames. . . . . . . . . . . . . 31

3.3 Automatic seed masks for segmentation. . . . . . . . . . . . . . . . . . . 32

3.4 Distance d versus the average intensity �o of AF region. . . . . . . . . . 33

3.5 Interest points �ltering process and segmentation output. . . . . . . . . . 34

3.6 Average precision plot using automatic drift detection and correction. . . 46

3.7 Average success plot using automatic drift detection and correction. . . . 46

3.8 Precision plot of all trackers over all test videos per challenge. . . . . . . 48

3.9 Success plot of all trackers over all test videos per challenge. . . . . . . . 50

3.10 AOR of base and modi�ed trackers over all sequences. . . . . . . . . . . . 50

3.11 CLE of base and modi�ed trackers over all sequences. . . . . . . . . . . . 51

3.12 FR of base and modi�ed trackers over all sequences. . . . . . . . . . . . . 51

3.13 Recovery-failure (drift) plot of base and modi�ed trackers. . . . . . . . . 52

3.14 Subjective results using the proposed drift detection and correction. . . . 55

3.15 Base tracker related limitations. . . . . . . . . . . . . . . . . . . . . . . . 60

4.1 Block diagram of the proposed AIS method for SVM optimization. . . . . 69

4.2 Functions for the evaluation of the AIS model. . . . . . . . . . . . . . . . 74

4.3 Convergence rate of Test function with di�erent AIS parameters. . . . . . 74

4.4 Search range of the CLONALG-based AIS model using Test function. . . 75

4.5 AOR plot of base and modi�ed STRUCK trackers over all test videos. . . 76

4.6 CLE plot of base and modi�ed STRUCK trackers over all test videos. . . 77

xi



4.7 FR plot of base and modi�ed STRUCK trackers over all test videos. . . 77

4.8 Precision plot of base and modi�ed STRUCK trackers over all test

sequences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.9 Success plot of base and modi�ed STRUCK trackers over all test sequences. 78

4.10 Subjective results of the proposed AIS method applied to STRUCK. . . . 79

5.1 Block diagram of the proposed AIS-based G-Cut optimization. . . . . . . 88

5.2 AIS selection of the best performing segmentation parameters. . . . . . . 90

5.3 Example of G-Cut-AIS-based segmentation parameters: input image and

seeds (left); segmentation using AIS selected parameters (middle); ground

truth (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.4 Precision plot of the default and AIS-based parameters of G-Cut

segmentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.5 Accuracy plot of the default and AIS-based parameters of G-Cut

segmentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.6 G-Cut segmentation samples using default vs. AIS parameters. . . . . . . 92

5.7 Tracking improvement (in %) of AIS-based vs. manual segmentation

parameters when using STRUCK [2] . . . . . . . . . . . . . . . . . . . . 92

5.8 Tracking improvement (in %) of AIS-based vs. manual segmentation

parameters when using STAPLE [3] . . . . . . . . . . . . . . . . . . . . . 93

6.1 The behavior of the proposed IOF performance index (left) versus CoTPS

measure (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.2 Block diagram of proposed scoring and ranking framework. . . . . . . . . 102

6.3 AOR vs FR as a reference measure to evaluate the proposed measures. . 105

6.4 IOF Rank-score plot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.5 Ranking using IOF index. . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.6 Recovery (R) vs. drift (D) plot. . . . . . . . . . . . . . . . . . . . . . . . 111

A.1 Block diagram of the proposed edge-based objectness for drift detection. 133

A.2 Candidate box of maximum area and maximum score using edge-based

objectness. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

A.3 AOR of base and modi�ed KCF tracker using objectness. . . . . . . . . . 136

A.4 CLE of base and modi�ed KCF tracker using objectness. . . . . . . . . . 136

A.5 FR of base and modi�ed KCF tracker using objectness. . . . . . . . . . . 137

A.6 AOR of base and modi�ed STAPLE tracker using objectness. . . . . . . 137

xii



A.7 CLE of base and modi�ed STAPLE tracker using objectness. . . . . . . . 138

A.8 FR of base and modi�ed STAPLE tracker using objectness. . . . . . . . . 138

A.9 Ground truth based drift detection. . . . . . . . . . . . . . . . . . . . . . 139

A.10 AOR plot of ground-truth based drift detection (KCF-GDD) versus drift

correction at each frame (KCF-N1) for KCF. . . . . . . . . . . . . . . . . 141

A.11 CLE plot of ground-truth based drift detection (KCF-GDD) versus drift

correction at each frame (KCF-N1) for KCF. . . . . . . . . . . . . . . . . 141

A.12 FR plot of ground-truth based drift detection (KCF-GDD) versus drift

correction at each frame (KCF-N1) for KCF. . . . . . . . . . . . . . . . . 142

B.1 Block diagram of the proposed parameter selection and weighting

framework. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

B.2 Precision and Success plots of default and proposed selected con�guration

of STAPLE tracker. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

B.3 AOR of default and best performing con�guration of STAPLE tracker. . 156

B.4 FR of default and best performing con�guration of STAPLE tracker. . . 156

xiii



List of Tables

3.1 The overlap ratio of base and modi�ed trackers per sequence. . . . . . . . 36

3.2 The center location error of base and modi�ed trackers per sequence. . . 38

3.3 The failure rate of base and modi�ed trackers per sequence. . . . . . . . 40

3.4 The number of drifts of base and modi�ed trackers per sequence. . . . . . 42

3.5 The number of recovery of base and modi�ed trackers per sequence. . . . 44

3.6 Average improvement of the proposed drift detection and correction method. 53

3.7 Comparison of proposed method vs. JOTS. . . . . . . . . . . . . . . . . 58

3.8 Frame rate of the proposed drift detection and correction method. . . . . 59

4.1 Tracking quality of base and modi�ed (AIS) STRUCK. . . . . . . . . . . 80

6.1 Scoring and ranking of the tested trackers based on AOR and FR

individually. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.2 IOF Scoring and ranking based on IOF index according to MAD measure.106

6.3 IOF Scoring and ranking of the tested trackers for individual test sequences.108

6.4 Average recovery-based ranking over all 100 videos. . . . . . . . . . . . . 110

6.5 Average drift-based ranking over all 100 videos. . . . . . . . . . . . . . . 110

6.6 pRD-based ranking over all 100 videos. . . . . . . . . . . . . . . . . . . . 110

A.1 Average improvement of the proposed objectness-based drift detection

and correction method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

B.1 Ranges and increments of the parameters of STRUCK, KCF, and

STAPLE trackers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

B.2 Generated parameters’ weights wk. . . . . . . . . . . . . . . . . . . . . . 152

B.3 Scoring of parameter sets of STRUCK. . . . . . . . . . . . . . . . . . . . 153

B.4 Scoring of parameter sets of STAPLE. . . . . . . . . . . . . . . . . . . . 154

B.5 Scoring of parameter sets of KCF. . . . . . . . . . . . . . . . . . . . . . . 157

xiv



Nomenclature

Acronyms

AIS Arti�cial Immune System

AOR Average Overlap Ratio

BB Bounding Box

CLE Center Location Error

CLONALG Clonal Selection Algorithm

CoTPS Combined Tracking Performance Score

FPS Frame Per Seconds

FR Failure Rate

G-Cut Graph Cut

MAD Median Absolute Deviation

MRF Markov Random Field

NCLE Normalized Center Location Error

SVM Support Vector Machine

xv



1

Chapter 1

Introduction

1.1 Motivation

In general, given the initialized location of an object in the �rst frame of a

video sequence, object tracking is meant to estimate the state of the target object

in subsequent frames. Interests in object tracking continue to increase widely with

the availability of high speed computing machines, high quality video cameras,

and the need for automated video analysis in many applications such as robotics,

video surveillance, and tra�c management. Despite the fact that much progress

has been made in recent years, developing a robust tracking algorithm is still a

challenging problem due to numerous uncontrolled factors that can be object-related

(appearance and scale change, deformation, fast motion, and motion blur), tracking

environment-related (non-stationary scenes, cluttered scenes, and illumination change),

or even tracking-system-related (real-time, automation, and low resolution constraints).

These challenges can negatively a�ect the tracking accuracy, and a drifting problem may

occur in which the tracker drifts away from the target object, or false detection may be

encountered [4{7].

To handle object appearance variations e�ectively, adaptive methods have been

proposed to update the representation of a target incrementally over time. Recent

powerful tracking algorithms [2, 8{13], are learning-based methods that can deal with

such appearance variations. However, the output of such tracking algorithms is limited



to a bounding box (BB) representation. This BB may not handle highly non-rigid

objects, or may not be centered correctly around the target object, leading to a tracking

drift. The investigation of suitable approaches of drift detection and correction is thus

necessary for enhanced object tracking.

A common problem in video processing algorithms, such as Graph Cut (G-Cut)

object segmentation or support vector machines (SVM) in object tracking, is the

parameter selection that signi�cantly a�ects the algorithm accuracy. Adopting

optimization techniques, such as using arti�cial immune system (AIS), for parameter

selection reduces the experimental work to spend for selecting the best parameters,

reduces the bias of human intervention, and leads to optimal or near-optimal parameters

that achieve better segmentation quality [14, 15].

1.2 Problem Statement

In spite of exhaustive research work, developing a robust object tracking algorithm is

still a challenging task for complex and dynamic scenes, due to the drastic appearance

changes caused by illumination changes, pose changes, and shape deformation. Two

main problems can be highlighted; the limitation of the tracking output of learning-based

object trackers to a BB, the center of which is considered as the estimated object location,

and the di�erent environmental challenges that result in tracking drift or failure. The

integration of recent powerful object segmentation into object tracking to relocate the

estimated output BB around the target object, when a drift is detected, may lead to

better tracking.

As tracking and segmentation algorithms incorporate numerous parameters, it

is important to study the in
uence of each parameter on the quality. Using AIS

optimization techniques for the adaptive parameter selection can be a solution.

Recent benchmarks for tracking evaluation and ranking do not include robust

statistical measures to account for the presence of outliers that might lead to insigni�cant

results. It is useful to present a framework for scoring and ranking of trackers using

e�ective quality metrics, coupled with a robust estimator against outliers. A single

2



(uni�ed) performance index, in addition to new performance metrics can facilitate the

ranking process.

1.3 Research Objectives

The �rst objective of this work is to investigate the e�ect of integrating

tracker-independent drift detection and object segmentation for drift correction, on the

overall accuracy of learning-based tracking algorithms.

The second objective is to investigate the use of AIS optimization for adaptive

parameter selection in the domains of object tracking and segmentation.

The third objective is to propose a framework for scoring and ranking of trackers,

using known quality metrics, coupled with a robust estimator against dispersion. The

investigation of new performance metrics that facilitate trackers’ evaluation is to be

investigated.

1.4 Summary of Contributions

The contributions of this thesis are:

1. A method for tracker-independent saliency-based drift detection where we use

the saliency features of the target object inside the estimated BB to indicate the

occurrence of tracking drift without prior information about the target model

(Chapter 3).

2. A method for tracker-independent drift detection using edge-based objectness

measure (Appendix A).

3. A method for segmentation-based drift correction where we use an automatic

seeded G-Cut segmentation and propose a two-layer seed selection method based

on SIFT points and foreground/background intensity relation (Chapter 3).

4. A method for adaptive selection of parameters of SVM using the AIS clonal

selection-based optimization for enhanced object tracking (Chapter 4).

3



5. A method for optimal selection of parameters of G-Cut segmentation using the

AIS clonal selection-based optimization (Chapter 5).

6. A framework for scoring and ranking of di�erent trackers using known quality

metrics, coupled with a robust estimator to account for the presence of outliers

(Chapter 6).

7. New tracking evaluation measures where we propose a uni�ed overlap-failure

performance index, recovery, drift, and pure recovery-to-drift measures to facilitate

trackers’ evaluation and ranking (Chapter 6).

8. A framework for the selection of the best performing con�guration (parameter set),

and weighting all parameters according to their in
uence on the tracking quality.

(Appendix B).

1.5 Thesis Outlines

Chapter 2 presents object tracking approaches. The principal components of an object

tracking system are brie
y described. Common tracking performance measures are

presented. Finally, arti�cial immune systems are presented.

Chapter 3 introduces the proposed tracker-independent drift detection method using

saliency features prior work. Automatic seed selection and segmentation for on demand

drift correction is then discussed. Objective and subjective experimental results of the

proposed method, applied to �ve state-of-the-art trackers on a publicly available data

set classi�ed into di�erent challenging attributes, are analyzed 1.

Chapter 4 introduces the use of arti�cial immune system optimization for object

tracking. A method for adaptive parameter selection of SVM for enhanced object

tracking is proposed. The objective and subjective experimental results of the proposed

approaches, applied to STRUCK tracker, are presented.

Chapter 5 introduces a method for the selection of near-optimal Graph Cut

segmentation parameters using arti�cial immune system, and the obtained results are

summarized.

1The author wishes to thank Prabhakaran Ravindran for his help in running simulations of JOTS
method.

4



Chapter 6 presents the proposed object tracking scoring and ranking framework, and

the corresponding ranking measures. The objective and subjective experimental results,

applied to ten state-of-the-art di�erent performing trackers on a publicly available data

set, are presented.

Chapter 7 concludes the thesis and poses possible avenues for future research work.

Appendix A presents a proposed tracker-independent drift detection method using

edge-based objectness. The objective experimental results of the proposed method

applied to di�erent trackers on a data set of various challenges show promising results.

Appendix B 2 presents a proposed framework for the selection, scoring, and weighting

of the parameters of the tracking algorithms. The objective experimental results of

the proposed framework applied to three di�erent performing tracking algorithms are

discussed.

Due to di�erent contributions in the thesis, the symbols of each contribution are

proprietary to each contributing chapter and we give a list of symbols at the start of

each chapter.

2The author wishes to acknowledge the partial contribution of Julien Valognes to Appendix B and
Chapter 6, as part of his "Concordia Undergraduate Student Research Award". Julien helped with
developing the methods in sections B.5.1, B.5.2, 6.6.2, and 6.6.3 as well as in running related simulations.

5



Chapter 2

Background

2.1 Overview

In this chapter, object tracking approaches are introduced and categorized from

appearance modeling and segmentation points of view as discussed in section 2.2.2.

Components of a generic object tracking system are brie
y described in section 2.2.3.

Common tracking performance measures are introduced in section 2.3. Arti�cial immune

system (AIS) algorithm, as a powerful and adaptive machine learning tool that can be

investigated to enhance the accuracy of visual object tracking, is introduced in section

2.4.

2.2 Object Tracking

2.2.1 Introduction

Visual object tracking, concerned with the problem of estimating the trajectory of

an object in the image plane, has many important applications. Such applications

include, but not limited to automated surveillance, tra�c analysis, video indexing,

human computer interaction, as well as autonomous navigation. Interests in object

tracking increased widely with the availability of ultra-high speed computing machines,

super-high quality video cameras, and the need for automated video analysis.

Automated analysis of videos is a sophisticated operation that starts by detection

6



of object(s) of interest, then tracking the trajectory of such object(s) across frames,

and ending by trajectory analysis to understand the behavior of objects and their

corresponding interactions. Even though tracking is considered an important part of

the above process, it is the most error prone component.

Di�culties in object tracking arise from a variety of uncontrolled factors in the

tracking environment that probably appear in the form of information loss. Loss

of information may be due to scene projection, noise e�ect, complex object motion,

camera motion, deformable object shapes, mutable object appearance, illumination

changes, occlusions, and real-time constraints which impose extra level of di�culty on

the tracking systems. While recent researches have introduced a signi�cant progress in

the domain-speci�c visual tracking, developing tracking systems that can bene�t the

cognitive abilities of human beings is still a challenging research problem. Typically,

most existing tracking systems impose various constraints in order to simplify the

tracking problem and hence, such tracking systems cannot adaptively �t in various

environments. Accurate tracking requires e�ective modeling and representation of the

tracking environment.

Numerous approaches for object tracking have been proposed. They primarily di�er

from each other based on the way they approach the following questions: Which object

representation is suitable for tracking?, Which image features should be used?, and

How should the motion, appearance, and shape of the object be modeled? Answers to

these questions depend on the context/environment in which the tracking is performed

and the end use for which the tracking information is being sought. Several tracking

methods, that attempt to answer these questions for a variety of scenarios, have been

published [4, 5, 16].

2.2.2 Classi�cation of Object Tracking Approaches

Visual object tracking algorithms can be categorized according to di�erent points of

view. Recent studies adopt the classi�cation of object tracking approaches into �xed

and adaptive appearance modeling based methods [6]. Fixed appearance modeling

based tracking methods can be sub-categorized into non-segmentation-based and

7



segmentation-based methods. Learning-based tracking methods [6, 8{11, 13, 17, 18] do

not incorporate segmentation in their tracking framework and hence, can be categorized

as non-segmentation-based methods.

2.2.2.1 Fixed Appearance Modeling Based Tracking

Tracking methods with �xed models of a target prior to the start of tracking task

use di�erent methods to represent the appearance of objects such as templates and

density-based approaches [4]. Template matching is the most commonly used approach

in the case of single object tracking due to its simplicity. Templates, however, only

encode the object appearance generated from a single view. Parametric density has

been used for object representation in many tracking algorithms. Using probability

density, object appearance can be estimated either parametrically, such as mixture

of Gaussian (MoG), or non-parametrically, such as histograms. Mean-shift tracking

approach uses a mixture of both spatial information and color histogram for object

representation [19]. An obvious advantage of the Mean-shift tracker over the template

matching is the elimination of an exhaustive search and accordingly, it has a good

contribution for real-time applications. However, such tracking methods may fail as a

result of the inevitable appearance variations that can be from the object itself such as

non-rigid structure, shape deformation, posture changes and abrupt motion, or from the

surrounding environment such as illumination variation, camera motion, camera scale

and occlusion [6].

In general, object tracking algorithms start by detection of object of interest and then,

�nding the object correspondence across frames. In [4], point tracking algorithms that

use probabilistic approach [20,21] to solve the correspondence problem, represent objects

as points, and the association of such points is based on the previous object state which

can include object position and motion. These approaches do not include a segmentation

step in the tracking algorithm itself and can be categorized as segmentation-free

methods. In this work, we will categorize tracking algorithms that do not incorporate

a segmentation step in the tracking loop as non-segmentation-based tracking [22]. The

accuracy of such approaches is coupled with the assumptions and constraints followed

8



by the tracking algorithm.

While object segmentation is meant to partition image pixels into meaningful regions

based on certain characteristics such as color or texture in a spatial domain, object

tracking aims to partition such pixels based on consistence properties in a temporal

domain and hence, the two tasks facilitate each other and are found to be closely related

and both can be greatly improved if they are solved jointly. Accordingly, a new class of

object tracking approaches, that combines tracking and segmentation in an integrated

framework, is found to improve the performance of tracking systems. While solving the

segmentation problem helps precluding the tracking failures, tracking at the same time

provides an important input that can guide segmentation and enhance its performance.

Integration of segmentation and tracking approaches is found to enhance the target

localization performance, leading to a reduced tracking drift [23{27]. Such approaches

are also found to use probabilistic methods or kernel based tracking methods integrated

with a proper segmentation technique. However, many of such approaches impose few

assumptions about object contours that must be given in the �rst frame. Such methods

focus on explicitly integrating segmentation methods, such as graph-cuts and active

contours, into object tracking in each frame to enhance the tracking accuracy [28{30]. In

such approaches, segmentation algorithms are used to support the tracking rather than

separating the object accurately from its surrounding. These approaches will be referred

to as segmentation-based tracking approaches. These object tracking approaches apply

�xed object models, and are more likely to fail as a result of inevitable appearance

changes.

2.2.2.2 Adaptive Appearance Modeling (Learning) Based Tracking

To handle the appearance variations e�ectively, adaptive methods have been

proposed to update (learn) the representation of a target incrementally over time.

Recent tracking algorithms [6, 8{11, 13, 17, 18], are learning-based methods that can

deal with such appearance variations, thus achieving more accurate tracking compared

with �xed model-based ones. An appearance model is used to represent the object

of interest (target) while the motion model predicts the likely states of target over

9



time. In general, a learning-based object tracking system interconnects four main

modules: object initialization, appearance modeling, motion estimation, and object

localization as illustrated in Figure 2.1, where F1 represents the �rst frame in a given

video sequence and N represents the number of frames. The tracking process starts

by object initialization that can be manual (user annotates object location using BB)

or automatic through detection mechanism. Once the object is initialized, several

factors need to be considered for a robust appearance modeling. First, the object of

interest has to be e�ciently represented, which concentrates on how to robustly describe

the spatio-temporal characteristics of object appearance. Visual object representation

can be either local (encodes local statistical information such as interest points) or

global (re
ects the global statistical characteristics such as color histogram). For robust

tracking, adaptive methods have been proposed to update the representation of a target

using statistical learning techniques.

Figure 2.1: Learning-based object tracking system.

From point of view of statistical appearance modeling, recent tracking algorithms use

an updating scheme to update the target model and hence, referred to as learning-based

tracking algorithms. Such schemes can be generative, discriminative, or hybrid methods.

For generative methods [8], tracking is formulated as searching for the region of the

highest similarity with the object in neighborhood. For discriminative methods [17,31],

tracking is formulated as a classi�cation problem that aims to discriminate the object

of interest from its background. Discriminative classi�ers often outperform generative

models given enough training data, while generative methods often have better

generalization for small size of training data. Discriminative learning is also refereed

10



to as Tracking-By-Detection. Recently, hybrid discriminative generative methods have

opened a promising direction to bene�t from both types of methods [9].

After appearance modeling, motion estimation is formulated as a dynamic state

estimation problem. The task of motion estimation is usually completed by utilizing a

prediction module using Kalman or particle �ltering [4, 32]. Kalman �lter simply �nds

the exact solution, given a simple model under assumption that the state space model is

linear and the noise follows the statistical Gaussian distribution. Such limitations can be

overcome by using Particle �lters. Finally, a greedy search based on motion estimation

can be used for object localization and the target model is then updated.

2.2.3 Object Tracking System Components

Object tracking is a sophisticated process concerned with the estimation of target(s)

trajectory. An object tracking system comprises several complementary interconnected

modules as illustrated in Figure 2.2. It starts by initializing the object(s) in the �rst

frame F1 in the form of a bounding box B1. Target modeling is then adopted for object

state estimation through prediction. The target tracking-by-learning (learning module)

is then employed to update the adaptive model over time in order to discriminate the

object of interest at each frame Ft in the form of Bt. During tracking, the object

detection and feature extraction modules provide the required information to improve

the tracking process.

Figure 2.2: Object tracking system components.

11



2.2.3.1 Target Modeling (Prediction) Module

In addition to observed measurements, other information can contribute to the target

state estimation. Some information may result from motion constraints of the moving

object and its interaction with the environment [13]. Motion estimation is formulated as

a dynamic state estimation problem and is usually adopted by utilizing a prediction

module using Kalman or particle �ltering [33, 34]. Kalman �lter simply �nds an

exact solution, under assumption that the state space model is linear and the noise

is statistically Gaussian. On the contrary, particle �ltering can deal with nonlinear

models and di�erent forms of noise. Particle �ltering simulates the state space of the

system using certain number of random particles, each of which is weighted through

approximation of the probability density function (PDF).

2.2.3.2 Target Tracking Module

Given the object regions in the image, it is then the trackers task to perform object

correspondence across frames to generate the corresponding trajectories. Recently,

object tracking is posed as a learning-based problem, where adaptive appearance

models are adopted for target modeling. Such learning-based tracking can handle

drastic appearance changes caused by illumination change, camera motion, pose change,

and object shape deformation. In learning-based approaches, the tracking is posed

as a classi�cation problem to discriminate between the object and its surrounding.

The learning strategy is embedded in the tracking framework to update the target

appearance model adaptively in response to appearance variations. The essential phase

of the learning module is the update phase, in which the close neighborhood of the

current estimated object location is used to sample positive training examples, distant

surrounding of such location is used to sample negative examples, and both are used to

update the classi�er over time during tracking.

2.2.3.3 Detection Module

The object detection mechanism, needed by any tracking system, is of utmost importance

and can a�ect the performance of tracking results, especially for objects that employ a

12



small motion across frames. A common approach for object detection is to make use of

the temporal information computed across frames to detect the change in object location

relative to its surroundings. Such temporal information is usually in the form of frame

di�erencing, which highlights changing regions in consecutive frames. Object detection

can be performed in a variety of ways. The most commonly known approaches for object

detection are Interest points, Background modeling, and object segmentation [4].

Common detectors follow the sliding window paradigm [35, 36]. A classi�er is �rst

trained to distinguish windows containing instances of a given class from all other

windows. The classi�er is then used to score every window in a test image. Local maxima

of the score localize instances of the class. However, this approach is class speci�c, and is

not appropriate for automated applications such as object tracking that track di�erent

types of objects. In addition, it is computationally intensive. Objectness measures

attempt to generate a small set (few hundreds or thousands) of object regions that cover

every object in the input image, regardless of the speci�c categories of those objects

(generic over classes). Compared with traditional sliding window approach, estimating

object proposals in a pre-processing stage has the following advantages: 1) better accords

with our human visual system behavior which perceives objects before identifying them;

2) speeds up the computation by reducing the search locations, especially when the

number of object classes that need to be detected is high [37].

Recently, objectness measures [38] and saliency models [39] have occupied major

research areas in object detection. Objectness approaches are related to several research

strands such as interest point detectors (IPS) and saliency models (class-speci�c and

class-generic). IPS respond to local textured image neighborhoods, and focus on

individual points instead of the entire object(s) in the image scene [40]. Class-speci�c

saliency models de�ne, as a salient region, the visual characteristics that best distinguish

a speci�c object class, such as vehicle or human, from others [41]. Class-generic saliency

models [42{45] measure the saliency of pixels as the degree of uniqueness of their

neighborhood relative to the surrounding region.

13



2.2.3.4 Feature Extraction Module

Feature extraction and description is an essential step in the tracking pipeline and allows

us to highlight information of interest to represent a target. Extracted features can be

grouped into three main classes that are low-level (color and motion), mid-level (edges,

interest points, and regions), and high-level (object models) [4]. The most widely used

features for object description include color, edge, optical 
ow, and texture. Color is

one of the most widely used features for tracking, however, color spaces are sensitive

to noise and illumination changes [46]. Edges are commonly used as a representative

feature for applications of boundary tracking [47]. An important property of edges is

that they are less sensitive to illumination changes compared to color features. Corner is

closely related to algorithms that use edge analysis to �nd rapid changes in direction [48].

The terms corners and interest points are used interchangeably and refer to point-like

features in an image, which have a local two dimensional structure. Blob provides

a complementary description of image structures in terms of silhouettes [49]. Blob

may sometimes also be regarded as interest point descriptors as they often contain

point structures. However, Blob detectors can detect too smoothed image areas that

cannot be detected by a corner detector. Optical 
ow is commonly used as a feature

in motion-based segmentation and tracking applications [50]. Optical 
ow is a dense

�eld of displacement vectors that de�nes the translation of each pixel in a region under

constant intensity assumption constraint. Texture is a measure of the intensity variation

of a surface which quanti�es properties such as smoothness and regularity. Compared

to color and edges, texture requires a processing step to generate the descriptors [49].

Interest-point detectors such as Scale-invariant Feature Transform (SIFT) [51], speeded

up robust features (SURF) [52], oriented FAST and rotated BRIEF (ORB) [53] aim at

selecting highly distinctive local image features that can be accurately localized across

multiple image frames under pose and illumination variation.

14



2.3 Common Tracking Performance Evaluation

Measures

Several performance metrics of the tracking algorithms use empirical discrepancy

methods [54] that compare o�-line ground-truth data with the estimated trajectories.

Among such metrics, the average overlap ratio (accuracy), center location error,

normalized center location error, failure rate (robustness), or derivatives thereof, such

as success and precision plots are commonly used [55].

� The average overlap ratio (AOR) measures the overlap ratio between the estimated

BB predicted from the tracker (Bt) and the annotated BB (Bg
t ) according to

AOR =
Bt \ Bg

t

Bt [ Bg
t

.

� The center location error (CLE) is a widely used metric that computes the average

Euclidean distance between the centers ĉe and ĉg of the estimated Bt and the

annotated Bg
t . However, when the tracker loses the target, the output location

might be random and thus the measure does not re
ect the actual tracking quality.

The normalized center location error (NCLE) computes the normalized Euclidean

distance between the centers ĉe and ĉg of the estimated Bt and the annotated Bg
t

with respect to the ground truth BB dimensions.

� The failure rate (FR) is the percentage of the number of failures per sequence

based on the overlap between the Bt and Bg
t according to FR =

NZ

NF

where NZ is

the number of frames where AOR = 0 and NF is the total number of frames per

sequence.

� The success plot is a widely used metric for the evaluation of di�erent tracking

algorithms [56, 57]. It represents the percentage of frames for which the overlap

measure exceeds a certain threshold, with respect to di�erent thresholds.

� The precision plot is commonly used to measure the percentage of frames in which

the estimated locations are within a certain threshold distance of the ground-truth

15



positions. Such plot is measured with respect to di�erent thresholds in a speci�c

range.

2.4 Arti�cial Immune System

Arti�cial Immune System (AIS) is an emergent biologically motivated computing

paradigm. Its main concept is the extraction of principles from the natural immune

system (NIS) in order to design alternative computational tools for complex problem

solving. The main role of the immune system is to recognize and discriminate an

organism from foreign elements. The capability to recognize and eliminate speci�c

(non-self) patterns serves as a good source of inspiration to develop novel computational

mechanisms for machine learning and pattern recognition [58, 59]. AIS algorithms are

considered highly robust, adaptive, self-organized, and inherently parallel structured

[60]. They have the ability to escape the local optimum region through mutation, and

strong local search capability through cloning. They also add diversi�cation by replacing

the worst performing individuals in the population. Several AIS techniques have been

developed for optimization and machine learning problems, each of which mimics a

certain principal in the NIS. Among such techniques, the clonal selection algorithm

(CLONALG) [59] is a widely employed AIS approach. In optimization problems,

CLONALG learns to recognize patterns through an evolutionary-like procedure and

is capable of solving complex engineering tasks, such as multi-modal and combinatorial

optimization [59]. CLONALG algorithm is used in diverse applications including image

classi�cation [15, 61] and segmentation [62, 63]. A�nity proportional reproduction and

mutation are two important features of the CLONALG algorithm.

In AIS terminology, the optimization problem to be solved is the antigene, generated

solutions are the antibodies, �tness value (objective function evaluation) is the a�nity,

cloning is the reproduction of solutions, mutation is the random modi�cation of solutions,

and receptor editing is the diversi�cation of solutions. For CLONALG-based AIS [1], a

population of antibodies (solutions) ab is randomly generated of certain size PS as

16



PS = n � Nd = PM + PR; (2.1)

where PS is the size of the population, n is a small number, Nd is the total number

of design variables, PM is the number of best candidate solutions, and PR is the

number of candidate solutions to be replaced by randomly created solutions. Each

antibody represents a combination of alternatives of all design variables in the form of

chromosomal representation. The antibodies are sorted according to their a�nity into

either non-dominated (superior among all antibodies) or dominated. The dominance

is checked and the best PM antibodies are selected which go through a cloning process

that forms the local search tool of the algorithm. The number of clones Ncln to all the

antibodies is selected as

Ncln = nc � PS; (2.2)

where nc is a small number. The antibodies with the highest a�nity are subjected

to higher clones, so they are more likely to be selected as the best solutions in the

next generations. Then a subset of the cloned antibodies undergoes hyper-mutation

and diversi�cation operations that form the basis of the global search mechanism of the

algorithm. To perform the mutation process, the antibodies are encoded into binary

strings and the mutation rate is kept inversely proportional to antigene a�nity. A

percentage of the worst members of the previous population of antibodies is replaced with

some randomly generated new solutions which will add diversity to the population. The

cloning and mutation processes increase the tendency to achieve the optimal solution.

The memory (archive) of size AS is utilized to store the best candidate antibodies among

generations and is de�ned as

AS > divk � (div � 1)k + 2k; (2.3)

where div > 2k, is the number of divisions used to identify the crowdedness of the

17



solutions and k is the number of objectives in the optimizatiion problem. When copying

the best antibodies to the archive, if the archive is not full, all the non-dominated

antibodies are allowed to enter the archive. If the archive is full, the best antibodies which

belong to the lowest crowded region are allowed to enter the archive, and spontaneously

make random elimination of the antibodies which belong to the most crowded regions

with the same rate of the newly introduced antibodies. The length le of the encoded

binary string for each antibody is calculated as in

2le > Ub; (2.4)

where Ub is the upper boundary of the corresponding design variable.

Figure 2.3 illustrates the detailed 
owchart of the clonal selection algorithm, which

randomly generates PS solutions of the optimization problem. The best antibodies

according to a pre-de�ned size go through cloning and mutation process to construct

new candidate solutions. These solutions are evaluated and a percentage of the best

solutions PM is added to the population. Further, a percentage of worst PR antibodies

are discarded and replaced with new randomly created solutions. Note that symbols

in Figure 2.3 represent the number of solutions. We aim to show that the number

of solutions is the same and the candidate solutions may be changed to �nd the near

optimal ones. In the 
owchart, we add the non-best solutions, fraction of the best

solutions (where we applied clonning and hyper-mutations), and fraction of the rest of

the best solutions to form the solutions in the current iteration.

The CLONALG undergoes four steps to reach the �nal near optimal solution [64]:

� generation of random population which is a pool of antibodies or immune cells,

� proliferation of best antibodies which is simply performed through cloning process,

� hyper-mutation of clones (blind variation) to maintain diversity by applying

random genetic changes, and

� a�nity of antigene antibody interaction through the evaluation of the objective

function and elimination of low a�nity antibodies.

18



Figure 2.3: Clonal selection algorithm.

Consequently, the best antibody or group of design variables which achieve the best

objective function value will continue for more processes in the algorithm and the

rest with low a�nity will be removed. The CLONALG possesses the following three

techniques to maintain diversity that improves the ability to �nd a solution closer or at

the global optimal, preventing from stuck into local minima [1, 65]:

� hyper-mutation,

� receptor editing, which is called non-uniform mutation, and

� a fraction of new antibodies are added to the generated solutions.

19



The diversity maintained by the non-uniform mutation helps the antibody-antigene

a�nity to escape from local minima in the a�nity landscape as shown in Figure 2.4. As

illustrated, the uniform mutation allows an antibody A to search small local searches

of antibodies with higher a�nities (A1), because low a�nities are eliminated, while

non-uniform mutation allows large search area steps, where the a�nity might be lower

(an antibody A to an antibody B) or higher (A to C), in which mutation will lead to

reach a solution near to the global optimum.

Figure 2.4: Non-Uniform mutation process of antibodies [1].

2.5 Summary

In this chapter, object tracking approaches are presented, with a focus on the adaptive

appearance modeling-based approaches. The principal components of object tracking

systems are introduced. Common performance measures are then introduced. The

CLONALG arti�cial immune system algorithm is then presented.

20



21

Chapter 3

Tracker-independent Drift Detection

and Correction

3.1 Abstract

Accurate object tracking is still a challenging problem due to numerous factors, that may

cause the tracker to drift away from the target object. Some trackers use segmentation

to enhance the tracking quality. Recent learning-based trackers perform much better

than segmentation-based ones. However, their output is a bounding box that may

not well discriminate foreground and background and may not be centered correctly

around the target object. This chapter proposes a method that detects drift of a tracker,

using saliency features of the target objects. If the tracker tends to drift or shows

inaccuracies, we propose a method that applies automatic seeded object segmentation

on the estimated tracking output to correct the drift. Such segmentation is meant

to re-locate the bounding box around the target object. As seeds for segmentation,

we propose to use SIFT interest points conditioned they are non-background pixels.

Results on a publicly available benchmark of 100 sequences that cover various tracking

challenges show the ability of the proposed method to improve the tracking quality of

�ve recent, and di�erent performing, trackers. Simulation also show that the proposed

method outperforms segmentation-based trackers.



3.2 List of Symbols

3.3 Introduction

Object tracking is a demanding application. Given the initial location of a target in the

�rst frame, it estimates the states of the target in subsequent frames. Despite the fact

that much progress has been made in recent years, developing a robust (no-drift) tracking

algorithm is still a challenging problem due to numerous uncontrolled factors. Such

factors can be object-related (appearance and scale change, deformation, fast motion,

motion blur, or occlusion), environment-related (non-stationary scenes, cluttered

background, or illumination changes), system-related (real-time and automation

constraints), or combinations thereof [4]. The above-mentioned factors may cause the

tracker to drift away from the target object [4]. Drift detection is crucial, as it allows

the tracking algorithm to start a recovery (drift correction) process in order to maximize

the tracking accuracy. Drift detection can be based either on prior information about

22



the target object and tracking environment [66, 67], or on features of the target object

such as visual saliency.

This chapter �rst proposes a method for drift detection using saliency features.

Visual saliency is the perceptual quality that makes an object stands out relative to its

surrounding and thus captures attention. Detection of salient regions of an image has

diverse applications, including object detection and segmentation [68{70], recognition

[71], and image retrieval [72]. Saliency is also used as cue to measure how likely an image

window contains an object [38]. Using saliency features for drift detection has several

advantages. First, no prior information is needed. Second, the saliency detection process

is not computationally expensive. Finally, one can still get the saliency information even

under challenging conditions such as occlusion and illumination variations [73].

Object segmentation can be used to improve the accuracy of object tracking [74].

Segmentation-based tracking approaches provide segmentation input to the tracking

algorithm in a closed loop form, for successful tracking [23{27]. However, such

approaches are not competitive in accuracy with learning-based tracking approaches

such as [2, 10{13]. On the other side, the output of learning-based trackers is, limited

to a bounding box (BB). Such BB may not accurately discriminate foreground and

background, handle non-rigid objects, or be centered accurately around the target

object, which a�ects the accuracy of the overall tracking process. This chapter

thus proposes drift correction by applying automatic seeded object segmentation

on the tracker’s output BB for enhanced tracking quality through drift reduction.

Applying object segmentation on each output BB of the tracker is assumed to provide

more accurate BB location with respect to the target object. However, running the

segmentation each frame has two main drawbacks: �rst, it is computationally intensive;

second, segmentation result may become inaccurate under video challenges such as

motion blur or occlusion. Accordingly, we propose to apply object segmentation only

when a tracking drift is detected.

In the rest of the chapter, section 3.4 presents prior work, and its relation to the

proposed approach, which is introduced in section 3.5; section 3.6 presents the analysis

23



and discussion of the obtained results; and section 3.7 concludes the work and proposes

future work.

3.4 Prior Work

Various approaches have been used for enhancing object tracking quality such

as integrating segmentation and tracking in a closed loop as well as template

matching. Object tracking approaches can be divided into those explicitly using object

segmentation [23{27], and those not making explicit use of it, such as learning-based

tracking methods [2,10{13]. In the following, we review both categories and also methods

that explicitly handle drift detection and correction.

3.4.1 Segmentation-based Trackers

Segmentation-based tracking approaches use segmentation to initialize the tracking per

frame in a closed loop form. In [23], a �ne Random-Walker (R-Walk) segmentation of an

object at any frame is used to initialize the tracking for the next frame. In [24], a closed

loop interaction between EM-like color-histogram tracking and R-Walk segmentation has

enhanced the accuracy of object localization. The spatial properties and appearance of

segmented objects are exploited to initialize the tracking algorithm in the next step. In

[25], G-Cut segmentation is applied to mean-shift tracking in a closed loop. Integrating

G-Cut within the optical 
ow tracker in [26] showed the ability to track articulated

objects under challenging conditions. These methods require user input at the �rst

frame.

In [74], Wen et al. presented a joint tracking and segmentation (JOTS) algorithm

which integrates multi-part tracking and segmentation into a uni�ed energy optimization

framework. The multi-part tracking and segmentation are carried out iteratively to

minimize an objective function using a RANSAC-style approach. JOTS uses the SLIC

super pixel for multi-part segmentation and the segmentation is used to initialize the

tracking at next incoming frame. In such approaches, the segmentation is crucial

to initialize the tracking algorithm at each frame for successful tracking. However,

24



running segmentation at each frame has two main drawbacks: �rst, it is computationally

intensive; second, segmentation may become inaccurate under video challenges such as

motion blur which may mislead the tracking process.

In the above methods, seeds through interactive user input are required. Interactive

seeded segmentation has appealing results [75{78] which require input seeds to represent

both object and background through user interaction. However, it is impractical for

automated tracking applications. [79] presented a method of object recognition and

segmentation using Scale-Invariant Feature Transform (SIFT) and G-Cut. However,

this method assumes that the object models, used for �ltering of the interest points,

are pre-selected, which is not always available. In [80], J. Shan et al., presented a new

automatic seed point selecting method for region growing algorithm for breast lesion’s

images. One of the limitations of this method is that results are a�ected by shadow

with similar intensity of the lesion region, which is a case that can commonly occur in

tracking environment. [81] used the initial contour (not seed points) close to the object

boundary to initialize the active contour segmentation. The initial contour of the level set

segmentation is a closed curve. Therefore, the convex-hull polygon is chosen to embody

the salient object points. However, the active contour segmentation is computationally

intensive. In [82], Yang et al. presented an automatic color image segmentation using

G-Cut and color SIFT (CSIFT) features. They assume that pre-captured models of the

colored target object are available.

3.4.2 Learning-based Trackers

The last few years have witnessed the emergence of several learning-based high

performing trackers [2,3,8{11,13,18,83{85]. STRUCK tracker [2] is an adaptive tracker

based on kernelized structured output prediction using support vector machine, which

is learned incrementally over time. Sequential minimal optimization (SMO) is adopted

to �nd the optimal support vectors from samples around estimated object location to

update the classi�er for target prediction. ASLA tracker [8] uses a structural local

sparse appearance model that exploits both partial and spatial information from sampled

candidate patches around estimated object location. A dictionary learning based on a

25



structured sparse representation is combined with robust sparse coding in which the

learned classi�er is employed to separate the object from background. SCM tracker [9]

uses a collaborative model with an updating scheme that considers both the latest

observations and the original template, thereby handles appearance changes e�ectively.

KCF tracker [10] is a Kernelized Correlation Filter operating on simple HOG features

that performs training and detection to discriminate an object appearance from its

surrounding. SAMF tracker [11] is a correlation �lter (CF) based tracker that uses a

scale adaptive scheme to tackle the problem of the �xed template size in the CF. LOT

tracker [12] automatically estimates and adapts, on-line, to the rigidity of the tracked

object through a probabilistic model to handle appearance variations over time. DSST

tracker [13] extends the Minimum Output Sum of Squared Errors tracker [86] with robust

scale estimation. In addition, DSST learns a one-dimensional discriminative scale �lter

to estimate target size. STAPLE tracker [3] combines two image patch representations

to learn a model that is inherently robust to both color changes and deformations. Two

independent ridge regression problems are solved, exploiting the inherent structure of

each representation to maintain real-time performance. STAPLE combines the scores

of template and histogram models in a dense translation search, that are learned

independently, enabling greater accuracy. CCOT [84] introduced a formulation for

training continuous convolution �lters. It employs an implicit interpolation model to

pose the learning problem in the continuous spatial domain which enables the e�cient

integration of multi-resolution deep feature maps. T-CNN [83] presented an online

visual tracking algorithm by managing multiple appearance models in a tree structure.

Such algorithm employs Convolutional Neural Networks (CNNs) to represent target

appearances. It is convenient to handle multi-modality in appearances and preserve

model reliability through smooth updates along tree paths.

Deep learning is one of the most successful research directions in machine learning

and computer vision. In object tracking, it detects candidate targets in consecutive

frames in which deep learning is used to recognize the object of interest among such

candidates. The power of deep learning appears in its ability for automatic feature

expression. Through a multi-layered learning architecture, the deep networks can achieve

26



both high dimensional and abstraction level with obvious distinction. One of the most

popular deep-learning architectures is the convolution neural network (CNN) [87]. Due

to its superiority among other architectures, CNN becomes the mainstream model in

visual tracking. Generally, an o�-line trained large-scale CNN is adopted for both

classi�cation and tracking. The common approaches of CNN-based tracking are both

fully CNN (FCNT) [85] and multi-domain CNN (MD-Net) [18]. FCNT constructs a

feature selection network in addition to prediction networks. In addition, such networks

are found to use irreverent image data to reduce the training demand, which causes

deviation from tracking to some extent [87]. In the pre-training phase, the object of

certain class in one video can be a background in another video. As a result MD-Net

de�nes a domain to be a set of videos that contain same kind of objects and proposes

to use a multi-domain structure to distinguish between the object and background in

each domain independently. Deep learning approaches have some limitations. First,

the pre-training is ine�cient for on-line training that a�ects the tracking performance.

Second, it incorporates a large number of parameters that are not shared among di�erent

layers. Third, MD-Net does not fully utilize video information in temporal domain.

Recent network models, such as recurrent neural networks, are being discovered and

showed to outperform the FCNT and MD-Net.

Learning-based trackers output a BB that is not adaptive to object boundaries and

shape, specially when the target object undergoes drastic appearance changes. Also once

the tracker starts drifting, the location and overlap error accumulate quickly, distorting

object model recursively and eventually leading up to a total failure.

3.4.3 Trackers with Drift Detection and Correction

Drift detection allows the tracking algorithm to start a drift correction (recovery)

process. To detect drift from the target object, object detection methods can be used.

State-of-the-art object detectors follow the sliding window paradigm [35,36]; they classify

�rst windows containing instances of a given class. The classi�er is then used to score

every window in a test image in which a local maximum of the score localizes instances

of such class. After drift detection, a recovery process is important to correct the

27



drift. In [67], Schreiber proposed a modi�ed Lucas-Kanade template matching with

drift correction, in which an object is tracked by extracting a template in the �rst frame

and then �nding the region which matches the template as closely as possible in the

remaining frames. The underlying assumption is that the object appearance remains

the same. In [66] the current estimated template is updated using naive algorithm and

then, aligned with the retained �rst frame template to give the �nal update. Such drift

correcting algorithm is still sensitive to variations in the object appearance relative to

the �rst template.

3.4.4 Di�erences to Our Approach

Our proposed method 1) is tracker independent, and can be applied to any tracking

algorithm; 2) requires no prior information about the target object for automatic drift

detection; 3) uses automatic segmentation with robust seed selection through both SIFT

and intensity features to �lter out seeds related to the background regions; and 4)

outputs a BB more adaptive to object boundaries and shape. Our method di�ers from

segmentation-based tracking, as it applies segmentation only when a drift is detected

and hence, it can achieve both better quality as well as higher frame rate.

3.5 Proposed Method

The proposed method comprises two main components as shown in Figure 3.1: drift

detection using saliency features and drift correction using seeded segmentation. At

current frame Ft, given the estimated tracking output BB from previous frame Ft�1, an

object tracker estimates the BB (Bt) around the target. If a drift is detected, the drift

correction relocates the BB around the target through automatic seeded segmentation.

3.5.1 Saliency-based Drift Detection

Saliency object detection, sometimes called salient segmentation, is interpreted in

computer vision as the process that incorporates detection of the most salient region(s)

28



Figure 3.1: Block diagram of the proposed drift detection and correction method.

in an image and then segmenting the boundary of such region(s). For saliency of a

region, a high contrast to its surrounding regions is usually stronger evidence than that

of far-away regions. Generally, an object is more likely to be salient than a region on the

background, as image background is usually more structured and homogeneous (thus

less salient) than objects [88].

While most of saliency models [42, 43, 45] employ local contrast, we calculate

the saliency map more robustly [44] using global contrast di�erences and spatial

coherence. However, directly introducing the spatial relation among individual pixels

is computationally expensive and thus, we partition the BB Bt into K regions (e.g.,

using [89]) and calculate the saliency sk of each region rk as a weighted sum of

corresponding regions’ contrast according to the spatial distance among them. For this,

we �rst �nd the histogram of each region rk and then calculate the saliency sk of rk as

sk =
X

(i 6=k)

ni � Dlab(rk; ri) � e�E(rk;ri)=�2
s ; (3.1)

29



where ni is the number of pixels inside region ri and Dlab(rk; ri) is the color distance

between regions rk and ri in LAB color space, E(rk; ri) is the Euclidean spatial distance

between centers of rk and ri, and �s controls the strength of spatial weighting. �s =
PN

j=1 dpj

N
is the average of di�erences between pixels pairs of the frame Ft, where dpj

is the average of absolute intensity di�erences between pixel pj and its four neighbors

and N is the number of pixels in Ft. We calculate the number of regions K using the

super-pixel segmentation, which groups pixels of Bt into regions with similar values.

With fskg, each pixel pl of Bt has a saliency value. To reduce complexity, we apply a

saliency thresholding of sk to get the binary mask bl

bl =

8

<

:

1 : sk(pl) > ts;

0 : otherwise
(3.2)

with ts global to Bt de�ned as

ts =

P

k (nk � sk)
P

k nk

; (3.3)

where nk is the number of pixels in rk. Finally, our drift detector determines whether

the target object inside Bt has drifted from its expected position depending on �s, the

ratio of the binary salient pixels inside fblg, as follows

TDrift =

8

<

:

1 : (�s < cs1) _ ((�s > cs2) ^ (�s < cs3))

0 : otherwise:
(3.4)

Meaning if �s the ratio of binary pixels in Bt is within the range (cs2; cs3), such as 0:6

and 0:9, or smaller than cs1, such as 0:2, then drift is detected with

�s =
Nb

P

k nk

; (3.5)

where Nb is the number of binary pixels (i.e., pixels pl with bl = 1) of Bt,
P

k nk is

the total number of pixels in all K regions (or the number of pixels in Bt). cs1, cs2,

and cs3 are experimentally selected constants that decide whether the target saliency

is low and hence a drift starts to occur. As shown in Figure 3.2, such constants are

30



selected according to tracker’s scale property. Scale variant trackers, such as DSST [13],

SAMF [11] , and STAPLE [3], adapt the estimated BB to the target size (Figure 3.2.

a), while scale-invariant ones, such as KCF [10] and STRUCK [2], have a �xed size

estimated BB (Figure 3.2. b).

(a) Scale-variant. (b) Scale-Invariant.

Figure 3.2: Scale-variant versus scale-invariant example frames.

3.5.2 Drift Correction Using Seeded Segmentation

To correct drift, we relocate Bt using seeded G-Cut segmentation that has appealing

results as it compromises between the computational complexity and the ability to

achieve global solution [78]. The input parameters of interactive seeded segmentation

[75{78], such as G-Cut, are seeds that represent both object and background as hard

constraints through user interaction. Interactive seed selection has shown to improve

the tracking quality [29]. However, interactivity is impractical for automated tracking

applications. We thus propose to automatically select seeds for G-Cut using two-layer

�lter: SIFT interest points and non-background pixels inside Bt.

SIFT is able to �nd distinctive interest points that are invariant to location, scale and

rotation, and robust to a�ne transformation and illumination changes [90]. Among the

SIFT points, there exist interest points that are more likely to belong to the background

(not the target) which may mislead the segmentation. Accordingly, we propose a

two-layered �lter such that SIFT interest points used to initialize the segmentation are

more likely to belong to the target. The �rst layer uses the already generated saliency

31



map fskg to �lter out all points outside the saliency map of the target object. We select

only those interest points that intersect with the most salient pixels of the binarized

saliency map bl. The second layer �lters out the interest points that belong to the

background. We de�ne the background as illustrated in Figure 3.3; Given the base

tracker BB (green), we divide the frame into four regions: absolutely foreground (AF ),

probably foreground (PF ), probably background (PB), and absolutely background

(AB). The AF region is inside BB and belongs to the object as a hard constraint.

The PB is a margin to handle segmentation of irregular object parts outside the BB.

Seeded segmentation expands from AF through PF (and possibly PB) regions until

it reaches BB boundaries. In the proposed method, PB and AB outside the BB are

considered background. Thus the �nal interest points exclude those in PB and AB.

(a) Input frame. (b) Seed masks. (c) Segmentation.

Figure 3.3: Automatic seed masks for segmentation.

Seeded segmentation is sensitive to seed quantity and placement. It is important

to select seeds that have a low probability of false alarm. As a consequence, our seeds

selection in region AF avoids boundaries of BB and places the seeds starting from the

center of the output BB of a tracker. Low-light (or dark) objects surrounded with a dark

background are a challenge for segmentation and we thus select less seeds for such BB to

decrease false alarm. To this end, we use the average intensities �o of AF region and �b

of its immediate neighbour pixels (e.g., in a radius of 10 pixels). The idea is to determine

the appropriate AF region inside B1 centered at a distance d from its boundaries as

d =

8

<

:

(1 � 0:1�o) � � : (�o < co) ^ (j�o � �bj < c�)

(1 � 2�o + �2
o) � � : otherwise;

(3.6)

32



where � = min(W; H)=2 with W and H as the width and height of B1. Then d is upper

bounded to � � 1, which is the maximum distance to move from any B1 boundary to

reach the center of B1. co = 0:35 represents dark objects and c� = 0:03. Dark objects

on low intensity background are a challenge for segmentation; we thus assume that dark

objects on low intensity background, e.g., Figure 3.14 (third row), require lower AF

region (i.e., less seeds) for accurate segmentation. This is because lower AF at the B1

center allows the segmentation, not the seeds, to decide what are the object parts inside

B1. Figure 3.4 shows the relation between d (in pixels) and �o: for high �o (bright BB),

small d (i.e., more seeds) are required as the object boundaries are more distinguishable.

Figure 3.4: Distance d versus the average intensity �o of AF region.

Thus the output of our two-layer �lter are seeds S that is a set of pixels pl in Bt that

are SIFT interest points �ltered by the binary saliency map and at the same time fall

inside the AF region,

S = fpl 2 (SIFT ^ AF ) ^ (bl = 1)g: (3.7)

AF is inside Bt and de�ned by d in (3.6) as illustrated in Figure 3.3. Figure 3.5 illustrates

the �ltering process of SIFT points and segmentation result.

33



(a) Input BB. (b) SIFT points. (c) Filtered
SIFT.

(d) Segmenta-
tion.

Figure 3.5: Interest points �ltering process and segmentation output.

The object segmentation initialized with seeds S produces the object mask M that

represents the target object. Due to various tracking and segmentation challenges, the

object mask M from G-Cut is likely to include noisy blobs. Thus we apply contour

selection, that uses the 
ood �lling to �ll small holes in M through connected component

algorithm, calculates the contour length of all regions inside M , selects the largest

contour as C, and removes other small blobs. The BB is then relocated around the

center of C.

3.6 Results and Analysis

3.6.1 Experimental Setup

For experiments, we have evaluated the results of our approach on a publicly available

dataset of 100 sequences provided by Wu et al. [56] that covers 11 di�erent tracking

challenges. We test our approach on �ve recent trackers, STRUCK, KCF, SAMF, DSST,

and STAPLE [2, 3, 10, 11, 13], that are di�erent performing from view point of tracking

accuracy, performance, and methodology [55{57,91{95].

34



For evaluation, we use the average precision and success plots, and three evaluation

measures: overlap ratio AOR, center location error CLE, and failure rate FR. Moreover,

we use the number of recovery and drift in the form of recovery-drift plot to further

investigate the achieved improvement by the proposed method (recovery and drift

measures are de�ned in section 6.5.2).

The suitable selection of G-Cut segmentation parameters plays an important role

in the accuracy of the resulting segmentation. These parameters are � that represents

a weighting term to control both over and under segmentation and � that represents

the camera noise. We propose to select such G-Cut parameter using CLONALG-AIS as

described in chapter 5. In all the simulations that follows, we used the values derived in

chapter 5, which are � = 218 and � = 10.

The only parameters that we use depending on the tracker category are those in (3.4)

which we selected according to the scale property of the tracker as follows: cs1 = 0:375,

cs2 = 0:625, and cs3 = 0:925 for scale-variant trackers (such as SAMF, DSST, and

STAPLE) and cs1 = 0:2, cs2 = 0:6, and cs3 = 0:9 for scale-invariant trackers (such as

STRUCK and KCF).

3.6.2 Objective Results

Tables 3.1, 3.2, 3.3, 3.4, and 3.5 show the overlap ratio, center location error, failure

rate, drift, and recovery measures of the original trackers vs. the proposed framework

for each of the 100 test sequences. Better results are shown in bold. Averages over all

test sequences are also given. As can be seen, the proposed method improves the quality

in all aspects. In table 3.5, we give the a pure recover-to-drift measure pRD = (R�D)
(L�100)

where R is the sum of individual recoveries of all 100 test videos, D is the sum of

individual drifts of all 100 test videos, and L is the total number of frames of all test

videos. Note that we subtract 100 as we skip the �rst frame in each video. As can be

seen, with our method all trackers achieved better pRD and SAMF tracker achieved the

best improvement. Note that pRD is between 1 and -1, where positive values mean the

tracker well recovered from drifts on average. For example, pRD = 0:333 indicates good

performance since the tracker shows more recoveries than drifts.

35



Table 3.1: The overlap ratio of base and modi�ed trackers per sequence.

36



37



Table 3.2: The center location error of base and modi�ed trackers per sequence.

38



39



Table 3.3: The failure rate of base and modi�ed trackers per sequence.

40



41



Table 3.4: The number of drifts of base and modi�ed trackers per sequence.

42



43



Table 3.5: The number of recovery of base and modi�ed trackers per sequence.

44



45



In the following results and to make �gures clear, we systematically select the best

three trackers according to Tables 3.1, 3.2, 3.3, 3.4, and 3.5 for comparison. The average

success and precision plots shown in Figures 3.6 and 3.7, con�rm that the proposed

method outperforms the base trackers, for all sequences in both measures. SAMF

(black), KCF (blue), and STAPLE (green) trackers show the best enhancement.

Figure 3.6: Average precision plot using automatic drift detection and correction.

Figure 3.7: Average success plot using automatic drift detection and correction.

46



Figures 3.8 and 3.9, show the e�ectiveness of the proposed method on various

challenge attributes, such as fast motion, occlusion, background clutter, etc. It is clear

that the performance of the proposed method outperforms the corresponding original

ones, as they e�ectively handle the di�erent challenging situations.

47



Figure 3.8: Precision plot of all trackers over all test videos per challenge.

48


