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Montréal, Québec, Canada

November 2017

c© Uma Kaplan, 2017



CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Uma Kaplan

Entitled: Three Essays on Collusion in English Auctions: Theory and Application

and submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy (Economics)

complies with the regulations of this University and meets the accepted standards with respect to origi-

nality and quality.

Signed by the Final Examining Committee:

Chair
Dr. Amy Swiffen

External Examiner
Dr. Decio Coviello

External to Program Examiner
Dr. Mélina Mailhot

Examiner
Dr. Dipjyoti Majumdar

Examiner
Dr. Huan Xie

Supervisor
Dr. Szilvia Pápai
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Abstract

Three Essays on Collusion in English Auctions:

Theory and Application

Uma Kaplan, Ph.D.

Concordia University, 2017

This thesis is composed of three chapters that examine topics related to collusion in English auc-

tions. In the first chapter, we develop a fully nonparametric identification framework and a test of

collusion in ascending bid auctions. Assuming efficient collusion, we show that the underlying distri-

butions of values can be identified despite collusive behavior when there is at least one known com-

petitive bidder. We propose a nonparametric estimation procedure for the distributions of values and a

bootstrap test of the null hypothesis of competitive behavior against the alternative of collusion. In the

second chapter, we adopt a copula-based approach to identification. We succeed in showing that joint

distribution function of private valuations is identifiable under certain conditions. Finally, we propose a

semiparametric strategy, based on Archimedean copulas, to identify and estimate the model primitives

and analyze the dependence relation between bids in English auctions. One advantage this approach

has is that it allows us to separate the estimation of the marginal distribution from the estimation of the

joint distribution of underlying bidder values. The third chapter is an empirical study of the municipal

GIC auctions, motivated by the theoretical frameworks developed in the first two chapters.
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v



Contribution of Authors

The first chapter of this thesis is based primarily on the manuscript currently circulated under the

title ”Identifying Collusion in English Auctions”, based on the results of a joint research with Profes-

sor Art Shneyerov, and Professor Vadim Marmer of University of British Columbia. Dr. Shneyerov

proposed the research idea. We conceived the research questions and collected the related literature.

Dr. Shneyerov and Dr. Marmer developed the research design and methodology with my input and

suggestions. We performed the data analysis, estimation and interpretation of results.

The second chapter of this thesis is joint work with Prof. Shneyerov, and Prof. Marmer. We

conceived the research idea, collected the related literatures, and developed the research design and

methodology together. Professor Shneyerov and Professor Marmer revised it critically for important

intellectual content. I implemented the methodology, performed the estimation, interpreted and proved

the results. Prof. Shneyerov commented it, and I revised it.

vi



Contents

List of Figures ix

List of Tables x

1 De-censoring Approach to Identification and Estimation in English Auctions 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Identification under Competition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Collusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.1 Identifying Collusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.4.1 Econometric Test of Collusion . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.5 Monte Carlo Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.6 Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.7 Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.8 Appendix : Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.8.1 Extended Functional Delta Method . . . . . . . . . . . . . . . . . . . . . . . 33

1.8.2 Proofs of the Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2 Copula-based Approach to Identification and Estimation in English Auctions 52

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

vii



2.3 Copula Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.4 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.4.1 Copulas in the N-bidder Case . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.4.2 The Identification of Marginal Distributions with Known ϕ(·) . . . . . . . . . 58

2.4.3 Identification of a Cartel Member Distribution . . . . . . . . . . . . . . . . . 59

2.4.4 Identification of ϕ(·) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.4.5 Semiparametric Estimation of Copula under Competition . . . . . . . . . . . . 63

2.4.6 Estimation of Fi(v) under Competition and Collusion . . . . . . . . . . . . . 65

2.4.7 Predicting the Competitive Bid of Bidder i . . . . . . . . . . . . . . . . . . . 66

2.5 Econometric Test of Collusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3 Empirical Application: Internet GIC Auctions 72

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.2 The Municipal Derivatives Market . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.2.1 Collusion in GIC Auctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.3 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.4 De-censoring Approach (Independent Case) . . . . . . . . . . . . . . . . . . . . . . . 81

3.4.1 Empirical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.4.2 Holm-Bonferroni Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.5 Copula-Based Approach (Dependent Case) . . . . . . . . . . . . . . . . . . . . . . . 82

3.5.1 Empirical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.5.2 Holm-Bonferroni Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.7 Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.8 Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Bibliography 96

viii



List of Figures

Figure 1.1 Suspect cartel bidder; the data are generated under collusion. The sample size is

100 auctions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Figure 1.2 Suspect cartel bidder; the data are generated under collusion. The sample size is

400 auctions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Figure 1.3 Suspect cartel bidder; the data are generated under competition. The sample size

is 400 auctions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Figure 3.1 A tight GIC bidding race. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Figure 3.2 Money left on the table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Figure 3.3 Rabobank: Predicted competitive (red) vs. actual (blue) CDFs of bids. . . . . . 94

Figure 3.4 Salomon: Predicted competitive (red) vs. actual (blue) CDFs of bids. . . . . . . 95

ix



List of Tables

Table 1.1 Average rejection rates of the bootstrap test for collusion for different significance

levels and sample sizes (L) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Table 3.1 Timeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Table 3.2 Internet Auction Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Table 3.3 Test Results (Independent Case) . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Table 3.4 Test Results - Raw Bids (Dependent Case) . . . . . . . . . . . . . . . . . . . . 90

Table 3.5 Test Results - Adjusted Bids (Dependent Case) . . . . . . . . . . . . . . . . . . 91

x



Chapter 1

De-censoring Approach to Identification

and Estimation in English Auctions

1.1 Introduction

Collusion in auctions is an antitrust violation, but is nevertheless a pervasive phenomenon. It has

been subject to many empirical studies. However, much of the research has focused on the sealed-bid,

first-price auction format. For example, Porter and Zona (1993) and Bajari and Ye (2003) have studied

collusion in highway procurement, while Porter and Zona (1999) and Pesendorfer (2000) have studied

collusion in school milk procurement.1

There has been relatively less empirical or econometric work on collusion in open (or English)

auctions, partly because of the dominance of the sealed-bid format in public procurement and sales.2

The arrival of the Internet has greatly reduced the costs of bringing buyers and sellers together, and thus

contributed to the increase in popularity of open auctions.

In this paper, we provide a structural nonparametric identification, estimation and testing framework

for collusion in open auctions. The analysis focuses on the commonly accepted theoretic model of such

auctions, namely the button (or thermometer) model, where the price is risen continuously and bidders

1See a survey by Harrington (2008) for more examples.
2One exception is Baldwin, Marshall, and Richard (1997), who have studied collusion is timber auctions.
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drop out irrevocably. This model is becoming increasingly relevant for the auctions conducted over the

Internet. The reason for this is the availability (and popularity) of electronic bidding agents that update

bids continuously on bidders’ behalf, which effectively implements the button model.

We make the most often exploited assumption: bidders draw their values independently (the IPV

framework), however, allowing for bidder asymmetries. As the benchmark, and also the first step in our

approach, we consider a model where there is no collusion. It is assumed that all the losing bids are

observable. The main difficulty with identification and estimation of value distributions is the censoring

problem: while the losing bids reveal bidder values, the winning value is censored. Our approach to de-

censoring is based on the Nelson-Aalen estimator originally developed in the competing risks literature.

We derive a simple formula that allows one to identify the value distribution of a particular bidder using

only its losing bids and the losing bids of its highest rival.

Our main contribution is to extend this de-censoring technique to potentially colluding bidders. We

restrict attention to collusion through cover (or phantom) bidding, a commonly used form of collusion

in auctions.3 In open auctions, the gains from collusion are maximal when the cartel members do not

bid higher than the highest dropout price of their competitive rivals. In reality, they still may bid higher

in order to conceal collusion. The exact nature of cover bidding is not needed for our analysis as only

the leading cartel bid is used. For example, we allow non-participation, where instead of submitting a

low bid, the cover bidder does not bid at all.4

Our result relies on several identifying assumptions. First, we assume that values are drawn inde-

pendently, however, allowing for nonidentical distributions. The latter is important because the cartel is

usually stronger on average than any of the non-cartel bidders.

Second, it is assumed that only one serious bid is submitted by the cartel, by a bidder that we call the

cartel leader. The cartel leader is assumed to be selected efficiently, i.e. as the bidder with the highest

valuation. This efficiency assumption is commonly made in the empirical literature on auctions, and is

also supported by auction theory, as we explain in the next section.

3Collusion in auctions can take other forms, notably a market division agreement. See Hendricks and Porter (1989).

Pesendorfer (2000) presents evidence that collusion takes different forms in highway procurement auctions in Florida and

Texas.
4See, e.g. Porter and Zona (1993) and Baldwin et al. (1997).
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Third, it is assumed that there is at least one competitive firm bidding against the cartel. This is

often the case empirically, as e.g. in Porter and Zona (1993), Porter and Zona (1999), and Baldwin et al.

(1997). Apart from this, the composition of the cartel does not need to be known. It is only important

that the cartel leader bids competitively against the non-cartel firms.5

The cartel leader’s value is censored from above by the competitive bid. At the same time, being the

maximal value among the cartel bidders, it is censored from below by the second-highest cartel value.

So unlike the competitive setup, here we have a joint censoring of the value both from above and below.

Nevertheless, we show that the value distribution can be de-censored for each bidder in the cartel.

This is because, as we show, the selection mechanism is identifiable under efficient collusion. This

identification result is constrictive in that it gives a closed-form formula for the de-censored distribution

of the values of the cartel members that is simple to estimate nonparametrically.

In our analysis, the cartel set should be understood as a suspect set. If competitive firms are mistak-

enly included in the cartel, the identification of the values of the colluders is unaffected as long as there

is at least one competitive firm outside the cartel. Empirical studies often provide direct evidence as to

who might be a potential colluder. This evidence often allows to plausibly argue that certain firms are

“clean”, i.e. did not participate in the conspiracy. Sometimes the cartel composition is known, as the

defendant in an antitrust case as in Porter and Zona (1993) and Porter and Zona (1999). However, the

strength of our approach is that it works under minimal knowledge concerning the composition of the

cartel.

As we have argued, regardless of whether a bidder is competitive or not, its value distribution is

identifiable through our de-censoring approach. This allows us to construct the counterfactual distri-

bution of its bids under competition, even if the bidder’s actual behaviour is collusive. If the bidder

is competitive, then the counterfactual and actual distributions will coincide. However, if the bidder

is collusive, we show that the counterfactual competitive bid distribution stochastically dominates the

actual collusive one. This allows us to design a formal statistical test of the null hypothesis of competi-

tive bidding against the alternative of collusive bidding. The test can be applied individually bidder by

bidder, or can be applied jointly to a group of bidders.

5It is also permissible that the fringe firms collude among themselves.
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Our test is initially developed at the individual bidder level. However, in combination with Bonferroni-

type sequential hypothesis testing such as Holm (1979), it leads to a simple estimator of the composition

of the cartel.6 In our setting, the Holm-Bonferroni procedure works as follows. First, each bidder in the

suspect set is tested and the p-value of the test recorded. Second, the p-values are ordered from smallest

to highest. The bidders are then tested sequentially at appropriately adjusted levels of significance. If

the competitive behaviour of the suspect bidder with the smallest p-value is not rejected, then the pro-

cedure terminates with no collusion found. If not, then this bidder is classified as a colluder, and the

procedure moves to the next bidder in the order. This bidder is tested at a higher level of significance,

and is included in the cartel following rejection. If no rejection occurs, then the test finds no presence

of a cartel, as it is impossible to have a single-firm cartel. Continuing in this fashion until termination,

the procedure results in an estimated cartel set with at least two bidders. The probability of one or more

false bidder inclusions in the cartel is controlled overall at a predetermined level of significance, e.g.

5%. Moreover, the estimator of the cartel set is consistent.7

Once the collusive set has been estimated, we can proceed to estimate the collusive damages. For

each colluding bidder, we can estimate its value distribution, which determines its dropout prices under

competition. This allows us to recover the distribution of the auction price if all bidders were com-

petitive, and to compare this counterfactual distribution with the actual distribution of the prices. For

example, one could estimate the average loss of revenue due to collusion, and other statistics of the loss’

distribution.

We are not aware of any previous research on nonparametric identification of collusion in open

auctions. We believe our paper is the first one to investigate this issue. Our parallel contribution is that

we propose full identification of model primitives under collusion. This can be used to address other

important policy questions such as, for example, the optimal reserve price under collusion.

6This approach is also adopted in Schurter (2017) to estimate the composition of the cartel in a first-price auction.
7Recently, Coey, Larsen, and Sweeney (2014) considered placing bounds on collusive damages and proposed an approach

based on bidder exclusion.
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Relation to the Existing Literature

A common approach in the empirical literature on collusion in auctions is to use different bid re-

sponses to exogenous variation under collusion and competition. Porter and Zona (1993) study col-

lusion in first-price highway procurement auctions conducted by the New York State Department of

Transportation. They use measures of capacity and utilization rates as explanatory variables, and de-

velop a likelihood-based model stability test across low and high bid ranks. The cartel composition is

known in their case as they have access to court records. They find that parameter estimates are sta-

ble for the competitive group, but not for the cartel, which provides strong reduced-form evidence for

collusion in the form of phantom bidding.

In another influential paper, Porter and Zona (1999) consider collusion in Ohio school milk auctions.

They find that while the probability of submitting a bid falls with distance for non-defendant diaries, it

increases for the defendants. Also, bid levels increase with distance for the non-defendants, but decrease

for the defendants. These reduced-form finding convincingly point to collusion among the defendants,

in the form territorial allocation.

Bajari and Ye (2003) adopt a structural approach in their study of collusion in highway procurement.

The essence of their approach is to derive high-level testable predictions of the competitive model such

as conditional independence and exchangeability, and build a statistical test based on these predictions.

The main structural assumption is that the cartel is efficient, as in our paper. An extension of Bajari and

Ye’s approach to English auctions is difficult because censoring of the highest valuation implies that the

dropout prices are correlated even under competition.

Aryal and Gabrielli (2013) consider a different test of collusion in first-price auctions. They exploit

the variation in the number of bidders to argue that only the true model (competition or collusion) results

in an invariant distributions of bidder values. Also for first-price auctions, Schurter (2017) exploits the

potential presence of an exogenous shifter in the level of competition, and develops a test of collusion

in first-price auctions based on the independence between the valuations and the shifter if the bidder is

competitive.

There is very little work on collusion in open English auctions. Baldwin et al. (1997) considered

5



collusion in US Forest Service Timber auctions. They consider a symmetric setting where bidders

draw values from the same parametric distribution, and assume that the cartel is efficient. Within

their parametric specifications, they compare likelihoods of competitive and collusive models and find

support for collusion.

Asker (2010) estimates damages from collusion in a structural model of a knockout auction of

stamp dealer cartel. Athey and Haile (2002) is a fundamental paper on identification in auctions, and

provides a proper perspective on our identification results. Without collusion, and in the independent

private values (IPV) framework as in our paper, it is known that the asymmetric ascending bid auction is

identifiable even if only the winning bids are observable. This has been established in Athey and Haile

(2002), building on the results for competing risks in Meilijson (1981). This approach has been recently

extended by Komarova (2013). However, feasible nonparametric estimators have not been developed

due to the complex nature of the identification arguments.8 It is not known if the model is identifiable

from the winning bids in the presence of collusion.

Our estimator in the absence of collusion is based on a well-known Nelson-Aalen estimator for

models with random censoring.9 However, its application to auctions is novel as is our approach to the

identification and estimation of the value distributions under collusion.

We adopt the button model of the English auction. Haile and Tamer (2003) emphasize that losing

bids do not necessarily reflect true values because of jump bidding in many real-world open auctions.

Be this as it may in the traditional open auctions, the arrival of the Internet has opened door to new

ascending-bid auctions that, as we have argued, conform more closely to the original “button” model

considered in the theoretical literature.

Our main structural identification assumption is that the cartel is efficient. This assumption is com-

monly used in the empirical literature on auctions, e.g. Bajari and Ye (2003), Baldwin et al. (1997).

Auction theory supports it as well: Graham and Marshall (1987) show that, if the bidding cartel is

able to distribute the spoils of collusion ex ante, it can efficiently select the cartel leader using an open

8The identification using winning bids only relies on Pfaffian integral equations, which are very difficult to solve even nu-

merically. See Brendstrup and Paarsch (n.d.), who instead appeal to parametric flexible-form maximum likelihood estimation.

We should also mention that outside the IPV framework, the model is not identifiable even under symmetry. A recent paper

by Aradillas-López, Gandhi, and Quint (2011) addresses partial identification of this model.
9See e.g. the discussion in Section 20.15 in van der Vaart (1998).
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knockout auction. In addition, Mailath and Zemsky (1991) show that efficient collusion can be sustained

through appropriate ex-post side payments between the cartel members if the values are independent,

while Hendricks, Porter, and Tan (2008) show that this continues to be true if values are affiliated.10

When cartel bidders are symmetric, a simple knockout auction exists that selects the leader efficiently

and balances the budget ex post.

1.2 Identification under Competition

In the baseline competitive model, we consider a standard independent private values (IPV) setting

where there are N bidders participating at an auction. The set of bidders is denoted as N = {1, ..., N}.

Assumption 1 (IPV). Each bidder i ∈ N draws its value independently from a cumulative distribution

Fi(·) supported on [0, v].

We allow the distributions Fi to be different across bidders, but assume that the support [0, v] is the

same for all bidders. The density of Fi is denoted as fi.

In an ascending button auction, only the dropout prices of the losing bidders are equal to valuations

in a dominant strategy equilibrium. The valuation of the winner is censored from below by the highest

dropout price among the losing bidders. For any bidder i, let Vi denote its value, and let V−i denote

the maximum value of its rivals, V−i = maxj 6=i Vj . The distribution of V−i is denoted as F−i(·). The

indicator variable wi ∈ {0, 1} is equal to 1 if bidder i wins the auction, and is equal to 0 if he loses.

If wi = 0, Vi is observable, while Vi is censored from above by V−i when wi = 1. Let gi(v|wi = 0)

be the density of i’s bids, or equivalently, the values conditional on losing the auction. It is directly

identifiable from the data.

We now show how to recover Fi. Since Vi and V−i are assumed to be independent, the Bayes rule

10However not if values are common. See Hendricks et al. (2008).
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yields

gi(v|wi = 0) =
fi(v)(1− F−i(v))

P(wi = 0)

=⇒ fi(v) =
gi(v|wi = 0)P(wi = 0)

1− F−i(v)
.

Dividing both sides of the last equation by 1− Fi(v), we obtain

fi(v)

1− Fi(v)
=

gi(v|wi = 0)P(wi = 0)

(1− Fi(v))(1− F−i(v))
. (1)

Our key insight is that the function that appears on the right-hand side in the denominator of (1) is

directly identifiable. The independence between Vi and V−i implies that

(1− Fi(v))(1− F−i(v)) = P(min{Vi, V−i} ≥ v).

However,

Bi = min{Vi, V−i} = wiV−i + (1− wi)Vi

is in fact equal to bidder i’s actual bid (whether losing or winning), and is directly observable. Its

distribution,

Gi(v) ≡ P(Bi ≤ v),

is therefore directly identifiable from the data. Thus, the result in equation (1) can be equivalently stated

as

fi(v)

1− Fi(v)
=
gi(v|wi = 0)P(wi = 0)

1−Gi(v)
, (2)

where the expression on the right-hand side involves only terms that can be directly estimated from the

data.

It will prove convenient to define

G0
i (b) ≡ P (Bi ≤ b, wi = 0) = Gi(b|wi = 0)P(wi = 0),

8



and its derivative

g0i (b) ≡
dG0

i (b)

db
.

We can now re-state the identification result in (2) as

−d log(1− Fi(v))

dv
=

g0i (v)

1−Gi(v)
.

The left-hand side of this equation can be recognized as a full derivative, so we can integrate this

equation and recover the distribution of i’s values Fi(·). The result is given in the proposition below.

Proposition 1 (Identification under competition). Under Assumption 1, we have

Fi(v) = 1− exp

(

−
∫ v

0

dG0
i (u)

1−Gi(u)

)

. (3)

This result can be viewed as an adaptation of the well-known Nelson-Aalen estimator originally

developed for cumulative hazard functions (Aalen, 1978; Nelson, 1969, 1972) to ascending auctions.

The functional that appears on the right-hand side of (3) will be used repeatedly in the sequel. It is

defined, for any two functions H1(·) and H2(·), as11

ψ(H1, H2)(v) ≡ 1− exp

(

−
∫ v

0

dH1(u)

1−H2(u)

)

. (4)

Note that using the definition in (4), the result in (3) can be stated as Fi(v) = ψ(G0
i , Gi)(v).

1.3 Collusion

In this section, we show that the distributions of bidder valuations are identifiable even in the pres-

ence of collusion. We assume that a subset of bidders potentially forms a bidding cartel. The identifi-

cation is shown under a number of assumptions.

First, we assume that the cartel is not all inclusive. That is, it is known to the researcher that at least

11This functional is well-defined when H1 has bounded variation.
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one bidder behaves competitively, i.e. bids up to its true value.12 Denote the set of known competitive

bidders as Ncom.

Assumption 2 (Competitive bidder). There is at least one known competitive bidder, i.e. the set Ncom

is non-empty.

We assume that some bidders may be colluding. The colluding bidders are necessarily contained in

Ncol = N\Ncom.

We shall sometimes refer to Ncol as the suspect set, as this set may also include some firms that are

in fact competitive. It is important to note that the set of actually colluding bidders C ⊆ Ncol is not a

priory known. We also allow for no collusion at all, in which case C = ∅. Our identification approach is

based on the idea that a cartel firm still behaves competitively if it is the cartel leader, i.e. the designated

highest bidder from the cartel.

Second, we restrict attention to efficient collusion, where the ring (cartel) leader is the bidder with

the highest valuation of the item.13

Assumption 3 (Efficient collusion). Cartel leader’s valuation is equal to maxk∈C Vk.

Let `i = 1 indicate the event that bidder i has the leading (maximum) value in the suspect set Ncol,

otherwise `i = 0. This obviously includes the event when bidder i is the cartel leader under efficient

collusion, however also requires i’s value to be higher than any of the competitive bidders’ values

in Ncol. Note that together with our assumption that the distributions Fi(·) have the same support,

efficient collusion implies that each suspect member has a positive probability of being the leader, i.e.

P(`i = 1) > 0. By the Bayes rule,

fi(v|`i = 1) =
P(`i = 1|Vi = v)fi(v)

P(`i = 1)

=⇒ fi(v) =
P(`i = 1)fi(v|`i = 1)

P(`i = 1|Vi = v)
. (5)

12This assumption can be relaxed, as we remark in the sequel.
13This assumption is plausible in empirical applications and frequently made in the literature. See e.g. Bajari and Ye (2003).
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Conditional on being a leader, i bids competitively against the competitive fringe Ncom. This implies

that the density fi(v|`i = 1) is identifiable using the results in the previous section, i.e. by considering

i’s bids that are both leading (`i = 1) and losing in the action (wi = 0) against the competitive fringe.

Let

Vcom ≡ max
k∈Ncom

Vk

be the maximum value in the competitive fringe Ncom. In parallel to (3) in the previous section, the

distribution of i’s values conditional on leading the cartel,

F `
i (v) ≡ Fi(v|`i = 1),

is identifiable through the de-censoring formula

F `
i (v) = ψ

(
G0,`

i , G`
i

)
(v), (6)

where the distributions G0,`
i (b) and G`

i(b) are now conditional on being the cartel leader,

G0,`
i (b) = P(bi ≤ b, wi = 0|`i = 1), G`

i(b) = P(bi ≤ b|`i = 1).

Note that both G0,`
i (b) and G`

i(b) are identifiable from the data.

Continuing the identification argument, the selection probability P(`i = 1|Vi = v) that appears in

(5) is not directly identifiable. In order to apply the above result, we propose a transformation that does

not involve P(`i = 1|Vi = v). Dividing both sides of (5) by Fi(v), we obtain

F ′
i (v)

Fi(v)
=
P(`i = 1)fi(v|`i = 1)

P(`i = 1|Vi = v)Fi(v)
. (7)

Under independence and efficient collusion, the leader selection probability is simply the product of the

11



CDFs of bidders in Ncol\{i},

P(`i = 1|Vi = v) =
∏

j∈Ncol\{i}

Fj(v) (8)

=⇒ P (`i = 1|Vi = v)Fi(v) =
∏

j∈Ncol

Fj(v) ≡ Fcol(v) (9)

where Fcol(v) is the distribution of the maximum value Vcol in the suspect set,

Vcol ≡ max
k∈Ncol

Vk.

Since the bidder with valuation Vcol bids competitively against the maximum value Vcom in com-

petitive fringe Ncom, the distribution Fcol(v) is identifiable by de-censoring in parallel to (3) from the

previous section:

Fcol(v) = ψ(G0
col, Gcol)(v), (10)

where

G0
col(u) = P{min{Vcom, Vcol} ≤ u;wcol = 0}, Gcol(u) = P{min{Vcom, Vcol} ≤ u}.

Here wcol ∈ {0, 1} indicates whether or not the suspect leader wins the auction. Note that both G0
col

and Gcol are identifiable because min{Vcom, Vcol} is observable.

Substituting (9) into (7), we obtain a differential equation for Fi(v) that only involves identifiable

objects,

dFi(v)

Fi(v)
=
dF `

i (v)

Fcol(v)
. (11)

This differential equation can be integrated backwards using the boundary condition Fi(v) = 1 to yield

a unique solution given in the proposition below, which is our main result in this section.

Proposition 2 (Identification under efficient collusion). Under Assumptions 1–3, the distributions Fi(·)
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are identifiable. The identification of Fi(·) for the known competitive bidders is unaffected and proceeds

according to (3), as before. The identification of {Fi(·) : i ∈ Ncol} can be performed according to

Fi(v) = exp

(

−
∫ ∞

v

dF `
i (u)

Fcol(u)

)

, (12)

where the distributions F `
i (v) and Fcol(v) are identifiable from the previous step according to (6) and

(10) respectively.

The intuition behind this identification result can be summarized as follows. First, even though bid-

ders in the cartel may submit noncompetitive “cover” bids, the cartel leader bids competitively against

any competitive bidder (i.e. any bidder in the set Ncom). In particular, we use the fact that it bids com-

petitively against the highest bidder in Ncom. The implication of this observation is that, conditionally

on being a cartel leader, the bidder’s behavior in the auction is in fact competitive. The de-censoring

approach can be used to identify, for any suspect bidder, the distribution of valuations conditionally on

leading the cartel.

Second, under our assumption that the cartel is efficient, the valuation of the cartel leader is censored

from below. We have shown that the de-censoring approach can be suitably extended to uncover the

marginal distribution of bidder values even in this case.

Assumption 2, which requires that there is at least one known competitive bidder, can be relaxed. If

the seller is an active participant in the auction, then the seller’s bid can be used instead of the maximum

competitive bid for the purposes of identification, as long as it is independent of the maximum cartel

value. The seller may or may not know that it is facing a cartel, and may or may not bid optimally. It

would only be required that the seller’s bids have support [b,∞) for some b ≥ 0.

1.3.1 Identifying Collusion

The result in Proposition 2 can be used as a basis for a test of collusion. Regardless of whether

bidder i ∈ Ncol is colluding or not, and regardless of the potential presence of an unknown (but efficient)

cartel, we can identify the predicted distribution of bidder i’s bids if i were competitive. It is assumed

that, if there is a cartel, it continues to operate with bidder i excluded. This (potentially counterfactual)
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distribution is denoted as Gpred
i (v). As Vi, V−i are independent if bidder i is competitive, the upper

CDF of i’s bid Bi = min{Vi, V−i} is given by the product

1−Gpred
i (v) = (1− Fi(v))(1− F−i(v)),

=⇒ Gpred
i (v) = 1− (1− Fi(v))(1− F−i(v)). (13)

In this formula, Fi(v) is identifiable according to (12), and F−i(v), the distribution of the maximum of

all bidder values excluding bidder i, is identifiable by an analogue to (3):

F−i(v) = ψ(Gi(·|wi = 1)P(wi = 1), Gi(·))(v). (14)

Alternatively, since all the individual CDFs have been identified, one can take

F−i(v) =
∏

j 6=i

Fj(v). (15)

It will be more convenient to use the latter expression for F−i.

The actual behavior of bidder i ∈ Ncol may be collusive. We now detail the assumptions on

the bidding strategy of a cover bidder, i.e. a cartel member who is not the cartel leader. Let h =

((i1, p1), ..., (ik, pk)) be a dropout history, where i1, ..., ik ∈ N indicate the identities of those k bidders

that have dropped out, and p1, ..., pk denote their respective dropout prices. If there are no dropouts yet,

we let h = ∅. A bidding strategy B∗
i (vC , h) of a cover bidder specifies the maximum price up to which

the bidder is willing to stay in the auction, given the history h, as a function of the realization of all the

cartel valuations vC ≡ (vj)j∈C .

For the cartel to maximize the gains from collusion, it must be the case that whenever the cartel

leader wins the auction, i.e. Vcom < Vcol, the cover bidders drop out at or below Vcom. In addition,

it is reasonable to assume that the cartel members never drop out above their valuations. This way,

should the cartel leader renege on its promise to bid up to its valuation and drop out earlier, the cover

bidders will not suffer a loss from buying at prices higher than their valuations. We therefore make the
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following assumption concerning the bidding strategy of a cover bidder. Other than this assumption, a

cover bidder’s strategy is unrestricted.

Assumption 4. For any cover bidder i ∈ C, (i) its dropout price never exceeds its valuation,B∗
i (vC , h) ≤

vi, and (ii) whenever the dropout history h involves the last dropout by the highest competitive bidder,

the cover bidder also drops out at that price: B∗
i (vC , h) = Vcom.

Since a cover bidder never wins auctions, its actual final bid will be given by B∗
i (vC , h

∗) for the

realized history h∗ after which it drops out before any other bidder does. The actual bid of a cartel

member, as a random variable, is then given by

B̃i = B∗
i (VC , h

∗)1{`i = 0}+min{Vi, Vcom}1{`i = 1}.

For any bidder i ∈ C, Vcom ≤ V−i and therefore

min{Vi, Vcom} ≤ min{Vi, V−i}, (16)

while

B∗
i (VC , h

∗) ≤ min{Vi, V−i}

by (i) and (ii) in Assumption 4. It follows that for cartel members, the counterfactual competitive

distribution of bids Gpred
i (b) = P{min{Vi, V−i} ≤ b} weakly stochastically dominates the actual

distribution of bids Gi(b) = P{B̃i ≤ b}. We show below that stochastic dominance holds in the strict

sense.

Proposition 3 (Testable prediction for collusion). Under Assumptions 1-4, the predicted competitive

distribution of i’s bids is identified. Moreover, it strictly stochastically dominates the distribution of i’s

bids if bidder i is collusive: Gi(b) ≥ Gpred
i (b) for all b’s, with strict inequalities for some b’s.

Proof. In order to prove that the inequality is strict for some b, by Theorem 1 in Hanoch and Levy
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(1969),14 it is sufficient to verify

E[B̃i] < E[min{Vi, V−i}]. (17)

For bidder i ∈ C, define an event Ai = {Vcom < Vi < Vcol}, and note that P(Ai) > 0, which holds

since the distributions {Fj , j ∈ N} have the same support.15 Write E[B̃i] = E[B̃i · 1(Ai)] + E[B̃i ·

1(Ac
i )]. For the first term by Assumption 4, we haveE[B̃i ·1(Ai)] = E[Vcom ·1(Ai)] < E[Vi ·1(Ai)] =

E[min{Vi, V−i} · 1(Ai)]. Moreover, (16) implies that E[B̃i · 1(Ac
i )] ≤ E[min{Vi, V−i} · 1(Ac

i )], and

(17) follows.

1.4 Estimation

We consider an i.i.d. sample of L auctions, with each individual auction indexed by l = 1, ..., L.

For simplicity, we assume that all N bidders participate.

The bids are denoted as bil. For each bidder i ∈ N , the maximal bid of its rival is denoted as

b−il = max {bjl : j ∈ N\{i}}. For i ∈ N , wil ∈ {0, 1} denotes whether bidder i wins auction l:

wil = 1 if bil > b−il, and wil = 0 if bil < b−il. In equilibrium, ties will have zero probability, so the

allocation rule adopted for tied bids is immaterial. Conditional on losing, i.e. on wil = 0, the bidder’s

valuation vil is revealed and equal to its bid, while for a winning bid, it is only known that the valuation

is at or above the bid: vil = bil if wil = 0, and vil ≥ bil if wil = 1.

Our estimation strategy will be based on the plug-in approach, where the distributions appearing in

the decensoring formulae are replaced by their empirical analogues. The distributions G0
i , Gi can be

consistently estimated as

Ĝi(b) =
1

L

L∑

l=1

1(bil ≤ b), Ĝ0
i (b) =

1

L

L∑

l=1

1(bil ≤ b, wil = 0). (18)

14This theorem states that if
∫
H(b)dG0(b) ≥

∫
H(b)dG(b) for any non-decreasing function H(·), with a strict inequality

for at least one such function, then G0(b) < G(b) for some b. In our case, we pick the identity function, H(b) = b, which

leads to the comparison of the expected values.
15We use the notation 1(A) for the indicator function of an event A.
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Plugging these estimators into (3), we obtain an estimator for the distribution of valuations of a com-

petitive bidder i:

F̂i(v) = ψ(Ĝi, Ĝ
0
i )(v). (19)

It can be shown, as an application of the Continuous Mapping Theorem, that the estimator F̂i is

consistent on the entire support [0, v]. The rate of convergence can also be established by standard

methods. However, we do not pursue this, as weak convergence results and the bootstrap approach

discussed below will be our main tools for inference and testing.

Our main tool for deriving the asymptotic distributions of the estimators and their bootstrap approx-

imations will be the Functional Delta Method (FDM).16 Using the definition of the functional ψ in (4),

its functional derivative, at H1 = G0
i and H2 = Gi, can be computed as

ψ′(h1, h2)(v) = (1− Fi(v))

(∫ v

0

dh1(u)

1−Gi(u)
+

∫ v

0

h2(u)dG
0
i (u)

(1−Gi(u))2

)

. (20)

Standard results for weak convergence of empirical processes imply, jointly for all i’s,

√
L
(
Ĝi −Gi, Ĝ

0
i −G0

i

)
 

(
Gi,G

0
i

)
, (21)

where  denotes weak convergence, and Gi and G
0
i are (correlated) tight mean-zero Gaussian pro-

cesses on [0, v].17 The covariance functions of these processes can be computed as

EGi(v1)Gi(v2) = Gi(v1 ∧ v2)−Gi(v1)Gi(v2),

EG
0
i (v1)G

0
i (v2) = G0

i (v1 ∧ v2)−G0
i (v1)G

0
i (v2), and

EGi(v1)G
0
i (v2) = G0

i (v1 ∧ v2)−Gi(v1)G
0
i (v2). (22)

Consider any proper sub-interval [0, v0] ⊂ [0, v). The functional ψ can be shown to be Hadamard

differentiable on the space of bounded, right-continuous, left-limit (cadlag) functions on [0, v0] (with the

16See e.g. Chapter 20 of van der Vaart (1998).
17See also Lemma H.3 in the Appendix.
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derivative given by (20)). The FDM then implies weak convergence of the process
√
L(F̂i(v)−Fi(v)),

to a tight Gaussian process on [0, v0],

√
L(F̂i(v)− Fi(v)) ψ′(Gi,G

0
i )(v)

= (1− Fi(v))

(∫ v

0

dG0
i (u)

1−Gi(u)
+

∫ v

0

Gi(u)dG
0
i (u)

(1−Gi(u))2

)

. (23)

The estimator F̂i, together with some other estimators defined later using ψ, will be used as inputs

for construction of estimators using the de-censoring formula under collusion in (12). Because in (12)

the integral under the exponent extends up to the upper boundary of the support v, this requires that the

input estimators weakly converge on the entire support [0, v]. However, the main difficulty in obtaining

such results is that the denominator 1 − Gi(u) in (3) tends to 0 as u approaches v, and consequently,

the functional ψ is not Hadamard differentiable on the space of functions defined on the entire support

[0, v].

In order to overcome this difficulty, we propose a trimmed version of the estimator. The trimmed

estimator is denoted as F̃i(v) and is defined as

F̃i(v) ≡ F̂i(v ∧ v̄i,L),

where v̄i,L ↑ v is the trimming sequence, and the convergence of v̄i,L is in probability. We define v̄i,L

through the quantile transformation Ĝ−1
i (tL),

18 where tL ↑ 1:

v̄i,L ≡ Ĝ−1
i (tL).

In other words, we trim values v using a sequence of extreme quantiles of the estimated distribution of

bids. Such a trimming scheme is convenient as it does not require estimation of the upper bound of the

support of the distribution of valuations. The trimming parameter v̄i,L has to approach the upper bound

of the support at a rate faster than L−1/2 to avoid an asymptotic bias. At the same time the rate has to

18We use the standard definition of quantile transformations: For a CDF H , H−1(t) = inf{v : H(v) ≥ t}, where

t ∈ (0, 1). In fact, since we considering distributions with compact supports, (0, 1) can be changed to [0, 1].
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be sufficiently slow to (uniformly) control the approximation error in the FDM. The assumption below

prescribes sufficient bounds on the rate.

Assumption 5. The trimming parameter tL satisfies tL = 1− L−β with 1/2 < β < 3/4.

We also make the following smoothness assumption.

Assumption 6. The CDFs Fi’s have densities fi’s, which are smooth (belong to C∞) and bounded

away from zero on the support [0, v̄].

With these assumptions, the result in (23) can be strengthened to hold over the entire support [0, v].

Proposition 4 (Weak convergence under competition). Under Assumptions 1–6, the following weak

convergence holds for the trimmed estimators F̃i jointly for all i, over the entire support [0, v],

√
L(F̃i − Fi) ψ′(Gi,G

0
i ).

We now turn to estimation of the distribution of bidder valuations under collusion. Our estimation

strategy again follows the plug-in approach. It is convenient to define the expression appearing on the

right-hand side of collusion de-censoring formula (12) as a functional:

ψcol(H1, H2)(v) ≡ exp

(

−
∫ ∞

v

dH1(u)

H2(u)

)

.

The identification result in Proposition 2 can now be stated as a functional of F `
i (·) and Fcol(·):

Fi(v) = ψcol(F
`
i , Fcol)(v),

where F `
i ≡ ψ(G0,`

col, G
`
i) and Fcol ≡ ψ(G0

col, Gcol).

The distributions F `
i and Fcol are estimated as follows. First, we estimate the distributions G`

i and

G0,`
i as the empirical averages in parallel to (85), however, conditional on the event that i is the leader,

`i = 1:

Ĝ`
i(b) =

∑L
l=1 1(bil ≤ b, `il = 1)
∑L

l=1 1(`il = 1)
, Ĝ0,`

i (b) =

∑L
l=1 1(bil ≤ b, wil = 0, `il = 1)

∑L
l=1 1(`il = 1)

. (24)
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We similarly estimate the distributions for the maximum bid b∗l ≡ maxi∈Ncol
bil in the group of suspects

Ncol:

Ĝcol(b) =
1

L

L∑

l=1

1(b∗l ≤ b), Ĝ0
col(b) =

1

L

L∑

l=1

1(b∗l ≤ b, wl = 0). (25)

These estimators are then plugged in to obtain the consistent estimators F̂ `
i,L and F̂col:

F̂ `
i = ψ(Ĝ0,`

i , Ĝ`
i,L), F̂col = ψ(Ĝ0

col, Ĝcol). (26)

Using the trimmed estimators

F̃ `
i (v) ≡ F̂ `

i (v ∧ v̄i,L), F̃col ≡ F̂col(v ∧ v̄col,L), (27)

where v̄col,L ≡ Ĝ−1
col(tL), the estimator of Fi under collusion is defined by the plug-in approach as

F̃ col
i = ψcol(F̃

`
i , F̃col). (28)

In parallel to the result in Proposition 4, one can show weak convergence on the entire support [0, v]

of the empirical processes for F̃ `
i and F̃col to tight Gaussian processes, denoted respectively as F`

i and

Fcol:

√
L(F̃ `

i − F `
i ) F

`
i ≡ ψ′(G0,`

i ,G`
i),

√
L(F̃col − Fcol) Fcol ≡ ψ′(G0

col,Gcol), (29)

where
(
G

0,`
i ,G`

i ,G
0
col,Gcol

)
are (correlated) Gaussian processes that arise in the weak convergence of

the corresponding estimators:

√
L(Ĝ0,`

i −G0,`
i , Ĝ`

i −G`
i , Ĝ

0
col −G0

col, Ĝcol −Gcol) 
(

G
0,`
i ,G`

i ,G
0
col,Gcol

)

, (30)

and the weak convergence holds jointly with that in (21) and across i’s. The corresponding covariances

are defined similarly to those in (22). The functional derivative of ψcol, at H1 = F `
i and H2 = Fcol, can
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be computed as

ψ′
col(h1, h2)(v) = Fi(v)

(

−
∫ v

v

dh1(u)

Fcol(u)
+

∫ v

v

h2(u)dF
`
i (u)

F 2
col(u)

)

.

The following proposition establishes a result analogous to that in Proposition 4, but under collu-

sion.

Proposition 5 (Weak convergence under collusion). Under Assumptions 1–6, the following weak con-

vergence holds jointly for all i’s, over any proper sub-interval [v0, v] ⊂ (0, v].

√
L(F̃ col

i − Fi) ψ′
col(F

`
i ,Fcol),

where F
`
i and Fcol are defined in (29).

Remark 1. The weak convergence in Proposition 5 is over any compact interval that excludes 0, the

lower boundary of the support. The reason for this is that Fcol(u) → 0 as u ↓ 0, which creates a “small

denominator” problem: the functional ψcol is not Hadamard differentiable on the space of functions

defined on the entire support [0, v]. However, it is Hadamard differentiable on any sub-interval with

a strictly positive lower bound. This is the same difficulty encountered for the estimator F̂i under

competition, which we resolved by trimming the support of valuations from above. We conjecture that

a similar trimming approach, now from below, would work here as well, but we do not pursue such an

extension.

In finite samples, it is unlikely to observe a cartel leader with a very small valuation. Therefore,

the estimator F̂ col
i will suffer from a substantial small sample bias for valuations v near zero. Thus,

extending Proposition 5 to the lower bound of the support is not practical.

Similarly, one can expect a substantial small sample bias for valuations v near v̄: in finite samples,

it is unlikely to observe a cartel leader with a very large valuation near the upper boundary of the

support losing to the competitive fringe. Hence, for testing purposes, we will focus below on proper

sub-intervals [v0, v0] ⊂ (0, v).
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1.4.1 Econometric Test of Collusion

We begin by testing the null hypothesis that bidder i bids competitively. The null can be stated as

H0,i : Gi(b) = Gpred
i (b) for all b. The corresponding alternative hypothesis is collusive behavior of

bidder i, which can be stated as H1,i : Gi(b) ≥ Gpred
i (b) with strict inequalities for some b’s.

The basis of the test will be the deviation of the actual CDF of bids submitted in the auction Gi(b)

from the predicted competitive CDF of i’s bids Gpred
i (b). Pick a compact proper sub-interval [v0, v0] ⊂

(0, v), and consider a maximum deviation statistic

T̂i = max
b∈[v

0
,v0]

[

∆̂i(b)
]

+
, (31)

where

∆̂i(b) ≡ Ĝi(b)− Ĝpred
i (b)

denotes the difference between the estimated distribution of bids of bidder i and the estimated predicted

distribution of bids for bidder i under competition, and

[x]+ =







x if x > 0,

0 otherwise.

Large values of this statistic will be indicative of collusion.

Using (13) and (15), we can express the predicted (or counterfactual) CDF of bids for suspect bidder

i under competition as a functional

Gpred
i =ψi,pred

(
Fi, {Fj}j∈Ncol\{i}, {Fj}j∈Ncom

)

≡1− (1− Fi)



1−
∏

j∈Ncol\{i}

Fj

∏

j∈Ncom

Fj



 . (32)

The functional ψi,pred involves only products of CDFs and, consequently, is Hadamard differentiable.

We denote its Hadamard derivative by ψ′
i,pred

(
hi, {hj}j∈Ncol\{i}, {hj}j∈Ncom

)
. Note that for j ∈ Ncol,
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Fj = ψcol(F
`
j , Fcol). Similarly for j ∈ Ncom, Fj = ψ(G0

j , Gj). Therefore, under the null of competi-

tion, a repeated application of the FDM together with Propositions 4 and 5 implies that the difference

between the estimated distributions Ĝi and Ĝpred
i converges weakly to a mean-zero Gaussian process

on [v0, v0]:

√
L∆̂i(b) =

√
L(Ĝi − Ĝpred

i ) Gi −G
pred
i ,

where

G
pred
i = ψ′

i,pred

(

ψ′
col(F

`
i ,Fcol),

{
ψ′
col(F

`
j ,Fcol)

}

j∈Ncol\{i}
,
{
ψ′(G0

j ,Gj)
}

j∈Ncom

)

. (33)

The Continuous Mapping Theorem then implies that under the null of competition, the statistic
√
LT̂i

also converges weakly:

√
LT̂i  max

b∈[v
0
,v0]

[Gi(b)−G
pred
i (b)]+. (34)

At the same time according to Assumption 4, the statistic
√
LT̂i is divergent if bidder i participates in

the cartel.

In principle, the limiting distribution of
√
LT̂i that appears above could be computed through the

simulation of the Gaussian processes Gi(b) and G
pred
i (b). However, since the covariance structure of the

limiting process is complicated due to the multi-step nature of our estimator, we propose to approximate

the null distribution of our test statistic by the bootstrap.

The bootstrap samples are generated by drawing randomly with replacement L auctions from the

original sample of L auctions. Let {(b†1l, . . . , b
†
Nl) : l = 1, . . . , L} be a bootstrap sample, and M be

the number of bootstrap samples. In each bootstrap sample, we construct Ĝ†
i and Ĝ0,†

i , which are the

bootstrap analogues of Ĝi and Ĝ0
i respectively. The bootstrap version of the trimmed estimator F̃i is

given by

F̃ †
i (v) = ψ(Ĝ0,†

i , Ĝ†
i )(v ∧ v̄

†
i,L),
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where v̄†i,L ≡ (Ĝ†
i )

−1(tL), and the trimming parameter tL is defined in Assumption 5.

We can similarly define the bootstrap estimators corresponding to the decensoring formula under

collusion. Our functional notation allows to define those estimators conveniently as follows. Let Ĝ`,†
i ,

Ĝ0,`,†
i , Ĝ†

col, and Ĝ0,†
col be the bootstrap analogues of Ĝ`

i , Ĝ
0,`
i , Ĝcol, and Ĝ0

col respectively, see equations

(24) and (25). As in equations (26) and (27), we have F̃ `,†
i (v) = ψ(Ĝ0,`,†

i , Ĝ`,†
i )(v∧v̄†i,L), and F̃ †

col(v) =

ψ(Ĝ0,†
col, Ĝ

†
col)(v∧ v̄

†
col,L) with v̄†col,L ≡ (Ĝ†

col)
−1(tL). Moreover, following equation (28), the bootstrap

estimator of the distribution Fi under potential collusion is F̃ col,†
i = ψcol(F̃

`,†
i , F̃ †

col). We can now

define the bootstrap analogue of the counterfactual (predicted) distribution of bids of bidder i:

Ĝpred,†
i = ψi,pred

(
F̃ col,†
i , {F̃ col,†

j }j∈Ncol\{i}, {F̃
†
j }j∈Ncom

)
.

Lastly, we construct the bootstrap analogue of T̂i:

T̂ †
i = max

b∈[v
0
,v0]

[

∆̂†
i (b)− ∆̂i(b)

]

+
,

where

∆̂†
i (b) = Ĝ†

i (b)− Ĝpred,†
i (b)

is the bootstrap analogue of ∆̂i(b).
19

Let {T̂ †
i,m : m = 1, . . .M} be the collection of the bootstrap test statistics computed in bootstrap

samples 1 through M. The critical value ĉi,1−α is the (1− α)-th sample quantile of {T̂ †
i,m : m =

1, . . .M}, where α is the desired asymptotic significance level. The null hypothesis of competitive

behaviour for bidder i is rejected when T̂i > ĉi,1−α.

Our next proposition establishes the validity of the bootstrap procedures.

19Note that to ensure a valid bootstrap approximation, we must re-center ∆̂†
i (b) by ∆̂i(b). The re-centering is needed to

ensure that the bootstrap version of the test statistic is generated under the null.
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Proposition 6. Under Assumptions 1–6, the following results hold jointly:

√
L(F̃ †

i − F̂i) ψ′(Gi,G
0
i ), v ∈ [0, v], (35)

√
L(F̃ col,†

i − F̃ col
i ) ψ′

col(F
`
i ,Fcol), v ∈ [v0, v], (36)

√
L(∆̂†

i − ∆̂i) Gi −G
pred
i , b ∈ [v0, v]. (37)

Moreover, the results also hold jointly across i’s.

Remark 2. The proof of Proposition 6 relies on the strong approximation results for the bootstrap in

Chen and Lo (1997). The Gaussian processes Gi, G
0
i , F`

i , Fcol, and G
pred
i in Proposition 6 should

be viewed as independent copies of the corresponding processes appearing in Propositions 4, 5, and

equation (33).

The validity of the bootstrap test now follows from (37) as an application of the Continuous Map-

ping Theorem.

Corollary 1. Under Assumptions 1–6,

√
LT̂ †

i  max
b∈[v

0
,v0]

[Gi(b)−G
pred
i (b)]+. (38)

Remark 3. Consistency of the bootstrap testing procedure follows from (34) and (38) by Polýa’s The-

orem, i.e. P(
√
LT̂i > ĉi,1−α) → α when H0,i : Gi(b) = Gpred

i (b) is true.

Our collusion test can be applied bidder by bidder to construct an estimated set of colluders (a

cartel set). However, due to the multiple hypothesis nature of this procedure, it is necessary to control

the overall probability of falsely implicating a competitive firm. This can be achieved, for example, by

using the Holm-Bonferroni sequential testing procedure that we now describe. Let α denote the overall

significance level. The procedure is performed by ordering the individual p-values from smallest to

largest,

p(1) ≤ ... ≤ p(K),

where K is the number of suspects, i.e. the number of bidders in Ncol.
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Step 1 The firm with the smallest p-value is included in the cartel set if

p(1) < α/K,

after which one proceeds to Step 2. Otherwise the procedure stops and none of the firms are

included in the cartel.

Step 2 The firm with the second-smallest p-value is tested next. It is included in the cartel if

p(2) < α/(K − 1),

after which one proceeds to the next step. Otherwise the procedure stops and none of the firms

are included in the cartel. (The first firm that was included is now excluded as there can never be

a single-firm cartel.)

Step 3 The firm with the third-lowest p-value is tested and is included in the cartel if

p(3) < α/(K − 3),

after which one proceeds to the next step. Otherwise, the procedure stops with the two-firm cartel

(firms 1 and 2).

And so on until termination.

Once the composition of the cartel C has been estimated, we can investigate the damage caused by

collusion. The predicted auction price under competition is distributed as the second-order statistic:

Gpred(p) ≡
∑

j∈N

∏

i∈N\{j}

Fi(p)(1− Fj(p)) +
∏

i∈N

Fi(p).

This distribution can be estimated by the plug-in approach using the estimates of Fi(p) under compe-

tition for i ∈ N\Ĉ, and the estimates under collusion for i ∈ Ĉ under collusion, where Ĉ denotes the

estimated cartel set.
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Remark 4 (Heterogeneity). We have focused on the case where the same object is auctioned. In many

applications, auction-specific heterogeneity is important. Following Haile, Hong and Shum (2003), the

standard approach in the literature is to control for heterogeneity through a first-step regression,

bil = m(xl; θ) + εil,

where the error terms εil are independent of the object characteristics xl (and are also independent across

bidders). This regression can be estimated parametrically as in Haile, Hong, and Shum (2003). Our

estimators can be applied to the homogenized bids ε̂il resulting from this regression, and our bootstrap

test of collusion can be similarly performed with the homogenized bids.

1.5 Monte Carlo Experiment

In this section, we investigate the small-sample performance of our individual test in a Monte Carlo

experiment. We consider a setting with 3 bidders who draw values independently from the same distri-

bution, specified as log-normal, log Vi ∼ N(0, 1). Bidder 1 is always competitive, while bidders 2 and

3 may collude. We assume that collusion takes the following form: bidders 2 and 3 are aware of the

presence of the competitive bidder, and do not compete with each other if the competitive bidder has

dropped out. Thus, if the maximal cartel valuation max{V2, V3} > V1, the bidding stops at the price

equal to the competitive bidder’s valuation V1 even if min{V2, V3} > V1 and the price under competi-

tion would be V2. Otherwise, if max{V2, V3} ≤ V1, then the competitive bidder wins the auction at the

price equal to the cartel leader’s valuation max{V2, V3}.

The estimated predicted competitive distribution when the data are generated under collusion is

reported in Figures 1.1 and 1.2. All figures contain the plots of the estimated actual bid distribution, the

true predicted competitive bid distribution, and the estimated predicted competitive bid distributions.

For the smaller sample size L = 100, both small sample bias and sample variation are clearly present.

Still, even though the estimated predicted bid distribution is not too close to the true one, for most

values it is below the actual bid distribution (i.e. shifted towards higher bids). This suggests that even

in small samples, collusion might be detectable. The situation improves dramatically for the larger
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sample, L = 400 auctions. Indeed, it is remarkable how close the estimated predicted distribution is

to the true population distribution. If the data instead are generated under competition, then the three

curves are very close to each other for the sample of L = 400 auctions; see Figure 1.3.

To evaluate size properties of our testing procedure, we simulated bids data under competition, i.e.

for all three bidders their bids are generated as

Bi = min{Vi,max
j 6=i

{Vj}}, i = 1, 2, 3.

However, when applying the de-censoring formulas and computing the test statistics in the original and

bootstrap samples, we proceeded under the assumption that bidders 2 and 3 were collusive. We expect

that in this case there should not be any significant differences between the CDF of bids for a suspected

cartel member (Ĝ) and the predicted CDF of bids under competition (Ĝpred).

For power computations, bids for cartel members (bidders 2 and 3) were generated as described in

the beginning of the section:

Bi = min{Vi, V1}, i = 2, 3.

In this case, we expect to see the CDF of bids for a suspected cartel member (Ĝ) to be positioned above

the predicted CDF of bids under competition (Ĝpred), i.e. our test should reject the null of competitive

behaviour for bidders 2 and 3 with high probability.

The results of our Monte Carlo study are summarized in Table 1.1. The table reports average

rejection rates for 1,000 Monte Carlo repetitions. To compute bootstrap critical values, we used 1,000

bootstrap samples (at each Monte Carlo replication).

The test is slightly undersized in small samples of 100 auctions. However, in moderate size samples

of 400 auctions, the rejection rates under the null of competitive behaviour are very close to the nominal

levels. The test also has very good power properties. For example in the case of collusive behaviour

for bidders 2 and 3, the 5% test rejects the null with probabilities exceeding 60% in small samples and

98% in moderate samples.20

20The test was performed for bidder 2.

28



1.6 Tables

Table 1.1: Average rejection rates of the bootstrap test for collusion for different significance levels and

sample sizes (L)

significance level L = 100 L = 400 L = 100 L = 400

Competition (H0) Collusion (H1)

0.01 0.009 0.008 0.403 0.934

0.05 0.030 0.043 0.626 0.981

0.10 0.067 0.080 0.732 0.994
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1.7 Figures
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Cartel bidder: CDF of bids vs. their predicted CDF under competition
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Figure 1.1: Suspect cartel bidder; the data are generated under collusion. The sample size is 100

auctions.
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Figure 1.2: Suspect cartel bidder; the data are generated under collusion. The sample size is 400

auctions.
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Figure 1.3: Suspect cartel bidder; the data are generated under competition. The sample size is 400

auctions.
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1.8 Appendix : Proofs

1.8.1 Extended Functional Delta Method

The following lemma is an extension of the FDM (van der Vaart, 1998, Theorem 20.8) and allows

for functionals that depend on the sample size L. This includes functionals with sample-size-dependent

trimming.

Lemma H.1 (Extended Functional Delta Method). Let D and E be normed linear spaces. Suppose

that:

(i) rL‖φL(F )− φ(F )‖ → 0, where rL → ∞ as L→ ∞, and φL, φ : D → E.

(ii) There is a continuous linear map φ′F,L : D → E such that, for every compact D ∈ D0 ⊂ D,

sup
h∈D:F+h/rL∈D

∥
∥
∥
∥

φL(F + h/rL)− φL(F )

1/rL
− φ′F,L(h)

∥
∥
∥
∥
→ 0.

(iii) ‖φ′F,L(hL)− φ′F (h)‖ → 0 for all hL such that ‖hL − h‖ → 0 with h ∈ D0, where φ′F : D0 → E

is a continuous linear map.

(iv) GL = rL(FL − F ) G, where P (G ∈ D0) = 1.

Then, rL(φL(FL)− φ(F )) φ′F (G).

Proof. First, rL(φL(FL)−φ(F )) = rL(φL(FL)−φL(F ))+rL(φL(F )−φ(F )), where the second term

is o(1) by Condition (i) of the Lemma. Next, rL(φL(FL)−φL(F )) = rL(φL(F +GL/rL)−φL(F )) =

(φL(F + GL/rL) − φL(F ))/(1/rL) − φ′F,L(GL) + φ′F,L(GL) = op(1) + φ′F,L(GL), where the last

equality is by (ii), and the op(1) term converges in outer probability. The result now follows by (iii),

(iv) and the Extended Continuous Mapping Theorem (van der Vaart, 1998, Theorem 18.11(i)).
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1.8.2 Proofs of the Main Results

For the reasons that will be explained shortly, it will prove convenient to re-state our de-censoring

formulas using quantile transformations. For a CDF function G(·), let G−1(τ) denote its quantile

function, τ ∈ (0, 1). We introduce the following additional notation. Given a value v, we define

t = Gi(v),

Si(t) = Fi(G
−1
i (t)) (39)

=⇒ Fi(v) = Si(Gi(v)). (40)

In addition, we define the following quantile transformation of G0
i (v) = P (Bil ≤ v, wil = 0):

µi(τ) = G0
i (G

−1
i (τ)). (41)

Using those definitions, equation (3) implies the following expression for the quantile transformation

Si(t):

Si(t) = 1− exp

(

−
∫ t

0

dµi(τ)

1− τ

)

. (42)

The estimated version of Si(t) can be stated analogously. With Ĝi and Ĝ0
i denoting the estimated

versions Gi and G0
i respectively, we define µ̂i(τ) = Ĝ0

i (Ĝ
−1
i (τ)). We have now

Ŝi(t) = 1− exp

(

−
∫ t

0

dµ̂i(τ)

1− τ

)

,

where Ŝi is the estimated version of Si. Thus, our quantile transformation eliminates the random

denominator in the integral expression for the estimated CDF. Note that the estimator F̂i(v) in (19) can

be equivalently written via (40), as F̂i(v) = Ŝi(Ĝi(v)). Moreover, one can define the trimmed version
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of the estimator Ŝi(t), where in view of Assumption 5, the trimming is applied using the sequence tL:

S̃i(t) = Ŝi(t ∧ tL)

= F̂i(Ĝ
−1
i (t) ∧ Ĝ−1

i (tL))

= F̂i(Ĝ
−1
i (t ∧ tL))

= 1− exp

(

−
∫ t∧tL

0

dµ̂i(τ)

1− τ

)

.

The following notion of continuity plays an important role in the proofs:

Definition 1. A real-valued function h is α-Hölder continuous, denoted h ∈ Hα, if there are constants

C > 0 and α > 0 such that |h(x)− h(y)| ≤ C|x− y|α for all x and y in the domain of h.

The following lemma shows that the derivative of the measure µi is α-Hölder continuous with

α = 1/2.

Lemma H.2. Suppose that Assumption 1 holds. The function

µ′i(t) =
g0i (G

−1
i (t))

gi(G
−1
i (t))

is bounded from above and away from zero, continuously differentiable on [0, 1), and α-Hölder contin-

uous at t = 1 with α = 1/2.

Proof of Lemma H.2. It is convenient to write

µ′i(t) = ri(G
−1
i (t)),

where

ri(v) ≡
g0i (v)

gi(v)
. (43)

We first show that ri(·) is continuously differentiable on the entire support [0, v], including the upper
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boundary v. We have

ri(v) =
fi(v)(1− F−i(v))

fi(v)(1− F−i(v)) + f−i(v)(1− Fi(v))

=
fi(v)

1−F−i(v)
v−v

fi(v)
1−F−i(v)

v−v + f−i(v)
1−Fi(v)
v−v

=
fi(v)h−i(v)

fi(v)h−i(v) + f−i(v)hi(v)
,

where we denoted

hi(v) =
1− Fi(v)

v − v
, h−i(v) =

1− F−i(v)

v − v
.

Our assumption that the distributions Fi(·) have densities fi(·), smooth (C∞) and bounded away from

0 on the support [0, v], implies that hi(·) and h−i(·) are also smooth and positive on [0, v]. It follows

that ri(·) is smooth on [0, v] (including the upper boundary v).

Next, we show that G−1
i (t) is Hölder α-continuous with α = 1/2. Since

1−Gi(v) = (1− Fi(v)(1− F−i(v)) = hi(v)h−i(v)(v − v)2,

it follows that G′
i(v) = 0 and G′′

i (v) = −2hi(v)h−i(v) < 0. Using our assumption that the densities

fi(·) are C∞ on [0, v], the Morse Lemma21 implies that there exists a diffeomorphism q : [0, v] → [0, 1]

(a smooth function with a smooth inverse) such that

1−Gi(v) = q(v − v)2.

Inverting this relationship yields

G−1
i (t) = v − q−1(

√
1− t),

which implies that G−1
i (t) is Hölder α-continuous with α = 1/2 as a composition of a smooth func-

tion and
√
1− t. Finally, µ′i(t) = ri(G

−1
i (t)) is also Hölder 1/2-continuous as a composition of a

21See Guillemin and Pollack (1974), p. 42.
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continuous ri(·) and Hölder 1/2-continuous G−1
i (t).

The population functionsFi, Si,Gi,G
0
i , and µi as well as their estimators can be viewed as elements

of the metric space D of cadlag functions equipped with the uniform norm ‖ · ‖. Our estimation

procedure is driven by Ĝi, Ĝ
0
i , and other empirical distributions involving the bids {Bil}. The following

lemma presents important properties of those estimators, as well as those of µ̂i. Let denote the weak

convergence.

Lemma H.3. The following results hold jointly for all i’s.

(a)
(√
L(Ĝi,L −Gi),

√
L(Ĝ0

i,L −G0
i )
)
 

(
Gi,G

0
i

)
, where Gi and G

0
i are two correlated Gaussian

processes on [0, v].

(b) Under Assumption 1,
√
L(µ̂i,L − µi) Mi, where for t ∈ [0, 1],

Mi(t) = G
0
i (G

−1
i (t))−Gi(G

−1
i (t))µ′i(t).

Furthermore, P (Mi(·) ∈ Hα) = 1 for any α < 1/2.

(c) Under Assumption 1, there exists a version of the Gaussian process Mi such that for any α < 1/2,

lim sup
L→∞

Lα/2
∥
∥
∥

√
L(µ̂i,L − µi)−Mi

∥
∥
∥ <∞ a.s.

Remark 5.

(1) Part (a) of Lemma H.3 is a standard Functional CLT result for Empirical Processes, see van der

Vaart (1998), Theorem 19.5. In fact, the result holds jointly with the weak convergence in (30)

for other empirical distributions involving the bids {Bil}.

(2) The first claim in part (b) of the lemma follows from part (a) by the FDM, see van der Vaart

(1998), Lemma 20.10 and Lemma 21.3 for quantile functions. Note that Lemma H.2 implies that

µ′i is a bounded function. The α-Hölder continuity result holds by (i) the α-Hölder continuity

for of µ′i with α = 1/2 shown in Lemma H.2, and (ii) because the sample paths of Gi and G
0
i
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are α-Hölder continuous with probability one for any α < 1/2, see for example Revuz and Yor

(1999), Theorem 2.2.

(3) Part (c) uses a point-wise approximation of empirical processes by Gaussian processes, see

van der Vaart (1998), page 268, and Hölder continuity of µ′i in Lemma H.2.

Proof of Lemma H.3. To simplify the notation, we omit bidder’s index i in whenever there is no risk

of confusion.

To show part (b), for a CDF G, let q(G) = G−1 be the quantile transformation. By Lemma 21.3 in

van der Vaart (1998), the Hadamard derivative of q (tangentially to the set of continuous functions h),

is q′G(h) = −h(G−1)/g(G−1), where g is the PDF of G. We have:

1

δL

(
(G0 + δLh

0
L)(q(G+ δLhL))−G0(q(G))

)

= h0L(q(G+ δLhL)) +
1

δL

(
G0(q(G+ δLhL))−G0(q(G))

)

→ h0(q(G)) + g0(q(G))q′G(h)

= h0(G−1)− g0(G−1)

g(G−1)
h(G−1),

where the convergence holds in the uniform norm for all (h0L, hL) → (h0, h) as δL → 0 tangentially to

the set of continuous functions h. This concludes the proof of the first claim in part (b).

To show the α-Hölder continuity result in (b), write M(t + δ) − M(t) = G
0(G−1(t + δ)) −

G
0(G−1(t)) + G(G−1(t))(µ′(t) − µ′(t + δ)) − (G(G−1(t + δ)) − G(G−1(t)))µ′(t + δ). For any

α < 1/2,

|G0(G−1(t+ δ))−G
0(G−1(t))| ≤ C1|G−1(t+ δ)−G−1(t+ δ)|α ≤ C1C

α
2 |δ|α,

where the first inequality follows because G
0 ∈ Hα for any α < 1/2 by Theorem 2.2 in Revuz and

Yor (1999), and the second inequality holds because G−1 is continuously differentiable and, therefore,

Lipschitz. By Lemma H.2,

|G(G−1(t))(µ′(t+ δ)− µ′(t))| ≤ C|δ|1/2 supv∈[0,v] |G(v)|.
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Lastly, for any α < 1/2,

|µ′(t+ δ)(G(G−1(t+ δ))−G(G−1(t)))| ≤ C|δ|α sup
t∈[0,1]

|µ′(t)|,

where supt∈[0,1] |µ′(t)| <∞ by Lemma H.2.

To show part (c), recall that both Ĝi and Ĝ0
i are driven by the same random variable Bil. Let

δL = 1/
√
L, and ρL = δL(logL)

2. By the last result on page 268 in van der Vaart (1998), there are

Gaussian processes G and G
0 such that:

lim sup
L→∞

ρ−1
L

∥
∥
∥

√
L(Ĝ−G)−G

∥
∥
∥ < ∞ a.s., (44)

lim sup
L→∞

ρ−1
L

∥
∥
∥

√
L(Ĝ0 −G0)−G

0
∥
∥
∥ < ∞ a.s.. (45)

Define Ĝ =
√
L(ĜL −G), and Ĝ

0 =
√
L(Ĝ0

L −G0).

√
L(µ̂− µ) =

√
L(Ĝ0(Ĝ−1)−G0(G−1))

=
1

δL

(

(G0 + δLĜ
0)(q(G+ δLĜ)−G0(q(G))

)

= Ĝ
0(q(G+ δLĜ)) + g0(q(G+ δ∗LĜ))

1

δL
(q(G+ δLĜ)− q(G)), (46)

where 0 ≤ δ∗L ≤ δL denotes a generic mean value.

For 0 < α < 1/2, pick εL = O(ρ
1/α
L ). As in the proof of Lemma 21.3 in van der Vaart (1998),

(G+ δLĜ)(q(G+ δLĜ)− εL)) ≤ G(q(G)) ≤ (G+ δLĜ)(q(G+ δLĜ)).
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Moreover,

∥
∥
∥Ĝ(q(G+ δLĜ)− εL))− Ĝ(q(G+ δLĜ)))

∥
∥
∥

≤ 2
∥
∥
∥Ĝ−G

∥
∥
∥+

∥
∥
∥G(q(G+ δLĜ)− εL))−G(q(G+ δLĜ)))

∥
∥
∥

= Op(ρL) + C
∥
∥
∥q(G+ δLĜ)− εL)− q(G+ δLĜ))

∥
∥
∥

α

= Op(ρL),

where the equality in the line before the last holds by the definition of εL, (44) and α-Hölder continuity

of the Gaussian process and because q is Lipschitz. Therefore,

Ĝ(q(G+ δLĜ))) +Oa.s.(ρL) ≤ G(q(G))−G(q(G+δLĜ))
δL

≤ Ĝ(q(G+ δLĜ)),

or

q(G+ δLĜ)− q(G)

δL
= −Ĝ(q(G+ δLĜ)))

g(q(G+ δ∗LĜ))
+Op(ρL). (47)

Let r(·) be as in (43). Using (46) and (47), we obtain:

∥
∥
∥

√
L(µ̂− µ)−M

∥
∥
∥ ≤

∥
∥
∥Ĝ

0(q(G+ δLĜ))−G
0(q(G))

∥
∥
∥

+
∥
∥
∥r(q(G+ δ∗LĜ))Ĝ(q(G+ δLĜ)))− r(q(G))G(q(G))

∥
∥
∥ .

The first term on the right-hand side can be bounded by

∥
∥
∥G

0(q(G+ δLĜ))−G
0(q(G))

∥
∥
∥+Op(ρL) = Op(δ

α
L + ρL),

for any α < 1/2, where we used ‖Ĝ‖ ≤ ‖G‖+Op(ρL). The second term can be bounded by

∥
∥
∥r(q(G+ δ∗LĜ))− r(q(G))

∥
∥
∥ ‖Ĝ‖+

∥
∥
∥Ĝ(q(G+ δLĜ)))−G(q(G))

∥
∥
∥ ‖r‖

= Op

(

δ
1/2
L + δαL

)

.
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The result in part (c) follows from the last three displays.

The following lemma establishes the weak convergence of the trimmed quantile-transformed esti-

mator S̃i(t) = Ŝi(t ∧ tL).

Lemma H.4. For t ∈ [0, 1], let

φ(µi)(t) = 1− exp

(

−
∫ t

0

dµi(τ)

1− τ

)

,

φ′(h)(t) = (1− Si(t))

∫ t

0

dh(τ)

1− τ
,

where φ′ is the functional (Hadamard) derivative of φ corresponding to µi. Define further φL(µi)(t) =

φ(µi)(t ∧ tL), φ′L(h)(t) = φ′(h)(t ∧ tL). Lastly, let

D0 = {h ∈ D[0, 1] : h ∈ Hα for any α < 1/2, h(0) = 0} . (48)

The following results hold jointly for all i’s:

(a) For all sequences hL such that ‖hL − h‖ = O(δαL) for some h ∈ D0 and 0 < α < 1/2,

∥
∥
∥
∥

φL(µi + δLhL)− φL(µi)

δL
− φ′L(hL)

∥
∥
∥
∥
→ 0, (49)

provided that as δL → 0 and 1− tL → 0,

δ1+α
L

1− tL
= O(1),

δL
(1− tL)1−α

= O(1). (50)

(b) Under Assumption 1, ‖S̃i−Si‖ →p 0 and
√
L(S̃i−Si) φ′(Mi), provided that tL satisfies the

conditions in (50) with δL = 1/
√
L, and (1− tL)

√
L→ 0.

Remarks.

(1) The modulus of continuity condition for h in the definition of D0 in (48) can be imposed by part

(b) of Lemma H.3.
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(2) The result in part (a) of Lemma H.4 is Hadamard differentiability tangentially to D0 for trimmed

functionals with a sample-dependent trimming. In this result, the linearization error is effectively

controlled and negligible on the expanding interval [0, tL]. Furthermore, unlike the standard

tangential Hadamard differentiability, we require that the sequences hL converge to elements of

D0 at a sufficiently fast rate, which is justified by the strong approximation rate in Lemma H.3

(c).

(3) The results in parts (b) of Lemma H.4 are the uniform consistency of the trimmed estimator of

Si for its untrimmed population counterpart, and the weak convergence of the trimmed estimator

of Si. Note that, in the weak convergence result, we use the untrimmed population object for

re-centering. Similarly, the limiting process involves the untrimmed functional φ′. Thus, the

trimming has no asymptotic effect on estimation. This is in part due to the condition
√
L(1 −

tL) → 0, which implies that the trimming parameter tL must approach 1 at a rate faster than
√
L.

(4) The conditions on the trimming parameter tL in part (b) ensure that the approximation error in

the definition of Hadamard differentiability in (49) is negligible. The rate in the first condition is

determined by the approximation of the empirical process by Mi in Lemma H.3(c). The second

rate is driven by the α-Hölder continuity of the limiting process Mi.

(5) All the conditions imposed on tL in Lemma H.4 can be satisfied, for example, by choosing

1− tL = L−β , with 1/2 < β < 3/4.

as in Assumption 5. With such a choice, (1 − tL)
√
L = L−β+1/2 → 0. The first condition in

(50) holds as L−1/2(1+α)+β → 0 or β ≤ (1 + α)/2, since α can be chosen arbitrarily close to

1/2. The second condition in (50) implies β ≤ 1/(2(1 − α)) < 1, where the last inequality is

again due to the fact that α can be chosen arbitrarily close to 1/2. Hence, the second condition

in (50) is non-binding. Thus, the rate of convergence on the trimming parameter is driven mainly

by the approximation in Lemma H.3(c).

Proof of Lemma H.4. To simplify the notation, we omit bidder’s index i.
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For part (a), direct calculations show:

1

δL
(φL(µ+ δLhL)(t)− φL(µ)(t))

= exp

(

−
∫ t∧tL

0

dµ(τ)

1− τ

)
1

δL

(

1− exp

(

−δL
∫ t∧tL

0

dhL(τ)

1− τ

))

= (1− S(t ∧ tL))
∫ t∧tL

0

dhL(τ)

1− τ

+0.5 (1− S(t ∧ tL)) δL
(∫ t∧tL

0

dhL(τ)

1− τ

)2

exp

(

−δ∗L
∫ t∧tL

0

dhL(τ)

1− τ

)

, (51)

where the second equality follows by the mean-value expansion of 1− exp(−sx) around s = 0, and δ∗L

is the mean-value: 0 ≤ δ∗L ≤ δL.

Using integration by parts,

∫ t∧tL

0

dhL(τ)

1− τ
=

hL(t ∧ tL)
1− t ∧ tL

−
∫ t∧tL

0
hL(τ)d

(
1

1− τ

)

=
h(t ∧ tL)
1− t ∧ tL

−
∫ t∧tL

0
h(τ)d

(
1

1− τ

)

+O

(
δαL

1− t ∧ tL

)

=

∫ t∧tL

0

dh(τ)

1− τ
+O

(
δαL

1− t ∧ tL

)

, (52)

where the big-O term is uniform in t and we used the condition ‖hL − h‖ = O(δαL). Moreover, since

h ∈ Hα for any α < 1/2 and h(1) = 0,

∫ t∧tL

0

dh(τ)

1− τ
= −h(1)− h(t ∧ tL)

1− t ∧ tL
+

∫ t∧tL

0
(1− τ)α

h(1)− h(τ)

(1− τ)α
d

(
1

1− τ

)

+h(1)

(
1

1− t ∧ tL
−
∫ t∧tL

0
d

(
1

1− τ

))

= O

(
1

(1− t ∧ tL)1−α

)

+O(1)

∫ t∧tL

0
(1− τ)α−2dτ + h(1)

= O

(

1 +
1

(1− t ∧ tL)1−α

)

, (53)

43



where the O(1) terms are uniform in t. Also, since S is differentiable,

sup
t∈[0,1]

∣
∣
∣
∣

1− S(t ∧ tL)
1− t ∧ tL

∣
∣
∣
∣
= O(1). (54)

By (52), (53), and (54),

(1− S(t ∧ tL))δL
(∫ t∧tL

0

dhL(τ)

1− τ

)2

= δLO(1− t ∧ tL)O
(

1 +
δαL

1− t ∧ tL
+

1

(1− t ∧ tL)1−α

)2

= O

(

δ
1/2+α
L

(1− t ∧ tL)1/2
+

δ
1/2
L

(1− t ∧ tL)1/2−α

)2

,

and, since 1− tL → 0,

sup
t∈[0,1]

∣
∣
∣
∣
∣
(1− S(t ∧ tL))δL

(∫ t∧tL

0

dhL(τ)

1− τ

)2
∣
∣
∣
∣
∣

= O

(

δ
1/2+α
L

(1− tL)1/2
+

δ
1/2
L

(1− tL)1/2−α

)2

, (55)

where the first term in the O-expression is due to approximation of the empirical process by a Gaussian

process, and the second term is due to the α-Hölder continuity of the limiting process. Next, consider

the exponential term in (51). By (52) and (53),

sup
t∈[0,1]

∣
∣
∣
∣
δL

∫ t∧tL

0

dhL(τ)

1− τ

∣
∣
∣
∣

= O

(

δL

(

1 +
1

(1− tL)1−α

)

+
δ1+α
L

1− tL

)

. (56)

Here, the first term in the O-expression is due to α-Hölder continuity of the limiting process, and the

second term is due to the approximation of hL by a Gaussian process. Lastly, by (51), (55), and (56),

for hL’s such that ‖hL − h‖ = O(δαL) and h ∈ D0,

∥
∥
∥
∥

1

δL

(

φL(µ+ δLhL)(t)− φL(µ)(t)
)

− (1− S(t ∧ tL))
∫ t∧tL

0

dhL(τ)

1− τ

∥
∥
∥
∥

= O

(

δ
1/2+α
L

(1− tL)1/2
+

δ
1/2
L

(1− tL)1/2−α

)2

exp

(

O

(

δL +
δL

(1− tL)1−α
+

δ1+α
L

1− tL

))

= o(1) exp (O(1)) ,

where the last equality holds by (50).
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To show the uniform consistency in part (b), in place of hL we use M̂ =
√
L(µ̂−µ), which satisfies

the conditions imposed on hL in part (a) of the lemma.

∥
∥
∥S̃L − S

∥
∥
∥ =

∥
∥
∥φL(µ+ L−1/2

M̂)− φ(µ)
∥
∥
∥

≤
∥
∥
∥φL(µ+ L−1/2

M̂)− φL(µ)
∥
∥
∥+ ‖φL(µ)− φ(µ)‖

≤ L−1/2
∥
∥
∥φ′L(M̂)

∥
∥
∥+ sup

t∈[tL,1]
(S(t)− S(tL)), (57)

where the inequality in the last line holds by part (a) of the lemma (for the first term) and because

φL(t) = φ(t) for t ≤ tL (for the second term). Since S is differentiable with a bounded derivative, and

because for t ≥ tL we have t− tL ≤ 1− tL, the second term in (57) is of order

sup
t∈[tL,1]

(S(t)− S(tL)) = O(1− tL) = o(1). (58)

Moreover, for hL that satisfies the conditions from part (a) of the lemma, by (52) and (54) we have

sup
t∈[0,1]

∣
∣
∣
∣
(1− S(t ∧ tL))

(∫ t∧tL

0

dhL(τ)

1− τ
−
∫ t∧tL

0

dh(τ)

1− τ

)∣
∣
∣
∣
= O (δαL) . (59)

It follows from (53), (54), and (59) that φ′L(M̂)(t) in (57) of order

δLO(1− t ∧ tL)Op

(
1

1− t ∧ tL

)1−α

= op(1)

uniformly in t, which concludes the proof of the uniform consistency in part (b).

To show the weak convergence result in part (b), we verify the conditions of Lemma H.1 with

rL = 1/δL =
√
L. For condition (i), as in (57) and (58),

√
L‖φL(µ)−φ(µ)‖ = O(

√
L(1−tL)) = o(1),

where the second equality is by the conditions imposed on tL in part (b) of Lemma H.4. Condition (ii)

of Lemma H.1 has been established in part (a) of Lemma H.4. Condition (iv) holds by Lemma H.3(b).

To show that condition (iii) of Lemma H.1 holds, first note that ‖φ′L(hL)− φ′L(h)‖ → 0 for ‖hL −

h‖ = O(δαL), where the latter condition is satisfied by M̂ with probability approaching one due to
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Lemma H.3(c) with δL = 1/
√
L:

∥
∥φ′L(hL)− φ′L(h)

∥
∥ = sup

t∈[0,tL]

∣
∣
∣
∣
(1− S(t ∧ tL))

∫ t∧tL

0

d(hL(τ)− h(τ))

1− τ

∣
∣
∣
∣

= O(δαL),

where the equality in the second line holds by (54). Next, φ′L(h)(t) − φ′(h)(t) = 0 for t ≤ tL. For

t ≥ tL,

φ′L(h)(t)− φ′(h)(t) = (1− S(tL))

∫ tL

0

dh(τ)

1− τ
− (1− S(t))

∫ t

0

dh(τ)

1− τ

= (S(t)− S(tL))

∫ tL

0

dh(τ)

1− τ
− (1− S(t))

∫ t

tL

dh(τ)

1− τ

= O (1− tL)
α − (1− S(t))

∫ t

tL

dh(τ)

1− τ
,

where the equality in the last line holds by (53) and (58), and the big-O term is uniform in t. For the

second term in the last display, consider

sup
t∈[tL,1]

∣
∣
∣
∣
(1− S(t))

∫ t

tL

dh(τ)

1− τ

∣
∣
∣
∣
=

∣
∣
∣
∣
∣
(1− S(t∗L))

∫ t∗
L

tL

dh(τ)

1− τ

∣
∣
∣
∣
∣

for some t∗L such that tL ≤ t∗L ≤ 1. If t∗L < 1,

∣
∣
∣
∣
∣
(1− S(t∗L))

∫ t∗
L

tL

dh(τ)

1− τ

∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣
(1− S(t∗L))

∫ t∗
L

0

dh(τ)

1− τ

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
(1− S(t∗L))

∫ tL

0

dh(τ)

1− τ

∣
∣
∣
∣

(60)

= O (1− t∗L)
α +O (1− tL)

α . (61)

If t∗L = 1, take the limit of the expression in (60) as t∗L → 1 to obtain convergence to zero due to (61),

which concludes the proof of part (b).

We can now state the proof of Proposition 4.

Proof of Proposition 4. Again, to simplify the notation, we omit bidder’s index i.

Write F (v) = ϕ(S,G)(v) ≡ S(G(v)). The functional ϕ is Hadamard differentiable, and its
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Hadamard derivative is equal to

ϕ′
S,G(hS , hG)(v) = hS(G(v)) + S′(G(v))hG(v),

where S′(t) denotes the derivative (density) of S at t. Therefore,

√
L(F̃ − F )(·) =

√
L(ϕ(S̃, Ĝ)− ϕ(S,G))

 φ′(M)(G(·))− S′(G(·))G(·)

= φ′(M)(G(·))− f(·)G(·)
g(·) , (62)

where the result in the second line holds by Lemma H.4(b) and Lemma H.3(a). The result in the last

line holds since S(t) = F (G−1(t)) and therefore S′(G(v)) = f(v)/g(v) Next,

φ′(M)(G(v)) = (1− S(G(v))

∫ G(v)

0

dM(τ)

1− τ

= (1− F (v))

∫ v

0

dM(G(u))

1−G(u)
, (63)

where the equality in the second line holds by a change of variable u = G−1(τ). By the definition of

Mi in Lemma H.3(b),

∫ v

0

dM(G(u))

1−G(u)
=

∫ v

0

dG0(u)

1−G(u)
−
∫ v

0

d (G(u)µ′(G(u)))

1−G(u)

=

∫ v

0

dG0(u)

1−G(u)
− G(v)µ′(G(v))

1−G(v)
+

∫ v

0

G(u)µ′(G(u))dG(u)

(1−G(u))2
, (64)

where the equality in the second line holds by integration by parts. Since µ(t) = G0(G(u)), µ′(G(u)) =

g0(u)/g(u) and therefore,

µ′(G(u))dG(u) = dG0(u). (65)

Lastly, by our basic decensoring formula (2),

µ′(G(v))

1−G(v)
=

g0(v)

g(v)(1−G(v))
=

f(v)

(1− F (v))g(v)
. (66)
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The result of the proposition now follows from (62)–(66).

Proof of Proposition 6. We omit bidder’s index i when there is no risk of confusion.

We show (35) first. Following the definition of µ in (41), we define

µ̂†(t) = Ĝ0,†((Ĝ†)−1(t)).

Following the definition of S in (39) and (42), we also define

Ŝ†(t) = F̂ †((Ĝ†)−1(t)) = 1− exp

(

−
∫ t

0

dµ̂†(τ)

1− τ

)

,

and a trimmed bootstrap estimator

S̃†(t) = Ŝ†(t ∧ tL) = 1− exp

(

−
∫ t∧tL

0

dµ̂†(τ)

1− τ

)

.

By adapting the proof of Lemma 21.3 in van der Vaart (1998) and as in the proof of Lemma H.3(b),

we can write

√
L(µ̂− µ) =

√
L
(

Ĝ0(G−1)−G0(G−1)
)

− g0(G−1)

g(G−1)

√
L
(

Ĝ(G−1)− τ
)

+op

(√
L
(

Ĝ0(G−1)−G0(G−1)
)

+
√
L
(

Ĝ(G−1)− τ
))

, (67)

√
L(µ̂† − µ) =

√
L
(

Ĝ0,†(G−1)−G0(G−1)
)

− g0(G−1)

g(G−1)

√
L
(

Ĝ†(G−1)− τ
)

+op

(√
L
(

Ĝ0,†(G−1)−G0(G−1)
)

+
√
L
(

Ĝ†(G−1)− τ
))

,

where the op term is uniform in τ , and therefore,

√
L(µ̂† − µ̂) =

√
L
(

Ĝ0,†(G−1)− Ĝ0(G−1)
)

− g0(G−1)

g(G−1)

√
L
(

Ĝ†(G−1)− Ĝ(G−1)
)

+op

(√
L
(

Ĝ0,†(G−1)− Ĝ0(G−1)
)

+
√
L
(

Ĝ†(G−1)− Ĝ(G−1)
))

. (68)
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Let G̃ and G̃0 denote estimators constructed using independent copies of the original data. By Proposi-

tion 3.1 in Chen and Lo (1997),

‖Ĝ† − Ĝ− G̃+G‖ = Oa.s.(L
−3/4(logL)3/4),

‖Ĝ0,† − Ĝ0 − G̃0 +G0‖ = Oa.s.(L
−3/4(logL)5/4).

Let µ̃ = G̃0(G̃−1), and note that µ̃ is an independent copy of µ̂. By taking the difference between (68)

and the same expansion as in (67) applied to µ̃, and applying the result of Chen and Lo (1997), we

obtain that
√
L‖µ̂† − µ̂− µ̃+ µ‖ = Oa.s.(L

−1/4(logL)5/4). (69)

Let h†L =
√
L(µ̂† − µ̂). As in equation (51) in the proof of Lemma H.4(a),

√
L(S̃†(t)− S̃(t))

= (1− S̃(t))

∫ t∧tL

0

dh†L(τ)

1− τ

+0.5
(

1− S̃(t)
)

δL

(
∫ t∧tL

0

dh†L(τ)

1− τ

)2

exp

(

−δ∗L
∫ t∧tL

0

dh†L(τ)

1− τ

)

. (70)

Next, let h̃L =
√
L(µ̃− µ) and εL = h†L − h̃L.We have:

∫ t∧tL

0

dh†L(τ)

1− τ
=

h†L(t ∧ tL)
1− t ∧ tL

−
∫ t∧tL

0

h†L(τ)dτ

(1− τ)2

=

∫ t∧tL

0

dh̃L(τ)

1− τ
+
εL(t ∧ tL)
1− t ∧ tL

−
∫ t∧tL

0

εL(τ)dτ

(1− τ)2

=

∫ t∧tL

0

dh̃L(τ)

1− τ
+Oa.s.

(

(logL)5/4

L1/4(1− t ∧ tL)

)

, (71)

where the equality in the last line is due to the definition of εL and by (69), and theOa.s. term is uniform

in t.

Since
√
L(S̃−S) φ′(M) by Lemma H.4(b), φ′ is linear, M is Gaussian and α-Hölder-continuous

for α < 1/2, and M(1) = 0, it follows that
√
L(S̃(t) − S(t))/(1 − t ∧ tL)α = Op(1) uniformly in t
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for α < 1/2, and

1− S̃(t) = (1− S(t ∧ tL))
(

1−
√
L(S̃(t)− S(t ∧ tL))√
L(1− S(t ∧ tL))

)

= (1− S(t ∧ tL))
(

1 +Op

(
1√

L(1− t ∧ tL)1−α

))

= (1− S(t ∧ tL))(1 + op(1)).

The equality in the last line holds by 1− tL = L−β with β < 3/4 and since α can be chosen arbitrarily

close to 1/2; moreover the op term is uniform in t. Hence, by (71),

(1− S̃(·))
∫ ·∧tL

0

dh†L(τ)

1− τ
= (1 + op(1))(1− S(· ∧ tL))

∫ ·∧tL

0

dh̃L(τ)

1− τ
+Op

(

L−1/4(logL)5/4
)

 φ′(M†(·)), (72)

where M
† is an independent copy of M since µ̃ is an independent copy of µ̂.

Similarly to (55) in the proof of Lemma H.4(b), since δL = 1/
√
L, and by (71),

sup
t∈[0,1]

∣
∣
∣
∣
∣
∣

(1− S(t ∧ tL))δL
(
∫ t∧tL

0

dh†L(τ)

1− τ

)2
∣
∣
∣
∣
∣
∣

= Op

(

δ
1/2+α
L

(1− tL)1/2
+

δ
1/2
L

(1− tL)1/2−α
+

(logL)5/4

L1/2(1− tL)1/2

)2

= op(1). (73)

Similarly to (56) in the proof of Lemma H.4(b) and by (71),

sup
t∈[0,1]

∣
∣
∣
∣
∣
δL

∫ t∧tL

0

dh†L(τ)

1− τ

∣
∣
∣
∣
∣

= Op

(

δL
(1− tL)1−α

+
δ1+α
L

1− tL
+

(logL)5/4

L3/4(1− tL)

)

= op(1), (74)

where the equality in the last line holds since 1− tL = L−β with β < 3/4.
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By (70), (72), (73), and (74) we have that

√
L(S̃†(t)− S̃(t)) φ′(M†(·)).

The result in (35) now follows by the FDM for the bootstrap (van der Vaart, 1998, Theorem 23.5) and

the same arguments as in the proof of Proposition 4, since F̃ † = S̃†(Ĝ†).

The result in (36) holds by the bootstrap FDM, Proposition 3.1 in Chen and Lo, (29), and since the

functional ψcol is Hadamard differentiable on [v0, v] ⊂ (0, v].

To show (37), write

√
L(∆̂†

i (b)− ∆̂i(b)) =
√
L(Ĝ†

i (b)− Ĝi(b))−
√
L(Ĝpred,†

i (b)− Ĝpred
i (b)).

The result in (37) follows by the bootstrap FDM and the previous results of the proposition as the

functional ψi,pred defined in (32) is Hadamard differentiable.
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Chapter 2

Copula-based Approach to Identification

and Estimation in English Auctions

2.1 Introduction

In this chapter we propose a copula-based approach to establish identification and estimation of

model primitives within English auctions under the absence of independence. Rising interest in copula-

based methods for empirical research has given impetus to an increasing amount of literature focused

on the subject. Since then, it has been extensively used to recover and estimate linear and non-linear

association between the variables of interest since it can parametrize the link between the variables in a

joint distribution. Hence, we develop a simple approach to test for correlation among bids. Furthermore,

we succeed in showing that joint distribution function of private valuations is identifiable under certain

conditions. We will look at model specification and estimation in this setup. For estimation, we will use

a two-stage approach, first estimating the marginals, then estimating the copula function. we assume

that the copula is parametric, but the marginal distributions are nonparametric. Finally, we propose a

semiparametric strategy, based on Archimedean copulas, to identify and estimate the model primitives

and analyze the correlation between bids in English auctions. One advantage that this approach has is

that it allows us to separate the estimation of the marginal distribution from the estimation of the joint

distribution of underlying bidder values.
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2.2 Literature Review

In his seminal paper, Sklar (1959) proved that there exists a mapping between the joint distribution

and its marginals. One advantage of this approach is that there is no need of imposing any distributional

assumptions on the marginal distribution, allowing us for flexibility to model various scenarios where

a different distribution assumption is needed for each marginal in question. Moreover, it allows us to

analyze the asymptotic properties of the dependence structure of the variables. Nelsen (2006) and Joe

(1997) present a comprehensive introduction and overview of copula theory. Most of the literature on

copulas focuses on the parametric approach. Brendstrup and Paarsch (n.d.) deploy a semiparametric

approach to establish identification and estimation of in a multi-object English auction. in Hubbard, Li,

and Paarsch (2012), the authors study first-price sealed bid auctions. There is less amount of literature

focused on the nonparametric methodology, such as Sancetta and Satchell (2004), Fermanian and Scail-

let (2003), Genest and Rivest (1993).

There are numerous parametric families of bivariate copulas that have been used in a variety of ap-

plications, refer to Joe (1997), Nelsen (2006) for an overview. There is less amount of research done in

multidimensional copulas, including those for constructing higher-dimensional Archimedean copulas

(refer to Hofert and Scherer (2011)). Other studies include Oh and Patton (2012), where the authors pro-

pose a new class of factor copulas and show that they have some desirable features in high-dimensional

applications. The Fréchet problem in higher dimensions has also been studied in the recent years - refer

to Embrechts (2009) for an overview.

In this paper, we will address the identification of English auctions, with asymmetric bidders and com-

plete set of bid information, attempting to model the correlation between bids within auctions. More

specifically, we show the identification of the true copula generator function of the joint distribution

of private values nonparametrically in the Archimedean class. Statistical uses of Archimedean copulas
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were studied in the works of Genest and MacKay (1986), Marshall and Olkin (1988), Oakes (1989).

This chapter draws partially on Fan and Liu (2013), which adopted the methodology used in Braek-

ers and Veraverbeke (2005). In Fan and Liu (2013), the authors provide identification results for a

linear quantile regression model with dependent censoring, providing the identified set and inference

procedure for the quantile regression coefficient where Archimedean copula were deployed to capture

the dependent censoring. Their identified set for the quantile regression coefficient is obtained by al-

lowing the copula function to vary within a parametric Archimedean family.

In the classical competing risks literature, Braekers and Veraverbeke (2005) demonstrate that if the

copula function is Archimedean with a known generator function, then the marginal distribution of

each potential risk can be identified from data on the failure time and cause of the failure. We will

be using a well known result in the competing risks literature, initially pioneered by Cox (1959) for

the bivariate case with independent risk, and subsequently extended by Tsiatis (1975). Hence, we will

deploy the proposed methodology in the auction paradigm, with an empirical application to data from

municipal GIC auctions in the US. Hence, we contribute to the structural auction literature by establish-

ing novel identification results using results from the competing risks literature.

In the next section, we will review the basics of copula functions, focusing our attention on the scenario

where the joint distribution of bidders’ private values is characterized by the family of Archimedean

copulas, and subsequently propose a model and methodology to recover the dependence structure of

bids in English auctions.

2.3 Copula Theory

Copula functions are used to recover the link or association between variables, both linear and

non-linear. According to the seminal work by Sklar (1959), any multidimensional distribution may be
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represented by a superposition of marginal distributions and a copula function. Thus, the joint distri-

bution of valuations can be decomposed into its constituent marginal distributions and the structure of

dependence between valuations (which we assume is given by a copula). This copula is a multivariate

distribution function with uniform marginals on [0,1], which would allow us to separate the estimation

of the marginal distributions from the estimation of the joint distribution.

Consider a random vector of two random variables (X,Y ). Denote a bivariate distribution function

H(x, y), with marginal distribution functions F (x) and G(y). According to Sklar’s theorem, there

exists a copula C :[0, 1]2 → [0, 1] such that

H(x, y) = C(F (x), G(y)), ∀(x, y) ∈ R2.

Moreover, if we assume continuity for G and F, then the copula C turns out to be unique. Otherwise,

the copula is uniquely determined only on range of G and F. In general, every continuous distribution

onRd with marginals F1(x1), ..., Fd(xd) can be represented by a d-dimensional copula,

H(x1, ..., xd) = C(F1(x1), ..., Fd(xd)).

This fact can be seen by letting C(u1, ..., un) = H(F−1
1 (u1), ..., F

−1
d (ud)). In order to identify the

marginal distributions, we specify a copula family for the underlying joint distribution of valuations.

We will assume that the copula belongs to the Archimedean class, which allows for non-linear depen-

dence.1

Definition 2. : A copula C is said to be Archimedean if a generator ϕ : (0, 1] → (∞, 0), with

limt→0 ϕ(t) = +∞, exists such that

C(ud) = ϕ−1(ϕ(u1) + ϕ(u2) + ...+ ϕ(ud)), ud ∈ Id.

1Among the most popular Archimedean copulas are Frank, Clayton and Ali-Mikhail-Haq.
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Note that our assumption

lim
t→0

ϕ(t) = +∞

ensures the existence of the inverse ϕ−1 on the domain [0,+∞).2 The function ϕ: [0, 1] → [0,∞]

is called the generator of the copula C. It is a continuous, convex, strictly decreasing function with

ϕ(1) = 0.

2.4 Model

We consider a standard independent private value setting where there are N bidders participating at

an auction for a single object, where N ≥ 2. The set of bidders is denoted by N = (1, ..., N). Bidders’

valuations of the object are private information. Each bidder i ∈ N draws its valuation Vi independently

from a cumulative distribution Fi(·), with a probability density function denoted by fi(·), on the support

[0, v]N . For any bidder i, let V−i denote the maximum value of its rivals, V−i = max
j 6=i

Vj .

In an ascending-bid auction, the dominant strategy for all bidders is to bid truthfully in the auction.

Hence, if the bidder loses in the auction, the losing bid would reveal the true value. However, should the

bidder win in the auction, the winning bid will only reveal the lower bound of their actual private value.

Therefore, the winner’s private value is not directly observed, which is equivalent to not observing the

highest bid in second price auctions.

Furthermore, we will assume that bidders know their own value distribution, but they don’t have

information about the value distribution of other bidders in the auction. Each player makes a bid based

on its beliefs about the types of other players. Each player is only given information about the status

of the bid, whether he is losing or winning; hence, each bidder can update these beliefs based on the

actions taken by the other players. The equilibrium would be reached when the bidders no longer have

an incentive to change their bid given their information about others.

Let bidders values V1 and V2, be continuous random variables. Assume that the random vector

(V1, V2) has the joint cumulative distribution function denoted by H(v1, v2), with marginals F1(v1)

2Thus, the generator function ϕ is assumed to be strict; see e.g. the discussion in Nelsen’s (2006) book.
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and F2(v2), with corresponding probability distribution functions denoted by h(v1, v2) for the joint dis-

tribution, and f1(v1) and f2(v2) for the marginals, respectively. We assume that each Vi is continuously

distributed on [v, v]n. Our objective is to recover the underlying latent valuations using the observable

bid data.

2.4.1 Copulas in the N-bidder Case

We adopt a copula-based approach to model the joint distributions, assuming that the copula belongs

to the Archimedean family.

F (V1, ..., VN ) = ϕ−1

(
N∑

i=1

ϕ(Fi(v))

)

,

where Fi(v) is the (marginal) distribution of i’s values. There are additional restrictions on ϕ(·) to

ensure that in fact we have a well-behaved joint distribution. Since ϕ(1) = 0, we also have the

Archimedean copula for the joint cumulative distribution function for a subset of bidders. In particular,

if we fix bidder i, then the joint distribution for the other bidders is also given by the same Archimedean

copula,

F−i(v−i) = ϕ−1(
∑

j 6=i

ϕ(Fj(v)))

and the joint distribution of vi, Yi = max
j 6=i

Vj is given by

FVi,Yi
(v, y) = ϕ−1(ϕ(Fi(v)) +

∑

j 6=i

ϕ(Fj(y))

ϕ−1(
∑

j 6= i

ϕ(Fj(y)) = FYi
(y),

so we get the same copula representation

Fi(v, y) = ϕ−1(ϕ(Fi(v)) + ϕ(FYi
(y)))
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This means that our formula applies intact, simply replacing the other valuation by Y = max {Vj}.

2.4.2 The Identification of Marginal Distributions with Known ϕ(·)

We use a result from Tsiatis (1975) that links the cumulative distribution function ofZ = min {X,Y }

and the joint survival function

S(t1, t2) = P(X ≥ t1, Y ≥ t2).

Let δX indicate that X = min{X,Y }, and let Hu(t) = P(Z ≤ t, δx = 1).

Lemma D.5 (Tsiatis (1975)). We have

dHu(t)

dt
= −∂S(t1, t2)

∂t1

∣
∣
∣
∣
t1=t2=t

. (75)

In our case, for a fixed bidder i, we let X = Vi and Y = Yi = maxj 6=i Vj , so that Z = Bi

corresponds to the actual bid submitted by bidder i in the auction (winning or losing). We let Gi(t) be

the CDF of Z = min{Vi, Yi}, and letGi(t) denote the corresponding survival function. Hu(t) = G0
i (t)

is equal to the distribution of i’s bids conditional on losing, times the probability that i loses.

Proposition 7 (Identification of Fi under competition). We have

Fi(v) = 1− ϕ−1

(

−
∫ v

0
ϕ′(Gi(t))dG

0
i (t)

)

(76)

Proof. The Archimedean copula representation for the survival function in (75) implies

dG0
i (t)

dt
= −∂S(t1, t2)

∂t1

∣
∣
∣
∣
t1=t2=t

=
ϕ′(F i(t))F

′
i (t)

ϕ′(Gi(t))
,
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where ϕ(·) is the copula generator, and bars denote survival functions. Therefore

−ϕ′(Gi(t))
dG0

i (t)

dt
= ϕ′(F i(t))F

′
i (t)

=
dϕ(F i(t))

dt

∫ ∞

0
−ϕ′(Gi(t))

dG0
i (t)

dt
dt = ϕ(F i(t))− ϕF

′
i(0)

= ϕ(F i(t))− ϕ(1)

= ϕ(F i(t))

1− Fi(t) = ϕ−1

(

−
∫ t

0
ϕ′(Gi(t))dG

0
i (t)

)

and we get (76).

2.4.3 Identification of a Cartel Member Distribution

By extending an argument in LemmaD.5 , we first show the following result for Z = max {X,Y }.

Now let

F u
z (t) = P(Z ≤ t, δx = 1),

where δx indicates that X = max {X,Y }.

Lemma D.6. We have

∂F u
z (t)

∂t
=
∂Fx,y(t1, t2)

∂t1

∣
∣
∣
∣
t1=t2=t

Proof.

∂F u
z (t)

∂t
=
∂Fx,y(t, t)

∂t
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Fx,y(t+ ε, t) = P (X ≤ t+ ε, Y ≤ t)

= P (X ≤ t, Y ≤ t)

= Fx,y(t, t) + P (t ≤ z ≤ t+ ε, Y ≤ t)

since if Y ≤ and X ≤ t→ z = max{X,Y } = X

(77)

Also

Fx,y(t ≤ X ≤ t+ ε, Y ≤ t) = Fz,δx(t ≤ z ≤ t+ ε, δx = 1)

because the events (t ≤ X ≤ t+ ε, Y ≤ t) and (t ≤ Z ≤ t+ ε, δx = t) are equivalent.

Moreover, since by definition

Fz,δx = (t ≤ z ≤ t+ ε, δx = 1) = F u
z (t+ ε)− F u

z (t)

we get after passing to the limit ε→ 0,

∂F u
z (t)

∂t
=
∂Fx,y(t, t)

∂t1

This result can be used to identify the marginal distribution of a cartel member’s valuations Fi from

(i) F `
i , the distribution of its valuations conditional on being the leader among the suspects, and (ii) the

distribution of the maximum of the valuations among the suspects. As these both distributions corre-

spond to the competitive case, they are identifiable by the method developed in the previous section.

Proposition 8. We have

Fi(t) = ϕ−1

(

−
∫ ∞

t
ϕ′(Fcol(t))dF

`
i (t)

)

(78)
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Proof. Let X = Vi and Y = maxj∈Ncol\{i} Vj . Then the copula representation implies

ϕ(Fx,y(t1, t2)) = ϕ(Fi(t1)) + ϕ(Fy(t2))

and

∂ϕ(Fx,y(t1, t2))

∂t1
=
dϕ(Fi(t1))

dt1
.

At t1 = t2 = t, Fx,y(t, t) = Fcol(t) and by Lemma D.6,
∂Fx,y(t,t)

∂t1
= dF `

i (t)/dt. Therefore

ϕ′(Fcol(t))
dF `

i (t)

dt
=
dϕ(Fi(t))

dt

Then we get by integration,

∫ ∞

t
ϕ′(Fcol(t))dF

`
i (t) = ϕ(1)− ϕ(Fi(t))

and (78) follows since ϕ(1) = 0.

2.4.4 Identification of ϕ(·)

Invoking theorem 4.1.5(3) in Nelson (2006), we know that if c ≥ 0, then cϕ is also a generator of

ϕ. Hence the generator ϕ is not unique, and we normalize ϕ′(1) = 1 to achieve point identification.

Consider (Vi, Vj) and (Vi, Vk) under competition

Yij = min {Vi, Vj}

Yik = min {Vi, Vk}
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are observable (as a losing bid). Letting the CDFs of Yij , Yik be

Hij = P {Yij ≤ t}

Hik = P {Yik ≤ t}

and

H l
ij = P {Vij ≤ t, δij = 0}

H l
ik = P {Vik ≤ t, δij = 0} ,

where

δij =







0, Vi ≤ Vj

1, otherwise

(similarly for δik). We then have

1− Fi(t) = ϕ−1

(

−
∫ t

0
ϕ′(H ij(t))dH

l
ij(t)

)

= ϕ−1

(

−
∫ t

0
ϕ′(H ik(t))dH

l
ik(t)

)

∫ t

0
ϕ′(H ik(t))dH

l
ik(t) =

∫ t

0
ϕ′(H ij(t))dH

l
ij(t)

By differentiating, we get ϕ′(H ik(t))h
l
ij(t) = ϕ′(H ik(t))h

l
ik(t).

Denote H ij(t) = u, H
−1
ij (t) = t,and denote H ij ◦H ik = Q

ϕ′(u)hij(H
−1
ij (u)) = ϕ′(Q(u))hlik(H

−1
ij (u))
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Denote hlik(H
−1
ij (u)) = Sik(u) and hlik(H

−1
ik (u)) = Sik(u)

Hence ϕ′(u)Sij(u) = ϕ′(Q(u))Sik(u)

Q(2)(u) = Q(Q(u))

Q(k) = Q(Q(...Q(u))
︸ ︷︷ ︸

k times

ϕ′(u) = ϕ′(Q(u))
Sik(u)

Sij(u)
︸ ︷︷ ︸

λ(u)

= ϕ′(Q(2)(u))λ(u)λ(Q(u))

= ...

= ϕ′(1)
∞∏

k=1

λ(Q(k)(u))

(79)

2.4.5 Semiparametric Estimation of Copula under Competition

In this section, we construct a semiparametric estimator of the generator function ϕ assuming that it

belongs to a parametric family of the Archimedean class ϕθ(u), θ ∈ Θ ⊂ R. At the same time, we con-

tinue to treat the marginal distributions nonparametrically. Our approach is based on the identification

arguments in Section 2.4.4.

Pick i ∈ N , and define N−i = N\{i}. With V−i = maxj 6=i{Vj}, Bi = min{Vi, V−i}, wi =

1{Vi > V−1}, Gi(b) = P (Bi ≤ b), and G0
i (b) = P (Bi ≤ b, wi = 0), we have by the results in Section
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2.4.2 that the distribution of values satisfies

Fi(v) = 1− ϕ−1
θ

(

−
∫ v

0
ϕ′
θ(1−Gi(b))dG

0
i (b)

)

, (80)

where ϕ′
θ(u) = ∂ϕθ(u)/∂u.

Now pick any strict subset K ⊂ N\{i} of the competitive rivals of bidder i, and let V−iK =

maxk∈K Vk be the maximum value in this subset. Let F−iK be the cumulative distribution of V−iK .

As in section 2.4.1, the joint distribution of Vi and ViK is given by a copula with the same generator

function ϕθ(·):

F (vi, v−iK) = ϕ−1
θ

(

ϕθ(Fi(vi)) + ϕθ(F−iK(v−iK))
)

.

Note that the minimum between Vi and V−iK is observable, and denote it as Bi,K = min{Vi, V−iK}.

Define further Gi,K(b) = P (Bi,K ≤ b), wi,K = 1{Vi > V−iK}, and G0
i,K(b) = P (Bi,K ≤ b, wi,K =

0). Since the generator function remains the same, we can also write the CDF of values of bidder i as

Fi(v) = 1− ϕ−1
θ

(

−
∫ v

0
ϕ′
θ(1−Gi,K(b))dG0

i,K(b)

)

. (81)

Since equations (80) and (81) identify the same CDF function Fi(v) and use the same generator ϕθ,

it follows that for any rival set K of bidder i, we have

∫ ṽ

0
ϕ′
θ(1−Gi(b))dG

0
i (b) =

∫ ṽ

0
ϕ′
θ(1−Gi,K(b))dG0

i,K(b). (82)

Note that the functions Gi,Gi,K (and G0
i ,G0

i,K) are different. Thus, equation (82) imposes a restriction

on ϕθ, and this restriction can be used to identify and estimate θ. In order to use this formula for a

consistent estimator of θ, we integrate up to a certain trimming threshold ṽ below the upper boundary

of support in order to avoid large bids, asGi,k(b) is close to one for those bids, and ϕ′(·) is very large. So

these large bids would otherwise dominate the integrals on both sides, potentially causing inconsistency

in the estimation of θ.

For a given θ, the left-hand and right-hand sides of (82) can be estimated by replacing the unknown
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distributions with their empirical analogues. We allow exogenous participation in the sense that Nl and

Kl are allowed to vary with auction l. Thus we obtain our main estimating equation for θ,

1

L

L∑

l=1

ϕ′
θ(Ĥi(bil))1[bil ≤ b−il, bil < ṽ] =

1

L

L∑

l=1

ϕ′
θ(ĤiK(bil))1[bil ≤ yl, bil < ṽ], (83)

where

b−il = max
j∈Nl\{i}

bjl, yl = max
k∈Kl

bkl,

Ĥi(u) =
1

L

L∑

l=1

1(min{bil, b−il} ≥ u),

ĤiK(u) =
1

L

L∑

l=1

1(min{bil, yl} ≥ u).

This estimation equation is stated at the bidder level, so the resulting estimator θ̂i will depend on the

bidder’s identity. In order to obtain a bidder-invariant estimator θ̂, we obtain the average of the estima-

tors θi across the bidders, using the empirical fractions of the number of bids submitted by bidder i as

the weights.

2.4.6 Estimation of Fi(v) under Competition and Collusion

In this second step, we use the estimator θ̂ obtained in the first step to replace the unknown θ in the

generator function. Under competition, we estimate Fi(v), i ∈ Ncom (for the competitive bidders),and

Fcol(v), for the maximum value among the suspects, by replacing the distributions that appear in (80)

with their empirical analogues. Hence, we have (80)

F̂i(v) = 1− ϕ−1

θ̂

(

−
∫ v

0
ϕ′
θ̂
(1− Ĝi(b))dĜ

0
i (b)

)

(84)

with

Ĝi(b) =
1

L

L∑

l=1

1(bil ≤ b), Ĝ0
i (b) =

1

L

L∑

l=1

1(bil ≤ b, wil = 0). (85)
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Now, for a suspect colluder i, we use the identification formula (78) from Proposition 8

F̂i(v) = ϕ−1

θ̂

(

−
∫ ∞

v
ϕ′
θ̂
(F̂col(t))dF̂

l
i (t)
)

(86)

where the marginal distributions of Fcol (the maximum valuation among the suspects) and F l
i (the

valuation of i ∈ Ncol conditional on being the leader in the set of suspects) are estimated in parallel to

(84):

F̂col(v) = 1− ϕ−1

θ̂

(

−
∫ v

0
ϕ′
θ̂
(1− Ĝcol(b))dĜ

0
col(b)

)

,

F̂ l
i (v) = ϕ−1

θ̂

(

−
∫ v

0
ϕ′
θ̂
(1− Ĝ`

i(b))dĜ
0,`
i (b))

)

where

Ĝcol(b) =
1

L

L∑

l=1

1(b∗l ≤ b), Ĝ0
col(b) =

1

L

L∑

l=1

1(b∗l ≤ b, wl = 0), (87)

and

Ĝ`
i(b) =

∑L
l=1 1(bil ≤ b, `il = 1)
∑L

l=1 1(`il = 1)
, Ĝ0,`

i (b) =

∑L
l=1 1(bil ≤ b, wil = 0, `il = 1)

∑L
l=1 1(`il = 1)

. (88)

2.4.7 Predicting the Competitive Bid of Bidder i

We need the CDF:

P (min{vil, Yil ≤ v})

P (vil ≤ v) + P (Yil ≤ v)− P (vil ≤ v, Yil ≤ v) = Fi(v) + F−i(v)− C(Fi(v), F−i)

= Fi(v) + F−i(v)− ϕ−1(ϕ(Fi) + ϕ(F−i)),

66



We can also write it as

ϕ(Fi) + ϕ(F−i) =

N∑

j=1

ϕ(Fj(v)),

Fi(v) = P (Yil ≤ v)

where Yi is the maximum of all other values.

Fi(v) = C(F1(v), ..., FN (v)) = ϕ−1(
∑

j 6=i

ϕ(Fj(v))).

2.5 Econometric Test of Collusion

As in Chapter 1, we follow a similar procedure to test for exhibition of collusive behaviour. As

before, we estimate the latent distribution of bidder valuations from the dataset, and simulate counter-

factuals of interest based on the estimated distribution. The null hypothesis, stated as H0,i : Gi(b) =

Gpred
i (b) for all b, is that bidder i is competitive. The corresponding alternative hypothesis, stated as

H1,i : Gi(b) ≥ Gpred
i (b) with strict inequalities for some b’s, is collusive behavior the bidder in ques-

tion. As before, we obtain the deviation statistic by looking at the the actual CDF of bids submitted

in the auction Gi(b) and versus the predicted competitive CDF of i’s bids Gpred
i (b). Given a compact

proper sub-interval [v0, v0] ⊂ (0, v), consider a maximum deviation statistic

T̂i = max
b∈[v

0
,v0]

[

∆̂i(b)
]

+
, (89)

where

∆̂i(b) ≡ Ĝi(b)− Ĝpred
i (b)
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denotes the difference between the estimated distribution of bids of bidder i and the estimated predicted

distribution of bids for bidder i under competition, and

[x]+ =







x if x > 0,

0 otherwise.

Large values of this statistic will be indicative of collusion.

Using (13) and (15), we can express the predicted (or counterfactual) CDF of bids for suspect bidder

i under competition as a functional

Gpred
i =ψi,pred

(
Fi, {Fj}j∈Ncol\{i}, {Fj}j∈Ncom

)

≡1− (1− Fi)



1−
∏

j∈Ncol\{i}

Fj

∏

j∈Ncom

Fj



 . (90)

The functional ψi,pred involves only products of CDFs and, consequently, is Hadamard differentiable.

We denote its Hadamard derivative by ψ′
i,pred

(
hi, {hj}j∈Ncol\{i}, {hj}j∈Ncom

)
. Note that for j ∈ Ncol,

Fj = ψcol(F
`
j , Fcol). Similarly for j ∈ Ncom, Fj = ψ(G0

j , Gj). Therefore, under the null of competi-

tion, a repeated application of the FDM together with Propositions 4 and 5 implies that the difference

between the estimated distributions Ĝi and Ĝpred
i converges weakly to a mean-zero Gaussian process

on [v0, v0]:

√
L∆̂i(b) =

√
L(Ĝi − Ĝpred

i ) Gi −G
pred
i ,

where

G
pred
i = ψ′

i,pred

(

ψ′
col(F

`
i ,Fcol),

{
ψ′
col(F

`
j ,Fcol)

}

j∈Ncol\{i}
,
{
ψ′(G0

j ,Gj)
}

j∈Ncom

)

. (91)

The Continuous Mapping Theorem then implies that under the null of competition, the statistic
√
LT̂i
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also converges weakly:

√
LT̂i  max

b∈[v
0
,v0]

[Gi(b)−G
pred
i (b)]+. (92)

At the same time according to Assumption 4, the statistic
√
LT̂i is divergent if bidder i participates in

the cartel.

In principle, the limiting distribution of
√
LT̂i that appears above could be computed through the

simulation of the Gaussian processes Gi(b) and G
pred
i (b). However, since the covariance structure of the

limiting process is complicated due to the multi-step nature of our estimator, we propose to approximate

the null distribution of our test statistic by the bootstrap.

We generate the bootstrap samples by drawing randomly with replacement L auctions from the

original sample of L auctions. Let {(b†1l, . . . , b
†
Nl) : l = 1, . . . , L} be a bootstrap sample, and M be

the number of bootstrap samples. In each bootstrap sample, we construct Ĝ†
i and Ĝ0,†

i , which are the

bootstrap analogues of Ĝi and Ĝ0
i respectively. The bootstrap version of the trimmed estimator F̃i is

given by

F̃ †
i (v) = ψ(Ĝ0,†

i , Ĝ†
i )(v ∧ v̄

†
i,L),

where v̄†i,L ≡ (Ĝ†
i )

−1(tL), and the trimming parameter tL is defined in Assumption 5.

We can similarly define the bootstrap estimators corresponding to the decensoring formula under

collusion. Our functional notation allows to define those estimators conveniently as follows. Let Ĝ`,†
i ,

Ĝ0,`,†
i , Ĝ†

col, and Ĝ0,†
col be the bootstrap analogues of Ĝ`

i , Ĝ
0,`
i , Ĝcol, and Ĝ0

col respectively, see equations

(88) and (87). As in equations (26) and (27), we have F̃ `,†
i (v) = ψ(Ĝ0,`,†

i , Ĝ`,†
i )(v∧v̄†i,L), and F̃ †

col(v) =

ψ(Ĝ0,†
col, Ĝ

†
col)(v∧ v̄

†
col,L) with v̄†col,L ≡ (Ĝ†

col)
−1(tL). Moreover, following equation (28), the bootstrap

estimator of the distribution Fi under potential collusion is F̃ col,†
i = ψcol(F̃

`,†
i , F̃ †

col). We can now

define the bootstrap analogue of the counterfactual (predicted) distribution of bids of bidder i:

Ĝpred,†
i = ψi,pred

(
F̃ col,†
i , {F̃ col,†

j }j∈Ncol\{i}, {F̃
†
j }j∈Ncom

)
.
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Lastly, we construct the bootstrap analogue of T̂i:

T̂ †
i = max

b∈[v
0
,v0]

[

∆̂†
i (b)− ∆̂i(b)

]

+
,

where

∆̂†
i (b) = Ĝ†

i (b)− Ĝpred,†
i (b)

is the bootstrap analogue of ∆̂i(b).
3

Let {T̂ †
i,m : m = 1, . . .M} be the collection of the bootstrap test statistics computed in bootstrap

samples 1 through M. The critical value ĉi,1−α is the (1− α)-th sample quantile of {T̂ †
i,m : m =

1, . . .M}, where α is the desired asymptotic significance level. The null hypothesis of competitive

behaviour for bidder i is rejected when T̂i > ĉi,1−α.

We have already established the validity and consistency of the bootstrap procedures in Proposition

6 of the first chapter, which holds here as well.

Our collusion test can be applied bidder by bidder to construct an estimated set of colluders (a

cartel set). However, due to the multiple hypothesis nature of this procedure, it is necessary to control

the overall probability of falsely implicating a competitive firm. This can be achieved, for example, by

using the Holm-Bonferroni sequential testing procedure that we now describe. Let α denote the overall

significance level. The procedure is performed by ordering the individual p-values from smallest to

largest,

p(1) ≤ ... ≤ p(K),

where K is the number of suspects, i.e. the number of bidders in Ncol.

Step 1 The firm with the smallest p-value is included in the cartel set if

p(1) < α/K,

after which one proceeds to Step 2. Otherwise the procedure stops and none of the firms are

3Note that to ensure a valid bootstrap approximation, we must re-center ∆̂†
i (b) by ∆̂i(b). The re-centering is needed to

ensure that the bootstrap version of the test statistic is generated under the null.
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included in the cartel.

Step 2 The firm with the second-smallest p-value is tested next. It is included in the cartel if

p(2) < α/(K − 1),

after which one proceeds to the next step. Otherwise the procedure stops and none of the firms

are included in the cartel. (The first firm that was included is now excluded as there can never be

a single-firm cartel.)

Step 3 The firm with the third-lowest p-value is tested and is included in the cartel if

p(3) < α/(K − 3),

after which one proceeds to the next step. Otherwise, the procedure stops with the two-firm cartel

(firms 1 and 2).

And so on until termination.

Remark 6 (Heterogeneity). We have focused on the case where the same object is auctioned. In many

applications, auction-specific heterogeneity is important. Following Haile et al. (2003), the standard

approach in the literature is to control for heterogeneity through a first-step regression,

bil = m(xl; θ) + εil,

where the error terms εil are independent of the object characteristics xl (and are also independent across

bidders). This regression can be estimated parametrically as in Haile et al. (2003). Our estimators can

be applied to the homogenized bids ε̂il resulting from this regression, and our bootstrap test of collusion

can be similarly performed with the homogenized bids.
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Chapter 3

Empirical Application: Internet GIC

Auctions

3.1 Introduction

Federal investigations of collusion in the municipal derivatives market have commenced in the early

1990s. However, only after the Internal Revenue Service (IRS) has found evidence of collusion while

pursuing other illegal behaviours in the industry, such as “yield-burning” and “black box” deals, a full-

fledged investigation of collusion in the municipal bond industry began. This investigation ultimately

exposed extensive collusive behaviour in the municipal derivative market. At that time, IRS conducted

over twenty investigations, which revealed pervasive collusion in the industry. In December of 2006,

Charles Anderson of the IRS stated that regulators “think [they] have evidence of bid rigging”. An-

derson went on to say that, “[p]eople were winning GICs at below fair market values and there were

obviously deliberate losing bids by the losing bidders, thereby allowing the winner to win a sweetheart

deal”.1 Since then, there have been numerous alleged complaints and subsequent investigations that the

competitive bidding process is rigged as firms colluded to manipulate the bidding process in violation

of antitrust laws. Banks and firms allegedly took part in an illegal conspiracy to pay state and local

1See an article on the website of bloomberg.com published on December 7, 2006 and available at http://www

.bloomberg.com/apps/news?pid=newsarchive&sid=awq77C8cUwZA.
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governments below-market rates on GICs purchased with municipal bond proceeds, to illegally obtain

excessive profits.

Hence, in this chapter, we propose an empirical application of the methodologies outlined in the pre-

vious two chapters. Initially, we will take a look at the general institutional framework of the munic-

ipal Guaranteed Investment Contract (GIC) auctions. After obtaining an understanding of the market

environment, we will look at the methodology proposed in the first chapter, which constitutes the in-

dependent case by assuming that latent valuations are independent. Then, we propose and implement

a nonparametric estimation procedure for the distributions of values and a bootstrap test of the null

hypothesis of competitive behaviour against the alternative of collusion and apply it to our dataset. Our

framework allows for asymmetric bidders, and the test can be performed on individual bidders. While

the focus of our research is to provide a structural framework for English auctions in the presence of

collusion allegations, it is useful to compare the performance of the estimation strategies when we relax

the independence assumption and analyze the underlying dependence structure. Hence, we deploy the

copula-based approach proposed in the second chapter within which dependence between valuations is

identified (constituting the dependent case), and apply it once again to the dataset. The two approaches

developed in the previous two chapters are applied to data from Internet municipal GIC auctions. These

two frameworks would provides a benchmark to contrast the performance of a given strategy when

dependence is introduced. Based on the results obtained, we do not find evidence of collusion in our

dataset. Finally, the application of these approaches allows us to test for collusion, with the possibility

of ultimately assessing and quantifying the damages incurred as a result of collusive behavior.

3.2 The Municipal Derivatives Market

Over the past decade, Grant Street Group Inc. (GSG) has successfully provided municipalities with

an Internet auction platform. This platform has been used for bond sales, foreclosure sales, and GIC

auctions. Our dataset contains GIC auctions conducted over the Internet by GSG. The rules of the

auctions involve closed exit (as defined by Milgrom (2004)), in that bidders do not observe exit by other
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bidders. The design adopted by GSG allows bidders employ electronic bidding agents, which upgrade

their bids in small increments up to the maximum value specified by the bidder. The only information

disclosed to the bidders at any time is the status of their bid: winning or not winning. The bidders are

not provided any information about actions of other bidders participating in the auction. This makes it

a dominant strategy for a bidder to bid up to its value under competition, so that the auction conforms

closely to the button model.

It is well known that open auctions may be prone to collusion, as bidders may signal their intentions

through their behaviour in the auction. This has been documented for example in spectrum auctions,

see vivid discussions in Klemperer (2002). Marshall and Marx (2009) have recently argued that by

restricting the information flow in the open auction, the seller can inhibit collusion. This can be more

easily achieved on the Internet, as the communication protocol could be programmatically enforced.

Marshall and Marx (2009) formally show that first-best collusion cannot be achieved at an open auction

if the identities of the registrants as well as of the current highest bidder are not disclosed.2

The GSG open auction platform is marketed as a transparent mechanism that may help municipal-

ities combat bidder collusion, which had been a pervasive problem in the municipal derivative market.

In our empirical application, we employ a new dataset of auctions for municipal guaranteed investment

contracts (GICs for short). These contracts arise as a result of municipal bond issuance. Municipalities

auction off cash from bond sales to financial institutions, awarding it in whole to the bidder that offers

the highest interest rate on the investment.

Governments, states, municipalities and para-governmental organizations regularly issue municipal

bonds to fund diverse capital projects, such as construction of roads, power plants, bridges, schools,

or other public facilities. According to the Securities Industry and Financial Markets Association,

approximately $670 billion worth of municipal bonds were issued in 2010. The total US municipal

bond market is currently valued at approximately $3.7 trillion, being one of the world’s largest security

markets.

2This is true even if the auctioneer reveals the winner’s identity. See Proposition 3 in Marshall and Marx (2009).
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Municipal bonds are initially sold either through negotiated sales, or through auctions.3 The mu-

nicipal bond’s issuer gets a cash inflow at the time of issuance, while agreeing in exchange to pay back

the principal plus the accrued interest to the bond holders over time. When these bonds are issued, the

respective funds are obtained immediately and are deposited into three types of funds: (i) project fund,

used to pay for the actual construction or repair work; (ii) sinking fund, used for making principal and

interest payments to bond holders; (iii) debt service reserve fund, used to pay debt obligations in case

of unforeseen contingencies.

However, the development of a project cannot always be timed perfectly with the expenditure plan

(for instance, there may be unpredicted delays in the construction due to external factors). As a solution,

once government obtains the proceeds from bonds, it will typically invest it in municipal derivatives

until the proceeds are needed to be expensed or paid out to bond holders.

The most common type of instrument is called a guaranteed investment contract. A GIC is compa-

rable to a hybrid of a certificate of deposit and a savings account. As a result, the issuer can earn returns

on bond proceeds (which are higher than if the funds were placed in a traditional savings account), and

maintain liquidity required for the repayment of the bond’s principal and interest accrued.

GICs are usually provided by large financial institutions such as AIG, Citicorp, UBS, Morgan Stan-

ley, Bank of America, MBIA, Goldman Sachs, and others. The government requires each bidder to

submit a bid, offering an interest rate – the highest interest rate bid gets to be the winner and acquires

the funds in the course of competitive bidding in an auction. In addition, GIC bids are thoroughly an-

alyzed either internally or by external advisors, to be certain that the complex terms of the contracts

are suitable to issuer’s specifications and requirements. Finally, the winning GIC bidder should get the

contracts issued timely and in conformity with the bid proposal.

3.2.1 Collusion in GIC Auctions

Following the IRS investigation, several US municipalities filed individual antitrust complaints with

the Department of Justice (DoJ). The leading complaint was filed by the City of Los Angeles, and

contained allegations against 37 provider defendants and 9 broker defendants, including CDR, IMAGE

3Municipal bond auctions have been studied within the structural paradigm by Shneyerov (2006) and Tang (2011).
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and Sound Capital. Since the allegations in these complaints were similar in nature, many of these

complaints were later integrated in a single Class Action Complaint (CAC), that was filed in August

2008 against more than 40 corporate defendants. The complaint was dismissed by the court, however,

citing insufficient factual evidence.4 Subsequently, a Second Class Action Complaint (SCAC) was filed

against a smaller list of defendants.5.

Up to date, 20 individuals and several corporate defendants have been indicted, including the ex-

ecutives of CDR, the largest broker. These indictments resulted in significant recent settlements, by

the defendants Bank of America ($137 million), UBS AG ($160 million), JP Morgan Chase ($228 mil-

lion), and GE Funding Capital Market Services ($70 million). See Table 3.1 for the timeline of the

investigations.

Several court documents describe the alleged bid rigging schemes in more detail. For example,

in the complaint filed by the SEC against J.P. Morgan Securities LLC (JPMS) in a district court in

July, 2011, the plaintiff alleges that JPMS, over an eight-year period, “rigged at least 93 transactions

concerning the reinvestment of proceeds from the sale of over $14.3 billion of underlying municipal

securities, generating millions of dollars in ill-gotten gams”.6 This rigging allegedly took several forms.

First, JPMS was able to win some of these auctions because it obtained advance information from a

bidding agent on the bids placed by other participants (the so-called “last looks” allegation). In one

transaction,

“Municipality C, a New Jersey entity, issued $690,000,000 of municipal bonds for the pur-

pose of, among other things, funding a portion of the state transportation system costs. In

connection with the temporary investment of the proceeds from these bonds, Municipality

C also retained the services of Bidding Agent B to bid out the FPA [forward purchase agree-

ment] for a project fund. JPMS — with the help of Bidding Agent B — won this tainted

4The original CAC complaint relied heavily on statistical analyses of bidding patterns, in particular using the IRS shortcut

that a bid may be a sham bid if it falls below 100 to 150 basis points below the winning bid. Evidently, the court adopted a

more stringent standard in its investigation, putting more emphasis on documented communication between the conspirators.
5See a recent article in Bond Buyer, available here http://www.bondbuyer.com/issues/122 1/will

-market-see-more-big-rigging-cases-in-2013-1047224-1.html?zkPrintable=true, summarizes

the state of the investigations and the resulting trials and convictions as of December 31, 2012.
6This complaint can be accessed on the SEC website, at http://www.sec.gov/litigation/complaints/

2011/comp22031.pdf.
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bid through Last Looks. [...] On the morning of the bid date, a telephoned discussion en-

sued between a Bidding Agent B representative and a JPMS Marketer, in which the JPMS

Marketer asked the representative if he had heard ”anything in terms of a rate?” Bidding

Agent B’s representative responded that he hoped it would be 2.5% or better and that ”I

will give you as much help as I can with this trade.” [...] Bidding Agent B’s representative

stated that the highest bid that he had received to date was 2.7%.”

Second, JPMS participated in an arrangement where it was pre-selected as the auction winner, and

the bidding agent solicited non-winning, or courtesy, bids from some other GIC providers in order to

make the process appear competitive. Citing another transaction in the SEC complaint,

“In the fall of 2001, Municipality B sought a new FPA for the debt service reserve fund,

which its board decided would be awarded through the competitive bidding process to the

Provider submitting the bid with the highest upfront payment. JPMS, however, acting both

as agent for the Provider and essentially as the de facto Bidding Agent, rigged this bid

so that it would win the FPA, by, among other things, limiting the bid list to potential

Providers who agreed in advance to submit purposely non-winning bids. JPMS, in order

to rig this bid for itself, took advantage of the fact that the Municipality B’s chief financial

officer (”CFO”) did not want to pay fees to a Bidding Agent and instead preferred that

the prospective Providers submit their bids directly to him. However, JPMS — with the

aid of Bidding Agent B —surreptitiously assumed the role of the Bidding Agent. Indeed,

JPMS drafted the bid specifications and with the help of Bidding Agent B, created a list of

prospective Providers who agreed, in advance, to submit purposely non-winning bids.”

In addition, JPMS itself allegedly participated in submitting courtesy bids for bidding agents,

thereby allowing other providers to win:

“Transaction F was a purposely non-winning bid. A certain firm underwrote a $145,000,000

offering of revenue bonds and, on October 23, 2001, arranged for its related commercial

bank to win, through the mechanism of a fraudulent set-up, the bid for one of the instru-

ments in which the offering proceeds would be invested. To facilitate the rigging of this
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transaction, Bidding Agent A secured a purposely non-winning bid from JPMS. JPMS

knew it was being asked to submit a non-winning bid, and, a JPMS Marketer needed Bid-

ding Agent A’s help to formulate its bid not only to ensure

A bidding agent, or broker, acts on the behalf of the municipality and administers the

auction process. In particular, in order to preserve a tax-its bid was in an appropriate range,

but also to ensure its bid would not win.”

exempt status of the investment income, IRS regulations require that the investment be purchased at a

fair market value. The role of the bidding agent is to ensure that this is in fact the case. In particular, the

aforementioned regulations stipulate that, in order for the bidding process to be deemed competitive, at

least three serious bids should be available. Moreover, the solicitation should be made in good faith. But

in the allegations, the bidding agents sometimes facilitated collusion rather than enhanced competition.

In the JPSM case, the above mentioned SEC complaint alleged that:

“In July 2000, JPMS underwrote a $55,000,000 offering of revenue bonds and caused

Municipality A, a California entity, to select Bidding Agent A as its Bidding Agent. As

agreed upon with JPMS, in return for this business, Bidding Agent A restricted the list

of prospective bidders and afforded JPMS Last Looks with respect to two bids for the

temporary investment of proceeds of the aforementioned bonds.[...] In addition, in October

2000, after the responsible JPMS banker had left JPMS’s employ, Bidding Agent A paid

him approximately $19,600 in cash for causing Municipality A to select Bidding Agent A

as the Bidding Agent.”

The evidence contained in the court documents indicates that the pattern of collusion is consistent

with the operation of a cartel, but that the cartel was probably not all-inclusive, with competitive bids

also playing a large role. It is reasonable to conjecture that GIC brokers played a major role in coor-

dinating the cartel, and they themselves might have been pre-selected by the cartel taking into account

preferences of the municipalities. If the competitive “fringe” were small and unimportant, while the

cartel had had overwhelming market power, there would be little need to resort to tactics such as last

bid lookups. It may have been sufficient for the cartel to pre-select the winner, and then force the
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minimal interest rate acceptable to the municipality by soliciting several courtesy bids in order for the

solicitation be deemed competitive. The presence of the last lookup in the cases identified in the court

documents indicates that, at least in some cases, the solicitations also involved competitive bids. In

other words, both competition and collusion likely played an important role.

In the collusive schemes identified in the court documents, the auction was (or should have been)

conducted according to the first-price, sealed-bid format. The winning bidder always paid its bid. The

alleged coordination of bids by brokers, in the presence of some competitive (non-cartel) bids, required

at times frequent updating of cartel bids to ensure that the cartel would win at the lowest possible rate,

while the courtesy bids would remain within a certain range (within 100 basis points would provide a

safe harbour to the issuers).

Our dataset, described in more details in the next section, involves open auctions conducted over

the Internet, rather than sealed-bid auctions coordinated through a broker. The open nature of such

auctions is meant to attract more competition. In some allegations7, brokers actively sought to restrict

competition by artificially raising the cost of entry.

As any prospective bidder may simply register through the website, rather than through the broker,

the barriers to entry are likely to be lower in Internet open auctions. Also, Grant Street Group imple-

ments the closed-exit rule, according to which the bidders only see the status of their bid (winning or

not), but not the bids of other bidders. This rule makes operating the cartel more difficult since should

a deviation occur, it would not be detectable in the current auction.

It could still be possible to collude in open Internet GIC auctions. First, all bids are publicly dis-

closed after the auction. So a deviation could be detected after the auction and the deviator could be

punished in a repeated game. Second, even though bidders might not be able to coordinate their bids

on the auction website, they could still use other means of communication such as telephone or email.

Ultimately, whether or not the open Internet auctions have succeeded in overcoming potential collusion

is an empirical question. In the next section, we show how our tests can be used to answer this important

question.

7cite the CDR case
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3.3 Dataset

We employ a dataset of 215 Internet GIC auctions conducted over the period October 2000 - Decem-

ber 2008. Thus the dataset covers both the pre-investigation period and two years into the investigation.

This dataset was obtained from the website of Grant Street Group that administers these auctions on

behalf of bond issuers. For each auction, our data include the following information: Issuer’s name,

brief description of the contract, auction date, bidder name/ticker, bid rate offered, principal amount. In

addition, we have also extracted data on yields for two long-term US T-bills, the 10- and 20-year bills,

matched with the time that each auction took place. In our empirical exercise, however, we control

for the heterogeneity by estimating a fixed-effects regression, and only use the data on bids and bidder

identities. In order to control for auction heterogeneity, we have also collected data on yields for two

long-term US T-bills, the 10- and 20-year bills. The yields were matched with auction dates to control

for the market conditions on the day of the auction.8

The auctions are conducted as ascending-bid and closed-exit. This means that the participants only

observe the current status of their bids, either winning or losing. A losing bid is automatically rejected,

but can be updated to a higher bid at any future instance. If a bidder enters a bid higher than the current

winning bid, then this bidder becomes the current winner and is informed of this fact. However, other

bidders do not observe the current winning bid, nor are they informed about the identity of the current

winner.

The data indicate that bidders in the GIC auctions are cognizant of their incentives. Indeed, the

wide majority of these auctions result in tight races where bids are raised by the smallest allowable

increment. See Figure 3.1 for one example of such a race.9 Three bidders participated: Aegon NV,

a major Dutch financial services company, Rabobank, a major Dutch-based international bank, and

Trinity LLC, owned by the financial arm of General Electric Inc. The auction was won by Trinity LLC.

Two facts are notable. First, not all bids are submitted in the smallest increments. The initial bids by

8Unfortunately, our data does not include contract durations that would allow a more precise matching with the corre-

sponding treasury yield. However, given the relatively long-term nature of the underlying municipal bonds, it is reasonable to

expect that the aforementioned Treasury yields would provide a decent approximation.
9The image containing the figure was downloaded from the Grant Street Group’s website, http://www.grantstreet

.com/auctions/results.
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Aegon NV have large increments. However, these are essentially non-serious bids as they would have

little chance of winning in the prevailing market conditions. The majority of serious bids are in fact

submitted in the smallest increments. This particular auction illustrates a general phenomenon observed

in GIC Internet auctions: the wide majority of these auctions conform closely to the button model.

Figure 3.2 exhibits a histogram of a measure of jump bidding, the money left on the table. This is

simply the difference between the winning bid and the second-highest. There is a pronounced spike at

(approximately) 0, and as well pronounced clustering around 0. More than 80% of all auctions have the

money left on the table amounting to less than 5 percentage points.

The total raw number of participants is equal to 43. However, these raw bidders were aggregated

since several bidder groups in fact belonged to a single corporate entity. As a result of this aggregation,

the final list of bidders, reported in Table 3.2, contained 30 bidders. Table 3.2 exhibits the identities

of the bidders, along with the number of bids submitted. The average bid rate is 3.87 with a standard

deviation of 1.42. The maximum bid is 6.55. The minimum number of bidders in an auction is 2, and

the maximum is 13, with the average being 7 bids.

3.4 De-censoring Approach (Independent Case)

3.4.1 Empirical Results

In order to implement our collusion test assuming independence, we need to know the identity of

at least one competitive bidder. In order to increase the precision of our estimates, it is in fact desirable

to have several competitive bidders, so that the highest bid among them reveals the valuation of the

losing cartel leader relatively often. In Table 3.2, we identify for each bidder whether or not it was on

the defendant list in (i) CAC, (ii) SCAC and (iii) the Los Angeles complaint. As can be seen, the Los

Angeles complaint provides the most extensive list, overlapping to some extent with the list on CAC

complaint. The SCAC list, on the other hand, is much smaller subset of CAC.

For the purposes of our collusion test, we decided to use the list of firms in any of the complaints

mentioned in Table 3.2 as our collusive superset Ncol. In order to remove the effect of auction hetero-

geneity, both observed and unobserved, we follow Bajari, Hong, and Ryan (2010) and Bajari, Houghton,
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and Tadelis (2014) and estimate a fixed-effects regression with auction-level fixed effects. We then ap-

ply our procedure to the residuals of this regression.

To begin illustrating our procedure, we have picked Rabobank as the alleged conspirator, as the bank

that has submitted most bids among all alleged conspirators. Figure 3.3 shows the estimated CDFs

for Rabobank. The blue curve is the empirical CDF of Rabobank’s estimated residuals in the fixed-

effect regression. The red curve is the predicted CDF assuming Rabobank is competitive, estimated

by following our de-censoring approach. The figure shows that the CDFs are actually quite close to

each other, and cross several times. There is no visual evidence of stochastic dominance as would be

if Rabobank colluded. Our test of collusion has a p-value of 0.26, which implies that the hypothesis of

the competitive behavior for Rabobank cannot be rejected at the customary levels of confidence.

3.4.2 Holm-Bonferroni Test

Next, we have implemented the Holm-Bonferroni test. Numerically, we have found our estimator

to be unreliable for banks that have submitted fewer than 40 bids, so only 9 banks with the number

of bids above this threshold were included. The test results are shown in Table 3.3. There is one

participant (XL Capital with a p-value = 3%) for whom the p-value is individually significant at the 5%

level. However, it does not pass the rejection cutoff of the Holm-Bonferroni procedure. At customary

significance levels, the test does not reject competition.10

3.5 Copula-Based Approach (Dependent Case)

As outlined in the second chapter, we propose a copula-based approach to establish identification

and estimation of model primitives within English auctions under the absence of independence, which

is implemented in this section. Copula-based methodology is implemented here to recover and estimate

linear and non-linear association between the variables of interest due to its ability it can parametrize

the link between the variables in a joint distribution. Finally, we apply a semi-parametric strategy, based

10The Holm-Bonferroni adjusted p-value is 0.27.
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on Archimedean copulae, to identify and estimate the model primitives and take into account the corre-

lation between bids. One advantage that this approach has is that it allows us to separate the estimation

of the marginal distribution from the estimation of the joint distribution of underlying bidder values.

Finally, we will allow us to uncover the unobservable latent value distributions using our sample data.

3.5.1 Empirical Results

In the application of copula theory, as formulated in the second chapter, our initial goal is to select a

copula among the Archimedean class that is flexible enough, allowing any level of positive dependence,

while it will accurately capture the dependency structure for each pair of variables. Therefore, we have

used the Clayton copula in our empirical test for convenience, however we can easily generalize this

to any other copula type in the Archimedean class without loss of generality. The Clayton copula also

allows for independence, treated as a special case. As in the independence case, we need to have at least

one competitive bidder in the data. We will use the list of allegedly colluding firms outlined in Table 3

as our collusive superset. Initially, we need to estimate the copula parameter, θ, in order to replace its

unknown counterpart in the generator function. Using our main estimating equation for θ and replacing

the unknown distributions with their empirical counterparts from the sample, we obtain bidder-level

estimator θ̂i. After estimating the individual parameters for each bidder, we obtain the bidder-invariant

copula parameter of 0.55 for our test, by estimating a weighted average across bidders. Subsequently,

we can use the estimator obtained in the previous step θ̂ to predict the counterfactual distributions - in

other words, how would the collusive firms behave if they were competitive. If the bidder is competitive,

then the counterfactual and actual distributions will coincide. However, if the bidder is collusive, we

show that the counterfactual competitive bid distribution stochastically dominates the actual collusive

one. Hence, we apply this statistical test of the null hypothesis of competitive bidding against the

alternative of collusive bidding on each individual bidder.

As we have discussed it in the independent case, we take into account the fact that it is probable to

observe auctions where non-homogenous objects are auctioned off. Once again, we control for observed

and unobserved heterogeneity by incorporating the approach used Bajari et al. (2010) and Bajari et
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al. (2014), and estimate a fixed-effects regression with auction-level fixed effects. This regression is

estimated parametrically, and our estimators are applied to the homogenized bids resulting from this

regression.

We have picked Salomon as the alleged cartel member for illustration purposes. Figure 3.4 illus-

trates the estimated cumulative distribution functions for Salomon, with the blue curve depicting the

empirical CDF, and the red curve depicting the counterfactual or predicted CDF assuming the exhibi-

tion of competitive behaviour of the bidder in question. We can see that the two curves overlap for the

most part, without evidence of stochastic dominance or indicators of collusive behaviour. In sum, once

we account for dependence in our model, we obtain a much closer match between the actual empirical

distribution function of values and the predicted one obtained in our model. As we see in 3.4, the esti-

mated curves are strikingly close to each other, in line in what we found for the independent case. Once

again, there is no visual evidence of stochastic dominance implying collusion.

3.5.2 Holm-Bonferroni Test

We used the Holm-Bonferroni procedure to test for testing sequential testing procedure that we now

describe. Let α denote the overall significance level. As in the de-censoring approach, we are only

including banks that have submitted more than 40 bids, hence only 9 banks with the number of bids

above this threshold were included. We conduct the procedure on the bids from the original sample,

and adjusted bids controlling for heterogeneity. The test results are shown in Table 3.4 and 3.5. At

customary significance levels, using original bid data, the test does not reject competition. Once tested

with adjusted bids, there are two bidders (Salomon with a p-value = 0.5%, and Morgan Stanley with

a p-value = 0.25% ) for whom the p-value is individually significant at the 5% level, hence we do not

reject collusive behaviour for these two bidders. However, since total number of bids submitted by both

is not significant overall, it is unlikely that this pair of bidders would form a cartel. Therefore, we reject

collusive behaviour for the adjusted sample as well.
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3.6 Concluding remarks

Based on this empirical study of the municipal GIC auctions, we conclude that despite the fact

that there have been allegations of collusion in this market, our test does not detect deviations from

competition. Both methodologies that we have implemented in this empirical study have produced

consistent results with the aforementioned conclusion. A plausible explanation of this finding is that

the Internet auction design involves very limited information disclosure.

All in all, whether or not the open Internet GIC auctions have been successful in achieving the

goal of combatting collusion is an interesting empirical question investigated in our paper. We take

advantage of the fact that the set of alleged conspirators in GIC auctions can be determined from court

case filings for non-Internet auctions. Our test finds no evidence of collusive behavior.

Finally, the research in this paper can be extended in a number of directions. Below, we discuss

three important but challenging extensions.

First, we restrict attention to English auctions. Can our approach be extended to another popular

format, first-price auctions (FPA)? In English auctions, bidders stay in the auction up to their valuations.

As we have shown, this crucial feature allows one to identify the the distribution of valuations of a given

bidder regardless of whether other bidders are colluding and who participates in the cartel. In FPAs,

bidders bid less than their values, and the competitive bids depend on whether there is a cartel, and on the

cartel composition. A combination of our approach with the identification and estimation methodology

for first-price auctions proposed in Guerre, Perrigne, and Vuong (2000) is clearly desirable.

The second extension concerns relaxation of the efficient cartel hypothesis. While many papers

in the empirical auction literature assume efficient collusion, this is obviously a limitation. This is

not always the case when bidders are asymmetric. Asker (2010) has recently estimated a structural

model of a knockout auction for a stamp dealer cartel and found evidence of inefficient allocation.

Incorporating richer leader selection rules supported is desirable and left for future work. As Asker

(2010) has demonstrated for a postal stamp cartel, a cartel large enough to exercise market power

may include bidders that are quite different, and may adopt a knockout auction that leads to inefficient

allocation. If the form of the knockout auction is known to the researcher, one could use this information

85



to extend our approach. More specifically, given the distributions of valuations, any cartel mechanism

determines the leader selection probabilities. And vise versa, given the leader selection probabilities,

the value distributions could be identified using our approach. This fixed-point reasoning opens up

a way to identify the distributions of valuations of the members of the (potentially inefficient) cartel.

However, this may be challenging not least because knockout auctions with asymmetric bidders may

be difficult to solve even numerically. This extension is left for future research.

Third, our approach relies on the button model of the English auction, which as we have argued, is

applicable to recent Internet auction designs with minimal information disclosure, where bidders only

see the status of their bid (winning or losing). The auction format provides incentives for bidders to

bid up to their true values. Indeed, it is easy to see that that the closed-exit format matches exactly

the button-, or thermometer-auction paradigm first proposed in Vickrey (1961), where bidding own

valuation is a weakly-dominant strategy. Moreover, the closed-exit rule ensures that this equilibrium is

unique. In particular, the model is suitable for our empirical application. In this model, it is a dominant

strategy for a bidder to drop out at its valuation. Haile and Tamer (2003) argue that this assumption is

unrealistic in traditional English auctions and develop sharp nonparametric bounds on the distributions

of valuations when it does not hold. Whether or not their bounding approach could be extended to

collusion is an open question also left for future research.
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3.7 Tables

Table 3.1: Timeline

November, 2006 FBI allegedly rides the offices and seizes documents of financial broker firms Ru-

bin/Chambers, Dunhill Insurance Services (CDR), Investment Management Advisory Group

(IMAGE), and Sound Capital Management Inc.

December, 2006 DOJ Antitrust brought their case to the Southern District Court of New York (S.D.C.N.Y.).

January, 2007 One of the defendants, Bank of America, enters into the DOJ leniency program. Subse-

quently, several municipalities filed complaints to various courts.

August, 2008 Consolidated Class Action Complaint (CAC) filed against more than 40 corporate defendants.

However, the defendants almost immediately filed a motion to dismiss.

April, 2009 The S.D.C.N.Y. granted the defendants their motion, citing lack of factual evidence.

June, 2009 The CAC plaintiffs filed Second Class Action Complaint (SCAC) against a smaller list of

defendants. The defendants immediately respondent with a motion to dismiss.

September, 2009 The City of Los Angeles files a first amended complaint against a number of corporate de-

fendants, including both GIC providers and brokers.

March, 2010 The S.D.C.N.Y. denied the SCAC defendants’ motion.

December, 2010 Bank of America settles for $137 million.

May, 2011 One of the defendants in SCAC, UBS AG, agrees to settle and pay $160 million for its

anticompetitive conduct in the municipal derivative market.

July, 2011 Defendant JP Morgan Chase Inc., agrees to settle and pay $228 million for its anticompetitive

conduct in the municipal derivative market.

December, 2011 Defendant GE Funding Capital Market Services Inc. agrees to settle and pay $70 million for

its anticompetitive conduct in the municipal derivative market.

January, 2012 An executive and former executive of CDR pleaded guilty for participating in bid rigging.
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Table 3.2: Internet Auction Participants

Complaints:

Bidder Number of bids CAC SCAC Los Angeles

ABN AMRO 4

AEGON 144

AMBAC Capital Funding 14

American Internation Group, Inc. 140 X X

Bank of America 8 X X X

Bayerische Landesbank 103 X

Bear Stearns Inc. 11 X X

Citigroup 2 X

Credit Agricole 42

DEPFA Bank 82

Financial Guaranty Insurance Co. LLC 22 X X

Financial Security Assurance Ltd. 49 X X

First Union National Bank 8

GE Funding Capital Market Services, Inc. 20 X

HSBC Bank 11

Hypo Real Estate Bank 63

ING Bank 9

JP Morgan Chase 13 X X X

Lehman Brothers 4

MBIA Inc. 70 X

Merrill Lynch Inc. 10 X X

Morgan Stanley 30 X X X

Natixis S.A. 48 X X X

Rabobank 138 X

Royal Bank of Canada 8

Societe Generale SA 49 X X X

UBS AG 1 X X X

Wells Fargo 7 X

Westdeutsche Landesbank 11

XL Capital 42 X X
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Table 3.3: Test Results (Independent Case)

Bidder name p-value Holm-Bonferroni cutoff

XL Capital 0.03 0.006

Rabobank 0.24 0.006

American International Group Inc. 0.33 0.007

Natixis 0.35 0.008

FSA 0.38 0.010

Bayerische Landesbank 0.52 0.013

Salomon 0.71 0.017

MBIA 1 0.025

Morgan Stanley 1 0.050
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Table 3.4: Test Results - Raw Bids (Dependent Case)

Bidder name p-value Holm-Bonferroni cutoff

Salomon (Citigroup) 0.01 0.006

Morgan Stanley 0.0175 0.006

American International Group Inc. 0.0475 0.007

Natixis 0.06 0.008

Bayerische Landesbank 0.0875 0.010

MBIA 0.11 0.013

XL Capital 0.1275 0.017

FSA 0.185 0.025

Rabobank 0.925 0.050
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Table 3.5: Test Results - Adjusted Bids (Dependent Case)

Bidder name p-value Holm-Bonferroni cutoff

Morgan Stanley 0.0025 0.00556

Salomon (Citigroup) 0.005 0.00625

XL Capital 0.0075 0.007

Natixis 0.0275 0.008

American International Group Inc. 0.0475 0.010

MBIA 0.0775 0.013

Bayerische Landesbank 0.185 0.017

FSA 0.225 0.025

Rabobank 0.36 0.050
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3.8 Figures

Figure 3.1: A tight GIC bidding race.
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Figure 3.2: Money left on the table.
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Figure 3.3: Rabobank: Predicted competitive (red) vs. actual (blue) CDFs of bids.

94



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3.4: Salomon: Predicted competitive (red) vs. actual (blue) CDFs of bids.
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Tang, X. (2011). Bounds on revenue distributions in counterfactual auctions with reserve prices. RAND

Journal of Economics, 42(1), 175–203.

Tsiatis, A. (1975). A nonidentifiability aspect of the problem of competing risks. Proceedings of the

National Academy of Sciences of the United States of America, 72(1), 20–22.

van der Vaart, A. W. (1998). Asymptotic statistics. Cambridge: Cambridge University Press.

Vickrey, W. (1961). Counterspeculation, auctions, and competitive sealed tenders. Journal of Finance,

16(1), 8–37.

99


	List of Figures
	List of Tables
	De-censoring Approach to Identification and Estimation in English Auctions
	Introduction 
	Identification under Competition
	Collusion
	Identifying Collusion

	Estimation
	Econometric Test of Collusion

	Monte Carlo Experiment
	Tables
	Figures
	Appendix : Proofs
	Extended Functional Delta Method
	Proofs of the Main Results


	Copula-based Approach to Identification and Estimation in English Auctions
	Introduction
	Literature Review
	Copula Theory
	Model
	Copulas in the N-bidder Case
	The Identification of Marginal Distributions with Known ()
	Identification of a Cartel Member Distribution
	Identification of ()
	Semiparametric Estimation of Copula under Competition
	Estimation of Fi(v) under Competition and Collusion
	Predicting the Competitive Bid of Bidder i 

	Econometric Test of Collusion

	Empirical Application: Internet GIC Auctions
	Introduction
	The Municipal Derivatives Market
	Collusion in GIC Auctions

	Dataset
	De-censoring Approach (Independent Case)
	Empirical Results
	Holm-Bonferroni Test

	 Copula-Based Approach (Dependent Case)
	Empirical Results
	Holm-Bonferroni Test

	Concluding remarks
	Tables
	Figures

	Bibliography

