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Abstract

Verifying Network Topology in Software Defined Networks Using

Stealthy Probing-based Verification (SPV)

Amir Alimohammadifar

Since a key advantage of Software Defined Networks (SDN) is providing a logically

centralized view of the network topology, the correctness of such a view becomes

critical for SDN applications to make the right management decisions. However,

recently discovered vulnerabilities in OpenFlow Discovery Protocol (OFDP) show

that malicious hosts and switches can poison the network view of the SDN controller

and consequently lead to more severe security attacks, such as man-in-the-middle

or denial of service. Several solutions have been proposed to address such topology

poisoning attacks, but their scope is mostly limited to malicious hosts injecting or

relaying fake Link Layer Discovery Protocol (LLDP) packets. In this work, we propose

Stealthy Probing-based Verification (SPV), a novel stealthy probing-based approach,

to significantly extend the scope of existing solutions. Specifically, SPV incrementally

verifies legitimate links and detects fake links by sending probing packets. Such

packets are sent in a stealthy manner to deceive malicious hosts or switches who may

be trying to identify the probing attempts among normal traffic. To illustrate the

feasibility of our approach, we implement SPV in an emulated SDN environment

using Mininet and OpenDaylight. We further evaluate the applicability and the

performance of SPV in a real SDN/cloud topology. We show that SPV can achieve a
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very low verification time (i.e., less than 120 milliseconds) in both real and emulated

environments which makes SPV a scalable solution for large SDN networks.
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Chapter 1

Introduction

The hope to overcome the current limitations of traditional networks, e.g., com-

plexity and dynamic nature, difficulties to configure and manage the network, fault

tolerance issues, etc., lies in the emergence of a new network paradigm, namely, Soft-

ware Defined Networks (SDN), by separating the network’s control and data planes

[27, 21, 57]. The empowerment of SDN controllers has become a double-edged sword

leading to both convenience in network management and an increase in dependability

on these SDN controllers. More specifically, the SDN controller is meant to be the op-

erating system of SDN and provides a logical view of the network to its applications,

which run on top of SDN controller by making use of the programmable interface that

the SDN controller provides to them [27, 57]. Thus, these applications heavily rely

on the SDN controller for the correctness of the logical view of the network to make

proper network management decisions, such as routing, load balancing, firewalling,

monitoring, etc. [18]. Therefore, the validity of the network view provided by the

SDN controller becomes critical for the proper functionalities of its applications and

in general, of SDN.

However, the recently discovered vulnerabilities in the OFDP protocol show that

malicious hosts or switches can create fake links to poison the network view of the
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SDN controller [25]. More specifically, there exist at least three different variations of

such attacks [14, 19, 6, 11]: i) injecting fake LLDP packets, ii) relaying LLDP packets

using compromised hosts and iii) relaying LLDP packets using compromised switches.

We further illustrate the topology poisoning attacks in the following subsection.

1.1 Motivation

Figure 1 illustrates a simple SDN topology with the presence of an application plane,

a logically centralized SDN controller, and an underlying data plane which includes

OpenFlow switches, and existing hosts. In this example, we assume there are two

malicious hosts H1 and H2, and a malicious switch S22. The link discovery is performed

via the OFDP protocol along with LLDP packets. These switches and their links

(solid lines in the figure) consist of the network view of the data plane from the

SDN controller. In the following, we utilize this network view to demonstrate three

different poisoning attacks.

• The relaying LLDP packets attack by hosts, involves two malicious hosts, i.e.,

H1 and H2, to create a fake link between the switches S13 and S14 (the dashed

line between switches S13 and S14 in Figure 1). To this end, whenever host H1

receives an LLDP packet from switch S13 (in OFDP protocol, a switch adver-

tises the received LLDP packet in all its outgoing ports that may be connected

to hosts or other switches), host H1 may send the received LLDP packet to

host H2 using an out-of-band link. In the next step, host H2 may forward the

same packet to the switch S14, and according to the OFDP protocol, switch

S14 forwards the LLDP packet to the SDN controller. Upon receiving the

LLDP packet (that was initially sent to switch S13) from switch S14, the SDN

controller assumes a link, which actually does not exist, between switches S13

2
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and S14 (details of SDN link discovery and OFDP protocol are discussed in

Section 2.1.3).

• The fake LLDP packet injection attack involves forging the LLDP packet re-

ceived from switch S13 by the malicious host H1 to create a fake link between

switches S13 and S14, shown by the dashed line in Figure 1. To this pur-

pose, host H1 should initially discover some information about specifications,

e.g., MAC address, of switch S13 to be able to forge the LLDP packet received

from switch S13 and sends it (using an out-of-band link) to switch S14 (or any

other switch to create the fake link between switch S13 and the target switch).

Utilizing the discovered information, host H1 masquerades itself as switch S13

and sends the forged LLDP packet towards switch S14. Similarly as in the first

attack, switch S14 assumes the packet is sent from switch S13 and forwards the

3



received LLDP packet to the SDN controller which creates a fake link between

switches S13 and S14 in the network view of the SDN controller.

• The relaying LLDP packet attack by switches, involves a malicious switch i.e.,

S22 as shown in Figure 1, to create a fake link by modifying its flow tables

to relay LLDP packets received from switch S23 towards switch S24. Being

unaware of this attack, switch S24 legitimately sends the relayed LLDP packet

received from switch S22 back to the SDN controller; which results in a fake

link creation between switches S23 and S24 (shown by dashed line in Figure 1

between switches S23 and S24) in the network view.

Table 1 summarizes the above-mentioned attacks and their existing solutions. To

overcome the fake LLDP packet injection attack, several works (e.g., [19, 14, 4, 8])

mitigate this problem to some extent, by extending the functionality of the SDN

controllers or modifying the OFDP protocol to harden it. To tackle the relaying

LLDP packets using compromised hosts, Dhawan et al. [14] address this issue by

assuming the flow of a packet in the network is not manipulated. Finally, detecting

poisoning the network view by making use of compromised switches that relay LLDP

packets for this purpose, is still an open issue. In summary (as shown in Table 1), no

existing work completely overcomes the above-mentioned attacks.

Table 1: Comparing existing solutions with SPV

Detection Approach Methods of Poisoning Network View
Fake LLDP

Packet Injection
LLDP Relay

by Hosts
LLDP Relay
by Switches

TopoGuard [19] Yes No No
SPHINX [14] Yes Yes No
HMAC Authenticated LLDP [4] Yes No No
Detecting a Compromised Switch [12] No No No
OFDPv2 [45] No No No
sOFTDP [8] Yes No No
Stealthy Probing-based Verification (SPV) Yes Yes Yes
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Poisoning the network view of the SDN controller can result in more severe attacks

such as man-in-the-middle, denial of service, as well as incorrect network management

decisions such as wrong routing, wrong load balancing, etc. [19, 18, 25], that might

put the network into a critical situation. Therefore, the need for link verification

to identify these poisoning attacks is crucial for proper functionalities of an SDN

infrastructure.

1.2 Thesis Statement

In this work, we propose a novel approach of actively sending probing packets in

a stealthy manner in order to incrementally verify legitimate links and to identify

fake links in the SDN network topology view. Specifically, we first design stealthy

probing packets in a manner that these packets remain indistinguishable from normal

traffic. Second, we provide detailed methodology and algorithms of our approach,

namely, SPV. As a proof of concept, we implement and test SPV in an emulated

SDN environment using Mininet [38] network emulator and OpenDaylight [1] SDN

controller.

1.3 Contributions

Our main contributions in this work are as follows.

• To the best of our knowledge, this is the first solution which can detect all three

types of topology poisoning attacks (as demonstrated in Figure 1) based on the

innovative idea of employing active probing in a stealthy manner.

• We design the SPV to be separated from the SDN controller implementations

such that SPV can be easily adapted to any implementation of SDN controller.
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Moreover, the implementation of SPV using OpenFlow-based SDN environment

demonstrates the practicality of our approach.

• We evaluate SPV through extensive experiments both by making use of the

topology of a real SDN/cloud hosted at one of the largest telecommunication

vendors and by using synthetic data. The obtained results show that SPV

achieves a constant verification time, i.e., less than 120 milliseconds for link

verification, which confirms the scalability of our solution when applied to large

size SDN networks.

1.4 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 considers preliminaries

of SDN and its topology discovery mechanism, our threat model, and the related

work to this dissertation. Chapter 3 provides the design goals of SPV and discusses

our methodology, i.e., SPV. Chapter 4 provides the implementation details and the

experiments. Chapter 5 analyzes the security of SPV and discussions SPV’s limita-

tions. Contributions to other projects are carried over Section 6 and finally, Section

7 concludes this thesis.
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Chapter 2

Preliminaries and Related Work

The first section of this chapter provides preliminaries of our work. Then we define

our thread model in the second section of this chapter. The third section, discusses

literature related to our work.

2.1 Background

This section provides an extensive overview of OpenFlow-based Software Defined

Networks (SDN) and its topology discovery mechanism, i.e., OpenFlow Discovery

Protocol (OFDP). We also discuss some security issues related to OFDP protocol

which leads to topology poisoning attacks in SDN and its related consequences.

2.1.1 SDN Overview

For several years, variations of devices, such as repeaters, bridges, hubs, routers, and

switches, have been developed and deployed to be utilized in networks to keep fil-

tering and forwarding network packets from one to another destination. However,

the demand of recent evolving technologies is to have faster and more resilient net-

works through modern data centers that can carry over millions of Virtual Machines
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(VM) and users which can be no longer achieved through traditional networks due to

some reasons, such as the complexity, owning, management and maintenance costs,

dynamic nature that needs regular and manual configuration of devices, and so on

[17, 27, 57].

To overcome the above-mentioned issues and achieve the goals, computer scientists

came up with a solution to separate the control and forwarding tasks from networking

devices by leaving the forwarding plane inside the networking devices while handing

the control plane to another device. This idea was first presented by [15] which defines

different elements for forwarding and controlling those forwarding devices through a

protocol, namely, ForCES. The idea of separating the control and forwarding planes

leads the networking devices to be simply forwarding units which are managed by a

logically centralized controller, namely, SDN controller, which works as an operating

system of the network. The SDN evolvement leads it to a three-layered architec-

ture [17, 27, 57, 21, 51, 2] (as shown in Figure 2): i) the application layer, which

consists of different applications that manage the entire data plane, ii) the control

plane (i.e., SDN controller), and iii) the data plane, which comprises the forwarding

devices and their connecting links.

Each layer comprises some components. The application layer consists of dif-

ferent applications that manage the entire data-plane network through the control

layer. These applications can be monitoring, security, networking or other kinds of

business applications. The SDN controller(s) lies in the control layer. Each SDN

can have one or multiple SDN controllers, that can be seen as one logically central-

ized controller. There are different controllers available as of today, POX [47], NOX

[40], OpenDayligh [1], Floodlight [48], Beacon [13], Ryu [49], etc. The underlying

data plane comprises forwarding devices or switches and the links between them.

There are different commercial and open source implementations of SDN devices.
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A widely used software-based open source SDN device is OVS [42] switches. The

mentioned layers communicate through APIs. The application and controller layers

communicate through northbound API that has not been standardized yet; However,

the most widely used API for the controller and data-plane communications or the

southbound API is the OpenFlow protocol [36, 17]. Other available southbound inter-

faces are OVSDB [46], ForCES [15], POF [53], PCEP [29], NETCONF [16], etc. The

OpenFlow specification [41] defines how the controller should communicate with un-

derlying data-plane devices i.e., OpenFlow switches as well as providing the definition

and specifications of OpenFlow switches. The overview of the OpenFlow protocol is

detailed in the following subsection.
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2.1.2 The OpenFlow Protocol

The general description of OpenFlow protocol [36, 41] is discussed in this section.

In general, the OpenFlow protocol defines the communications between data-plane

devices and the control plane SDN controllers. It also provides how the data-plane

devices should react under certain circumstances such as actions they should do when

they receive a packet. Note that the OpenFlow protocol is a small subset of massive

SDN technology, therefore, its job is not to define the SDN controller behavior [17, 36].

The description of the important processes defined in OpenFlow protocol, which are

utilized in this thesis, is discussed in the following.

2.1.2.1 OpenFlow Switch Bootstraping Process

The very first step of an OpenFlow switch to get involved in an SDN is to introduce

itself to the SDN controller and receives instructions of how to react in the network

upon receiving a packet [36, 41, 11]. Therefore, as depicted in Figure 3, whenever

10



an OpenFlow switch joins an SDN, it first establishes a TCP connection with the

SDN controller through a secure channel (i.e., TLS, which is optional) to start boot-

strapping process which involves exchanging some control messages. Afterwards, the

SDN controller and the newly joined OpenFlow switch exchange OFTP_HELLO mes-

sages to agree on the OpenFlow version they use for further communications. After

agreement on the OpenFlow version, the SDN controller requests for switch’s spec-

ifications, such as MAC address of its ports, through the OFTP_FEATURE_REQUEST

message. The switch informs the SDN controller of its specifications using the

PFTP_FEATURE_RESPLY message. Finally, the SDN controller installs some configura-

tions on the switch by making use of an OFTP_SET_CONFIG message. At this point, if

there are any proactive flows to be installed on the switch, the SDN controller installs

them using an OFTP_FLOW_MOD message (note that we do not show the exchange of

this message in the above-mentioned figure since it is not part of the bootstrapping

process).

2.1.2.2 OpenFlow Switch Packet Forwarding Process

After successful installation of an OpenFlow switch in an SDN, as described in Sec-

tion 2.1.2.1, the OpenFlow switch starts its functionality by forwarding the received

packets based on its flow tables. However, different situations might occur based on

the matching results. As a basic functionality of an OpenFlow switch is to receive a

packet on one port, modify it if necessary, and forward it on another port. Therefore,

each OpenFlow switch has a set of flow tables that comprise flow entries for packet-

matching function. In this packet-matching function, whenever an OpenFlow switch

receives a packet, it matches the packet with the flows of its tables, which there could

be a match or a no-match, to make a decision which might be either of the following

[17, 36]: (i) forwarding the packet on an outgoing port, (ii) dropping the packet, or

11
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(iii) forwarding the packet to the controller for further instructions.

Note that in an OpenFlow switch, there are different types of flows in its flow

tables for packet matching which are proactive, reactive, or hybrid flows. Proactive

flows are flow entries that are installed by SDN controller upon joining a switch to the

network whereas reactive flow entries are installed with the help of the SDN controller

upon receiving a packet that there is no match for it in the existing flow entries. The

hybrid flow is a combination of both proactive and reactive flows. To utilize reactive

flows, an OpenFlow switch must communicate with the SDN controller to receive

proper instructions for forwarding the packets that there is no match for them in

its flow tables. To this end, whenever a new packet is received, after performing

packet-matching, if there is no match for the packet, the OpenFlow switch encapsu-

lates the received packet in an OFTP_PACKET_IN message and forwards it to the SDN
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controller and waits for further instructions. After the SDN controller receives the

OFTP_PACKET_IN message, it makes a decision of what has to be done with the packet

and sends the proper instructions towards the mentioned switch. For example, if new

flows are to be installed, the SDN controller sends an OFTP_FLOW_MOD message along

with the new flows to be installed, which are called reactive flows, on the switch so

that the switch can utilize those flows to forward the received packet or similar further

packets that might be received afterward. As another example, if the packet should

be dropped, the SDN controller sends an OFTP_PACKET_OUT message along with the

instructions to drop the packet, towards the switch [17, 36, 11]. The above-mentioned

examples are depicted in Figure 4.

2.1.3 SDN Topology Management Service

One of the main advantages of SDN controller is the centralized network view that

it offers, which enables reliable topology management, traffic engineering, resource

provisioning, etc. [25]. In OpenFlow-based SDN, after an OpenFlow switch joins to

the network, it establishes a TCP connection with the SDN controller. Afterwards,

the SDN controller requests the switch for its active ports and their respective MAC

addresses using the OFTP_FEATURE_REQUEST message. The switch replies with an

OFTP_FEATURE_REPLY message containing the requested information which is needed

for topology discovery.

Although there is no specific standard for discovering the topology of an

OpenFlow-based SDN, most SDN controllers’ implementations follow the OFDP pro-

tocol relying on LLDP packets [19]. Figure 5 shows the steps of how an SDN controller

utilizes the OFDP protocol and LLDP packets to discover the network topology:

Step (1): the SDN controller encapsulates an LLDP packet (Figure 5 shows the

LLDP packet format) into OFTP_PACKET_OUT message and sends it to switch S11
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Figure 5: OFDP protocol and LLDP packet format

along with a set of instructions. The fields CHASIS_ID and PORT_ID indicate which

switch the LLDP packet is designated to. Step (2): the instructions in the received

OFTP_PACKET_OUT message, instructs switch S11 to advertise the received LLDP

packet in all its ports except the port it receives the packet from. Step (3): switches

S13 and S14 send the LLDP packet along with their CHASIS_ID and PORT_ID of the

port they have received the LLDP packet from, back to the SDN controller. based on

the received packets, the SDN controller can discover the link between switches S11

and S13 as well as the link between switches S11 and S14. SDN controller discovers

all the links, in both directions, by performing the similar procedure for all network

switches and updates its view of the network periodically.

2.2 Threat Model

Due to the lack of authentication for LLDP packets, malicious hosts or malicious

switches can create fake links in the view of the SDN controller by injecting false
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LLDP packets or relaying LLDP packets. Those attacks have been already discussed

in several works [4, 8, 9, 11, 19, 25]. Similar to those works, we assume that an

adversary may compromise one or more host(s) and/or switch(es) in the network.

S/he can send information through the compromised hosts using the out-of-band

links, and modify the flows of the compromised switches. Furthermore, s/he is able

to distinguish between host-generated packets and SDN control packets. S/he can

sniff packets, modify them, and inject them into the network. Consequently, the in-

scope threats in our work include all the three types of poisoning attacks mentioned

in Section 1.

We assume the SDN controller is uncompromisable and the established control

channels between the SDN controller and OpenFlow switches are trusted, and thus

attackers can only attempt to distinguish probing packets based on their contents.

On the other hand, the confidentiality and integrity of public-private key pairs that

are installed on switches are preserved, and the implementation or specification of

switch software remains unmodified.

2.3 Related Work

There has been a considerable effort tackling traditional networks’ topology poisoning

issues since the latter might have a significant impact on the network functionality.

For instance, poisoning attacks can manipulate routers’ network view [39] to cause

forwarding black holes, traffic redirection (e.g., to a compromised destination for

eavesdropping purposes) [55, 23] or to further mount Spanning Tree Protocol (STP)

mangling attacks [44], etc.

Although SDN is a recent networking paradigm, several approaches have already

been proposed to address the SDN controller’s network view poisoning problem either
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as attack detection mechanisms or as security enhancement techniques. In the fol-

lowing, we provide a review of both approaches. We also discuss active probing-based

techniques.

2.3.1 SDN Topology Poisoning Attack Detection Mechanisms

TopoGuard. In [19], two new network topology poisoning attacks are introduced,

namely, Host Location Hijacking and Link Fabrication, exploiting vulnerabilities in

current link discovery and host tracking services in OpenFlow-based SDN. In Host

Location Hijacking Attack, an attacker abuse the Host Tracking Service (HTS) of an

SDN controller, which is responsible to track the location of hosts in the network, by

spoofing a hosts identity. Using HTS, an SDN controller keeps the track of the hosts’

locations by processing OFTP_PACKET_IN messages so that whenever a host moves to a

new location, the SDN controller can update its view over the network. If an adversary

manages to craft the identity of a host, she can send spoofed packets to deceive the

SDN controller of the target host’s location. To this end, the adversary sends the

spoofed packets into the network which will trigger OFTP_PACKET_IN messages to

be sent to the SDN controller. Once the SDN controller receives those messages, it

updates the location of the host to the new location which is, in fact, the attacker’s

location. The result is hijacking the traffic by the attacker which is in fact destined to

the original host. An example of the result of this attack is phishing an impersonated

website which is depicted in Figure 6 [19]. In the latter case, i.e., the Link Fabrication

attack, an adversary utilizes fake LLDP packets or relaying the LLDP packets to

maintain fake links in the view of the SDN controller. In fake LLDP packet injection

attack, a malicious host stores LLDP packets that are received from an OpenFlow

switch, then, the malicious host forges the LLDP packet with the identity of an

existing OpenFlow switch in the network and forwards the forged LLDP packets to
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other switch(es). Or, if the host has access to other switches, it relays the original

received LLDP packet to the target switch. Also, a malicious host may forward the

received LLDP packets between its ports towards target switch(es) without sending

them back to the controller. These mentioned attacks create fake links in the view

of the SDN controller (refer to Figure 1 to better understand the Link Fabrication

attacks).

Although TopoGuard mainly introduces the above-mentioned attacks, the authors

propose an OpenFlow-based SDN controller extension to prevent those vulnerabili-

ties. TopoGuard checks the legitimacy of switch ports and host migration to tackle

Host Location Hijacking, as well as verifying LLDP packets’ integrity by adding the

signature of switch data path ID (DPID) and port in an extra TLV field of LLDP

packets using a cryptography hash function. Moreover, to verify host migration cor-

rectness, TopoGuard adds authentication to LLDP packets in order to identify those

packets generated by hosts aiming at poisoning the network view. However, unlike

SPV, TopoGuard cannot detect fake links caused by LLDP relay attacks.

SPHINX. SPHINX [14] allows detecting both known and potentially unknown at-

tacks on network topology by verifying data plane forwarding and network topology
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attacks, and defining administrative policies and verifying them against attacks on

SDN. To this end, SPHINX makes use of specific graphs, namely, flow graphs, to first

model the data plane. A flow graph is a graph representation of data-plane flows with

nodes being the endpoints and switches being the nodes. Due to the programmable

ability of SDN, different flow graphs might exist between two endpoints. For example,

as depicted in Figure 7, between two endpoints H1 and H4, two possible flow graphs

are S13-S12-S2-S22-S24 and S13-S11-S1-S21-S24.

To incrementally build the flow graphs, SPHINX processes specific OpenFlow

control messages, i.e., OFTP_FLOW_MOD, OFTP_STATUS_REPLY, OFTP_PACKET_IN, and

OFTP_FEATURE_REPLY, in order to model the data plane. In the last step, with the

help of the flow graphs metadata and the mentioned pre-defined administrative poli-

cies, SPHINX verifies the discovered flow graphs against the history of the metadata

and the pre-defined administrative policies. Note that in this work the communica-

tions between the SDN controller and OpenFlow switches are assumed to be trusted.

In contrast to SPV, SPHINX cannot detect the creation of fake links in the topology,

which would falsify the generated flow graphs based on which the data plane verifica-

tion is performed. Furthermore, malicious switches that tend to relay LLDP packets
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remain undetected.

HMAC Authenticated LLDP. In [4], the authors propose an LLDP packets au-

thentication approach based on adding the HMAC of a switch ID and the correspond-

ing port ID to the LLDP packet into one of the unused TLV fields of an LLDP packet.

The packet format of an LLDP packet is already shown in Figure 5. Although this

method prevents the forged LLDP packets created by malicious hosts or soft switches

from creating fake links in the network view, contrarily to SPV, it cannot handle fake

link creation caused by relayed LLDP packets by malicious hosts or switches since it

solely depends on HMAC authenticated LLDP packets since relaying an LLDP packet

with a valid HMAC value in it, is still verified.

2.3.2 OFDP Security Enhancement Mechanisms

OFDPv2. In [45], an improved version of OFDP, namely, OFDPv2, is proposed.

OFDPv2 requires the SDN controller to send only one OFTP_PAKCKET_OUT message

containing an LLDP packet to a switch and instructs the switch to advertise the LLDP

packet on all its ports, instead of sending multiple OFTP_PAKCKET_OUT messages to

carry an LLDP packet to be forwarded on every port of each switch. Although in

OFDPv2 the topology discovery mechanism is changed and improved in comparison

to original the OFDP protocol, it lacks the authentication for LLDP packets and

hence suffer the same topology poisoning vulnerabilities and unlike SPV, there is no

verification mechanism for data-plane links.

sOFTDP. The authors in [8] propose an improvement to the OFDP protocol, namely,

sOFTDP. The main idea is to transfer the burden of topology discovery from the

SDN controller to the data-plane switches. sOFTDP applies minimal changes to the

OpenFlow switch design to allow switches to detect topology changes and notify the

controller accordingly. Authenticated LLDP packets are used to avoid packet forgery,
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Table 2: Summary of SDN topology poisoning attack detection and OFDP security

enhancement mechanisms

Name Detection Approach Addressed Poisoning Attacks
TopoGuard [19] Authenticated LLDP packets Fake LLDP packet injection

SPHINX [14]
• Authenticated LLDP packets
• Flow graphs
• Administrative-policies

• Fake LLDP packet injection
• LLDP relay by hosts

HMAC Authenticated LLDP [4] Authenticated LLDP packets Fake LLDP packet injection
Detecting a Compromised Switch [12] Artificial packets None
OFDPv2 [45] Simplifying OFDP None

sOFTDP [8] • Authenticated LLDP packets
• BFD sessions Fake LLDP packet injection

SPV • Authenticated stealthy packets
• Active probing

• Fake LLDP packet injection
• LLDP relay by switches
• LLDP relay by hosts

and as port liveliness detection mechanism, whenever a switch joins the network, by

making use of some control messages through a 3-way handshake procedure, a Bidi-

rectional Forwarding Detection (BFD) session is established between switches in the

network to notify the controller of any port changes. Furthermore, to detect link

updates in the network, instead of sending LLDP packets periodically, sOFTDP uti-

lizes BFD session and notify the controller of the link updates. Note that sOFTDP

only relies on BFD session for link removals and ports failures through its designed

BFD_STATUS control message, and for link additions, it uses OFTP_PORT_STATUS mes-

sages. The reason behind this is to detect port or link failures that are also originating

from non-administrative decisions, i.e., failure of physical links or switch failures. Un-

like SPV, sOFTDP[8] do not verify fake link creation and furthermore, its vulnerable

to relaying BFD packet attack which is similar to relaying LLDP packet attack, so,

it still suffers from topology poisoning attacks.

Table 2 summarize and compares the above-mentioned related works.
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2.3.3 Active Probing Techniques

Probing techniques are typically used to maliciously infer network specifications (e.g.,

firewall rules, OpenFlow rules, bandwidth estimation, flow tables usage and capacity,

etc.), in contrast to SPV where network probing is used as a defensive mechanism to

deceive malicious hosts and SDN switches. For instance, in [52], the authors utilize

the delay required for flow installation on SDN switches to detect whether a network

is an SDN. INSPIRE [31] relies on some senders located inside the network, a receiver

deployed outside the network and a line sweep algorithm to select forged probing

packets to be sent to the network in order to infer OpenFlow rules. INSPIRE can

infer the flow rules installation mode (i.e., proactive or reactive), by measuring the

delay between a packet sending time and its reception, then an apriori algorithm is

used to discover the rules. In [10], the authors use active probing techniques based on

crafted packets to trigger switch-controller communications, then they use round trip

time (RTT) and packet-pair dispersion features to infer information about flow rules.

The authors in [30] also use probing and RTT measurement to infer the OpenFlow

switches’ tables capacity and usage along with the flow rules’ hard and idle timeouts.

They also trigger controller-switch interactions by sending probing packets to infer

the processing time of a specific rule.

Similarly to our work, in [12], network probing is used as a defensive technique.

Therein, a periodic sampling-based approach is proposed to detect malicious Open-

Flow switches in an SDN. First, a switch is randomly chosen, then a set of flow rules

are randomly selected from the switch’s flow tables. Afterwards, artificial packets

are sent to the target switch to investigate whether the latter behaves properly upon

receiving those packets. Our effort can be seen as complementary to this work since

the latter checks the legitimacy of switches but cannot verify the links between them.
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Chapter 3

Methodology

In this chapter, first we identify the goals to achieve with our proposal. Then we

discuss our methodology.

3.1 Design goals

The primary goal of SPV is near real-time verification of data-plane links in an SDN

environment in an incremental manner to overcome the topology poisoning attacks

that are already mentioned in Section 1. Our target features include:

1. Designing a tool to verify data-plane links in an SDN while keeping the tool

independent of any SDN infrastructure specially the SDN controller.

2. Detecting network topology changes in the view of the SDN controller as soon

as they occur.

3. Generate stealthy probing packets out of the packets that are already traversing

the network to deceive the potential malicious switches which might try to

poison the network view of the SDN controller.

22



Link Verification

Link Verifier

Topology 
Mapper

Link Update 
Checker

Flow
Manager App

Packet Collector

Packet Sender

Packet 
Generator

D
at

a
Pl

an
e

C
on

tr
ol

Pl
an

e
A

pp
. 

L
ay

er

SDN Applications

Southbound 
API

Controller
Layer

Northbound 
API

OpenFlow

E.g. REST

Statistics 
Manager

Topology 
Exporter

Fwd. Rule 
Manager

Other 
Functions

Forwarding

Abstraction

API

Flow TablesFlow TablesFlow TablesFlow Tables

Forwarding

OpenFlow

Network 
View

PKT_
DB

SDN SPV

Figure 8: SDN and stealthy probing-based verification (SPV) architecture

4. Designing the stealthy probing packets indistinguishable from other host-

generated packets inside the network.

5. Verifying the whole network topology with a very low response time.

3.2 SPV Design

This section elaborates our stealthy active probing-based verification approach, i.e.,

SPV, to verify OpenFlow-based SDN data-plane links.

3.2.1 Architecture

Figure 8 depicts the architecture of SPV including its interactions with SDN. In order

to achieve our goals, i.e., verifying SDN data-plane topology using stealthy probing,

we indeed need to pursue certain requirements. The very first requirement is to ac-

quire the knowledge of the network topology, which is data-plane switches, their flows,

23



and their connecting links. In the next step, we need to design and send stealthy prob-

ing packets towards the discovered switches and their connecting links. Finally, the

last step is collecting the stealthy packets and verifying the topology. To this end,

we design the SPV with two major modules each having corresponding sub-modules

to fulfill the above-mentioned requirements. Therefore, SPV has two major mod-

ules: Link Verification and Stealthy Packet Handler. The Link Verification module is

mainly responsible for identifying and verifying each update in the network topology

which comprises Link Update Checker, Topology Mapper, Flow Manager Applica-

tion and Link Verifier sub-modules. The Stealthy Packet Handler module performs

packet collection, packet generation, and packet transmission through the Packet Lis-

tener, the Packet Generator, and the Packet Sender sub-modules, respectively. In the

following, we describe each module in details.

Link Verification. This module is responsible for tracking and verifying the data

plane changes, by making use of stealthy probing packets, which comprises the fol-

lowing modules.

1. Link Update Checker. As the very first step of SPV, the Link Update

Checker module is responsible for identifying updates in the network through

communications with the SDN controller1 and informing the Link Verification

module of any changes made to the network.

This module is installed from the initialization of the network to verify the

network topology in an incremental manner.

2. Topology Mapper. This module maintains a tree data structure to locally

store the up-to-date topology information provided by Link Update Checker.

The tree stores the information of data-plane devices, i.e., if it is a host or

a switch or a link, along with their specifications, e.g., their status that is
1The communications is done via northbound API
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up/down, and other useful information such as Device IDs, Port IDs and so on.

The stored information is later used by the Link Verifier module for the purpose

of link verification. Also, the tree is responsible to store the received updates

after verification procedure to maintain the validity status of every switch and

their connecting links.

3. Flow Manager. This module works as an application to the SDN controller to

communicate through the northbound API for querying the flows and statistics

of a given switch and installing a given flow on a given switch. This module

interacts with the Link Verifier module to perform the above-mentioned func-

tionalities and provide the results.

4. Link Verifier. This module is the key component in SPV’s link verification

procedure. The Link Verifier module interacts with Topology Mapper, Flow

Manager Application and Stealthy Packet Handler modules. Based on the in-

put data from the Link Update Checker module, the Link Verifier module com-

municates with the Topology Mapper module to get the link endpoints, and to

query the flows and the statistics of them via the Flow Manager Application

module. Also, the Link Verifier relies on the Stealthy Packet Handler module,

more specifically Packet Collector and Packet Generator modules, which are

responsible to generate the stealthy probing packets, and Packet Sender, which

is responsible to transmit the packets to be traversed through the links to be

verified.

Stealthy Packet Handler. This module is responsible for generating, sending

and collecting stealthy probing packets to/from data plane. Details of corresponding

modules are discussed below.

1. Packet Generator. This module is responsible to generate stealthy probing
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packets, namely, SPV_PKT packets, with the help of the Packet Collector module

upon receiving a request from the Link Verifier module. The generation of

stealthy probing packets is performed using two different algorithms (discussed

in Section 3.2.3) depending on two possible situations. (i) A link is being verified

for the first time, and (ii) a certain link is being verified again, i.e., further rounds

of verification for a certain link which is not yet verified, due to the reasons such

as loss of SPV_PKT packets.

2. Packet Collector. This module collects two types of packets. Firstly, it col-

lects and stores OFTP_PACKET_IN messages, that contain host generated packets

in their content, in its local database, namely, PKT_DB, which are later used

by Packet Generator in the stealthy packet generation algorithms. Secondly,

it collects and stores OFTP_PACKET_IN messages that have an SPV_PKT in their

content and report them to the Link Verifier as soon as it collects them.

3. Packet Sender. This module manages to send stealthy probing packets to-

wards the source endpoint switches of the links to be verified. More specifically,

the first responsibility of this module is to receive a stealthy probing packet and

information of the link to be verified from the Link Verifier module. The second

responsibility is to send the received packet to be traversed through the link to

be verified.

3.2.2 Link Verification Algorithm

This section describes the steps of Link Verification mechanism.

Step 1: Tracking Network View Updates. The first step of SPV is to capture

every change in the network topology and to maintain a local view of the network

state. To this end, the Link Update Checker continuously monitors the network view
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of the SDN controller to detect updates in the network topology starting from the

initialization of the network. As soon as an update is detected, the Topology Mapper

is informed to keep track of them by storing them locally. Then, the Topology Mapper

notifies the Link Verifier of the emergence of any new link added to the network view.

Example 1. Suppose in Figure 9 switch S14 is a malicious switch and tends to poison

the network view by creating a fake link between switches S11 and S12 (shown by

dashed lines in Figure 9) by relaying LLDP packets between switches S11 and S12.

In SPV’s design, the very first step for link verification is detecting updates in the

network topology view. So, Link Update Checker communicates with SDN controller

to get the new link information i.e., link S11:Port2-S12:Port2 (which is a fake link

and need to be validated). After detecting link S11:Port2-S12:Port2 via the Link

Update Checker module, the Topology Mapper is informed of the existence of this

new link and the link information is stored locally with the status of the link set to

“Not-Validated”. Then the Link Verifier is informed of the new link that must be

validated.

Step 2: Collecting Data for Packet Generation. In this step, the Link Verifier

obtains information about the newly added link along with the information of its

endpoint switches, their flows, and statistics through the Flow Manager Application

module. Upon a request from the Link Verifier, Stealthy Packet Handler generates an

SPV_PKT packet and sends it back (the details of generating the packet is discussed in

Section 3.2.3). This packet is a stealthy probing packet designed for the verification

of a specific data-plane link.

Example 2. In this step (as shown in Figure 9), the Link Verifier queries the flows

and statistics of switches S11 and S12 via the Flow Manager Application module and

sends the queried information to the Packet Generator module. Upon receiving a

request from the Link Verifier module, Packet Generator generates a stealthy probing
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Figure 9: Verification of a newly added link utilizing SPV

packet, i.e., SPV_PKT packet, specific for verifying link S11:Port2-S12:Port2 (details

of generating SPV_PKT packet is discussed in Section 3.2.3) and send it back to the

Link Verifier.

Step 3: Installing Flow to Forward SPV_PKT. The third step is mainly to

install a flow to source endpoint switch of the link to be verified. Utilizing the link

information, i.e., link endpoints and their connecting ports, and the returned SPV_PKT

packet from the Packet Generator module, the Link Verifier creates a flow. Then, with

the help of the Flow Manager Application module, the created flow is installed on the

source endpoint of the link to be verified. This flow helps the source endpoint switch,

of the link to be verified, to forward the received SPV_PKT packet on its outgoing port

towards the destination endpoint switch of the link. Note that the flow is generated

to forward a specific SPV_PKT packet towards another switch and is deleted from the

switch after a successful round of verification of the given link. For the bi-directional

links, SPV follows the similar approach, but in both directions.

Example 3. Based on the received SPV_PKT packet and the information of link

S11:Port2-S14:Port2, Link Verifier module generates and installs a flow (shown
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by a shaded row in the flow table, S11 Flow Table in Figure 9) on switch S11, i.e.,

the flow to match the mentioned specific SPV_PKT to forward it on port S11:Port2,

with the help of the Flow Manager Application module.

Step 4: Collecting SPV_PKT Packets. Based on Step 3, this step mainly waits

until it receives the response from Stealthy Packet Handler module within a given

time threshold, and obtains the packet information of a received SPV_PKT packet.

Within the mentioned time threshold, if the Stealthy Packet Handler receives an

OFTP_PACKET_IN message with a content of the SPV_PKT packet, it informs the Link

Verifier by sending the packet to it. Alternatively, if the packet is dropped for any

reason, after a certain timeout, the Link Verifier is informed with timeout message

for the given SPV_PKT packet that had been sent for verifying a specific link.

Example 4. After successful installation of the flow on switch S11, Link Verifier

requests the Packet Sender to send the SPV_PKT packet to switch S11, as depicted in

Figure 9. The switch S11 receives the SPV_PKT, finds a match in its flow table for

it, and forwards the packet on its port S11:Port2. After the packet is received by

switch S14, since the port S11:Port2 is connected to S14:Port2 and not S12:Port2,

switch S14 performs a lookup in its flow tables to find a match for it. However,

switch S14 does not find any match for the received stealthy SPV_PKT packet, there-

fore, it encapsulates the SPV_PKT in an OFTP_PACKET_IN message and forwards it

to the SDN controller. At this point, the Packet Collector module is continuously

listening to SDN controller and data plane communications and upon receiving an

OFTP_PACKET_IN with an SPV_PKT in its contents, it adds the OFTP_PACKET_IN mes-

sage to the PKT_DB database (the details of PKT_DB database is discussed in

Section 3.2.3) and send a copy of it to the Link Verifier module.

Step 5: Validating a Specific Link. The final step of the link verification proce-

dure is to decide on the validity of a link. To this end, there are two possible scenarios.
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In the first scenario, the Link Verifier receives an OFTP_PACKET_IN message with a

content of the SPV_PKT packet and examines the SPV_PKT packet to match it with

the link that the packet is originally designed for, more specifically, the matching

is performed by utilizing a hash value that has been inserted into the payload of

SPV_PKT packets. At this point, if the SPV_PKT packet is sent back from the destina-

tion endpoint switch of a given link, the link is validated and marked as “Legitimate”.

Otherwise, the SPV_PKT packet is sent back from a switch other than the destination

endpoint of a given link. In this case, the link and its sender switch are marked as

“Malicious”.

More intuitively, since SPV does not rely on LLDP packets, and because SPV_PKT

packets are indistinguishable from other packets that are already traversing the net-

work, the malicious switches are deceived and caught. In the second scenario, the

SPV_PKT packet is not received by the Packet Collector for any reason, e.g., it is

dropped due to network congestion or packet loss possibilities, and the link stays in

“Not-Validated” state until the next verification round.

Example 5. After the Link Verifier module receives information from Packet Collec-

tor module, it queries for the SPV_PKT packets with the Link_ID of the S11:Port2-

S12:Port2 from the PKT_DB database (depicted in Figure 10). Then it confirms

the identity of the SPV_PKT packet using the hash value provided in its payload, i.e.,

the hash of the ID of the SPV_PKT packet and the timestamp that it has been gener-

ated, by comparing the mentioned hash value with the calculated hash value earlier in

the process of SPV_PKT packet generation. If both values match, the link S11:Port2-

S12:Port2 is validated and marked as “Validated” in the tree data structure with the

help of the Topology Mapper module. However, since in this example the received

SPV_PKT packet is sent from switch S14, the DPID of the OFTP_PACKET_IN message

sender and Switch_ID value in the PKT_DB database for the received SPV_PKT
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Algorithm 1 Link Verification Algorithm
1: Input: links : List of links to be verified
2: procedure VerificationPreparation(links)
3: for each l ∈ links do
4: srcSwStat = flowMngr.getStat(l.srcSwID)
5: dstSwStat = flowMngr.getStat(l.dstSwID)
6: SPV _PKT = decPktHandler.pktGen(srcSwStat, dstSwStat, l)
7: SPV _Flow = genFlow(SPV _PKT.header,l.srcSwID, l.srcSwPort)
8: flowMngr.installFlow(SPV _Flow, l.srcSwID)
9: while true do

10: if decPktHandler.pktSender(SPV _PKT , l.srcSwID, l.srcSwPort)
== “Successful" then

11: l.SPV PKT = SPV _PKT � storing the latest SPV_PKT for
each link

12: break

13: Input: PKTIN_SPV : collected OFTP_PACKET_IN sent from Packet Collec-
tor that contains SPV_PKT

14: Input: SwID : the switch ID of the OFTP_PACKET_IN message sender
15: procedure LinkValidation(PKTIN_SPV, SwID)
16: for each l ∈ links do
17: if l.SPV PKT == PKTIN_SPV.payload then
18: if SwID == l.dstSwID then
19: l.Status = “Legitimate”
20: else if SwID �= l.dstSwID then
21: l.Status = “Malicious”
22: maliciousSwList.add(SwID)

packet does not match, and both the link S11:Port2-S12:Port2 and the switch S14

are marked as “Malicious”.

Algorithm 1 shows Steps 1-4 through the VerificationPreparation procedure and

Step 5 through the LinkValidation procedure.

3.2.3 Stealthy Packet Handler Algorithm

This section discusses the Stealthy Packet Handler algorithm.

Step 1: Collecting OFTP_PACKET_IN Messages. The first step of the

Stealthy Packet handler is to collect OFTP_PACKET_IN messages that have a host-

generated packet in their content, via the Packet Collector module, and build a pool

of packets stored in a locally maintained database, i.e., PKT_DB. These packets are
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utilized in designing the SPV_PKT packets in a way that a malicious host or switch is

not able to distinguish those packets from a regular host-generated packet that has

already traversed the network. Hence, upon receiving an OFTP_PACKET_IN message

that contains a host-generated packet in its content, the Packet Collector extracts the

header information of the OFTP_PACKET_IN message and the host-generated packet

inside the message along with its size and other useful information, and stores them in

its local database. The PKT_DB database contains a schema as depicted in Figure

10.

In Figure 10, for each entry in PKT_DB, the PKT_ID specifies a unique identifier

for each packet that is stored in the database. The PKT_ID is never exposed to

the outside of SPV since it is a secret information which is used for authentication

purposes (details are discussed later in this section). PKT_type can be either "Host

Packet" or "SPV_PKT", since we collect OFTP_PACKET_IN messages with contents

of either host-generated packets or SPV_PKT packets. The Switch_DPID value has

the DPID of the switch that has sent the OFTP_PACKET_IN message, this information

can be achieved by making use of the MAC address of the OFTP_PACKET_IN message

sender switch. PKT_IN_hdr and Data_hdr contain the header of the OFTP_PACKET_IN

message and the corresponding packet in its content, respectively. Link_ID contains

the ID of the link that the SPV_PKT has been sent to verify its validity. Finally, the

timestamp shows the timestamp that an SPV_PKT is generated. Some of the above-

mentioned attributes might not contain any value depending on the packet type, i.e.,

either HostPacket or SPV_PKT.

Step 2: Generating SPV_PKT Packets. This step is to generate stealthy

probing SPV_PKT packets for data-plane link verification purpose. Depending on two

possible scenarios, i.e., (i) first round of verification of a link and (ii) further rounds

of verification of a link, either Step 2a or Step 2b is performed respectively.
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Figure 10: PKT_DB database table schema

Step 2a. The Packet Collector module searches in its database for the packets

that do not have the Switch_DPID of the link endpoint switches, i.e., the endpoint

switches of a link to be verified must not appear in the Switch_DPID field of the

packet that is selected from the PKT_DB database. The list of the selected packets,

satisfying the mentioned condition, is sent to the Packet Generator module. Then

the Packet Generator randomly chooses a packet from the list, forges the source and

destination IP and/or MAC addresses (depending on an IP or Ethernet packet), and

ports, and sends it to the Link Verifier module. At this point, a unique ID i.e.,

PKT_ID, is assigned to the packet to be used in packet matching. Since OpenFlow

switches do not process packet payloads, the Packet Generator calculates the hash

value of concatenation of PKT_ID and the timestamp of the moment that the packet

is generated, i.e., Hash(PKT_ID||timestamp), and stores it as the SPV_PKT packet

payload. If the payload size of the original packet is larger than the size of the hash

value, we append dummy data to the SPV_PKT packet payload. A copy of the sent

SPV_PKT packet is stored in the PKT_DB database along with the link information,

i.e., Link_ID, which is used in further rounds of link verification (Step 2b).

Step 2b. If there is a match for a given link’s ID inside the PKT_DB database,

the Packet Generator fetches the related SPV_PKT packet and sends the packet to a

Line Sweep algorithm which produces the next probing packet for verifying this link.

Upon receiving the returned packet, the payload is added similarly as mentioned in

Step 2a. Then, the newly generated SPV_PKT packet is sent to the Link Verifier and

replaced with the previous SPV_PKT packet inside the PKT_DB database for a given

Link_ID. We further discuss the details of the line sweep algorithm in the following.
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Figure 11: Line sweep mechanism for selecting stealthy probing packets used in

second or further rounds of verification

As mentioned earlier, the Packet Generator records the latest SPV_PKT packet

for each link to be used to generate the next probing packets. After generating an

SPV_PKT packet for the first round of verification for a certain link, the generated

packet is sent to a sweep line algorithm proposed in [26] to generate further probing

packets. Usually, a sweep line algorithm is used to solve a problem by sweeping

an imaginary line over a dimension stopping at some points. In the context of our

work, the problem is to choose the next probing packets in a way that we keep the

stealthiness of the chosen SPV_PKT packets. In [26], the line sweep algorithm is

used to choose probing packets to infer firewall rules, and the method searches for

packet headers in (n−1) shapes in an n-dimensional space, by searching for a straight

line that is not diagonal but having the characteristics of vertical or horizontal. The

method generates packets that cover the sweeping line with a 45-degree angle between

starting and ending points. After the algorithm searched for all packets (Figure 11(a)),

it chooses another line and repeats the procedure till the whole space is covered

(Figures 11(b) and 11(c)).

We leverage the line sweep algorithm in [26] with some variations similar to [31]

for selecting SPV_PKT packets’ header information for second or further rounds of

verification procedure of links that are not verified in the first round of verification
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Figure 12: SPV_PKT packet generation procedure flow chart

procedure. The algorithm is used to select the IP addresses, and port numbers of

the SPV_PKT packet header. So, based on each SPV_PKT packet of a given link, to

select the next probing packet, the IP addresses and port numbers are incremented

sequentially and simultaneously.

Figure 12 provides the flow chart for SPV_PKT packet generation procedure.

Step 3: Sending SPV_PKT Packets. This step is to transmit SPV_PKT packets

towards a given switch for the purpose of data-plane link verification. Upon receiving

a request from the Link Verifier module, a generated SPV_PKT packet is sent towards

the source endpoint of the link to be verified, via the Packet Sender module.

Algorithm 2 details the above-mentioned steps.
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Algorithm 2 Stealthy Packet Handler Algorithm
1: Input: PKT_IN : the exchanged OFTP_PACKET_IN messages between Open-

Flow switches and the SDN controller
2: Input: SwID : the switch ID of the OFTP_PACKET_IN message sender
3: procedure pktCollector(PKT_IN, SwID)
4: if PKT_IN.payload �= controlMsg then
5: pktDataBase.add(PKT_IN , SwID)
6: if PKT_IN.payload == SPV _PKT then
7: LinkV erfication.LinkV alidation(PKTIN_SPV , SwID)

8: Input: srcSwStat : flows and status of source endpoint of the link
9: Input: dstSwStat : flows and status of destination endpoint of the link

10: Input: link : the link information
11: procedure pktGen(srcSwStat, dstSwStat, link)
12: pkts = getPktsFromDB(srcSwID, dstSwID)
13: if link.SPV PKT �= null then
14: pkt = lineSweepPktGen(l.SPV PKT )
15: else
16: pkt = pktSelector(pkts) � select and forge the header of a random packet
17: return pkt

18: Input: PKT : a packet to be sent
19: Input: SwID : the switch ID to send the packet to
20: Input: SwPort : the port number of the switch to send the packet on
21: procedure packetSender(PKT, SwID, SwPort)
22: if NorthBoundAPI.SendPacket(PKT , SwID, SwPort) == “Successful"

then
23: return “Successful"
24: else
25: return “Unsuccessful"
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Chapter 4

Implementation and Experiments

This chapter describes the implementation details of SPV and provides the experi-

ments conducted to evaluate the SPV.

4.1 Implementation

Before we delve into the implementation details of SPV, we provide an overview of

the environment and the tools we use to implement SPV, as well as an LLDP relay

attack implementation.

4.1.1 Environment Setup

We use OpenDaylight (ODL) [1] as the SDN controller and implement the data plane

using Mininet network emulator [28, 38]. ODL is an open platform for automating

large scale networks. ODL has a model-driven service adaptation layer (MD-SAL)

architecture, in which network applications and network devices are considered as

objects and communicate with each other by using the northbound and southbound

API plugins’ functions, that are provided by SAL [37, 1]. Mininet [24, 38] is a network

emulator that can be used to deploy OpenFlow switches and virtual hosts while
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Figure 13: Installing required features on ODL controller

connecting them using virtual links in a single machine.

4.1.1.1 Control Plane Setup

In our setup, we install ODL Carbon release on a virtual machine running a Linux

Ubuntu server 16.04 with two Intel(R) Xeon(R) E3-1271 v3 CPUs and 6GB of RAM.

We mainly focus on the SDN controller functionality of ODL by making use of the

REST northbound API and OpenFlow southbound API. Furthermore, in our work,

we utilize some of ODL’s features such as a) odl-restconf, b) odl-l2switch, c) odl-

mdsal, d) odl-dlux, e) network-topology and f) packet-processing. Figure 13 illustrates

the installation of the above-mentioned features on ODL controller.

The mentioned features are installed on ODL to mainly provide access to rest API,

optimization of packet forwarding for learning switches, generic support for applica-

tions, graphical user interface, network topology and processing and forwarding pack-

ets along with instructions, respectively. We configure ODL to instruct data-plane

switches that join the network to install reactive flows instead of proactive flooding
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flows and to forward the newly received packets to the ODL for further instructions

through the following configuration file. Moreover, proactive flows for LLDP packets

(Ether type 0x88cc) is installed upon joining a switch to the network for discovering

the network topology. The above-mentioned configurations are depicted in Listings

5.1, 5.2 and 5.3, respectively.

1 <?xml version="1.0" encoding="UTF-8"?>

2 <arp-handler-config xmlns="urn:opendaylight:packet:arp-handler-config">

3 <is-proactive-flood-mode>false</is-proactive-flood-mode>

4 </arp-handler-config>

Listing 4.1: Disabling proactive flooding flow installation

1 <?xml version="1.0" encoding="UTF-8"?>

2 <l2switch-config xmlns="urn:opendaylight:packet:l2switch-config">

3 <is-install-dropall-flow>false</is-install-dropall-flow>

4 </l2switch-config>

Listing 4.2: Sending new packets to controller for further instructions

1 <?xml version="1.0" encoding="UTF-8"?>

2 <loop-remover-config xmlns="urn:opendaylight:packet:loop-remover-config">

3 <is-install-lldp-flow>true</is-install-lldp-flow>

4 <lldp-flow-table-id>0</lldp-flow-table-id>

5 <lldp-flow-priority>100</lldp-flow-priority>

6 <lldp-flow-idle-timeout>0</lldp-flow-idle-timeout>

7 <lldp-flow-hard-timeout>0</lldp-flow-hard-timeout>

8 </loop-remover-config>

Listing 4.3: Send LLDP packets to controller
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4.1.1.2 Data Plane Setup

To set up data-plane devices, we utilize Mininet 2.2.1 on a separate Linux virtual

machine running Linux Ubuntu server 16.04 with two Intel(R) Xeon(R) E3-1271 v3

CPUs and 4GB of RAM. We utilize OpenFlow version 1.3, as it is the latest supported

version by Mininet 2.2.1. The OpenFlow switches in the data plane are chosen to

be software based Open vSwitch [42] switches. We consider a fat-tree topology [3],

which is one of the most used network topologies in nowadays large data centers [58],

for our data plane. A fat-tree topology comprises four layers; core switches on top,

aggregate switches at the second layer, edge switches at the third layer and hosts or

servers are at the lowest layer. Figure 14 illustrates a fat-tree topology with four core

switches.

4.1.1.3 Traffic Generator

To better simulate an SDN environment, it is required to generate and exchange traffic

between hosts, passing through OpenFlow switches in our emulated environment. To

this purpose, we utilize iPerf [20], which is a powerful tool to generate both UDP and

40



Figure 15: An iPerf TCP traffic generation between hosts h1 and h2

TCP traffic between two endpoints. This tool is later used in Section 4.2 to generate

traffic between different pairs of hosts. Figure 15 shows the details of generating a

TCP traffic for the duration of 10 seconds between two given hosts, h1 as the TCP

server and h2 as the TCP client, and the report after the termination of the session.

4.1.1.4 Attack Implementation

In this section, we implement an LLDP relay packet attack using a malicious switch

to show the feasibility of the attack that can occur in an SDN environment. In this

implementation, we create a fat-tree topology with two core switches by making use

of a Python script which leverages Mininet’s python libraries for this purpose. We

choose the ODL to be the SDN controller and OpenvSwitch as the underlying data-

plane switches. Figure 16 illustrates the network view of the ODL controller on the

above-mentioned fat-tree topology.
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Figure 16: A fat-tree topology with two core switches in the view of the ODL

Controller

Figure 17: Flow rules of switch openflow:2002 before adding LLDP relay rules

In the shown topology in Figure 16, we try to create a fake link between switches

openflow:3002 and openflow:1002 in the view of the SDN controller by relay-

ing the LLDP packets between them by modifying the flow rules of the switch

openflow:2002. Unmodified flow rules of the switch openflow:2002 are shown in

Figure 17.

As it is illustrated in Figure 18, the two flow rules with higher priority are added

to relay LLDP packets between ports port 1 and port 4 in switch openflow:2002.
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Figure 18: Flow rules of switch openflow:2002 after adding LLDP relay rules

Figure 19: Afake link creation in the view of the ODL Controller

This action creates a fake link in the view of the controller between switches

openflow:3002 and opneflow:1002 as depicted with a blue line in Figure 19.

4.1.2 SPV’s Implementation Details

We install SPV on the same machine that runs the ODL (i.e., a virtual machine

running a Linux Ubuntu server 16.04 with two Intel(R) Xeon(R) E3-1271 v3 CPUs

and 6GB of RAM).Note that although SPV and ODL are installed on the same ma-

chine, they work independent of each other, meaning that they can be installed on
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two separate machines as well. The main programming language used to implement

SPV is Java [22]. We utilize Scapy’s [50] Python libraries for the purposes of SPV_PKT

packet generation and encoding. We implement the SPV in both single thread and

multi-thread modes, by utilizing Java’s multi-threading capabilities in order to en-

hance the response time of link verification when there are more than one links to

be verified simultaneously. The following discusses implementation details of main

SPV’s components.

4.1.2.1 Link Verification

The Link Verification module (see Figure 8 for more details) is implemented to com-

municate with ODL’s northbound API for querying the changes in network topology,

storing the topology locally, installing flows on data-plane switches and performing

link verification (an example of ODL’s rest API output for a linear network topology

with three switches is depicted in Figure 20). More specifically, the Link Update

Checker interacts with ODL’s opendaylight-topology module to keep track of changes

in the data-plane network. Then, SPV’s Topology Mapper module keeps the lat-

est topology locally by utilizing regular expression techniques to parse the output

of the opendaylight-topology. The data structure to keep the topology is a map of

the network topology which consists of links and nodes and their connections along

with other useful information, e.g., switch statistics or links’ status. Note that the

validity information of a link is also stored within the tree data structure. A part of

the output of a linear network topology with three switches after parsing and storing

the data locally in SPV is shown in Figure 21 which is an illustration of collected

information over a link and an OpenFlow switch.

The next step in Link Verification procedure is to go through the unverified links,

send a request to Stealthy Packet Handler module for a generation of an SPV_PKT
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Figure 20: An output of opendaylight-topology upon a request to query the ODL’s

network view

Figure 21: Details of a stored link and an OpenFlow switch
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packet, and forward it towards the link that is to be verified. The procedure of

packet generation and forwarding it towards the link to be verified is discussed in the

next subsection.

4.1.2.2 Stealthy Packet Handler

The Stealthy Packet Handler module consists of multiple Java classes along with

Python scripts which utilize Scapy [50], i.e., a packet manipulation tool aimed to send,

sniff, dissect and forge network packets. The interaction with the Link Verification

module is done via a Java class. After a request for packet generation is sent from

Link Verifier, a Python script utilizes Scapy’s [50] libraries to generate and encode

SPV_PKT packets in the Base64 format and send them towards specific links using

ODL’s northbound API. In Listing 5.4 we illustrate the content of an API request to

send a Base64 encoded SPV_PKT packet, using the northbound API of the ODL.

1 { "input": {

2 "connection-cookie": 123456,

3 "egress": "/opendaylight-inventory:nodes/opendaylight-inventory:node[

opendaylight-inventory:id=’openflow:1’]/opendaylight-inventory:

node-connector[opendaylight-inventory:id=’openflow:1:2’]",

4 "node": "/opendaylight-inventory:nodes/opendaylight-inventory:node[

opendaylight-inventory:id=’openflow:1’]",

5 "payload": "

AAAAAAACAAAAAAABCABFAABQAAEAAEAGZqUKAAABCgAAAp2cQqMAAAAAAAAAAFACI

6 AAiuAAANTM3NzdCQkJEQzY3RDQ5RDc2QzNERjJENUQ3OTQzN0EzQTBFNzk3OQ=="

7 }}

Listing 4.4: Content of an API request to send an SPV_PKT packet using ODL’s

northbound API
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4.2 Experiments

This section presents our experiments for evaluating the performance of SPV. We

conduct four groups of experiments to evaluate the performance and accuracy of

SPV. We first measure the efficiency of SPV by varying the complexity of the network.

Then, we evaluate the resource consumption, i.e., CPU and memory usage, of SPV.

We also measure the effect of different kinds of attackers that tend to increase packet

loss, congest the network and relay the traffic, on SPV. We further implement SPV

in a real SDN/cloud topology to verify its applicability and evaluate its performance.

To this end, first we discuss the network topology used in our experiments, and then

each group of experiments is detailed.

Network Topology. As mention in Section 4.1.1.2, we consider a fat-tree topol-

ogy [3] for our data plane. We vary the switches from five to 40 where the largest

topology has eight core switches, 16 aggregate switches, and 16 edge switches, which

comply with the size of a medium-sized data center to accommodate tens of thousands

of servers [3, 58]. Even though the reported results in the next section show that we

could expect SPV to be expandable to large data centers, we only vary the number

of switches up to 40 due to the resource limitations of our environment. However, to

stress the SPV and evaluate its accuracy, we conduct further set of experiments to

measure SPV’s performance for up to 5,000 link verifications in the network.

4.2.1 The Efficiency of SPV

In the first group of our experiments, we measure the time requirement of SPV in

different situations. The reported verification time includes the time for selecting

the link, generating SPV_PKT packet, installing flow rules, sending and receiving the

SPV_PKT packet, and finally verifying both the SPV_PKT packet and the link. Fig-

ure 22 shows the time required for SPV to verify one link and Figure 23 shows the
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Figure 22: Time required by SPV to verify a new link while varying the number

of switches up to 40 and number of links up to 96 in both single and multi-thread

modes

time required for SPV to verify all existing links in the network. More specifically,

Figure 22 depicts the time in milliseconds to incrementally verify a newly added link

in both single thread and multi-thread modes while varying the size of the network by

increasing the number of switches from five to 40 with a maximum of 96 data-plane

links. In this case, the average verification time is 102 milliseconds, which shows

the near-real-time nature of SPV to verify a newly added link. Also, the verification

time is independent of the size of the network (e.g., number of switches and their

connected links). Whereas Figure 23 shows the time required by SPV to verify a

group of links in both single thread and multi-thread modes while varying the size

of the network by increasing the number switches from five to 40 with a maximum

96 data-plane links. The verification time for the largest dataset in the single thread

mode is 26.1 seconds. We further improve the verification time by conducting them

through the multi-thread mode, which reduces the verification time to 10.6 seconds.
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Figure 23: Time required by SPV to verify all existing links while varying the

number of switches up to 40 and number of links up to 96 in both single and multi-

thread modes

Even though the increase of the number of switches in the network results in the

increase of verification time for both single and multi-thread modes, the increase of

the verification time remains almost linear in the multi-thread mode. These results

show the practicality of SPV in medium-sized data centers to verify their topology.

4.2.2 Resource Consumption by SPV

The second group of the experiments is to measure the resource consumption (i.e.,

CPU and memory usage) by SPV. Figure 24 depicts the average CPU and Figure 25

depicts the average memory usage to verify all existing links in the network by varying

the number of switches for single thread mode. More specifically, Figure 24 shows

that SPV on average requires about 20% of the CPU, which is a reasonable amount.

Figure 25 depicts the memory consumption by SPV while verifying all existing links
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Figure 24: Average CPU usage by SPV to verify all existing links while varying the

number of switches up to 40 and the number of links accordingly

for different network sizes. Even though we observe an increase in the memory con-

sumption for larger datasets, it still remains below 2%. Note that, the CPU and

memory consumption for verifying a single link is negligible and hence not reported

in this thesis.

4.2.3 Evaluating SPV Against Different Attacks

The objective of the third set of experiments is to investigate the effect of packet loss,

network traffic and the packet relay attack on SPV. To this end Figures 26 show the

percentage of unverified links in the first round of SPV for 5,000 link verifications in

the network while varying the packet loss rate and Figure 27 shows the percentage of

unverified links in the first round of SPV for 5,000 link verifications in the network

while increasing traffic throughput. To reduce this effect, SPV periodically sends

SPV_PKT packets until a link is verified and hence, all of the network links are even-

tually verified. In this set of experiments, we utilize a fat-tree topology with two core
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Figure 25: Average memory usage by SPV to verify all existing links while varying

the number of switches up to 40 and the number of links accordingly

switches, four aggregate switches and four edge switches where the bandwidth of core

switches to aggregate switches are set to 100Mbps and the bandwidth for aggregate

switches to edge switches is set to 10Mbps. The spanning tree protocol is used to

eliminate loops in the network routing. To generate traffic in this set of experiments,

we set up two pairs of iPerf [20] clients and servers in the network and exchange

both UDP and TCP traffic between them while changing the iPerf client/server pairs

between existing hosts in the network.

More specifically, as it is illustrated in Figure 26 with the increase of the packet

loss rate, the percentage of the unverified links linearly increases due to the fact

that the SPV_PKT packets may be also lost; However, since the distribution of packet

loss rate is among all links in the network, and SPV only deals with one link at a

time, the percentage of unverified links is always less than packet loss rate in the

network which concludes that our approach is resilient to high packet loss rates in the

network. In Figure 27 by increasing the traffic throughput to the maximum allowed
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Figure 26: Evaluating SPV with the presence of attackers in the network that tend

to increase packet loss while varying the links packet loss rate (%)

bandwidth while keeping the loss rate to 5%, the percentage of unverified links stays

almost constant and with a very small amount of change. The reason is that the flow

installed by SPV to forward the SPV_PKT packet has a higher priority than other flows

on a given switch and this fact makes SPV be independent of network congestion and

only be dependent on network packet loss rate in this set of experiment.

As discussed later in Section 5, a malicious switch may forward selected traffic

that may or may not include SPV_PKT packets. Hence, we measure the percentage of

SPV_PKT packets being affected in the presence of a malicious switch that forwards

10% to 50% of the traffic at different time intervals.

Figure 28 shows that the amount of forwarded SPV_PKT packets remains less than

30% in the case a malicious switch forwards all the packets in 50% of the time,

however, in this experiments we considered an extreme case by assuming the ma-

licious switch is not detected until last round of verification which not always true

and SPV might detect it much earlier. The resilience of SPV to this attack can be
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Figure 27: Evaluating SPV with the presence of attackers in the network that tend

to congest the network by showing percentage of unverified links while varying traffic

throughput (Mbps)

further improved by using different probabilistic functions with different distributions

in choosing the time intervals for sending the SPV_PKT packets.

4.2.4 Applicability of SPV in a Real SDN/Cloud Topology

The objective of our last set of experiments is to validate the applicability of SPV in a

real SDN/cloud topology. To this end, we utilize an accessible part of the topology of

a real SDN/cloud hosted at one of the largest telecommunication vendors that com-

prises of OpenStack [43] cloud with 22 compute nodes, each having a software-based

OpenFlow switch, to reside thousands of VMs. All 22 OVS switches are connected to

each other in a mesh architecture having 231 bi-directional links. We further run the

mentioned topology with ODL controller to be able to run SPV. Table 3 reports the

results obtained based on this real topology and compares them with the results for

our largest fat-tree topology having 40 switches and 96 links. The results illustrate
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Figure 28: Evaluating SPV with the presence of attackers in the network that tend

to relay the traffic by measuring the percentage of relayed SPV_PKT packets while

varying the percentage of the time that the attacker may relay all the traffic

Table 3: SPV’s performance on a real SDN/cloud topology and Mininet in both

single (ST) and multi (MT) thread modes

Results SDN/Cloud Mesh Mininet Fat-Tree

All link Verification Time (MT) 13.2052 s 10.6406 s
All link Verification Time (ST) 134.147 s 26.1725 s
Single Link Verification Time (ST) 100.306 ms 94.8919 ms
CPU Consumption (ST) 8.50294 % 18.79099 %
Memory Consumption (ST) 1.81817 % 1.81003 %

that the verification time for an incremental link verification in the network remains

almost constant (i.e., in average around 100ms) independent of network topology,

and the verification time for all links in the multi-thread mode can rise up to 13

seconds. Table 3 also shows other measurements such as CPU and memory consump-

tion of SPV in both topologies. Those results indicate a reasonable performance and

demonstrate the practicality of our approach in a real-world SDN/cloud.

54



Chapter 5

Security Analysis and Discussion

This chapter discusses the security analysis of SPV as well as further discussions over

SPV.

5.1 Security Analysis

This section discusses how SPV may overcome various attacks.

5.1.1 Stealthiness Feature of SPV_PKT packets

Security of SPV relies on the so-called stealthiness property of a probing packet,

meaning the packet cannot be distinguished from other host-generated packets trav-

eling through the network. To this end, SPV builds a pool of packets, by collecting

the traversed packets between the hosts. Afterwards, SPV selects packets from the

pool, modifies their header and forwards them as SPV_PKT packets to selected switches

to verify the links between them (Section 3.2.3 discusses the SPV_PKT generation pro-

cedure). The following discusses how different fields of SPV_PKT packet may affect the

stealthiness property.

In an SPV_PKT packet, some fields must not match with those of any host-generated
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packets, whereas the rest of the fields must match, in order to ensure the stealthiness

property. Suppose P is a pool of host-generated packets, that have been traversed

through the network, decapsulated from OFTP_PACKET_IN messages sent to the SDN

controller. An SPV_PKT packet, SPV_PKT_i is generated based on a reference packet

from the pool P. In SPV_PKT_i, Eth_Type field and packet’s payload size match

with those of the reference packet. Otherwise, there is a high chance that a malicious

switch might identify the SPV_PKT_i based on the unusual fields of the packet. On

the other hand, Src_IP, Dst_IP, Src_MAC, Dst_MAC, Src_Port and Dst_Port fields in

SPV_PKT_i must not match with the same fields of the reference packet. Otherwise,

a malicious switch might be suspicious when it observes similar packets with the same

source and destination addresses multiple times in the network.

In the following, we consider different threats to the stealthiness property and

discuss how SPV can address them.

5.1.2 Relaying or Dropping Packets

A malicious switch may evolve to react to SPV by forwarding traffic including SPV

packets passing through it so that the fake link remains undetected.

However, to be undetected by SPV, the malicious switch must forward every

single packet traversing the fake link. Therefore, this reaction is against the original

objective of the attacker, because by forwarding all the traffic (i.e., creating a fake

link to attack availability), the malicious switch is actually working as a link. Hence,

a more practical adversary might partially forward the traffic within certain time

intervals (since SPV randomly chooses time intervals to send SPV_PKT packets) hoping

that it might also forward the SPV_PKT packets among the forwarded traffic to keep

the fake link undetected. We further measured the effect of such attack on SPV in

Section 4.2. Moreover, to detect such attacks, one potential solution is to compare
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time differences between packets traversing on different links; which is considered as

a potential future work.

Alternatively, a malicious switch may choose to only relay the LLDP packets

and drop every other packet including SPV packets in an attempt to confuse SPV.

However, this kind of attack is beyond the scope of this work, since SPV focuses

on the integrity of SDN controller’s view over the network topology and this attack

targets the availability of the network functionality.

5.1.3 Replaying SPV_PKT Packets

With the presence of an intelligent malicious switch (i.e., a soft switch), a forged

SPV_PKT packet might be generated and used to degrade the accuracy of SPV. A

malicious attacker may mimic the packet generation mechanism of SPV and utilize

the history of packets to generate forged SPV_PKT packets and send them back to

the SDN controller, pretending the SPV_PKT packet is returning from the other end

of the fake link, to deceive SPV. However, as discussed earlier in Section 3.2.3, SPV

addresses this issue by authenticating each received SPV_PKT packet. More specifically,

to enable authentication of SPV_PKT packets, SPV adds a unique hash value, i.e.,

Hash(PKT_ID||timestamp), for each SPV_PKT packet in their payload to prevent the

replay attack on SPV_PKT packets. Moreover, through the aforementioned unique hash

value, which includes a freshness proof (i.e., timestamp), SPV prevents an attacker

from replaying already used and valid SPV_PKT packets to hide another fake link.

5.1.4 Learning SPV_PKT Packet’s Structure

Even though OpenFlow switches by design are not meant to process packet pay-

loads, the presence of soft switches in the network allows an attacker to learn the
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nature of SPV_PKT packets by processing the network traffic. For example, an in-

telligent malicious switch might process the OFTP_PACKET_IN messages that contain

host-generated packets to measure their payload size to distinguish SPV_PKT packets

and stop forwarding them. This might happen since the hash value that is inserted

into the payload of an SPV_PKT packet has a constant size. To address this issue, we

keep the payload size of the SPV_PKT packet the same as the payload size of the ref-

erence packet from which the SPV_PKT packet is generated, by padding dummy data

to SPV_PKT packet’s payload. Thus, SPV overcomes malicious switches that might

abuse the packet payload size to breach the stealthiness property of SPV_PKT packets.

Moreover, selecting packets from the packet pool and forging their header fields

randomly might not help SPV to hold the stealthiness property. Since an intelligent

malicious switch might keep a history of packets and leverage learning methods to

keep track of packet types and their header to correctly identify SPV_PKT packets.

To overcome this problem, we send the chosen SPV_PKT packets to a line sweep algo-

rithm (as discussed in Section 3.2.3) to choose the header information of next probing

packets for further verification rounds. This helps the SPV to hold the stealthiness

property of SPV_PKT packets by keeping the source and destination addresses of each

SPV_PKT packet very close to a previously sent SPV_PKT packet for a specific link for

a certain period of time.

5.1.5 Injecting Packets by a Malicious Host

A malicious host may inject unique packets into the network to influence the SPV_PKT

packet generation in order to breach the stealthiness feature of SPV_PKT packets. For

this purpose, a malicious host may inject packets with some specific fingerprints such

as unique payload size or type. However, this attack only works when the following

conditions are satisfied: i) the SPV_PKT packet is generated out of the injected packets
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by the malicious host, which can be achieved by a considerable amount of injected

packets into the network without being detected by other network security solutions

such as IDS, ii) the owner of the malicious host also has a compromised switch, which

is not connected to the same host (as SPV_PKT packets are never chosen to verify the

same switch from where the original packet has been collected), and iii) the SPV_PKT

packet is sent to verify the connecting links of the same compromised switch which

involves a considerable amount of uncertainty added by SPV.

5.2 Discussion

This section discusses different concerns on SPV.

5.2.1 Exhausting Flow Table Capacity of SDN Switches

There exist several attacks (as described in [30, 52]) to exhaust the flow table capacity

of SDN switches which may affect the availability by adding new flow rules on those

switches. Consequently, these attacks may affect the verification process of SPV by

preventing the installation of flow rules related to forwarding the SPV_PKT packets.

Even though such flow table overflow attacks are beyond the scope of this work,

existing solutions (e.g., [59]) to address them could be leveraged to avoid any effect

on SPV.

5.2.2 Effect of Encrypted Communication Between Control

and Data Planes

In case TLS is enabled for secure communications, administrators require to share

en/decryption keys of control messages with SPV; which might be a practical as-

sumption for an administrator intending to protect his/her network topology from
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poisoning attacks. However, if SPV would be implemented within the SDN con-

troller, this explicit sharing of keys is unnecessary.

5.2.3 Implementing SPV within SDN Controller

The rationale behind placing SPV outside of SDN controller is to make it applicable to

different implementations (e.g., [48, 13, 47]) of SDN controller with minimal effort.

However, placing SPV within the SDN controller may help to further improve the

performance of SPV. For example, retrieving control messages or network topology

would be much faster in the latter case. The downside of such design is the decrease in

the security of SPV, since the independence of SPV makes it even more secure as SPV

can be a hardened box/software which is easier to secure than SDN controller with a

wide range of functionalities, as well as the redundant efforts required to integrate it

to different implementations of SDN controller.
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Chapter 6

Other Contributions

During this master thesis work, other than SPV, which is the main contribution of

this master thesis project, we also contributed to other projects that are described in

the following sections.

6.1 Runtime Verification of Cloud-Wide VM-Level

Network Isolation

Multi-tenancy is one of the unique provided features of today’s cloud systems which

may lead to some security concerns such as network isolation of each cloud tenant’s

virtual resources. Furthermore, due to some built-in challenges in the cloud environ-

ment, such as the sheer size of virtual networks and VM-level and distributed network

access control, verifying the network isolation becomes a very difficult task specially

when it comes to pair-wise VM-reachability verification. However, TenantGuard [56]

propose a scalable run-time solution for could-wide, VM-to-VM isolation verification

by leveraging the hierarchy of virtual networks, efficient data structures, incremental

design and parallel computing for better performance. TenantGuard is implemented
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and tested on OpenStack and its performance both in-house and on Amazon EC2

[5], confirms its scalability and efficiency (13 seconds for verifying 168 millions of VM

pairs).

Our contribution to this work is to set up Amazon EC2 nodes for parallel compu-

tations by leveraging the Apache Ignite [7] version 1.4.0, which is a memory-centric

multi-model distributed database, caching, and processing platform. We set up two

to 16 Amazon EC2 virtual machines and configured Apache Ignite on each machine

to run the TenantGuard auditing tasks in parallel, which takes up to 13 seconds

for verifying the reachability of 168 millions of VM pairs. Alongside the setup for

parallel processing units, we designed and implemented simulation scripts for con-

ducting different experiments, such as computing the performance of TenantGuard

by varying the number of VMs/Subnets, Rules/Routers, and Hops by making use of

Linux Bash. Moreover, through experiments, we run and compared the performance

of TenanatGuard with NOD [32] network verification’s implementation.

6.2 Auditing Virtual Networks Isolation Across

Cloud Layers

Some of the consequence of multiplexing virtual resources in a multi-tenant cloud

system is cross-tenants data leakage and denial of service issues. Moreover, due to

other factors such as the gap between the existing security properties inside the cloud

and the high-level description of defined standards, the multi-layer design of the cloud

stack, and the dependencies between those layers makes auditing virtual network iso-

lation a very challenging task. To overcome the above-mentioned issues, ISOTOP is

designed to cover cross-layer consistent isolation verification in a multi-tenant cloud
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environment by mainly focusing on verification of multiple security properties at vir-

tual network layer 2 and overlay networks, namely topology isolation. The mentioned

security properties are developed based on the literature and common knowledge on

layer 2 virtual networks isolation in order to relate them to defined security standards

and filling the gap between the actual existing properties in a cloud system and those

standards. Furthermore, a cross-layer network model with their inter-dependencies

and isolation mechanisms are devised to study semantics among those layers as well

as identifying and auditing the network isolation related data. More specifically, ISO-

TOP’s main job is to evaluate the consistency of layer 2 virtual network isolation by

leveraging the gathered cross-layer information between management and infrastruc-

ture layers.

Our contributions to this work are listed in the following.

1. Implementing cloud environment by utilizing OpenStack [43] Mitaka version.

In this environment, a controller and a network node with different compute

nodes are implemented to run the ISOTOPS experiments. The connecting tech-

nology between different nodes is switched from LinuxBridge to OpenvSwitch

to leverage the OpenFlow protocol.

2. Implementing automated attack scenarios for Intra-compute and Inter-compute

nodes which abuse the VLAN and VXLAN connections within and among com-

pute nodes to maliciously connect VMs of different tenants in virtual network

layer-2, which is against the network isolation security standards. These at-

tacks show the need to verify the compliance of network isolation properties in

different layers of a cloud system.

3. Implementing automated data collection from different layers of the imple-

mented cloud system for auditing.
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4. Implementing 11 properties for isolation properties at the infrastructure man-

agement level, isolation properties at the implementation level, and topology

consistency properties, using CPS solver, Sugar [54], and different sat-solvers,

such as Minisat, Riss, Pingeling, Lingeling, and Treengling.

5. Implementing automated verification of the above-mentioned properties along

with conducting extensive experiments by varying different factors such as VMs

to measure the performance of our automated tool by making use of Python

and Linux Bash.

6. Finally, we conducted further experiments by leveraging Amazon EC2 machines

to run ISOTOP in a parallel mode for one of the properties.

Note that ISOTOP is extension of [33] and is currently under revision for ACM

Transactions on Privacy and Security (TOPS) journal.

6.3 Proactive Security Auditing for Clouds

The scalability and particularly the on-demand requirements from users and cloud

service providers had made the security compliance verification a challenging task due

to the sheer size and dynamic nature of cloud systems. The verification of security

properties with respect to security standards can take up to minutes or sometimes

hours. However, to offer proactive security auditing, PVSC [34] and its successor

LeaPS [35], which the latter one utilizes learning-based approaches in comparison to

the PVSC, have overcome this issue by studying the dependencies between cloud-

wide events and starting the verification process before any violation occurs. More

specifically, LeaPS achieves a practical response time of 6ms to audit a cloud of

100,000 VMs which is a 50% improvement over PVSC in which the response time is

also in milliseconds.
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Our contributions to this work are listed in the following.

1. Implementing cloud environment by utilizing OpenStack [43] Mitaka version. In

this environment, a controller and a network node with different compute nodes

are implemented to collect input for PVSC and LeaPS. The connecting tech-

nology between different nodes is switched from LinuxBridge to OpenvSwitch

to leverage the OpenFlow protocol.

2. Configuring and installing the Ceilometer service for the cloud environment to

capture the management events.

3. Implementing automated scripts to simulate the occurrences of different cloud-

wide events as the input for the verification engine.

4. Identifying the relationships and the dependencies between different cloud-wide

events.

6.4 Preserving Both Privacy and Utility in Prefix

Preserving Anonymization of Network Traces

Auditing humongous amount of data in recent large-scale data-centers is very costly

which leads the cloud service provides to outsource their data to a third-party an-

alyst. However, there are security concerns in outsourcing the data in plain-text.

This causes the data-center and cloud service providers to anonymize the data be-

fore outsourcing them which leads them to question about the utility and privacy

of those anonymization techniques. To preserve both privacy and utility, K-Pseudo

Anonymity and N-View Defence propose a technique through allowing the third-party

analyst to generate different views of the anonymized original data, which is mainly

network traces, that are designed to be indistinguishable from the original data even
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though there might be adversaries with a pre-knowledge of the original data. So, the

trade-off between privacy and utility is shifted to the trade-off between privacy and

computational cost. The result of the analysis is one view, which preserves the utility,

among those generated N-views, which preserves the privacy.

Our contribution to this work is to write simulation scripts to evaluate the perfor-

mance and the privacy of the K-Pseudo Anonymity and N-View Defence by varying

different factors such as the number of partitions, views, IP addresses in input data

sets and etc. Note that this work is under revision for the Privacy Enhancing Tech-

nologies Symposium (PETS) conference.

6.5 A Quantitative Approach to Security Compli-

ance Auditing for SDN-Based Cloud

One of the security concerns in today’s cloud systems is the co-residency of different

tenants’ virtual infrastructures, including VMs and virtual networks. However, none

of the existing solutions handle this issue by quantitatively measuring the relative

distance of cloud resources. More specifically, Quantic proposes a novel approach

to measure the physical and virtual distances between cloud resources in order to

quantify the level of tenants’ virtual infrastructure co-residency. Moreover, instead of

providing a binary result for auditing security compliance, a degree of breaches are

provided based on the measured distances.

Note that the Quantic is under revision for IEEE/IFIP International Conference

on Dependable Systems and Networks (DSN) 2018.

Our contributions to this work are listed in the following.

1. Simulating the three-layer fat-tree network topology.

2. Implementing cloud environment by utilizing OpenStack [43] Mitaka version
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and OpenvSwitch for leveraging the OpenFlow protocol, and generating the

synthetic data based on the implemented OpenStack cloud to provide large-

scale input data for evaluating the Quantic.

3. Implementing policy definitions and verification of Quantic.

4. Designing and implementing different sets of simulation scripts for extensive

evaluation of Quantic.
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Chapter 7

Conclusion

The correctness of SDN controller view on network topology is known to be critical

for making the right management decisions. However, recently discovered vulnerabil-

ities in OFDP protocol show that poisoning network view of the SDN controller may

lead to severe security attacks, such as man-in-the-middle or denial of service. In this

thesis, we proposed SPV, a novel stealthy probing-based approach, to significantly

extend the scope of existing solutions, by generating and sending stealthy packets

to incrementally verify legitimate links and detect fake links as well as the respon-

sible malicious switches. As a proof of concept of our approach, we implemented

SPV in an emulated SDN environment using Mininet and OpenDaylight. Through

extensive experiments, we showed that SPV achieved a constant time to verify each

incremented link to the network, i.e., less than 120 milliseconds, which makes SPV a

scalable solution for large SDN networks. We also measured the performance of SPV

in a real SDN/cloud hosted at one of the largest telecommunication vendors to vali-

date the applicability of SPV in a real environment. To further improve the accuracy

and performance of SPV, considering traversal time of stealthy packets in the link

verification procedure and integrating SPV within the SDN controller (for faster pro-

cessing of control messages or being independent of public/private key sharing) can
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be considered as potential future work. Also, to enhance the security of SPV against

certain attacks such as flow table exhaustion, adapting methods such as [30] could

be beneficial. Moreover, the stealthiness property of stealthy packets can be further

improved by leveraging machine learning techniques in analyzing network traffic to

enhance the packet generation mechanism of SPV.
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