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ABSTRACT 
With the advances in three-dimensional (3D) scanning and 

sensing technologies, massive human-related data are now 

available and create many applications in data-driven design. 

Similarity identification is one of basic problems in data-driven 

design and can facilitate many engineering applications and 

product paradigm such as quality control and mass 

customization. Therefore, reusing information can create 

unprecedented opportunities in advancing the theory, method, 

and practice of product design. To enable information reuse, 

different models have to be aligned so that their similarity can 

be identified. This alignment is commonly known as the global 

registration that finds an optimal rigid transformation to align 

two 3D shapes (scene and model) without any assumptions on 

their initial positions. The Super 4-Points Congruent Sets 

(S4PCS) is a popular algorithm used for this shape 

registration. While S4PCS performs the registration using a set 

of 4 coplanar points, we find that incorporating the volumetric 

information of the models can improve the robustness and the 

efficiency of the algorithm, which are particularly important for 

mass customization. In this paper, we propose a novel 

algorithm, Volumetric 4PCS (V4PCS), to extend the 4 coplanar 

points to non-coplanar ones for global registration, and 

theoretically demonstrate the computational complexity is 

significantly reduced. Experimental tests are conducted on a 

number of models such as tooth aligner and hearing aid to 

compare with S4PCS. The experimental results show that the 

proposed V4PCS can achieve a maximum of 20 times speedup 

and can successfully compute the valid transformation with 

very limited number of sample points. An application of the 

proposed method in mass customization is also investigated. 

1. INTRODUCTION 
With the arrival of cyber-physical systems era, similarity 

identification is of great importance in data-driven design since 

reusing data can not only accelerate system response speed but 

also enable the utilization of template design in many 

engineering applications. The concept of information reuse [1] 

has been demonstrated as a promising technique to take 

advantage of the similarities and create unprecedented 

opportunities in advancing the theory, methods, and practice of 

data-driven product design. The idea of similarity identification 

is that the process of the similar or even the same features 

among different objects only need to be done once, and the 

results can be applied to other instances. To enable similarity 

identification and further information reuse, the models should 

be aligned and then their shape similarities are identified, which 

is naturally a shape registration problem. Besides, this pre-

alignment step is also common in many manufacturing 

applications, e.g., quality control – once a product is 

manufactured, it needs to be aligned and compared with the 

gauge model to identify whether it is qualified. 

Registration is a process to align different three-

dimensional (3D) shapes either of the same object or of two 

different but similar objects. It is a fundamental task in many 

applications of manufacturing, computer vision, pattern 

recognition, computer graphics, medical imaging, etc. It is also 

referred to as scene-to-model registration that finds an optimal 

rigid transformation 𝐓 ∈ ℛ3 to align one shape (model ℳ) to 

another (scene 𝒮). “Model” and “scene” are the aliases for two 

3D shapes, where “scene” stands for the static one and “model” 

stands for the moving one, i.e., 𝐓(ℳ) → 𝒮 . The rigid 

transformation 𝐓 includes rotation 𝐑 and translation 𝐭 that is 

defined as following when it acts on any vector or point 𝐩: 

𝐓(𝐩) = 𝐑𝐩 + 𝐭 

If there are four pairs of vertices {𝐩𝐢 ∈ ℳ, 𝐪𝐢 ∈ 𝒮}, 𝑖 = 1 … 4, a 

linear transformation between the shapes ℳ and 𝒮 can be 

defined by a linear transformation 𝐋 as 

 𝐋𝐩𝐢 + 𝐭 = 𝐪𝐢,         i = 1 … 4. (1) 

The translation 𝐭 can be eliminated by subtracting the last 

equation from the others, and thus we have 𝐋𝐏 = 𝐐 with 

𝐏 = [𝐩𝟏 − 𝐩𝟒   𝐩𝟐 − 𝐩𝟒   𝐩𝟑 − 𝐩𝟒] ∈ ℳ 

𝐐 = [𝐪𝟏 − 𝐪𝟒   𝐪𝟐 − 𝐪𝟒   𝐪𝟑 − 𝐪𝟒] ∈ 𝒮    

Therefore, the matrix 𝐋 can be obtained by 𝐋 = 𝐐𝐏−𝟏, which 

included both the scaling and the rotation. In order to extract 

the pure rotation 𝐑  from 𝐋 , singular value decomposition 

(SVD) can be applied: SVD(𝐋) = 𝐔𝚺𝐕𝐓. Since 𝐋 is a square 

matrix with positive determinant, 𝐔 and 𝐕 are the rotational 

matrices, and 𝚺 is a scaling matrix. Then, the pure rotation can 

be derived from 𝐋 as 𝐑 = 𝐔𝐕𝐓. The translation vector 𝐭 can 
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then be computed by subtracting the centers of {𝐪𝐢}  and 

transformed {𝐩𝐢}. 

If a rough initial position and orientation of the model 

relative to the scene is given, the most popular method for fine 

registration is the Iterative Closest Point (ICP) algorithm [2]. 

Otherwise, a global registration is needed to find a rigid 

transformation to roughly align two 3D shapes without any 

assumptions on their initial positions. The 4-Points Congruent 

Sets (4PCS) algorithm [3] is an established approach to global 

registration. 4PCS performs the registration using a set of 4 

coplanar points – called a base – forming a two-dimensional 

(2D) plane in one shape and find the congruent bases in another 

by the RANdom SAmple Consensus (RANSAC) method. It is 

an iterative method that repeats a constant number of times and 

find the best transformation, which has a runtime complexity of 

𝑂(𝑛2), where 𝑛 is the size of input point set. 4PCS is further 

developed to a Super 4PCS (S4PCS) algorithm [4] by using 

intelligent indexing scheme to reduce the complexity of the 

original 4PCS algorithm to 𝑂(𝑛). Our study finds that using 

coplanar points may have ambiguities when the shapes are 

close to planar, and thus results in excess number of congruent 

bases to find the real optimal solution. In this paper, we 

incorporate the volumetric information of the shapes and 

propose a Volumetric 4PCS (V4PCS) algorithm to extend the 4 

coplanar points to non-coplanar ones – specifically a 

tetrahedron is used here. The computational complexity is 

theoretically reduced, and experimental results show that the 

proposed method can significantly improve the robustness and 

the efficiency compared to S4PCS. The contributions of this 

paper are summarized: 

1. The volumetric information of 3D shapes is introduced to 

the base construction, which can filter the ambiguities and 

the unnecessary congruent bases, and thus the algorithm is 

more robust and resistant to extreme cases. 

2. The smart indexing technique in S4PCS, which reduces the 

quadratic time complexity in 4PCS to linear, is further 

utilized for the tetrahedron construction, so that there is no 

increase in time complexity in our base construction, but a 

maximum of 20x speedup overall. 

3. With the robustness of the base construction, the concept of 

information reuse is extended to the registration by reusing 

the base to efficiently align multiple models together. It is 

demonstrated by an application of mass customization. 

The rest of this paper is organized as follows. Section 2 

gives a brief review of literature. Section 3 discusses the 4PCS 

and S4PCS algorithms, and our proposed V4PCS algorithm is 

presented in Section 4. To demonstrate the advantages of our 

framework, several human-centered and manufacturing models 

and an application in mass customization are studied in Section 

5. Finally, Section 6 concludes the paper. 

2. RELATED WORKS 
Surface registration is a fundamental problem in many 

applications [5]. Many research works have been explored on 

multifarious aspects, and readers are referred to a survey paper 

[6]. When the initial inputs of registration are close to each 

other, fine registration is done to refine the alignment. Iterative 

Closest Point (ICP) and its variants [6,11] are widely used and 

become ‘gold standard’ for fine registration. Recently, Bouaziz 

et al. [8] proposed a sparse ICP formulation to robustly handle 

data with large amounts of outlier, and Fitzgibbon [9] has 

introduced a nonlinear least-square optimization to develop a 

robust error function that increases the radius of convergence. 

When the inputs have arbitrary positions and orientations, 

global registration methods are used to find an optimal 

transformation to roughly align the inputs. One approach to 

global registration is based on the branch-and-bound 

framework which has theoretical optimality guarantee [10, 11, 

12]. However, the systematic search can be extremely time-

consuming when the input size is large. Since two sets of 3 

non-degenerated points can uniquely determine a rigid 

transformation including translation and rotation, most global 

alignment methods use RANSAC method to find a set of 

candidate correspondences from two shapes and choose the 

best alignment[13, 14, 15]. The complexity of RANSAC 

method regularly degrades to its worst case 𝑂(𝑛3) complexity 

in the number 𝑛 of data samples. As mentioned earlier, 4PCS 

[3] and S4PCS [4] intelligently ameliorate the searching 

process to have the time complexity of O(n2) and O(n). 

There are other research results that use discriminative 

descriptor and shape distribution to pick sample points for 

registration and object matching. The shape distribution either 

sample from a shape function measuring global geometric 

properties [16] or base on the histogram of point cloud [17]. 

Discriminative descriptor mainly considers the local 

information of the shape by estimating the features of points 

and their neighbors. Plentiful of shape descriptors methods 

mainly include two categories [18]: spatial distribution 

histogram and geometric attribute histogram based descriptors. 

Typical spatial distribution methods include Heat Kernel 

Signatures [19], Unique Shape Context [20], Rotational 

Projection Statistics [21]. The well-known geometric attribute 

methods are Point Feature Histogram [22], Fast Point Feature 

Histogram [23] and Signature of Histogram of Orientations 

[24]. Robust shape descriptors are easy to compare but suffer 

from expensive computational cost especially for large data size 

and under the situation of noise and outliers. Other methods 

mainly include voting methods and correspondence based 

methods [25]. The well-known representatives for voting 

methods are the generalized Hough transform [26], geometric 

hashing [27] and tensor matching algorithm [28]. 

3. TERMINOLOGY AND 4PCS 
This section briefly describes the terminologies in surface 

registration and the basic idea of the 4PCS and S4PCS [7,8]. 
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The goal of global registration is to compute a rough alignment 

as the initial position for the fine registration, so that the 

registration will not be trapped into local optimum. 

From Eq.(1), it can be seen that the success of finding the 

optimal transformation 𝐓 highly depends on the selection of 

the four vertices {𝐩𝐢 ∈ ℳ, 𝐪𝐢 ∈ 𝒮}  on both shapes. For 

example, a hand model is used in Fig. 1 for demonstration, 

where the left one is the scene 𝒮 and the right one is the model 

ℳ. Assume there are 4 points {𝐪𝐢} selected on 𝒮 at its 4th 

finger, 2nd finger, and center of palm. If the corresponding 

vertices {𝐩𝐢} on ℳ are also selected correspondingly on the 

fingers and palm (as shown in top row of Fig. 1), the computed 

𝐓 is correct and good enough for a rough alignment. However, 

if {𝐩𝐢} are selected on the 2nd finger, 1st finger, palm and 5th 

finger (Fig. 1 bottom) for the model ℳ, the computed 𝐓 is 

incorrect, and fine registration cannot be applied on this result. 

These kinds of vertex sets having wrong correspondences will 

lead to wrong alignment and shouldn’t be used, but the 

challenge is how to find the good set of vertices {𝐩𝐢, 𝐪𝐢} 

efficiently. 

 
Fig. 1: The idea of picking 4 points to align two models. 

Let the inputs 𝒮  and ℳ  be sampled with 𝑚  and 𝑛 

points, a brute-force method to test all the combinations and 

find the best one will result in a time complexity of 𝑂(𝑛4) for 

𝑚 ≤ 𝑛. Based on the key fact that certain ratios defined on a 

planar congruent set remain invariant under rigid motion, 4PCS 

[3] significantly reduces the number of trials by only extracting 

the coplanar 4-points sets and matching with the another set of 

coplanar 4-points that are approximately congruent. This 

extraction procedure runs roughly in 𝑂(𝑛2)  time and the 

algorithm of 4PCS is summarized by the following steps: 

1. Pair Generation (PG): Select 4 coplanar points {𝐪𝐢} from 

𝒮 – also named as a base, and then calculate the point 

distances 𝑑1, 𝑑2  and define the affine invariant ratios 

𝑟1, 𝑟2 using these 4-coplanar points as shown in Fig. 2. 

After that, find all point pairs in ℳ with distance 𝑑1 and 

𝑑2 respectively. This step takes 𝑂(𝑚 + 𝑛2) time. 

2. Congruent Set Extraction (CSE): For 𝑘 reported pairs in 

ℳ from the PG step, extract all conjugate pairs which 

could form a 4 point set congruent to {𝐪𝐢} ∈ 𝒮, i.e., these 

four points have an intersection point and same ratios with 

𝑟1, 𝑟2, in the extracted pairs. A range tree can be used to 

improve this query time, and this step takes 𝑂(𝑘 log 𝑘 +
𝑐) time, where 𝑘 is the number of reported pairs and 𝑐 

is the number of congruent sets extracted. 

3. Congruent Set Verification (CSV): With the extracted 𝑐 

congruent sets 𝑈 = {{𝐩𝐢}1, {𝐩𝐢}2, … , {𝐩𝐢}𝑐} ∈ ℳ , a rigid 

transform 𝐓 can be computed for each set by Eq.Error! 

Reference source not found.). Then, all the 𝑛 sample 

points in ℳ  can be transformed by 𝐓  and then the 

quality of 𝐓 is verified by computing how many points of 

𝐓(𝐩) are within 𝜖-distance to those sample points in 𝒮. 

Finally, the best 𝐓  with the most points matched is 

returned. Assuming the complexity of nearest neighbor 

search is 𝑂(log 𝑚), this step takes 𝑂(𝑐 𝑛 log 𝑚) time. 

 
Fig. 2: Based on a 4-coplanar point base, two distance and ratios can 

be computed 

Remark 1: In the Congruent Set Extraction (CSE) step, 

judging of whether a set is congruent is cleverly converted to a 

matching by 𝑑1, 𝑑2, 𝑟1, and 𝑟2, which takes only 𝑂(1) time. 

 
Fig. 3: The flowchart of 4PCS 
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The flowchart of 4PCS is shown as in Fig. 3, the procedure of 

4PCS randomly picks a base from 𝒮, computes transformations 

between the selected base and all possible congruent bases from 

ℳ, and then verifies the resulting registration transformations. 

To achieve a certain probability of success, this procedure is 

repeated for L different choices of bases from 𝒮  as in 

RANSAC method. Each iteration runs in 𝑂(𝑛2  +  𝑘 log 𝑘 + 𝑐) 

time, where 𝑛 is the number of points in ℳ, 𝑘 is the number 

of reported pairs and 𝑐  is the number of congruent sets 

extracted. The uncertainty of success is from the selection of 

base on 𝒮. If the selected base is generic, e.g., 4 points on a 

spherical feature, then the alignment can hardly be correct even 

a number of congruent sets are found. Therefore, we have the 

following observation. 

Observation 1: If the selected base on 𝒮  is rare or even 

unique, there are few similar bases could be found and the 

number of iteration can be reduced. 

The most expensive step in 4PCS is the Pair Generation 

(PG) step, which requires finding all point pairs in a points set 

with a given distance takes 𝑂(𝑛2) time. In order to improve 

the 𝑛2  term, the Super 4PCS (S4PCS) [4] algorithm is 

proposed to use a new data structure to ameliorate this 

bottleneck. In short, they organized the points on ℳ in a 3D 

grid, and implemented an efficient hyper-sphere rasterization to 

extract the pairs by intersecting two spheres of radius 𝑑1 and 

𝑑2 on this 3D grid. This development makes the S4PCS lower 

the quadratic complexity from 𝑂(𝑛2)  to linear complexity 

𝑂(𝑛). S4PCS also uses smart indexing techniques to produce 

the same congruent set as 4PCS but in linear time, i.e., 

𝑂(𝑘 log 𝑘) is reduced to 𝑂(𝑘). Therefore, the algorithm of 

S4PCS runs in 𝑂(𝑛 + 𝑘 + 𝑐) time. 

Remark 2: The most attractive capability of S4PCS is that 

given a value 𝑑, all the point pairs with length 𝑑 ± 𝜀 can be 

extracted efficiently in 𝑂(𝑛) time, where 𝜀 is a given margin. 

4. VOLUMETRIC 4PCS (V4PCS) 

4.1 Overview 

In S4PCS, the time complexity is reduced and it is linear to 

the number of points 𝑛, the number of reported pairs 𝑘, and 

the number of congruent sets 𝑐 as 𝑂(𝑛 + 𝑘 + 𝑐). Hence, the 

originally insignificant 𝑘 and 𝑐 terms become important now. 

As the congruent sets are the subset of all the reported pairs, it 

is obvious that 𝑘 ≥ 𝑐, so we use 𝑐 alone in the following 

discussion. The value of 𝑐 could be varied by the shape of 

inputs, the width of the selected base {𝐪𝐢} in 𝒮, and even the 

value of 𝑛. Our study finds that 𝑐 can be much larger than 𝑛 

in some cases, which can be seen from Fig. 4. Two models 

(teeth and hearing aid) are tested to understand the correlation 

between the size of base and the number of congruent set. Both 

models are sampled with 800 points, i.e., 𝑛 = 800, and the 

width of a base is using different percentages of the model 

diameter. As the number of congruent set could be different in 

each iteration, the average value of all iteration is taken after 

the alignment is done. The 𝑦-axis is the size of congruent set 𝑐 

and it is plotted in log scale. It can be seen that the value of 𝑐 

can be as high as 1 × 106 while 𝑛 is just 800, which means 

𝑐 > 𝑛2 or 𝑐 > 125000𝑛.  

Furthermore, for each congruent base, there is a 

transformation whose quality must be measured by solving the 

nearest-neighbor search problem. If 𝑐  is large, the term 

𝑂(𝑐 𝑛 log 𝑚) in the CSV step becomes dominant. Therefore, 

there is a critical need to minimize the number of congruent set 

𝑐  without increasing the extraction time. There are some 

heuristics being reported, such as choosing a wide base in 4PCS 

and using the angle between the two intersecting lines to filter 

non-congruent 4-point sets in S4PCS. While these methods are 

useful, there are still excess number of congruent sets need to 

be verified. We have the following observation.  

 
Fig. 4: Relation between base width and size of congruent sets 

Observation 2: The input is a 3D shape, but the coplanar points 

form a 2D plane, which can be viewed as a degenerated base 

describing the 3D shape. A 2D plane is not unique, i.e., there 

could be numerous number of 2D planes found in a 3D shape, 

and it could have ambiguities in representing a 3D shape. 

One example of the ambiguity is shown in Fig. 7 that when 

two teeth models are aligning by a 2D plane using S4PCS, a 

flipped result is obtained if the sample size is not sufficiently 

large. Both Observations 1 and 2 point to the development of 

new base format that can better represent the input 3D shape, so 

we make the following two hypotheses: 

Hypothesis 1: Incorporating volumetric information to form a 

3D base is a richer representation for a 3D shape, and it can 

eliminate the ambiguities in the 2D base, so that the algorithm 

will be more robust and resistant to extreme cases. 

Hypothesis 2: Maximizing the volume of the base can filter 

many false positive cases in the CSE step, and the number of 

congruent sets 𝑐 will be largely reduced, so that the algorithm 

will be speeded up and more efficient. 
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In this paper, we utilize the new data structure developed in 

S4PCS and develop a Volumetric 4PCS (V4PCS) which 

theoretically decrease the CSE time. In the rest of this section, 

we will discuss our methodology and implementation to test 

our hypotheses. Since the CSV step is the same, we only 

discuss the PG and CSE steps here. 

4.2 Pair Generation (PG) 

As stated in Remark 2 (at the end of Section 3), S4PCS has 

developed a new data structure that extracts all the pairs with 

required distances in a linear time. In order to utilize this 

capability, we propose to construct a base that only requires the 

distance information, so that we can have more flexibility to 

simplify the algorithm. Specifically, a tetrahedron is used in this 

paper. In geometry, we know that two tetrahedrons are 

congruent if all of their corresponding laterals have the same 

length, so the judging can be purely based on the distance 

information. Besides, the relationship between the lengths of 

different vertices can be stored by a connectivity table at the 

time when the pairs are extracted. After that, we only need to 

look up from the tables and check if there are laterals with the 

same length to form a congruent tetrahedron.  

 
Fig. 5: Congruent set extraction process illustrated by a triangle 

This idea is illustrated by a triangle case shown in Fig. 5. 

First, three distances corresponding to the laterals of a 

triangular base selected from 𝒮 are calculated, e.g., 10, 15, and 

20 respectively. Then, by using the pair extraction algorithm in 

S4PCS, we can extract all the pairs with the lengths 10, 15, and 

20 from ℳ in a linear time. After that, we can build three 

tables of point index-pair based on the lengths to record all the 

extracted point pairs with the corresponding length. These 

tables can also be stored with connectivity rooted at each 

vertex, e.g., Vertex 8  Length 10  Vertices (1, 6 …). The 

connectivity is built during the pair extraction process, and it 

does not take extra time as compared to simply storing all the 

extracted pairs in an unordered array. It is similar for 

tetrahedron, except there are six tables instead of three. 

In terms of selecting the tetrahedral base from 𝒮 at the 

first step, similar to finding a wide base in S4PCS by running a 

constant number of iterations to choose the one with the largest 

area, we also run a constant number of iteration to choose a 

tetrahedron in 𝒮 with the largest volume. 

4.3 Congruent Set Extraction (CSE) 

After a tetrahedral base is selected from 𝒮, the next step is 

to extract all the congruent tetrahedrons from ℳ. Again, the 

idea is illustrated by the triangle case in Fig. 5. With the 

connectivity tables generated from the PG step, extracting a 

congruent triangle becomes a simple lookup problem. For 

example, to find a congruent triangle in ℳ, we can start with 

the index-pair table with the length of 10, e.g., the pair 1-8, and 

find a pair with length 15 connecting to it. Both of the vertices 

1 and 8 are retrieved and checked if there is a pair in the list 

having a length 15, e.g., Vertex 8  Length 15  Vertices (2, 

7). After that, it can very easily compute if the pairs 1-2 and 1-7 

are 20 in length. Courtesy to the beauty of 4PCS stated in 

Remark 1, we construct the bases that contain only the distance 

information, and we only need to query the distance pair index 

table to extract the congruent pairs directly. All these operations 

can be done in 𝑂(1) time. There is no need to compute the 

ratios and angle to judge whether the sets are congruent. It is 

also worth to remark that the pairs extracted have a tolerance 𝜀 

in terms of its length, i.e., 𝑑 ± 𝜀 (see Remark 2), so it won’t be 

over-constrained that no congruent sets can be found. 

4.4 Computational Complexity 

Based on the discussion of pair generation and congruent 

set extraction processes, the pseudo code of proposed V4PCS 

algorithm is shown in Algorithm 1. Similar to the S4PCS, 

V4PCS also runs in a RANSAC fashion. By solving a problem 

of largest common point set, the algorithm finds a largest size 

of consensus set and subsequently obtains the best rigid 

transformation 𝐓. When the matching rate ℎ is 95% or higher, 

the algorithm is terminated since this is when a correct 

registration is probably found. 

In the main loop of V4PCS, the first step is the Pair 

Generation (PG) from line 3 to 6. First, a large-volume 

tetrahedral base {𝐪𝐢} is picked randomly from 𝒮, and then the 

distance information of the base can be calculated as 

𝑑1, 𝑑2, … , 𝑑6. With these distance information, the six pairs of 

laterals could be extracted from ℳ through the 𝑂(𝑛) method 

developed in S4PCS. After that, all the extracted pairs are 

stored in six connectivity tables 𝐻. Therefore, this step take 

𝑂(6𝑛) time. The second step is the Congruent Set Extraction 

(CSE) from line 7 to 9, which basically loops through all the 

extracted pairs from ℳ and searches the congruent sets of 

tetrahedron 𝑈  through the connectivity tables 𝐻 . As the 

complexity of searching is 𝑂(1), this step take 𝑂(𝑘) time. 

The last step is Congruent Set Verification (CSV) from line 10 

to 16. All the congruent sets are tested by finding the rigid 

transformation to align {𝐩𝐢} to {𝐪𝐢} as well as to transform ℳ 

to 𝒮  for computing the matching score using the largest 

common point set method as in the S4PCS. We haven’t altered 

this step, and the time complexity is the same. In summary, the 

time complexity of proposed V4PCS compared to S4PCS is 

decreased from 𝑂(𝑛 + 𝑘 + 𝑐) to 𝑂(𝑛 + 𝑘) , where 𝑛  is the 

number of points in ℳ, 𝑘 is the number of reported pairs and 
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𝑐 is the number of congruent sets extracted. As all the extracted 

sets are the congruent sets, we don't need the ratio information 

to extract matching angle for filtering the false ones in the CSE 

step. Although the theoretical improvement does not look 

significant, it can practically speedup the process significantly 

and the magnitude of 𝑘 is also reduced, which will be shown 

in the next section.  

Mohamad et al. [29] had a similar insight and proposed to 

use a non-coplanar base by introducing one more dimension 

with an additional intermediate point in the base construction. 

However, in order to find the congruent set after pair 

generation, they need to rasterized a circle on the 3D grid that 

stores intermediate points by moving in discrete circular steps 

to check all grid cells that intersect the circle centered at 𝑒 (see 

Fig. 6). This angular increment for the circular motion can be 

calculated using the following formula: 𝑐𝑜𝑠−1(
2ℎ2−2𝜖2

2ℎ2 ), where 

ℎ is the distance between two segments and 𝜖 is the given 

margin. There is a constant factor of 𝑘1 =

360 𝑐𝑜𝑠−1(
2ℎ2−2𝜖2

2ℎ2 ) ⁄ for each query, hence the time complexity 

compared with S4PCS is increased from 𝑂(𝑛 + 𝑘 + 𝑐) to 

𝑂(𝑛 + 𝑘1𝑘 + 𝑐). Their method theoretically increases the time 

complexity in the CSE step due to the need of finding the 

overlapping intermediate point, which damages the beauty of 

the 4PCS algorithm stated in Remark 1. In fact, the efficiency 

gained in the CSV step in their method is trumped by the 

efficiency lost in the CSE step. To remedy the effects of the 

increased search time, they fixed the distances 𝑑1 and 𝑑2 to 

reduce the number of iteration, which reduces certain flexibility 

of the algorithm. In contrast, our method is able to take 

advantage of volumetric information and at the same time 

theoretically reduce the time complexity. 

 

 
Fig. 6: Congruent set extraction by Mohamad et al. [29]. Given a 

segment of length 𝒅𝟏 with endpoints 𝒑𝟏𝒑𝟐 and an intermediate point 

𝒆, the other segments of length 𝒅𝟐 are found based on the sphere 

centered at 𝒆 with radius 𝒉. 

In terms of space complexity, S4PCS uses an efficient 

hyper-sphere rasterization method to extract pairs and store the 

indexes, the rasterized grid need 𝑂(𝑛) space for the input of 𝑛 

points. In addition, the extracted 𝑘 pairs are stored in a hash 

table with angle information for finding the congruent set, 

which needs 𝑂(𝑘)  space. Therefore, the total space 

complexity for S4PCS is 𝑂(𝑛 + 𝑘). In the proposed V4PCS, 

the pair generation step is same with S4PCS, hence it needs 

𝑂(𝑛) space for given 𝑛 points. We construct a connectivity 

table for the extracted 𝑘 pairs, where each edge is stored twice 

with both its end vertices, and thus it takes 𝑂(2𝑘) space. 

Therefore, V4PCS has a space complexity of 𝑂(𝑛 + 2𝑘) , 

which is slightly higher than S4PCS. 

5. RESULTS 
In this section, we will test the performance of proposed 

V4PCS on different data set and compared it with S4PCS in 

terms of robustness and efficiency. The results of S4PCS are 

generated by the code provided on their project webpage, 

which is implemented in C++. Our V4PCS is also implemented 

based on their code. Therefore, all the environmental settings 

and parameters are consistent in the testing. All experiments in 

this paper are run on a machine with Intel Core i7-4510U CPU 

@ 2.00GHz and 8 GB RAM. An application of mass 

customization using our method is also discussed at the end. 

5.1 Robustness Test 

For the sake of process rate, it is desirable to minimize the 

problem size and the number of parameters. However, it always 

comes with a trade-off in stability. When an algorithm is 

applied in real world applications, it is always desired that the 

algorithm is stable even in some extreme cases. Therefore, in 

Algorithm 1 Volumetric 4PCS 

Input: Target and source point sets, 𝒮 and ℳ 

Output: Best transformation 𝐓 

1. ℎ = 0; 𝐓 = 0; 𝑙 = 0; 
2. while ℎ < 0.95 and 𝑙 < 𝐿 do 

   //Pair Generation (PG) 

3.    {𝐪𝐢, 𝑖 = 1 … 4} = SelectTetrahedralBase (𝒮) 

4.    𝑑1, 𝑑2, … , 𝑑6 are the laterals of {𝐪𝐢} 

5.    Extract 𝑑1, 𝑑2, … , 𝑑6 pairs from ℳ [4] 

6.    Create connectivity table 𝐻 to store extracted pair index 

   //Congruent Set Extraction (CSE) 

7.    for all the pairs extracted from ℳ 

8. 𝑈 ← Search H to find other 5 pairs to form a congruent 

tetrahedron to {𝐪𝐢} 

9.    end for 

   //Congruent Set Verification (CSV) 

10.    for all congruent tetrahedral sets {𝐩𝐢} ∈ 𝑈 do 

11.       𝐭 rigid transformation aligns {𝐩𝐢} to {𝐪𝐢} 

12. 𝑠 = compute the score for 𝐭 by common point set 

13.       if 𝑠 > ℎ then 

14. ℎ ← 𝑠; 𝐓 ← 𝐭; 

15. end if 

16.    end for 

17. 𝑙 ← 𝑙 + 1; 
18. end for 

19. return  𝐓 
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order to test the robustness of the algorithms, we have 

conducted two experiments. One is testing with a small number 

of sample size 𝑛, which is a major contribution in the time 

complexity. Another one is testing with a small number of 

RANSAC iterations 𝐿 , which is a multiplier on the total 

process time. These two parameters are also having a direct 

effect to the process speed, and there will be a large impact to 

the efficiency if an algorithm is robust enough to work with 

small values of the parameters. 

 
Fig. 7: Alignment results for teeth models with n=32. 

 
Fig. 8: Alignment results for hearing aid models with n=24. 

Two examples are used in the first experiment as shown in 

Fig. 7 and Fig. 8. From the previous discussion, we know that 

the PG step takes 𝑂(𝑛) steps to generate all the pairs with the 

given lengths. The sample size 𝑛  also directly affects the 

number of generated pairs 𝑘. It cannot be too small, otherwise 

no congruent pairs can be found, but it should be as small as 

possible. A sample size of 32 is used for aligning the teeth 

models in Fig. 7, which means there are only 32 sampling 

points on ℳ. Both S4PCS and V4PCS have been tested with 

the same setting and same number of iterations, and the results 

are shown in Fig. 7. Due to the reason of ambiguities from 

using a 2D plane to represent a 3D shape as stated in 

Observation 2, S4PCS returns a flipped alignment as the best 

result. Impressively, our proposed V4PCS can still find a proper 

alignment with this small number of sample size given. For the 

hearing aid models in Fig. 8, a sample size of 24 is used. In this 

example, the model is not in a planar shape making the S4PCS 

even fails to extract any congruent coplanar sets in the CSE 

step with the small number of sample size, i.e., 𝑈 = ∅, but 

V4PCS is able to find the congruent tetrahedral bases and 

compute a close alignment result. 

The second experiment is conducted to test with a small 

number of RANSAC iterations 𝐿. The whole procedure is run 

for 𝐿 times to select different bases from 𝒮 and to expect 

there are some iterations give good results. For a successful 

probability a larger number of 𝐿 is preferred, but with a trade-

off in time. Here, we demonstrate that the V4PCS as a richer 

representation for the input 3D shape can improve the 

probability and require fewer iterations. Two human models are 

shown in Fig. 9 as an example, where a small value of 𝐿 = 10 

is used. In this experiment, S4PCS returns a transformation that 

is flipped similar to the example of the teeth models, but 

V4PCS can roughly align the two human models pretty well. 

From the two experiments discussed above, we have 

verified our Hypothesis 1 that the V4PCS algorithm is more 

robust and resistant to extreme cases by incorporating 

volumetric information to construct the base. Fig. 10 shows 

some other alignment results on different models by V4PCS. 

 
Fig. 9: Alignment results for human models with L=10.

 

Fig. 10: Alignment results for other models by V4PCS. 

5.2 Computational Test  

To compare the computational complexity between V4PCS 

and S4PCS, the details of time statistics are plotted in Fig. 11. 

The experiment is conducted on the teeth models shown in Fig. 

7 but not using a small sample size that S4PCS would fail. Fig. 

11 also demonstrates the impact of sample size by using 

different number of 𝑛, and reports the total time and the time 

spent in each step: PG, CSE, and CSV. From Fig. 11, we can 

see that the PG time of two algorithms are similar, and V4PCS 

is slightly larger than S4PCS. This is because V4PCS extracts 

six laterals of tetrahedral base, while S4PCS extracts only two. 

This step could be further optimized for V4PCS, but since the 

PG step is performed in linear time, this constant difference in 

complexity is not significant. 
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The major improvement of the proposed V4PCS is the 

decrease in time at the CSE and CSV steps. Since we 

constructed a tetrahedron only using the distance information, 

the congruent bases can be extracted directly by index querying 

through a connectivity table, and hence we can see that the 

proposed method is much faster than the S4PCS method. 

Furthermore, the average numbers of extracted congruent sets 

for the base in each iteration are compared in Fig. 11, from 

which we can see that with increasing of samples, the 

congruent set is exponentially increased. As V4PCS makes use 

of volumetric information to filter many false pairs, the number 

of extracted congruent sets is far less than that from S4PCS. At 

𝑛 = 2040, the number of V4PCS is only about 0.3% of the 

S4PCS’s one. Since the number of congruent sets is decreased 

with the rich representation in V4PCS, the time needed for 

verification is also greatly decreased. This also agrees with our 

previous deduction that if the number of congruent sets 𝑐 is 

large, the term 𝑂(𝑐 𝑛 log 𝑚) in the CSV step is dominant. 

The comparison in computational time is also done with 

other examples, and the results are shown in Table 1. Due to the 

reason that the algorithms are run by the RANSAC method, the 

performance can be different in different trials even with the 

same setting. To make the comparison fair, we run 50 times for 

each setting (i.e., different 𝑛) and report the average runtime. It 

can be seen from Table 1 that the average runtime of proposed 

V4PCS achieves about 70% − 90% improvement compared 

Table 1 Average time of registration with different sampling sizes 

model #Sample 

in 𝒮 (𝑚) 

#Sample 

in ℳ (𝑛) 

S4PCS 

(sec) 

V4PCS 

(sec) 

Improve 

% 

Hearing 

Aid 

8638 449 6.820 1.755 74% 

1187 18.506 4.159 78% 

2000 88.230 20.304 77% 

Teeth 

Aligner 

7658 424 4.030 1.245 69% 

989 61.365 12.798 79% 

2040 990.397 51.305 95% 

Head 2219 430 8.005 2.334 71% 

1074 96.150 8.691 91% 

2146 158.851 20.266 87% 

Hand 15765 833 8.172 2.301 72% 

1574 40.651 8.816 78% 

2298 134.093 18.308 86% 

Human 

Model 

5620 

 

423 5.460 0.704 87% 

852 12.426 3.456 72% 

2090 87.977 13.129 85% 

Armadil

lo 

5503 387 1.459 0.241 83% 

899 15.392 3.527 77% 

1874 385.434 20.396 95% 

Buddha 7932 422 15.909 2.871 82% 

817 31.560 4.192 87% 

2064 3793.584 208.65 94% 

Gear 34705 436 14.334 1.283 91% 

861 127.494 20.517 84% 

2052 992.744 81.032 92% 

Boeing 

part 

26830 459 63.644 4.951 92% 

900 991.353 63.431 94% 

2109 1663.245 181.689 89% 

Fig. 11: Computational time for V4PCS and S4PCS on two teeth models. Note that the number of extracted congruent sets and the timings for the 

subtotals of the PG, CSE, and CSV steps are in log-scale. 
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to S4PCS. With the increase in the sample rate, the difference is 

more significant, and the V4PCS can achieve a maximum 

improvement of 95%, which is 20 times faster than the S4PCS. 

From all the testing and comparison, we have verified our 

Hypothesis 2 that the V4PCS algorithm can minimize the 

number of congruent sets 𝑘 and 𝑐, and it can improve a lot in 

the computational efficiency. 

5.3 Mass Customization 

As discussed in the introduction, the mass human-related 

data in mass customization can create unprecedented 

opportunities in advancing the theory, methods, and practice of 

design and manufacturing for products, system, and services. 

To exploit such huge, versatile, and highly contextualized data, 

the first step is always the registration to compute the 

correspondence between data, and then the feature and the 

similarity of the data can be identified and reused. Therefore, 

the robustness and efficiency of the V4PCS as shown in 

previous sections and experiments are the keys for the success 

in mass customization. Moreover, we extend the concept of 

information reuse to the registration step to make a further 

speedup in the context of mass customization as described here. 

Table 2 shows the time statistics of each subroutine in 

V4PCS for matching two models (teeth aligner and hearing aid 

models) that are commonly seen in customization. It takes 240 

iterations to align a pair of teeth models for the sample size is 

about 1000, and the total time is 2.61 + 4.15 + 6.04 = 12.8𝑠, 

which is fast. However, under the context of mass 

customization, assume we have 1001 models and we align all 

other models to the first one, the total matching time for the 

teeth models would be 1000 × 12.8 ≈ 3.6 hours, which is too 

long time as a pre-processing step. Similarly, 2.1 hours are 

needed for the hearing aid models. 

Table 2 Time of each subroutines in V4PCS 

Model Sample (𝑛) PG CSE CSV Iterations 

Teeth Aligner 989 2.61s 4.15s 6.04s ~240 

Hearing Aid 1271 1.04s 2.48s 3.99s ~90 

Fortunately, with the robustness of V4PCS, the algorithm 

can be customized for the application of mass customization. 

Since most of the models are very similar in mass 

customization (e.g., the teeth models of different patients are 

similar) and the volumetric base represents the shape of the 3D 

model very well. Therefore, if a proper base is selected for a 

same group of models, it can be safely reused. A proper base is 

defined as a large-volume tetrahedron that can capture the 

unique features of the given models. For example, the base 

shown in Fig. 12 is manually picked by hand on a hearing aid 

model, and we find that using this base can successful match 

with other hearing aid models in our dataset. In other words, it 

only requires one iteration in V4PCS for matching similar 

models, i.e., 𝐿 = 1. As a result, the total registration time for 

the teeth models and the hearing aid models would be only 

1000 × 12.8/240 ≈ 53𝑠  and 1000 × 7.5/90 = 83𝑠 

respectively, which is significantly decreased and becomes 

more favorable for mass customization. 

It is worth to remark that there are two types of 

information reuse mentioned in this paper: one is reusing the 

similarities between models by alignment and identification; 

another is extending the concept of information reuse to speed 

up the registration step that aligns many models together. To the 

best of our knowledge, it is the first time that the concept of 

information reuse is extended to the registration step, which is 

enabled by the robustness of V4PCS. 

 
Fig. 12: A pre-selected base for a hearing aid model 

6. CONCLUSION 
This paper proposes a new algorithm – Volumetric 4PCS 

(V4PCS) framework for global registration of 3D shapes. 

Based on our observations and developments, we verified our 

hypotheses that incorporating volumetric information to create 

the 4-points base can improve the robustness and efficiency of 

the algorithm. Compared to Super 4PCS (S4PCS), we have 

theoretically demonstrate the computational complexity is 

reduced from 𝑂(𝑛 + 𝑘 + 𝑐) to 𝑂(𝑛 + 𝑘), and we have also 

experimentally shown that V4PCS can work very well with 

small input points size and can achieve a maximum of 20 times 

speedup. The results show that the proposed method is reliable 

and can be applied to the applications such as mass 

customization in dealing massive human-related data. The 

concept of information used is also extended to the registration. 

There are some limitations of this work. First, similar to 

the S4PCS, most of the parameters used in the algorithm have 

to be tested and set by hand for different models, which will be 

a problem in generalizing the algorithm in wider applications. 

Our future work will study how the parameters are related to 

the geometry of models, and develop methods to set the 

parameters automatically. Second, we have only tested the 

registration on intact models, which is the main focus in our 

application of mass customization. We will also test and study 

the performance of the algorithm on range data, i.e., partial and 

incomplete surfaces. Third, the Pair Generation step of V4PCS 

is slower than that of S4PCS due to there are six laterals and 

thus six distances have to be searched, which S4PCS has only 

two. This step could be optimized in some ways, for example, if 

equilateral tetrahedron (all sides are equal) is used, then only 

one search is needed. We will further investigate the possibility 

and potential of the method. Last, we are also using the 

RANSAC method to construct the first base and hoping that the 

algorithm can be success by chance. Although some heuristics 

are used to improve the probability, we plan to develop new 

geometric algorithm to pick the best base and thus no more 

iteration is needed. 
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