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Abstract

Accuracy Assessment of Time Delay Estimation in Ultrasound Elastography

Mohamad Ghasemi Amidabadi

The accuracy of time-delay estimation (TDE) in ultrasound elastography is usually measured
by calculating the value of the normalized cross correlation (NCC) at the estimated displacement.
NCC value is usually high if the TDE is correct. However, it could be very high at a displacement
estimate with large error, a well-known problem in TDE referred to as peak-hopping. Furthermore,
NCC value could suffer from jitter error, which is due to electric noise and signal decorrelation.
In this thesis, we propose a novel method to assess the accuracy of TDE by investigating the NCC
profile around the estimated time-delay in a supervised approach. First, we extract seven features
from the NCC profile, and utilize a linear support vector machine (SVM) to classify the peak-
hopping and jitter error. The results on simulation, phantom and in-vivo data show the significant
improvement in the classification accuracy realizing from the proposed algorithm compared to the
obtained form the state of the art techniques. Second, we build on our model by utilizing the
continuity features in the axial and lateral directions as a prior knowledge. We show that these
features also improve the sensitivity and specificity of the classifier. After extracting the continuity
features in addition to the seven features, we show the performance improvement of the proposed
model on the available data sets. Furthermore, we show that our proposed model could be trained
by other elastography methods in future, since we use a new elastography algorithm to train the
model. Third, we compare the performance of the method developed using well-known classifiers
in the literature and then study the importance of the proposed features using the mean decrease

impurity method of the random forest classifier.
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Chapter 1

Introduction

1.1 Ultrasound Elastography

Ultrasound elastography is an emerging medical imaging modality that involves measuring tissue
deformation field caused by an external or internal forces [3, 4]. Several ultrasound-based tech-
niques have been established in past years in the literature to find the deformation field [5, 6, 7, 8]
also referred to as Time-Delay Estimates (TDE). TDE is calculated between two frames of ultra-
sound Radio-Frequency (RF) data, and is used to infer tissue mechanical properties, in particular
Young’s modulus. On one hand, elastography has been applied in several clinical trials in breast,
liver and prostate cancer, and is rapidly finding new clinical applications [9, 10, 11, 12, 13]. On the
other hand, it has evolved into several different techniques such as shear-wave elastography [14, 15]
and quasi-static elastography [16, 17]. In quasi-static elastography, either the spatial gradient of
the displacement field (i.e. a strain image) is used, or an inverse problem is solved to calculate
the Young’s modulus [18, 19, 20]. Ultrasound machines are typically portable, which makes them
a convenient imaging modality for both diagnostics and surgical guidance. In Fig. 1.1, a typical

ultrasound imaging machine is shown.



Figure 1.1: The Alpinion ultrasound machine at the PERFORM Centre.



1.1.1 Quasi-static Elastography

This work focuses on quasi-static elastography, wherein tissue deformation is slow and is created by
pushing the tissue by a hand-held ultrasound probe [17]. In quasi-static elastography, two images
play an important role in measuring the mechanical properties of the tissue. First, the image that
is taken without any pressure on the tissue and is called pre-compressed image. Second, the image
that is taken while the tissue undergoes deformation due to an applied stress and is called post-
compressed image. By measuring the deformation between the two images, we could get useful
information about mechanical properties of the tissue for medical diagnosis and treatment. In Fig.

1.2, pre- and post-compressed images are shown.

There have been proposed several methods in the literature to find the deformation field between
the two images. In fact, the displacement field is estimated by tracking the speckles’s movement
in the pre- and post compressed images. Many different types of deformation estimators are devel-
oped which can be mainly categorized into window-based and regularized cost function methods.
Window-based estimators, either maximize the similarity functions (usually cross-correlation) or
find the zero-crossing of the cross-correlation function [21, 22, 23, 24]. Minimization of a regu-
larized cost function is the second popular approach compared to correlation-based methods due
to their robustness to signal decorrelation [16, 25, 26, 27, 28, 29]. Prior knowledge that the tissue

deformation field is smooth, is the key assumption in the proposed methods.

After finding the deformation field, axial gradient estimation is usually applied to generate axial
strain image (Fig. 1.3). Since taking derivative of consecutive TDEs, amplifies the noise in the

strain image, filtering is also needed to end up with smoother strains [3, 5, 27].

1.1.2 Shear-wave Elastography

Shear-wave elastography provides quantitative values of tissue elasticity or shear moduli, wherein
tissue deformation is generated by ultrasonic focused beams [14, 30, 31]. By generating radia-

tion sources remotely in the tissue, low frequency shear-waves are propagated through the medium
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Figure 1.2: (a) Pre-compressed image on the left, (b) Post-compressed image on the right.
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Figure 1.3: (a) , (b) Axial displacement field and axial strain image, respectively.



Figure 1.4: Propagation of shear waves in the tissue.

which is progressively distorted due to tissue heterogeneities. Insensitivity to patient motion and
boundary condition artifacts are main advantages of shear-wave elastography. However, their ap-
plication is limited due to having heavy and bulky vibrators with a unique shear spatial directivity
pattern [14], thereby an alternative approach is proposed in [32, 33, 34]. This method consists of
focusing an ultrasonic beam deep in tissues during a long time (around 100 us) and uses ultrasound
correlation-based techniques to measure the resulting displacement field at the focused medium . In

Fig 1.4, propagation of shear waves in the vibrated tissue is schematically shown.

1.2 Accuracy Assessment in Ultrasound Elastography

TDE is challenging due to signal decorrelation between the two ultrasound frames. Failure in TDE
creates artifacts in elastography, which can adversely affect diagnosis or surgical operations. The
importance of assessment of the accuracy of TDE is four-fold. First, it can be used to mask out
erroneous areas of the elasticity image. Second, ultrasound frame rate is very high, and therefore,

several TDEs can be calculated and utilized every second. Recent work has, in fact, focused on
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Figure 1.5: Jitter error and its impact in shifting the position of maximum value of the cross-
correlation function.

exploiting multiple images to improve the quality of elastography [17],[35, 36]. An accuracy map
can be exploited to perform weighted averaging of these elasticity images, assigning smaller weights
to uncertain TDEs. Third, quasi-static elastography methods are user-dependent, and rely highly on
the skill of the sonographer. An accurate assessment method can be used to generate accuracy maps
alongside strain images, which can help train sonographers to obtain elastography images of higher
quality. And fourth, elastography algorithms often use the displacement estimation of previous
samples to reduce the search range and computational complexity, which can lead to propagation of

errors. The proposed method can be used to prevent such propagation of errors.

TDE methods are always subject to small and large error values. Small error is widely referred
to as jitter and can be quantified by studying the fundamental limits on the performance evaluation
of TDE [35]. In Fig. 1.5, jitter error results in a shift in position of maximum value of the cross-
correlation function in axial or lateral directions. Large errors in the displacement field, also called
peak-hopping, create outlier data in the displacement field. Peak-hoping happens when maximum
value of the cross-correlation function is found somewhere far from the actual displacement estimate
within a predefined search region (Fig. 1.6). Several algorithms have been proposed to reduce the
occurrence of large errors and limit their effect in both quasi-static [21, 36, 37] and shear-wave
elastography [38, 39]. Although accuracy assessment of TDE is essential in both quasi-static and

shear-wave elastography, this work focuses on the former.



Figure 1.6: Correct estimated sample in post-compressed image is shown in black and peak-hopping
sample which is far from the actual estimate is shown in red.

1.2.1 Fundamental Limit on Time Delay Estimation

Widespread adoption of ultrasound elastography relies on reliable quality assessment of TDE. Early
work is focused on prediction of a lower bound for the variance of the displacement estimate errors
using Cramer-Rao Lower Bound (CRLB) [40, 41, 42, 43]. These contributions derive a closed-form

expression for the TDE error variance as following:

1
e} Cr 5T
T2 m )

T2

o(At — At) >

where At is the correct displacement, Af is the estimated displacement, 7" is the window length and

Cr,.r, (f) is the magnitude-squared coherence function defined as following:

Cﬁﬂ‘z (f) ‘2

CT1,7’2 (f) = ‘ \/Cm,ﬂ (f)OTQ,TZ(f)

It is parameterized in terms of the TDE algorithm and ultrasound system configuration, and obtains
the minimum achievable error by any unbiased TDE algorithm [40, 41]. Although mathematically
elegant, this approach does not provide the accuracy of the TDE and instead produces a lower bound

value for the error variance.



1.2.2 SNR and CNR

To overcome the shortcomings of the lower bound error analysis, general performance measure-
ments such as signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of the strain image are
widely used [1, 44, 45, 46, 47]. These measures are often called strain filter since they behave sim-
ilar to a bandpass filters when they are measured as a function of axial strain. For example in [1],
SNR is defined as the ratio of the mean m and standard deviation o of the estimated strain over a

small window as following:

SNR="

o

The strain filter proposes a framework that allows a limited range of strains to be included in the
strain image. The reasons why the filter deviates from an all-pass characteristics in the strain domain
are ultrasound system parameters, the finite value of the SNR, and the effect of signal decorrelation
for high strain values. In fact, the strain filter approach provides valuable insight to design strain-
imaging systems to generate high quality results. In Fig. 1.7, three strain filters are shown at
different center frequencies of 3.5MHz, SMHz, 7.5 MHz, respectively, with a bandwith of 60 %
and duration of data window of T= 1.3 us. The SNR is improved by increasing the pulse center
frequency. However, there are three disadvantages in using general performance measurements.
First, they should be estimated in small windows that must be regions of constant strain [1]. Such
regions are not necessarily available in real tissue that is largely heterogeneous. Second, these
methods do not directly estimate the accuracy of TDE but rely solely on strain, the spatial derivative
of TDE. As such, the derivative operator has a strong impact on these measures, such that higher
SNR and CNR can be obtained by smoother derivative operators [48]. Third, strain filters only
provide an upper bound for the quality of the estimated strain value, and do not produce the quality
of the specific TDE. For example, these filters usually predict a high value of SNR and CNR at
around 1% strain for most displacement estimation algorithms. However, an incorrect displacement

may be estimated at 1% strain due to a large signal decorrelation.
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Figure 1.7: Strain filters are shown for center frequencies of 3.5MHz, SMHz, 7.5 MHz, respectively.
Bandwith is 60 % and T= 1.3 us. The SNR is improved by increasing the pulse center frequency.
This figure is borrowed from [1].

1.2.3 Normalized Cross-Correlation Based Methods

The application of normalized cross-correlation (NCC) similarity metric in performance evaluation
of TDE is an active field of research. NCC is generally calculated between two corresponding
windows in the two RF frames to quantify the accuracy of the displacement field. In [2], a method
has been proposed to mask out the incorrect areas of the strain image where NCC falls below a
user-defined threshold. Fig. 1.8 shows three different strain images, wherein incorrect estimated
samples are washed out in red. In [49, 50, 51], the value of NCC is linked to the precision of the
displacement field, which is used later to blur out the areas of the strain image that are not accurate.
In [46], standard deviation of the jitter error is evaluated by finding NCC and the sum of squared
difference (SSD) values of the corresponding windows. In [52], a technique has been introduced
that incorporates the consistency information of consecutive frames as a measure to evaluate the
quality of strain images. Finally, a frame quality indicator has been presented in [53] that selects a
few representative frames from a large pool of axial strain images based on the value of NCC and
performs weighted averaging of the strain images based on the NCC value. While these methods
improve the quality of strain images, they utilize only NCC at the TDE. We will show that NCC

profile around the TDE contains information that is otherwise not available from the peak NCC
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Figure 1.8: Three different strain images which show incorrect estimated areas in red. This figure
is borrowed from [2].

value.

1.3 Investigation of the NCC Profile

In Fig. 1.9, joint probability density functions of the skewness and variance for 1000 correct esti-
mated samples and 200 peak-hopping samples are shown. For each sample, nine NCC values are
calculated by shifting the center of the post-compressed window by +1 samples in the axial and
lateral directions (i.e. nine values in a window of size 3 x 3). As it is obvious, the surface in Fig.
1.9 is concentrated in a specific area whereas it is spread randomly in Fig. 1.10. This difference in
the behavior of the probability density functions enables us to use the skewness and variance of the
neighboring samples around the estimated one as two invaluable features to train the classifier. The
skewness and variance of the NCC profile is calculated as following:

i (@i — p)?

n

Variance =

Z?:l (w; — M)g

n

Skewness =

10
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Figure 1.9: Joint probability density function of the skewness and variance for 1000 correct TDEs.
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Figure 1.10: Joint probability density function of the skewness and variance for 200 peak-hopping
TDEs.

where n and 4 represent the number and average of the samples, respectively. Moreover, NCC curve
by shifting +1 samples in the axial direction in the post-compressed image is shown in Fig. 1.11.
It is expected to have a local maximum at the correct estimated displacement. In 2D, this curve

becomes a 2D surface, and its shape can help in the assessment of the accuracy of the TDE.

11



NCC

Axial displacement

Figure 1.11: NCC curve obtained by shifting the post-compressed window by +1 samples in both
axial and lateral directions. NCC windows of pre- and post-compressed images are shown in black
and red respectively.

1.4 Motivation and Objective of the Thesis

Accuracy assessment of time-delay estimates (TDE) in ultrasound elastography is a critical step
in ensuring reliable strain images, which is of critical importance for diagnosis and treatment. In
quasi-static elastography, the accuracy of TDE is measured mainly by calculating the value of the
normalized cross correlation (NCC) at the estimated TDE. Since this approach is extremely vulner-
able to jitter and peak-hopping noise available in TDEs, in this thesis, we investigate the possibility
of using the statistics around TDEs and develop a reliable method to address the issue. To this end,
we aim to propose several features that would help us in assessing the accuracy of TDE in an most
efficient approach. We will investigate the feasibility of real-time automatic accuracy assessment
of TDEs with a view to help faster training of sonographers and decision making of doctors. This
method could be later used to develop real-time applications reliably used in clinical settings for

diagnosis and treatment.

12



1.5 Organization of the Thesis

In this thesis, we present a novel technique for assessing the accuracy of TDE that relies on multiple
NCC measurements. Instead of relying on the value of NCC at the estimated displacement, we look
at the NCC profile around the estimated displacement. Our techniques identify locations that contain
errors larger than an accepted value, so that these regions can be marked out of the strain image. In
Chapter II [54], we look at the 4 NCC values obtained by varying the displacement by +1 sample
in either axial or lateral directions in addition to the NCC value at the estimated displacement. Five
aforementioned NCC values and skewness and variance of nine samples in the 3 x 3 neighborhood
around the estimated TDE are concatenated into a feature-vector of size seven. We show that these
seven features are significantly superior in discriminating the correct versus incorrect displacement
estimates using simulation, phantom and in-vivo experiments. In Chapter III [55], we show that
continuity of the displacement field due to homogeneity properties of the tissue also could improve
the distinguishability of the classifier. Therefore, each feature vector involves 9 features containing
two continuity features in axial and lateral directions in addition to the seven features. Moreover, we
use a new method as silver standard to obtain accurate displacement values for training our model
which proves that our proposed could be updated by any accurate elastography method for use in
future. In Chapter IV, we evaluate the performance of our proposed model by using state-of-the-art
classifiers in the literature to find the best model for the TDE accuracy assessment. After finding
the most useful classifier, we study the importance of the proposed features based on the Mean

Decrease Impurity method of the random forest algorithm [56].
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Chapter 2

Supervised Classification of the
Accuracy of the Time Delay Estimation

in Ultrasound Elastography

2.1 Introduction

In this chapter, we will introduce seven features using the NCC profile around the estimated time
delay. Then, we use them to train a supervised classification model to do accuracy assessment of
time delay estimates which are of high importance for diagnosis and treatment. Herein, SVM is
used as a binary supervised classifier to assess the accuracy of TDEs in ultrasound elastography.
We show that using the seven proposed features significantly increase the distinguishability of the

classifier compared to using only one NCC value.
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Figure 2.1: Displacement between pre-and post compressed images. /1 and I are pre- and post-
compressed images, respectively. Z, X, Y are axial, lateral and out-of-plane directions, respectively.
The coordinate system is attached to the ultrasound probe. The sample P (7,7) in I; has been moved

by (ai,j, li,;) in Io.

2.2 Method and Material

In elastography, pre- and post-compressed images correspond to each other via a displacement field.
Some popular methods for estimation of the displacement field are discussed in detail in [16, 57].
Assume that for each sample (7,7) in the pre-compressed image, axial and lateral displacement
values are a and [ as illustrated in Fig. 2.1. Our goal is to quantify the accuracy of the displacement

estimates.

NCC is a widely used similarity metric in TDE and it evaluates the degree of similarity between
pre- and post-compressed images. The main advantage of NCC is its sensitivity to linear changes in
the intensity of the two images compared to the ordinary cross correlation metric [58]. In addition,
NCC is confined to be in the range between -1 and 1, which avoids dealing with very small or large

values in training a classifier. We, therefore, use the NCC profile as our feature set.

Let I; and I5 be two matrices of dimension (mxn) representing the pre- and post-compressed

ultrasound images, respectively. For each sample (¢,7) of the pre-compressed image, a window
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centered at (¢,7) is considered for the calculation of the NCC. Suppose that X=(z,y) is a vector
containing sample coordinates such that (z, y) € {i—25, ..., 4, ..., i+25} x{j} (Fig. 2.2a). Moreover,
Y1=(z,y) is a shifted and linearly interpolated window in the post-compressed image containing
sample coordinates such that (z, y) € {i + aj,; —=25,...,7 + Giyj, ..., 0 + a;,; +25} x{j — l;,; }.
These windows and their corresponding NCC value that is called NCC' are illustrated in Fig. 2.2c.
The goal of this scheme is to investigate the behavior of the similarity metric in the neighborhood
of the estimated sample. After finding eight neighboring windows of Y1 which are called Y2, Y3,
Y4, Y5.Y6, Y7, Yg, Yg according to Fig. 2.2b, we calculate the corresponding NCC between
each window and X, separately. These nine NCC values of each sample (¢,7) in image I; are called

NCC;;=12,..9, which are shown in Fig. 2.2c.

I
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Figure 2.2: (a), (b) I; and I, are pre- and post-compressed images, respectively. Windows X
and Y, (i = 1,2, ...,9) correspond to the sample (7,7) in I7. (c) Nine NCC values are illustrated,
NC(C1 was the only value which was used to asses accuracy.

2.2.1 Feature Selection

Fig. 1.10 indicates that the probability density function (PDF) of the peak-hopping samples is
relatively randomly distributed, whereas the PDF of the correct estimated samples is more compact.

Thus, the variance and skewness of the nine neighboring samples around the peak-hopping and
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correct estimated samples are calculated to be considered as two features for recognizing the peak-

hopping error.

Assuming that a correct TDE is available for the sample X at (7, ), NCC} must be larger than
the other four neighboring NCC values, which are NCCo, NCC3, NCCy, and NCCs (NCCY is
the similarity calculated at the correct TDE). In other words, the NCC profile has a local maximum
at the correct TDE as it is shown in Fig. 1.11. The steepness of the maximum and convexity of the

NCC profile will be used for identification of the jitter error.

2.2.2 Supervised Learning

In this work, Support Vector Machine (SVM) [59] is used as a binary classifier to find the accuracy
map of the elastography algorithm. SVM is a supervised classification method, and as such, requires
training data. SVM performs non-linear classification and, therefore, often outperforms linear clas-
sification techniques. In addition, while training a SVM is computationally intensive, the testing
stage is very fast. This is ideal in ultrasound elastography, wherein SVM can be trained offline and
test the TDE results in real-time. The flow chart of our approach for obtaining the training data is
shown in Fig. 2.3. Preparation of the training data, shown as true and false classes in this figure, is

described in the following section.

/

True Feature Extraction

Class \

False Feature Extraction
Class

\_

Model Training Accuracy
(SVM) Map

Figure 2.3: Flow chart of the proposed method. I; and I are pre- and post-compressed images,
respectively. Displacement field is either available from the simulation data, or calculated from a
displacement estimation algorithm.
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2.2.3 Training Sets

For simulation data, the ground truth TDE is available from our finite element simulation. For
phantom experiments and in-vivo data, the ground truth TDE is not available. Therefore, we use a
real-time elastography algorithm [60] to find TDE between pre- and post-compression RF data to
obtain a silver standard. This method is based on dynamic programming and analytic minimization
(DPAM) of a regularized cost function. We visually inspect the results to make sure that the algo-
rithm has successfully calculated the displacement field. Therefore, for all the samples in image [,
seven features are extracted by the displacement field that is available from either FEM or DPAM

(Fig. 2.3).

Next, we generate samples for both training and testing that represent either the peak-hopping or
jitter errors. For peak-hopping, we find samples in I; which have larger NCC' value somewhere
far from the correct estimated displacement. For jitter, uniform noise is added to the samples of the
correct displacement field. These samples represent the incorrect displacement field data, and for

all of these samples, we calculate seven features similar to the true class (Fig. 2.3).

2.2.4 Classification

The main idea in the proposed scheme is to employ information of the neighboring pixels to evaluate
the accuracy of TDE. Therefore, instead of using one NCC value that is called NCC' as the only
feature, four neighboring NCC values in addition to skewness and variance of nine NCC values are
used according to Fig. 2.2(c). Therefore, for each sample (z,7) in 17, seven features are calculated

for training and validation procedure.

2.3 Results

The proposed scheme is implemented in MATLAB and is evaluated employing simulated, phantom

and clinical data. In this study, all the samples of the pre-compressed image are considered as
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the training and testing data set. For each sample (¢,7) in I;, windows of size 51 by 1 are taken
in calculating the NCC values. As discussed earlier, the true class is constructed by the available
ground truth or by utilizing the DPAM method. False class samples are formed by finding the peak-
hopping samples or adding a uniform random noise to the rest of samples in the axial and lateral
displacements. The uniform noise is in the range of [0.4 0.6] sample in the axial and [-0.1 0.1]
sample in the lateral direction. Therefore, there is a minimum of 0.4 sample error in the axial

direction in the false class.

2.3.1 Running time

A critical and computationally expensive step in SVM classification is finding the support vectors,
i.e. the training samples that are close to the decision boundary. As a result, training the proposed
method on 100,000 samples takes 381.02 sec on a single core of an i7 3.4 GHz Intel CPU. This
training can be performed offline. The testing step of SVM is usually very fast, since the decision
boundary is determined in the training step. In our implementation, evaluating the accuracy of
an image of size 100 x 100 takes 0.78 sec on the same CPU, which means that the method can
show an accuracy map in real-time by optimizing our implementation and using parallel computing

resources.

2.3.2 Simulation Data

Ultrasound data has been created by Field II [61], and the digital phantoms are deformed using
the Finite Element Method (FEM) by ABAQUS Software (Providence, RI). The parameters of the
ultrasound probe are as follows: The sampling rate is 40 MHz and probe frequency is 7.27 MHz,
and the fractional bandwidth is 60%. A Hanning window is used for apodization, the single transmit
focus is at 22.5 mm, equi-distance receive foci are from 5 mm to 45 mm at each 5 mm, the transmit
is sequential, and the number of active elements is 64. This phantom is uniform and is assumed to

be isotropic and homogeneous.
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Table 2.1: Classification accuracy using one NCC value and the proposed method for the simulation
data.

Data set 1-NCC 7-Features
Simulation data 93.9 98.4
17—
(
| —1-NCC
0.8 " ——7-NCC ||
206l
S 06"
2
a:041
o) H
0.2
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Figure 2.4: ROC curve for the simulation data.

In order to find the accuracy of the classifier, a 10-fold cross validation is performed for using one
NCC value and seven proposed features (Table 2.1). The results show that accuracy of the classifier
is substantially increased from about 94% to 98%. Receiver Operating Characteristic (ROC) [62]
curves for the simulation data set are also shown in Fig. 2.4. It shows that the area under the curve
for using one NCC value and the proposed method are respectively 0.9606 and 0.9826, a substantial

improvement achieved by using the NCC profile.

2.3.3 Phantom Data

An Antares Siemens system (Issaquah, WA) at the center frequency of 6.67 MHz with a VF10-5
linear array at a sampling rate of 40 MHz was used to acquire RF data at John Hopkins University.
RF data is collected from freehand palpation of a CIRS breast elastography phantom (CIRS, Nor-

folk, VA) with a lesion three times stiffer than the surrounding tissue. This data is available online
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Table 2.2: Classification accuracy using one NCC value and the proposed method for the CIRS
phantom data.

Data set 1-NCC 7-Features
Phantom data 82.2 96.7
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Figure 2.5: ROC curve for the CIRS phantom data.
along with publication [60].

The DPAM method [60] is utilized to calculate the displacement field. In Table 2.2, the overall
accuracy of the proposed classifier by using one NCC value and seven NCC values is shown. The
substantial improvement from 82.2% to 96.7% is achieved by using the seven features. The ROC
curves are shown in Fig. 2.5. The areas under curve for the one NCC method and the proposed

method are, respectively, 0.8994 and 0.9846, showing substantial improvement.

2.3.4 In-Vivo Data

The RF data is collected by ablation therapy of three patients with liver cancer using an Antares
Siemens (Issaquah, WA) ultrasound machine and A VF10-5 linear array at the center frequency of

6.67 MHz with a sampling rate of 40 MHz for the RF data acquisition. The displacement matrix
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Table 2.3: Classification accuracy using one NCC value and proposed seven features for three
patient data.

Data set 1-NCC 7-Features

Patient data 1 67.6 88.6
Patientdata2  79.3 92.2
Patientdata3  90.6 98.2

Average 79.2 93.0

for all the three patients is calculated by the DPAM method [60]. This data is available online along

with the publication [60].

The overall classification accuracy using one NCC value and seven NCC values are depicted in
Table 2.3 for all the three patients. The accuracy is improved by more than 13% on the average by
using the proposed method. Also, for patient 1 with the worst available data set in terms of quality
of RF data, it shows a very high improvement of about 21%. Finally, the ROC curves for all the
three patients are depicted in Fig. 2.6. The area under the ROC curve is increased from 0.6906
to 0.9255 for patient 1, from 0.8624 to 0.9598 for patient 2 and from 0.9610 to 0.9926 for patient
3. The significant improvement in the results is obtained by exploiting the NCC profile around the

estimated displacement field.

2.3.5 Accuracy Map in Region of Interest (ROI)

The proposed method has been quantitatively validated in the previous sections. To visualize the
performance of the proposed method, we show the map of the accuracy assessment. In Figs. 2.7 (a)
and (b), the red boxes in the figures indicate the tumor region in the B-mode ultrasound strain images
for patient 3. The displacement field is calculated using DPAM and is visually checked. Therefore,
all samples belong to the true set and the classifier should label those pixels as the true displacement
estimate. Figs. 2.8 (a) and (b) show the results of the proposed method using one NCC and seven
NCC values. Blue samples denote successfully classified regions and yellow samples show the
unsuccessfully classified samples. In a second experiment, all the samples are either peak-hopping

samples or are corrupted by the jitter error. Therefore, the algorithm should classify all the samples
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Figure 2.6: ROC curves for three patients.
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Figure 2.7: Accuracy map in tumor region for patient 3 is shown in red boxes.
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as incorrect displacement. Figs. 2.8 (¢) and (d) show the result of the proposed method for using
one NCC and seven NCC values, respectively. Again, blue and yellow respectively represent correct
and incorrect classification. The results of this figure clearly demonstrate that the proposed method

substantially improves the results.

The accuracy maps are created for the True Positive (TP) and False Positive (FP) cases around
the tumor. The tumor region is chosen as region of interest to locally show the performance of
the classifiers using one NCC value or the seven proposed features. It is important to note that the
samples in this region (ie the vicinity of the tumor) are not used for training and are only used in
the testing stage. In the TP case, all the samples in the tumor region have correct displacement
estimates, which are obtained using DPAM. For the FP case, all the samples of the validation set
have incorrect displacement estimates in the form of either peak-hopping or jitter error. These

incorrect displacements are generated by the procedure described in Section 2.1.3.

2.4 Summary

In this chapter, we have shown that accuracy assessment of TDEs in ultrasound elastography could
be performed in a supervised approach using a binary classifier. Then, we have illustrated that using
the set of seven proposed features substantially improves the accuracy of the supervised model. In
fact, five features are utilized to recognize the jitter error and two features to distinguish the peak-
hopping samples. All of these are achieved by using the information of the NCC profile around the

estimated time delays.
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Chapter 3

Automatic Accuracy Assessment of
Ultrasound Elastography Using
Correlation Profile and Prior

Information of Displacement Continuity

3.1 introduction

The proposed method in the previous chapter takes the advantage of using NCC profile with 7 valu-
able features and also looks at accuracy assessment in a supervised approach. In this chapter, we
build on our previous work by utilizing continuity features in axial and lateral directions as useful
information. We show that these features improve the sensitivity and specificity of the classifier.
After extracting the continuity features in addition to features proposed in our previous work, we
train a linear Support Vector Machine (SVM) on available data sets to show the significant improve-
ment of utilizing the proposed features. Also, we use Global Time-Delay Estimation in Ultrasound

Elastography (GLUE) [63] as a novel elastography algorithm to obtain silver standard ground truth
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for training the model which means that the proposed supervised approach can be re-trained by any

accurate elastography methods in future.

3.2 Method and Material

Let I; and I be pre-and post-compressed images in Fig. 3.1, and the displacement field obtained
by an elastography algorithm corresponds to samples in I; and /5 images. For each sample (7,7) in
the pre-compressed image, a and [ show axial and lateral displacement values, respectively in Fig.
3.1. Accuracy of TDE is evaluated in a supervised approach using information of NCC profile in

[54] and seven valuable features are proposed for training the model.

Continuity (i.e. lack of rupture) in real tissue implies that TDEs should not change significantly
in a small region in tissue. Therefore, for each sample (¢,5) in I, a window of size 3 by 3 is taken
into account in displacement field so that variance of those nine TDE values in axial and lateral
directions are taken as continuity features according to Fig. 3.2. This means in a case that peak-
hopping sample happens, TDE is estimated far from the correct TDE and these variances will be

increased incredibly in which peak-hopping samples will be simply classified as incorrect TDE.

3.2.1 Supervised Learning

In this chapter, Support Vector Machine (SVM) is trained for the supervised quality assessment of
time-delay estimates. SVM is a supervised classification method and is utilized as binary classifier
to categorize correct and incorrect estimated time-delays. Therefore, it requires training an testing
samples categorized as true and false classes which are formed according to the scheme that is

thoroughly described in the previous chapter and in [54].
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Figure 3.1: Displacement between pre-and post compressed images. I; and I are pre- and post-
compressed images, respectively. Z, X, Y are axial, lateral and out-of-plane directions, respectively.
The coordinate system is attached to the ultrasound probe. The sample P (7,7) in I; has been moved
by ( ai,j,li,]’) in IQ.

3.2.2 Training Sets

For phantom and in-vivo data, the ground truth TDE is not available. In [54], a method based on
DPAM of a regularized cost function was used. Although the method was accurate enough, we
want to show that the proposed scheme would work even in case of using another accurate method
in obtaining ground truth of TDE for patient data. Therefore, we utilize the new and more reliable
proposed elastography algorithm in [63] to find the correct TDE as ground truth. The method known
as Global Ultrasound Elastography (GLUE), finds all TDE values for all RF frames simultaneously
by using a non-linear cost function and is optimized in an efficient way. In addition, the quality of
strain images are visually checked before using GLUE TDEs to ensure that GLUE is successful in

providing accurate displacement fields [55].

3.2.3 Classification

The main purpose of this work is to add continuity features to those seven valuable features dis-

cussed in [54] to improve the quality of supervised classification. Therefore, for each sample (z,7)

29



X
r’ [, ,Precompressed r’ X TDE

Z 1 2 0 ... Z 1 2 .11 ... n
1 1
2 2
: i1
i ® i
i+1
i+1
m
m
P(i,)) TDE (i, j)

Figure 3.2: Pre-compressed image on the left and the corresponding TDE between I; and I on the
right. For sample P (7,7) in 7, eight neighboring TDE values are shown as black points on the right
image.

in I7, nine features are calculated to train and validate the proposed model. In Fig. 3.3, flowchart
of the proposed method is shown to better illustrate different stages of the supervised accuracy

assessment.

3.3 Results

This work is implemented in MATLAB and is tested on phantom and three clinical data sets [55].
This approach makes use of all samples of I; in training and testing. This means that for each sample
(4,7) in I, windows of size 51 by 1 are considered for calculating the NCC values to obtain seven
features discussed in [54] and then variances of corresponding samples in displacement field are
calculated. The training procedure described in this work is similar to the model that is proposed in
the previous chapter. For training, true and false classes are needed. Therefore, true class is formed
by using GLUE method and false class is constructed by finding peak-hopping samples and adding
an uniform noise to the rest of the samples in TDEs in both axial and lateral directions. The uniform

noise is in the range of [0.4 0.6] sample in the axial and [-0.1 0.1] sample in the lateral direction
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Figure 3.3: Flowchart of the proposed method. [; and I are pre- and post-compressed images,
respectively. Displacement field is available from a displacement estimation algorithm. In this
flowchart, feature selection section involves extracting 9 features instead of 7 features proposed in
Fig 2.3 and Chapter II.

meaning that there is always a minimum 0.4 sample error in the axial direction for all samples in

false class.

In order to find the accuracy of the classifier for each data set, 10-fold cross validation is per-
formed for using one NCC value and seven proposed features. In 10-fold cross validation, the
original data set is partitioned randomly into 10 equal sized subsets. Each time, one subset is used
as the validation set to test the accuracy of the classifier, and the remaining 9 subsets are utilized as
the training set. This will ensure that the algorithm is not trained and tested on the same data. In
the final step, the averaged accuracy of all 10 experiments is calculated as the final accuracy of the

classifier.

3.3.1 Data Sets

The phantom and three In-Vivo data sets are the same data sets that are used in chapter II. The RF
data was acquired at Johns Hopkins University using an Antares Siemens (Issaquah, WA) ultrasound
machine and a VF10-5 linear array at the center frequency of 6.67 MHz with a sampling rate of 40
MHz. All three in-vivo data sets are obtained from ablation therapy of the patients with liver cancer.
Phantom data is collected from freehand palpation of a CIRS breast elastography phantom (CIRS,
Norfolk, VA) with a lesion three times stiffer than the surrounding tissue. This data is available

online along with the publication [60]. As mentioned before, the displacement field for phantom
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Table 3.1: Classification accuracy using one NCC value, 7 features, and 9 features for phantom and
the three patient data using SVM classifier.

Data set 1-NCC 7-Features 9-Features
Phantom data  77.26 95.11 95.25
Patient data 1 66.7 82.7 84.1
Patient data 2 69.2 83.9 85.2
Patient data 3 81.2 91.5 95.6

and all the three patients is calculated utilizing the GLUE method [63].

The overall classification accuracy using one NCC value, seven and nine features are shown in
Table 3.1 for phantom data and all the three patients. The accuracy is improved by more than 14%
on the average by using the seven features and more than 16 % on the average by using the nine
features. In first and second patient data, peak-hopping samples in forming the false class involves
2% of all incorrect samples and rest of them are jitter samples. However, we added more peak-
hopping samples to the third patient’s false class (10% of the false class) to show the power of the
two proposed features. Although using the nine features for the third patient is improving the results,
it has the disadvantage of requiring a larger training sample (i.e. peak-hopping samples), which
comes with increased computational cost. Last but not least, the Receiver Operating Characteristic
(ROC) curves for phantom and all the three patients are depicted in Fig. 3.4 to 3.7. The area under
the ROC curve is increased from 0.8548 to 0.9821 for phantom data, from 0.6932 to 0.8965 for
patient 1, from 0.7477 to 0.9008 for patient 2 and from 0.8777 to 0.9707 for patient 3 by using the
nine features. The improvements achieved by utilizing the information of the NCC profile around
the time-delay estimate and locally continuity properties of the displacement field due to continuity

of the displacement field.

3.3.2 Accuracy Map in Region of Interest (ROI)

Quantitative validation of the proposed model and features has been done in the previous sections.

Herein, the accuracy map of the scheme is visualized for patient 3. The red boxes in Figs. 3.8 (a)
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Figure 3.5: ROC curve for patient 1.
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Figure 3.7: ROC curve for patient 3.
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Figure 3.8: Accuracy map in tumor region for patient 3 is shown in red boxes.
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Figure 3.9: Accuracy map in tumor region for patient 3 is shown in red boxes for true and false
positive cases.
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and (b ), show tumor region in B-mode ultrasound and strain image, respectively. To visualize the
performance of the proposed method, two experiments are performed. First, the displacement field
for the tumor region is obtained by GLUE and is visually checked. Therefore, the binary classifier
should recognize them as true displacement estimate. In Figs. 3.9 (a) and (b), results of using
one NCC and nine features are shown. Yellow samples indicate correct classified regions and blue
samples show incorrect classified samples. Second, all samples in tumor region are peak-hopping
or corrupted by noise as jitter samples. Therefore, the proposed method should classify them as
incorrect estimates. Figs. 3.9 (c) and (d) show the result of using the method for using one NCC
and nine features values, respectively. Correct and incorrect classifications are indicated in yellow
and blue, respectively. The results distinctly demonstrate that using the nine features outperforms

utilizing only one NCC value.

3.4 Summary

In this chapter, continuity properties of the tissue enabled us to introduce two more features in
addition to the seven proposed ones in the previous chapter to better recognize incorrect estimated
TDEs. The two features were the variance of TDEs in axial and lateral directions which improved
the accuracy of the classifiers. Also, we used GLUE as a new method to get the ground truth TDE
for training and testing our models on available data sets. The results showed that the proposed
model is not biased to any specific elastography algorithms in a sense that it could be trained by

other elastography methods in future.
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Chapter 4

Performance Evaluation of Well-known
Classifiers and Importance

Measurement of the Proposed Features

4.1 Introduction

In this chapter, we evaluate the performance of several well-established classifiers in accuracy as-
sessment of time delay estimation in Python. Binary classifiers such as Support Vector Machine
(SVM) [59], Random Forest [56], Artificial Neural Network (ANN) [64], Adaboost [65], Naive
Bayes [66], Decision Tree [67], K-Nearest Neighbor (KNN) [68], Linear Discriminant Analysis
(LDA) [69] are used to find the best model for accuracy assessment of TDE [70]. We later show
that Random Forest outperforms all other classifiers using the nine proposed features in the previous

chapter.
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Table 4.1: Mean and variance of the accuracy of the classifiers using one NCC value, 7 features,
and 9 features for the simulation data. The variance of the classifier is shown in the parentheses
beside the mean value.

Classifier 1-NCC 7-Features 9-Features

Random Forest 96.36 (0.01)  97.67 (0)  99.31 (0)
SVM 95.36 (0.01)  97.8(0) 97.82 (0)
Adaboost  96.36 (0.01)  97.9(0) 97.82 (0)
ANN 96.71 (0.01)  97.14(0)  97.09 (0)

Naive Bayes  72.21(0.22)  98.09(0)  96.18 (0.02)
Decision Tree  96.26 (0.01) 9729 (0)  99.18 (0)
KNN 96.71 (0.01)  97.14(0)  97.09 (0)

LDA 67.85 (0.3) 97.9 (0) 97.91 (0)

4.2 Accuracy of Classifiers

The predictive models are trained and tested by the seven and nine proposed features in [54] and
[55]. The nine proposed features include the seven features discussed in Chapter II and the two
continuity features described in Chapter III. We evaluate the performance of the classifiers using
simulation, phantom and the three patient data sets. FEM and DPAM are used to obtain the correct
displacement for training the supervised model. We used DPAM for phantom and patient data sets
instead of GLUE since it provided better classification accuracy in all data sets [54, 55]. Also, 10-
fold cross validation is used to avoid training and testing on the same data. Tables 4.1 to 4.5 show
the mean and variance of the accuracy of the classifiers using 1-NCC, 7 features and 9 features for
simulation, phantom and three patient data sets, respectively. The results show that the accuracy in-
creases as we add more features, and Random Forest is outperforming compared to other classifiers

in all five data sets.
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Table 4.2: Mean and variance of the accuracy of the classifiers using one NCC value, 7 features,
and 9 features for the phantom data. The variance of the classifier is shown in the parentheses beside
the mean value.

Classifier 1-NCC 7-Features 9-Features

Random Forest  74.2 (0.15)  94.89 (0.05) 96.52 (0.03)
SVM 79.54 (0.17) 95.68 (0.04)  96.5 (0.03)
Adaboost 82.04 (0.2) 93.35(0.07) 95.4 (0.04)
ANN 80.05(0.2) 9527 (0.04) 96.01 (0.03)

Naive Bayes  73.83(0.2) 94.95(0.03) 76.21 (0.25)

Decision Tree ~ 74.27 (0.16) 92.39 (0.05) 95.42 (0.04)
KNN 81.04 (0.2)  95.5(0.04) 96.18 (0.03)

LDA 74.5 (0.2) 95.4 (0.03) 96.47 (0.03)

Table 4.3: Mean and variance of the accuracy of the classifiers using one NCC value, 7 features,
and 9 features for the patient 1. The variance of the classifier is shown in the parentheses beside the
mean value.

Classifier 1-NCC 7-Features 9-Features

Random Forest  56.34 (0.17) 77.67 (0.22) 92.52 (0.05)
SVM 582(0.1)  81.1(0.18) 89.71(0.17)
Adaboost  57.84(0.32) 81.49 (0.21) 89.53 (0.09)
ANN 58.18 (0.3) 77.18 (0.23) 92.41 (0.05)

Naive Bayes ~ 34.4(0.2) 79.14 (0.21) 77.44 (0.2)

Decision Tree ~ 57.2(0.17)  76.51(0.2)  90.14 (0.06)
KNN 56.43 (0.25) 77.65(0.22) 83.54(0.15)

LDA 25.6(0.17) 81.77(0.17) 81.82(0.17)
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Table 4.4: Mean and variance of the accuracy of the classifiers using one NCC value, 7 features,
and 9 features for the patient 2. The variance of the classifier is shown in the parentheses beside the

mean value.

Classifier 1-NCC 7-Features 9-Features
Random Forest 70.72 (0.04) 88.65 (0.04) 94.16 (0.03)
SVM 75.02 (0.06) 90 (0.04)  90.27 (0.04)
Adaboost 78.67 (0.1)  89.75(0.04) 89.47 (0.04)
ANN 77.45(0.08) 88.55(0.4) 88.91(0.04)
Naive Bayes 65.46 (0.2) 88.48 (0.06) 57.52(0.41)
Decision Tree ~ 70.6 (0.06)  84.01 (0.04) 91.24 (0.04)
KNN 77.6 (0.08) 89.39 (0.04) 89.53(0.04)
LDA 66.57 (0.15) 89.29 (0.04) 89.36 (0.04)

Table 4.5: Mean and variance of the accuracy of the classifiers using one NCC value, 7 features,
and 9 features for the patient 3. The variance of the classifier is shown in the parentheses beside the

mean value.

Classifier 1I-NCC 7-Features  9-Features
Random Forest  87.3 (0.17) 97.37 (0.22) 99.99 (0.02)
SVM 90.13(0.06) 97.58 (0.01) 97.86 (0.01)
Adaboost 90.71 (0.07)  97.29 (0.02)  99.99 (0.00)
ANN 90.72 (0.07) 97.31(0.02) 97.69 (0.01)
Naive Bayes  86.08 (0.09) 97.24 (0.1)  73.69 (0.26)
Decision Tree  87.38 (0.07) 96.03 (0.02) 99.99 (0.00)
KNN 90.62 (0.07) 97.55(0.01) 97.78 (0.01)
LDA 85.65 (0.09) 97.5(0.01) 97.56 (0.01)
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4.3 Feature Importance Measurement

Feature importance measurement for all five available data sets is shown in Figs. 4.1 to 4.5. The fea-
ture indices from 0 to 8 represent NCC1, NCCo, NCC3, NCCy4, NCCs, varinace and skewness
of NCC profile, variance of TDE in axial and lateral directions, respectively. T<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>