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Abstract

Accuracy Assessment of Time Delay Estimation in Ultrasound Elastography

Mohamad Ghasemi Amidabadi

The accuracy of time-delay estimation (TDE) in ultrasound elastography is usually measured

by calculating the value of the normalized cross correlation (NCC) at the estimated displacement.

NCC value is usually high if the TDE is correct. However, it could be very high at a displacement

estimate with large error, a well-known problem in TDE referred to as peak-hopping. Furthermore,

NCC value could suffer from jitter error, which is due to electric noise and signal decorrelation.

In this thesis, we propose a novel method to assess the accuracy of TDE by investigating the NCC

profile around the estimated time-delay in a supervised approach. First, we extract seven features

from the NCC profile, and utilize a linear support vector machine (SVM) to classify the peak-

hopping and jitter error. The results on simulation, phantom and in-vivo data show the significant

improvement in the classification accuracy realizing from the proposed algorithm compared to the

obtained form the state of the art techniques. Second, we build on our model by utilizing the

continuity features in the axial and lateral directions as a prior knowledge. We show that these

features also improve the sensitivity and specificity of the classifier. After extracting the continuity

features in addition to the seven features, we show the performance improvement of the proposed

model on the available data sets. Furthermore, we show that our proposed model could be trained

by other elastography methods in future, since we use a new elastography algorithm to train the

model. Third, we compare the performance of the method developed using well-known classifiers

in the literature and then study the importance of the proposed features using the mean decrease

impurity method of the random forest classifier.
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Chapter 1

Introduction

1.1 Ultrasound Elastography

Ultrasound elastography is an emerging medical imaging modality that involves measuring tissue

deformation field caused by an external or internal forces [3, 4]. Several ultrasound-based tech-

niques have been established in past years in the literature to find the deformation field [5, 6, 7, 8]

also referred to as Time-Delay Estimates (TDE). TDE is calculated between two frames of ultra-

sound Radio-Frequency (RF) data, and is used to infer tissue mechanical properties, in particular

Young’s modulus. On one hand, elastography has been applied in several clinical trials in breast,

liver and prostate cancer, and is rapidly finding new clinical applications [9, 10, 11, 12, 13]. On the

other hand, it has evolved into several different techniques such as shear-wave elastography [14, 15]

and quasi-static elastography [16, 17]. In quasi-static elastography, either the spatial gradient of

the displacement field (i.e. a strain image) is used, or an inverse problem is solved to calculate

the Young’s modulus [18, 19, 20]. Ultrasound machines are typically portable, which makes them

a convenient imaging modality for both diagnostics and surgical guidance. In Fig. 1.1, a typical

ultrasound imaging machine is shown.
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Figure 1.1: The Alpinion ultrasound machine at the PERFORM Centre.
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1.1.1 Quasi-static Elastography

This work focuses on quasi-static elastography, wherein tissue deformation is slow and is created by

pushing the tissue by a hand-held ultrasound probe [17]. In quasi-static elastography, two images

play an important role in measuring the mechanical properties of the tissue. First, the image that

is taken without any pressure on the tissue and is called pre-compressed image. Second, the image

that is taken while the tissue undergoes deformation due to an applied stress and is called post-

compressed image. By measuring the deformation between the two images, we could get useful

information about mechanical properties of the tissue for medical diagnosis and treatment. In Fig.

1.2, pre- and post-compressed images are shown.

There have been proposed several methods in the literature to find the deformation field between

the two images. In fact, the displacement field is estimated by tracking the speckles’s movement

in the pre- and post compressed images. Many different types of deformation estimators are devel-

oped which can be mainly categorized into window-based and regularized cost function methods.

Window-based estimators, either maximize the similarity functions (usually cross-correlation) or

find the zero-crossing of the cross-correlation function [21, 22, 23, 24]. Minimization of a regu-

larized cost function is the second popular approach compared to correlation-based methods due

to their robustness to signal decorrelation [16, 25, 26, 27, 28, 29]. Prior knowledge that the tissue

deformation field is smooth, is the key assumption in the proposed methods.

After finding the deformation field, axial gradient estimation is usually applied to generate axial

strain image (Fig. 1.3). Since taking derivative of consecutive TDEs, amplifies the noise in the

strain image, filtering is also needed to end up with smoother strains [3, 5, 27].

1.1.2 Shear-wave Elastography

Shear-wave elastography provides quantitative values of tissue elasticity or shear moduli, wherein

tissue deformation is generated by ultrasonic focused beams [14, 30, 31]. By generating radia-

tion sources remotely in the tissue, low frequency shear-waves are propagated through the medium

3











1.2.2 SNR and CNR

To overcome the shortcomings of the lower bound error analysis, general performance measure-

ments such as signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of the strain image are

widely used [1, 44, 45, 46, 47]. These measures are often called strain filter since they behave sim-

ilar to a bandpass filters when they are measured as a function of axial strain. For example in [1],

SNR is defined as the ratio of the mean m and standard deviation σ of the estimated strain over a

small window as following:

SNR =
m

σ

The strain filter proposes a framework that allows a limited range of strains to be included in the

strain image. The reasons why the filter deviates from an all-pass characteristics in the strain domain

are ultrasound system parameters, the finite value of the SNR, and the effect of signal decorrelation

for high strain values. In fact, the strain filter approach provides valuable insight to design strain-

imaging systems to generate high quality results. In Fig. 1.7, three strain filters are shown at

different center frequencies of 3.5MHz, 5MHz, 7.5 MHz, respectively, with a bandwith of 60 %

and duration of data window of T= 1.3 µs. The SNR is improved by increasing the pulse center

frequency. However, there are three disadvantages in using general performance measurements.

First, they should be estimated in small windows that must be regions of constant strain [1]. Such

regions are not necessarily available in real tissue that is largely heterogeneous. Second, these

methods do not directly estimate the accuracy of TDE but rely solely on strain, the spatial derivative

of TDE. As such, the derivative operator has a strong impact on these measures, such that higher

SNR and CNR can be obtained by smoother derivative operators [48]. Third, strain filters only

provide an upper bound for the quality of the estimated strain value, and do not produce the quality

of the specific TDE. For example, these filters usually predict a high value of SNR and CNR at

around 1% strain for most displacement estimation algorithms. However, an incorrect displacement

may be estimated at 1% strain due to a large signal decorrelation.

8







Figure 1.9: Joint probability density function of the skewness and variance for 1000 correct TDEs.

Figure 1.10: Joint probability density function of the skewness and variance for 200 peak-hopping

TDEs.

where n and µ represent the number and average of the samples, respectively. Moreover, NCC curve

by shifting ±1 samples in the axial direction in the post-compressed image is shown in Fig. 1.11.

It is expected to have a local maximum at the correct estimated displacement. In 2D, this curve

becomes a 2D surface, and its shape can help in the assessment of the accuracy of the TDE.
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Figure 1.11: NCC curve obtained by shifting the post-compressed window by ±1 samples in both

axial and lateral directions. NCC windows of pre- and post-compressed images are shown in black

and red respectively.

1.4 Motivation and Objective of the Thesis

Accuracy assessment of time-delay estimates (TDE) in ultrasound elastography is a critical step

in ensuring reliable strain images, which is of critical importance for diagnosis and treatment. In

quasi-static elastography, the accuracy of TDE is measured mainly by calculating the value of the

normalized cross correlation (NCC) at the estimated TDE. Since this approach is extremely vulner-

able to jitter and peak-hopping noise available in TDEs, in this thesis, we investigate the possibility

of using the statistics around TDEs and develop a reliable method to address the issue. To this end,

we aim to propose several features that would help us in assessing the accuracy of TDE in an most

efficient approach. We will investigate the feasibility of real-time automatic accuracy assessment

of TDEs with a view to help faster training of sonographers and decision making of doctors. This

method could be later used to develop real-time applications reliably used in clinical settings for

diagnosis and treatment.

12



1.5 Organization of the Thesis

In this thesis, we present a novel technique for assessing the accuracy of TDE that relies on multiple

NCC measurements. Instead of relying on the value of NCC at the estimated displacement, we look

at the NCC profile around the estimated displacement. Our techniques identify locations that contain

errors larger than an accepted value, so that these regions can be marked out of the strain image. In

Chapter II [54], we look at the 4 NCC values obtained by varying the displacement by ±1 sample

in either axial or lateral directions in addition to the NCC value at the estimated displacement. Five

aforementioned NCC values and skewness and variance of nine samples in the 3× 3 neighborhood

around the estimated TDE are concatenated into a feature-vector of size seven. We show that these

seven features are significantly superior in discriminating the correct versus incorrect displacement

estimates using simulation, phantom and in-vivo experiments. In Chapter III [55], we show that

continuity of the displacement field due to homogeneity properties of the tissue also could improve

the distinguishability of the classifier. Therefore, each feature vector involves 9 features containing

two continuity features in axial and lateral directions in addition to the seven features. Moreover, we

use a new method as silver standard to obtain accurate displacement values for training our model

which proves that our proposed could be updated by any accurate elastography method for use in

future. In Chapter IV, we evaluate the performance of our proposed model by using state-of-the-art

classifiers in the literature to find the best model for the TDE accuracy assessment. After finding

the most useful classifier, we study the importance of the proposed features based on the Mean

Decrease Impurity method of the random forest algorithm [56].

13



Chapter 2

Supervised Classification of the

Accuracy of the Time Delay Estimation

in Ultrasound Elastography

2.1 Introduction

In this chapter, we will introduce seven features using the NCC profile around the estimated time

delay. Then, we use them to train a supervised classification model to do accuracy assessment of

time delay estimates which are of high importance for diagnosis and treatment. Herein, SVM is

used as a binary supervised classifier to assess the accuracy of TDEs in ultrasound elastography.

We show that using the seven proposed features significantly increase the distinguishability of the

classifier compared to using only one NCC value.
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Figure 2.1: Displacement between pre-and post compressed images. I1 and I2 are pre- and post-

compressed images, respectively. Z, X, Y are axial, lateral and out-of-plane directions, respectively.

The coordinate system is attached to the ultrasound probe. The sample P (i,j) in I1 has been moved

by ( ai,j , li,j) in I2.

2.2 Method and Material

In elastography, pre- and post-compressed images correspond to each other via a displacement field.

Some popular methods for estimation of the displacement field are discussed in detail in [16, 57].

Assume that for each sample (i,j) in the pre-compressed image, axial and lateral displacement

values are a and l as illustrated in Fig. 2.1. Our goal is to quantify the accuracy of the displacement

estimates.

NCC is a widely used similarity metric in TDE and it evaluates the degree of similarity between

pre- and post-compressed images. The main advantage of NCC is its sensitivity to linear changes in

the intensity of the two images compared to the ordinary cross correlation metric [58]. In addition,

NCC is confined to be in the range between -1 and 1, which avoids dealing with very small or large

values in training a classifier. We, therefore, use the NCC profile as our feature set.

Let I1 and I2 be two matrices of dimension (m×n) representing the pre- and post-compressed

ultrasound images, respectively. For each sample (i,j) of the pre-compressed image, a window
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centered at (i,j) is considered for the calculation of the NCC. Suppose that X=(x,y) is a vector

containing sample coordinates such that (x, y) ∈ {i−25, ..., i, ..., i+25}×{j} (Fig. 2.2a). Moreover,

Y1=(x,y) is a shifted and linearly interpolated window in the post-compressed image containing

sample coordinates such that (x, y) ∈ {i + ai,j −25, ..., i + ai,j , ..., i + ai,j +25} ×{j − li,j }.

These windows and their corresponding NCC value that is called NCC1 are illustrated in Fig. 2.2c.

The goal of this scheme is to investigate the behavior of the similarity metric in the neighborhood

of the estimated sample. After finding eight neighboring windows of Y1 which are called Y2, Y3,

Y4, Y5,Y6, Y7, Y8, Y9 according to Fig. 2.2b, we calculate the corresponding NCC between

each window and X, separately. These nine NCC values of each sample (i,j) in image I1 are called

NCCi,i=1,2,...,9, which are shown in Fig. 2.2c.

Figure 2.2: (a), (b) I1 and I2 are pre- and post-compressed images, respectively. Windows X

and Yi, (i = 1, 2, ..., 9) correspond to the sample (i,j) in I1. (c) Nine NCC values are illustrated,

NCC1 was the only value which was used to asses accuracy.

2.2.1 Feature Selection

Fig. 1.10 indicates that the probability density function (PDF) of the peak-hopping samples is

relatively randomly distributed, whereas the PDF of the correct estimated samples is more compact.

Thus, the variance and skewness of the nine neighboring samples around the peak-hopping and
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correct estimated samples are calculated to be considered as two features for recognizing the peak-

hopping error.

Assuming that a correct TDE is available for the sample X at (i, j), NCC1 must be larger than

the other four neighboring NCC values, which are NCC2, NCC3, NCC4, and NCC5 (NCC1 is

the similarity calculated at the correct TDE). In other words, the NCC profile has a local maximum

at the correct TDE as it is shown in Fig. 1.11. The steepness of the maximum and convexity of the

NCC profile will be used for identification of the jitter error.

2.2.2 Supervised Learning

In this work, Support Vector Machine (SVM) [59] is used as a binary classifier to find the accuracy

map of the elastography algorithm. SVM is a supervised classification method, and as such, requires

training data. SVM performs non-linear classification and, therefore, often outperforms linear clas-

sification techniques. In addition, while training a SVM is computationally intensive, the testing

stage is very fast. This is ideal in ultrasound elastography, wherein SVM can be trained offline and

test the TDE results in real-time. The flow chart of our approach for obtaining the training data is

shown in Fig. 2.3. Preparation of the training data, shown as true and false classes in this figure, is

described in the following section.

Figure 2.3: Flow chart of the proposed method. I1 and I2 are pre- and post-compressed images,

respectively. Displacement field is either available from the simulation data, or calculated from a

displacement estimation algorithm.
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2.2.3 Training Sets

For simulation data, the ground truth TDE is available from our finite element simulation. For

phantom experiments and in-vivo data, the ground truth TDE is not available. Therefore, we use a

real-time elastography algorithm [60] to find TDE between pre- and post-compression RF data to

obtain a silver standard. This method is based on dynamic programming and analytic minimization

(DPAM) of a regularized cost function. We visually inspect the results to make sure that the algo-

rithm has successfully calculated the displacement field. Therefore, for all the samples in image I1,

seven features are extracted by the displacement field that is available from either FEM or DPAM

(Fig. 2.3).

Next, we generate samples for both training and testing that represent either the peak-hopping or

jitter errors. For peak-hopping, we find samples in I1 which have larger NCC value somewhere

far from the correct estimated displacement. For jitter, uniform noise is added to the samples of the

correct displacement field. These samples represent the incorrect displacement field data, and for

all of these samples, we calculate seven features similar to the true class (Fig. 2.3).

2.2.4 Classification

The main idea in the proposed scheme is to employ information of the neighboring pixels to evaluate

the accuracy of TDE. Therefore, instead of using one NCC value that is called NCC1 as the only

feature, four neighboring NCC values in addition to skewness and variance of nine NCC values are

used according to Fig. 2.2(c). Therefore, for each sample (i,j) in I1, seven features are calculated

for training and validation procedure.

2.3 Results

The proposed scheme is implemented in MATLAB and is evaluated employing simulated, phantom

and clinical data. In this study, all the samples of the pre-compressed image are considered as
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the training and testing data set. For each sample (i,j) in I1, windows of size 51 by 1 are taken

in calculating the NCC values. As discussed earlier, the true class is constructed by the available

ground truth or by utilizing the DPAM method. False class samples are formed by finding the peak-

hopping samples or adding a uniform random noise to the rest of samples in the axial and lateral

displacements. The uniform noise is in the range of [0.4 0.6] sample in the axial and [-0.1 0.1]

sample in the lateral direction. Therefore, there is a minimum of 0.4 sample error in the axial

direction in the false class.

2.3.1 Running time

A critical and computationally expensive step in SVM classification is finding the support vectors,

i.e. the training samples that are close to the decision boundary. As a result, training the proposed

method on 100,000 samples takes 381.02 sec on a single core of an i7 3.4 GHz Intel CPU. This

training can be performed offline. The testing step of SVM is usually very fast, since the decision

boundary is determined in the training step. In our implementation, evaluating the accuracy of

an image of size 100 × 100 takes 0.78 sec on the same CPU, which means that the method can

show an accuracy map in real-time by optimizing our implementation and using parallel computing

resources.

2.3.2 Simulation Data

Ultrasound data has been created by Field II [61], and the digital phantoms are deformed using

the Finite Element Method (FEM) by ABAQUS Software (Providence, RI). The parameters of the

ultrasound probe are as follows: The sampling rate is 40 MHz and probe frequency is 7.27 MHz,

and the fractional bandwidth is 60%. A Hanning window is used for apodization, the single transmit

focus is at 22.5 mm, equi-distance receive foci are from 5 mm to 45 mm at each 5 mm, the transmit

is sequential, and the number of active elements is 64. This phantom is uniform and is assumed to

be isotropic and homogeneous.
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Table 2.1: Classification accuracy using one NCC value and the proposed method for the simulation

data.

Data set 1-NCC 7-Features

Simulation data 93.9 98.4

Figure 2.4: ROC curve for the simulation data.

In order to find the accuracy of the classifier, a 10-fold cross validation is performed for using one

NCC value and seven proposed features (Table 2.1). The results show that accuracy of the classifier

is substantially increased from about 94% to 98%. Receiver Operating Characteristic (ROC) [62]

curves for the simulation data set are also shown in Fig. 2.4. It shows that the area under the curve

for using one NCC value and the proposed method are respectively 0.9606 and 0.9826, a substantial

improvement achieved by using the NCC profile.

2.3.3 Phantom Data

An Antares Siemens system (Issaquah, WA) at the center frequency of 6.67 MHz with a VF10-5

linear array at a sampling rate of 40 MHz was used to acquire RF data at John Hopkins University.

RF data is collected from freehand palpation of a CIRS breast elastography phantom (CIRS, Nor-

folk, VA) with a lesion three times stiffer than the surrounding tissue. This data is available online
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Table 2.2: Classification accuracy using one NCC value and the proposed method for the CIRS

phantom data.

Data set 1-NCC 7-Features

Phantom data 82.2 96.7

Figure 2.5: ROC curve for the CIRS phantom data.

along with publication [60].

The DPAM method [60] is utilized to calculate the displacement field. In Table 2.2, the overall

accuracy of the proposed classifier by using one NCC value and seven NCC values is shown. The

substantial improvement from 82.2% to 96.7% is achieved by using the seven features. The ROC

curves are shown in Fig. 2.5. The areas under curve for the one NCC method and the proposed

method are, respectively, 0.8994 and 0.9846, showing substantial improvement.

2.3.4 In-Vivo Data

The RF data is collected by ablation therapy of three patients with liver cancer using an Antares

Siemens (Issaquah, WA) ultrasound machine and A VF10-5 linear array at the center frequency of

6.67 MHz with a sampling rate of 40 MHz for the RF data acquisition. The displacement matrix
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Table 2.3: Classification accuracy using one NCC value and proposed seven features for three

patient data.

Data set 1-NCC 7-Features

Patient data 1 67.6 88.6

Patient data 2 79.3 92.2

Patient data 3 90.6 98.2

Average 79.2 93.0

for all the three patients is calculated by the DPAM method [60]. This data is available online along

with the publication [60].

The overall classification accuracy using one NCC value and seven NCC values are depicted in

Table 2.3 for all the three patients. The accuracy is improved by more than 13% on the average by

using the proposed method. Also, for patient 1 with the worst available data set in terms of quality

of RF data, it shows a very high improvement of about 21%. Finally, the ROC curves for all the

three patients are depicted in Fig. 2.6. The area under the ROC curve is increased from 0.6906

to 0.9255 for patient 1, from 0.8624 to 0.9598 for patient 2 and from 0.9610 to 0.9926 for patient

3. The significant improvement in the results is obtained by exploiting the NCC profile around the

estimated displacement field.

2.3.5 Accuracy Map in Region of Interest (ROI)

The proposed method has been quantitatively validated in the previous sections. To visualize the

performance of the proposed method, we show the map of the accuracy assessment. In Figs. 2.7 (a)

and (b), the red boxes in the figures indicate the tumor region in the B-mode ultrasound strain images

for patient 3. The displacement field is calculated using DPAM and is visually checked. Therefore,

all samples belong to the true set and the classifier should label those pixels as the true displacement

estimate. Figs. 2.8 (a) and (b) show the results of the proposed method using one NCC and seven

NCC values. Blue samples denote successfully classified regions and yellow samples show the

unsuccessfully classified samples. In a second experiment, all the samples are either peak-hopping

samples or are corrupted by the jitter error. Therefore, the algorithm should classify all the samples
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(a) patient 1

(b) patient 2

(c) patient 3

Figure 2.6: ROC curves for three patients.
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as incorrect displacement. Figs. 2.8 (c) and (d) show the result of the proposed method for using

one NCC and seven NCC values, respectively. Again, blue and yellow respectively represent correct

and incorrect classification. The results of this figure clearly demonstrate that the proposed method

substantially improves the results.

The accuracy maps are created for the True Positive (TP) and False Positive (FP) cases around

the tumor. The tumor region is chosen as region of interest to locally show the performance of

the classifiers using one NCC value or the seven proposed features. It is important to note that the

samples in this region (ie the vicinity of the tumor) are not used for training and are only used in

the testing stage. In the TP case, all the samples in the tumor region have correct displacement

estimates, which are obtained using DPAM. For the FP case, all the samples of the validation set

have incorrect displacement estimates in the form of either peak-hopping or jitter error. These

incorrect displacements are generated by the procedure described in Section 2.1.3.

2.4 Summary

In this chapter, we have shown that accuracy assessment of TDEs in ultrasound elastography could

be performed in a supervised approach using a binary classifier. Then, we have illustrated that using

the set of seven proposed features substantially improves the accuracy of the supervised model. In

fact, five features are utilized to recognize the jitter error and two features to distinguish the peak-

hopping samples. All of these are achieved by using the information of the NCC profile around the

estimated time delays.
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Chapter 3

Automatic Accuracy Assessment of

Ultrasound Elastography Using

Correlation Profile and Prior

Information of Displacement Continuity

3.1 introduction

The proposed method in the previous chapter takes the advantage of using NCC profile with 7 valu-

able features and also looks at accuracy assessment in a supervised approach. In this chapter, we

build on our previous work by utilizing continuity features in axial and lateral directions as useful

information. We show that these features improve the sensitivity and specificity of the classifier.

After extracting the continuity features in addition to features proposed in our previous work, we

train a linear Support Vector Machine (SVM) on available data sets to show the significant improve-

ment of utilizing the proposed features. Also, we use Global Time-Delay Estimation in Ultrasound

Elastography (GLUE) [63] as a novel elastography algorithm to obtain silver standard ground truth
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for training the model which means that the proposed supervised approach can be re-trained by any

accurate elastography methods in future.

3.2 Method and Material

Let I1 and I2 be pre-and post-compressed images in Fig. 3.1, and the displacement field obtained

by an elastography algorithm corresponds to samples in I1 and I2 images. For each sample (i,j) in

the pre-compressed image, a and l show axial and lateral displacement values, respectively in Fig.

3.1. Accuracy of TDE is evaluated in a supervised approach using information of NCC profile in

[54] and seven valuable features are proposed for training the model.

Continuity (i.e. lack of rupture) in real tissue implies that TDEs should not change significantly

in a small region in tissue. Therefore, for each sample (i,j) in I1, a window of size 3 by 3 is taken

into account in displacement field so that variance of those nine TDE values in axial and lateral

directions are taken as continuity features according to Fig. 3.2. This means in a case that peak-

hopping sample happens, TDE is estimated far from the correct TDE and these variances will be

increased incredibly in which peak-hopping samples will be simply classified as incorrect TDE.

3.2.1 Supervised Learning

In this chapter, Support Vector Machine (SVM) is trained for the supervised quality assessment of

time-delay estimates. SVM is a supervised classification method and is utilized as binary classifier

to categorize correct and incorrect estimated time-delays. Therefore, it requires training an testing

samples categorized as true and false classes which are formed according to the scheme that is

thoroughly described in the previous chapter and in [54].
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Figure 3.1: Displacement between pre-and post compressed images. I1 and I2 are pre- and post-

compressed images, respectively. Z, X, Y are axial, lateral and out-of-plane directions, respectively.

The coordinate system is attached to the ultrasound probe. The sample P (i,j) in I1 has been moved

by ( ai,j ,li,j) in I2.

3.2.2 Training Sets

For phantom and in-vivo data, the ground truth TDE is not available. In [54], a method based on

DPAM of a regularized cost function was used. Although the method was accurate enough, we

want to show that the proposed scheme would work even in case of using another accurate method

in obtaining ground truth of TDE for patient data. Therefore, we utilize the new and more reliable

proposed elastography algorithm in [63] to find the correct TDE as ground truth. The method known

as Global Ultrasound Elastography (GLUE), finds all TDE values for all RF frames simultaneously

by using a non-linear cost function and is optimized in an efficient way. In addition, the quality of

strain images are visually checked before using GLUE TDEs to ensure that GLUE is successful in

providing accurate displacement fields [55].

3.2.3 Classification

The main purpose of this work is to add continuity features to those seven valuable features dis-

cussed in [54] to improve the quality of supervised classification. Therefore, for each sample (i,j)
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Figure 3.2: Pre-compressed image on the left and the corresponding TDE between I1 and I2 on the

right. For sample P (i,j) in I1, eight neighboring TDE values are shown as black points on the right

image.

in I1, nine features are calculated to train and validate the proposed model. In Fig. 3.3, flowchart

of the proposed method is shown to better illustrate different stages of the supervised accuracy

assessment.

3.3 Results

This work is implemented in MATLAB and is tested on phantom and three clinical data sets [55].

This approach makes use of all samples of I1 in training and testing. This means that for each sample

(i,j) in I1, windows of size 51 by 1 are considered for calculating the NCC values to obtain seven

features discussed in [54] and then variances of corresponding samples in displacement field are

calculated. The training procedure described in this work is similar to the model that is proposed in

the previous chapter. For training, true and false classes are needed. Therefore, true class is formed

by using GLUE method and false class is constructed by finding peak-hopping samples and adding

an uniform noise to the rest of the samples in TDEs in both axial and lateral directions. The uniform

noise is in the range of [0.4 0.6] sample in the axial and [-0.1 0.1] sample in the lateral direction
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Figure 3.3: Flowchart of the proposed method. I1 and I2 are pre- and post-compressed images,

respectively. Displacement field is available from a displacement estimation algorithm. In this

flowchart, feature selection section involves extracting 9 features instead of 7 features proposed in

Fig 2.3 and Chapter II.

meaning that there is always a minimum 0.4 sample error in the axial direction for all samples in

false class.

In order to find the accuracy of the classifier for each data set, 10-fold cross validation is per-

formed for using one NCC value and seven proposed features. In 10-fold cross validation, the

original data set is partitioned randomly into 10 equal sized subsets. Each time, one subset is used

as the validation set to test the accuracy of the classifier, and the remaining 9 subsets are utilized as

the training set. This will ensure that the algorithm is not trained and tested on the same data. In

the final step, the averaged accuracy of all 10 experiments is calculated as the final accuracy of the

classifier.

3.3.1 Data Sets

The phantom and three In-Vivo data sets are the same data sets that are used in chapter II. The RF

data was acquired at Johns Hopkins University using an Antares Siemens (Issaquah, WA) ultrasound

machine and a VF10-5 linear array at the center frequency of 6.67 MHz with a sampling rate of 40

MHz. All three in-vivo data sets are obtained from ablation therapy of the patients with liver cancer.

Phantom data is collected from freehand palpation of a CIRS breast elastography phantom (CIRS,

Norfolk, VA) with a lesion three times stiffer than the surrounding tissue. This data is available

online along with the publication [60]. As mentioned before, the displacement field for phantom
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Table 3.1: Classification accuracy using one NCC value, 7 features, and 9 features for phantom and

the three patient data using SVM classifier.

Data set 1-NCC 7-Features 9-Features

Phantom data 77.26 95.11 95.25

Patient data 1 66.7 82.7 84.1

Patient data 2 69.2 83.9 85.2

Patient data 3 81.2 91.5 95.6

and all the three patients is calculated utilizing the GLUE method [63].

The overall classification accuracy using one NCC value, seven and nine features are shown in

Table 3.1 for phantom data and all the three patients. The accuracy is improved by more than 14%

on the average by using the seven features and more than 16 % on the average by using the nine

features. In first and second patient data, peak-hopping samples in forming the false class involves

2% of all incorrect samples and rest of them are jitter samples. However, we added more peak-

hopping samples to the third patient’s false class (10% of the false class) to show the power of the

two proposed features. Although using the nine features for the third patient is improving the results,

it has the disadvantage of requiring a larger training sample (i.e. peak-hopping samples), which

comes with increased computational cost. Last but not least, the Receiver Operating Characteristic

(ROC) curves for phantom and all the three patients are depicted in Fig. 3.4 to 3.7. The area under

the ROC curve is increased from 0.8548 to 0.9821 for phantom data, from 0.6932 to 0.8965 for

patient 1, from 0.7477 to 0.9008 for patient 2 and from 0.8777 to 0.9707 for patient 3 by using the

nine features. The improvements achieved by utilizing the information of the NCC profile around

the time-delay estimate and locally continuity properties of the displacement field due to continuity

of the displacement field.

3.3.2 Accuracy Map in Region of Interest (ROI)

Quantitative validation of the proposed model and features has been done in the previous sections.

Herein, the accuracy map of the scheme is visualized for patient 3. The red boxes in Figs. 3.8 (a)
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Figure 3.4: ROC curve for phantom data.

Figure 3.5: ROC curve for patient 1.
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Figure 3.6: ROC curve for patient 2.

Figure 3.7: ROC curve for patient 3.
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(a) TP1 (b) TP9

(c) FP1 (d) FP9

Figure 3.9: Accuracy map in tumor region for patient 3 is shown in red boxes for true and false

positive cases.
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and (b ), show tumor region in B-mode ultrasound and strain image, respectively. To visualize the

performance of the proposed method, two experiments are performed. First, the displacement field

for the tumor region is obtained by GLUE and is visually checked. Therefore, the binary classifier

should recognize them as true displacement estimate. In Figs. 3.9 (a) and (b), results of using

one NCC and nine features are shown. Yellow samples indicate correct classified regions and blue

samples show incorrect classified samples. Second, all samples in tumor region are peak-hopping

or corrupted by noise as jitter samples. Therefore, the proposed method should classify them as

incorrect estimates. Figs. 3.9 (c) and (d) show the result of using the method for using one NCC

and nine features values, respectively. Correct and incorrect classifications are indicated in yellow

and blue, respectively. The results distinctly demonstrate that using the nine features outperforms

utilizing only one NCC value.

3.4 Summary

In this chapter, continuity properties of the tissue enabled us to introduce two more features in

addition to the seven proposed ones in the previous chapter to better recognize incorrect estimated

TDEs. The two features were the variance of TDEs in axial and lateral directions which improved

the accuracy of the classifiers. Also, we used GLUE as a new method to get the ground truth TDE

for training and testing our models on available data sets. The results showed that the proposed

model is not biased to any specific elastography algorithms in a sense that it could be trained by

other elastography methods in future.
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Chapter 4

Performance Evaluation of Well-known

Classifiers and Importance

Measurement of the Proposed Features

4.1 Introduction

In this chapter, we evaluate the performance of several well-established classifiers in accuracy as-

sessment of time delay estimation in Python. Binary classifiers such as Support Vector Machine

(SVM) [59], Random Forest [56], Artificial Neural Network (ANN) [64], Adaboost [65], Naive

Bayes [66], Decision Tree [67], K-Nearest Neighbor (KNN) [68], Linear Discriminant Analysis

(LDA) [69] are used to find the best model for accuracy assessment of TDE [70]. We later show

that Random Forest outperforms all other classifiers using the nine proposed features in the previous

chapter.
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Table 4.1: Mean and variance of the accuracy of the classifiers using one NCC value, 7 features,

and 9 features for the simulation data. The variance of the classifier is shown in the parentheses

beside the mean value.

Classifier 1-NCC 7-Features 9-Features

Random Forest 96.36 (0.01) 97.67 (0) 99.31 (0)

SVM 95.36 (0.01) 97.8 (0) 97.82 (0)

Adaboost 96.36 (0.01) 97.9 (0) 97.82 (0)

ANN 96.71 (0.01) 97.14 (0) 97.09 (0)

Naive Bayes 72.21 (0.22) 98.09 (0) 96.18 (0.02)

Decision Tree 96.26 (0.01) 97.29 (0) 99.18 (0)

KNN 96.71 (0.01) 97.14 (0) 97.09 (0)

LDA 67.85 (0.3) 97.9 (0) 97.91 (0)

4.2 Accuracy of Classifiers

The predictive models are trained and tested by the seven and nine proposed features in [54] and

[55]. The nine proposed features include the seven features discussed in Chapter II and the two

continuity features described in Chapter III. We evaluate the performance of the classifiers using

simulation, phantom and the three patient data sets. FEM and DPAM are used to obtain the correct

displacement for training the supervised model. We used DPAM for phantom and patient data sets

instead of GLUE since it provided better classification accuracy in all data sets [54, 55]. Also, 10-

fold cross validation is used to avoid training and testing on the same data. Tables 4.1 to 4.5 show

the mean and variance of the accuracy of the classifiers using 1-NCC, 7 features and 9 features for

simulation, phantom and three patient data sets, respectively. The results show that the accuracy in-

creases as we add more features, and Random Forest is outperforming compared to other classifiers

in all five data sets.
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Table 4.2: Mean and variance of the accuracy of the classifiers using one NCC value, 7 features,

and 9 features for the phantom data. The variance of the classifier is shown in the parentheses beside

the mean value.

Classifier 1-NCC 7-Features 9-Features

Random Forest 74.2 (0.15) 94.89 (0.05) 96.52 (0.03)

SVM 79.54 (0.17) 95.68 (0.04) 96.5 (0.03)

Adaboost 82.04 (0.2) 93.35 (0.07) 95.4 (0.04)

ANN 80.05 (0.2) 95.27 (0.04) 96.01 (0.03)

Naive Bayes 73.83 (0.2) 94.95 (0.03) 76.21 (0.25)

Decision Tree 74.27 (0.16) 92.39 (0.05) 95.42 (0.04)

KNN 81.04 (0.2) 95.5 (0.04) 96.18 (0.03)

LDA 74.5 (0.2) 95.4 (0.03) 96.47 (0.03)

Table 4.3: Mean and variance of the accuracy of the classifiers using one NCC value, 7 features,

and 9 features for the patient 1. The variance of the classifier is shown in the parentheses beside the

mean value.

Classifier 1-NCC 7-Features 9-Features

Random Forest 56.34 (0.17) 77.67 (0.22) 92.52 (0.05)

SVM 58.2 (0.1) 81.1 (0.18) 89.71 (0.17)

Adaboost 57.84 (0.32) 81.49 (0.21) 89.53 (0.09)

ANN 58.18 (0.3) 77.18 (0.23) 92.41 (0.05)

Naive Bayes 34.4 (0.2) 79.14 (0.21) 77.44 (0.2)

Decision Tree 57.2 (0.17) 76.51 (0.2) 90.14 (0.06)

KNN 56.43 (0.25) 77.65 (0.22) 83.54 (0.15)

LDA 25.6 (0.17) 81.77 (0.17) 81.82 (0.17)

40



Table 4.4: Mean and variance of the accuracy of the classifiers using one NCC value, 7 features,

and 9 features for the patient 2. The variance of the classifier is shown in the parentheses beside the

mean value.

Classifier 1-NCC 7-Features 9-Features

Random Forest 70.72 (0.04) 88.65 (0.04) 94.16 (0.03)

SVM 75.02 (0.06) 90 (0.04) 90.27 (0.04)

Adaboost 78.67 (0.1) 89.75 (0.04) 89.47 (0.04)

ANN 77.45 (0.08) 88.55 (0.4) 88.91 (0.04)

Naive Bayes 65.46 (0.2) 88.48 (0.06) 57.52 (0.41)

Decision Tree 70.6 (0.06) 84.01 (0.04) 91.24 (0.04)

KNN 77.6 (0.08) 89.39 (0.04) 89.53 (0.04)

LDA 66.57 (0.15) 89.29 (0.04) 89.36 (0.04)

Table 4.5: Mean and variance of the accuracy of the classifiers using one NCC value, 7 features,

and 9 features for the patient 3. The variance of the classifier is shown in the parentheses beside the

mean value.

Classifier 1-NCC 7-Features 9-Features

Random Forest 87.3 (0.17) 97.37 (0.22) 99.99 (0.02)

SVM 90.13(0.06) 97.58 (0.01) 97.86 (0.01)

Adaboost 90.71 (0.07) 97.29 (0.02) 99.99 (0.00)

ANN 90.72 (0.07) 97.31 (0.02) 97.69 (0.01)

Naive Bayes 86.08 (0.09) 97.24 (0.1) 73.69 (0.26)

Decision Tree 87.38 (0.07) 96.03 (0.02) 99.99 (0.00)

KNN 90.62 (0.07) 97.55 (0.01) 97.78 (0.01)

LDA 85.65 (0.09) 97.5 (0.01) 97.56 (0.01)
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4.3 Feature Importance Measurement

Feature importance measurement for all five available data sets is shown in Figs. 4.1 to 4.5. The fea-

ture indices from 0 to 8 represent NCC1, NCC2, NCC3, NCC4, NCC5, varinace and skewness

of NCC profile, variance of TDE in axial and lateral directions, respectively. These nine feature

are well-described in chapter II and III. The feature importance is measured for Random Forest

classifier using the Mean Decrease Impurity method described in [56, 71]. The importance of the

features for simulation data is depicted in Fig. 4.1, it shows that NCC1, NCC1, NCC3, skew-

ness of NCC profile are the most informative features for simulation data. Fig. 4.2 also shows that

NCC1, NCC2, NCC3, varinace and skewness of NCC profile are the most important features for

phantom data. According to Figs. 4.3 to 4.5, we could realize that NCC1, NCC2, NCC3, varinace

of NCC profile, and variance of TDE in lateral direction are the most informative features in training

the supervised method for accuracy assessment of TDE for three patient data sets. Another point is

that, NCC1, NCC2, NCC3 values play an important role in distinguishability of the random for-

est classifier in all five data sets. This is intuitive since axial displacement field has usually higher

quality and importance than lateral displacement field due to the structure of imaging systems and

ultrasound probes. That is why a 3-D super resolution technique is proposed in [72] to obtain higher

resolution displacement fields in other directions rather than only in the axial direction.

4.4 Summary

In this chapter, we evaluated the performance of the several well-known classifiers in the literature to

assess the accuracy of the TDEs. We showed that Random Forest outperforms other classifiers in all

available data sets using the nine proposed features in the previous chapter. Then, we measured the

importance of the nine features for the Random Forest classifier using the Mean Decrease Impurity

method. The results on three patient data sets showed that NCC1, NCC2, NCC3, varinace of

NCC profile, and variance of TDE in lateral direction are the most effective features in training the

Random Forest classifier.
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Chapter 5

Discussion and Conclusion

5.1 Discussion

The information around TDE is always informative in discriminating the correct versus incorrect

displacement estimates. Since estimation of the displacement is generally more difficult close to

boundaries between different organs or tissue types, it is more likely to find an incorrect displace-

ment in these regions. Therefore, our method is more invaluable in these regions wherein incorrect

displacement estimates may lead to incorrect diagnosis or surgical planning.

Although there is no gold standard for displacement fields for phantom and in-vivo data sets,

time-delay estimates are examined visually to be certain about their accuracy. In this thesis, TDEs

have been obtained by DPAM or GLUE, which are a promising method to obtain accurate dis-

placement fields. In order to show that the estimated TDEs are accurate, we here changed the axial

regularization weight of DPAM by 20% in five equal steps (20 to 24). The mean squared error

(MSE) for those displacement values is on average less than 0.02 sample (0.0004 mm) for all data

sets (Table 5.1). The small MSE of the displacement fields quantitatively shows that the displace-

ment estimates have a low variance. It is to be noted that the 0.02 sample variance is substantially

smaller than the 0.4 to 0.6 samples that are added to the correct displacement field to generate jitter.
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Table 5.1: The Mean Squared Error (MSE) of displacement values obtained using DPAM for all

data sets.

Phantom Patient1 Patient2 Patient3

0.0204 0.0172 0.0054 0.0039

In order to improve the accuracy of the classifier, seven and nine features have been proposed and

utilized instead of using only one NCC value at the estimated time-delay estimate. The results have

shown that using the proposed seven or nine features improves the performance of the classifier

substantially. However, one might consider additional features that could improve the performance

of the classifier further. Future work would utilize a convolutional neural network (CNN) [73] to

investigate the possibility of having a more efficient model in terms of accuracy, training and testing

time. A disadvantage of CNN is that it needs a very large training database that was not available

for this work.

The proposed automatic quality assessment of TDE is a novel approach that can play an impor-

tant role in industrial and academic applications of ultrasound imaging specifically in quasi-static

elastography. This method can be applied as a promising approach to quantitatively compare the

performance of TDE algorithms, since it is more reliable than solely using the value of NCC at the

estimated displacement. Moreover, this method is suitable for real-time applications, and therefore,

can be used to train sonographers to obtain higher quality strain images by displaying the accuracy

map instantaneously. Unsupervised classification methods, such as k-nearest neighbors (KNN) [70]

have an advantage over the proposed method in that they do not require training data. However,

they need to search for nearest neighbors in high-dimensional feature spaces and are usually not

suitable for real-time applications. In contrast, the proposed supervised technique based on SVM

and Random Forest runs in real-time, and therefore, provides clinically a more relevant solution.

We have used DPAM [60] and GLUE [63] in Chapters II and III, respectively, to get silver stan-

dard TDEs for training and testing the proposed model. Although both the algorithms are pioneer

in providing accurate time delay estimates, we have used only DPAM in Chapter IV in view of its
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higher classification accuracy for all the data sets. This means that having more accurate TDEs

results in more accurate models, therefore, we could better compare the performance of the state of

art classifiers.

5.2 Conclusion

In Chapters II and III, we have presented a novel method for accuracy assessment of TDE using

NCC profile and continuity property of TDE around the estimated displacement value, which can

be used to mask out the erroneous regions of the strain image. It can further reduce the user-

dependence of strain imaging and help train the sonographer. Our technique is based on SVM

classifications, a nonlinear classifier that often substantially outperforms linear classifiers. Training

our SVM classifier is usually computationally expensive, but it can be performed offline. Once

trained, our classifier is computationally efficient and can classify the accuracy of TDE in real-time.

The performance of the proposed method has been validated through simulation, phantom and in-

vivo data. Furthermore, we here used DPAM [60] and GLUE [63] in this thesis to obtain accurate

TDEs for training and testing our proposed model. However, any other reliable elastography algo-

rithms could also be used in our proposed method meaning that the model could be trained with

any accurate elastography method in future. In Chapter IV, we have compared the performance of

the state of the art classifiers using the proposed nine features in accuracy assessment of TDEs. We

have shown that Random Forest outperforms in all the available data sets. We have then measured

the importance of the nine features, which were used in training the Random Forest classifiers using

the Mean Decrease Impurity method and have illustrated that the features NCC1, NCC2, NCC3,

the variance of the NCC profile, and the variance of TDE in lateral direction are the most informa-

tive features. This is intuitive because axial displacement field always has higher importance and

resolution than lateral displacement in ultrasound elastography.
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5.3 Scope for Further Investigation

Future work might include the use of more sophisticated algorithms for binary classifier in order

to develop a model that is more accurate and efficient in terms of accuracy, computational cost,

and training and testing time. For instance, convolutional neural network (CNN) [73] could be

investigated to address the accuracy assessment issue. Moreover, optimization of the proposed

model using the nine features or proposing new features to achieve higher classification accuracy

along with computational cost might also be investigated. Collecting and using data from more

patients could also increase the reliability of using such supervised methods.
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