
Adaptive Failure-Aware Scheduling for Hadoop

Mbarka Soualhia

A Thesis

in

The Department

of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of

Doctor of Philosophy (Electrical and Computer Engineering) at

Concordia University

Montréal, Québec, Canada

February 2018

c© Mbarka Soualhia, 2018

CONCORDIA UNIVERSITY

Division of Graduate Studies

This is to certify that the thesis prepared

By: Mbarka Soualhia

Entitled: Adaptive Failure-Aware Scheduling for Hadoop

and submitted in partial fulfilment of the requirements for the degree of

Doctor of Philosophy (Electrical and Computer Engineering)

complies with the regulations of this University and meets the accepted standards

with respect to originality and quality.

Signed by the final examining committee:

Dr. Rene Witte

Dr. Marin Litoiu

Dr. Juergen Rilling

Dr. Samar Abdi

Dr. Nawwaf Kharma

Dr. Sofiène Tahar

Dr. Foutse Khomh

Approved by

Dr. William E. Lynch, Chair of the ECE Department

March 8, 2018

Dr. Amir Asif, Dean, Faculty of Engineering and Computer Science

ABSTRACT

Adaptive Failure-Aware Scheduling for Hadoop

Mbarka Soualhia, Ph.D.

Concordia University, 2018

Given the dynamic nature of cloud environments, failures are the norm rather

than the exception in data centers powering cloud frameworks. Despite the diversity

of integrated recovery mechanisms in cloud frameworks, their schedulers still generate

poor scheduling decisions leading to tasks’ failures due to unforeseen events such as

unpredicted demands of services or hardware outages. Traditionally, simulation and

analytical modeling have been widely used to analyze the impact of the scheduling

decisions on the failures rates. However, they cannot provide accurate results and

exhaustive coverage of the cloud systems especially when failures occur. In this the-

sis, we present new approaches for modeling and verifying an adaptive failure-aware

scheduling algorithm for Hadoop to early detect these failures and to reschedule tasks

according to changes in the cloud. Hadoop is the framework of choice on many off-the-

shelf clusters in the cloud to process data-intensive applications by efficiently running

them across distributed multiple machines. The proposed scheduling algorithm for

Hadoop relies on predictions made by machine learning algorithms trained on previ-

ously executed tasks and data collected from the Hadoop environment. To further

improve Hadoop scheduling decisions on the fly, we use reinforcement learning tech-

niques to select an appropriate scheduling action for a scheduled task. Furthermore,

we propose an adaptive algorithm to dynamically detect failures of nodes in Hadoop.

iii

We implement the above approaches in ATLAS : an AdapTive Failure-Aware Schedul-

ing algorithm that can be built on top of existing Hadoop schedulers. To illustrate the

usefulness and benefits of ATLAS, we conduct a large empirical study on a Hadoop

cluster deployed on Amazon Elastic MapReduce (EMR) to compare the performance

of ATLAS to those of three Hadoop scheduling algorithms (FIFO, Fair, and Capac-

ity). Results show that ATLAS outperforms these scheduling algorithms in terms of

failures’ rates, execution times, and resources utilization. Finally, we propose a new

methodology to formally identify the impact of the scheduling decisions of Hadoop

on the failures rates. We use model checking to verify some of the most important

scheduling properties in Hadoop (i.e., schedulability, resources-deadlock freeness, and

fairness) and provide possible strategies to avoid their occurrences in ATLAS. The

formal verification of the Hadoop scheduler allows to identify more tasks failures and

hence reduce the number of failures in ATLAS.

iv

In Loving Memory of my Mother,

To my Father, my Husband and Baby

v

ACKNOWLEDGEMENTS

First and foremost, I owe my deepest gratitude to my supervisors, Dr. Sofiène

Tahar and Dr. Foutse Khomh, for their guidance and encouragements throughout

my Ph.D. studies. I have learned so much from their deep insights about research

and strong expertise. I am deeply grateful to the Tunisian Ministry of Higher Educa-

tion and Scientific Research and the University Mission of Tunisia in North America

(MUTAN) for granting me a scholarship to conduct my doctoral studies at Concordia

University. I am thankful to Dr. Rilling, Dr. Abdi and Dr. Kharma for serving on my

doctoral advisory committee. Their constructive feedback and comments at various

stages have been significantly useful in shaping my thesis to completion. I am very

pleased that Dr. Marin Litoiu has accepted to be my external Ph.D. thesis examiner.

My sincere thanks go to all my friends in the Hardware Verification Group

(HVG) and the SoftWare Analytics and Technologies (SWAT) laboratories for their

support and help. I am also thankful to my best friends, Hadhami, Sabrine, and

Foued for their support and encouragements. I am deeply grateful to my family for

all the love and support they have provided me over the years. Finally, I would like to

thank the love of my life, Aymen, for his unconditional love and support. At the end

of my Ph.D., I got the most precious gift I could ever ask for; my first baby, Touty.

The existence of my little baby has fulfilled my life with joy and has motivated me to

work harder and to succeed. Nothing would be possible without you.

vi

TABLE OF CONTENTS

LIST OF TABLES . xii

LIST OF FIGURES . xiv

LIST OF ACRONYMS . xvii

1 Introduction 1

1.1 Hadoop-MapReduce . 1

1.2 Motivation . 4

1.3 Proposed Methodology . 8

1.4 Thesis Contributions . 10

1.5 Thesis Organization . 11

2 Related Work 13

2.1 Failure-aware Scheduling in Hadoop . 13

2.2 Adaptive Scheduling in Hadoop . 17

2.3 Formal Verification of Hadoop and Cloud 20

2.3.1 Formal Analysis of Hadoop System 20

2.3.2 Formal Analysis of Cloud System 22

2.4 Summary . 23

3 Failures Detection and Adaptive Scheduling 25

3.1 Limitation of Current Schedulers . 26

3.1.1 Tasks Failures Detection . 26

3.1.2 TaskTrackers Failures Detection 29

3.2 Task Failure Detection . 31

3.2.1 Task Failure Detection Methodology 31

vii

General Overview . 31

Tasks/Jobs Attributes Extraction 32

Task/Job Failure Profiling . 33

Task Failure Prediction . 34

3.2.2 Task Failure Detection Evaluation 37

Experimental Design . 37

Experimental Results . 38

3.3 Adaptive Scheduling . 41

3.3.1 Adaptive Scheduling Methodology 42

General Overview . 42

Scheduling Policies Modeling . 43

Reinforcement Algorithms Training 44

3.3.2 Adaptive Scheduling Evaluation 49

Experimental Design . 49

Experimental Results . 51

3.4 TaskTracker Failure Detection . 54

3.4.1 TaskTracker Failure Detection Methodology 54

General Overview . 54

Heartbeats Analysis and Estimation 55

TaskTracker Failure Detection 56

Chen Failure Detector 56

Bertier Failure Detector 57

φ Failure Detector . 57

Self-Tuning Failure Detector 58

3.4.2 TaskTracker Failure Detection Evaluation 60

viii

Experimental Design . 61

Experimental Results . 62

3.5 Summary . 66

4 ATLAS: AdapTive faiLure-Aware Scheduling 67

4.1 ATLAS Implementation . 68

4.2 ATLAS Evaluation . 70

4.2.1 Experimental Design . 72

Cluster . 72

Workload . 73

Injected Failures . 73

Collected Performance Metrics 74

4.2.2 Performance Analysis Results 74

Number of Finished Jobs/Tasks 75

Number of Failed Jobs/Tasks 78

Execution Times of Jobs/Tasks 80

Resources Utilization of Jobs/Tasks 81

Long-Execution of Jobs/Tasks 82

4.2.3 Scalability Analysis Results . 85

4.3 Threats to Validity . 89

4.3.1 Construct Validity . 90

4.3.2 Internal Validity . 90

4.3.3 Conclusion Validity . 91

4.3.4 Reliability Validity . 92

4.3.5 External Validity . 93

4.4 Summary . 93

ix

5 Formal Verification of Hadoop 95

5.1 Preliminaries . 96

5.2 Formal Verification Methodology . 97

5.2.1 General Overview . 97

5.2.2 Hadoop Scheduler Formal Model 98

5.2.3 Hadoop Scheduler Properties 102

5.2.4 Quantitative Failures Analysis 104

5.2.5 Qualitative Failures Analysis . 105

5.3 Formal Verification Evaluation . 105

5.3.1 Experimental Design . 105

5.3.2 Experimental Results . 107

Properties Verification and Scalability Analysis 107

Quantitative Failures Analysis 111

Qualitative Failures Analysis . 113

5.4 Formal Verification of Hadoop and Refinement of ATLAS 116

5.4.1 Experimental Design . 116

5.4.2 Experimental Results . 117

5.5 Summary . 119

6 Conclusions and Future Work 120

6.1 Conclusions . 120

6.2 Future Work . 123

Bibliography 127

Publications 141

x

List of Tables

3.1 Jobs and Tasks Attributes . 34

3.2 Accuracy, Precision, Recall (%) and Time (ms): FIFO Scheduler . . . 39

3.3 Accuracy, Precision, Recall (%) and Time (ms): Fair Scheduler 40

3.4 Accuracy, Precision, Recall (%) and Time (ms): Capacity Scheduler . 41

3.5 Normalized Values of Wrong Failure Detection Rate of TT 65

4.1 Amazon EC2 Instance Specifications [1] 72

4.2 Resources Utilization of the FIFO Scheduler 83

4.3 Resources Utilization of the Fair Scheduler 84

4.4 Resources Utilization of the Capacity Scheduler 85

4.5 Benefits of ATLAS Components . 86

4.6 Reduction Rates (%) of Proposed Algorithms (30,000 Hadoop Jobs) . . 87

4.7 Reduction Rates (%) of Proposed Algorithms (60,000 Hadoop Jobs) . . 87

4.8 Reduction Rates (%) of Proposed Algorithms (90,000 Hadoop Jobs) . . 87

4.9 Worst-Case Execution Time (Seconds) in ATLAS (30,000 Jobs) 88

4.10 Worst-Case Execution Time (Seconds) in ATLAS (60,000 Jobs) 88

4.11 Worst-Case Execution Time (Seconds) in ATLAS (90,000 Jobs) 89

5.1 Verification Results: Trace for the First Month (1,772,144 Tasks) . . . 108

5.2 Verification Results: Trace for the Second Month (476,034 Tasks) . . . 109

xi

5.3 Verification Results: Trace for the 1-6 Months (4,006,512 Tasks) 110

5.4 Coverage Results(%): Trace for the First Month (1,772,144 Tasks) . . . 112

xii

List of Figures

1.1 An Overview of Job Execution in MapReduce [2] 3

1.2 Overview of the Proposed Methodology 9

3.1 Example of Hadoop Job Failure . 28

3.2 TaskTracker Failure Detection Model in Hadoop Framework 30

3.3 Task Failure Detection Methodology 32

3.4 Adaptive Scheduling Methodology . 43

3.5 Life Cycle of a Task . 47

3.6 Number of Explored Policies . 51

3.7 Policy Success Rate . 52

3.8 TaskTracker Failure Detection Methodology 55

3.9 Detection Time under 30% Failure rate 63

3.10 Detection Time under 50% Failure rate 64

4.1 Finished Hadoop Jobs . 76

4.2 Finished Map Tasks . 76

4.3 Finished Reduce Tasks . 77

4.4 Failed Hadoop Jobs . 79

4.5 Failed Map Tasks . 79

4.6 Failed Reduce Tasks . 80

xiii

4.7 Exection Time of Jobs . 81

4.8 Exection Time of Tasks . 82

4.9 Number of Failed Job over 3 Days . 83

4.10 Number of Failed Task over 3 Days . 86

5.1 Formal Analysis of Hadoop Schedulers Methodology 98

5.2 Impact of Adding Resources on Failures Rate 115

5.3 Impact of Verification Guidelines on Failed Hadoop Jobs 118

5.4 Impact of Verification Guidelines on Failed Map Tasks 118

5.5 Impact of Verification Guidelines on Failed Reduce Tasks 119

xiv

LIST OF ACRONYMS

ATLAS Adaptive faiLure-Aware Scheduling

COSHH Classification, and Optimization based Scheduler for Het-

erogeneous Hadoop

CPU Central Processing Unit

CREST Combination Re-Execution Scheduling Technology

CSP Communicating Sequential Processes

CTree Conditional Tree

DF Detected Failure

EBS Elastic Block Store

EMR Elastic MapReduce

ESAMR Enhanced Self-Adaptive MapReduce scheduling

ESP Encrypted Storage Protocols

FD Failure Detector

FIFO First In First Out

FN False Negative

FP False Positive

FRESH FaiR and Efficient slot configuration and Scheduling al-

gorithm for Hadoop

FV Formal Verification

GB Gigabyte

GiB Gibibyte

GLM General Linear Model

HDFS Hadoop Distributed File System

xv

HLF Highest Level First

IF Intermediate Format

IT Information Technology

JT JobTracker

LATE Longest Approximate Time End

LP Linear Programming

LPF Longest Path First

LTL Linear Temporal Logic

MCP Maximum Cost Performance

MDP Markovian Decision process

MR Mistake Rate

PAT Process Analysis Toolkit

QoS Quality of Service

RAFT Recovery Algorithm for Fast-Tracking

RAM Random Access Memory

RF Random Forest

SAMR Self-Adaptive MapReduce scheduling

SARS Self-Adaptive Reduce Start time

SARSA State-Action-Reward-State-Action

SFD Self-tuning Failure Detector

SLA Service Level Agreement

SLR Systematic Literature Review

TD Temporal Difference

TN True Negative

TP True Positive

xvi

TT TaskTracker

vCPU Virtual Central Processing Unit

VIF Variance Inflation Factor

VM Virtual Machine

WCET Worst Case Execution Time

WOHA WOrkflow over HAdoop

xvii

Chapter 1

Introduction

In this chapter, we first introduce Hadoop [3], MapReduce [2], and the existing Hadoop

schedulers. Then, we present the motivation behind this work followed by our pro-

posed methodology to achieve the main goal of this thesis. Finally, we outline the

main contributions and the organization of this thesis.

1.1 Hadoop-MapReduce

Cloud Computing has become fundamental for IT technologies, replacing traditional

models, to deliver and manage services over Internet [4]. Customers can access and

lease services provided by cloud computing systems through a virtualized environment

and pay only costs of the used infrastructure resources. Motivated by the reasonable

prices and the good quality of cloud services, the number of cloud users has exponen-

tially increased, resulting in a huge volume of data that can reach up to the gigabytes,

terabytes, petabytes, or exabytes levels. As a result, it poses a challenging issue for

several large companies to handle this huge amount of data. Many large companies

including Google, Facebook, Yahoo or Amazon deploy Hadoop [3] to process these

1

intensive and huge data in their data centers. Hadoop has been enormously used in

several applications ranging from web analytic, web indexing, image and document

processing to high-performance scientific computing and social network analysis [5].

Indeed, Hadoop has become the framework of choice on many off-the-shelf clusters

in the cloud. It is a simple yet powerful framework for processing large and complex

jobs by efficiently running them across distributed multiple machines. Hadoop is the

open-source implementation of MapReduce [2] that is a programming model designed

to perform parallel processing of large datasets in the cloud using a large number of

computers (nodes). MapReduce splits jobs into parallel sub-jobs to be executed on

different processing nodes where data is local, instead of sending the data to where the

jobs will be executed. This feature is known as data locality [6] in big-data processing

frameworks, like Hadoop. In fact, data locality is very important to reduce the time

spent to read, write and copy the input data (especially large ones) of jobs through

the network compared to execution of non-local-data tasks [6].

A MapReduce job is comprised of map and reduce functions and the input data.

The map function is responsible for splitting the input data into a set of intermediate

<key, value> pairs. While the reduce function takes the generated values for the

same key to produce the corresponding output for each key. The input data denotes

the distributed files assigned to the map functions. MapReduce requires a master,

a “JobTracker”, to control the execution of the job. While “TaskTrackers” are used

in MapReduce to control the execution across the mappers (i.e., worker running a

map function) and the reducers (i.e., worker running a reduce function) and ensure

that their functions are executed and have their corresponding input data as shown

in Figure 1.1.

In addition to its MapReduce processing unit, Hadoop has a storage unit called

2

����
������	

������������

������

������

������

������

������

������ �������������

�������

�������

�������

�������

�������

������� ��������������

����������
�������

����������
�������� �

�������
���!� ���
���������

"����	���
��������

#�������

���� ���$��������$��� %����	������������ ������������%����������

&����&�� ���

'�(�&�� ���

)�����

Figure 1.1: An Overview of Job Execution in MapReduce [2]

Hadoop Distributed File System (HDFS). Hadoop follows a master-slave architecture:

the master node consists of a JobTracker and a NameNode, while the slave (or worker)

consists of a TaskTracker and a DataNode. Hadoop hides all system-level details re-

lated to the processing of parallel jobs (such as the distribution to HDFS file store

or error handling), allowing developers to write and enhance their parallel programs

while focusing only on computation issues rather than the parallelism ones.

The Hadoop framework is equipped with a scheduler responsible for jobs’ assignment

to the available worker nodes. First In First Out (FIFO) is the default scheduling al-

gorithm used in Hadoop [7]. Facebook and Yahoo! have developed two new schedulers

for Hadoop: Fair Scheduler [8] and Capacity Scheduler [9], respectively. The FIFO

algorithm grants a full access to the available resources to the scheduled jobs [7].

Facebook proposed the Fair scheduler to ensure a fair distribution of the available

resources across the scheduled jobs so that all users of the cluster receive on average

the required resources over time. The Fair scheduler can ensure that the minimum

3

number of slots are assigned to the scheduled jobs to guarantee a high level of service

according to the Quality of Service (QoS) requirements [8]. Yahoo! proposed the

Capacity scheduler to support multi-user execution within one cluster and to allow

a large number of users to fairly execute their jobs over time. This is by dividing

the available resources in the cluster across multiple queues given their configurable

capacities (i.e., Central Processing Unit (CPU), memory, disk, etc.) [9].

1.2 Motivation

Given the dynamic nature of cloud environments, failures are the norm rather than

the exception in data centers powering the cloud. These frequent failures affect the

performance of applications running on Hadoop. Studies [10] reveal that a Hadoop

cluster can experience more than one thousand individual machine failures and thou-

sands of hard-drive failures on its first year. Furthermore, they show that between

500 and 1000 machines in such cluster can be out of service for up to 6 hours because

of power problems, and their recovery time can reach up to 2 days. Indeed, several

studies (e.g., [11]) show that a job may encounter multiple failures per day, and they

explain the impact of these failures on applications services running on Hadoop [12].

As a result, these failures affect the quality of service delivered to the users. As an

example of failures in Hadoop clusters, in 2013, a huge amount of business data,

belonging to 5,700 customers of Firstserver Inc., were lost due to the execution of

improper operations [13]. Because of invalid configuration changes to their network

paths, as another example, in 2013, Amazon Web Services halted their services for

approximately 11 hours in one day [14].

Although several failure handling and recovery mechanisms have been proposed

to recover from these failures, Hadoop clusters are still experiencing a large number of

4

failures affecting the quality of service delivered to the users. Dinu et al.[12] analyzed

the built-in fault-tolerance mechanisms integrated within the Hadoop framework to

recover from failures. More concretely, they evaluated the performance of the Hadoop

framework under several types of failures. Overall, they claimed that several tasks

failures are due to the lack of sharing information about failures between units respon-

sible for operations’ execution in Hadoop, which can lead to poor scheduling decisions.

One of these main units is the Hadoop scheduler, which is responsible for tasks and

jobs assignment across the available resources. Task scheduling in Hadoop is a crucial

problem; the scheduler should satisfy several constraints to guarantee their successful

executions and improve the performance of the Hadoop cluster. Indeed, a typical

scheduler must distribute received tasks across the available tasks to ensure their

successful completions and guarantee that they are finished within their deadlines.

In the event of a node failure, Hadoop is able to restore lost data because it

keeps multiple replicas of each data block on different nodes. When this node fail-

ure is detected, the Hadoop scheduler reschedules all the running tasks on that node

and launches recovery tasks on other nodes with enough resources. Although this

re-execution solution is easy to implement, it is not always effective because it can

significantly increase the total execution times of the rescheduled tasks. For exam-

ple, the rescheduling of an almost completed task can add extra time to the overall

execution time of the job and use more resources than expected. In addition, these

redo solutions cannot guarantee the successful execution of these tasks. Furthermore,

several tasks may experience failures because of the same reason, although these fail-

ures may be discovered by other Hadoop nodes. This is due to the fact that each

computing node in Hadoop handles failures on its own for simplicity and scalability

reasons.

5

Given the importance of task scheduling, several algorithms have been proposed

to assign tasks to the available resources in the literature for Hadoop. Even though

these proposed algorithms could improve the performance of Hadoop, several tasks

failures still occur either when scheduling or executing the received task in Hadoop

because of unforeseen events. More precisely, they can occur because of poor schedul-

ing decisions (e.g., resources deadlock, task starvation) or constraints related to the

environment where they are executed (e.g., data loss, network congestion).

The Hadoop scheduler should take into account several factors related to the

environment where the tasks are processed (e.g., available resources, number of tasks

on the queue, the running load on each TaskTracker). However due to the increasing

number of received demands over time and the dynamic availability of machines in

a Hadoop cluster, it is challenging to take all these factors into account during the

scheduling decision process. Consequently, the Hadoop scheduler may fail to meet its

requirements and still generates poor scheduling decisions due to different constraints

such as unpredicted demands of services or hardware outages. For instance, these

failures can be because of different reasons such as resources-deadlock, task starvation,

deadline non-satisfaction and data loss, e.g., [15, 16]. For example, different tasks fail

because of unexpected resources contentions by long-execution tasks, struggling tasks,

etc., e.g., [17, 18].

Moreover, the recovery mechanisms in Hadoop can affect the performance of

the running applications and the overall Hadoop cluster utilization. For example,

the recovery times of the failed nodes in Hadoop can be long and can lead to longer

execution times of the jobs more than expected. This can result in extra delays to

the total completion time and leads to resources wastage. Hence, it can significantly

decrease the performance of the applications and increase failure rates. For instance,

6

the Hadoop JobTracker is not able to quickly detect failures of the TaskTrackers due

to the fixed heartbeat-based failure detection mechanism adopted in Hadoop to track

active nodes. As a result, it is not able to discover the failures of tasks running on

the failed nodes and hence, it cannot reschedule them on time. Consequently, this

can negatively impact the performance of the jobs running on the Hadoop framework

and the overall resources utilization of the cluster.

On the other hand, Hadoop is widely used in several safety and critical applica-

tions, such as healthcare [19] and aeronautics [20]. Hence, it poses an open challenge

for software engineers to design and test such framework to avoid failure occurrences.

Therefore, thorough testing and verification of the Hadoop scheduler is of paramount

importance to better analyze the circumstances leading to task failures and perfor-

mance degradation. Knowing these circumstances upfront would allow Hadoop de-

velopers to anticipate these potential issues and propose solutions to overcome them.

Traditionally, simulation and analytical modeling have been widely used to ver-

ify and validate the behavior of Hadoop with respect to scheduling requirements,

e.g., [15, 16, 17, 18]. However, the size of Hadoop clusters have grown continuously

to accommodate the increasing number of demands. As a result, Hadoop systems be-

came very complex and hence their management became very difficult and expensive.

Consequently, simulation and analytical modeling are inadequate because they are not

efficient in exploring large Hadoop clusters. Moreover, given the complexity and the

wide range of constraints in Hadoop scheduler, they are not able to provide accurate

results and exhaustive coverage of the Hadoop system especially when failures occur.

Overall, they are not able to ascertain a complete analysis of the Hadoop scheduler.

Considering the above facts, failures detection and recovery pose a critical and

open challenge for Hadoop developers to design efficient recovery mechanisms to avoid

7

the occurrence of these failures. Hence, it is of interest to study the existing scheduling

strategies of Hadoop in order to propose improvements that increase the success rate

of scheduled tasks and jobs, reducing their execution times and resource usage. There-

fore, we propose in this thesis to build an adaptive failure-aware scheduling algorithm

for Hadoop to overcome the aforementioned limitations. Our proposed scheduling

algorithm allows to predict task scheduling failures and achieve early rescheduling of

the potential failed tasks. Also, it integrates new strategies to make adaptive decisions

while scheduling the tasks according to the changes occurring in Hadoop environment.

This is to reduce failures rate and improve tasks’ execution times and resources uti-

lization. In addition, the proposed scheduling algorithm will be able to early detect

failures of TaskTrakers and can early reschedule the potential failed tasks on alive

nodes and make better scheduling decisions. We implement the above approaches in

ATLAS : an AdapTive Failure-Aware Scheduling algorithm that can be built on top

of existing Hadoop schedulers. Finally, we propose a formal approach to analyze the

impact of the scheduling decisions on the failures rates in Hadoop. This proves to be

useful to early identify circumstances and specifications leading to potential failures

and prevent their occurrences.

1.3 Proposed Methodology

The main objective of this thesis is to develop an adaptive and failure-aware schedul-

ing algorithm for Hadoop. To this aim, we first propose a dynamic approach for

Hadoop schedulers to early identify potential failures of tasks. Second, an adaptive

approach is used to allow the proposed scheduling algorithm to generate better strate-

gies to schedule tasks according to changes in the cloud. Moreover, our proposed algo-

rithm integrates a dynamic approach to dynamically detect failures of TaskTrackers in

8

Hadoop. Finally, the cluster settings and scheduler’ design can be upfront adjusted to

prevent poor scheduling decisions in Hadoop using a formal approach to analyze the

impact of scheduling decisions of Hadoop on the failures’ rates. Overall, our proposed

scheduling algorithm can help the Hadoop framework reduce tasks’ failures and avoid

making poor scheduling decisions. Figure 1.2 provides an overview of our proposed

methodology.

Scheduling
Constraints

Adaptive Scheduling
 Learning

Scheduling
Constraints

Cluster
Log Files

Task Failure
Detection

 Formal Scheduler
 Verification

Scheduling
Properties

Scheduler
Description

Scheduling Learning
Algorithm

ATLAS: AdapTive faiLure-Aware Scheduling

Scheduling
Policies

 Scheduling
Strategies

Predictive Failure
Algorithm

Hadoop

TaskTracker Failure
Detection

Self-Tuning Failure
Detection Algorithm

Cluster
Environment

Refinement

Input Output
Conditional
OperationDataBaseMethod

Figure 1.2: Overview of the Proposed Methodology

The proposed methodology addresses the limitations of current schedulers of

Hadoop in terms of failures detections and adjusting its scheduling strategies according

to the Hadoop environment. Overall, it is comprised of four main approaches:

(1) A dynamic approach to detect tasks failures based on collected data about

previous tasks failures and machine learning algorithms [21]. We apply learning algo-

rithms to implement a prediction algorithm allowing the scheduler to identify whether

a task will finish or fail.

9

(2) An adaptive approach to model scheduling strategies using Markovian De-

cision Process (MDP) models [22] and reinforcement learning algorithms [23] (e.g.,

Q-Learning [24] and State-Action-Reward-State-Action (SARSA) [25]).

(3) A dynamic approach to quickly detect the failures of the TaskTracker nodes

using four well known algorithms from the network field, namely the Chen Failure

Detector [26], Bertier Failure Detector [27], φ Failure Detector [28] and Self-tuning

Failure Detector [29]. This is to produce an algorithm to dynamically adjust the

timeout interval at which a TaskTracker node is considered as dead.

These three proposed approaches are complementary and can be connected to-

gether through a novel algorithm that can be integrated and built with the existing

Hadoop schedulers (e.g., FIFO, Fair, Capacity) in order to produce an Adaptive

faiLure-Aware Scheduling (ATLAS) algorithm for Hadoop.

(4) A formal verification approach to identify circumstances leading to tasks’ fail-

ures in the Hadoop schedulers using model checking [30]. We use the Communicating

Sequential Processes (CSP) [31] language to formally model a Hadoop scheduler, and

the Process Analysis Toolkit (PAT) [32] model checker to verify its properties. Next,

we investigate the correlation between the scheduling decisions and the failures rate

to propose and refine possible scheduling strategies for ATLAS.

1.4 Thesis Contributions

The ultimate goal of this thesis is the development of an adaptive and failure-

aware scheduling for Hadoop to reduce its failures rates and improve its generated

scheduling decisions. We list below the main contributions of this thesis with refer-

ences to related publications provided in the Biography section at the end of the thesis.

10

• A Systematic Literature Review (SLR) [33] of task scheduling techniques in

Hadoop, Spark [34], Storm [35], and Mesos [36]. [Bio-Jr2]

• A feasibility study on Google clusters to show the effectiveness of our proposed

methodology to early identify tasks failures in the cloud. [Bio-Tr2, Bio-Cf3]

• A methodology to early identify the failures of tasks in Hadoop using information

about the tasks and machine learning algorithms. [Bio-Tr1, Bio-Cf2]

• A novel method to generate adaptive scheduling decisions to reduce tasks’ fail-

ures and avoid poor scheduling decisions in Hadoop using reinforcement learning

techniques. [Bio-Jr1]

• A dynamic approach to detect the failures of TaskTracker nodes in Hadoop using

data about previous heartbeat messages and four well known algorithms from

the network field. [Bio-Jr1]

• Implementation of an AdapTive and faiLure-Aware Scheduling (ATLAS) algo-

rithm for Hadoop to track failures and adjust the scheduling decisions on the

fly. [Bio-Tr1, Bio-Cf2, Bio-Jr1]

• An approach to formally analyze the existing Hadoop schedulers using model

checking and propose possible scheduling strategies for ATLAS [Bio-Cf1]

1.5 Thesis Organization

The rest of the thesis is organized as follows: In Chapter 2, we review the state of the

art of failure-aware and adaptive scheduling approaches in Hadoop as well as formal

verification techniques of Hadoop and cloud systems. In Chapter 3, we present (1) a

11

failure-aware methodology to early identify failures of tasks, (2) an adaptive approach

to generate better scheduling decisions to reduce tasks’ failures, and (3) an approach

to adjust the communication between the JobTracker and TaskTrackers in order to

quickly detect the failures of the TaskTracker nodes. The feasibility and efficiency of

these three approaches will be demonstrated on a Hadoop cluster deployed on Amazon

Elastic MapReduce (EMR). In Chapter 4, we describe the implementation of ATLAS,

which can adjust the scheduling decisions on the fly in Hadoop. To assess the per-

formance of ATLAS, we conduct an empirical study comparing its performance with

those of the three existing Hadoop scheduling algorithms. In Chapter 5, we present our

approach to formally analyze Hadoop schedulers using model checking. Thereafter,

we apply our proposed approach on the scheduler of OpenCloud, a Hadoop-based

cluster, and on ATLAS. Finally, Chapter 6 concludes this thesis, presents a descrip-

tion of some challenging aspects of our work, and outlines potential future research

directions.

12

Chapter 2

Related Work

In [Bio-Jr2], we conducted a Systematic Literature Review (SLR) [33] of task schedul-

ing techniques in Hadoop, Spark [34], Storm [35], and Mesos [36], in order to exhaus-

tively identify and classify existing task scheduling techniques in these frameworks.

We found that different built-in fault-tolerance mechanisms are integrated within the

Hadoop framework. Therefore, in this chapter, we review the most relevant failure-

aware and adaptive scheduling approaches in Hadoop. Furthermore, we present ex-

isting formal verification techniques of Hadoop and cloud systems.

2.1 Failure-aware Scheduling in Hadoop

Several studies, including [18, 37, 38], report that the Hadoop scheduler is unaware of

the failures (e.g., struggling tasks, node failure) encountered by the different compo-

nents of Hadoop as well as the failures encountered by the scheduled tasks. Therefore,

this prevents it from operating correctly and efficiently towards meeting its objectives.

To alleviate this issue, Dinu and Ng [37] designed RCMP a failure resilience strategy

for Hadoop scheduler. RCMP allows the job re-computation upon failures; by recom-

puting the necessary tasks rather than replicating the data. However, this strategy

13

was found to be efficient only for I/O intensive jobs and it is not valid for all types of

MapReduce workload (e.g., CPU intensive jobs).

Smart replication of intermediate data was also proposed as a solution to improve

the performance of Hadoop under TaskTracker failures [39, 40]. The replication of

these intermediate data allows a fast re-computation of the generated map output and

a fast recovery when one replica is lost. However, it has been shown in [39] that this

solution comes at the cost of some overhead when there is no failure, especially that

the scheduler is unaware about these failures. Hence, it can significantly aggravate

the severity of existing hotspots.

Quiane-Ruiz et al. [41] proposed a Recovery Algorithm for Fast-Tracking

(RAFT) that tracks tasks at different checkpoints to store the execution status of

tasks. In the event of task failure, the scheduler reschedules the failed tasks from

the last available checkpoint. RAFT shows good results when a job encounters a

failure; the scheduler does not need to re-execute the finished tasks belonging to the

failed jobs. Also, it allows a fast recovery of the failed tasks since part of their out-

put was stored at some point. Overall, it could reduce the total execution time of

the scheduled tasks by 23%. However, this solution comes with an overhead to store

these checkpoints, especially for large Hadoop jobs. In addition, the authors did not

propose fault-tolerance mechanisms for these checkpoints.

Yuan et al. [42] designed a dynamic approach to early detect failures of scheduled

tasks by collecting data about these tasks and storing their backups over regular

interval times. Upon the detection of failures, the authors proposed that the scheduler

would launch the failed tasks on other nodes while using the available information

about their stored backups. This approach allows to not lose the intermediate data

of the scheduled tasks.

14

In addition to the above work, Gupta et al. [43] designed Astro to early iden-

tify the most important metrics leading to the failure of scheduled tasks. They used

different machine learning algorithms to predict these anomalies. Overall, Astro is

able to early detect tasks’ failures and notify the scheduler accordingly. It could im-

prove resources usage by 64.23% compared to the existing implementations of Hadoop

schedulers. The performance of Astro was improved by integrating mechanisms al-

lowing a better distribution of workloads between the nodes of the cluster. Hence,

the execution times of the scheduled tasks were reduced by 26.68% during the time

of an anomaly.

A Maximum Cost Performance (MCP) algorithm was proposed by Qi et al. [44]

as a solution to improve the existing speculative execution strategies in Hadoop.

Although MCP achieves good performance, it was found to negatively impact the

scheduling times of some jobs (batch jobs in particular) [45].

To address the aforementioned limitation, a Combination Re-Execution Schedul-

ing Technology (CREST) algorithm [46] was proposed to improve the MCP algorithm.

CREST considers data locality when launching the speculative execution of slow run-

ning tasks. Furthermore, CREST forces the re-execution of map tasks having local

data instead of launching speculative tasks without considering data locality. How-

ever, results show that CREST adds an extra cost because of the replication of exe-

cuted map tasks.

Chronos is a failure-aware scheduling strategy proposed by Yildiz et al. [47, 48]

as a solution to enable early recovery actions for the failed tasks in Hadoop. Chronos

enables a pre-emption technique to allocate the required resources to the recovered

tasks. So, it is characterized by a fast action rather than waiting for an uncertain

amount of time to recover the failed tasks. In addition, it considers one of the most

15

important constraint affecting the performance of Hadoop: the data locality while

recovering the tasks. Although Chronos could reduce the total completion times of

jobs by up to 55%, it is using strategies (e.g., wait and kill) that could lead to resource

wastage and degrade the performance of Hadoop clusters.

Despite of its direct impact on the failures’ rates of Hadoop clusters, very few

work have addressed the problem of early identification of Tasktrackers’ failures in

Hadoop. Among them, Zhu and Chen [38] implemented an algorithm to control

the sending of heartbeats between the JobTracker and the TaskTrackers. To do so,

they proposed to adjust the expiry interval for the JobTracker to detect the failure

of a TaskTracker. The proposed algorithm uses information about jobs’ sizes and

the number of nodes to adjust the value of the expiry interval. In addition, the

authors developed a reputation-based detector to decide whether a worker is failed

or not according to a reputation threshold. For instance, they proposed to calculate

the reputation of TaskTracker based on the number and time of received heartbeats.

When a node is characterized by a reputation lower than a specified threshold, it is

considered as dead. This approach can help detect failures of nodes early, and reduce

the total execution time of jobs. However, it can generate wrong failures detections,

which can negatively impact the performance of Hadoop. Moreover, it does not

consider the dynamic nature of Hadoop environments and the different factors leading

to the failures of TaskTrackers.

Overall, we observed that the current implementations of Hadoop scheduler

lack mechanisms to share information about the failures encountered by both the

different components and the scheduled tasks. Therefore, we propose in this thesis to

integrate new fault-tolerant mechanisms within the Hadoop scheduler to avoid tasks

and TaskTrackers failures.

16

2.2 Adaptive Scheduling in Hadoop

In the following, we present the most relevant work that describe existing adaptive

mechanisms to improve the performance of Hadoop schedulers.

A Longest Approximate Time End (LATE) algorithm [49] was proposed as a

solution to improve scheduling decisions in Hadoop by prioritizing tasks waiting in

the queue according to collected information about running tasks. In addition, LATE

considers the progress rate of the running tasks and the cluster’s resources availability

while scheduling tasks. Overall, LATE was able to reduce the total execution time by

a factor of 2 in Hadoop clusters.

A Self-Adaptive MapReduce scheduling (SAMR) algorithm [50] was proposed

to improve scheduling decisions of Hadoop by considering collected data about the

hardware configurations of machines in a Hadoop cluster. In addition, SAMR is able

to estimate the progress of the scheduled tasks by integrating different information

about the hardware system. However, it does not consider other important factors

about job characteristics (e.g., the task size, data locality).

To overcome these limitations, an Enhanced Self-Adaptive MapReduce schedul-

ing (ESAMR) algorithm [51] was designed to consider extra information about the

Hadoop environment (including struggling tasks, job size, and remaining execution

time). To do so, ESAMR uses the K-means clustering algorithm to calculate tasks

execution times and identify slow running tasks. Overall, it could provide accurate

results compared to SAMR and LATE. Furthermore, it allows to early identify the

struggling map and reduce tasks and improve the execution times of jobs. However,

it does not integrate possible solutions to reschedule these struggling tasks and does

not improve the number of the finished tasks.

A Self-Adaptive Reduce Start time (SARS) algorithm [52] was integrated within

17

Hadoop scheduler to estimate start times of the reduce tasks. This is by using collected

information about the completion times of maps and reduce tasks and the job total

completion time. SARS uses these information to evaluate the impact of different

starting times of reduce tasks on the total execution times of Hadoop jobs. As a

result, the total response time of a Hadoop job was reduced on average by 11%.

A FaiR and Efficient slot configuration and Scheduling algorithm for Hadoop

(FRESH) was proposed by Jiayin et al. [53] to identify the matching between sub-

mitted tasks and the available slots. FRESH could reduce the makespan between

the tasks and provide a better resources distribution strategy across the scheduled

tasks. Although each node in Hadoop has a specific number of slots, the scheduler

continuously receives different running jobs requiring different slots configurations.

the authors proposed to integrate a new management plan to dynamically find the

best slot setting. Concretely, FRESH is able to dynamically change the assignment

of slots between the map and reduce tasks according to the availability of slots and

the requirement of the tasks. Overall, FRESH was able to have a better and fair

distribution of the available slots across the scheduled tasks. However, it does not

ensure a better memory usage.

FlexSlot [54] was proposed as a task slot management scheme for Hadoop sched-

ulers. FlexSlot allows the identification of struggling map tasks and adjust their as-

signed slots accordingly. The authors opted for a dynamic strategy to change the

number of slots on each node in Hadoop based on collected data about the resources

utilization and struggling tasks. As a result, FlexSlot allows to better utilize the

available resources in a Hadoop cluster and solves the problem of data skewness by

adopting an adaptive speculative execution strategy. Consequently, it achieves good

results in terms of total job completion times; reducing it by up to 47.2% compared to

18

the basic Hadoop scheduler. However, the proposed solution in FlexSlot generates an

extra overhead that can impact the processing of Hadoop jobs. Also, it can negatively

impact the number of failed tasks because it is using a task-killing-based approach

in the slot memory resizing. Furthermore, it forces the killing of tasks multiple time.

Hence, it may generate not only extra delays but also may cause the failure of the

whole job.

WOrkflow over HAdoop (WOHA) was proposed by Li et al. [55] to improve

workflow deadline satisfaction rates in Hadoop clusters. The authors proposed to use

information about job ordering and progress requirements to select the worklflow to be

processed first. WOHA selects the workflow that falls furthest from its progress based

on the Longest Path First (LPF) and Highest Level First (HLF) algorithms. Hence,

it could improve the satisfaction of workflow deadlines by 10% compared to existing

scheduling solutions (FIFO, Fair and Capacity schedulers). WOHA collects data

from the Hadoop environment to notify the scheduler about the potential deadline

of each task (that are unknown ahead of time). However, WOHA does not integrate

mechanisms to handle the dynamic nature of Hadoop workload over time.

Classification, and Optimization based Scheduler for Heterogeneous Hadoop

(COSHH) was proposed by Rasooli et al. [56] as a hybrid solution to select the

type of scheduling to use in the cluster based on the number of the incoming jobs

and the available resources. The authors used Linear Programming (LP) to classify

the incoming workloads and determine an efficient resources allocation strategy for

Hadoop. According to the obtained results, the authors reported that the FIFO algo-

rithm can be used for under-loaded systems while the Fair Sharing algorithm works

well when the system is balanced. However, COSHH can be used when the system

is overloaded (i.e., peak hours). In summary, this proposed hybrid solution allows

19

to improve the performance of Hadoop by reducing the average completion times

and improving fairness, locality and scheduling times. Although Rasooli et al. [56]

specified three different cases when to use each of the schedulers, they do not specify

information thresholds upon which one can decide about which scheduler to use.

In summary, we found out that the Hadoop scheduler lacks mechanisms to

handle both failures and dynamic changes in cloud environments. Therefore, we

propose a new adaptive approach in this thesis to reduce tasks’ failures and avoid

making poor scheduling decisions in the Hadoop framework.

2.3 Formal Verification of Hadoop and Cloud

The use of formal verification [57] to model and verify Hadoop and cloud systems is

recent. In the following, we describe the most relevant studies that have been proposed

to show the efficiency of formal verification techniques in the context of Hadoop and

cloud systems.

2.3.1 Formal Analysis of Hadoop System

The authors in [58, 59] evaluated the performance of MapReduce using Stochastic

Petri Nets and Timed Coloured Petri Nets, respectively. More precisely, they simu-

lated Hadoop jobs using Petri Nets and defined formulas of mean delay time in each

time transition. Although the two proposed approaches are able to evaluate the per-

formance of MapReduce, they lack details about scheduling constraints affecting the

performance of the executed jobs and tasks.

Su el al. [60] used the CSP language to formally model the master, mapper,

reducer and file system in MapReduce. They formally modeled these components

20

while considering basic operations in Hadoop including task state storing, error han-

dling, progress tracking. But, the authors did not verify any properties of the Hadoop

framework using the formalized components.

Based on the formalized components proposed in [60], Xie el al. [61] formally

verified the HDFS reading and writing operations using CSP and the PAT model

checker. Some of the properties in HDFS are verified including the deadlock-freeness,

minimal distance scheme, mutual exclusion, write-once scheme and robustness. The

verification results showed that their proposed approach is able to detect unexpected

traces generating errors and verify data consistency in the HDFS. One limitation of

this work is that it models the operations to read and write only one file in HDFS,

which is not the case in Hadoop where multiple files exist.

Reddy et al. [62] used CSP to model the “NameNode”, “DataNode”, task sched-

uler and cluster setup in Hadoop. They used the PAT model checker to verify some

properties including data locality, deadlock-freeness and non-termination in a Hadoop

system. In addition, they showed the benefits of these properties among other ones

only when using a small workload. Also, the authors did not check their impact on

the scheduling strategies of Hadoop.

Although theorem provers are widely used to check the correctness and reliability

of several distributed systems, to the best of our knowledge, we only found one theorem

prover-based study that verifies the actual running code of MapReduce applications.

Ono et al. [63] proposed an abstract model to verify the correctness of the application

running on Hadoop-MapReduce using the proof assistant Coq [64]. For instance,

they modeled the mapper and reducer functions in MapReduce and proved that they

satisfy the specification of some applications such as WordCount [65]. However, the

presented abstract model lacks several details related to task assignment and resources

21

allocation, which largely affect the performance of applications running on Hadoop.

2.3.2 Formal Analysis of Cloud System

Jarraya et al. [66] introduced a cloud calculus, which is a process algebra based on

structural congruence and a reduction relation. They used cloud calculus to model

and verify the specification of the migration of virtual machines and security policies

in the cloud.

Bansal et al. [67] used the ProVerif model checker to analyze the security of

cloud based Encrypted Storage Protocols (ESP) against attacks. However, ProVerif is

a formal tool proposed only for reasoning about security properties in cryptographic

protocols.

Armando et al. [68] used the AVISPA model checker to analyze security issues

in the cloud. They expressed these issues based on the Intermediate Format (IF) and

a set rewriting as formal foundation. The AVISPA model checker is also limited to

the analysis of Internet security protocol and applications.

Another work [13] was proposed to formally verify some vulnerability properties

in a cloud computing system using the NuSMV model checker [69]. In this work, the

authors constructed formal state models for cloud systems and the properties they

aim to verify. Then, they translated the obtained models into NuSMV to verify a set

of properties within a three-tier cloud system that uses Amazon EC2. Although the

NuSMV model checker was used to verify some cloud systems, it does not support

the verification of probabilistic properties.

Probabilistic model checking has also been used to analyze models of cloud

systems. Kikuchi et al. [70] used the PRISM probabilistic model checker to verify some

migration properties in concurrent virtual machines (VM) in cloud systems. They

22

conducted experiments to measure the performance of migrations in the VMs. Then,

they used the results of their experiments to construct formal models for migration

properties such as having more than 4 migration operations retained in a certain

sender server. They used PRISM to check whether the performance models satisfy

the migration properties.

Another work was proposed by Naskos et al. [71] to model and verify elasticity

in cloud computing systems. They used MDP to formally model elasticity properties

and PRISM to model and verify several elasticity decision policies including resizing

a cluster and dynamically modifying the number and types of VMs. However, the

authors of [71] did not report any results about the size of the explored state space in

the verified system and the scalability of their approach.

Ishakian et al. [72] used the Coq theorem prover to express Service Level Agree-

ments (SLAs) and set theory to analyze the efficiency of co-location in cloud systems.

They provide machine verified proofs and showed that the proposed framework is con-

sistent with respect to its semantic. However, Coq is not an automated verification

tool and requires interaction with the user. In addition, it does not allow for a fast

detection of errors when the verification fails.

Thuraisingham et al. [73] proposed to verify information sharing systems in

cloud computing environments in terms of soundness, transparency, consistency and

completeness. They used the ACL2 theorem prover [74] to verify these properties.

However they did not present details about their modeling and verification.

2.4 Summary

In this chapter, we presented the most relevant work that addressed failure-aware and

adaptive scheduling in Hadoop and the formal analysis of Hadoop and cloud systems.

23

Precisely, we described the existing techniques to detect the failures of tasks and

TaskTrackers and recover from these failures in Hadoop. In summary, we found out

that the Hadoop scheduler lacks mechanisms to share information about the failures

encountered by both the different components and the scheduled tasks. Therefore, it

is necessary to design efficient recovery mechanisms to avoid the occurrence of these

failures in Hadoop. On the other hand, we described the techniques used to analyze

Hadoop and cloud systems. Overall, we found that the use of formal methods in the

cloud and Hadoop is very recent and only a few work exist in the open literature.

Most importantly, there is no work that formally analyze the impact of scheduling

decisions on the failures rate of Hadoop.

24

Chapter 3

Failures Detection and Adaptive

Scheduling

In this chapter, we present novel approaches to track failures and generate adaptive

scheduling decisions for Hadoop. First, we present our methodology for task failure

detection based on machine learning algorithms and data about previously executed

tasks in Hadoop to early identify the failures of tasks. Second, we propose a new

adaptive approach for modeling scheduling policies using reinforcement learning al-

gorithms (Q-Learning and SARSA) to select an appropriate scheduling action for a

scheduled task in Hadoop framework. Instead of the fixed heartbeat-based failure

detection, we propose to dynamically adjust the communication between the Job-

Tracker and TaskTrackers in order to quickly detect the failures of the TaskTracker

nodes using four well known algorithms from the network field. We demonstrate the

feasibility and efficiency of our proposed approaches on a 100-nodes Hadoop cluster

deployed on Amazon Elastic MapReduce (EMR).

25

3.1 Limitation of Current Schedulers

In this section, we first describe the existing mechanisms in Hadoop schedulers to

detect failures of tasks and to recover from them. Next, we describe the limitations of

the current Hadoop schedulers when detecting active TaskTrackers nodes in a Hadoop

cluster.

3.1.1 Tasks Failures Detection

When a Hadoop component fails (e.g., TaskTracker, DataNode), the tasks running

on this node will fail and have to be restarted on other nodes. Moreover, the recovery

times of the failed nodes can be long and can lead to unpredictable execution times

and resources wastage. For instance, Dinu et al. [18] report that the average execution

time of a Hadoop job, which is 220 seconds, can reach 1000 seconds under a Task-

Tracker failure and 700 seconds under a DataNode failure. Furthermore, they state

that the failure of a DataNode can delay the starting time of speculative execution

of some tasks. This is due to the statistical nature of the speculative execution algo-

rithm used in Hadoop to collect data about task progress (e.g., struggling tasks). For

example, when a DataNode fails and a task is making good execution progress, the

scheduler expects the same progress from that task and hence it will start its specula-

tive execution with a delay. Consequently, the speculative execution of that task will

start later than the time when struggling tasks are usually speculatively executed.

Dinu et al. [18] claim that Hadoop components do not share failure information

appropriately. For instance, they report that Hadoop components do not share infor-

mation about task failure with other tasks that depend on the failed task on time. For

simplicity and scalability, each computing node in Hadoop manages failure detection

and recovery on its own and hence failure information are not shared between these

26

nodes. Therefore, multiple tasks, including the speculative tasks, may experience the

same failure although a previous task encounters the same failure. For example, when

a map task fails, the failure is likely to translate into the failure of the whole job since

map and reduce tasks are scheduled separately and there is no exchange of failure

information between them. This is due to the tight dependency between the map and

reduce tasks.

In the sequel, we present an example of a Hadoop job failure to better understand

its impact on the performance of the Hadoop framework. Let’s consider N jobs

submitted to a Hadoop cluster. Each job is composed of X map tasks and Y reduce

tasks, where each job is using R(CPU, Memory, HDFS Read/Write) resources from

M machines in a Hadoop cluster. Each new submitted task is assigned to a node

to be executed, if it fails, it has to be rescheduled on the same node or on another

available node. When a task exceeds its maximum number of scheduling attempts,

it is considered to be failed, otherwise it is successfully finished. The failure of one

task can cause the failure of the whole job to which the task belongs because of the

the dependency between map and reduce tasks. Figure 3.1 shows an example of a

Hadoop job failure, Job3, because one of its map tasks failed (since it exceeded its

maximum number of scheduling attempts). Consequently, all reduce tasks were failed

automatically.

To formally describe the final scheduling outcome of an executed job, we consider

S(job) the outcome of a job, S(MapAttip) the outcome of a mapi after the pth attempt

and S(ReduceAttjq) the outcome of reducej after the qth attempt. We attribute a

value of 1 when an attempt is successful and 0 otherwise. We assume that K and L

are the maximum numbers of scheduling attempts allowed for map and reduce tasks,

27

����

�������� ����

������
�	��

�	������
�	����

�	������
�	����

�	��

�	���	���	���	��

�	��

��

��

��

��

��

��

��

����� �	������
�	�����	��

�	�����������	�

 ��!���"������ ��#���$�����%����#������������%��������#������$��

&��		$�"�'���!���(����

����� �����

Figure 3.1: Example of Hadoop Job Failure

respectively. The scheduling outcome of a job can be described using Equation 3.1:

S(job) = [
X∏
i=1

(
K∑
p=1

S(MapAttip))] ∗ [
Y∏
j=1

(
L∑

q=1

S(ReduceAttjq))] (3.1)

The total execution time of a task is the sum of execution times of all its launched

attempts (both the finished and the failed attempts). Therefore, an executed task may

have a long execution time when it is characterized by multiple attempts (especially

the failed ones). Long execution times of tasks will be translated into a longer ex-

ecution time of the job to which they belong. For instance, let T(job) be the total

execution time of a job comprised of A = {mapi}i∈X map tasks and B = {reducej}j∈Y

reduce tasks. Let T (MapAttip) be the execution time of the p attempt when execut-

ing mapi and T (ReduceAttjq) be the execution time of the q attempt when executing

reducej. The total execution time of a job be described using Equation 3.2:

T (job) = MaxA(

K∑
p=1

T (MapAttip)) +MaxB(

L∑
q=1

T (ReduceAttjq)) (3.2)

The job having many failed attempts, even though they are finished at the end,

are characterized by the longest execution time compared to jobs having less failure

28

attempts. Consequently, if the scheduler can reduce the number of failure attempts

it allows jobs to reduce their execution times as well. Therefore, by reducing the

number of failed task attempts, one will reduce the number of failed tasks and the

turnaround time of jobs running in the cluster. In addition, we believe that if one can

early identify the circumstances that may lead to a map/reduce task failure, one may

be able to reduce the failures rate in a Hadoop framework.

3.1.2 TaskTrackers Failures Detection

In [18], it is shown that the JobTracker is not able to quickly detect the failures of the

TaskTracker nodes because of the fixed heartbeat-based failure detection mechanism

commonly used in Hadoop to track active TaskTrackers. Consequently, it cannot

quickly detect tasks running on failed TaskTrackers and it may assign tasks to dead

nodes. Hence, this can significantly increase the number of failed tasks in Hadoop. For

instance, active TaskTrackers send heartbeat messages to JobTracker every 3 seconds.

While the JobTracker checks every 200 (3.33 minutes) seconds the timeout condition

of the received heartbeat messages from the TaskTrackers. The JobTracker declares a

TaskTracker as dead only when this TaskTracker node does not send a heartbeat for

at least 600 seconds (10 minutes). In addition, it has to reschedule the tasks running

on this node on other nodes, according to their availability [18]. On the other hand,

because of network delays or messages losses, some heartbeats (may) arrive late to

the JobTracker, which can affect the decisions of the JobTracker. For example, the

JobTracker can consider their corresponding TaskTrackers as dead nodes, despite their

availability. As a result, it will not assign them any load until they are added to the

active nodes, resulting in resource wastage.

To better illustrate the TaskTrackers’ failures detection approaches in Hadoop,

29

we present examples of communications between JobTracker and TaskTracker nodes

in Figure 3.2. For instance, when JobTracker receives a heartbeat message m1, sent

from a TaskTracker, before the next arrival time, it considers this TaskTracker to be

alive. The TaskTracker can send a new heartbeat message m2 that does not arrive to

the JobTracker, because of a network problem or message loss. Then, the JobTracker

considers this TaskTracker as dead despite its availability. This can result in resources

wastage. When a TaskTracker sends a heartbeat message mn arriving on time, if

TT

.......
Δt (10 min)

m
1

m
2

m
n

trust suspect trust
.......

JT

TT = TaskTracker JT = JobTracker
m = heartbeat message Δt = Interarrival time

= Failure

Figure 3.2: TaskTracker Failure Detection Model in Hadoop Framework

this TaskTracker experiences a failure right after sending the message, the JobTracker

will consider this node as alive and will assign it new tasks until the next timeout to

check the heartbeats messages. As a consequence, this could increase the failure rates

of tasks and the execution times of tasks and jobs [18]. Therefore, we believe that

it is very important to integrate an adaptive approach adjusting the timeout used to

detect the failures of TaskTrackers. In addition, if one can early detect the failures

of the TaskTracker nodes, one can reduce the failures rate of tasks in the Hadoop

framework.

In the sequel, we present our proposed methodologies to solve the aforemen-

tioned limitations of current Hadoop schedulers to early identify tasks failures and to

30

reschedule them accordingly. Furthermore, we present our approach to dynamically

track failures of TaskTrackers.

3.2 Task Failure Detection

In this section, we describe our task failure detection methodology alongside with our

evaluation approach and the obtained results.

3.2.1 Task Failure Detection Methodology

To overcome the limitations of Hadoop while tracking tasks’ failures, a possible solu-

tion could be to equip the Hadoop scheduler with mechanisms that enable the early

identification of failed tasks. In the following, we present an overview of our proposed

methodology to predict the failure of a task in Hadoop followed by a description of

each step.

General Overview

Figure 3.3 presents an overview of our proposed methodology to predict task schedul-

ing outcomes and to adjust scheduling decisions to prevent failure occurrences. First,

we collect traces of data about previously executed tasks and jobs in a Hadoop cluster.

We parse the obtained log files from the Hadoop cluster to extract the main attributes

of jobs and tasks. This step is necessary to analyze the correlations between tasks

attributes and tasks scheduling outcomes and profile tasks failures. Finally, we apply

statistical predictive learning techniques to build a tasks’ failures prediction algorithm.

The remainder of this section elaborates more on each of these steps.

31

Log
Files
Log
Files

Cluster
Log
Files

Job Attributes
Extraction

Task Attributes
Extraction

 Job/Task Failure Profiling

Predictive Failure
Algorithm

Task Failure PredictionCluster
 Environment

Figure 3.3: Task Failure Detection Methodology

Tasks/Jobs Attributes Extraction

Before starting the analysis of tasks’ failures, we collect data about previously executed

Hadoop tasks and jobs in a Hadoop cluster. To do so, we first run different workloads

including single and chained jobs on Amazon EMR Hadoop clusters. A chained

Hadoop job is composed of two or more Hadoop jobs. To get diverse workloads, we run

different types of (single) Hadoop jobs including WordCount, TeraGen, TeraSort [75].

Moreover, we run different chained jobs (sequential, parallel and mix chains) composed

of WordCount, TeraGen, TeraSort jobs to get a workload similar to the one in a real

world cluster. In addition, we vary the size of the running Hadoop jobs by changing

the number of map/reduce tasks in a job and the number of jobs in a chained job.

Using the collected log files, we perform the first step to extract attributes of

the executed jobs and tasks. This is in order to identify and investigate possible

correlations between the extracted attributes and the scheduling outcome of a task.

To do so, we first propose to classify task and job attributes into four main categories as

follows: Task/Job attributes = {Identification, Structure, Execution, Environment}.

Indeed, the proposed classification of attributes can give a description about the

internal structure of the tasks or jobs as well as the way they are executed on their

32

environment. For instance, the identification attributes include ID, priority, and type

of a task. The structural attributes represent the dependent running/finished/failed

tasks belonging to the same job. The execution attributes can include the execution

time, resources utilization (CPU, memory, bandwidth), execution type (local or non-

local), and scheduling outcome (either finished or failed) of the task. The environment

attributes describe the status of the node where to execute the tasks including the

running load (number of running map and reduce tasks), the status of the queue, etc.

Given the classification presented above, we collect the attributes of tasks and jobs

as described in Table 3.1.

Task/Job Failure Profiling

Given the collected data from the previous step, we analyze the dependencies between

job/task scheduling outcome and their attributes to identify a possible correlation.

We also carefully investigate the data of the failed tasks and jobs by mapping their

outcomes to their attributes. Next, we identify the relevant attributes that impact

the final scheduling outcome by applying the Spearman rank correlation [76]. Here,

we choose to use the Spearman correlation because it allows to rank and to provide a

measure of relationship between random variables; which is the case for our proposed

model to predict the failure of a given task.

33

Table 3.1: Jobs and Tasks Attributes

Attribute Description Rationale

Job/Task ID Immutable and unique identifier
for a job/task

Used to identify a job/task

Type Type of a task It represents the type of a
task: Map or Reduce

Priority Preemption type of a task/job Used to capture task/job pri-
ority to access resources

Locality/Execution
Type

Locality/Execution type of a
task

Used to capture the fact that
a task was launched local-
ly/speculatively or not

Execution Time Time between submission date
and date when task is finished/-
failed

Used to capture the execution
time of a task

Number Finished
and Failed Tasks

Number of finished and failed
tasks

Used to capture the propor-
tion of finished/failed tasks

Number Previous
Finished and Failed
Attempts

Number of previous finished and
failed attempts

Used to capture failure events
dependent on a task

Number of Resched-
ule Events

Number of reschedule events of a
failed task

Used to capture the number
of times that a failed task was
rescheduled

Number of Finished,
Failed and Running
Task TaskTracker

Number of finished, failed and
running tasks on TaskTracker

Used to capture failure events
on the same TaskTracker

Available Resources
on TaskTracker

Amount of available resources on
TaskTracker

Used to capture the avail-
ability of resources on Task-
Tracker

Total Number of
Tasks of a Job

Total number of tasks within a
job

Used to capture the distribu-
tion of tasks within the jobs

Used CPU/RAM/
HDFS R/W

Used CPU, RAM and disk space
for a task

Used to capture the usage of
resources

Final Status Final state on a scheduling life-
cycle

Used to describe the process-
ing outcome of a task/job

Task Failure Prediction

The next step in our methodology consists in using the collected data from previ-

ous steps and machine learning techniques to investigate the possibility to predict a

potential task failure, early on its occurrence. To this aim, we use several regression

34

and classification algorithms in R [77], a programming language used for statistical

computing, to build models including the General Linear Model (GLM), Boost, Neural

Network, Tree, Conditional Tree (CTree) and Random Forest [78]. We select these

algorithms because they showed good performance to predict anomalies in different

systems [79]. GLM is an extension of linear multiple regression for a single dependent

variable. It is widely used in regression analysis. Boost is a succession of iterative

models trained on a data set. In Boost, points misclassified by the previous model

are given more weight and the successive models are classified (weighted) according

to their success. The outputs of these models are combined using voting or averaging

to create a final model. Neural networks denote a set of interconnected layers of

nodes where the predictors are the input of the bottom layer and the forecasts are the

output of the top layer. The Decision Tree is a widely used classification model to

predict binary outcomes. CTree is an extension of the Decision Tree. Random Forest

is a set of interconnected Decision Trees that uses the majority voting to provide

classification (predicting, often binary, class label) or regression (predicting numerical

values) results [77].

The inputs for each model are the task attributes and the output is the schedul-

ing outcome of a task (either failed or finished). To develop the selected models, we

use the implementation provided in the statistical framework R and compare their

performance. The model having the best results will be used to implement the task

failure predictive algorithm. To train these models, we use different training and

testing data set collected over a fixed period of time of 10 minutes. Here, we should

mention that the training time is related to the steps of training process and not to

the complexity of the running jobs. Next, we apply 10-fold random cross validation

where each data set is randomly divided into ten folds. Nine folds are used as the

35

training set, and the remaining fold is used as the testing set. This is to measure the

accuracy, the precision, the recall and the error of the prediction models [77]. The

accuracy is TP+TN
TP+TN+FP+FN

, the precision is TP
TP+FP

, the recall is TP
TP+FN

, and the error

is FP+FN
TP+TN+FP+FN

, where TP is the number of true positives, TN is the number of

true negatives, FP is the number of false positives, and FN is the number of false

negatives.

Following the previously described steps, the machine learning models can pre-

dict the scheduling outcome of tasks (i.e., successful completion or failure) based

on information about the tasks attributes and the Hadoop cluster environment (i.e.,

availability of resources, failure occurrences in TaskTracker, network congestion). The

output of the proposed methodology, presented in Figure 3.3, is a predictive failure

algorithm. Overall, the task failure detection approach allows to early identify po-

tential failures that could affect the overall performance of the Hadoop scheduler.

However, it is highly dependent on the quality and the relevance of the training data

over time. Therefore, we decided to update the used data to train the models over

regular intervals from the created cluster in order to get new data and update the used

models accordingly. Algorithm 3.1 describes the steps followed to predict successes

or failures of scheduled tasks. The first step consists of collecting data about previ-

ously executed tasks and then analyzing the correlation between tasks attributes and

scheduling outcomes (lines 2 to 4). Next, we train the selected machine algorithms on

the collected logs and measure their performance in terms of accuracy, precision, recall

and time when applying a 10-fold cross validation step (lines 5 to 9). Thereafter, the

model giving the best performance results is selected to be integrated within Hadoop

(line 10). When there is a new task to be scheduled, data about this task will be

collected to serve as input to the predictive algorithm that will predict whether the

36

task will finish or fail (lines 13 to 16). The collected logs are updated for the proposed

predictive algorithm each 10 minutes (lines 1 and 11).

Alg. 3.1. Predictive Failure Algorithm

1: for (Each 10 minutes) do
2: logs = Collect-logs(Cluster)
3: /* Analyse correlations between task attributes and scheduling outcome */
4: Analyse-Correlation(logs)
5: /* Apply Machine Learning predictive models on collected data */
6: Machine-Learning(logs, models)
7: 10-fold-Cross-Validation(logs, models)
8: /* Measure accuracy, precision, recall, error and time of predictive models */
9: Performance = Measure-Performance(logs, models)

10: Model = Select-Model(models, Performance)
11: Update-logs(Cluster, logs)
12: /** Integrate the predictive model within the scheduler **/
13: while (There is a new task to be scheduled) do
14: Attributes = Collect-Attributes(Task, TaskTracker)
15: /* Selected predictive model will predict if task will be finished/failed */
16: Predicted-Status = Predict(Model, Task, Attributes)
17: end while
18: end for

3.2.2 Task Failure Detection Evaluation

In this section, we present our approach to evaluate the proposed methodology to

detect task failure in Hadoop along with the obtained results.

Experimental Design

We collect logs from the cluster and extract data related to 120,000 jobs and 300,000

tasks. We use the collected task attributes as inputs to the proposed failure prediction

algorithms. The output of these algorithms is a binary variable taking the value

“True” if a scheduled task succeeds and “False” if it fails. The collected data are

used to train and test the predictive models and we evaluate the performance of the

37

selected machine learning models. This step is performed for the map and reduce

tasks separately for the three studied schedulers (FIFO, Fair and Capacity). We

evaluate the performance of the selected models by applying a 10-fold random cross

validation to select the algorithm able to early identify the failure of a task with the

best accuracy, precision and execution time. We use different training rates of 10%,

30%, 50%, 70%, and 90% for the selected algorithms, described in Section 3.2.1. This

is to evaluate the performance of the models at different training rates and analyze

the impact of the training rate on their performance.

Experimental Results

First, we analyze the correlation between task attributes and the scheduling outcomes

of the collected map and reduce tasks. We find that there is a strong correlation be-

tween the the number of running/finished/failed tasks on a TaskTracker, the locality of

the tasks, the number of previous finished/failed attempts of a task, and the schedul-

ing outcome of a task. Also, we notice that tasks that experience multiple failure

events have a high probability to fail in the future. In other terms, the failed tasks are

characterized by multiple past failed previous attempts and many concurrent tasks

experiencing different failures.

We present the obtained performance results of the studied predictive algorithms

when applied to the FIFO, Fair, and Capacity schedulers in Tables 3.2, 3.3, and 3.4,

respectively. Overall, we find that Random Forest achieves the best results in terms of

precision, recall, accuracy, and execution time for the three studied schedulers, when

compared to the other predictive models. These results can be explained by the fact

that Random Forest uses the majority voting on decision trees to generate results and

hence it is robust to noise and can provide highly accurate predictions [77]. For map

38

tasks, the Random Forest model outperforms the other algorithms with an accuracy

up to 88.5%, a precision up to 87.6%, a recall up to 93.4%, and an execution time

of 29.33 ms. For reduce tasks, it achieves an accuracy up to 94.5%, a precision up

to 97.4%, a recall up to 96.5% and an execution time up to 38.41 ms. In general, we

observed that the results for the studied schedulers follow the same trend.

Table 3.2: Accuracy, Precision, Recall (%) and Time (ms): FIFO Scheduler

Task Scheduler FIFO

M
a
p

T
a
sk

Algorithm Accuracy Precision Recall Time
Tree 62.8 79.5 70.4 14.43
Boost 73.5 80.6 71.3 190.4
GLM 63.4 86.3 74.3 10.94
CTree 64.3 84.6 68.5 16.14
R.F. 85.9 87.6 93.4 25.14
N.N. 64.7 86.4 74.3 63.51

R
e
d
u
c
e
T
a
sk

Algorithm Accuracy Precision Recall Time
Tree 74.5 84.1 67.4 15.13
Boost 75.2 84.5 73.5 314.15
GLM 63.4 89.2 63.5 19.73
CTree 80.1 91.2 79.8 19.85
R.F. 94.5 97.4 93.4 38.41
N.N. 71.4 81.9 74.4 85.14

R.F. = Random Forest, N.N. = Neural Network

While using different training rates, we analyze the performance of the selected

predictive algorithms. Overall, we observe that the performance of the FIFO, Fair, and

Capacity schedulers are following the same trend in terms of accuracy, precision, and

recall. Hence, we only discuss the results of one scheduler: Fair scheduler. Random

Forest outperforms the other predictive algorithms for the map and reduce tasks. In

addition, we can report that the accuracy, precision, and recall values increase when

the training rate increases, and can reach 83.9%, 94.3%, and 94.3%, respectively,

under 90% training rate for the map tasks. The obtained results for the reduce tasks

show that Random Forest is characterized by the highest accuracy, precision, and

39

Table 3.3: Accuracy, Precision, Recall (%) and Time (ms): Fair Scheduler

Task Scheduler Fair

M
a
p

T
a
sk

Algorithm Accuracy Precision Recall Time
Tree 68.6 75.8 63.4 10.02
Boost 67.3 84.2 69.7 201.4
GLM 65.6 89.5 65.4 13.54
CTree 69.4 84.4 68.3 17.34
R.F. 79.9 81.8 93.5 23.9
N.N. 64.8 86.3 74.1 63.61

R
e
d
u
c
e
T
a
sk

Algorithm Accuracy Precision Recall Time
Tree 74.5 85.4 74.0 15.23
Boost 84.4 81.7 74.7 268.77
GLM 77.2 94.3 71.3 19.19
CTree 82.4 88.4 79.4 20.52
R.F. 94.12 92.3 96.5 29.77
N.N. 84.3 85.4 75.6 98.14

R.F. = Random Forest, N.N. = Neural Network

recall values, 93.4%, 97.8%, and 93.9%, respectively, with a training rate of 90% .

Consequently, we can conclude that the Random Forest algorithm depends on

the training rate, and the higher is this training rate, the better would be its per-

formance. In light of these results, we select Random Forest for the implementation

of our proposed task failure prediction methodology, presented in Section 3.2.1, and

retrain its model to collect data over regular interval of times (e.g., 10 minutes).

Summary: To address the limitations of Hadoop scheduler to detect failures of

tasks, we presented a methodology for task failure detection using machine learning

algorithms. Overall, we found that the Random Forest algorithm outperforms other

algorithms in terms of accuracy, precision, and recall. Next, we proposed a predic-

tive algorithm to early identify the failures of tasks and adjust the decisions of the

Hadoop scheduler based on collected data about the scheduled tasks and machine

learning algorithm (Random Forest). However, given the dynamic nature of cloud

40

Table 3.4: Accuracy, Precision, Recall (%) and Time (ms): Capacity Scheduler

Task Scheduler Capacity

M
a
p

T
a
sk

Algorithm Accuracy Precision Recall Time
Tree 64.5 83.3 71.2 62.14
Boost 75.4 83.7 79.5 295.44
GLM 65.2 84.7 65.8 19.14
CTree 64.9 80.9 64.2 20.51
R.F. 88.5 83.4 89.9 29.33
N.N. 72.1 85.4 79.3 63.84

R
e
d
u
c
e
T
a
sk

Algorithm Accuracy Precision Recall Time
Tree 61.4 74.3 65.4 14.15
Boost 64.4 85.4 74.7 208.98
GLM 67.8 83.7 75.3 25.44
CTree 60.5 81.4 60.4 27.18
R.F. 82.3 92.5 89.4 30.15
N.N. 77.4 90.6 81.4 90.4

R.F. = Random Forest, N.N. = Neural Network

environments, the Hadoop scheduler can generate poor scheduling decisions that can

affect the failures rates and performance of jobs running on Hadoop. Therefore, we

present in the next section a methodology that builds on these findings to enable the

early identification of failed tasks and a quick rescheduling of these tasks on available

nodes.

3.3 Adaptive Scheduling

Building on the results of previous section on task failure detection, we now present

an adaptive approach to select scheduling policies and avoid poor scheduling decisions

in Hadoop scheduler.

41

3.3.1 Adaptive Scheduling Methodology

In the sequel, we present an overview of our proposed methodology to generate adap-

tive scheduling decisions in Hadoop followed by a description of each step.

General Overview

In the previous section, we presented a methodology that enables the early iden-

tification of tasks’ failures based on collected data about Hadoop environment and

machine learning algorithm (i.e., Random Forest). More precisely, our methodology

can predict whether a task will eventually finish or it will fail. Tasks predicted to

be finished will be executed whereas, tasks predicted to fail will be rescheduled ac-

cording to the events occurring in the scheduler’s environment. However, given the

dynamic nature of Hadoop environment and the wide range of constraints and aspects

involved in Hadoop scheduler, it is important to propose efficient scheduling strate-

gies to handle the unpredictable changes in Hadoop scheduler environments and avoid

poor scheduling decisions.

Figure 3.4 depicts a new methodology to model and train adaptive scheduling

algorithms for Hadoop. To this aim, we consider the scheduling decisions in Hadoop as

an MDP model where the scheduling actions are the transitions between the different

states in this model and each transition from one state to another one is associated

with a reward. Second, we propose to use the reinforcement learning algorithms to

compare the reward associated with all possible actions, to select a possible scheduling

strategy for the submitted task. The output of this methodology is a scheduling

learning algorithm and a set of scheduling policies for the Hadoop scheduler. The

remainder of this section elaborates more on each of these steps.

42

Scheduling
Constraints

Scheduling
Policies

Scheduling
Learning Algorithm

Cluster
Environment

Scheduling Policies Modeling

Reinforcement Algorithms
Training

Predictive
Failure Algorithm

Figure 3.4: Adaptive Scheduling Methodology

Scheduling Policies Modeling

The Hadoop scheduler requires adaptive scheduling strategies to handle the unpre-

dictable events occurring in nodes where tasks are executed and reduce the cost asso-

ciated with tasks execution. To this aim, we consider the scheduling decision process

in the scheduler as an MDP [80]. Indeed, MDPs are widely used to model different

decisions procedures where the behavior of the systems depend on random factors and

are under the control of a decision maker, which is the case for a Hadoop cluster. In

addition, MDPs showed good performance when applied to solve decision problems

in cloud environment, e.g., resources allocation [81] or virtual machines scheduling

problems [22]. Given the past successes with MDP models in cloud systems, we be-

lieve that MDP model can help selecting the possible actions from the current state

and observing the derived reward/cost from each transition in order to find a better

scheduling decision in Hadoop.

More concretely, we consider the scheduling and execution of tasks as a life cycle

in which the task progresses through this life cycle and goes from one state to another.

For instance, a task can go through the following states in the MDP model: submitted,

scheduled, waiting, executed, finished, and failed. We consider the mapping between

43

these states over the possible actions to find an appropriate scheduling policy as the

process of the scheduling decision selection in Hadoop scheduler. Indeed, this selection

is based on the derived reward for the selected action when applied on a specific

state. The modeling of the scheduling decision can be described using Equation 3.3

as follows [22]:

π∗ = argmax
π

E[
A∑
t=1

R(S(t), A(t), S(t+1))|π] (3.3)

where π∗ represents the policy to be applied from one state S(t) to another S(t+1), and

R contains the earned reward by following the selected action A(t). Following this

approach, our proposed solution can estimate and compare all possible rewards that

are earned when applying the actions from a given task’s state. Hence, it can select

the action that could reduce the risk of failure for each submitted task.

Reinforcement Algorithms Training

Given the context of adaptive policy-driven scheduling, we opt for reinforcement learn-

ing algorithms [82] to implement the proposed MDP model for Hadoop scheduler.

Indeed, the reinforcement learning techniques consist of learning from past experi-

ences (e.g., scheduling policies) to predict potential future actions that can improve a

given system’s performance. Furthermore, they allow to consider the dynamic events

occurring in a system’s environment and to adjust the decisions making procedures

under uncertainty. They showed good performance when applied to solve several

problems in cloud computing systems including resource allocation [83], selection of

virtual machines [84], job scheduling [85], and virtual machines consolidation [86].

Reinforcement learning has been successfully used to improve performance of such

problems similar to the scheduling decisions modeling in the cloud.

44

Different reinforcement learning algorithms exist in the open literature includ-

ing the Temporal Difference (TD) learning [80], Q-Learning [24], and SARSA (State-

Action-Reward-State-Action) [25] that are mostly frequently used to train several

systems in cloud systems [83]. Van et al. [87] analyzed the performance of these three

algorithms in terms of state space exploration (the number of times the system changes

its state after applying an action). They reported that Q-Learning and SARSA al-

gorithms outperform the TD-learning algorithm. This can be explained by the fact

that the TD-learning cannot easily exploit particular action sequences because it uses

only one state network. Q-Learning is an off-policy reinforcement learning algorithm

updating a Q-function according to a random policy that maximizes the expected

reward. Q-function is an action-value function to estimate the expected utility of

taking a given action in a given state. SARSA is an on-policy reinforcement learn-

ing algorithm selecting the next state and action according to a random policy and

updating the Q-function accordingly.

The major difference between SARSA and Q-Learning, is that the maximum

reward for the next state is not necessarily used for updating the Q-values. The proce-

dural form of the Q-Learning and SARSA algorithms are given in the Algorithms 3.2

and 3.3, respectively, where α represents the learning rate (α in [0,1]) and γ is the

discount factor (γ in [0,1]).

For the Q-Learning algorithm (Algorithm 3.2), the value of Q-function (Q(s,a))

is initialized arbitrary (line 1). Then, the algorithm selects an action among the

possible ones from the initial state (s) and observe the obtained reward (r) and the

new state (s’) (lines 3 to 6). Here, the algorithm selects the action maximizing the

value of the Q-function that will be updated accordingly (lines 7 to 8). The algorithm

repeats steps from line 5 to 8 until reaching the final state.

45

Alg. 3.2. Q-Learning Algorithm [24]

1: Initialize Q(s,a) arbitrary
2: for Repeat for each episode do
3: Initialize s
4: for each step of episode until s is terminal do
5: Choose a from s using policy derived from Q (e.g., ε-greedy)
6: Take action a then observe r and s’
7: Q(s,a) = Q(s,a) + α * [r(s,a,s’) + γ * max(Q(s’, a’)) - Q(s,a)]
8: s = s’
9: end for

10: end for

For the SARSA algorithm (Algorithm 3.3), the value of Q-function (Q(s,a)) is

initialized arbitrary then, the algorithm initializes the first state and selects a possible

action (a) (lines 1 to 5). Next, the Q-function, new state (s’), and new action values

will be updated accordingly (lines 6 to 9).

Alg. 3.3. SARSA Algorithm [25]

1: Initialize Q(s,a) arbitrary
2: for Repeat for each episode do
3: Initialize s
4: for each step of episode until s is terminal do
5: Take action a then observe r and s’
6: Choose a and s’ using policy derived from Q (e.g., ε-greedy)
7: Q(s,a) = Q(s,a) + α * [r(s,a,s’) + γ * Q(s’, a’) - Q(s,a)]
8: s = s’
9: a = a’

10: end for
11: end for

Given the above facts, we choose to implement the proposed adaptive approach

to select scheduling actions for the MDP model in Hadoop based on the Q-Learning

and SARSA algorithms. More concretely, we evaluate the performance of these two

algorithms in terms of the number of explored policies and successful policies (policies

leading to task execution success). Next, we integrate the algorithm providing the

best results within Hadoop scheduler. In the sequel, we present in Algorithm 3.4

46

the different steps followed by our proposed approach to model adaptive scheduling

policies for Hadoop to avoid poor scheduling decisions and reduce tasks’ failures.

Given a new task to be submitted, the proposed algorithm (Algorithm 3.4)

collects data about the current status of the Hadoop cluster, then it selects which

action to proceed given its current state (lines 1 to 4). According to the obtained

reward, the algorithm selects a candidate policy to be applied on the new scheduled

tasks (e.g., process, reschedule, kill) as shown by lines 4 to 6. The obtained scheduling

outcome will be stored in a database (lines 8 to 9). Here, we should mention that

a submitted task can go through the following states: submitted, scheduled, waiting,

executed, finished, and failed when the scheduler applies one of the following actions:

schedule, wait, reschedule, process, finish, kill, and fail as shown in Figure 3.5.

submitted

scheduled

waiting

executed

finished

failed

schedule

wait reschedule

wait

process finish

fail/kill

Figure 3.5: Life Cycle of a Task

After collecting the data from the cluster environment, the Select-Action(Task,

State) function selects a possible action to be applied on a task given its current state.

Next, the MDP-Solver(Task, State, Action) function does the mapping between the

selected action and the current state in order to calculate the obtained reward while

the MDP-Solver(Task, State, Action) function calculates the associated reward for the

submitted task given its current state and the selected action to be applied. There-

after, the Select-Policy(Task, State, Action, data) function will select the appropriate

47

policy to be processed by the scheduler. In general, a policy is characterized by the fol-

lowing format: <ID Task, Type, Locality, Current State, Action, Next State, Reward,

TaskTracker, Outcome>.

Alg. 3.4. Scheduling Learning Algorithm

1: while (There is a new task to be scheduled) do
2: data = Collect-Env(Cluster)
3: /* Calculate reward associated with action using Q-Learning or SARSA */
4: Action = Select-Action(Task, State)
5: Reward = MDP-Solver(Task, State, Action)
6: Policy = Select-Policy(Task, State, Action, data)
7: /* Apply the scheduling policy and update the scheduling policies rules */
8: Outcome = Apply-Policy(Task, State, Action)
9: Update-Policies-Rules(Task, State, Action, Policy, Outcome)

10: end while

In the sequel, we present examples of scheduling policies in order to better illus-

trate the steps followed in Algorithm 3.4. Given a new submitted map task charac-

terized by ID T that is on the scheduled state, the scheduler decides that it is possible

to process it on the selected TaskTracker, Selected TT, where its data is located.

This is because it has enough resources to process the scheduled task; according to

the collected data from the cluster environment. Therefore, the generated scheduling

policy will be: <ID T, Map, Local, Scheduled, Process, Executed, +1, Selected TT,

Running>. Here, the MDP-Solver() function attributes a positive reward (+1) since

the task is running and not rescheduled on the queue. However, when the scheduler

decides to reschedule this task and to send it to the queue because the Selected TT

does not have enough resources, the scheduling policy will be: <ID T, Map, Local,

Scheduled, Wait, Waiting, -1, Selected TT, Rescheduled>. Here, the obtained reward

has a negative value (-1) because the task will experience more waiting time in the

queue, which can affect the total execution time of the job to which the task belongs.

48

3.3.2 Adaptive Scheduling Evaluation

In this section, we present our approach to evaluate the proposed scheduling method-

ology and the obtained results.

Experimental Design

We train the SARSA and Q-Learning algorithms while scheduling 22,000 tasks (map

and reduce tasks) to evaluate their performances in terms of the number of explored

policies and the resulting outcomes when applying policies (a finished task or a failed

task). To this aim, we implement a script to submit 1500 different tasks to be sched-

uled each 5 minutes in Hadoop. Next, we implement another script to compute the

number of explored policies and their corresponding outcomes for each algorithm when

integrated separately to the Hadoop scheduler.

Using these collected data, we define a “policy success rate” metric as the ratio

between the number of policies leading to a finished task over the total number of

explored polices. We measure this metric in each interval, when submitting new

tasks to be scheduled, in order to assess how good is the integrated algorithm. More

concretely, the number of explored policies and the policy success rate metrics allow

to identify the algorithm characterized by a higher number of explored policies as

well as a higher success rate. This is in order to select the algorithm allowing Hadoop

scheduler to increase the number of finished tasks and avoid poor scheduling decisions.

We repeat this experiment 30 times in order to evaluate the variance of the two

integrated algorithms in Hadoop scheduler over time.

While performing the experiments, we collect and store data about the used

scheduling policies and their corresponding outcomes in a database. To characterize

the explored policies in the two algorithms, we collect the following attributes: policy

49

ID, locality/execution type (local or non-local), time to find the policy (time to access

the database and find the policy), selected TaskTracker, policy reward (reward col-

lected from the proposed model), number of speculative executions, number of tasks

pending in a queue, policy Q-Value (obtained according to the Q-Learning or SARSA

algorithm), load (number of finished, failed, killed, struggling and running tasks),

available slots on selected TaskTracker, requested slots on selected TaskTracker, used

slots on selected TaskTracker, frequency of policy usage, frequency of policy posi-

tive usage (policy leading to task success), frequency of policy negative usage (policy

leading to task failure) and policy outcome (task final status; finished or failed).

Overall, we select these attributes because they represent the most important

metrics describing the used policies that we could collect from the scheduler envi-

ronment. To better understand the relationship between these metrics, we perform

a multi-collinearity analysis, which checks the dependencies between variables in a

given model, by computing their corresponding Variance Inflation Factor (VIF) val-

ues [88]. Next, a threshold value of 5 is used to categorize these metrics into two

groups; correlated and non-correlated ones [88]. Specifically, policy attributes with

a VIF value higher than 5 are considered as correlated. While the VIF values can

vary between 0 and 10, we selected a threshold value of 5 following the recommen-

dations provided in [88] [89]. Furthermore, we checked the obtained results when

using different threshold values (e.g., 4, 6 and 7) and we found out that they provide

the same correlation results. Moreover, we apply another metric in order to assess

the importance of these metrics on the scheduling policies. This is by applying the

MeanDecreaseGini criteria that estimates the importance of variables on the output

of a given model [88]. Metrics with higher values are considered to be the ones having

more impact on the scheduling outcome of the policy.

50

To select the appropriate policy when there is a new submitted task for the

scheduler, we deploy a procedure to select the policy to apply when there is a new

submitted task. This procedure uses data about this task and the characteristics of

the running workload in order to select the policy having the greatest value of positive

usage, i.e., the highest probability of success.

Experimental Results

We evaluate the performance of the SARSA and Q-Learning algorithms while schedul-

ing tasks over time. Figures 3.6 and 3.7 present the obtained results of the two algo-

rithms in terms of the number of explored policies and policy success rate, respectively,

for 30 experiments with a confidence level of 95%.

0 20 40 60 80
0

1,000

2,000

3,000

4,000

Time (minutes)

N
u
m
b
er

of
E
x
p
lo
re
d
P
ol
ic
ie
s

SARSA
Q-Learning

Figure 3.6: Number of Explored Policies

The obtained cumulative performance shows that the SARSA algorithm out-

performs the Q-Learning algorithm in terms of the number of generated policies. For

instance, Figure 3.6 shows that the SARSA algorithm explores 2896 policies, whereas

51

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

Time (minutes)

P
ol
ic
y
S
u
cc
es
s
R
at
e

SARSA
Q-Learning

Figure 3.7: Policy Success Rate

the Q-Learning explores 1345 in 20 minutes. Furthermore, we found out that Q-

Learning is characterized by a success rate of 0.67%, while SARSA achieves only a

success rate of 0.52% in 20 minutes as shown in Figure 3.7. We can explain these

expected results by the fact that the SARSA algorithm uses a random function to

select the next state and action, and hence it can explore more policies. While the Q-

Learning algorithm selects the next possible action using a function that maximizes

the reward of the next action, and hence it can increase its success rate compared

to the SARSA algorithm. In addition, we observed that the two algorithms provide

almost the same performance after 30 minutes, meaning that they explored almost

the same number of policies. This is because the two algorithms reach the maxi-

mum number of possible policies for the submitted tasks and the scheduler is mostly

re-using the previously generated scheduling.

On the other hand, we investigate the correlation between the policy attributes

and their corresponding outcomes using the VIF variable values. Here, we should

52

mention that attributes having VIF values greater than 5 are not considered in the

analysis, as discussed earlier [88]. The obtained results show that the following at-

tributes (along with their VIF values) including the policy reward (0.45), selected

TaskTracker (1.34), Q-Value (0.83), load (1.41), available slots (2.07), selected slots

(2.42), requested slots (2.58), used slots (2.25), frequency of policy positive (3.18)/

negative usage (3.24) have a strong correlation with the policy outcome. Next, the

obtained “MeanDecreaseGini” scores of the policy attributes show that the most im-

portant attributes affecting the policy outcome (success or failure) can be ordered

as follow: load, available/selected slots on selected TaskTracker, policy Q-value, fre-

quency of policy positive/negative usage, policy reward, locality/execution type, and

number of tasks in queue. Consequently, we decide to train our proposed scheduling

algorithm for Hadoop using these selected attributes (those affecting a policy outcome

most).

Given the performance of the two algorithms, we decide to train the proposed

scheduling algorithm using the SARSA algorithm at the beginning of the experiments

(to explore more scheduling policies) and then to switch to the Q-Learning algorithm

(to guarantee that the scheduler explores more policies and selects the policy that

gives a maximum reward). Concretely, we use the SARSA algorithm for a given

interval of time; because we found that after 30 minutes, the two algorithms have

almost the same results in terms of number of generated policies as shown in

Figure 3.7. Thereafter, we switch and run the Q-Learning algorithm to allow the

Hadoop scheduler selecting policies that can help increasing the number of finished

tasks.

53

Summary: In this section, we presented a methodology for modeling adap-

tive scheduling decisions for Hadoop to reduce its failures rate and avoid making

poor scheduling decisions. Our proposed methodology allows the Hadoop scheduler

to select appropriate scheduling strategies that minimize the risk of failures for the

submitted tasks. However, given the impact of TaskTrackers’ failures on the execution

of tasks, the scheduler still generates poor scheduling decisions and cannot resched-

ule tasks accordingly because of the fixed heartbeat-based approach used in Hadoop

to track active nodes. Therefore, we present in the next section a methodology to

dynamically control the communication between the TaskTrackers and JobTracker in

order to quickly identify nodes’ failures.

3.4 TaskTracker Failure Detection

In this section, we describe our TaskTracker failure detection methodology alongside

with our evaluation approach and the obtained results.

3.4.1 TaskTracker Failure Detection Methodology

In the sequel, we present our proposed methodology to early identify failures of Task-

Trackers in Hadoop followed by a description of each of its steps.

General Overview

Figure 3.8 presents our proposed methodology to dynamically track the failures of

TaskTrackers in Hadoop. Given data about recently received heartbeat messages

from TaskTrackers, the proposed methodology analyzes these messages and dynam-

ically estimates the arrival time of next heartbeats based on failure occurrences on

the TaskTrackers. Specifically, it adjusts the timeout interval at which a TaskTracker

54

node is considered as dead. When a Hadoop cluster experiences many TaskTracker

failures, it is expected that the heartbeats will arrive with a delay to the JobTracker.

Hence, our proposed methodology can notify the scheduler to shorten the timeout

at which it controls the communication between the JobTracker and TaskTrackers.

For this goal, the first step in our methodology is the analysis of previously received

heartbeat messages in the JobTracker. This step is necessary to find possible correla-

tions between the time of sending the heartbeats and the failures occurrences in the

TaskTrackers. Next, we propose to apply existing algorithms from the network field

to adjust the time to detect TaskTrackers failures. Following this methodology, the

Hadoop scheduler can quickly detect TaskTrackers failures and avoid assigning tasks

to dead nodes and resources wastage, and hence reduce task failure rates.

Log
Files
Log
Files

Cluster
Log
Files

Heartbeats Analysis
and Estimation

TaskTracker Failure Detection

Cluster
 Environment

Self-Tuning Failure
Detection Algorithm

Figure 3.8: TaskTracker Failure Detection Methodology

Heartbeats Analysis and Estimation

The first step in the proposed methodology is to collect data about the previously

received heartbeat messages from the cluster log files. Next, we perform an analysis to

find a possible correlation between the failures of the TaskTrackers and the time of the

received heartbeat messages. For instance, we investigate the impact of TaskTrackers

55

failures, over time, on the delay to receive the heartbeats by the JobTracker and

timeout interval at which TaskTracker is considered as dead.

TaskTracker Failure Detection

The second step in our proposed methodology is to implement an algorithm to dy-

namically detect the failures of the TaskTrackers and adjust the timeout interval of

the JobTracker. For this purpose, we use four well known algorithms from the net-

work field: Chen Failure Detector (Chen-FD) [26], Bertier Failure Detector (Bertier-

FD) [27], φ Failure Detector (φ-FD) [28] and Self-tuning Failure Detector (SFD) [29].

We choose to use these algorithms because they have been successfully applied in

the network field to dynamically detect failures of nodes. Indeed, they are used to

solve the problem of message synchronization between nodes in a network and they

showed good performance in reducing the number of false failure detections [29]. In

the sequel, we briefly describe these algorithms.

Chen Failure Detector According to Chen et al. [26], the expected arrival time

of the next heartbeat message from a TaskTracker can be estimated by [26]:

EA(k+1) =
1

n

k∑
i=k−n−1

(Ai −∆i × i) + (k + 1)∆i (3.4)

where the JobTracker received n heartbeat messages from the TaskTracker denoted

by m1, m2, ..., mn. Their actual receiving times are A1, A2,..., An according to

the JobTracker’s local clock. ∆i is the sending interval of heartbeat messages. This

technique provides an estimation for the expected arrival time of the next heartbeat

message based on a constant safety margin. Typical values of the safety margin are

between 0 and 1 [26]. Then, the arrival time of the next heartbeat message τ (k+1) is

56

expressed in terms of EA(k+1) and a constant safety margin α as follows:

τ(k+1) = α + EA(k+1) (3.5)

Bertier Failure Detector Bertier et al. [27] build on the description of the Chen

FD approach and propose to update the safety margin α based on the variable error

in the last estimation as follows [27]:

errork = Ak − EAk − delayk, (3.6)

delay(k+1) = delayk + γ × errork, (3.7)

var(k+1) = vark + γ × (|errork| − vark), (3.8)

α(k+1) = β × delay(k+1) + φ× vark, (3.9)

and

τ(k+1) = EA(k+1) + α(k+1) (3.10)

In the previous equations, γ represents the importance of the new measure with respect

to the previous ones, the delay represents the estimate margin and the var represents

the magnitude of errors. The β and φ variables are used to adjust the parameter var.

Based on [27], the β, φ and γ variables can be defined by the following typical values:

1, 4 and 0.1, respectively.

φ Failure Detector Hayashibara et al. [28] propose φ FD that provides update

information for the heartbeat messages sending at continuous interval. The value of

57

φ is calculated as follows [28]:

φ(tnow) = − lg Plater(tnow − Tlast), (3.11)

Here,

Plater(t) =
1

σ
√

2π

∫ +∞

t

e−
(x−µ)2

2σ2 dx = 1− F (t), (3.12)

where T last represents the time of receiving of the recent heartbeat, tnow represents

the current time, P later(t) represents the probability of receiving a heartbeat more

than t times in the future. µ and σ2 represent the mean and variance parameters of

the cumulative distribution function of a normal distribution F(t). µ and σ2 values

are estimated based on data collected from a sampling window over time. Finally,

the values of φ for each TaskTracker will be averaged and the obtained value will be

compared with a threshold Φ, which is given by the developer. Finally, the interval

of sending heartbeats will be updated accordingly.

Self-Tuning Failure Detector Xiong et al. [29] proposed a self tuning failure

detector that adjusts the next heartbeat message freshness point τ (k+1) based on

collected information from the environment as follows [29]:

τ(k+1) = SM(k+1) + EA(k+1), (3.13)

where EA(k+1) represents the expected arrival time of the next heartbeat message as

defined in Chen-FD [26]. SM (k+1) is the dynamic safety margin that can be defined

as follows [29]:

SM(k+1) = SMk + Satk
{
QoS,QoS

}
× α, (3.14)

58

here, the α variable can have a value between 0 and 1 (α ∈ (0, 1)) as defined in

Chen-FD [26] and the Satk variable can be defined as follows [29]:

Satk
{
QoS,QoS

}
=




±β, QoS > QoS;

0, QoS ≤ QoS.
(3.15)

According to the previous equation, Satk
{
QoS,QoS

}
can have β, −β, or 0 value. The

parameter β represents the constant adjusting rate and it can be dynamically chosen

such that the value of β ∈ (0, 1). The procedure used to adjust the parameters of

SFD is described in Algorithm 3.5 [29]:

Alg. 3.5. A Method to Adjust Parameters in SFD [29]

1: Begin
2: Initialization
3: TD: Set the detection time
4: MR: Set the mistake rate
5: Set the initial safety margin value for SM1

6: Set the constant parameters α and β
7: Step 1: Get the relevant data
8: get the output QoS(TD, MR)
9: Step 2: Get the feedback information

10: If TD > TD and MR < MR then
11: Satk

{
QoS,QoS

}
= β;

12: endif
13: If TD < TD, MR < MR then
14: Satk

{
QoS,QoS

}
= 0;

15: endif
16: If TD < TD, MR > MR then
17: Satk

{
QoS,QoS

}
= -β;

18: endif
19: If TD > TD, MR > MR then
20: this SFD cannot get high QoS requirements and goes to line 25
21: endif
22: Step 3: Adjust parameters
23: Send Satk

{
QoS,QoS

}
to the SFD

24: Adjust SFD relevant parameters based on the value of Satk
{
QoS,QoS

}
25: End

59

We adapt the existing implementations of these algorithms in Hadoop sched-

uler to quickly detect the failures of TaskTrackers. Based on information about re-

cently received heartbeats messages and TaskTracker nodes failure occurrences, the

four algorithms can adjust the interval timeout at which the JobTracker considers

a TaskTracker as dead. More precisely, these algorithms use the equations for each

algorithm to estimate the expected arrival times of future heartbeat messages based

on information about the arrival time of previously received ones. Next, we evaluate

the performance of the four algorithms in terms of detection time of the TaskTracker

failures over time when integrated in the Hadoop scheduler. We select the algorithm

providing the shortest time to quickly detect TaskTrackers’ failures. Algorithm 3.6

describes the steps followed by our proposed methodology to quickly detect Task-

Trackers’ failures and adjust the sending of heartbeats between the JobTracker and

TaskTrackers. We first start by collecting data about previously received heartbeat

messages from TaskTrackers as shown by line 1 in Algorithm 3.6. Next, these col-

lected data will be used as inputs to the four selected algorithm to measure their

performance results in terms of detection times and mistake rates over time. The

algorithm providing the best results will be integrated within Hadoop to dynamically

adjust the timeout interval values (lines 2 to 7). For each new interval of commu-

nication, the integrated algorithm estimates the expected arrival times of heartbeat

messages from the TaskTrackers and notifies the scheduler about the new value of the

timeout interval to decide whether a TaskTracker node is dead or not (lines 8 to 14).

3.4.2 TaskTracker Failure Detection Evaluation

In this section, we present our approach to evaluate the proposed methodology to

detect TaskTracker failures in Hadoop along with the obtained results.

60

Alg. 3.6. Self-Tuning Failure Detection Algorithm

1: HB-data = Collect-data(TaskTracker, heartbeats)
2: /* Apply the algorithms to control the communication between JobTracker-

TaskTrackers */
3: Adaptive-Algorithms(HB-data, algorithms)
4: Performance = Measure-Performance(algorithms)
5: /* Select Algorithm giving best results (detection time and mistake rate) */
6: Algorithm = Select-Model(algorithms, Performance)
7: /** Integrate the adaptive algorithm within the scheduler **/
8: while (For each new interval time of communication) do
9: HB-next-arrival = Estimate-arrival(Algorithm, TaskTrackers, HB-data)

10: HB-median= Get-Median(TaskTrackers, HB-next-arrival)
11: /* Update the next interval timeout of the following communication */
12: Update-Communication(JobTracker, TaskTrackers, HB-median)
13: Notify-Scheduler(JobTracker, TaskTrackers, HB-median)
14: end while

Experimental Design

We evaluate the performance of the four selected algorithm, described in Section 3.4.1,

when integrated within Hadoop and the basic algorithm used in Hadoop to track the

failures of TaskTrackers. According to [29], the detection time (TD) and the mis-

take rate (MR) represent the most important parameters that can describe the fault-

tolerance schemes in distributed systems [29]. In this context, Xiong et al. [29] claim

that there is a correlation between the TD and the MR. For instance, a shorter TD

is likely to translate into low/high precision. Therefore, we will evaluate the com-

promise between the TD and the MR in our proposed methodology. More precisely,

we inject different types of failures to the TaskTrackers (e.g., slowing down/dropping

the network, killing/suspending TaskTrackers) and measure the TD and the MR of

the selected algorithms while catching these failures over time. We inject the fail-

ures at regular times over the communication intervals between the JobTracker and

TaskTrackers (e.g., 2 minutes after the beginning of a new interval). In the following

interval at which we inject failures, we implement a procedure to revive dead nodes

61

while changing the time of the recovery of TaskTrackers (e.g., 1, 2 and 3 minutes after

the beginning of a new interval). This is in order to evaluate the impact of different

recovery times on the mistake rate (i.e., the number of times that the scheduler con-

siders an alive node as dead). In addition, we vary the failure rates to better assess

the performance of the selected algorithms in terms of detection times and mistake

rates under different amounts of injected failures. The injected failure rates are 10%,

20%, 30%, 40%, and 50% of TaskTrackers.

Experimental Results

We analyze the performance of the four selected algorithms to detect TaskTrackers

failures compared to the basic algorithm used in Hadoop. Figures 3.9 and 3.10 present

the obtained performance results of the algorithms. The two figures show the variation

of the algorithms in terms of detection time over time when the same number of failures

are injected. Here, we only discuss the results of the algorithms under 30%, and 50%

TaskTracker failure rates because the selected algorithms follow the same trend for

the other training rates (e.g., 10%, 20%, and 40%).

Overall, we report that the SFD algorithm outperforms the other algorithms;

it is characterized by a smaller detection delay over time for the same number of

injected failures. For instance, the basic algorithm is providing the worst performance

(8 minutes as detection time). Moreover, we notice that the Bertier-FD and the φ-FD

algorithms are characterized by detection times very close to that of the basic Hadoop

algorithm, under different failure rates. We can explain these results by the fact that

these two algorithms rely and depend on the amount of collected information about

heartbeat messages to identify failures of nodes. To compute a more adaptive normal

distribution function, the φ-FD requires a large window size to obtain more data

62

0 1 2 3 4 5 6 7

2

4

6

8

10

Interval Time Number

D
et
ec
ti
on

T
im

e
(m

in
)

Basic FD φ FD Bertier FD
Chen FD SFD

Figure 3.9: Detection Time under 30% Failure rate

for the normal distribution function. However, collecting more data will negatively

impact the detection time and the overall performance of Hadoop scheduler. The

Bertier-FD algorithm is characterized by functions that do not tune its parameters.

Hence, the window size of data does not affect the behavior of the algorithm over time

and cannot reduce its detection time.

The SFD algorithm is providing the best performance when compared to the

other algorithms. Furthermore, the performance of the Chen-FD algorithm is close

to that of SFD. This is because these two algorithms are using the same function to

estimate the expected arrival time of the next heartbeat as explained in Algorithm 3.5.

The main difference between the two algorithms is the function used to update the

safety margin. While the SFD adjusts and updates the safety margin based on an

adaptive function according to the occurrence of failures in the cluster, the Chen-

FD uses a constant safety margin. As a consequence, the SFD algorithm is able to

estimate the arrival times for receiving the heartbeat messages in less time compared

to the Chen-FD.

63

0 1 2 3 4 5 6 7

2

4

6

8

10

Interval Time Number

D
et
ec
ti
on

T
im

e
(m

in
)

Basic FD φ FD Bertier FD
Chen FD SFD

Figure 3.10: Detection Time under 50% Failure rate

Next, we evaluate the performance of the studied failure detection algorithms

in terms of mistake rate for different recovery times of TaskTrackers (1, 2, and 3

minutes) and different failure rates (from 10% to 50%). Overall, we observe that the

performance of the algorithms are following the same trend for the three different

recovery times. Hence, we only discuss the results for a recovery time of 2 minutes

in Table 3.5. Here, we report that the Bertier-FD and the φ-FD algorithms identify

TaskTrackers’ failures while making less errors compared to the SFD algorithm, which

is making more mistakes over time. Indeed, the intervals timeouts of the Bertier-FD

and the φ-FD algorithms are longer than the one of the SFD.

Consequently, we can report that there is correlation between the mistake rate

and the detection time of the algorithms: the longer the detection time, the less would

be the mistakes occurrence and vice versa. With a failure rate of 40% and a recovery

time of 2 minutes, the Basic FD is characterized by a constant detection time (8

minutes according to Figures 3.9) and a normalized value of wrong failure detection

rate equal to 0.48 (see Table 3.5). Whereas the SFD algorithm is characterized by a

64

Table 3.5: Normalized Values of Wrong Failure Detection Rate of TT

TT Recovery Time (2 min)
Failure
Rate

Basic
FD

φ
FD

Bertier
FD

Chen
FD

SFD

10% -1.41 -1.17 -1.06 -1.18 -1.27
20% -0.46 -0.65 -0.62 -0.51 -0.47
30% 0.14 -0.16 -0.42 -0.28 -0.16
40% 0.48 0.71 0.88 0.65 0.56
50% 1.23 1.28 1.23 1.34 1.34

normalized value of wrong failure detection rate equal to 0.56 (see Table 3.5) and a

decreasing detection time (which reaches 2 minutes: see Figures 3.9). In this context,

we can report that the obtained results are similar for the other algorithms in terms of

failure rates, and recovery times. At this level, we should mention that there are some

lost heartbeat messages because of network conditions and not because of a failure of

a TaskTracker.

In light of these results, we select the φ-FD and SFD algorithms to implement

our proposed methodology to detect TaskTracker failures within Hadoop, as de-

scribed in Section 3.4.1. This is to evaluate the scheduler performance under shorter

detection times and lower mistake rates.

Summary: Overall, we presented in this section a methodology for TaskTrack-

ers failures detection to address the limitations of Hadoop scheduler when identifying

failures of nodes. Given data about previously received heartbeat messages, our Task-

Trackers failures detection methodology can dynamically adjust the timeout interval

at the JobTracker level to decide whether a node is dead or not.

65

3.5 Summary

To address the limitations of Hadoop schedulers to reduce failures of tasks and Task-

Trackers, we presented in this chapter novel approaches to track failures and to gen-

erate adaptive scheduling decisions for Hadoop. For instance, using data about previ-

ously executed tasks in Hadoop, we proposed a predictive algorithm based on machine

learning algorithm (Random Forest) to early identify the failures of tasks and adjust

the decisions of the Hadoop scheduler accordingly. We also presented a methodology

for modeling adaptive scheduling decisions for Hadoop to reduce its failures rate and

avoid making poor scheduling decisions using reinforcement learning algorithms (e.g.,

Q-Learning and SARSA algorithms). To address the limitations of Hadoop scheduler

when identifying failures of nodes, we presented a method for TaskTrackers failures

detection to dynamically adjust the timeout interval at the JobTracker level to decide

whether a node is dead or not. In the next chapter, we will implement the three

methods together in order to evaluate the performance of the proposed approaches to

reduce failures rates in Hadoop.

66

Chapter 4

ATLAS: AdapTive faiLure-Aware

Scheduling

Building on the findings of the previous chapters, we present in this chapter the imple-

mentation of our Adaptive faiLure-Aware Scheduling (ATLAS) algorithm for Hadoop

that can be integrated with the existing Hadoop schedulers (e.g., FIFO, Fair, and

Capacity). To illustrate the usefulness and benefits of our proposed scheduling al-

gorithm, we conduct a large empirical study on 100-nodes Hadoop and 1000-nodes

Hadoop clusters deployed on Amazon EMR to evaluate the performance and scala-

bility results of ATLAS. This is done by comparing the performance of ATLAS to

those of the three Hadoop schedulers (FIFO, Fair, and Capacity). Results show that

ATLAS outperforms FIFO, Fair, and Capacity schedulers, and it could reduce the

failures rates for jobs and tasks by up to 49% and 67%, respectively. Furthermore, it

could reduce the total execution times of jobs and tasks by 35% and 42%, respectively.

Consequently, the CPU and memory usage are reduced by 25% and 24%, respectively.

67

4.1 ATLAS Implementation

In this section, we present a general overview of ATLAS implementation alongside

with an algorithm allowing its integration on Hadoop.

Based on the findings of Chapter 3, ATLAS shall predict the scheduling

outcomes of tasks using data about the tasks and the scheduler environment

according to the proposed “Task Failure Detection” methodology presented in

Section 3.2.1. To cope with the dynamic nature of cloud environment, ATLAS

can provide better scheduling decisions on the fly based on the generated policies

by the “Adaptive Scheduling Learning” methodology discussed in Section 3.3.1.

Instead of the fixed heartbeat-based failure detection approach used in Hadoop to

track failures of nodes, ATLAS uses the proposed “TaskTracker Failure Detection”

methodology described in Section 3.4.1. Overall, we build ATLAS with the existing

Hadoop schedulers to provide adaptive scheduling decisions to reduce the failures

rates and improve the applications running on Hadoop. The remainder of this sec-

tion elaborates more on the procedural description of our proposed ATLAS algorithm.

We present in Algorithm 4.1 the different steps followed by ATLAS: our proposed

adaptive and failure-aware scheduling algorithm:

The first step consists of dynamically adjusting the communication between

the JobTracker and TaskTrackers according to the “TaskTracker Failure Detection”

approach (Section 3.4.1). To do so, ATLAS requires the status of the Hadoop cluster in

terms of the number of existing nodes and their status. Next, the “TaskTracker Failure

Detection” approach collects data about previously received heartbeat messages and

estimate the arrival of the next ones. Then, it uses one of the selected algorithms,

presented in Section 3.4.1, to update the communication interval timeout between

68

the JobTracker and TaskTrackers to quickly detect nodes’ failures. This proactive

algorithm is running in parallel with the rest of the ATLAS algorithm (lines 1 to 5).

To early identify a potential scheduling outcome of a new submitted task, AT-

LAS collects attributes of this map/reduce tasks that are considered as inputs for the

“Task Failure Detection” approach. Here, we should mention that we collect different

data about the map and reduce tasks to generate the predictions. This is due to the

difference between their attributes and the impact of their attributes on the scheduling

outcome of a task (as explained in Section 3.2.1). Next, the proposed “Task Failure

Detection” approach (Section 3.2.1) provides predictions whether this task will finish

or fail (line 11).

To select a good scheduling decision, ATLAS uses the proposed “Adaptive

Scheduling” approach to obtain a candidate policy that can be either a process, a

reschedule or a kill policy. For example, it will select whether to process or delay

a task predicted to finish, to reschedule or to kill a task predicted to fail, etc. In

this context, we can define a process policy as a request to the scheduler to execute

the submitted tasks, while a reschedule policy as a request to delay the execution

of the task wait until its success conditions are met. More precisely, it consists of

resubmitting the task to the queue until there exist circumstances/specifications in

the scheduler environment leading eventually to a successful execution of that task.

Finally, a kill policy denotes a request to kill an executed or a waiting task.

ATLAS uses the “Adaptive Scheduling” method to determine a candidate

scheduling policy for a task predicted to finish (line 13). In the case of a process

policy (line 14), ATLAS will check the availability of the requested TaskTracker and

DataNode where the scheduler decides to schedule this task (line 15). When the Task-

Tracker and DataNode are available (line 16), ATLAS proceeds with the execution

69

of the task (line 18). Thereafter, ATLAS stores the outcome result after applying

the candidate policy (e.g., finished/failed task, environment status, used resources)

in a database where the scheduling polices for Hadoop are saved (as shown in our

proposed “Adaptive Scheduling” methodology discussed in Section 3.3.1).

In the case of non-availability of the selected TaskTracker and DataNode, AT-

LAS sends the task to the queue to be waiting for its turn (line 21). ATLAS runs the

policy and assigns a penalty to the task if the candidate policy is to reschedule the

task (line 25) or to kill the task (line 28). At this level, we should mention that the

tasks tagged with penalties can wait in the queue more than others because of their

lower execution priority until enough resources are available to enable their specula-

tive execution on multiple nodes. Next, it stores the result of the scheduling policy

within the database.

ATLAS will execute a task speculatively when there are enough resources on

many nodes (line 33) in the case of a task predicted to fail (line 31) and a process

policy (line 32) generated by the proposed “Adaptive Scheduling” approach presented

in Section 3.3.1. Indeed, the speculative execution can speed up the execution of the

task and increase the chances of its success. However, ATLAS will reschedule or kill

a task when the generated policy is either to reschedule (line 38) or to kill (line 41).

While implementing ATLAS, we carefully check that its decisions do not vio-

late its specification, they are controlled by a time-out metric from Hadoop’s base

scheduler.

4.2 ATLAS Evaluation

In this section, we present the experimental design used to evaluate ATLAS followed

by a description of the obtained performance and scalability results.

70

Alg. 4.1. ATLAS Algorithm

1: while (Cluster is running) do
2: Cluster-Status = Get-Status-Cluster(Cluster)
3: /* Adjust the Communication between JobTracker (JT) and TaskTrackers (TTs) */
4: TaskTracker-Failure-Detection(Cluster-Status, JT,TTs)
5: end while
6: /* Lines 1 to 5 run in parallel with the rest of the algorithm */
7: while (There are free slots on TTs) do
8: while (There is a new task to be scheduled) do
9: /* Select TT and DN where to execute the task by basic scheduler functions */

10: TT-DN = Machine-Selection-Basic-Function-Scheduler(Task)
11: Predicted-Status = Task-Failure-Detection(Task, TT)
12: if (Predicted-Status == “SUCCESS”) then
13: Policy = Adaptive-Scheduling(Task)
14: if (Policy == “Process”) then
15: Check-Availability(TT,DN)
16: if (TT and DN are available) then
17: /* Execute Task in the TaskTracker TT */
18: Execute(Task, TT, Policy)
19: else
20: /* Resubmit Task since it will fail in such conditions */
21: Send to Queue + Penalty
22: end if
23: end if
24: if (Policy == “Reschedule”) then
25: Send to Queue + Penalty
26: end if
27: if (Policy == “Kill”) then
28: Kill(Task)
29: end if
30: end if
31: if (Predicted-Status == “FAILURE”) then
32: Policy = Adaptive-Scheduling(Task)
33: if (Policy == “Process”) and (There are Enough Resources on Nodes) then
34: /* Launch Many Speculative Instance of Task */
35: Execute-Speculatively(Task,N,Policy)
36: end if
37: if (Policy == “Reschedule”) then
38: Send to Queue + Penalty
39: end if
40: if (Policy == “Kill”) then
41: Kill(Task)
42: end if
43: end if
44: end while
45: end while

71

4.2.1 Experimental Design

In the following, we describe the design of the cluster, workload, and injected failures

used to assess the performance of ATLAS, as well as the collected performance metrics.

Cluster

We create two Hadoop clusters to evaluate the performance of ATLAS at two scales.

Indeed, we create a 100-nodes Hadoop 1.2.0-cluster and a 1000-nodes Hadoop 1.2.0-

cluster on Amazon EMR. Here, the second created cluster is used to show the benefits

of ATLAS in a very large cluster where there are enough failures to both learn from

and also avoid. In each cluster, one node represents the master, another node is the

secondary master node replacing the master in the event of failure, and the rest of

nodes are slave nodes. The instantiated nodes in the created clusters have different

characteristics to obtain a cluster similar to those in a real cloud cluster. Particularly,

we select different types of nodes from Hadoop Amazon EMR machines’ list includ-

ing m3.large (30% nodes), m4.xlarge (30% nodes), and c4.xlarge (40% nodes) [1].

Table 4.1 summarizes the characteristics of each type of node. Furthermore, we use

different slot configuration for the nodes to get different Hadoop nodes having different

capacities and supporting different workload.

Table 4.1: Amazon EC2 Instance Specifications [1]

Machine
Type

vCPU
Memory

(GiB)
Storage
(GB)

Network
Performance

m3.large 1 3.75 4 Moderate
m4.xlarge 2 8 EBS-Only High
c4.xlarge 4 7.5 EBS-Only High

72

Workload

We run different workloads on the created cluster to obtain a heterogeneous workload

similar to the one running in a real-world cluster. To this aim, we perform a quan-

titative and qualitative analysis to get data about the Hadoop jobs executed on a

real cluster where different Hadoop jobs were executed in a Google cluster [90]. Here,

we should mention that the Google traces include scheduling and execution details

about different tasks and jobs, including Hadoop jobs. We select two different types

of jobs to be running on Hadoop: single jobs (e.g., WordCount, TeraGen, Sort, and

TeraSort [75]), and chained jobs (sequential, parallel, and mix chains) composed of

Hadoop single jobs. Each job has a different number of map and reduce tasks to

obtain a heterogeneous workload. Moreover, the number of jobs in the chained jobs

is different in order to evaluate their impacts on ATLAS.

Injected Failures

We create different scenarios to evaluate the performance of ATLAS under different

types and rates of failures. To do so, we use the AnarchyApe tool [91] to inject sev-

eral failures to the created cluster. More precisely, we inject failures to the scheduled

tasks and to the TaskTracker and DataNode nodes, input data, and network in the

cluster. For example, the injected failures include kill/suspend TaskTrackers, DataN-

odes; disconnect/slow/drop network; and randomly kill/suspend threads within the

TaskTrackers in the running executions. On the other hand, we use the public traces

of Google to determine a failure rate that may encounter a real Hadoop cluster [90].

This is by determining the number of failed jobs and tasks belonging to these traces.

Overall, we found out that a typical cluster in a real environment can experience a

failures rate as high as 40%. Therefore, we decided to inject different failures at rates

73

ranging from 5% to 40% [92].

Collected Performance Metrics

In order to evaluate the performance ATLAS, we measure the number of finished and

failed jobs and tasks (map and reduce), the total execution times of jobs and tasks,

and the amount of used resources. For the resources, we collected data about the used

CPU, memory and HDFS Read/Write for the executed jobs and tasks. We repeated

this experiment 30 times to measure and compare the performance of ATLAS using

the exact same jobs, tasks and data. Next, we calculate the upper and lower bounds

of the obtained results with a confidence level of 95%.

While implementing ATLAS on Hadoop, we integrate our three proposed ap-

proaches: (1) task failure prediction, (2) adaptive scheduling, and (3) TaskTracker

failure detection. Particularly, we use respectively, the Random Forest (RF) algo-

rithm, the SARSA and the Q-Learning algorithms, and the φ-FD and the SFD al-

gorithms. In the sequel, we present the performance results of ATLAS using the

following configurations: (1) ATLAS with RF, (2) ATLAS with RF and MDP, (3)

ATLAS with RF, MDP and φ-FD, and (4) ATLAS with RF, MDP and SFD.

4.2.2 Performance Analysis Results

We evaluate the performance of ATLAS by running 2000 Hadoop jobs (10% single

jobs, 30% sequential chains, 30% parallel chains, and 30% mix chains), and around

50,000 map/reduce tasks when integrated respectively with the FIFO, the Fair, and

the Capacity schedulers. In the sequel, we present the obtained results in terms of the

number of finished and failed jobs/tasks, execution times, and resources utilization.

74

Number of Finished Jobs/Tasks

Figures 4.1, 4.2, and 4.3 present the performance of ATLAS algorithm when built

on top of the FIFO, Fair and Capacity schedulers in terms of the number of fin-

ished jobs, map, and reduce tasks, respectively. When evaluating the performance

of ATLAS, we found out that ATLAS+RF algorithm could increase the total num-

ber of finished jobs, map and reduce tasks compared to the basic implementations

of the three schedulers. Moreover, we noticed that ATLAS+RF+MDP is character-

ized by a higher number of finished jobs and tasks when compared to both the basic

scheduling and the ATLAS+RF algorithms. These results were expected because,

the ATLAS+RF algorithm allows the scheduler to early identify tasks failures while,

the ATLAS+RF+MDP algorithm could identify and quickly reschedule the potential

failed tasks accordingly.

Next, we analyze the performance of ATLAS in terms of TaskTracker fail-

ures identification, when adding ATLAS+RF+MDP+φFD and ATLAS+MDP+SFD

algorithms on Hadoop. Overall, we noticed that both ATLAS+RF+MDP+SFD

and ATLAS+RF+MDP+φFD algorithms outperform the ATLAS+RF+MDP, AT-

LAS+RF, and the basic algorithms for the FIFO, Fair, and Capacity schedulers.

75

FIFO Fair Capacity

800

1,000

1,200

1,400

1,600

N
u
m
b
er

o
f
F
in
is
h
ed

J
o
b
s

Basic Scheduler ATLAS+RF

ATLAS+RF+MDP ATLAS+RF+MDP+φFD

ATLAS+RF+MDP+SFD

Figure 4.1: Finished Hadoop Jobs

FIFO Fair Capacity

1

1.5

2

2.5

3

3.5

4
·104

N
u
m
b
er

o
f
F
in
is
h
ed

M
a
p
T
a
sk
s

Basic Scheduler ATLAS+RF

ATLAS+RF+MDP ATLAS+RF+MDP+φFD

ATLAS+RF+MDP+SFD

Figure 4.2: Finished Map Tasks

We can explain these results by the fact that Algorithm 3.6 allows to early iden-

tify TaskTrcakers’ failures and to avoid submitting tasks to potentially dead nodes.

Hence, it allows the early rescheduling of tasks on other nodes in order to increase

the number of finished jobs and tasks. At this level, we observed also that the

ATLAS+RF+MDP+SFD algorithm achieves better performance compared to the

76

FIFO Fair Capacity

1

1.5

2

2.5

3

3.5

4
·104

N
u
m
b
er

o
f
F
in
is
h
ed

R
ed

u
ce

T
a
sk
s

Basic Scheduler ATLAS+RF

ATLAS+RF+MDP ATLAS+RF+MDP+φFD

ATLAS+RF+MDP+SFD

Figure 4.3: Finished Reduce Tasks

ATLAS+RF+MDP+φFD algorithm when integrated in Hadoop scheduler. As a re-

sult, we can claim that although it can make more wrong failures while detecting

TaskTracker failures, the SFD algorithm allows to quickly detect TaskTrackers’ fail-

ures and dynamically adjust the timeout to detect these failures in comparison with

the φFD algorithm.

Furthermore, we found out that the different implementations of the FIFO and

Fair schedulers achieve better performance in comparison with those of the Capacity

scheduler. This is because the Capacity scheduler forces the killing of tasks consuming

a large amount of memory more than expected. The obtained results show that

the improvement at the task level is higher than at the job level due to the tight

dependency between task scheduling and job outcomes. Indeed, the failure of a single

task can cause the failure of the whole job.

In summary, ATLAS could increase the number of finished tasks by up to

61% when integrated with the Fair scheduler (see ATLAS+RF+MDP+SFD-Fair in

Figure 4.3). At the job level, ATLAS could increase the number of finished jobs by up

77

to 55% when integrated with the Fair scheduler (see ATLAS+RF+MDP+SFD-Fair

in Figure 4.1). In addition, we noticed that ATLAS increases the number of finished

single and chained jobs. Precisely, the number of successful single jobs is higher

than the number of successful chained jobs (due to the dependency between the jobs

belonging to the same chain).

Overall, we can conclude that ATLAS performs better when integrated with the Fair

scheduler since it is the “winner” compared to the other implementations of ATLAS

(with FIFO and Capacity schedulers).

Number of Failed Jobs/Tasks

Figures 4.4, 4.5, and 4.6 present the obtained results, in terms of the number of failed

jobs, map, and reduce tasks for the three schedulers together (as shown in the x-

axis: FIFO, Fair, and Capacity), with a confidence level of 95%. Overall, we noticed

that ATLAS is characterized by a lower number of failed tasks. Concretely, ATLAS

could reduce the number of failed tasks by up to 67% (see ATLAS+RF+MDP+SFD-

Capacity in Figure 4.6). Here, we should mention that ATLAS could efficiently

reschedule the reduce tasks because they failed due to the failure of their correspond-

ing map tasks. Overall, it could reduce the number of failed jobs by up to 49% (see

ATLAS+RF+MDP+SFD-Capacity in Figure 4.4).

In the context of failure-aware scheduling, we can conclude that ATLAS achieves

a good performance by sharing failure information between components in a Hadoop

cluster. Also, we can claim that ATLAS outperforms the existing scheduling algo-

rithms of Hadoop because of its adaptive scheduling mechanisms to adjust the existing

78

FIFO Fair Capacity

200

400

600

800

1,000

N
u
m
b
er

o
f
F
a
il
ed

J
o
b
s

Basic Scheduler ATLAS+RF

ATLAS+RF+MDP ATLAS+RF+MDP+φFD

ATLAS+RF+MDP+SFD

Figure 4.4: Failed Hadoop Jobs

scheduling strategies. In summary, ATLAS outperforms the existing Hadoop schedul-

ing algorithms in terms of number of failed jobs and tasks. Furthermore, it shows

better results when integrated with the Fair scheduler.

FIFO Fair Capacity

0.5

1

1.5

2

2.5

3

3.5

·104

N
u
m
b
er

o
f
F
a
il
ed

M
a
p
T
a
sk
s

Basic Scheduler ATLAS+RF

ATLAS+RF+MDP ATLAS+RF+MDP+φFD

ATLAS+RF+MDP+SFD

Figure 4.5: Failed Map Tasks

79

FIFO Fair Capacity

0.5

1

1.5

2

2.5

3

3.5

·104

N
u
m
b
er

o
f
F
a
il
ed

re
d
u
ce

T
a
sk
s

Basic Scheduler ATLAS+RF

ATLAS+RF+MDP ATLAS+RF+MDP+φFD

ATLAS+RF+MDP+SFD

Figure 4.6: Failed Reduce Tasks

Execution Times of Jobs/Tasks

By reducing the number of failed attempts of the scheduled map and reduce tasks,

ATLAS can reduce the total execution time of the executed tasks. Figures 4.7 and 4.8

present the execution times of the jobs, tasks (map and reduce), respectively. Here,

we observed that ATLAS outperforms the other existing schedulers in terms of total

execution time of the map/reduces tasks. Consequently, it could reduce the total

execution time of their corresponding jobs.

Overall, we notice that ATLAS can decrease the execution times of tasks by 3

minutes (see ATLAS+RF+MDP+SFD-Capacity in Figure 4.8). While, it can reduce

the total execution times of jobs on average by 10 minutes, which represents a 40%

reduction on the total execution time of these jobs (see ATLAS+RF+MDP+SFD-

Capacity in Figure 4.7). Furthermore, one of the benefits of ATLAS is its ability

to reduce the execution times of long-running tasks from 30-40 minutes to less than

20 minutes. This represents approximately a 50% reduction allowing to improve the

performance of applications running on Hadoop. One more benefit of ATLAS is that

by reducing the number of failures, it can largely compensate its generated overhead

80

FIFO Fair Capacity

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
·106

E
x
ec
u
ti
o
n
T
im

e
o
f
J
o
b
s
(m

s)

Basic Scheduler ATLAS+RF

ATLAS+RF+MDP ATLAS+RF+MDP+φFD

ATLAS+RF+MDP+SFD

Figure 4.7: Exection Time of Jobs

(e.g., training time, adjusting time, etc). Overall, we can conclude that ATLAS is able

to reduce the overall execution times of tasks and jobs in Hadoop when integrated

with the three existing Hadoop schedulers.

Resources Utilization of Jobs/Tasks

Another Benefit of integrating ATLAS within Hadoop schedulers is reducing the total

amount of resources consumed by its applications. Tables 4.2, 4.3, and 4.4 present the

obtained results of ATLAS when built on top FIFO, Fair and Capacity schedulers,

respectively, in terms of CPU, memory and HDFS Read/Write usage. These results

are collected from the log files of the created cluster, where each task is tagged with

the amount of used CPU, memory, and HDFS Read/Write. Overall, we found that

the Hadoop scheduler can use less resources using scheduling policies of ATLAS, than

those used the existing implementations of the FIFO, Fair and Capacity schedulers.

Indeed, ATLAS could reduce the total amount of consumed resources on average by:

25% for CPU, 24% for memory, and 31% for HDFS usage. These results were expected

81

FIFO Fair Capacity

0

1

2

3

4

·105

E
x
ec
u
ti
o
n
T
im

e
o
f
T
a
sk
s
(m

s)

Basic Scheduler ATLAS+RF

ATLAS+RF+MDP ATLAS+RF+MDP+φFD

ATLAS+RF+MDP+SFD

Figure 4.8: Exection Time of Tasks

because the correlation between the number of failed tasks and jobs and the cluster

utilization. Overall, we can conclude that by early identifying the failure of tasks and

rescheduling them, ATLAS can improve the resource utilization of the cluster.

Long-Execution of Jobs/Tasks

To further show the benefits and practical usefulness of our scheduler ATLAS, we

perform an experiment to evaluate its performance after an execution period of 3

days when scheduling 120,000,000 jobs and 350,000,000 tasks. Figures 4.9 and 4.10

present the number of failed jobs, and tasks (map and reduce) of the different imple-

mentations of ATLAS. At this level, we found out that the ATLAS+RF+MDP+SFD

implementation achieves better performance compared to other implementations of

ATLAS. Overall, it could reduce the number of failed jobs by up to 44% and the

number of failed tasks by up to 49% for the three schedulers. Consequently, it could

reduce the total execution times of the scheduled jobs and tasks, particularly the long

running execution ones. Hence, it was able to reduce the amount of used resources in

82

Table 4.2: Resources Utilization of the FIFO Scheduler

J
o
b
/
T
a
sk

Scheduler

FIFO

Basic
ATLAS

RF

ATLAS
RF

MDP

ATLAS
RF

MDP
φ-FD

ATLAS
RF

MDP
SFD

Resource Avg. Avg. Avg. Avg. Avg.

J
o
b

CPU 15307 14830 13720 13297 12415
Memory 12571 11784 9964 9451 7730

HDFS Read 10930 9845 8341 8103 8005
HDFS Write 9747 9125 8962 8397 8321

T
a
sk

CPU 4823 4723 4674 4479 4285
Memory 3340 3308 3269 3017 2642

HDFS Read 1968 1845 1732 1628 1533
HDFS Write 1972 1907 1855 1794 1624

Units: CPU (ms), Memory (105 bytes), HDFS Read (103 bytes), HDFS Write (103 bytes)

the created Hadoop cluster.

FIFO Fair Capacity

0

0.2

0.4

0.6

0.8

1

1.2

·108

N
u
m
b
er

o
f
F
a
il
ed

J
o
b
s

Basic Scheduler ATLAS+RF

ATLAS+RF+MDP ATLAS+RF+MDP+φFD

ATLAS+RF+MDP+SFD

Figure 4.9: Number of Failed Job over 3 Days

We can explain the obtained results by the fact that ATLAS learns more schedul-

ing decisions over time. Indeed, the learning time has a direct impact on the quality

of the applied actions in ATLAS; the more data the scheduler collects, the better the

scheduling decisions would be. For instance, the ATLAS algorithm learns from its past

decisions to improve its selection procedures and obtain new knowledge about when

83

Table 4.3: Resources Utilization of the Fair Scheduler

J
o
b
/
T
a
sk

Scheduler

Fair

Basic
ATLAS

RF

ATLAS
RF

MDP

ATLAS
RF

MDP
φ-FD

ATLAS
RF

MDP
SFD

Resource Avg. Avg. Avg. Avg. Avg.

J
o
b

CPU 14251 13764 12783 11370 11150
Memory 9458 9078 8766 8042 7647

HDFS Read 10568 9478 8615 8339 8257
HDFS Write 9943 8945 7453 7124 7066

T
a
sk

CPU 4730 4711 4672 4513 4313
Memory 3007 3001 2955 2912 2496

HDFS Read 1954 1934 1834 1809 1783
HDFS Write 1963 1922 1893 1811 1776

Units: CPU (ms), Memory (105 bytes), HDFS Read (103 bytes), HDFS Write (103 bytes)

and where to apply the selected scheduling decisions. On the other hand, we noticed

that ATLAS is associated with a cost in terms of execution time required to access

the scheduling rules database and select the appropriate decisions to apply. This cost

may have a negative impact on the time spent by ATLAS to select an appropriate

action. For instance, the more scheduling rules ATLAS generates, the longer would

be the time to decide the action to apply. Therefore, we decide to sort the scheduling

decisions by the frequency of usage and the scheduling outcome (finished or failed).

In other words, the most used scheduling decisions leading to success events will be

on top of the scheduling decisions database of ATLAS. This approach was found to

reduce the selection time in ATLAS. However, it penalizes some policies since they

are not on top of the scheduling policies database.

To summarize the benefits of each of our proposed approaches in ATLAS,

Table 4.5 presents the advantages of the integrated three algorithms presented in

Sections 3.2.1, 3.3.1, and 3.4.1. Overall, we found that by early identifying tasks’

failures ATLAS can reduce failures of tasks and jobs by up to 26%, and reduce

84

Table 4.4: Resources Utilization of the Capacity Scheduler

J
o
b
/
T
a
sk

Scheduler

Capacity

Basic
ATLAS

RF

ATLAS
RF

MDP

ATLAS
RF

MDP
φ-FD

ATLAS
RF

MDP
SFD

Resource Avg. Avg. Avg. Avg. Avg.

J
o
b

CPU 16344 15974 15564 15324 14654
Memory 11632 11025 10986 10845 9786

HDFS Read 13032 12032 11396 10345 10012
HDFS Write 11420 10452 9375 8452 8314

T
a
sk

CPU 5466 5398 5379 5212 4837
Memory 3997 3904 3801 3775 3381

HDFS Read 2074 2015 1943 1829 1688
HDFS Write 2257 1978 1862 1749 1611

Units: CPU (ms), Memory (105 bytes), HDFS Read (103 bytes), HDFS Write (103 bytes)

the total execution time by up to 17%. Also, it could reduce the amount of used

CPU and memory by up to 16% and 14%, respectively. By integrating adaptive

scheduling policies to the scheduler, ATLAS can improve the performance of Hadoop.

This is by reducing the number of failed tasks, the total execution time, the used

CPU and memory by up to 19%, 14%, 9% and 8%, respectively. Based on the

shared failure information, we affirm that ATLAS is able to catch more failures of

TaskTrackers within Hadoop. As a result, it could reduce the number of failed tasks,

the total execution time, the used CPU and memory by up to 14%, 8%, 7% and 5%,

respectively.

4.2.3 Scalability Analysis Results

We analyze the scalability of ATLAS by executing a larger workload on the 1000-nodes

Hadoop cluster. Concretely, we perform experiments to execute a different number

of jobs: 30,000, 60,000, and 90,000 jobs composed of 750,000, 900,000, and 2,250,000

85

FIFO Fair Capacity

0

1

2

3

4
·108

N
u
m
b
er

o
f
F
a
il
ed

T
a
sk
s

Basic Scheduler ATLAS+RF

ATLAS+RF+MDP ATLAS+RF+MDP+φFD

ATLAS+RF+MDP+SFD

Figure 4.10: Number of Failed Task over 3 Days

Table 4.5: Benefits of ATLAS Components

Failure
Rate

Execution
Time

CPU
Usage

Memory
Usage

Task Failure
Prediction

26 17 16 14

Adaptive Scheduling
Learning

19 14 9 8

TaskTracker Failure
Detection

14 8 7 5

tasks, respectively. The tasks belonging to these executed jobs have different sizes;

identified as: small/medium/large tasks. We evaluated the performance of ATLAS

under different failures rates going from 5% to 40% by injecting different failures to

the nodes and the scheduled tasks. This experiment was repeated 30 times to measure

the performance of ATLAS.

Tables 4.6, 4.7, and 4.8 present the reduction rate results of ATLAS in terms of

failures rates, execution time, and resources usage for the different workloads; 30,000,

60,000, and 90,000 jobs, respectively. Here, we discuss only the results of the Fair

scheduler, because we observed that the three schedulers performances follow the

same trend. In a larger cluster, ATLAS is able to identify up to 71% tasks’ failures

86

and reschedule these tasks accordingly. Furthermore, it could reduce the amount of

used CPU and memory by up to 53% and 48%, respectively. Hence, ATLAS is able

to improve the overall utilization of resources in the deployed cluster.

Table 4.6: Reduction Rates (%) of Proposed Algorithms (30,000 Hadoop Jobs)

Number
of Jobs

30,000 Jobs
(750,000 Tasks)

Reduction
Rate (%)

Tasks’
Failures

Execution
Time

CPU
Usage

Memory
Usage

Algorithm 3.1 32 19 18 19

Algorithm 3.4 24 21 19 12

Algorithm 3.6 11 15 10 13

Table 4.7: Reduction Rates (%) of Proposed Algorithms (60,000 Hadoop Jobs)

Number
of Jobs

60,000 Jobs
(900,000 Tasks)

Reduction
Rate (%)

Tasks’
Failures

Execution
Time

CPU
Usage

Memory
Usage

Algorithm 3.1 36 21 19 16

Algorithm 3.4 21 19 18 13

Algorithm 3.6 17 17 14 10

Table 4.8: Reduction Rates (%) of Proposed Algorithms (90,000 Hadoop Jobs)

Number
of Jobs

90,000 Jobs
(2,250,000 Tasks)

Reduction
Rate (%)

Tasks’
Failures

Execution
Time

CPU
Usage

Memory
Usage

Algorithm 3.1 35 23 20 20

Algorithm 3.4 25 19 18 14

Algorithm 3.6 11 17 15 14

Next, we measure the added overhead when integrating ATLAS within the ex-

isting Hadoop schedulers for the created cluster. For this goal, we measure the Worst

Case Execution Time (WCET) [93] of each of our proposed algorithms given the run-

ning workload. In general, we noticed that the size of the Hadoop cluster and the

87

number of scheduled jobs and tasks have a direct impact on the overhead of ATLAS.

Tables 4.9, 4.10, and 4.11 presents the obtained results for the different algorithms in-

tegrated in ATLAS in terms of WCET using different workloads (e.g., 30,000, 60,000,

and 90,000 jobs). The WCET can reach up to 117, 258, and 183 seconds for Algo-

rithms 3.1, 3.4, and 3.6, respectively. These results were expected due to the fact the

scheduler requires more time to collect data from its environment about failures of

tasks and TaskTrackers, the scheduler environment, received heartbeats from 1,000

nodes, etc., to select the appropriate scheduling strategies. Here, we should mention

that although Algorithm 3.6 is characterized by a higher WCET, it is able to early

catch up to 58% of the failures of TaskTrackers in the new created Hadoop cluster.

Hence, it allows ATLAS to better assign tasks to alive nodes and avoid poor scheduling

decisions leading to tasks’ failures.

Table 4.9: Worst-Case Execution Time (Seconds) in ATLAS (30,000 Jobs)

Number of Jobs
30,000 Jobs

(750,000 Tasks)

Type of Task Small Medium Large

Algorithm 3.1 27 63 98

Algorithm 3.4 45 105 143

Algorithm 3.6 211

Table 4.10: Worst-Case Execution Time (Seconds) in ATLAS (60,000 Jobs)

Number of Jobs
60,000 Jobs

(900,000 Tasks)

Type of Task Small Medium Large

Algorithm 3.1 29 74 103

Algorithm 3.4 53 127 159

Algorithm 3.6 234

It is worth mentioning that all steps of Algorithm 3.6 are off the critical path

of the scheduler. This is because they are used to collect data about the received

88

Table 4.11: Worst-Case Execution Time (Seconds) in ATLAS (90,000 Jobs)

Number of Jobs
90,000 Jobs

(2,250,000 Tasks)

Type of Task Small Medium Large

Algorithm 3.1 35 96 117

Algorithm 3.4 71 148 183

Algorithm 3.6 258

heartbeats and to adjust the expiry interval timeout accordingly. Hence, the inte-

gration of Algorithm 3.6 within Hadoop does not impact the execution time of the

scheduled tasks; it only impacts the communication time between the JobTracker and

TaskTrackers. For Algorithm 3.1, the steps from lines 2 to 11 are required to collect

the log files and retrain/select the models, and hence do not generate an overhead to

the scheduler. The only steps that are on the critical path of the scheduler are from

lines 13 to 17 in Algorithm 3.1. For Algorithm 3.4, all steps are on the critical path

of the scheduler.

In light of these results, we can conclude that ATLAS is very useful for very large

clusters where there are enough failures to both learn from and also avoid. Indeed, the

sizes of the cluster and running workload directly affect the performance of ATLAS.

Despite the added overhead of ATLAS, we can affirm that ATLAS could improve the

overall performance of the existing Hadoop schedulers. Indeed, the added overhead

time by ATLAS was largely compensated by the time saved on the failed tasks that

would have been executed otherwise.

4.3 Threats to Validity
In this section, we discuss the threats to validity of our experimental study we

performed to analyze the performance of ATLAS, following the guidelines for case

study [94].

89

4.3.1 Construct Validity

Construct validity threat analyzes the relation between the theory and observation.

While building the task failure predictive algorithm, we considered that tasks charac-

teristics have the major impact on the scheduling outcome of a task. However, this

may not be the case because the amount of allocated resources for the scheduled tasks

can also affect their outcomes. For instance, tasks receiving less resources, than their

requested ones, have more chances to fail. While performing the correlation between

the assigned resources and scheduling outcome of tasks, we found a low correlation

between the used resources and the final status of the scheduled task. This means that

the resource allocation is more likely to affect resource usages rather than scheduling

outcomes. On the other hand, ATLAS is characterized by scheduling procedures that

prioritize the processing of tasks on nodes having enough resources. This is done by

collecting data from its environment about the available resources and under-loaded

nodes. Consequently, this will allow the scheduler to avoid several failures and improve

the resources utilization of the available resources.

4.3.2 Internal Validity

Internal validity threat analyzes the used techniques and tools to perform the exper-

iments and evaluate the obtained results. For our methodology to track the failures

of TaskTrakers, we adapted the four selected algorithms to adjust the communication

between the JobTracker and TaskTracker nodes. Although this approach could early

identify failures of nodes and notify ATLAS accordingly, one limitation is that when it

shortens the communication interval to small values (e.g., 2 minutes), the TaskTracker

nodes can send too frequent messages, which may result in messages congestion on

the JobTracker and may add extra time to read them.

90

Furthermore, we determine the amount of failures to be injected (up to 40%)

using information about the tasks failures from Google clusters [92]. However, this

failure rate can be high for the created Hadoop clusters (due to the difference between

the cluster sizes between Hadoop and Google). For this reason, we perform other

experiments to assess the performance of ATLAS under lower failures rates of 1-2%.

Overall, we found that ATLAS could reduce the number of failed jobs and tasks by

up to 9% and 12%, respectively. These finding confirm the fact that ATLAS highly

depends on the training step, which means that the more data the scheduler collects

about failures from its environment, the better the scheduling decisions would be

and the better it learns from its past experience. Another important observation is

that the injected failures scenarios may not represent realistic ones. Therefore, it is

of interest to study the performance of ATLAS with a more diverse set of Hadoop

clusters and different failure rates and types.

4.3.3 Conclusion Validity

Conclusion validity threat analyzes the relation between the used techniques and the

obtained outcomes. The key idea behind ATLAS is to guide the existing Hadoop

schedulers by providing better scheduling decisions with a minimal impact on the

execution time. For this reason, while implementing the different components in AT-

LAS, we checked the overhead in terms of added time to overall execution times.

Indeed, we have verified that the new integrated scheduling mechanisms do not intro-

duce a large overhead. We performed this verification step by measuring the WCET

of each added component to ATLAS separately for different scenarios (different work-

load and cluster sizes). Overall, the obtained results showed that the times spent to

91

train the model, to find the appropriate scheduling action, and to adjust the com-

munication between the JobTracker and TaskTrackers did not negatively affect the

overall execution times of scheduled tasks. This is due to the fact that ATLAS could

save the execution times that would be spent to execute the failed tasks otherwise.

We also check that ATLAS does not violate any property of Hadoop such as time-out

expiration and task priority in the queue.

4.3.4 Reliability Validity

Reliability validity threat analyzes approaches to replicate our proposed work on other

environments. Indeed, our proposed scheduling algorithm can be built within other

cloud platforms like Microsoft Azure [95], or Google platform. In order to replicate

ATLAS, one needs to collect data about previously executed tasks from these plat-

forms to train and validate the machine learning algorithms. Next, these data and the

built predictive algorithms can be used to adjust the proposed MDP-based model in

ATLAS. Furthermore, our proposed approach to early detect failures can be adapted

to other cloud platforms (e.g., Spark [34], Storm [35], Microsoft Azure [95]) by col-

lecting data about nodes failures in order to adjust the communication between the

master and the nodes in such platform. Finally, we can mention that our proposed

methodologies can be integrated either separately or combined on top of any cloud

scheduler to reduce task failure rates and provide better resources utilization and

execution time.

92

4.3.5 External Validity

External validity threat analyzes methods to generalize the results of our study. While

evaluating the performance of our proposed scheduling algorithm, we created 100-

nodes and 1000-nodes Hadoop clusters deployed on Amazon EMR. However, more

studies can be done on larger scales using different types of machines (with different

slot configurations) to validate the obtained results of our empirical study. In order to

generalize the findings of ATLAS, we can implement the proposed methodologies on

Spark [34], a novel in-memory computing framework for Hadoop. This is in order to

evaluate their performance when used on Spark and compare it with those obtained

from the Hadoop framework.

4.4 Summary

In this chapter, we presented ATLAS (AdapTive faiLure-Aware Scheduling) algo-

rithm for Hadoop, to show the benefits of the proposed methodologies presented in

Chapter 3. ATLAS is built using the proposed algorithms to early detect failed tasks

and TaskTrackers and the adaptive algorithm to adjust the scheduling decisions of

tasks on the fly. To assess the performance of the proposed algorithm, we performed

an empirical study comparing ATLAS’s performance with those of the three exist-

ing Hadoop schedulers (FIFO, Fair, and Capacity). The obtained results show that

ATLAS achieves better results compared to the basic three common schedulers of

Hadoop. More concretely, it can reduce the number of failed jobs by up to 49% and

the number of failed tasks by up to 67%. By early identifying failed tasks and dy-

namically rescheduling them, ATLAS can reduce the total execution time of jobs by 9

minutes on average, and by up to 15 minutes for long running jobs; representing 35%

93

of the job execution times. ATLAS also reduced CPU and memory usages by 25% and

24%, respectively. However, given the complexity and the wide range of constraints

in Hadoop, our failures detection and adaptive scheduling approaches were not able

to provide an exhaustive coverage of the Hadoop system functionalities and to ascer-

tain a complete analysis of its scheduler. Therefore, we present in the next chapter a

methodology to formally analyze Hadoop schedulers to enable the early identification

of circumstances leading to failures and hence reduce the failures’ rates in ATLAS.

94

Chapter 5

Formal Verification of Hadoop

In this chapter, we propose a new methodology to formally analyze Hadoop sched-

ulers and identify the impact of the scheduling decisions of Hadoop on the failures

rates of tasks. Our methodology can early identify circumstances leading to potential

failures and hence it can provide possible strategies to avoid their occurrences in AT-

LAS. Towards this goal, we propose to verify some of the most important scheduling

properties in Hadoop including the schedulability, resources-deadlock freeness, and

fairness [96]. Firstly, we construct a formal model of the Hadoop scheduler using

CSP language. Next, we analyze the three mentioned properties within the Hadoop

schedulers using the PAT model checker. We investigate the correlation between the

adopted scheduling strategies and the failures rate. Finally, we apply our proposed

methodology on the scheduler of OpenCloud, a Hadoop-based cluster [97] in order to

illustrate its usability and benefits. Then, we evaluate the benefits of the proposed

methodology on ATLAS given the provided scheduling strategies.

95

5.1 Preliminaries

In this section we briefly present some basic concepts of the CSP language and the

PAT tool, to better understand the different steps of our proposed methodology.

CSP is a formal language used to model and analyze the behavior of processes

in concurrent systems. It has been practically applied in modeling several real-time

systems and protocols [31]. In the sequel, we present a subset of the CSP language,

which will be used in the latter content, where P and Q are processes, a is an event,

c is a channel, and e and x are values:

P , Q ::= Stop | Skip | a → P | P ; Q | P || Q | c!e → P | c?x → P

• Stop: indicates that a process is in the state of deadlock.

• Skip: indicates successfully terminated process.

• a → P: means that an object first engages in the event a and then behaves

exactly as described by P.

• P ; Q: denotes that P and Q are sequentially executed.

• P || Q: denotes that P and Q are processed in parallel. The two processes are

synchronized with the same communication events.

• c!e → P: indicates that a value e was sent through channel c and then process

P .

• c?x → P: indicates that a value was received through channel c and stored in

a variable x and then process P .

PAT [32] is a CSP-based tool used to simulate and verify concurrent, real-time sys-

tems, etc. It implements different model checking techniques for system analysis and

96

properties verification (e.g., deadlock-freeness, reachability) in distributed systems.

Different advanced optimizations techniques in PAT, such as partial order reduction,

symmetry reduction, etc., have been proposed to achieve better performance in terms

of the number of explored states and time.

5.2 Formal Verification Methodology

In this section, we present an overview of our methodology to early identify circum-

stances leading to potential tasks’ failures, followed by a description of each step.

5.2.1 General Overview

Figure 5.1 presents the key idea of our methodology to formally verify the Hadoop

scheduler using model checking techniques. Our proposed methodology takes as inputs

(1) the description of the Hadoop scheduler, (2) the specification of the properties

to be verified, and (3) the cluster configuration (e.g., type of scheduler, number of

nodes, workload and failure distributions, schedulability rate). The output of our

methodology a set of possible scheduling strategies to avoid these failures.

The first step in our methodology is the construction of a formal model for the

Hadoop scheduler and its properties. To this aim, we use the CSP language to formally

model the scheduler because it enables the modeling of synchronous and concurrent

systems. Specifically, it enables to model the behavior and communication of multiple

processes and parallel components for different distributed systems [31]. We also use

the Linear Temporal Logic (LTL) to provide a description of the properties we aim

to verify.

The next step in our methodology is to identify a potential failures rate that a

Hadoop cluster may experience. We use the PAT model checker to perform the formal

97

quantitative analysis of failures in Hadoop scheduler. Our choice of PAT is motivated

by the fact that PAT is based on CSP and it showed good results to simulate and

verify concurrent, real-time systems, etc. [98].

Finally, we propose to use the generated verification traces to perform qualita-

tive analysis of these failures. Given the generated results from PAT, we propose to

determine the circumstances and specifications leading to tasks’ failures in the sched-

uler. Consequently, our proposed methodology can provide scheduling strategies to

reduce the number of failed tasks, avoid poor scheduling decisions, and improve the

overall cluster performance (resources utilization, total completion time, etc.). The

remainder of this section elaborates more on each of the steps of our methodology.

Hadoop Scheduler
 Formal Model

Hadoop Scheduler
Properties

Quantitative Failures Analysis

Scheduling
Strategies

Qualitative Failures Analysis

Cluster
Environment

Scheduler
Description

Scheduling
Properties

Figure 5.1: Formal Analysis of Hadoop Schedulers Methodology

5.2.2 Hadoop Scheduler Formal Model

The goal of this step is to build a formal model using the CSP language to describe

the main components responsible for the scheduling of tasks in Hadoop. Concretely,

we construct a model to formally describe the Hadoop master node (including the

98

JobTracker and NameNode) and the Hadoop slave/worker node (including the Task-

Tracker and DataNode). At the master level, we model the scheduler and the com-

ponents responsible for task assignment and resources allocation in Hadoop. At the

worker level, we model the components responsible for the task execution in the Task-

Tracker and the DataNode. Data locality, data placement, and speculative execution

are among the most important scheduling constraints due to their direct impact on

the scheduling strategies and the performance of executed tasks [17]. Therefore, we

decided to integrate these three scheduling constraints within the proposed model of

Hadoop scheduler.

In the sequel, we describe the required steps to create a Hadoop cluster

following our propsoed model. Thereafter, we present examples of implemented CSP

processes1 to illustrate our formal description of the Hadoop scheduler, TaskTracker

activation and task assignment, where “Cluster()” is the main process:

Cluster() = initialize(); NameNode activate() ‖ JobTracker activate() ‖

(‖ i:{0..(N-1)}@DataNode activate(i)) ‖

(‖ i:{0..(N-1)}@TaskTracker activate(i))‖

Hadoop Scheduler();

The “Hadoop Scheduler()” process represents our proposed formal description of

the steps followed by the scheduler to verify the constraints to schedule a map

or reduce task. For instance, it checks the availability of the resources in the

cluster (slotTT[i]>0). Next, it checks the type of received task, either a map

(Queue[index] == 1) or reduce (Queue[index] == 2) task. After, it verifies

whether the received task should be speculatively executed or not (e.g., map:

1The CSP script is available at: http://hvg.ece.concordia.ca/projects/cloud/fvhs.html

99

http://hvg.ece.concordia.ca/projects/cloud/fvhs.html

Queue[index] == 3 or reduce: Queue[index] == 4).

Hadoop Scheduler() = {

if((slotTT[i]>0))

{ while((found==0) && (index < maxqueue)){

if (Queue[index] == 1) //it is a map task

{ schedulable = 1; found =1; location = index;

type = MapTask; IDjob task = IDJob[index];}

if((Queue[index] == 2)) //it is a reduce task

{ if(FinishedMap[IDJob[index]] == Map[IDJob[index]])

{ schedulable = 1; found =1; location = index;

type = ReduceTask; IDjob task = IDJob[index];} }

if(Queue[index] == 3) //it is a speculated map task

{ schedulable = 1; found =1; location = index; type = MapTask;

IDjob task = IDJob[index]; SpeculateTask[location] = 1;}

if(Queue[index] == 4) //it is a speculated reduce task

{ schedulable = 1; found =1; location = index; type = ReduceTask;

IDjob task = IDJob[index]; SpeculateTask[location] = 1;}

...

}}} → signedtask?i→ signedtask i→Task Assignment(location, type);

The “TaskTracker activate(i)” process represents our formal description to activate a

TaskTracker in a Hadoop cluster. To do so, it checks first whether the JobTracker was

already activated (JobTracker == ON). Thereafter, it activates the input number of

slots for each TaskTracker (slotsnb). As a result, the activated TaskTracker is ready

to execute up to slotsnb tasks.

100

TaskTracker activate(i) = activate jt success → ifa(TaskTracker[i] ==

OFF && JobTracker == ON) {activate tt.i{

TaskTracker[i] = ON; trackercount++;}

→ atomic{activate tt success.i →

(‖ j:{1..(slotsnb)}@TaskTracker sendready(i))}};

The following “TaskTracker execute(i)” process gives an example of task execution

procedure while checking its data locality. First, it checks the availability of the slot

assigned to a given task by the scheduler (if slot is free then task running[nbTT][k]

is equal to 0, where nbTT is the ID of the TaskTracker and k is the ID of the

assigned slot). Second, it checks whether the input data of the task to be executed

is local or not. This is done by checking whether the node where to execute the task

(selectedTT) is the same node where its data is located (Data-LocalTT[idtask]).

TaskTracker execute(i) = {

var nbTT =i; var found = 0; var k = 0;

while((k<slotsnb) && (found == 0)){

if(task at tasktracker[nbTT][k]==1 && task running[nbTT][k]== 0)

{selectedslot =k; found = 1; }

k++; } ...

if(Data-LocalTT[idtask] == selectedTT) //check locality of the task

{locality = locality + 1; Locality[idtask] = 1;}

else {nonlocality = nonlocality + 1; Locality[idtask] = 0; }

...}

101

}→ if(pos== -1) {TaskTracker execute(i)}

else {execute(i,selectedslot)};

5.2.3 Hadoop Scheduler Properties

Given the proposed formal model of the Hadoop scheduler, we aim to verify three

properties that are the schedulability, fairness and resources-deadlock freeness. Cheng

et al. [96] claim that these properties represent some of the main critical properties

that can affect the performance of a scheduler in distributed systems. In addition, they

explain their impact on the scheduling decisions in terms of task outcomes, delays,

resources utilization.

The schedulability checks whether a task is scheduled and satisfies its expected

deadline when scheduled according to a scheduling algorithm. The fairness checks

whether the submitted tasks are served (e.g., receiving resources slots that ensure

their processing) and there are no tasks that will never be served or will wait in the

queue more than expected. The resources-deadlock checks whether two tasks are

competing for the same resource or each is waiting for the other to be finished. To

better explain these three properties, we present in the following how each property

is defined.

For the schedulability, the life cycle of a task can be presented as a set of

actions to go from state: submitted to scheduled to processed then to finished-within-

deadline or finished-after-deadline or failed. Let X be the total number of scheduled

tasks and Y be the number of tasks finished within their expected deadlines. The

schedulability rate can be defined as the ratio of X over Y. For instance, the property

“schedulabilityrate > 80” means checking whether the scheduler can have a total of

102

80% of tasks finished within their deadlines.

The fairness property is used to evaluate how fair is a Hadoop scheduler to

distribute tasks and assign them resources to be finished. This property evaluates how

long a submitted task can be waiting or running in the scheduler. In other terms,

tasks go from state submitted, waiting, scheduled to finished/failed. We consider a

variable W as the percentage of tasks that have been served on time by the scheduler

over the total number of scheduled tasks. Here the fairness property can be expressed

for example as: “fairnessrate = 90”. This means checking the probability that the

scheduler will eventually have 90% of tasks served on time.

A job or a task can be characterized by deadlock-occurrence when, for example,

task t1 holds resource r1 and task t2 holds resources r2. The resources r1 and r2

are locked by these two tasks. Task t2 requires r1 to be finished and task t2 requires

r1 to be finished as well. As a result, both tasks experience a resource-deadlock

and can be killed by the scheduler. We consider a variable Z as the percentage

of tasks that experience deadlock-occurrence while being processed over the total

number of scheduled tasks. In other terms, these tasks go from state submitted,

scheduled to waiting-resources. Here the property can be expressed for example as:

“resourcedeadlockrate = 60”]. This means checking that the scheduler will eventually

have 60% of tasks characterized by deadlock occurrence.

To verify above properties in PAT, we need to provide their description

in LTL. For example, the following LTL formulas check the schedulability and

resource-deadlock freeness of given tasks. The first example checks whether a

given task eventually goes from the state submitted to the state finished within

the deadline. The second example checks whether a given task should not go to a

state of waiting-resources. Here, ♦, |=, and ¬ represent eventually, satisfy, and not,

103

respectively, in the LTL logic.

#assert ♦ (task |= (submitted -> finished-within-deadline));

#assert ¬ (task |= (submitted -> waiting-resources));

5.2.4 Quantitative Failures Analysis

Given the CSP model of the Hadoop scheduler and the LTL description of the

three properties, we use the PAT model checker to perform the formal analysis

of the scheduler performance. This is by verifying the three selected properties.

Specifically, we can vary the rates of these properties to evaluate their impact of

Hadoop performance and the failures rates that may encounter the created Hadoop

cluster. To better illustrate this step, we provide here some examples of properties

verification using PAT. For instance, “goal0” represents a goal to check whether all

submitted tasks (“workload”) are successfully scheduled. The verification of this goal

using PAT can identify if the modeled Hadoop cluster, “cluster1”, can reach this

goal or not. Another example could be to check if “cluster1” meets “goal0” with a

“schedulabilityrate” of 80%. The following examples present some of the properties

that can be verified using our approach.

#define goal0 completedscheduled == workload && workload >0;

#assert cluster1 reaches goal0;

#assert cluster1 reaches goal0 && schedulabilityrate >80;

#define goal1 fairnessrate ==50;

#assert cluster1 reaches goal0 && goal1;

#define goal2 resourcedeadlockrate ==50;

#assert cluster1 reaches goal0 && goal1 && goal2;

104

5.2.5 Qualitative Failures Analysis

Given the generated traces by the PAT model checker, we propose in the last step

of our methodology to parse these traces and extract data about possible relations

between the scheduling strategies and the failures rates. To this aim, we propose to

check the states where the scheduler does (not) meet a given property and correlate

these states to the obtained scheduler performance and to the input cluster configura-

tions. As a result, we can investigate the correlation between the cluster settings, the

applied scheduling strategies, and the failures rate. Based on the obtained correlation

results, our proposed methodology can provide/suggest possible scheduling strategies

to overcome these failures. For instance, it can help Hadoop developers by providing

recommendations to change the scheduling decisions (e.g., delay long tasks, wait for

a local task execution). Furthermore, it can guide Hadoop customers by suggesting

guidelines to change and adjust their cluster configurations (e.g., number of nodes,

number of allowed speculative executions).

5.3 Formal Verification Evaluation

Given the different steps of our proposed methodology, we formally analyze the sched-

uler of OpenCloud, a Hadoop-based cluster [97].

5.3.1 Experimental Design

Before performing the analysis, we investigated Hadoop schedulers available in the

open literature to select a case study to evaluate our proposed approach. The main

public case studies are Google [99], Facebook [100], and OpenCloud [97] traces that

provide most of the inputs required by our methodology. For Google traces, we

105

found out that they do not contain information about the cluster settings, which are

among the important factors affecting the verification results. When checking the

Facebook traces, we noticed that there are not enough data describing the cluster

settings, capacity of nodes, failures rate, etc., which are essential for our approach.

The OpenCloud traces contain enough information that match the required inputs of

our verification approach (e.g., # nodes, capacity of nodes, workload). Furthermore,

they provide public traces of real-executions of Hadoop workloads over a period of

more than 20 months. Consequently, we select the OpenCloud traces to formally

verify the scheduler of this Hadoop cluster. OpenCloud is an open cluster for research

purposes used in different areas including machine learning, astrophysics, biology,

cloud computing, etc. It is managed by Carnegie Mellon University.

We start the verification of the scheduler of OpenCloud cluster by extracting

from the traces the required input information for our proposed methodology. To this

aim, we analyze the description of the workload given in the first month trace, the

second month trace, and the first six months traces. This step is required in order

to evaluate the performance of our proposed methodology in terms of the number

of visited states and execution time, using different input traces. While analyzing

the traces, we observed that they do not provide any information about the type of

scheduler used in the cluster. Therefore, we decided to verify the properties of the

modeled cluster for the three existing schedulers (FIFO, Fair and Capacity). This is

due to the direct impact of the used scheduler on the performance of the cluster. We

performed the verification of the OpenCloud scheduler considering different property

requirements to evaluate their impact on the failures rate. In the experiments we

conduct in PAT, we use the search engine “First Witness Trace with Zone Abstrac-

tion” [32] for the analysis with symmetry reduction. The workstation used to perform

106

these experiments is an Intel i7-6700HQ (2.60GHz*8) CPU with 16 GB of RAM.

5.3.2 Experimental Results

In the following, we discuss the results of our proposed methodology when applied to

the OpenCloud scheduler. Precisely, we present the obtained scalability results along

with results of the quantitative and qualitative analyses steps in our methodology.

Properties Verification and Scalability Analysis

We present the obtained verification results of our approach when applied to the traces

of the first month in Table 5.1. Indeed, these trace files provide a description about

1,772,144 scheduled tasks. According to the obtained results, we found out that the

Fair scheduler meets the two schedulability rates of 50% and 80%. Therefore, we

can claim that up to 80% of tasks are scheduled and finished within their deadlines.

For the Capacity scheduler, we observed that it does not satisfy the schedulability

property for a rate of 80%. However, the FIFO scheduler does not meet the two

schedulability rates of 50% and 80%, which means that up to 50% of the scheduled

tasks are exceeding their deadlines when being executed. At this level, we should

mention that tasks that finished after their expected deadlines can use their assigned

resources more than expected. Hence, they affect the overall performance of the

Hadoop cluster.

When analyzing the results for the fairness property, we noticed that the Fair

scheduler meets the two fairness rates of 50% and 80%. This means that up to 80% of

submitted tasks get served and scheduled on time. Whereas, the FIFO and Capacity

schedulers do not satisfy the fairness property for the two give values. This means

that more than 80% of the submitted tasks, from the trace files of the first month,

107

Table 5.1: Verification Results: Trace for the First Month (1,772,144 Tasks)

Property Scheduler Valid? #States Time(s)

Schedulability
= 50%

FIFO No 742 K 1648
Fair Yes 742 K 1597

Capacity Yes 742 K 1604

Schedulability
= 80%

FIFO No 742 K 1650
Fair Yes 742 K 1614

Capacity No 742 K 1602

Fairness
= 50%

FIFO No 742 K 1594
Fair Yes 742 K 1615

Capacity No 742 K 1612

Fairness
= 80%

FIFO No 742 K 1675
Fair Yes 742 K 1642

Capacity No 742 K 1619

Resources-
Deadlock
= 10%

FIFO Yes 742 K 1602
Fair No 742 K 1610

Capacity Yes 742 K 1632

Resources-
Deadlock
= 30%

FIFO No 742 K 1596
Fair No 742 K 1618

Capacity Yes 742 K 1623

are characterized by a longer waiting time in the queue before getting served. Hence,

this may lead to the task starvation problem and hence, decreasing the overall cluster

performance.

For the resource-deadlock property, the Capacity scheduler satisfies the two rates

of 10% and 30%, which means that at least 30% of tasks experienced a resources-

deadlock issue when being executed. However, the FIFO and the Fair schedulers are

characterized by smaller numbers of tasks facing resources-deadlock as presented in

Table 5.1. The FIFO scheduler shows that only 10% of the scheduled tasks experience

the problem of resources-deadlock. While, the Fair scheduler shows that less than 10%

of tasks may experience an issue of resources-deadlock. This is because it does not

meet the two resources-deadlock rates of 10% and 30%. For the Capacity scheduler,

the problem of miscalculation of resources (headroom calculation) [101] can be one of

the main reasons behind these results. Indeed, the Capacity scheduler assumes that

108

there are enough slots to reschedule the failed maps but, this may not be the case

because it assigns these resources to the reduce tasks. In this case, the map tasks will

be waiting for the reduce tasks to release their resources and the reduce tasks will

wait for the expected outputs from these map tasks.

In summary, we can affirm that our proposed methodology allows us to verify

the three properties for each scheduler. The results of our methodology were obtained

by exploring on average 742 K states in 1619 seconds, as shown in Table 5.1.

When applied to the second traces of the OpenCloud cluster, our proposed

methodology could formally analyze the three properties for the three schedulers using

raw data of 476,034 tasks. We observe that the FIFO, Fair and Capacity schedulers

achieve a schedulability rate of 30% and a fairness rate of 20%, whereas they all do

not meet a rate of 90% of schedulability and fairness, as shown in Table 5.2.

Table 5.2: Verification Results: Trace for the Second Month (476,034 Tasks)

Property Scheduler Valid? #States Time(s)

Schedulability
= 30%

FIFO Yes 581 K 1198
Fair Yes 581 K 1136

Capacity Yes 581 K 1205

Schedulability
= 90%

FIFO No 581 K 1149
Fair No 581 K 1116

Capacity No 581 K 1183

Fairness
= 20%

FIFO Yes 581 K 1239
Fair Yes 581 K 1167

Capacity Yes 581 K 1193

Fairness
= 90%

FIFO No 581 K 1188
Fair No 581 K 1104

Capacity No 581 K 1246

Resources-
Deadlock
= 35%

FIFO No 581 K 1135
Fair No 581 K 1106

Capacity Yes 581 K 1219

Resources-
Deadlock
= 50%

FIFO No 581 K 1246
Fair No 581 K 1159

Capacity No 581 K 1217

109

For the resources-deadlock, we notice that at least 35% of tasks can experience

resource-deadlock when scheduled with the Capacity scheduler. In a comparison with

the first trace results, our approach explores 581 K states in (up to) 1246 seconds.

This is expected due to the huge difference in the size between the two input traces.

To assess the scalability of our methodology, we conduct the formal analysis of

a cumulative workload from the Opencloud traces. To this aim, we start by analyzing

the traces of the first month and we incrementally add the workload of each month

to the cumulated trace to be analyzed. Table 5.3 summarizes the analysis results of

the first six months traces together. Indeed, these traces provide a description about

4,006,512 scheduled tasks.

Table 5.3: Verification Results: Trace for the 1-6 Months (4,006,512 Tasks)

Property Scheduler Valid? #States Time(s)

Schedulability
= 50%

FIFO Yes 17692K 4350
Fair Yes 17692K 4362

Capacity Yes 17692K 4359

Schedulability
= 90%

FIFO No 17692K 4346
Fair No 17692K 4341

Capacity No 17692K 4367

Fairness
= 30%

FIFO Yes 17692K 4377
Fair Yes 17692K 4312

Capacity Yes 17692K 4335

Fairness
= 90%

FIFO No 17692K 4352
Fair No 17692K 4328

Capacity No 17692K 4369

Resources-
Deadlock
= 10%

FIFO Yes 17692K 4322
Fair No 17692K 4360

Capacity Yes 17692K 4354

Resources-
Deadlock
= 50%

FIFO No 17692K 4338
Fair No 17692K 4342

Capacity No 17692K 4328

110

Quantitative Failures Analysis

Based on the verification results given by the PAT model checker, we use the gener-

ated traces to identify the states where tasks failed. Also, we compare the scheduling

outcomes of tasks from the PAT traces to those of the executed tasks in the real

OpenCloud cluster. Furthermore, we check the verified properties for these failed

tasks. This step is required to examine possible connections between the scheduling

decisions and the failed tasks. To this aim, we apply this step on the trace of the first

month since it provides a large number of scheduled tasks (i.e., 1,772,144 tasks).

First, we check the scheduling outcomes of tasks from both PAT and cluster traces

and classify the observations into four main categories: True Positive (TP), True Neg-

ative (TN), False Positive (FP), and False Negative (FN). TP denotes the amount of

finished tasks according to our approach traces and characterized by success outcomes

using the simulation traces. TN is the number of failed tasks according to both the

traces from our approach and the simulation ones. FP represents the failed tasks,

based on the simulation traces, that are identified as finished tasks using our method-

ology. While FN denotes the number of identified failed tasks that were finished

during the real simulation.

Our proposed methodology could determine up to 56.82% of the finished tasks

(TP, Fair, schedulability = 80%), and up to 4.64% of the failed tasks (TN, Fair,

fairness = 80%) as presented in Table 5.4. Overall, we noticed that the TN values are

small compared to the TP ones because the analyzed trace of the first month include

more than 94% of successful tasks.

Thereafter, we calculate the Detected Failures (DF) that can be defined as the

number of detected failures using our methodology among the total number of failed

tasks in the given trace files. This step is fundamental in order to quantify the number

111

Table 5.4: Coverage Results(%): Trace for the First Month (1,772,144 Tasks)

Property Scheduler TP TN FP FN DF

Schedulability
= 50%

FIFO 47.29 2.47 3.41 46.83 42.00
Fair 55.38 3.82 2.06 38.74 64.96

Capacity 46.09 2.85 3.03 48.03 48.46

Schedulability
= 80%

FIFO 47.98 2.79 3.09 46.14 47.44
Fair 56.82 4.21 1.67 37.3 71.59

Capacity 42.18 3.03 2.85 51.94 51.53

Fairness
= 50%

FIFO 47.84 2.92 2.96 46.28 49.65
Fair 49.63 3.86 2.02 44.49 65.64

Capacity 44.11 3.04 2.84 50.01 51.70

Fairness
= 80%

FIFO 49.77 3.32 2.56 44.35 56.46
Fair 50.14 4.64 1.24 43.98 78.91

Capacity 48.29 3.48 2.4 45.83 76.18

Resources-
Deadlock
= 10%

FIFO 46.21 3.19 2.69 47.92 54.25
Fair 51.44 3.63 2.25 42.68 61.73

Capacity 43.77 2.84 3.04 50.35 48.29

Resources-
Deadlock
= 30%

FIFO 48.54 2.91 2.97 45.58 49.48
Fair 55.26 3.75 2.13 38.86 63.77

Capacity 49.71 3.19 2.69 44.41 54.25

of failures that our methodology could identify when compared to the real-execution

simulation. Hence, we can answer the question of how many failures could be identified

by our formal verification approach before the application is deployed in a Hadoop

cluster.

In this context, we observe that our methodology is able to early detect between

42% (DF, FIFO, schedulability = 50%) and 78.91% (DF, Fair, fairness = 80%) of the

failures. Furthermore, results show that our proposed methodology is characterized

by a higher rate of FN, which is in the order of 40%. In other words, our approach

indicates that more than 40% of tasks are failed however, they are finished in the

simulation traces. We can explain this result by the internal recovery mechanisms

used in Hadoop to reschedule and recover these tasks in the event of failures. For

instance, Hadoop is characterized by a pausing and resuming strategy to allow tasks

with higher priorities to be executed with enough resources without killing tasks with

112

lower priority [16]. Although these internal mechanisms could reduce the number of

failed tasks, they can affect the total completion times and resources utilization of the

scheduled tasks.

Qualitative Failures Analysis

After determining the potential tasks failures rate that a Hadoop cluster can experi-

ence, we checked the circumstances and specifications in the scheduler that may lead

to these failures. To do so, we check the states of the failed tasks in the generated

PAT traces and analyze the factors (e.g., scheduling decisions, cluster configurations)

leading to the failures of these tasks. For instance, we observed that there exist mul-

tiple failures, up to 32%, because of tasks waiting or executed for a long time that

exceeds the property “mapred.task.timeout”2 defining the maximum timeout for a

task to be finished. When checking the states of these tasks, we found out that these

long delays are caused mainly by the delay to copy input data from another node

to the node where the task is executed; data locality constraints [17]. Delays caused

by this constraint can reach 10 minutes (for small and medium tasks). Furthermore,

we noticed that several jobs are failed because of struggling tasks (40% of scheduled

tasks). struggling tasks are characterized by long execution times and resources con-

tention for a longer time more than expected hence, they can decrease the overall

performance of a Hadoop cluster.

Another important observation is that several tasks failures were cascaded from

one job to another, especially for the long Hadoop chains (e.g., composed of more

than 2 jobs). We can explain these cascaded events between the jobs because of the

unawareness of these failures and the lack of information sharing about these failures in

2This property is taken from “https://hadoop.apache.org/docs/r2.7.2/hadoop-mapreduce-
client/hadoop-mapreduce-client-core/mapred-default.xml”

113

Hadoop. When tasks exceed the property “mapred.map.tasks.speculative.execution”2

defining the maximum number of allowed speculative execution, they have likely more

chances to fail. Precisely, we found out that 26% of the tasks failed because they

exceeded this maximum number. On the other hand, we checked the states of tasks

characterized by long waiting times in the queue (Fairness property). We noticed

that these delays can be caused by the scheduling of long-execution tasks that occupy

their assigned resources for a long time (e.g., large input file to be processed or a job

composed of more than 1000 tasks).

In light of these observations, we can conclude that one can adjust the scheduler

settings or the cluster configurations of Hadoop to avoid poor scheduling decisions and

avoid tasks failures, by early knowing these circumstances and factors. For instance, a

Hadoop developer can change the scheduler design to allow more time for tasks before

being terminated; this is by changing the value of the timeout of scheduled tasks. One

possible strategy could be also to change the type of the adopted scheduling principles

in the cluster (e.g., FIFO, Fair, Capacity, etc.). Another strategy can be to change

the configuration of the created cluster by changing the number of available nodes

to add more resources. Indeed, the added new resources can give other chances for

the tasks that did not get enough resources. Hence, they can solve the fairness and

resources-deadlock issues.

To better illustrate the benefits of our proposed approach, we evaluate the per-

formance of the modeled OpenCloud cluster using a different cluster setting. This

is in order to show the impact of an integrated scheduling strategy or a guideline to

adapt the scheduling decisions and to reduce the failures rate. To do so, we adjust

the cluster settings of the modeled OpenCloud cluster by changing the number of

nodes from 64 to 100. We evaluate the impact of adding more resources in the cluster

114

considering a failures rate of 5.88% (the identified failure rate from the first trace file).

The obtained results of the cluster in terms of failures rates for the three schedulers

are presented in Figure 5.2. Given an OpenCloud cluster composed of 100-nodes, the

number of failed tasks is reduced by up to 2.34% (Fair scheduler), which represents a

total reduction rate of 39.79%. These results were expected because our verification

methodology showed that several failures occur because of tasks struggling for more

than 10 minutes; waiting for other resources to be released.

FIFO Fair Capacity

0

2

4

6

8
5.
88

5.
88

5.
88

4.
26

3.
54 3.

97

F
a
il
u
re
s
R
a
te

(%
)

64-Nodes Cluster 100-Nodes Cluster

Figure 5.2: Impact of Adding Resources on Failures Rate

In light of these results, we affirm that the feasibility study, which we performed

on the OpenCloud cluster (Section 5.3), allows us to evaluate the benefits of our

approach to early identify circumstances leading to failures and to propose strategies

to overcome them. Therefore, we will apply our approach to formally analyze the

Hadoop schedulers of the created cluster for ATLAS (Section 4.2.1) in order to check

whether it can identify tasks failures before their occurrences. Next, we will evaluate

the impact of scheduling strategies on ATLAS performance in terms of the number

of failed jobs and tasks.

115

5.4 Formal Verification of Hadoop and Refinement

of ATLAS

In this section, we present our approach to formally verify Hadoop schedulers of the

created cluster for ATLAS (Section 4.2.1) and the obtained results when integrating

the scheduling strategies within ATLAS in terms of the number of failures’ rates.

5.4.1 Experimental Design

Given the formal analysis methodology described in Section 5.2, we can formally an-

alyze tasks failures in Hadoop scheduler (e.g., FIFO, Fair, Capacity) to early identify

circumstances and specifications leading to potential failures and prevent their occur-

rences. To this aim, we use the description of the created 100-nodes Hadoop cluster

(e.g., number of nodes, capacity of nodes), description of the executed workloads (ob-

tained from the cluster log files), and the specification of properties to be verified as

inputs for our formal analysis approach as presented in Section 4.2.1. We performed

the verification of Hadoop schedulers considering different property requirements to

evaluate their impact on the failures rate. The workstation used to perform these

experiments is the same described in Section 5.3.1.

Upon the identification of possible tasks failures, we parse the traces provided

by the PAT model checker to identify potential scheduling strategies for ATLAS.

Based on the obtained scheduling strategies, we can either adjust the cluster and

scheduler design before instantiating the Hadoop cluster or adjust and refine the

existing scheduling strategies. Next, we measure the new failures’ rates, in terms of

the number of failed jobs, map and reduce tasks, in ATLAS when integrating the

scheduling strategies.

116

5.4.2 Experimental Results

From the performed analysis of Hadoop schedulers in the 100-nodes cluster, we found

out that different tasks experienced several failures because of the values of maximum

number of allowed speculative execution and maximum timeout for a task before be-

ing killed. Therefore, we adjust these two parameters values in the scheduler and

evaluate their impacts on the failures rates. In order to have a fair comparison when

integrating the new strategies, we keep the same cluster, scheduler designs and the

same workload description. We only adjust the used scheduling strategies for the AT-

LAS+RF+MDP+SFD scheduling algorithm to obtain an “ATLAS+RF+MDP+SFD-

Refined” scheduling algorithm. Overall, we use, for the performed experiments, the

implementations of (1) the basic Hadoop scheduling, (2) ATLAS+RF+MDP+SFD

scheduling, and (3) ATLAS+RF+MDP+SFD-Refined scheduling algorithms when

built with FIFO, Fair, and Capacity.

Figures 5.3, 5.4, and 5.5 present the obtained results of the basic Hadoop, AT-

LAS+RF+MDP+SFD, and ATLAS+RF+MDP+SFD-Refined scheduling algorithms

in terms of the number of failed jobs, map tasks, and reduce tasks, respectively. When

integrating the generated scheduling strategies from the formal analysis approach,

we found out that the ATLAS+RF+MDP+SFD-Refined algorithm achieves better

performance than the ATLAS+RF+MDP+SFD and the basic Hadoop scheduling

implementations.

Overall, we noticed that ATLAS+RF+MDP+SFD-Refined algorithm could re-

duce the number of failed jobs and tasks by up to 7% and 12%, respectively, when

compared to the ATLAS+RF+MDP+SFD algorithm. As a result, it could reduce

the execution times by up to 9% and hence the CPU and memory usage are used

by up to 4% and 3%, respectively. Consequently, we can claim that the two selected

117

scheduling strategies identified from the formal analysis methodology could improve

the performance of ATLAS.

FIFO Fair Capacity

200

400

600

800

1,000

N
u

m
b

er
o
f

F
a
il

ed
J
o
b

s

Basic Scheduler

ATLAS+RF+MDP+SFD

ATLAS+RF+MDP+SFD-Refined

Figure 5.3: Impact of Verification Guidelines on
Failed Hadoop Jobs

FIFO Fair Capacity

0.5

1

1.5

2

2.5

3

3.5

·104

N
u
m

b
er

o
f

F
a
il
ed

M
a
p

T
a
sk

s

Basic Scheduler

ATLAS+RF+MDP+SFD

ATLAS+RF+MDP+SFD-Refined

Figure 5.4: Impact of Verification Guidelines on
Failed Map Tasks

118

FIFO Fair Capacity

0.5

1

1.5

2

2.5

3

3.5

·104

N
u
m

b
er

o
f

F
a
il
ed

re
d
u
ce

T
a
sk

s

Basic Scheduler

ATLAS+RF+MDP+SFD

ATLAS+RF+MDP+SFD-Refined

Figure 5.5: Impact of Verification Guidelines on
Failed Reduce Tasks

5.5 Summary

In this chapter, we described a new methodology to formally analyze existing Hadoop

schedulers using model checking. The aim of the proposed methodology is to inves-

tigate the relationship between the scheduling decisions and the failures rates in a

Hadoop cluster and to propose possible scheduling strategies to avoid tasks’ failures.

Particularly, it allows to verify three important scheduling properties, namely schedu-

lability, resources-deadlock freeness, and fairness. We used CSP to model the Hadoop

schedulers, and the PAT model checker to verify the mentioned properties. We ap-

plied our methodology on the scheduler of OpenCloud, a real Hadoop-based cluster

and on Hadoop schedulers to illustrate its usability and benefits. The analysis results

showed that it is possible to early identify failures of tasks in a Hadoop application

before deploying it. Then, we evaluate the failures’ rates in ATLAS given the provided

scheduling strategies.

119

Chapter 6

Conclusions and Future Work

6.1 Conclusions

Hadoop has become the de facto standard for processing large data in today’s cloud

environment. The performance of Hadoop has a direct impact on many important ap-

plications running in cloud environments. However, because of the scale, complexity

and dynamic nature of the cloud, failures are common and these failures often impact

the performance of jobs running in Hadoop. Despite the diversity of failures detec-

tion and recovery mechanisms integrated in Hadoop, several scheduled jobs still fail

because of unforeseen events in the cloud environment such as unpredicted demands

of services or hardware outages. This is due to the fact that the Hadoop scheduler

may generate poor scheduling decisions leading to several jobs’ failures. Also, it lacks

mechanisms to share information about failures between the different Hadoop com-

ponents. Moreover, the Hadoop scheduler is not able to quickly detect the failures

of TaskTrackers due to the fixed heartbeat-based failure detection commonly used in

Hadoop. On the other hand, simulation and analytical modeling have been widely

used to identify the impact of scheduling decisions on the failures rates in Hadoop.

120

However, it was found that they cannot explore large clusters and provide accurate

results and exhaustive coverage about the failures in Hadoop.

To alleviate these issues, we presented in this thesis new approaches for modeling

and verifying an adaptive failure-aware scheduling algorithm to adjust the scheduling

decisions in Hadoop. The proposed approaches can help reduce the failures rates of

tasks and TaskTrackers in the Hadoop framework according to changes in the cloud

environment. In the sequel, we present a description of each of the main contributions

of this thesis.

The first contribution of this thesis is the development of a methodology for task

failure detection to allow the early prediction of the scheduling outcomes of tasks us-

ing information about the tasks and machine learning algorithms. Our methodology

allows to investigate the correlation between tasks attributes and its scheduling out-

comes. To deploy the proposed methodology, we implement a predictive method to

use information about previously executed tasks and machine learning algorithms to

predict possible outcomes of scheduled tasks. The obtained results show that the Ran-

dom Forest algorithm achieves the best results in terms of precision, recall, accuracy,

and execution time for the three Hadoop schedulers.

Second, we propose a novel method to generate adaptive scheduling decisions

to reduce tasks’ failures and avoid making poor scheduling decisions in the Hadoop

framework. To do so, we model the life cycle of a task as an MDP in which each action

is associated with a reward. To solve the MDP model, we use reinforcement learning

techniques to select the scheduling strategy that minimizes the risk of failure for each

submitted task. We implement an adaptive algorithm to select scheduling actions

for the MDP model in Hadoop based on the Q-Learning and SARSA algorithms

and evaluate their performance. The obtained results showed that SARSA algorithm

121

can explore more policies whereas Q-Learning algorithm can select policies giving

maximum rewards for Hadoop scheduler

The third contribution of this thesis is the implementation of a dynamic al-

gorithm to adjust the communication between the JobTracker and TaskTrackers in

order to quickly detect the failures of the TaskTracker nodes, instead of the fixed

heartbeat-based failure detection approach. For this purpose, we used four well known

algorithms from the network field: Chen Failure Detector, Bertier Failure Detector

(Bertier-FD), φ Failure Detector (φ-FD) and Self-tuning Failure Detector (SFD). We

adapt the existing implementations of these algorithms in Hadoop scheduler to quickly

detect the failures of TaskTrackers based on collected information about previously

received heartbeats. The evaluation of these algorithms under different failures rates

showed that the φ-FD and SFD algorithms outperform the other algorithms in terms

of detection time and error rate.

To illustrate the usability and benefits of these proposed methodologies, we

implemented an AdapTive and faiLure-Aware Scheduling (ATLAS) algorithm to early

track failures and adjust the scheduling decisions on the fly. Concretely, we used the

failure prediction algorithm based on the Random Forest to early identify the failure

for ATLAS. To improve the Hadoop scheduling decisions on the fly, we trained ATLAS

using both SARSA and Q-Learning algorithms to generate decisions minimizing tasks’

failures. To adjust the communication between the JobTracker and TaskTrackers in

ATLAS Hadoop, we used the SFD based algorithm to dynamically track failures of

TaskTrackers.

We conducted a large empirical study on a 1000-nodes Hadoop cluster deployed

on Amazon Elastic MapReduce (EMR) to compare the performance of ATLAS to

those of three Hadoop scheduling algorithms (FIFO, Fair, and Capacity). Results

122

show that ATLAS outperforms FIFO, Fair, and Capacity scheduling algorithms, and

it could reduce the failures rates for jobs and tasks by up to 49% and 67%, respectively.

Furthermore, it could reduce the total execution time of jobs and tasks by 35% and

42%, respectively. Consequently, the CPU and memory usage was reduced by 25%

and 24%, respectively.

Finally, to identify circumstances leading to potential failures in Hadoop, we

implemented a new methodology to formally analyze the Hadoop schedulers. The

proposed methodology allows to identify the impact of the scheduling decisions of

Hadoop on the failures rates. Towards this goal, we verified some of the most im-

portant scheduling properties in Hadoop including schedulability, resources-deadlock

freeness, and fairness using the CSP language and the PAT model checker. We applied

our methodology on the scheduler of OpenCloud, a real Hadoop-based cluster. Then,

we applied our formal analysis to early identify failures of tasks in a Hadoop cluster

for ATLAS.

6.2 Future Work

Given the challenges and the learned lessons we gained while doing this thesis, we can

propose several research directions that can be pursued to improve the performance

of ATLAS.

In our task failure detection methodology, we used supervised learning algo-

rithms to train the failure predictive algorithm. The evaluation of the used algorithms

showed that they can early identify tasks’ failures with a good accuracy and precision.

Indeed, the performance of the supervised algorithms highly depends on the size of

the training data: the larger the training data is, the better is the algorithms per-

formance. Here, one can train these algorithms using different sizes of data sets and

123

evaluate the correlation between them and the accuracy of the algorithms. In addi-

tion, we can build the proposed failure predictive algorithm by training unsupervised

algorithms and evaluate their impacts on ATLAS and Hadoop schedulers.

When building the failure predictive algorithm, we did not use information about

the requested resources because these information were not available in the collected

logs from the Hadoop cluster. However, it was found that several tasks may fail

because of lack of resources or unexpected resources contentions by larger tasks more

than expected. So, our predictive algorithm would hardly predict such failures. This

limitation may be solved by building a model to predict the requested resources for the

scheduled tasks based on the task characteristics, received workload, running tasks

on TaskTrackers, etc. Characteristics of workload to be scheduled over time using

ATLAS are important factors that can affect the processing of the tasks and the

failures rates of tasks. Therefore, it is of interest to study these characteristics and

their impacts on the scheduling decisions and one can build an algorithm to predict

the arrival of workload over time to adjust the predictions of tasks failures in ATLAS.

In our task adaptive scheduling methodology, we can extend the scheduling de-

cisions of ATLAS using procedures to optimize the resources allocation across tasks.

Indeed, the existing scheduling strategies in ATLAS consider the policies that im-

prove the number of finished tasks while using the available resources slots. Although

these strategies could reduce the number of failed tasks and reduce the overall cluster

utilization, it was found that ATLAS is not using the available resources efficiently.

One important direction to improve the proposed scheduling learning algorithm is the

training of the selected reinforcement learning algorithms as a function of the size of

the cluster where ATLAS would be deployed.

The performance of the four selected algorithms from the network field highly

124

depend on the cluster size and the injected failures. Consequently, we can improve

their performance by training them in different cluster sizes and different failures

rates. While building our TaskTracker failure detection methodology, we observed

that the SFD algorithm is able to quickly the failures of nodes in Hadoop. However,

it was found to make mistakes because of network delays or messages loss. Therefore,

it is necessary to implement a procedure to analyze these mistakes and to learn how

to avoid them. Similar to our task failure detection methodology, one future work

can be to implement a procedure to predict the failure of TaskTracker using machine

learning algorithms and train it over time.

The proposed method to perform the formal analysis of Hadoop scheduler is

efficient in the sense that it enables the early identification of tasks failures in a

Hadoop application before deploying it. However, it is designed to only include these

three important scheduling constraints: data locality, data placement, and speculative

execution. An important direction of future work can be to add more features, to our

proposed approach, that can impact the failures rate in Hadoop, like the resource

assignment and load balancing. Furthermore, we noticed that our formal analysis

approach is characterized by a higher rate of wrong identification of failed tasks (up

to 40%), which impacts the performance of our scheduler. This is because of the

built-in recovery mechanisms in the real cluster that are not involved in our approach.

Therefore, we propose to model important internal recovery mechanisms of Hadoop

and evaluate their impact of the performance of our formal approach as well us the

failures rates. Moreover, our proposed formal analysis is limited to early identify

failures of tasks. However, we can extend this work to formally analyze the failures of

TaskTrcakers and evaluate their impact on the scheduling decisions and the failures

rates of scheduled tasks.

125

Finally, to generalize the findings of this thesis, we propose to extend and eval-

uate our proposed approach on Spark [34], a novel in-memory computing framework

for Hadoop. One can adapt the proposed four methodologies according to the archi-

tecture of Spark.

126

Bibliography

[1] Amazon EC2 Instances. http://aws.amazon.com/ec2/instance-types/, 2018.

[2] J. Dean and S. Ghemawat. MapReduce: Simplified Datfa Processing on Large

Clusters. ACM Communications, 51(1):107–113, 2008.

[3] Apache Hadoop, http://hadoop.apache.org/, 2018.

[4] I. Foster, Z. Yong, I. Raicu, and L. Shiyong. Cloud Computing and Grid Com-

puting 360-Degree Compared. In International Workshop on Grid Computing

Environments, pages 1–10, 2008.

[5] H. Mohamed and S. Marchand-Maillet. Enhancing MapReduce Using MPI and

an Optimized Data Exchange Policy. In International Conference on Parallel

Processing, pages 11–18, 2012.

[6] Y.C. Kao and Y.S. Chen. Data-locality-aware MapReduce Real-time Scheduling

Framework. Journal of Systems and Software, 112:65 – 77, 2016.

[7] H. Chen, Y. Lu, and D. Swanson. Matchmaking: A New MapReduce Scheduling

Technique. In International Conference on Cloud Computing Technology and

Science, pages 40–47, 2011.

127

[8] J. Yuting, T. Lang, H. Ting, T. Jian, L. Kang-won, and Z. Li. Improving Multi-

job MapReduce Scheduling in an Opportunistic Environment. In International

Conference on Cloud Computing, pages 9–16, 2013.

[9] A. Raj, K. Kaur, U. Dutta, V.V. Sandeep, and S. Rao. Enhancement of Hadoop

Clusters with Virtualization Using the Capacity Scheduler. In International

Conference on Services in Emerging Markets, pages 50–57, 2012.

[10] J. Dean. Experiences with MapReduce, an Abstraction for Large-scale Compu-

tation. In International Conference on Parallel Architectures and Compilation

Techniques, pages 1–1, 2006.

[11] K.V. Vishwanath and N. Nagappan. Characterizing Cloud Computing Hardware

Reliability. In ACM Symposium on Cloud Computing, pages 193–204, 2010.

[12] F. Dinu and T. Ng. Hadoop Overload Tolerant Design Exacerbates Failure

Detection and Recovery. In International Workshop on Networking Meets

Databases, pages 1–7, 2011.

[13] S. Kikuchi and T. Aoki. Evaluation of Operational Vulnerability in Cloud Ser-

vice Management Using Model Checking. In International Symposium on Ser-

vice Oriented System Engineering, pages 37–48, March 2013.

[14] Amazon, Summary of the Amazon EC2 and Amazon RDS Service Disruption

in the US East Region, 2013.

[15] S. Li, S. Hu, S. Wang, L. Su, T. Abdelzaher, I. Gupta, and R. Pace. WOHA:

Deadline-Aware Map-Reduce Workflow Scheduling Framework over Hadoop

Clusters. In IEEE International Conference on Distributed Computing Systems,

pages 93–103, 2014.

128

[16] J.A. Quian-Ruiz, C. Pinkel, J. Schad, and J. Dittrich. RAFTing MapReduce:

Fast Recovery on the RAFT. In IEEE International Conference on Data Engi-

neering, pages 589–600, 2011.

[17] M. Soualhia, F. Khomh, and S. Tahar. Task Scheduling in Big Data Platforms:

A Systematic Literature Review. Journal of Systems and Software, 134:170 –

189, 2017.

[18] F. Dinu and T.S.E. Ng. Understanding the Effects and Implications of Compute

Node Related Failures in Hadoop. In Symposium on High-Performance Parallel

and Distributed Computing, pages 187–198, 2012.

[19] D. Chen, Y. Chen, B. N. Brownlow, P. P. Kanjamala, C. A. G. Arredondo,

B. L. Radspinner, and M. A. Raveling. Real-Time or Near Real-Time Persisting

Daily Healthcare Data Into HDFS and ElasticSearch Index Inside a Big Data

Platform. IEEE Transactions on Industrial Informatics, 13(2):595–606, 2017.

[20] Applying Apache Hadoop to NASA’s Big Climate Data.

http://events.linuxfoundation.org/sites/events/files/slides/apachecon nasa hado

op.pdf, 2018.

[21] T. Chen and R. Bahsoon. Self-Adaptive and Online QoS Modeling for

Cloud-Based Software Services. IEEE Transactions on Software Engineering,

43(5):453–475, 2017.

[22] V. Di Valerio and F. Lo Presti. Optimal Virtual Machines Allocation in Mobile

Femto-Floud Fomputing: An MDP Fpproach. In IEEE Wireless Communica-

tions and Networking Conference Workshops, pages 7–11, 2014.

129

[23] X. Bu, J. Rao, and C. Z. Xu. Coordinated Self-Configuration of Virtual Ma-

chines and Appliances Using a Model-Free Learning Approach. IEEE Transac-

tions on Parallel and Distributed Systems, 24(4):681–690, 2013.

[24] F. Alexander and H. Matthias. Improving Scheduling Performance Using a

Q-learning-based Leasing Policy for Clouds. In International Conference on

Parallel Processing, pages 337–349, 2012.

[25] Csaba Szepesvari. Algorithms for Reinforcement Learning. Morgan and Clay-

pool Publishers, 2010.

[26] W. Chen, S. Toueg, and M. K. Aguilera. On The Quality of Service of Failure

Detectors. IEEE Transactions on Computers, 51(5):561–580, 2002.

[27] M. Bertier, O. Marin, and P. Sens. Implementation and Performance Evaluation

of an Adaptable Failure Detector. In IEEE Conference on Dependable Systems

and Networks, pages 354–363, 2002.

[28] N. Hayashibara, X. Defago, R. Yared, and T. Katayama. The φ; Accrual Failure

Detector. In IEEE International Symposium on Reliable Distributed Systems,

pages 66–78, 2004.

[29] N. Xiong, A. V. Vasilakos, J. Wu, Y. R. Yang, A. Rindos, Y. Zhou, W. Z. Song,

and Y. Pan. A Self-tuning Failure Detection Scheme for Cloud Computing Ser-

vice. In IEEE International Parallel Distributed Processing Symposium, pages

668–679, 2012.

[30] C. Baier and J-P. Katoen. Principles of Model Checking. MIT Press, 2008.

130

[31] J. Sun, Y. Liu, J. S. Dong, and C. Chen. Integrating Specification and Programs

for System Modeling and Verification. In IEEE International Symposium on

Theoretical Aspects of Software Engineering, pages 127–135, 2009.

[32] Process Analysis Toolkit. http://sav.sutd.edu.sg/pat/, 2018.

[33] B. Kitchenham. Procedure for Performing Systemic Reviews. Technical report,

Keele University and NICTA, Australia, 2004.

[34] W. Huang, L. Meng, D. Zhang, and W. Zhang. In-Memory Parallel Processing

of Massive Remotely Sensed Data Using an Apache Spark on Hadoop YARN

Model. Journal of Selected Topics in Applied Earth Observations and Remote

Sensing, pages 1–17, 2016.

[35] J. Xu, Z. Chen, J. Tang, and S. Su. T-Storm: Traffic-Aware Online Schedul-

ing in Storm. In Proceedings of IEEE International Conference on Distributed

Computing Systems, pages 535–544, 2014.

[36] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. Katz,

S. Shenker, and I. Stoica. Mesos: A Platform for Fine-grained Resource Sharing

in the Data Center. In USENIX Conference on Networked Systems Design and

Implementation, pages 295–308, 2011.

[37] F. Dinu and T.S.E. Ng. RCMP: Enabling Efficient Recomputation Based Failure

Resilience for Big Data Analytics. In International Parallel and Distributed

Processing Symposium, pages 962–971, 2014.

[38] H. Zhu and H. Chen. Adaptive Failure Detection via Heartbeat under Hadoop.

In IEEE Asia-Pacific Services Computing Conference, pages 231–238, 2011.

131

[39] S.Y. Ko, I. Hoque, B. Cho, and I. Gupta. Making Cloud Intermediate Data

Fault-tolerant. In ACM Symposium on Cloud Computing, pages 181–192, 2010.

[40] G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Stoica, Y. Lu, B. Saha,

and E. Harris. Reining in the Outliers in Map-reduce Clusters Using Mantri. In

USENIX Conference on Operating Systems Design and Implementation, pages

265–278, 2010.

[41] J.A. Quiane-Ruiz, C. Pinkel, J. Schad, and J. Dittrich. RAFTing MapReduce:

Fast recovery on the RAFT. In International Conference on Data Engineering,

pages 589–600, 2011.

[42] Z. Yuan and J. Wang. Research of Scheduling Strategy Based on Fault Tolerance

in Hadoop Platform. In Geo-Informatics in Resource Management and Sustain-

able Ecosystem, volume 399 of Communications in Computer and Information

Science, pages 509–517. Springer, 2013.

[43] C. Gupta, M. Bansal, Tzu-Cheng Chuang, R. Sinha, and S. Ben-romdhane. As-

tro: A Predictive Model for Anomaly Detection and Feedback-based Scheduling

on Hadoop. In International Conference on Big Data, pages 854–862, 2014.

[44] C. Qi, L. Cheng, and X. Zhen. Improving MapReduce Performance Using Smart

Speculative Execution Strategy. IEEE Transactions on Computers, 63(4):954–

967, 2014.

[45] T. Shanjiang, L. Bu-Sung, and H. Bingsheng. DynamicMR: A Dynamic Slot Al-

location Optimization Framework for MapReduce Clusters. IEEE Transactions

on Cloud Computing, 2(3):333–347, 2014.

132

[46] L. Lei, W. Tianyu, and H. Chunming. CREST: Towards Fast Speculation of

Straggler Tasks in MapReduce. In Proceedings of International Conference on

e-Business Engineering, pages 311–316, 2011.

[47] O. Yildiz, S. Ibrahim, T. A. Phuong, and G. Antoniu. Chronos: Failure-aware

Scheduling in Shared Hadoop Clusters. In IEEE International Conference on

Big Data (Big Data), pages 313–318, 2015.

[48] O. Yildiz, S. Ibrahim, and G. Antoniu. Enabling Fast Failure Recovery in

Shared Hadoop Clusters: Towards Failure-aware Scheduling. Future Generation

Computer Systems, 74:208 – 219, 2017.

[49] M. Zaharia, A. Konwinski, A. Joseph, R. Katz, and I. Stoica. Improving MapRe-

duce Performance in Heterogeneous Environments. In USENIX Conference on

Operating Systems Design and Implementation, pages 29–42, 2008.

[50] C. Quan, Z. Daqiang, G. Minyi, D. Qianni, and G. Song. SAMR: A Self-

Adaptive MapReduce Scheduling Algorithm in Heterogeneous Environment.

In International Conference on Computer and Information Technology, pages

2736–2743, 2010.

[51] S. Xiaoyu, H. Chen, and L. Ying. ESAMR: An Enhanced Self-Adaptive MapRe-

duce Scheduling Algorithm. In International Conference on Parallel and Dis-

tributed Systems, pages 148–155, 2012.

[52] T. Zhuo, J. Lingang, Z. Junqing, L. Kenli, and L. Keqin. A Self-Adaptive

Scheduling Algorithm for Reduce Start Time. Future Generation Computer

Systems, 4344(C):51 – 60, 2015.

133

[53] W. Jiayin, Y. Yi, M. Ying, S. Bo, and M. Ningfang. FRESH: Fair and Effi-

cient Slot Configuration and Scheduling for Hadoop Clusters. In International

Conference on Cloud Computing, pages 761–768, 2014.

[54] Y. Guo, J. Rao, C. Jiang, and X. Zhou. Moving MapReduce into the Cloud

with Flexible Slot Management and Speculative Execution. IEEE Transactions

on Parallel and Distributed Systems, 28(3):798–812, 2017.

[55] S. Li, S. Hu, S. Wang, L. Su, T. Abdelzaher, I. Gupta, and R. Pace. WOHA:

Deadline-Aware Map-Reduce Workflow Scheduling Framework over Hadoop

Clusters. In International Conference on Distributed Computing Systems, pages

93–103, 2014.

[56] A. Rasooli and D.G. Down. A Hybrid Scheduling Approach for Scalable Het-

erogeneous Hadoop Systems. In International Conference on High Performance

Computing, Networking Storage and Analysis, pages 1284–1291, 2012.

[57] O. Hasan and S. Tahar. Formal verification methods. In Encyclopedia of Infor-

mation Science and Technology, pages 7162–7170, IGI Global Pub., 2015.

[58] S.T. Cheng, H.C. Wang, Y.J. Chen, and C.F. Chen. Performance Analysis Using

Petri Net Based MapReduce Model in Heterogeneous Clusters. In Advances in

Web-Based Learning, volume 8390 of Lecture Notes in Computer Science, pages

170–179. Springer, 2015.

[59] M.C. Ruiz, J. Calleja, and D. Cazorla. Petri Nets Formalization of Map/Reduce

Paradigm to Optimise the Performance-Cost Tradeoff. In IEEE Trustcom/Big-

DataSE/ISPA, volume 3, pages 92–99, 2015.

134

[60] W. Su, F. Yang, H. Zhu, and Q. Li. Modeling MapReduce with CSP. In IEEE

International Symposium on Theoretical Aspects of Software Engineering, pages

301–302, 2009.

[61] W. Xie, H. Zhu, X. Wu, S. Xiang, and J. Guo. Modeling and Verifying HDFS

Using CSP. In IEEE Annual Computer Software and Applications Conference,

volume 1, pages 221–226, 2016.

[62] G.S. Reddy, F. Yuzhang, L. Yang, S.D. Jin, J. Sun, and R. Kanagasabai. To-

wards Formal Modeling and Verification of Cloud Architectures: A Case Study

on Hadoop. In International World Congress on Services, pages 306–311, 2013.

[63] K. Ono, Y. Hirai, Y. Tanabe, N. Noda, and M. Hagiya. Using Coq in Specifica-

tion and Program Extraction of Hadoop Mapreduce Applications. In Software

Engineering and Formal Methods, volume 7041 of Lecture Notes in Computer

Science, pages 350–365, 2011.

[64] The Coq Proof Assistant, https://coq.inria.fr/, 2018.

[65] WordCount Example. http://wiki.apache.org/hadoop/wordcount, 2018.

[66] Y. Jarraya, A. Eghtesadi, M. Debbabi, Y. Zhang, and M. Pourzandi. For-

mal Verification of Security Preservation for Migrating Virtual Machines in the

Cloud. In Stabilization, Safety, and Security of Distributed Systems, volume

7596 of Lecture Notes in Computer Science, pages 111–125. Springer, 2012.

[67] C. Bansal, K. Bhargavan, A. Delignat-Lavaud, and S. Maffeis. Keys to the

Cloud: Formal Analysis and Concrete Attacks on Encrypted Web Storage. In

Principles of Security and Trust, volume 7796 of Lecture Notes in Computer

Science, pages 126–146. Springer, 2013.

135

[68] A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L. Compagna, J. Cuellar,

P. Hankes Drielsma, P. C. Heám, O. Kouchnarenko, J. Mantovani, S. Möder-

sheim, D. von Oheimb, M. Rusinowitch, J. Santiago, M. Turuani, L. Viganò,

and L. Vigneron. The AVISPA Tool for the Automated Validation of Internet

Security Protocols and Applications. In Computer Aided Verification, volume

3576 of Lecture Notes in Computer Science, pages 281–285. Springer, 2005.

[69] NuSMV: A New Symbolic Model Checker, http://nusmv.fbk.eu/, 2018.

[70] S. Kikuchi and Y. Matsumoto. Performance Modeling of Concurrent Live Mi-

gration Operations in Cloud Computing Systems Using PRISM Probabilistic

Model Checker. In International Conference on Cloud Computing, pages 49–56,

2011.

[71] A. Naskos, E. Stachtiari, A. Gounaris, P. Katsaros, D. Tsoumakos, I. Kon-

stantinou, and S. Sioutas. Cloud elasticity using probabilistic model checking.

Technical report, Aristotle University of Thessaloniki, Greece, 2014.

[72] V. Ishakian, A. Lapets, A. Bestavros, and A. Kfoury. Formal Verification of SLA

Transformations. In World Congress on Services, pages 540–547, July 2011.

[73] B. Thuraisingham, V. Khadilkar, J. Rachapalli, T. Cadenhead, M. Kantarcioglu,

K. Hamlen, L. Khan, and F. Husain. Towards the Design and Implementation of

a Cloudcentric Assured Information Sharing System. Technical report, UTDCS-

27-11, The University of Texas at Dallas, USA, 2012.

[74] M. Kaufmann and J.S. Moore. ACL2: an industrial strength version of Nqthm.

In International Conference on Computer Assurance, Systems Integrity, Soft-

ware Safety, Process Security, pages 23–34, 1996.

136

[75] M. Khan, Y. Jin, M. Li, Y. Xiang, and C. Jiang. Hadoop Performance Modeling

for Job Estimation and Resource Provisioning. IEEE Transactions on Parallel

and Distributed Systems, 27(2):441–454, 2016.

[76] D. Liu, S. Y. Cho, D. M. Sun, and Z. D. Qiu. A Spearman Correlation Coefficient

Ranking for Matching-score Fusion on Speaker Recognition. In IEEE Region 10

Conference TENCON, pages 736–741, 2010.

[77] The R Project for Statistical Computing, http://www.r-project.org/, 2018.

[78] M. Fokkema. pre: An R Package for Fitting Prediction Rule Ensembles. ArXiv

e-prints, http://adsabs.harvard.edu/abs/2017arXiv170707149F, 2017.

[79] L. An, F. Khomh, and B. Adams. Supplementary Bug Fixes vs. Re-opened

Bugs. In IEEE International Working Conference on Source Code Analysis and

Manipulation, pages 205–214, 2014.

[80] B. Jeannet, P. D’Argenio, and K. Larsen. Rapture: A Tool for Verifying Markov

Decision Processes. In International Conference on Concurrency Theory, pages

84–98, 2002.

[81] G. Oddi, M. Panfili, A. Pietrabissa, L. Zuccaro, and V. Suraci. A Resource

Allocation Algorithm of Multi-cloud Resources Based on Markov Decision Pro-

cess. In IEEE International Conference on Cloud Computing Technology and

Science, pages 130–135, 2013.

[82] N. Mastronarde and M. van der Schaar. Online Reinforcement Learning for Dy-

namic Multimedia Systems. IEEE Transactions on Image Processing, 19(2):290–

305, 2010.

137

[83] N. Liu, Z. Li, J. Xu, Z. Xu, S. Lin, Q. Qiu, J. Tang, and Y. Wang. A Hierar-

chical Framework of Cloud Resource Allocation and Power Management Using

Deep Reinforcement Learning. In IEEE International Conference on Distributed

Computing Systems, pages 372–382, 2017.

[84] M. Duggan, K. Flesk, J. Duggan, E. Howley, and E. Barrett. A Reinforce-

ment Learning Approach for Dynamic Selection of Virtual Machines in Cloud

Data Centres. In International Conference on Innovative Computing Technol-

ogy, pages 92–97, 2016.

[85] Z. Peng, D. Cui, Y. Ma, J. Xiong, B. Xu, and W. Lin. A Reinforcement

Learning-Based Mixed Job Scheduler Scheme for Cloud Computing under SLA

Constraint. In IEEE International Conference on Cyber Security and Cloud

Computing, pages 142–147, 2016.

[86] F. Farahnakian, P. Liljeberg, and J. Plosila. Energy-Efficient Virtual Machines

Consolidation in Cloud Data Centers Using Reinforcement Learning. In Eu-

romicro International Conference on Parallel, Distributed, and Network-Based

Processing, pages 500–507, 2014.

[87] M. van der Ree and M. Wiering. Reinforcement learning in the game of Othello:

Learning against a fixed opponent and learning from self-play. In IEEE Sym-

posium on Adaptive Dynamic Programming and Reinforcement Learning, pages

108–115, 2013.

[88] R.M. Obrien. A Caution Regarding Rules of Thumb for Variance Inflation

Factors. Quality and Quantity, 41(5):673–690, 2007.

138

[89] Richard Goldstein. Conditioning Diagnostics: Collinearity and Weak Data in

Regression. 35:85–86, 2012.

[90] Traces of Google workloads, http://code.google.com/p/googleclusterdata/,

2018.

[91] F. Faghri, S. Bazarbayev, M. Overholt, R. Farivar, R. Campbell, and W. H.

Sanders. Failure Scenario As a Service (FSaaS) for Hadoop Clusters. In Work-

shop on Secure and Dependable Middleware for Cloud Monitoring and Manage-

ment, pages 5:1–5:6, 2012.

[92] M. Soualhia, F. Khomh, and S. Tahar. Predicting Scheduling Failures in the

Cloud: A Case Study with Google Clusters and Hadoop on Amazon EMR. In

IEEE High Performance Computing and Communications, pages 58–65, 2015.

[93] S. Jimnez Gil, I. Bate, G. Lima, L. Santinelli, A. Gogonel, and L. Cucu-Grosjean.

Open Challenges for Probabilistic Measurement-Based Worst-Case Execution

Time. IEEE Embedded Systems Letters, 9(3):69–72, 2017.

[94] R.K. Yin. Case Study Research: Design and Methods. SAGE Publication, 2002.

[95] Microsoft Azure, http://azure.microsoft.com/en-gb/, 2018.

[96] A.M.K. Cheng. Real-Time Systems: Scheduling, Analysis, and Verification.

John Wiley & Sons, Inc., 2002.

[97] OpenCloud. http://ftp.pdl.cmu.edu/pub/datasets/hla/dataset.html, 2018.

[98] J. Sun, Y. Liu, J. S. Dong, and J. Pang. PAT: Towards Flexible Verification

under Fairness. In Computer Aided Verification:CAV, volume 5643 of Lecture

Notes in Computer Science, pages 709–714, 2009.

139

[99] Google Traces. https://github.com/google/cluster-data, 2018.

[100] Facebook Traces. https://github.com/swimprojectucb/swim/wiki/workloads-

repository, 2018.

[101] J. Fang, Headroom Miscalculation can lead to Deadlock in Hadoop

Two, http://johnjianfang.blogspot.ca/2014/09/headroom-miscalculation-can-

lead-to.html, 2018.

140

Publications

• Journal Papers

– Bio-Jr1 M. Soualhia, F. Khomh, and S. Tahar, A Dynamic and Failure-

aware Task Scheduling Framework for Hadoop; IEEE Transactions on

Cloud Computing, pp. 1-16, 2018, To Appear.

– Bio-Jr2 M. Soualhia, F. Khomh, and S. Tahar, Task Scheduling in Big

Data Platforms: A Systematic Literature Review; Journal of Systems and

Software, vol. 134, pp. 170-189, Elsevier, 2017.

– Bio-Jr3 N. Kara, M. Soualhia, F. Belqasmi, C. Azar and R. H. Glitho,

Genetic-based Algorithms for Resource Management in Virtualized IVR

Applications; Journal of Cloud Computing, vol. 3, pp. 1-15, Springer,

2014.

– Bio-Jr4 F. Belqasmi, C. Azar, R. H. Glitho, M. Soualhia and N. Kara,

A Case Study on IVR Applications’ Provisioning as Cloud Computing

Services; IEEE Network, vol. 28, no. 1, pp. 33-41, 2014.

• Refereed Conference Papers

– Bio-Cf1 M. Soualhia, F. Khomh, and S. Tahar, Formal Analysis of

141

Hadoop Scheduler. [(Submitted), IEEE International Symposium on Reli-

able Distributed Systems (SRDS’18), October 2018, pp. 1-10].

– Bio-Cf2 M. Soualhia, F. Khomh, and S. Tahar, ATLAS: An Adaptive

Failure-Aware Scheduler for Hadoop. [Proc. IEEE International Perfor-

mance Computing and Communications Conference (IPCCC’15), Nanjing,

China, December 2015, pp. 1-8].

– Bio-Cf3 M. Soualhia, F. Khomh, and S. Tahar: Predicting Scheduling

Failures in the Cloud: A Case Study with Google Clusters and Hadoop on

Amazon EMR. [Proc. IEEE High Performance Computing and Communi-

cations (HPCC’15), New York, USA, August 2015, pp. 58-65].

– Bio-Cf4 F. Belqasmi, C. Azar, M. Soualhia, N. Kara and R.H. Glitho,

A Virtualized Infrastructure for IVR Applications as services. [Proc. ITU

Kaleidoscope 2011: The Fully Networked Human? -Innovations for Future

Networks and Services, (ITU’11), Cape Town, South Africa, December

2011, 12-14].

• Technical Reports

– Bio-Tr1 M. Soualhia, F. Khomh, and S. Tahar, ATLAS: An Adap-

tive Failure-Aware Scheduler for Hadoop, Technical Report, Department

of Electrical and Computer Engineering, Concordia University, November

2015. [24 Pages]. https://arxiv.org/abs/1511.01446

– Bio-Tr2 M. Soualhia, F. Khomh, and S. Tahar, Predicting Schedul-

ing Failures in the Cloud, Technical Report, Department of Electrical

and Computer Engineering, Concordia University, July 2015. [26 Pages].

https://arxiv.org/abs/1507.03562

142

	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ACRONYMS
	Introduction
	Hadoop-MapReduce
	Motivation
	Proposed Methodology
	Thesis Contributions
	Thesis Organization

	Related Work
	Failure-aware Scheduling in Hadoop
	Adaptive Scheduling in Hadoop
	Formal Verification of Hadoop and Cloud
	Summary

	Failures Detection and Adaptive Scheduling
	Limitation of Current Schedulers
	Task Failure Detection
	Adaptive Scheduling
	TaskTracker Failure Detection
	Summary

	ATLAS: AdapTive faiLure-Aware Scheduling
	ATLAS Implementation
	ATLAS Evaluation
	Threats to Validity
	Summary

	Formal Verification of Hadoop
	Preliminaries
	Formal Verification Methodology
	Formal Verification Evaluation
	Formal Verification of Hadoop and Refinement of ATLAS
	Summary

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography
	Publications

