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ABSTRACT

On the Upper Bound of Petty’s Conjecture in 3 Dimensions

Emilie Cyrenne

Among the various important aspects within the theory of convex geometry is that

of the field of affine isoperimetric inequalities. Our focus deals with validating the

upper bound of Petty’s conjecture relating the volume of a convex body and that of

its associated projection body. We begin our study by providing some background

properties pertaining to convexity as seen through the lens of Minkowski theory.

We then show that Petty’s conjecture holds true in a certain class of 3-dimensional

non-affine deformations of simplices. More precisely, we prove that any simplex in

R
3 attains the upper bound in comparison to any deformation of a simplex by a

Minkowski sum with a small line segment. As part of our theoretical analysis, we

make use of mixed volumes and Maclaurin series expansion in order to simplify the

targeted functionals. Finally, we provide an example validating what is known in

the literature as the reverse and direct Petty projection inequality. In all cases,

Mathematica is used extensively as our means of visualizing the plots of our selected

convex bodies and corresponding projection bodies.
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Chapter 1

Introduction and Preliminaries

1.1 Introduction

Among the various branches of convex geometry, the study of inequalities is promi-

nent. As well as being of independent interest, many of these inequalities have been

applied to various mathematical contexts such as ordinary and partial differential

equations, functional analysis, linear programming, etc. Often, convexity is naturally

necessary when seeking the existence and uniqueness of extremal values. The isoperi-

metric problem, whose aim is to determine a geometric figure having maximal area

for a given perimeter, is one such example.

In this paper, we examine more closely the field of affine isoperimetric inequali-

ties, in which functionals associated to convex bodies remain invariant (unchanged)

under affine transformations [10]. Of particular interest is the relationship relating

the volume of a convex body (compact, convex set with non-empty interior) and that

of its projection body. A ratio of these two volumes, raised at appropriate powers

such that the ratio is invariant under scaling, is the subject of two outstanding con-

jectures in convex geometry. The study of projection bodies came about in the early

1900s by Minkowski, who showed that for every convex body K ⊂ X, there exists
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a corresponding unique centrally symmetric (symmetric with respect to the origin)

convex body ΠK, denoted as the projection body of K [10]. A first conjecture was

due to Petty who claimed that:

Voln(ΠK)

Voln(K)n−1
≥ ωn

n−1

ωn−2
n

(1.1)

with equality if and only if K is an ellipsoid [11]. Here, K denotes an arbitrary convex

body in R
n , Voln(·) the n-dimensional volume and ωn the n-dimensional volume of

the n-dimensional unit ball [3].

In other words, Petty conjectured that the functional

Pn(K) =
Voln(ΠK)

Voln−1
n (K)

(1.2)

is minimal for ellipsoids. There has been much research done on proposing an upper

bound for Pn. Schneider conjectured that, for centrally symmetric convex bodies,

2n is an upper bound [13]. Brannen disproved Schneider’s claim by establishing

counterexamples for n ≥ 3 and instead, proposed that for all n-dimensional convex

bodies K, the value (n+1)nn

n!
is an upper bound, which is the value that the above

functional reaches for simplices [3]. Both conjectured extreme values for this Petty

functional are referred to as Petty’s conjecture. We focus on calculating the value of

Pn for 3-dimensional affine images of simplices and specific non-affine deformations

of simplices defined using a Minkowski sum of segments. We validate that the upper

bound of Petty’s conjecture holds true in the class of deformations of this type.

On a more theoretical basis, we want to show in general that the upper bound

of Petty’s conjecture is true for any deformation of a simplex by a Minkoswki sum

with a segment. This involves some background on mixed volumes and their related

properties, among which is the linearity of mixed volumes.

Finally, we state what is known in the literature as Petty’s projection inequality
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involving the volume of a convex body and that of the polar of its associated projection

body. Petty’s projection inequality states that:

Voln−1
n (K)Voln(ΠK)? ≤

(

ωn

ωn−1

)n

(1.3)

with equality if and only if K is an ellipsoid. The inequality shows that the minimal

value of this new functional, Qn(K) = Voln−1
n (K)Voln(ΠK)?, is reached for simplices

- this is known as the Zhang projection inequality [14] or the reverse Petty inequality.

Petty himself proved that the maximum of Qn is attained only for ellipsoids. We

provide an example validating the reverse and the direct Petty projection inequality

for the union of a simplex and a line segment of arbitrary length. In addition, we

comment on the duality of the two functionals, Voln(ΠK) and Voln(ΠK)?. Petty’s

projection inequality for polar bodies was first introduced because the original prob-

lem, that pertaining to the conjectured bounds of Pn, was too hard to prove.

The present paper is divided as follows. Chapter 1 is an introduction to the theory

of convexity and projection bodies. In Chapter 2, we present our results, validating

Petty’s conjecture, and elaborate on our calculations. Chapter 3 provides a theoretical

approach to how certain deformations of simplices do not hinder Petty’s conjecture.

We conclude with some insight on Petty’s projection inequality for polar bodies.

1.2 Convexity and Convex Sets

Before embarking on our journey of projection bodies, we must first elaborate on

what is meant by convexity and convex sets. Convex geometry is a specific branch

in geometry pertaining to the study of convex sets. Among numerous other ad-

vantages, convexity facilitates optimization problems by efficiently identifying the

feasible region and ensuring an optimal solution. Furthermore, convexity allows for

results obtained in lower-dimensional space to have equal reasoning and application
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in infinite-dimensional theory.

A subset C of a vector space X over R is called convex if the line segment joining

any two points in C also lies in C, i.e.,

C ⊆ X, C is convex if C 6= ∅ and ∀x, y ∈ C and ∀λ ∈ [0, 1], λx + (1− λ)y ∈ C.

The set {λx + (1− λ)y : 0 ≤ λ ≤ 1} is a closed line segment connecting the end-

points x and y. In this way, a convex combination is defined as a linear combination

of points having non-negative coefficients that sum to one. The above definition ap-

plies to any Euclidean space Rn. The simplest examples of nonempty convex sets are

singletons, intervals and the entire space Rn. Interestingly, convexity intertwines with

the notion of means. For example, any convex combination satisfying λx + (1− λ)y

with λ ∈ (0,1) is the weighted arithmetic mean of x and y. Likewise, the weighted

geometric mean of x and y pertains to the concavity (negative convexity) of functions.

1.2.1 Some Properties of Convex Sets

a. Arithmetic summation and multiplication by reals preserve convexity: if C is

a convex set in X and λ1, ..., λk ∈ [0, 1] such that
∑k

i=1 λi = 1, then the set

λ1C1 + ... + λkCk =
{

∑k

i=1 λixi : xi ∈ C, i = 1, ..., k, k ≥ 2, k ∈ N

}

is convex.

Proof by induction: For k = 2, the set {λ1x1 + λ2x2 : x1, x2 ∈ C} is convex since

C is convex. Assume that the set
{

∑k

i=1 λixi : xi ∈ C, i = 1, ..., k, k ≥ 2, k ∈ N

}

is convex. We will show it is convex for k = k + 1. Let x1, ..., xk+1 be arbitrary

points in C, and let λ1, . . . , λk+1 be real non-negative numbers with
∑k+1

i=1 λi = 1.

Then λ1+...+λk = 1−λk+1. If λk+1 = 1, then λ1x1+...+λk+1xk+1 = xk+1 ∈ C

(all λ′
is = 0, i = 1, ..., k). If λk+1 6= 1, then λ1

1−λk+1
+ λ2

1−λk+1
+ ... + λk

1−λk+1
=

1. By the hypothesis of induction ,
∑k

i=1
λi

1−λk+1
xi ∈ C. Since xk+1 ∈ C (and

by definition of convexity), we have (1− λk+1)
∑k

i=1
λi

1−λk+1
xi + λk+1xk+1 ∈ C.

Then (1− λk+1)
(

λ1x1

1−λk+1
+ λ2x2

1−λk+1
+ ... + λkxk

1−λk+1

)

+ λk+1xk+1 ∈ C. Cancelling

the necessary terms, we get
∑k+1

i=1 λixi ∈ C.
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b. Images of convex sets under affine maps are convex: if φ : X → X is an affine

mapping and C ⊂ X is convex, then φ(C) = {φ(x) = Lx + v : L is a linear

operator, x ∈ X, v ∈ X is fixed} ⊂ X is also convex.

Proof: Let x, y ∈ C. Then φ(x), φ(y) ∈ φ(C). The convexity of C implies that

λx + (1 − λ)y ∈ C ∀λ ∈ [0, 1]. Since φ is affine, then φ(λx + (1 − λ)y) =

λφ(x) + (1− λ)φ(y) ∈ φ(C). Thus, φ(C) is convex.

c. Convex sets are closed under arbitrary intersections: if {Kα}α∈A is an arbitrary

collection of convex sets, then their intersection K:= ∩α∈A Kα is also convex.

Proof: Let {Kα}α∈A be a family of convex sets, and let K = ∩α∈AKα. Then

∀x, y ∈ K, we have x, y ∈ Kα, ∀α ∈ A (and all y’s are convex by assumption).

Hence, ∀α ∈ A and λ ∈ [0, 1], λx + (1 − λ)y ∈ Kα. Thus λx + (1 − λ)y ∈ K,

implying that K is convex.

Definition 1.2.1. Let A be an arbitrary set of X. Then the convex hull of A, denoted

by conv(A), is the set of all convex combinations of A. In other words,

conv(A) =

{

m
∑

i=1

λixi : ∀m ≥ 2, ∀xi ∈ A , λi ∈ [0, 1] with
m
∑

i=1

λi = 1

}

.

Equivalently, conv(A) is the intersection of all convex sets containing A. According

to our third property of convex sets, the convex hull of a set is necessarily convex

- indeed, conv(A) is the smallest convex set containing A. For example, the convex

hull of a set of finite vertices in R
n is called a polytope. If {x1 , ..., xn+1} is a set

of (n+ 1)-points in R
n such that xi - xj , ∀ i > j, is a linearly independent set, then

conv ({x1 , ..., xn+1}) is called a simplex. Simplices in R are simply line segments.

In R
2, simplices are triangles. In R

3, simplices are tetrahedra. The trend continues.

Definition 1.2.2. Let A,B be convex sets of Rn. The Minkowski sum of A and B,

denoted as A+B = {z ∈ R
n : z = x+ y, for some x ∈ A and y ∈ B}.
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1.3 Convex Bodies

At the heart of the geometric theory of convex sets lies the space of convex bodies,

which are defined in n-dimensional Euclidean space as compact, convex sets with

non-empty interior. The class of convex bodies is closed under Minkowski addition.

Convex bodies are uniquely characterized by their support functions.

Definition 1.3.1. We call hK : Sn−1 → R, hK(x) = sup{x · y : y ∈ K} the support

function of K, where S
n−1 = {x ∈ R

n : ‖x‖ = 1} is the (n − 1)-dimensional unit

sphere in R
n.

The support function of a convex body K, containing the origin in its interior, in a

direction u is the orthogonal distance from the supporting hyperplanes ofK of normal

u to the origin. At every point on the boundary of a convex body, there exists at

least one hyperplane such that the convex body lies in one of the two closed halfspaces

defined by this supporting hyperplane. From this definition, any convex body is the

intersection of closed halfspaces containing K that have supporting hyperplanes as

boundaries. At any given point on the boundary, the supporting hyperplane is not

unique as there exists points where the boundary is not smooth, i.e., supporting

hyperplanes passing through vertices (corner points) are not unique. It is known that

every convex body has a unique support function with respect to the origin and that

any convex body K is completely determined by its support function.

Within the theory of convexity lies an important subtopic known as duality, a no-

tion interchangeable with that of polarity. In broad terms, duality is mostly used in

functional analysis, whereas polarity is commonly applied by geometers. A direct in-

terplay between functional analysis and geometry is established when studying norms.

For any norm ‖·‖, the dual norm is the norm ‖·‖? = supy 6=0
x·y
‖y‖ = sup||y||=1(x · y).

Definition 1.3.2. Let K be a convex body in R
n with 0 ∈ int(K). We define the

polar of K the set K? = {y ∈ R
n : x · y ≤ 1, ∀x ∈ K}.

6



We remark that the polar of the unit ball with respect to any norm is the unit

ball with respect to the corresponding dual normed space. We come back to duality

in the last section - for now, we focus on polarity and some of its properties.

The properties of K are equally reflected in those of K?. To start with, we

note that if K is a convex body containing the origin in its interior, then K? is

also a convex body with 0 ∈ Int (K?). If P is a polytope in R
n such that P =

⋂k

i=1{x ∈ R
n : x · ni ≤ 1}, as any polytope may be expressed as an intersection

of a finite number of halfspaces, then P ? = conv {ni}, i = 1, . . . , k, where each ni

is a unit vector in R
n. The size and shape of the polar body tend to be inverted

to that of the original set. For example, the polar of a 3-dimensional cube is an

octahedron - 6 faces and 8 vertices for the original set correspond to 8 faces and 6

vertices for the polar. In R
2, a long rectangle extended over the x-axis with vertices

at (500, 1
2
), (−100, 1

2
), (500,−1

2
), (−100,−1

2
) has a taller, compressed diamond as its

polar, with corners at (− 1
100

, 0),
(

1
500

, 0) and (0,±2). This shows that the polar of a

polytope is highly dependent on the choice of the origin. We also note that polars of

simplices are simplices.

A key aspect pertaining to polarity is that K? is always convex, regardless of

whether or not K is itself convex.

1.3.1 Some Properties of Polarity

a. If K is a convex set, then K?? = K.

Proof: We need to prove K ⊆ K?? and K?? ⊆ K

Recall that 0 (the zero vector in R
n) ∈ K ⊂ R

n, while

K? = {y ∈ R
n : x · y ≤ 1, ∀x ∈ K} and

K?? = {z ∈ R
n : z · y ≤ 1, ∀y ∈ K?}.

Case 1: K ⊆ K??

7



Let x0 ∈ K, x0 is an arbitrary point in K. Then x0 · y ≤ 1, ∀y ∈ K?, thus

x0 ∈ K??.

Case 2: K?? ⊆ K

Assume there exists z0 ∈ K??\K, (z0 ∈ K??, but z0 /∈ K.) Since z0 /∈ K, then

by the Hahn-Banach Separation Theorem, there exists a separating hyperplane

for z0 and K. By definition, there is a vector n ∈ R
n such that z0 · n > 1 and

z ·n ≤ 1, ∀z ∈ K. This means n ∈ K?. However, this contradicts that z0 ·n > 1

(because z0 ∈ K??). Therefore, our assumption was wrong and K?? ⊆ K.

Note: K need not be convex; K? is always convex. Thus, the first case always

holds.

b. Polarity reverses set inclusion: if K1 ⊆ K2 ⇒ K2
? ⊆ K1

?

Proof: Let y ∈ K2
?. Then, by definition, x · y ≤ 1, ∀x ∈ K2. This implies that

x · y ≤ 1, ∀x ∈ K1 (since K1 ⊂ K2.) Thus y ∈ K1
?.

c. If P is symmetric with respect to the origin, then so is P ?.

Proof: Let P be a convex body symmetric with respect to the origin. Then

x ∈ P ⇒ x ∈ −P . Now P ? = {y ∈ R
n : x · y ≤ 1, ∀x ∈ P}. If y ∈ P ?, then

x · y ≤ 1, ∀x ∈ P . Since x ∈ −P , x · y ≤ 1, ∀x ∈ −P ⇒ y ∈ −P ?.

1.4 Projection Bodies

The study of projection bodies and their polars is of rather recent investigation. The

reason for their emergence is mainly due to their connectedness to several areas of

mathematics, the most common being geometric tomography, a field gathering infor-

mation pertaining to a geometric object based on data obtained from its sections or

projections [5]. We are concerned with projections of convex bodies and the signifi-

cant role they play in the branch of geometric inequalities. Knowledge extracted from

8



the projections allows for the determination of the original body. For example, if the

convex body is centrally symmetric, then the size of its projections, up to translation,

suffices in tracing back the body [7]. In lay terms, the word projection refers to a

shadow projected orthogonally onto a line or planar surface.

For every convex bodyK, there exists a corresponding centered convex body called

the projection body of K, denoted as ΠK. As for all convex bodies, projection bodies

are defined explicitly by their support functions. The latter is defined as follows:

Definition 1.4.1. [3] If K is a convex body in R
n, then the support function of its

projection body ΠK is hΠK(u) = Voln−1(K, u), where Voln−1(K, u) is the (n − 1)-

dimensional volume of the projection of K onto a hyperplane passing through the

origin orthogonal to the unit vector u ∈ S
n−1.

In other words, the support function of ΠK in the direction of u is the (n − 1)-

dimensional volume (area if K ∈ R
3) of the projection of K onto a hyperplane

of normal u. By the Cauchy projection formula, we have that Voln−1(K, u) =

1
2

∫

Sn−1 |u · v| dµ(K, v), where dµ(K, v) is the surface area measure of K at the point

on the surface of K with outward-unit normal vector v in R
n [4]. Thus, a symmetric

convex body ΠK is the projection body of K if its support function is defined as

above.

To our great advantage, if K is a polytope, its surface area is concentrated on a

finite number of unitary directions (the outward-normals to the (n− 1)-dimensional

faces), therefore, as we will see, the above formula simplifies.

Put simply, following Brannen’s reasoning for calculating the projection body ΠK

of a polytope [3], we analyze the area and outward-unit normal vector correspond-

ing to each top dimensional face of the convex body. Then, according to Brannen,

projection bodies are finite sums of segments, and generally, for any convex body K,

they are limits of finite sums of segments. Each outward-unit normal vector has an

associated opposite vector - the line segment connecting the endpoints, multiplied by

9



the area of each face, is called an “area segment”. For a polytope K, the pairwise

Minkowski sum of all area segments of K gives us the resulting projection body. To

obtain the volume of the projection body, we calculate the sum of the absolute value

of the determinant whose column vectors are precisely twice one of the endpoints

(positive or negative) pertaining to each area segment. We provide our exact calcu-

lations in the following chapter, starting with the explicit calculations concerning the

volume of projection bodies for non-affine transformations of the right tetrahedron in

R
3 = conv ((0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)).

Finally, it is important to note that the optimization problem we consider, namely

Petty’s conjecture, is affine invariant in the sense that Pn(K) = Pn(AK), where

A = L + x is any affine transformation of Rn onto itself with linear part L whose

determinant is non-zero. Thus, the value of the functional Pn for any simplex is

equivalent to its value on the right tetrahedron, which is why we may consider it

as our reference simplex. Later in our analysis, we will also use this invariance to

consider the simplex regular.

A first step towards understanding the affine invariance lies upon the property

that Π(K + x) = ΠK, ∀x ∈ R
n. In other words, as the projection body of K is

formed by the size of the projections of K, no translation of K will change the size

of the projections of K, hence the shape of ΠK remains unchanged. The second

ingredient is the invariance under scaling of the functional Pn(K) = Voln(ΠK)
Voln(K)n−1 . If

K is multiplied by any scaling factor, then the resulting projection body of K will

expand/contract by the same scaling factor at the power (n− 1) as the surface area

of K determines ΠK. Thus, the latter ratio defining Pn(K) does not change in the

presence of a scaling factor.

For more details pertaining to the previous sections, we refer the reader to [6] and

[12].
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Chapter 2

Calculations/Analysis of

Calculations

In this chapter, we present the projection body of the right tetrahedron in R
3, its

volume, as well as the projection bodies and corresponding volumes of two unit non-

affine transformations of the right tetrahedron. Finally, we draw conclusions as to

the validation of Petty’s projection inequality in R
3.

The following essential fact will be used for the construction of each projection

body:

Lemma 2.0.1. [4] If K is a polytope in R
3 such that u1, . . . , um, m ≥ 4, are the unit

outer normals to the faces of K whose areas are, correspondingly, a1, . . . , am, then

the projection body of K is the Minkowski sum of the segments of direction ui and

length equal to area ai,

ΠK =
a1
2
[−u1, u1] + . . .+

am
2
[−um, um]. (2.1)

11





We denote by: ui the outward-unit normal vector with respect to face i, ai the

area of face i, aiui the area segment corresponding to face i.

• Right triangle 1: vertices are (0, 0, 0), (0, 1, 0), (0, 0, 1)

(0, 0, 0)− (0, 0, 1) = 〈0, 0,−1〉

(0, 0, 0)− (0, 1, 0) = 〈0,−1, 0〉

〈0, 0,−1〉 × 〈0,−1, 0〉 = 〈−1, 0, 0〉

||〈−1, 0, 0〉|| = 1

a1 =
1
2
||〈−1, 0, 0〉|| = 1

2

u1 = 〈−1, 0, 0〉

− u1 = 〈1, 0, 0〉

a1 (u1) =
〈−1

2
, 0, 0

〉

; a1 (−u1) =
〈

1
2
, 0, 0

〉

• Right triangle 2: vertices are (0, 0, 0), (1, 0, 0), (0, 0, 1)

(0, 0, 0)− (0, 0, 1) = 〈0, 0,−1〉

(0, 0, 0)− (1, 0, 0) = 〈−1, 0, 0〉

〈0, 0,−1〉 × 〈−1, 0, 0〉 = 〈0, 1, 0〉

||〈0, 1, 0〉|| = 1

a2 =
1
2
||〈0, 1, 0〉|| = 1

2

u2 = 〈0, 1, 0〉

− u2 = 〈0,−1, 0〉

a2 (u2) =
〈

0, 1
2
, 0
〉

; a2 (−u2) =
〈

0, −1
2
, 0
〉

• Right triangle 3: vertices are (0, 0, 0), (1, 0, 0), (0, 1, 0)

(0, 0, 0)− (1, 0, 0) = 〈−1, 0, 0〉

(0, 0, 0)− (0, 1, 0) = 〈0,−1, 0〉

〈−1, 0, 0〉 × 〈0,−1, 0〉 = 〈0, 0, 1〉

||〈0, 0, 1〉|| = 1
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a3 =
1
2
||〈0, 0, 1〉|| = 1

2

u3 = 〈0, 0, 1〉

− u3 = 〈0, 0,−1〉

a3 (u3) =
〈

0, 0, 1
2

〉

; a3 (−u3) =
〈

0, 0, −1
2

〉

• Equilateral triangle: vertices are (1, 0, 0), (0, 1, 0), (0, 0, 1)

(1, 0, 0)− (0, 0, 1) = 〈1, 0,−1〉

(1, 0, 0)− (0, 1, 0) = 〈1,−1, 0〉

〈1, 0,−1〉 × 〈1,−1, 0〉 = 〈−1,−1,−1〉

||〈−1,−1,−1〉|| =
√
3

a4 =
1
2
||〈−1,−1,−1〉|| =

√
3
2

u4 = 〈−1√
3
, −1√

3
, −1√

3
〉

− u4 = 〈 1√
3
, 1√

3
, 1√

3
〉

a4 (u4) =
〈−1

2
, −1

2
, −1

2

〉

; a4 (−u4) =
〈

1
2
, 1
2
, 1
2

〉

For the simplicity of the calculations, we consider

2ΠK = a1[−u1, u1] + . . .+ am[−um, um], (2.2)

thus

2ΠK = [−a1u1, a1u1] + [−a2u2, a2u2] + [−a3u3, a3u3] + [−a4u4, a4u4] .

2ΠK =
[〈

1
2
, 0, 0

〉

,
〈−1

2
, 0, 0

〉]

+
[〈

0, −1
2
, 0
〉

,
〈

0, 1
2
, 0
〉]

+
[〈

0, 0, −1
2

〉

,
〈

0, 0, 1
2

〉]

+
[〈

1
2
, 1
2
, 1
2

〉

,
〈−1

2
, −1

2
, −1

2

〉]

.

⇒ 2ΠK, as well as its rescaling ΠK, is the convex hull of, at most, 24 = 16

possible vectors.
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• |w1, w2, w3|

Det













−1 0 0

0 1 0

0 0 1













= −1

• |w1, w2, w4|

Det













−1 0 0

0 1 0

−1 −1 −1













= 1

• |w1, w3, w4|

Det













−1 0 0

0 0 1

−1 −1 −1













= −1

• |w2, w3, w4|

Det













0 1 0

0 0 1

−1 −1 −1













= −1

Therefore, we get that Vol(2ΠK) = 1 + 1 + 1 + 1 = 4 and Vol(ΠK) = 4/23 = 1
2
.

Now, Vol(K) = ab·h
3

=
1
2
·1
3

= 1
6
.

Thus, Petty’s functional for the right tetrahedron in R
3, and consequently for any

tetrahedron in R
3, due to its invariance under linear transformations, is:

Vol(ΠK)
Vol(K)2

=
1
2

( 1
6)

2 = 18.
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• Right triangle: vertices are (0, 0, 0), (1, 0, 0), (0, 0, 1)

(0, 0, 0)− (0, 0, 1) = 〈0, 0,−1〉

(0, 0, 0)− (1, 0, 0) = 〈−1, 0, 0〉

〈0, 0,−1〉 × 〈−1, 0, 0〉 = 〈0, 1, 0〉

||〈0, 1, 0〉|| = 1

a1 =
1
2
||〈0, 1, 0〉|| = 1

2

u1 = 〈0, 1, 0〉

− u1 = 〈0,−1, 0〉

a1 (u1) =
〈

0, 1
2
, 0
〉

; a1 (−u1) =
〈

0, −1
2
, 0
〉

• Equilateral triangle: vertices are (0, ε, 1), (0, 1 + ε, 0), (1, ε, 0)

(1, ε, 0)− (0, ε, 1) = 〈1, 0,−1〉

(1, ε, 0)− (0, 1 + ε, 0) = 〈1,−1, 0〉

〈1, 0,−1〉 × 〈1,−1, 0〉 = 〈−1,−1,−1〉

||〈−1,−1,−1〉|| =
√
3

a2 =
1
2
||〈−1,−1,−1〉|| =

√
3
2

u2 = 〈−1√
3
, −1√

3
, −1√

3
〉

− u2 = 〈 1√
3
, 1√

3
, 1√

3
〉

a2 (u2) =
〈−1

2
, −1

2
, −1

2

〉

; a2 (−u2) =
〈

1
2
, 1
2
, 1
2

〉

• Rectangle: vertices are (0, 0, 1), (0, ε, 1), (1, ε, 0), (1, 0, 0)

(1, 0, 0)− (0, 0, 1) = 〈1, 0,−1〉

(1, 0, 0)− (1, ε, 0) = 〈0,−ε, 0〉

〈1, 0,−1〉 × 〈0,−ε, 0〉 = 〈−ε, 0,−ε〉

||〈−ε, 0,−ε〉|| =
√
2ε

a3 = length · width =
√
2ε

u3 = 〈−
√
2

2
, 0, −

√
2

2
〉
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− u3 = 〈
√
2
2
, 0,

√
2
2
〉

a3 (u3) = 〈−ε, 0,−ε〉 ; a3 (−u3) = 〈ε, 0, ε〉

• Trapezoid 1: vertices are (0, 0, 0), (0, 1 + ε, 0), (1, ε, 0), (1, 0, 0)

(0, ε, 0)− (1, ε, 0) = 〈−1, 0, 0〉

(0, ε, 0)− (0, 1 + ε, 0) = 〈0,−1, 0〉

〈−1, 0, 0〉 × 〈0,−1, 0〉 = 〈0, 0, 1〉

||〈0, 0, 1〉|| = 1

a4 =
(B+b)h

2
= ((1+ε)+ε)·1

2
= 1

2
+ ε

u4 = 〈0, 0, 1〉

− u4 = 〈0, 0,−1〉

a4 (u4) =
〈

0, 0, 1
2
+ ε

〉

; a4 (−u4) =
〈

0, 0, −1
2
− ε

〉

• Trapezoid 2: vertices are (0, 0, 1), (0, ε, 1), (0, 1 + ε, 0), (0, 0, 0)

(0, ε, 0)− (0, ε, 1) = 〈0, 0,−1〉

(0, ε, 0)− (0, 1 + ε, 0) = 〈0,−1, 0〉

〈0, 0,−1〉 × 〈0,−1, 0〉 = 〈−1, 0, 0〉

||〈−1, 0, 0〉|| = 1

a5 =
(B+b)h

2
= ((1+ε)+ε)·1

2
= 1

2
+ ε

u5 = 〈−1, 0, 0〉

− u5 = 〈1, 0, 0〉

a5 (u5) =
〈−1

2
− ε, 0, 0

〉

; a5 (−u5) =
〈

1
2
+ ε, 0, 0

〉

2ΠK = [−a1u1, a1u1] + [−a2u2, a2u2] + [−a3u3, a3u3] + [−a4u4, a4u4] + [−a5u5, a5u5] .

2ΠK =
[〈

0, −1
2
, 0
〉

,
〈

0, 1
2
, 0
〉]

+
[〈

1
2
, 1
2
, 1
2

〉

,
〈−1

2
, −1

2
, −1

2

〉]

+ [〈ε, 0, ε〉 , 〈−ε, 0,−ε〉]

+
[〈

0, 0, −1
2
− ε

〉

,
〈

0, 0, 1
2
+ ε

〉]

+
[〈

1
2
+ ε, 0, 0

〉

,
〈−1

2
− ε, 0, 0

〉]

.
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• |w1, w2, w3|

Det













0 1 0

−1 −1 −1

−2ε 0 −2ε













= 0

• |w1, w2, w4|

Det













0 1 0

−1 −1 −1

0 0 1 + 2ε













= 1 + 2ε

• |w1, w2, w5|

Det













0 1 0

−1 −1 −1

−1− 2ε 0 0













= 1 + 2ε

• |w1, w3, w4|

Det













0 1 0

−2ε 0 −2ε

0 0 1 + 2ε













= 2ε(1 + 2ε)

• |w1, w3, w5|

Det













0 1 0

−2ε 0 −2ε

−1− 2ε 0 0













= 2ε(1 + 2ε)

• |w1, w4, w5|

Det













0 1 0

0 0 1 + 2ε

−1− 2ε 0 0













= −(1 + 2ε)2
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• |w2, w3, w4|

Det













−1 −1 −1

−2ε 0 −2ε

0 0 1 + 2ε













= −2ε(1 + 2ε)

• |w2, w3, w5|

Det













−1 −1 −1

−2ε 0 −2ε

−1− 2ε 0 0













= −2ε(1 + 2ε)

• |w2, w4, w5|

Det













−1 −1 −1

0 0 1 + 2ε

−1− 2ε 0 0













= (1 + 2ε)2

• |w3, w4, w5|

Det













−2ε 0 −2ε

0 0 1 + 2ε

−1− 2ε 0 0













= 0

Thus, Vol(2ΠK) is expressed as a function of ε in the following way :

Simplify[0 + (1 + 2ε) + (1 + 2ε) + 2ε(1 + 2ε) + 2ε(1 + 2ε) + (1 + 2ε)2 + 2ε(1 + 2ε) +

(1 + 2ε)2 + 2ε(1 + 2ε) + 0] = 4(1 + 5ε+ 6ε2)

Now the convex body K may be decomposed as a triangular prism at the base

of a right tetrahedron. We can therefore express the volume of K as the sum of the

volumes of the triangular prism and the right tetrahedron.
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Vol(K) = ab · h+
ab · h
3

=
1

2
ε+

1
2
· 1
3

=
ε

2
+

1

6
.

Consequently, for K = T + I[0,1,0]ε, we have the following expression as Petty’s

functional:

Vol(ΠK)

Vol(K)2
=

1
2
(1 + 5ε+ 6ε2)
(

ε
2
+ 1

6

)2 =
18(1 + 2ε)

(1 + 3ε)
. (2.3)

.

2.3 Calculations for K = T + I[ 1√
3
, 1√

3
, 1√

3
]ε, where T =

right tetrahedron in R
3

The deformation of the right simplex is taken here in the direction of the vector

(1, 1, 1) (normalized) by a Minkowski sum with a segment of length ε. We repeat the

corresponding calculations of the projection body and its volume to see the effect of

this deformation on the value of Petty’s functional.

K = T + I[ 1√
3
, 1√

3
, 1√

3
]ε = conv

(

{0, 0, 0}, {1, 0, 0}, {0, 1, 0}, {0, 0, 1}, { ε√
3
, ε√

3
, ε√

3
},

{1 + ε√
3
, ε√

3
, ε√

3
}, { ε√

3
, 1 + ε√

3
, ε√

3
}, { ε√

3
, ε√

3
, 1 + ε√

3
}
)

.
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We denote by: ui the outward-unit normal vector with respect to face i, ai the

area of face i, aiui the area segment corresponding to face i.

• Right triangle 1: vertices are (0, 0, 1), (1, 0, 0), (0, 0, 0)

(0, 0, 0)− (0, 0, 1) = 〈0, 0,−1〉

(0, 0, 0)− (1, 0, 0) = 〈−1, 0, 0〉

〈0, 0,−1〉 × 〈−1, 0, 0〉 = 〈0, 1, 0〉

||〈0, 1, 0〉|| = 1

a1 =
1
2
||〈0, 1, 0〉|| = 1

2

u1 = 〈0, 1, 0〉

− u1 = 〈0,−1, 0〉

a1 (u1) =
〈

0, 1
2
, 0
〉

; a1 (−u1) =
〈

0, −1
2
, 0
〉

• Right triangle 2: vertices are (1, 0, 0), (0, 1, 0), (0, 0, 0)

(0, 0, 0)− (1, 0, 0) = 〈−1, 0, 0〉

(0, 0, 0)− (0, 1, 0) = 〈0,−1, 0〉

〈−1, 0, 0〉 × 〈0,−1, 0〉 = 〈0, 0, 1〉

||〈0, 0, 1〉|| = 1

a2 =
1
2
||〈0, 0, 1〉|| = 1

2

u2 = 〈0, 0, 1〉

− u2 = 〈0, 0,−1〉

a2 (u2) =
〈

0, 0, 1
2

〉

; a2 (−u2) =
〈

0, 0, −1
2

〉

• Right triangle 3: vertices are (0, 0, 1), (0, 1, 0), (0, 0, 0)

(0, 0, 0)− (0, 0, 1) = 〈0, 0,−1〉

(0, 0, 0)− (0, 1, 0) = 〈0,−1, 0〉

〈0, 0,−1〉 × 〈0,−1, 0〉 = 〈−1, 0, 0〉
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||〈−1, 0, 0〉|| = 1

a3 =
1
2
||〈−1, 0, 0〉|| = 1

2

u3 = 〈−1, 0, 0〉

− u3 = 〈1, 0, 0〉

a3 (u3) =
〈−1

2
, 0, 0

〉

; a3 (−u3) =
〈

1
2
, 0, 0

〉

• Equilateral triangle: vertices are (1+ ε√
3
, ε√

3
, ε√

3
), ( ε√

3
, 1+ ε√

3
, ε√

3
), ( ε√

3
, ε√

3
, 1+ ε√

3
)

( ε√
3
, 1 + ε√

3
, ε√

3
)− (1 + ε√

3
, ε√

3
, ε√

3
) = 〈−1, 1, 0〉

( ε√
3
, ε√

3
, 1 + ε√

3
)− (1 + ε√

3
, ε√

3
, ε√

3
) = 〈−1, 0, 1〉

〈−1, 1, 0〉 × 〈−1, 0, 1〉 = 〈1, 1, 1〉

||〈1, 1, 1〉|| =
√
3

a4 =
1
2
||〈1, 1, 1〉|| =

√
3
2

u4 = 〈 1√
3
, 1√

3
, 1√

3
〉

− u4 = 〈−1√
3
, −1√

3
, −1√

3
〉

a4 (u4) =
〈

1
2
, 1
2
, 1
2

〉

; a4 (−u4) =
〈−1

2
, −1

2
, −1

2

〉

• Rectangle 1: vertices are (0, 0, 1), (1, 0, 0), ( ε√
3
, ε√

3
, 1 + ε√

3
), (1 + ε√

3
, ε√

3
, ε√

3
)

(1, 0, 0)− (0, 0, 1) = 〈1, 0,−1〉

( ε√
3
, ε√

3
, 1 + ε√

3
)− (0, 0, 1) = 〈 ε√

3
, ε√

3
, ε√

3
〉

〈1, 0,−1〉 × 〈 ε√
3
, ε√

3
, ε√

3
〉 = 〈 ε√

3
, −2ε√

3
, ε√

3
〉

||〈 ε√
3
, −2ε√

3
, ε√

3
〉|| =

√

(

ε√
3

)2

+
(

−2ε√
3

)2

+
(

ε√
3

)2

=
√

6ε2

3
=

√
2ε

a5 = length · width =
√
2ε

u5 = 〈
√
6
6
, −

√
6

3
,
√
6
6
〉

− u5 = 〈−
√
6

6
,
√
6
3
, −

√
6

6
〉

a5 (u5) =
〈

ε√
3
, −2ε√

3
, ε√

3

〉

; a5 (−u5) =
〈

−ε√
3
, 2ε√

3
, −ε√

3

〉
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• Rectangle 2: vertices are (1, 0, 0), (0, 1, 0), (1 + ε√
3
, ε√

3
, ε√

3
), ( ε√

3
, 1 + ε√

3
, ε√

3
)

( ε√
3
, 1 + ε√

3
, ε√

3
)− (0, 1, 0) = 〈 ε√

3
, ε√

3
, ε√

3
〉

(0, 1, 0)− (1, 0, 0) = 〈−1, 1, 0〉

〈 ε√
3
, ε√

3
, ε√

3
〉 × 〈−1, 1, 0〉 = 〈−ε√

3
, −ε√

3
, 2ε√

3
〉

||〈−ε√
3
, −ε√

3
, 2ε√

3
〉|| =

√

(

−ε√
3

)2

+
(

−ε√
3

)2

+
(

2ε√
3

)2

=
√

6ε2

3
=

√
2ε

a6 = length · width =
√
2ε

u6 = 〈−
√
6

6
, −

√
6

6
,
√
6
3
〉

− u6 = 〈
√
6
6
,
√
6
6
, −

√
6

3
〉

a6 (u6) =
〈

−ε√
3
, −ε√

3
, 2ε√

3

〉

; a6 (−u6) =
〈

ε√
3
, ε√

3
, −2ε√

3

〉

• Rectangle 3: vertices are (0, 0, 1), (0, 1, 0), ( ε√
3
, 1 + ε√

3
, ε√

3
), ( ε√

3
, ε√

3
, 1 + ε√

3
)

( ε√
3
, ε√

3
, 1 + ε√

3
)− (0, 0, 1) = 〈 ε√

3
, ε√

3
, ε√

3
〉

(0, 1, 0)− (0, 0, 1) = 〈0, 1,−1〉

〈 ε√
3
, ε√

3
, ε√

3
〉 × 〈0, 1,−1〉 = 〈−2ε√

3
, ε√

3
, ε√

3
〉

||〈−2ε√
3
, ε√

3
, ε√

3
〉|| =

√

(

−2ε√
3

)2

+
(

ε√
3

)2

+
(

ε√
3

)2

=
√

6ε2

3
=

√
2ε

a7 = length · width =
√
2ε

u7 = 〈−
√
6

3
,
√
6
6
,
√
6
6
〉

− u7 = 〈
√
6
3
, −

√
6

6
, −

√
6

6
〉

a7 (u7) =
〈

−2ε√
3
, ε√

3
, ε√

3

〉

; a7 (−u7) =
〈

2ε√
3
, −ε√

3
, −ε√

3

〉

2ΠK = [−a1u1, a1u1] + [−a2u2, a2u2] + [−a3u3, a3u3] + [−a4u4, a4u4] + [−a5u5, a5u5] +

[−a6u6, a6u6] + [−a7u7, a7u7]

2ΠK =
[〈

0, −1
2
, 0
〉

,
〈

0, 1
2
, 0
〉]

+
[〈

0, 0, −1
2

〉

,
〈

0, 0, 1
2

〉]

+
[〈

1
2
, 0, 0

〉

,
〈−1

2
, 0, 0

〉]

+
[〈−1

2
, −1

2
, −1

2

〉

,
〈

1
2
, 1
2
, 1
2

〉]

+
[〈

−ε√
3
, 2ε√

3
, −ε√

3

〉

,
〈

ε√
3
, −2ε√

3
, ε√

3

〉]

+
[〈

ε√
3
, ε√

3
, −2ε√

3

〉

,
〈

−ε√
3
, −ε√

3
, 2ε√

3

〉]

+
[〈

2ε√
3
, −ε√

3
, −ε√

3

〉

,
〈

−2ε√
3
, ε√

3
, ε√

3

〉]
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Once more, we calculate the volume of 2ΠK using Brannen’s formula [4] as follows:

Vol(ΠK) =
∑

1≤i<j<k≤n |wi, wj, wk|

w1 = 2 · a1 (u1) = 〈0, 1, 0〉

w2 = 2 · a2 (u2) = 〈0, 0, 1〉

w3 = 2 · a3 (u3) = 〈−1, 0, 0〉

w4 = 2 · a4 (u4) = 〈−1,−1,−1〉

w5 = 2 · a5 (u5) = 〈 2ε√
3
, −4ε√

3
, 2ε√

3
〉

w6 = 2 · a6 (u6) = 〈−2ε√
3
, −2ε√

3
, 4ε√

3
〉

w7 = 2 · a7 (u7) = 〈−4ε√
3
, 2ε√

3
, 2ε√

3
〉

• |w1, w2, w3|

Det













0 1 0

0 0 1

−1 0 0













= −1

• |w1, w2, w4|

Det













0 1 0

0 0 1

−1 −1 −1













= −1

• |w1, w2, w5|

Det













0 1 0

0 0 1

2ε√
3

−4ε√
3

2ε√
3













= 2ε√
3

• |w1, w2, w6|

Det













0 1 0

0 0 1

−2ε√
3

−2ε√
3

4ε√
3













= −2ε√
3
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• |w1, w2, w7|

Det













0 1 0

0 0 1

−4ε√
3

2ε√
3

2ε√
3













= −4ε√
3

• |w1, w3, w4|

Det













0 1 0

−1 0 0

−1 −1 −1













= −1

• |w1, w3, w5|

Det













0 1 0

−1 0 0

2ε√
3

−4ε√
3

2ε√
3













= 2ε√
3

• |w1, w3, w6|

Det













0 1 0

−1 0 0

−2ε√
3

−2ε√
3

4ε√
3













= 4ε√
3

• |w1, w3, w7|

Det













0 1 0

−1 0 0

−4ε√
3

2ε√
3

2ε√
3













= 2ε√
3

• |w1, w4, w5|

Det













0 1 0

−1 −1 −1

2ε√
3

−4ε√
3

2ε√
3













= 0
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• |w1, w4, w6|

Det













0 1 0

−1 −1 −1

−2ε√
3

−2ε√
3

4ε√
3













= 2
√
3ε

• |w1, w4, w7|

Det













0 1 0

−1 −1 −1

−4ε√
3

2ε√
3

2ε√
3













= 2
√
3ε

• |w1, w5, w6|

Det













0 1 0

2ε√
3

−4ε√
3

2ε√
3

−2ε√
3

−2ε√
3

4ε√
3













= −4ε2

• |w1, w5, w7|

Det













0 1 0

2ε√
3

−4ε√
3

2ε√
3

−4ε√
3

2ε√
3

2ε√
3













= −4ε2

• |w1, w6, w7|

Det













0 1 0

−2ε√
3

−2ε√
3

4ε√
3

−4ε√
3

2ε√
3

2ε√
3













= −4ε2

• |w2, w3, w4|

Det













0 0 1

−1 0 0

−1 −1 −1













= 1
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• |w2, w3, w5|

Det













0 0 1

−1 0 0

2ε√
3

−4ε√
3

2ε√
3













= 4ε√
3

• |w2, w3, w6|

Det













0 0 1

−1 0 0

−2ε√
3

−2ε√
3

4ε√
3













= 2ε√
3

• |w2, w3, w7|

Det













0 0 1

−1 0 0

−4ε√
3

2ε√
3

2ε√
3













= −2ε√
3

• |w2, w4, w5|

Det













0 0 1

−1 −1 −1

2ε√
3

−4ε√
3

2ε√
3













= 2
√
3ε

• |w2, w4, w6|

Det













0 0 1

−1 −1 −1

−2ε√
3

−2ε√
3

4ε√
3













= 0

• |w2, w4, w7|

Det













0 0 1

−1 −1 −1

−4ε√
3

2ε√
3

2ε√
3













= −2
√
3ε
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• |w2, w5, w6|

Det













0 0 1

2ε√
3

−4ε√
3

2ε√
3

−2ε√
3

−2ε√
3

4ε√
3













= −4ε2

• |w2, w5, w7|

Det













0 0 1

2ε√
3

−4ε√
3

2ε√
3

−4ε√
3

2ε√
3

2ε√
3













= −4ε2

• |w2, w6, w7|

Det













0 0 1

−2ε√
3

−2ε√
3

4ε√
3

−4ε√
3

2ε√
3

2ε√
3













= −4ε2

• |w3, w4, w5|

Det













−1 0 0

−1 −1 −1

2ε√
3

−4ε√
3

2ε√
3













= 2
√
3ε

• |w3, w4, w6|

Det













−1 0 0

−1 −1 −1

−2ε√
3

−2ε√
3

4ε√
3













= 2
√
3ε

• |w3, w4, w7|

Det













−1 0 0

−1 −1 −1

−4ε√
3

2ε√
3

2ε√
3













= 0
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• |w3, w5, w6|

Det













−1 0 0

2ε√
3

−4ε√
3

2ε√
3

−2ε√
3

−2ε√
3

4ε√
3













= 4ε2

• |w3, w5, w7|

Det













−1 0 0

2ε√
3

−4ε√
3

2ε√
3

−4ε√
3

2ε√
3

2ε√
3













= 4ε2

• |w3, w6, w7|

Det













−1 0 0

−2ε√
3

−2ε√
3

4ε√
3

−4ε√
3

2ε√
3

2ε√
3













= 4ε2

• |w4, w5, w6|

Det













−1 −1 −1

2ε√
3

−4ε√
3

2ε√
3

−2ε√
3

−2ε√
3

4ε√
3













= 12ε2

• |w4, w5, w7|

Det













−1 −1 1

2ε√
3

−4ε√
3

2ε√
3

−4ε√
3

2ε√
3

2ε√
3













= 12ε2

• |w4, w6, w7|

Det













−1 −1 −1

−2ε√
3

−2ε√
3

4ε√
3

−4ε√
3

2ε√
3

2ε√
3













= 12ε2
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• |w5, w6, w7|

Det













2ε√
3

−4ε√
3

2ε√
3

−2ε√
3

−2ε√
3

4ε√
3

−4ε√
3

2ε√
3

2ε√
3













= 0

Thus, Vol(2ΠK) is expressed as a function of ε in the following way :

Simplify[1 + 1 + 2ε√
3
+ 2ε√

3
+ 4ε√

3
+ 1 + 2ε√

3
+ 4ε√

3
+ 2ε√

3
+ 0 + 2

√
3ε+ 2

√
3ε+ 4ε2 + 4ε2 +

4ε2 + 1 + 4ε√
3
+ 2ε√

3
+ 2ε√

3
+ 2

√
3ε + 0 + 2

√
3ε + 4ε2 + 4ε2 + 4ε2 + 2

√
3ε + 2

√
3ε + 0 +

4ε2 + 4ε2 + 4ε2 + 12ε2 + 12ε2 + 12ε2 + 0] = 4 + 20
√
3ε+ 72ε2

Now, K may be expressed as the union of a triangular prism and the right tetra-

hedron. Thus, Vol (K) = ab · h+ 1
6
.

Vol (K) =
√
3
2
· ε+ 1

6
.

We conclude that, for K = T + I[ 1√
3
, 1√

3
, 1√

3

]ε, we have the following expression as

Petty’s functional:

Vol (ΠK)

(Vol (K))2
=

1
2
+ 5

2

√
3ε+ 9ε2

(

1
6
+

√
3
2
ε
)2 =

18(
√
3 + 6ε)

(
√
3 + 9ε)

.

2.4 Analysis of Calculations

Using the results shown above, we validate that Petty’s functional Pn(K) ≤ Voln(ΠT )
(Voln(T ))n−1 ,

where n = 3, T is the right tetrahedron and K is a non-affine transformation of T of

the form K = T + σε, ε in (0, 1], and σ is a segment of unit length.
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2.4.1 Analysis of P3(K) for K = T + I[0,1,0]ε with various values

of ε ∈ (0, 1]

Let

P3(K) =
Vol3(ΠK)

Vol3(K)2
= 18

(1 + 2ε)

(1 + 3ε)
. (2.4)

ε 0.1 0.25 0.5 0.75 1
P3(K) 16.62 16.55 14.40 13.85 13.50

Table 2.1: P3(K) for various values of ε ∈ (0, 1]

We can write: P3(ε) = 18 (1+2ε)
(1+3ε)

= 18
[

1+3ε−ε
1+3ε

]

= 18
[

1−
(

1
1+3ε

)

ε
]

.

Letting f(ε) = 1
1+3ε

, and ε → 0, we approximate P3(K) using the second degree

MacLaurin series expansion as follows: f(ε) ≈ f(0) + f ′(0)ε+ f ′′(0)
2!

ε2,

f ′(ε) = − 3
(1+3ε)2

,

f ′′(ε) = 18
(1+3ε)3

,

⇒ f(ε) ≈ 1− 3ε+ 18ε2.

Thus, P3(ε) ≈ 18 [1− (1− 3ε+ 18ε2) ε] = 18 [1− ε+ 3ε2 − 18ε3].

2.4.2 Analysis of P3(K) for K = T + I[ 1
√

3
,

1
√

3
,

1
√

3
]ε with various

values of ε ∈ (0, 1]

Let

P3(K) =
Vol3(ΠK)

Vol3(K)2
= 18

(
√
3 + 6ε)

(
√
3 + 9ε)

. (2.5)
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ε 0.1 0.25 0.5 0.75 1
P3(K) 15.95 14.61 13.67 13.23 12.97

Table 2.2: P3(K) for various values of ε ∈ (0, 1]

We can write: P3(ε) = 18
[√

3+6ε√
3+9ε

]

= 18
[√

3+9ε−3ε√
3+9ε

]

= 18
[

1−
(

3√
3+9ε

)

ε
]

=

18
[

1−
(

3√
3(1+3

√
3ε)

)

ε
]

= 18
[

1−
( √

3
1+3

√
3ε

)

ε
]

.

Letting g(ε) =
√
3

1+3
√
3ε
, and ε → 0, we approximate P3(K) using the second degree

MacLaurin series expansion as follows: g(ε) ≈ g(0) + g′(0)ε+ g′′(0)
2!

ε2,

g′(ε) = − 9
(1+3

√
3ε)2

,

g′′(ε) = 54
√
3

(1+3
√
3ε)3

,

⇒ g(ε) ≈
√
3− 9ε+ 27

√
3ε2.

Thus, P3(ε) ≈ 18
[

1−
(√

3− 9ε+ 27
√
3ε2

)

ε
]

= 18
[

1−
√
3ε+ 9ε2 − 27

√
3ε3

]

.

Letting f(ε) = 18 (1+2ε)
(1+3ε)

and g(ε) = 18
(
√
3+6ε)

(
√
3+9ε)

, we see that f(ε) > g(ε), ∀ε ∈ (0, 1].

Hence, we conclude with the following proposition:

Proposition 2.4.1. The right tetrahedron T is a local maximizer of the functional

Pn(K) along the 1-parameter family of convex bodies K = T + εσ, with small ε > 0.
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Chapter 3

Theoretical Approach to Simplices

We know that for any polyhedra K other than a simplex, or any convex body for

that matter, there exists a simplex T, K 6= T , and a direction σ such that T +

ε σ ⊂ K, and likewise, Π(T + ε σ) ⊂ ΠK. We want to show theoretically that

Voln(ΠK)Voln(K)1−n ≤ Voln(ΠT )Voln(T )
1−n, where K is a deformation of a simplex

in a direction of a vector (thus not an affine transformation) and T is any polyhedra,

as a first step toward showing the latter inequality for any convex bodyK. Knowledge

on mixed volumes is required in providing the underlying theory behind the above

set inclusions.

3.1 Mixed Volumes

The theory of mixed volumes owes much of its development to A.D. Aleksandrov,

Minkowski, Hadwiger and many other well-known mathematicians [1]. Mixed volumes

reflect a mutual measure of size associated to various convex bodies, dependent upon

the shape of the bodies, and the relative orientation they have with one another

[8]. Key inequalities emanating from mixed volume theory reflect only partly their

importance in the general scheme of convexity. Among other applications, mixed

volumes bridge the gap between algebraic and convex geometry, and are essential
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ingredients to various topics, namely combinatorics and probability theory [1].

Much of the underlying framework behind the theory of mixed volumes dates back

to Minkowski, who stated that the volume of a linear combination
∑m

i=1 αiPi of convex

bodies Pi ⊂ R
n is a homogeneous polynomial of degree n, where αi ≥ 0 and summa-

tion here refers to the Minkowski sum, as defined earlier. The coefficients of this poly-

nomial expansion are precisely the mixed volumes. More explicitly, if P1, ..., Pm ⊂ R
n

are convex bodies (for example, polytopes in R
n), and α1, ..., αm ≥ 0 are real numbers,

then Voln (α1P1 + ... + αmPm) =
∑m

i1,...,in=1 αi1 · · ·αinV
(n) (Pi1 , ..., Pin). The coefficient

V (n) (Pi1 , ..., Pin) of the monomial αi1 · · · αin is called the mixed volume of Pi1 , ..., Pin

[1].

In R
2 for example, Vol2 (α1P1 + α2P2) = α1

2V (2) (P1, P1) + α1α2V
(2) (P1, P2) +

α2α1V
(2) (P2, P1) + α2

2V (2) (P2, P2) . Now, V
(2) (P2, P1) = V (2) (P1, P2) since mixed

volumes are symmetric in any of their entries, and V (2) (P1, P1) = Vol2 (P1). There-

fore, Vol2 (α1P1 + α2P2) = α1
2Vol2 (P1) + 2α1α2V

(2) (P1, P2) + α2
2Vol2 (P2) . For sim-

plicity, we have kept above the notation of volume Vol2( . ) for the area of compact

sets in R
2.

Definition 3.1.1. Let P1, ..., Pn ⊂ R
n be compact polytopes. The n-mixed volume of

P1, ..., Pn is defined as the following:

V (n) (P1, ..., Pn) =
1

n

∑

u∈Norm(P1,...,Pn)

hPn
(u)V (n−1) (P1(u), ..., Pn−1(u)) (3.1)

where hPi
(u) is the support function with respect to face Pi having outer normal vector

u, Norm (Pn) denotes the set of outer normals to the (n − 1)-dimensional faces of

P1, . . . , Pn, and Pi(u) is the top-dimensional face of Pi of outer unit normal vector u.

For example, in R, we define V (1)(P ) = V1(P ) = b − a (equal to the length of

the interval P ). In R
2, the mixed volume is simply the “mixed area”. We have

V (2) (P1, P2) = 1
2

∑

u∈Norm(P1)
hP2V

(1) (P1(u)). The support function hP2 is precisely
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the perpendicular distance from the origin to the line passing through a vertex of P2,

parallel to the appropriate side of P1.

3.1.1 Properties of Mixed Volumes [1]

a. Symmetric in any of its entries:

V (n) (P1, ..., Pn−1, Pn) = V (n) (P1, ..., Pn, Pn−1);

b. Translation invariant:

V (n) (P1, ..., Pn) = V (n) (P1 + x, P2, ..., Pn) , ∀x ∈ R
n;

c. Monotonic with respect to set inclusion:

If P1 ⊆ P̃1, then V (n) (P1, P2, ..., Pn) ≤ V (n)
(

P̃1, P2, ..., Pn

)

;

d. Non-negative:

V (n) (P1, ..., Pn) ≥ 0;

e. Positively homogeneous in each argument:

∀α ≥ 0 : V (n) (αP1, ..., Pn) = αV (n) (P1, ..., Pn);

f. Additive in each argument with respect to Minkowski addition:

V (n)
(

αP1 + βP1, P2, ..., Pn

)

= αV(n) (P1, P2, ..., Pn) + βV(n)
(

P1, P2, ..., Pn

)

;

g. V (n)(P, ..., P ) = Voln(P ).

3.2 Theoretical Breakdown

Our objective in this section is to show that Petty’s conjecture holds in 3 dimensions

for any deformation of a simplex by the Minkowski sum with a segment, that is,

not only for the directions validated in Chapter 2. Concretely, we want to show the
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following for n = 3:

F (K) = Voln(ΠK)Voln(K)1−n ≤ F (T ) = Voln(ΠT )Voln(T )
1−n (3.2)

where K is the Minkowski sum of T , the right tetrahedron in R
3, and a line segment

of arbitrary small length and direction.

Let us denote K = T + ε · I, where I = 1
2
[−uI , uI ] such that uI is the direction of I

and ε > 0 is small.

Based on our previous results, we already have Vol3(ΠT )Vol3(T )
−2 = 18. Thus,

it remains to show:

Vol3(Π(T + ε · I))Vol3(T + ε · I)−2 ≤ 18. (3.3)

3.2.1 The linear approximation of Vol3(T + ε · I)

We begin by expressing Vol3(T + ε · I) using mixed volumes.

By definition, we have: Vol3 (α1P1 + α2P2) =
∑2

i1,i2,i3=1 αi1αi2αi3V
(3) (Pi1 , Pi2 , Pi3) =

α1
3V (3) (P1, P1, P1)+α1α2α1V

(3) (P1, P2, P1)+α1
2α2V

(3) (P1, P1, P2)+α1α2
2V (3) (P1, P2, P2)+

α2α1
2V (3) (P2, P1, P1)+α2

2α1V
(3) (P2, P2, P1)+α2α1α2V

(3) (P2, P1, P2)+α2
3V (3) (P2, P2, P2).

Letting α1 = 1, α2 = ε, P1 = T, and P2 = I, and using properties of mixed

volumes, we get:

Vol3(T + ε · I) = V (3)(T, T, T ) + εV(3)(T, I, T ) + εV(3)(T, T, I) + ε2V (3)(T, I, I) +

εV(3)(I, T, T )+ε2V (3)(I, I, T )+ε2V (3)(I, T, I)+ε3V (3)(I, I, I) = Vol3(T )+3εV(3)(T, T, I)+

3ε2V (3)(T, I, I) + ε3Vol3(I).

Since I is an arbitrary segment in R
3,Vol3(I) = 0. Furthermore, the term V (3)(T, I, I)

is negligible (when ε → 0, ε2 becomes significantly small). Thus, what we want to

focus on is : Vol3(T + ε · I) ≈ Vol3(T )+3εV(3)(T, T, I)+O (ε2) = 1
6
+3εV(3)(T, T, I)+

O (ε2) .
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Use of the second degree MacLaurin series expansion

We use the second degree MacLaurin series expansion to approximate

Vol3(T + ε · I)−2 = 1
Vol3(T+ε·I)2 ≈ 1

[ 16+3εV(3)(T,T,I)]
2 .

Letting f(ε) = 1

[ 16+3εV(3)(T,T,I)]
2 , and ε close to 0, we have:

f(ε) ≈ f(0) + f ′(0)ε+ f ′′(0)
2!

ε2

f(0) = 1

( 1
6)

2 = 36

f ′(ε) = − 6V (3)(T,T,I)

( 1
6
+3εV(3)(T,T,I))

3 ; f ′(0) = −6V (3)(T,T,I)

( 1
6)

3 = −1296V (3)(T, T, I)

f ′′(ε) =
54(V (3)(T,T,I))

2

( 1
6
+3εV(3)(T,T,I))

4 ; f ′′(0) =
54(V (3)(T,T,I))

2

( 1
6)

4 = 69984
(

V (3)(T, T, I)
)2
.

Thus, Vol3(T + ε · I)−2 ≈ 36− 1296εV(3)(T, T, I) + 34992ε2
(

V (3)(T, T, I)
)2

=

216Vol3(T )− 1296εV (3)(T, T, I) + 34992ε2
(

V (3)(T, T, I)
)2
.

3.2.2 The linear approximation of Vol3(Π(T + ε · I))

The Projection Body of a Polytope

Let us start with the definition of the projection body of a polytope in R
3 [4]. While

the general definition of the projection body of a convex body in R
3 applies, we can

deduce a simplified form of the definition in the case of a polytope. To present it

here, we need to establish first some notation:

a. P : polytope in R
3;

b. Fi : faces of P , i = 1, ..., n;

c. ui : outward unit normal vector to the face Fi;

d. ai : area of face Fi;
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e. [−aiui, aiui] : area segment of P corresponding to the i-th face of length ai

parallel to ui with midpoint at the origin.

Then, by definition, 2ΠK =
∑n

i=1 [−aiui, aiui] is the Minkowski sum of n area

segments and thus the convex hull of, at most, 2n vectors.

Example 1: K = T , the right tetrahedron in R
3.

In this case, T has 4 faces and, thus,

⇒ 2ΠT =
∑4

i=1 [−aiui, aiui] is the Minkowski sum of 4 area segments and thus the

convex hull of, at most, 24 = 16 vectors. More precisely,

⇒ 2ΠT =
[〈

1
2
, 0, 0

〉

,
〈−1

2
, 0, 0

〉]

+
[〈

0, −1
2
, 0
〉

,
〈

0, 1
2
, 0
〉]

+
[〈

0, 0, −1
2

〉

,
〈

0, 0, 1
2

〉]

+
[〈

1
2
, 1
2
, 1
2

〉

,
〈−1

2
, −1

2
, −1

2

〉]

.

Example 2: K = T + I[0,1,0]ε, a deformation of the right tetrahedron in R
3.

In this case, I[0,1,0] is parallel to u1. Thus I is perpendicular to the face F1.

Here, we add to T a line segment of length ε in the positive y-direction. As seen in

Chapter 2, K has 5 faces.

⇒ 2ΠK =
∑5

i=1 [−aiui, aiui] = convex hull of, at most, 25 = 32 vectors.

⇒ 2ΠK =
[〈

0, −1
2
, 0
〉

,
〈

0, 1
2
, 0
〉]

+
[〈

1
2
, 1
2
, 1
2

〉

,
〈−1

2
, −1

2
, −1

2

〉]

+ [〈ε, 0, ε〉 , 〈−ε, 0,−ε〉]

+
[〈

0, 0, −1
2
− ε

〉

,
〈

0, 0, 1
2
+ ε

〉]

+
[〈

1
2
+ ε, 0, 0

〉

,
〈−1

2
− ε, 0, 0

〉]

=
[〈

0, −1
2
, 0
〉

,
〈

0, 1
2
, 0
〉]

+
[〈

1
2
, 1
2
, 1
2

〉

,
〈−1

2
, −1

2
, −1

2

〉]

+ [〈ε, 0, ε〉 , 〈−ε, 0,−ε〉] + (1 + 2ε)
[〈

0, 0, −1
2

〉

,
〈

0, 0, 1
2

〉]

+

(1 + 2ε)
[〈

1
2
, 0, 0

〉

,
〈−1

2
, 0, 0

〉]

.

⇒ 2ΠK = 2ΠT−
[〈

0, 0, −1
2

〉

,
〈

0, 0, 1
2

〉]

−
[〈

1
2
, 0, 0

〉

,
〈−1

2
, 0, 0

〉]

+[〈ε, 0, ε〉 , 〈−ε, 0,−ε〉]+

(1 + 2ε)
[〈

0, 0, −1
2

〉

,
〈

0, 0, 1
2

〉]

+ (1 + 2ε)
[〈

1
2
, 0, 0

〉

,
〈−1

2
, 0, 0

〉]

.

⇒ 2ΠK = 2ΠT+[〈ε, 0, ε〉 , 〈−ε, 0,−ε〉]+2ε
[〈

0, 0, −1
2

〉

,
〈

0, 0, 1
2

〉]

+2ε
[〈

1
2
, 0, 0

〉

,
〈−1

2
, 0, 0

〉]

.

⇒ 2ΠK = 2ΠT + [〈ε, 0, ε〉 , 〈−ε, 0,−ε〉] + [〈0, 0,−ε〉 , 〈0, 0, ε〉] + [〈ε, 0, 0〉 , 〈−ε, 0, 0〉] .
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Example 3: K = T + I[ 1√
3
, 1√

3
, 1√

3
]ε, a deformation of the right tetrahedron in

R
3.

Here, I[ 1√
3
, 1√

3
, 1√

3
] is the segment added to T , parallel to u4. Thus I is perpendicular

to the face F4.

In this case, we add to T a factor of ε√
3
in the (1, 1, 1)-direction. As seen in Chapter

2, this produces a polyhedron K with 7 faces. Consequently,

⇒ 2ΠK =
∑7

i=1 [−aiui, aiui] = convex hull of, at most, 27 = 128 vectors

⇒ 2ΠK =
[〈

0, −1
2
, 0
〉

,
〈

0, 1
2
, 0
〉]

+
[〈

0, 0, −1
2

〉

,
〈

0, 0, 1
2

〉]

+
[〈

1
2
, 0, 0

〉

,
〈−1

2
, 0, 0

〉]

+
[〈

1
2
, 1
2
, 1
2

〉

,
〈−1

2
, −1

2
, −1

2

〉]

+
[〈

−ε√
3
, 2ε√

3
, −ε√

3

〉

,
〈

ε√
3
, −2ε√

3
, ε√

3

〉]

+
[〈

ε√
3
, ε√

3
, −2ε√

3

〉

,
〈

−ε√
3
, −ε√

3
, 2ε√

3

〉]

+
[〈

2ε√
3
, −ε√

3
, −ε√

3

〉

,
〈

−2ε√
3
, ε√

3
, ε√

3

〉]

.

⇒ 2ΠK = 2ΠT +
[〈

−ε√
3
, 2ε√

3
, −ε√

3

〉

,
〈

ε√
3
, −2ε√

3
, ε√

3

〉]

+
[〈

ε√
3
, ε√

3
, −2ε√

3

〉

,
〈

−ε√
3
, −ε√

3
, 2ε√

3

〉]

+
[〈

2ε√
3
, −ε√

3
, −ε√

3

〉

,
〈

−2ε√
3
, ε√

3
, ε√

3

〉]

.

Let U be the parallelepiped formed by the Minkowski sum of the vectors

{〈 1√
3
, −2√

3
, 1√

3
〉, 〈 1√

3
, 1√

3
, −2√

3
〉, 〈−2√

3
, 1√

3
, 1√

3
〉}.

We can immediately see that U is degenerate because its volume (given via the de-

terminant of the three vectors) is zero. To conclude,

U = conv({ 2√
3
, 2√

3
, −4√

3
}, {−2√

3
, 4√

3
, −2√

3
}, {0, 0, 0}, {−4√

3
, 2√

3
, 2√

3
}, { 4√

3
, −2√

3
, −2√

3
}, { 2√

3
, −4√

3
, 2√

3
},

{−2√
3
, −2√

3
, 4√

3
}),

and 2ΠK = 2ΠT + ε · U .
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K = T + ε · I. By definition, Π(T + ε · I) will be the Minkowski sum of at most 7 area

vectors.

To see this, recall that, for any polyhedron K, its projection polyhedron, ΠK, is

the Minkowski sum of segments whose direction is normal to a corresponding face of

K and length equal to the area of that face. As seen in Chapter 2, for K = T + ε · I,

some faces of K have the same normals as T , while others are new faces with new

normals. However, we note that the faces of K having the same normals as T may

not have the same area as those of T . For example, in K = T + [0, 1, 0] · ε, two faces

whose normals are the same as those of T have areas larger than the corresponding

faces of T .

Normals/Areas of the faces of K = T :

Face 1: u1 = 〈1, 0, 0〉, a1 = 1
2

Face 2: u2 = 〈0, 1, 0〉, a2 = 1
2

Face 3: u3 = 〈0, 0, 1〉, a3 = 1
2

Face 4: u4 =
〈

1√
3
, 1√

3
, 1√

3

〉

, a4 =
√
3
2
.

Normals/Areas of the faces of K = T + I[0,1,0]ε:

Face 1: u1 = 〈0, 1, 0〉, a1 = 1
2

Face 2: u2 =
〈

1√
3
, 1√

3
, 1√

3

〉

, a2 =
√
3
2

Face 3: u3 =
〈√

2
2
, 0,

√
2
2

〉

, a3 =
√
2ε

Face 4: u4 = 〈0, 0, 1〉, a4 = 1
2
+ ε

Face 5: u5 = 〈1, 0, 0〉, a5 = 1
2
+ ε.

Normals/Areas of the faces of K = T + I[ 1√
3
, 1√

3
, 1√

3
]ε:

Face 1: u1 = 〈0, 1, 0〉, a1 = 1
2

Face 2: u2 = 〈0, 0, 1〉, a2 = 1
2
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Face 3: u3 = 〈1, 0, 0〉, a3 = 1
2

Face 4: u4 =
〈

1√
3
, 1√

3
, 1√

3

〉

, a4 =
√
3
2

Face 5: u5 =
〈√

6
6
, −

√
6

3
,
√
6
6

〉

, a5 =
√
2ε

Face 6: u6 =
〈√

6
6
,
√
6
6
, −

√
6

3

〉

, a6 =
√
2ε

Face 7: u7 =
〈

−
√
6

3
,
√
6
6
,
√
6
6

〉

, a7 =
√
2ε.

3.2.4 How do we define U in ΠK = ΠT + ε · U?

Essentially, U is the Minkowski sum of the leftover segments, those which are added

to the segments forming ΠT . Be definition, U is a zonotope, which is precisely a set

of points resulting from the Minkowski sum of segments.

a. For K = T + I[0,1,0]ε, we have:

2ΠK = 2ΠT +
(

[〈1, 0, 1〉 , 〈−1, 0,−1〉] + [〈0, 0,−1〉 , 〈0, 0, 1〉] +

[〈1, 0, 0〉 , 〈−1, 0, 0〉]
)

· ε

⇒ U = 1
2

(

[〈1, 0, 1〉, 〈−1, 0,−1〉] + [〈0, 0,−1〉, 〈0, 0, 1〉] + [〈1, 0, 0〉, 〈−1, 0, 0〉]
)

⇒ U is the Minkowski sum of three segments having length equal to
√
2, two

of which are normals to the associated faces of T . U is composed of three seg-

ments, each of which is perpendicular to I:

〈0, 1, 0〉 · 〈1, 0, 1〉 = 0

〈0, 1, 0〉 · 〈0, 0, 1〉 = 0

〈0, 1, 0〉 · 〈1, 0, 0〉 = 0.

b. For K = T + I[ 1√
3
, 1√

3
, 1√

3
]ε, we have:

2ΠK = 2ΠT+

(

[〈

−1√
3
, 2√

3
, −1√

3

〉

,
〈

1√
3
, −2√

3
, 1√

3

〉]

+
[〈

1√
3
, 1√

3
, −2√

3

〉

,
〈

−1√
3
, −1√

3
, 2√

3

〉]

+

[〈

2√
3
, −1√

3
, −1√

3

〉

,
〈

−2√
3
, 1√

3
, 1√

3

〉]

)

· ε
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⇒ U = 1
2

(

[〈

−1√
3
, 2√

3
, −1√

3

〉

,
〈

1√
3
, −2√

3
, 1√

3

〉]

+
[〈

1√
3
, 1√

3
, −2√

3

〉

,
〈

−1√
3
, −1√

3
, 2√

3

〉]

+

[〈

2√
3
, −1√

3
, −1√

3

〉

,
〈

−2√
3
, 1√

3
, 1√

3

〉]

)

⇒ U is the Minkowski sum of three segments having length equal to
√
2, none

of which are normals to the associated faces of T . U is composed of three

segments, each of which is perpendicular to I:
〈√

3
3
,
√
3
3
,
√
3
3

〉

·
〈

−
√
3

3
, 2

√
3

3
, −

√
3

3

〉

= 0
〈√

3
3
,
√
3
3
,
√
3
3

〉

·
〈√

3
3
,
√
3
3
, −2

√
3

3

〉

= 0
〈√

3
3
,
√
3
3
,
√
3
3

〉

·
〈

2
√
3

3
, −

√
3

3
, −

√
3

3

〉

= 0.

Back to our objective

We want to show: Vol3(Π(T + ε · I)) · Vol3(T + ε · I)−2 ≤ 18

We have:

Vol3(Π(T + ε · I)) ≈ Vol3(ΠT ) + 3εV(3)(ΠT ,ΠT , U) = 1
2
+ 3εV(3)(ΠT ,ΠT , U)

Vol3(T + ε · I)−2 ≈ 216Vol3(T )− 1296εV(3)(T, T, I) = 36− 1296εV(3)(T, T, I)

Thus, we can show that (1
2
+ 3εV(3)(ΠT ,ΠT , U)

)

·
(

36− 1296εV(3)(T, T, I)
)

≤ 18

or, equivalently,

18− 648εV(3)(T, T, I) + 108εV(3)(ΠT,ΠT, U)− 3888ε2V (3)(ΠT,ΠT, U)V (3)(T, T, I) ≤

18.

As ε is close to 0, the term −3888ε2V (3)(ΠT,ΠT, U)V (3)(T, T, I) is negligible, thus it

suffices to show that: 18− 648εV(3)(T, T, I) + 108εV(3)(ΠT ,ΠT , U) ≤ 18

⇔ −648εV(3)(T, T, I) + 108εV(3)(ΠT ,ΠT , U) ≤ 0

⇔ 108εV(3)(ΠT ,ΠT , U)− 648εV(3)(T, T, I) ≤ 0
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⇔ 108ε
(

V (3)(ΠT ,ΠT , U)− 6V (3)(T, T, I)
)

≤ 0

⇔ V (3)(ΠT ,ΠT , U)− 6V (3)(T, T, I) ≤ 0.

By definition, we have:

V (3)(ΠT ,ΠT , U) =

= 1
3

∑

u∈Norm(ΠT,ΠT ) hU(u)V
(2)(ΠT (u),ΠT (u)) = 1

3

∑

u∈Norm(ΠT ) hU(u) · A(ΠT (u)),

and

V (3)(T, T, I) = 1
3

∑

u∈Norm(T,T ) hI(u)V
(2)(T (u), T (u)) = 1

3

∑

u∈Norm(T ) hI(u) · A(T (u)).

The unit normals to the faces of T are: 〈1, 0, 0〉, 〈0, 1, 0〉, 〈0, 0, 1〉,
〈

1√
3
, 1√

3
, 1√

3

〉

.

We want to show that the inequality holds to imply that T is a local maximizer

of Petty’s functional under the given transformations.

We assume that A ∈ SL(n) is a special linear transformation with det(A) = 1

such that A transforms T into a regular tetrahedron with the same volume as the

right tetrahedron, thus Vol(T ) = 1
6
. It is known that, in that case, ΠT is the rhombic

dodecahedron (12 faces) with Vol(ΠT ) = 1
2
[6].

Given that all projection bodies are centrally symmetric, regardless of the original

convex body, we apply to ΠT the special case (for n = 3) of the reverse isoperimetric

inequality for centrally symmetric convex bodies [2]:

(Area(ΠT ))3

(Vol(ΠT ))2
≤ (Area(C))3

(Vol(C))2
,

where C is a unit cube in R
3.

Since (Area(ΠT ))3 = (12 · Area(F (ΠT )))3, where F (ΠT ) denotes a face of ΠT ,

(Area(C))3 = (2 · ab + pb · h) 3 = (2 · 1 + 4 · 1)3 = 63,
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(Vol(ΠT ))2 = (1
2
)2 = 1

4
,

(Vol(C))2 = 12 = 1,

we get: 4(12 · Area(F (ΠT )))3 ≤ 63 ⇔

(12 · Area(F (ΠT )))3 ≤ 63

4
⇔ 12 · Area(F (ΠT )) ≤ 6

2
2
3
.

Therefore, we have: Area(F (ΠT )) ≤ 6

2
2
3
· 1
12

= 2
−5
3 .

Note that we may obtain the exact value of the area of a face of ΠT using the

surface area formula of the rhombic dodecahedron:

Area(ΠT ) = 8
√
2 · e2, (3.4)

where e = side length of ΠT (e may be obtained from the volume formula of the

rhombic dodecahedron, Vol(ΠT ) = 16
√
3

9
· e3, knowing that Vol(ΠT ) is 1

2
).

i.e., 1
2
=

(

16
√
3

9

)

e3 ⇒ e =
(

9
2

16
√
3

)
1
3 ≈ 0.545562.

Thus,Area(ΠT ) = 8
√
2
(

9
2

16
√
3

)
2
3 ≈ 3.367386.

Finally we get : Area(F (ΠT )) ≈ 3.367386
12

≈ 0.280616.

Now, the volume of the regular tetrahedron may be expressed as a function of its

side length as follows: Vol(T ) = l3

6
√
2
, where l is the side length of T . Since Vol(T ) = 1

6
,

we have: l3 =
√
2 ⇒ l = 2

1
6 . This means that the length of each of the three vectors

generating U is 2
1
6 . Then, the Minkowski sum of each of the vectors generating U

forms a regular hexagon whose side length is 2
1
6 . The hexagon can be circumscribed

to a disk of radius 2
1
6 . Thus, the support function of U is at most the support function

of the disk, equal to its radius r = 2
1
6 and this in, at most, 6 directions. Hence we get:

hU(u) ≤ 2
1
6 in, at most, 6 directions. These cannot be all normal directions to the
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faces of ΠT due the dihedral angle of the rhombic dodecahedron which is 2π
3
. Since I

is orthogonal to U , two faces of ΠT are parallel to U and therefore will not contribute

to the mixed volume V (3)(ΠT,ΠT, U) because hU in the I-direction is zero. Thus,

hU(u) ≤ 2
1
6 in at most 1 direction of a face of ΠT , and in the other nine directions of

its faces we have that hU(u) ≤ 2
1
6 | cos(2π

3
) |= 2

1
6

2
= 2

−5
6 .

The four vectors that are normal to the faces of T are uniformly distributed.

The direction of vertices and faces can be interchanged. Consider α to be the angle

between the normal planes to the faces of T . Then it is known that the angle α

(dihedral angle) is: α = cos−1
(

−1
3

)

.

If I is any unit segment, it will be close to at least two of the vectors that are nor-

mal to the faces of T because there is no room to put it further than that (this is true

for all vectors). Therefore, I makes an angle β smaller than 1
2
α = 1

2
cos−1

(

−1
3

)

for at

least two of the faces of T . However, cos(β) ≥ cos
(

1
2
α
)

=
(

1
2
cos−1

(

−1
3

))

since the

cosine function is decreasing in the first quadrant ⇒ 1
2
cos(α) ≥ 1

2
cos

(

1
2
cos−1

(

−1
3

)

.

Thus, using trigonometry and by definition of the support function, there are at

least two faces of T with direction u such that hI(u) ≥ 1
2

(

cos
(

1
2
cos−1

(

−1
3
))) =

1
2
| cos

(

π − 1
2

(

cos−1
(

−1
3
))) | = 1

2
· 1√

3
(by symmetry of the cosine function).

Thus, hI(u) ≥ 1
2
· 1√

3
=

√
3
6
.

Putting everything together, we get:

3V (3)(ΠT ,ΠT , U) =
∑

u∈Norm(ΠT ) hU(u) · A(ΠT (u)) ≤ (2
1
6 + 2

−5
6 · 9) · 0.280616 ≈

1.732394.

Now 3V (3)(T, T, I) =
∑

u∈Norm(T ) hI(u) · A(T (u)) ≥ 2
√
3
6

· A(T (u)), where it is

known that Area(F (T )) =
√
3
4
· l2 =

√
3
4
·
(

2
1
6

)2

=
√
3
4
· 2 1

3

⇒ 3V (3)(T, T, I) ≥ 2
√
3
6

√
3
4
· 2 1

3 = 2
4
3 · 3

24
= 2

4
3

8
= 2

4
3

23
= 2

−5
3
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⇔ −3V (3)(T, T, I) ≤ −
(

2
−5
3

)

⇒ V (3)(ΠT ,ΠT , U)− 6V (3)(T, T, I) ≈ 1
3
· 1.732394− 2

(

2
−5
3

)

≈ −0.052496.

In conclusion, we have proved the following theorem:

Theorem 3.2.1. Let T be any tetrahedron in R
3. Then, for any unit segment I ⊂ R

3

centred at the origin and any small ε > 0, we have that

Pn(T + εI) < Pn(T ). (3.5)
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Chapter 4

Insight on Petty’s Projection

Inequality for Polar Bodies

4.1 Petty’s Projection Inequality

Broadly speaking, inequalities are synonymous to relationships. The scope of geo-

metric inequalities encompasses several analogies in relation to the inequalities them-

selves, many of which are unsurprisingly interconnected. Among other parallels,

Petty’s projection inequality is one such example, in that it is equivalent to Busemann-

Petty centroid inequality and is a strengthened form of the classical isoperimetric

inequality [9], [14]. Petty’s projection inequality is of fundamental importance in the

framework of affine isoperimetric inequalities. Petty’s projection inequality relating

the volume of a convex body K and that of its polar projection body states the fol-

lowing: Voln(K)n−1Voln(ΠK)? ≤
(

ωn

ωn−1

)

n with equality ⇔ K is an ellipsoid. Both

Lutwak and Zhang provide generalizations and consequences of Petty’s result, yet

with different approaches - Lutwak makes use of mixed volumes and projection mea-

sures (brightness, girth, width functions) [9], whereas Zhang incorporates compact

domains to strengthen Petty’s original inequality [15].
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Advances in the literature show that Petty’s projection inequality has been ap-

plied to, and is a consequence of, various affine isoperimetric inequalities in the hope

of obtaining more powerful results within the area of Minkowski geometry. It is shown

by Petty that affinely equivalent convex bodies give rise to affinely equivalent pro-

jection bodies. From this point of view, the two functionals, Voln(ΠK)Voln(K)1−n

and Voln(K)n−1Voln(ΠK)?, are affine invariants. Zhang generalizes from these re-

sults an affine invariant Sobolev inequality that is stronger than the classical Sobolev

inequality [15]. Furthermore, an application to stochastic geometry is founded by

Petty’s projection inequality via Schneider. The incentive to develop Petty’s projec-

tion inequality for polar bodies was due to the difficulty in proving the upper bound

of Petty’s conjecture. By introducing the concept of polarity, it became possible to

simplify and derive existing inequalities into some where conclusions are more easily

drawn and the implications are similar. In this regard, variations of interesting re-

sults, new proofs and conjectures emerged naturally.

Although duality generally entails a direct equivalence, the one existing between

Voln(ΠK)? and Voln(ΠK) is not a direct relation; rather, it is merely a similarity.

We have seen that (ΠK)? may be represented as the intersection of the halfspaces

whose normals are precisely the vertices of ΠK. In this way, we will validate both

Petty’s projection inequality and the lower bound introduced by Zhang [14]. In brief,

among bodies of given volume, the polar projection bodies have maximal volume for

ellipsoids and minimal volume for simplices, whereas ordinary projection bodies are

conjectured to have maximal volume for simplices and minimal volume for ellipsoids.
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Breakdown for the faces of P :

a. Right triangle formed by the points: (0,0,1), (1,0,0), (0,0,0);

b. Right triangle formed by the points: (1,0,0), (0,1,0), (0,0,0);

c. Right triangle formed by the points: (0,0,1), (0,1,0), (0,0,0);

d. Isosceles triangle formed by the points: (0,0,1), (0,1,0), (2,2,2);

e. Isosceles triangle formed by the points: (0,0,1), (1,0,0), (2,2,2);

f. Isosceles triangle formed by the points: (1,0,0), (0,1,0), (2,2,2).

Calculations for ΠP :

We denote by: ui the outward-unit normal vector with respect to face i, ai the area

of face i, and aiui the area segment corresponding to face i. Using this notation, we

will analyze each of the faces of P .

• Right triangle with vertices (0, 0, 1), (1, 0, 0), (0, 0, 0)

(0, 0, 0)− (0, 0, 1) = 〈0, 0,−1〉

(0, 0, 0)− (1, 0, 0) = 〈−1, 0, 0〉

〈0, 0,−1〉 × 〈−1, 0, 0〉 = 〈0, 1, 0〉

||〈0, 1, 0〉|| = 1

a1 =
1
2
||〈0, 1, 0〉|| = 1

2

u1 = 〈0, 1, 0〉

− u1 = 〈0,−1, 0〉

a1 (u1) =
〈

0, 1
2
, 0
〉

; a1 (−u1) =
〈

0,−1
2
, 0
〉

.
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• Right triangle with vertices (1, 0, 0), (0, 1, 0), (0, 0, 0)

(0, 0, 0)− (1, 0, 0) = 〈−1, 0, 0〉

(0, 0, 0)− (0, 1, 0) = 〈0,−1, 0〉

〈−1, 0, 0〉 × 〈0,−1, 0〉 = 〈0, 0, 1〉

||〈0, 0, 1〉|| = 1

a2 =
1
2
||〈0, 0, 1〉|| = 1

2

u2 = 〈0, 0, 1〉

− u2 = 〈0, 0,−1〉

a2 (u2) =
〈

0, 0, 1
2

〉

; a2 (−u2) =
〈

0, 0, −1
2

〉

.

• Right triangle with vertices (0, 0, 1), (0, 1, 0), (0, 0, 0)

(0, 0, 0)− (0, 0, 1) = 〈0, 0,−1〉

(0, 0, 0)− (0, 1, 0) = 〈0,−1, 0〉

〈0, 0,−1〉 × 〈0,−1, 0〉 = 〈−1, 0, 0〉

||〈−1, 0, 0〉|| = 1

a3 =
1
2
||〈−1, 0, 0〉|| = 1

2

u3 = 〈−1, 0, 0〉

− u3 = 〈1, 0, 0〉

a3 (u3) =
〈−1

2
, 0, 0

〉

; a3 (−u3) =
〈

1
2
, 0, 0

〉

.

• Isosceles triangle with vertices (0, 0, 1), (0, 1, 0), (2, 2, 2)

(2, 2, 2)− (0, 0, 1) = 〈2, 2, 1〉

(2, 2, 2)− (0, 1, 0) = 〈2, 1, 2〉

〈2, 2, 1〉 × 〈2, 1, 2〉 = 〈3,−2,−2〉

||〈3,−2,−2〉|| =
√

32 + (−2)2 + (−2)2 =
√
9 + 4 + 4 =

√
17

a4 =
1
2
||〈3,−2,−2〉|| = 1

2

√
17

u4 =
1√
17
〈3,−2,−2〉
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− u4 =
1√
17
〈−3, 2, 2〉

a4 (u4) = 〈3
2
,−1,−1〉; a4 (−u4) = 〈−3

2
, 1, 1〉.

• Isosceles triangle with vertices (0, 0, 1), (1, 0, 0), (2, 2, 2)

(2, 2, 2)− (0, 0, 1) = 〈2, 2, 1〉

(2, 2, 2)− (1, 0, 0) = 〈1, 2, 2〉

〈2, 2, 1〉 × 〈1, 2, 2〉 = 〈2,−3, 2〉

||〈2,−3, 2〉|| =
√

22 + (−3)2 + 22 =
√
4 + 9 + 4 =

√
17

a5 =
1
2
||〈2,−3, 2〉|| = 1

2

√
17

u5 =
1√
17
〈2,−3, 2〉

− u5 =
1√
17
〈−2, 3,−2〉

a5 (u5) =
〈

1, −3
2
, 1
〉

; a5 (−u5) =
〈

−1, 3
2
,−1

〉

.

• Isosceles triangle with vertices (1, 0, 0), (0, 1, 0), (2, 2, 2)

(2, 2, 2)− (1, 0, 0) = 〈1, 2, 2〉

(2, 2, 2)− (0, 1, 0) = 〈2, 1, 2〉

〈1, 2, 2〉 × 〈2, 1, 2〉 = 〈2, 2,−3〉

||〈2, 2,−3〉|| =
√

22 + 22 + (−3)2 =
√
4 + 4 + 9 =

√
17

a6 =
1
2
||〈2, 2,−3〉|| = 1

2

√
17

u6 =
1√
17
〈2, 2,−3〉

− u6 =
1√
17
〈−2,−2, 3〉

a6 (u6) =
〈

1, 1, −3
2

〉

; a6 (−u6) =
〈

−1,−1, 3
2

〉

.

Thus, by the definition of the projection body of a polytope, we have

2ΠP = [−a1u1, a1u1] + [−a2u2, a2u2] + [−a3u3, a3u3] + [−a4u4, a4u4] + [−a5u5, a5u5] +

[−a6u6, a6u6].
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⇒ ΠP =
[〈

0, −1
4
, 0
〉

,
〈

0, 1
4
, 0
〉]

+
[〈

0, 0, −1
4

〉

,
〈

0, 0, 1
4

〉]

+
[〈

1
4
, 0, 0

〉

,
〈−1

4
, 0, 0

〉]

+
[〈−3

4
, 1
2
, 1
2

〉

,
〈

3
4
, −1

2
, −1

2

〉]

+
[〈−1

2
, 3
4
, −1

2

〉

,
〈

1
2
, −3

4
, 1
2

〉]

+
[〈−1

2
, −1

2
, 3
4

〉

,
〈

1
2
, 1
2
, −3

4

〉]

.

Alternatively, we describe ΠP as the convex hull of, at most, 26 = 64 possible

vectors.

ΠP = conv({1, 1,−2},
{

1, 1, −3
2

}

,
{

1
2
, 1,−2

}

,
{

1
2
, 1, −3

2

}

,
{

1, 1
2
,−2

}

,
{

1, 1
2
, −3

2

}

,
{

1
2
, 1
2
,−2

}

,
{

1
2
, 1
2
, −3

2

}

,
{

0, 0, −1
2

}

, {0, 0, 0},
{−1

2
, 0, −1

2

}

,
{−1

2
, 0, 0

}

,
{−1

2
, −1

2
, −1

2

}

,
{−1

2
, −1

2
, 0
}

,
{

0, −1
2
, −1

2

}

,
{

0, −1
2
, 0
}

,
{−1

2
, 2,−1

}

,
{−1

2
, 2, −1

2

}

, {−1, 2,−1},
{

−1, 2, −1
2

}

,
{−1

2
, 3
2
,−1

}

,
{−1

2
, 3
2
, −1

2

}

,
{

−1, 3
2
,−1

}

,
{

−1, 3
2
, −1

2

}

,
{−3

2
, 1, 1

2

}

,
{−3

2
, 1, 1

}

,
{

−2, 1, 1
2

}

,

{−2, 1, 1},
{−3

2
, 1
2
, 1
2

}

,
{−3

2
, 1
2
, 1
}

,
{

−2, 1
2
, 1
2

}

,
{

−2, 1
2
, 1
}

,
{

2, −1
2
,−1

}

,
{

2, −1
2
, −1

2

}

,
{

3
2
, −1

2
,−1

}

,
{

3
2
, −1

2
, −1

2

}

, {2,−1,−1},
{

2,−1, −1
2

}

,
{

3
2
,−1,−1

}

,
{

3
2
,−1, −1

2

}

,
{

1, −3
2
, 1
2

}

,
{

1, −3
2
, 1
}

,
{

1
2
, −3

2
, 1
2

}

,
{

1
2
, −3

2
, 1
}

,
{

1
2
,−2, 1

2

}

,
{

1
2
,−2, 1

}

,
{

1,−2, 1
2

}

, {1,−2, 1},
{

1
2
, 1
2
, 0
}

,
{

1
2
, 1
2
, 1
2

}

,
{

0, 1
2
, 0
}

,
{

0, 1
2
, 1
2

}

,
{

1
2
, 0, 0

}

,
{

1
2
, 0, 1

2

}

,
{

0, 0, 1
2

}

,
{−1

2
, −1

2
, 3
2

}

,
{−1

2
, −1

2
, 2
}

,
{

−2, −1
2
, 3
2

}

,
{

−1, −1
2
, 2
}

,
{−1

2
,−1, 3

2

}

,
{−1

2
,−1, 2

}

,
{

−1,−1, 3
2

}

, {−1,−1, 2}).

This allows us to visualize the projection body ΠP using Mathematica.
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4. v4 = 〈1
2
, 1, −3

2
〉

‖v4‖2 = (1
2
)2 + 12 + (−3

2
)2 = 1

4
+ 1 + 9

4
= 14

4

1
2
(x−

1
2
14
4

)

+
(

y − 1
14
4

)

− 3
2

(

z +
3
2
14
4

)

≤ 0 ⇔ x+ 2y ≤ 2 + 3z.

5. v5 = 〈1, 1
2
,−2〉

‖v5‖2 = 12 + (1
2
)2 + (−2)2 = 1 + 1

4
+ 4 = 21

4
(

x− 1
21
4

)

+ 1
2

(

y −
1
2
21
4

)

− 2
(

z + 2
21
4

)

≤ 0 ⇔ 2x+ y ≤ 2 + 4z.

6. v6 = 〈1, 1
2
, −3

2
〉

‖v6‖2 = 12 + (1
2
)2 + (−3

2
)2 = 1 + 1

4
+ 9

4
= 14

4
(

x− 1
14
4

)

+ 1
2

(

y −
1
2
14
4

)

− 3
2

(

z +
3
2
14
4

)

≤ 0 ⇔ 2x+ y ≤ 2 + 3z.

7. v7 = 〈1
2
, 1
2
,−2〉

‖v7‖2 = (1
2
)2 + (1

2
)2 + (−2)2 = 1

4
+ 1

4
+ 4 = 18

4

1
2

(

x−
1
2
18
4

)

+ 1
2

(

y −
1
2
18
4

)

− 2
(

z + 2
18
4

)

≤ 0 ⇔ x+ y ≤ 2 + 4z.

8. v8 = 〈1
2
, 1
2
, −3

2
〉

‖v7‖2 = (1
2
)2 + (1

2
)2 + (−3

2
)2 = 1

4
+ 1

4
+ 9

4
= 11

4

1
2

(

x−
1
2
11
4

)

+ 1
2

(

y −
1
2
11
4

)

− 3
2

(

z +
3
2
11
4

)

≤ 0 ⇔ x+ y ≤ 2 + 3z.

9. v9 = 〈0, 0, −1
2
〉

‖v9‖2 = 1
4

−1
2

(

z +
1
2
1
4

)

≤ 0 ⇔ 2 + z ≥ 0.

10. v10 = 〈0, 0, 0〉.

11. v11 = 〈−1
2
, 0, −1

2
〉

‖v11‖2 = (−1
2
)2 + (−1

2
)2 = 1

4
+ 1

4
= 1

2

− 1
2

(

x+
1
2
1
2

)

− 1
2

(

z +
1
2
1
2

)

≤ 0 ⇔ 2 + x+ z ≥ 0.

12. v12 = 〈−1
2
, 0, 0〉

‖v12‖2 = 1
4

−1
2

(

x+
1
2
1
4

)

≤ 0 ⇔ 2 + x ≥ 0.
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13. v13 = 〈−1
2
, −1

2
, −1

2
〉

‖v13‖2 = (−1
2
)2 + (−1

2
)2 + (−1

2
)2 = 1

4
+ 1

4
+ 1

4
= 3

4

−1
2

(

x+
1
2
3
4

)

− 1
2

(

y +
1
2
3
4

)

− 1
2

(

z +
1
2
3
4

)

≤ 0 ⇔ 2 + x+ y + z ≥ 0.

14. v14 = 〈−1
2
, −1

2
, 0〉

‖v14‖2 = (−1
2
)2 + (−1

2
)2 = 1

4
+ 1

4
= 1

2

−1
2

(

x+
1
2
1
2

)

− 1
2

(

y +
1
2
1
2

)

≤ 0 ⇔ 2 + x+ y ≥ 0.

15. v15 = 〈0, −1
2
, −1

2
〉

‖v15‖2 = (−1
2
)2 + (−1

2
)2 = 1

4
+ 1

4
= 1

2

−1
2

(

y +
1
2
1
2

)

− 1
2

(

z +
1
2
1
2

)

≤ 0 ⇔ 2 + y + z ≥ 0.

16. v16 = 〈0, −1
2
, 0〉

‖v16‖2 = 1
4

−1
2

(

y +
1
2
1
4

)

≤ 0 ⇔ 2 + y ≥ 0.

17. v17 = 〈−1
2
, 2,−1〉

‖v17‖2 = (−1
2
)2 + 22 + (−1)2 = 1

4
+ 4 + 1 = 21

4

−1
2

(

x+
1
2
21
4

)

+ 2
(

y − 2
21
4

)

−
(

z + 1
21
4

)

≤ 0 ⇔ 4y ≤ 2 + x+ 2z.

18. v18 = 〈−1
2
, 2, −1

2
〉

‖v18‖2 = (−1
2
)2 + 22 + (−1

2
)2 = 1

4
+ 4 + 1

4
= 18

4

−1
2

(

x+
1
2
18
4

)

+ 2
(

y − 2
18
4

)

− 1
2

(

z +
1
2
18
4

)

≤ 0 ⇔ 4y ≤ 2 + x+ z.

19. v19 = 〈−1, 2,−1〉

‖v19‖2 = (−1)2 + 22 + (−1)2 = 6

−
(

x+ 1
6

)

+ 2
(

y − 2
6

)

−
(

z + 1
6

)

≤ 0 ⇔ 2y ≤ 1 + x+ z.

20. v20 = 〈−1, 2, −1
2
〉

‖v20‖2 = (−1)2 + 22 + (−1
2
)2 = 1 + 4 + 1

4
= 21

4

−
(

x+ 1
21
4

)

+ 2
(

y − 2
21
4

)

− 1
2

(

z +
1
2
21
4

)

≤ 0 ⇔ 4y ≤ 2 + 2x+ z.
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21. v21 = 〈−1
2
, 3
2
,−1〉

‖v21‖2 = (−1
2
)2 + (3

2
)2 + (−1)2 = 1

4
+ 9

4
+ 1 = 14

4

−1
2

(

x+
1
2
14
4

)

+ 3
2

(

y −
3
2
14
4

)

−
(

z + 1
14
4

)

≤ 0 ⇔ 3y ≤ 2 + x+ 2z.

22. v22 = 〈−1
2
, 3
2
, −1

2
〉

‖v22‖2 = (−1
2
)2 + (3

2
)2 + (−1

2
)2 = 1

4
+ 9

4
+ 1

4
= 11

4

−1
2

(

x+
1
2
11
4

)

+ 3
2

(

y −
3
2
11
4

)

− 1
2

(

z +
1
2
11
4

)

≤ 0 ⇔ 3y ≤ 2 + x+ z.

23. v23 = 〈−1, 3
2
,−1〉

‖v23‖2 = (−1)2 + (3
2
)2 + (−1)2 = 1 + 9

4
+ 1 = 17

4

−
(

x+ 1
17
4

)

+ 3
2

(

y −
3
2
17
4

)

−
(

z + 1
17
4

)

≤ 0 ⇔ 3y
2
≤ 1 + x+ z.

24. v24 = 〈−1, 3
2
, −1

2
〉

‖v24‖2 = (−1)2 + (3
2
)2 + (−1

2
)2 = 1 + 9

4
+ 1

4
= 14

4

−
(

x+ 1
14
4

)

+ 3
2

(

y −
3
2
14
4

)

− 1
2

(

z +
1
2
14
4

)

≤ 0 ⇔ 3y ≤ 2 + 2x+ z.

25. v25 = 〈−3
2
, 1, 1

2
〉

‖v25‖2 = (−3
2
)2 + 12 + (1

2
)2 = 9

4
+ 1 + 1

4
= 14

4

−3
2

(

x+
3
2
14
4

)

+
(

y − 1
14
4

)

+ 1
2

(

z −
1
2
14
4

)

≤ 0 ⇔ 2y + z ≤ 2 + 3x.

26. v26 = 〈−3
2
, 1, 1〉

‖v26‖2 = (−3
2
)2 + 12 + 12 = 9

4
+ 1 + 1 = 17

4

−3
2

(

x+
3
2
17
4

)

+
(

y − 1
17
4

)

+
(

z − 1
17
4

)

≤ 0 ⇔ 2(−1 + y + z) ≤ 3x.

27. v27 = 〈−2, 1, 1
2
〉

‖v27‖2 = (−2)2 + 12 + (1
2
)2 = 4 + 1 + 1

4
= 21

4

−2
(

x+ 2
21
4

)

+
(

y − 1
21
4

)

+ 1
2

(

z −
1
2
21
4

)

≤ 0 ⇔ 2y + z ≤ 2 + 4x.

28. v28 = 〈−2, 1, 1〉

‖v28‖2 = (−2)2 + 12 + 12 = 6

− 2
(

x+ 2
6

)

+
(

y − 1
6

)

+
(

z − 1
6

)

≤ 0 ⇔ y + z ≤ 1 + 2x.
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29. v29 = 〈−3
2
, 1
2
, 1
2
〉

‖v29‖2 = (−3
2
)2 + (1

2
)2 + (1

2
)2 = 9

4
+ 1

4
+ 1

4
= 11

4

−3
2

(

x+
3
2
11
4

)

+ 1
2

(

y −
1
2
11
4

)

+ 1
2

(

z −
1
2
11
4

)

≤ 0 ⇔ y + z ≤ 2 + 3x.

30. v30 = 〈−3
2
, 1
2
, 1〉

‖v30‖2 = (−3
2
)2 + (1

2
)2 + 12 = 9

4
+ 1

4
+ 1 = 14

4

−3
2

(

x+
3
2
14
4

)

+ 1
2

(

y −
1
2
14
4

)

+
(

z − 1
14
4

)

≤ 0 ⇔ y + 2z ≤ 2 + 3x.

31. v31 = 〈−2, 1
2
, 1
2
〉

‖v31‖2 = (−2)2 + (1
2
)2 + (1

2
)2 = 4 + 1

4
+ 1

4
= 18

4

−2
(

x+ 2
18
4

)

+ 1
2

(

y −
1
2
18
4

)

+ 1
2

(

z −
1
2
18
4

)

≤ 0 ⇔ y + z ≤ 2 + 4x.

32. v32 = 〈−2, 1
2
, 1〉

‖v32‖2 = (−2)2 + (1
2
)2 + 12 = 4 + 1

4
+ 1 = 21

4

−2
(

x+ 2
21
4

)

+ 1
2

(

y −
1
2
21
4

)

+
(

z − 1
21
4

)

≤ 0 ⇔ y + 2z ≤ 2 + 4x.

33. v33 = 〈2, −1
2
,−1〉

‖v33‖2 = 22 + (−1
2
)2 + (−1)2 = 4 + 1

4
+ 1 = 21

4

2
(

x− 2
21
4

)

− 1
2

(

y +
1
2
21
4

)

−
(

z + 1
21
4

)

≤ 0 ⇔ 4x ≤ 2 + y + 2z.

34. v34 = 〈2, −1
2
, −1

2
〉

‖v32‖2 = 22 + (−1
2
)2 + (−1

2
)2 = 4 + 1

4
+ 1

4
= 18

4

2
(

x− 2
18
4

)

− 1
2

(

y +
1
2
18
4

)

− 1
2

(

z +
1
2
18
4

)

≤ 0 ⇔ 4x ≤ 2 + y + z.

35. v35 = 〈3
2
, −1

2
,−1〉

‖v35‖2 = (3
2
)2 + (−1

2
)2 + (−1)2 = 9

4
+ 1

4
+ 1 = 14

4

3
2

(

x−
3
2
14
4

)

− 1
2

(

y +
1
2
14
4

)

−
(

z + 1
14
4

)

≤ 0 ⇔ 3x ≤ 2 + y + 2z.

36. v36 = 〈3
2
, −1

2
, −1

2
〉

‖v36‖2 = (3
2
)2 + (−1

2
)2 + (−1

2
)2 = 9

4
+ 1

4
+ 1

4
= 11

4

3
2

(

x−
3
2
11
4

)

− 1
2

(

y +
1
2
11
4

)

− 1
2

(

z +
1
2
11
4

)

≤ 0 ⇔ 3x ≤ 2 + y + z.
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37. v37 = 〈2,−1,−1〉

‖v37‖2 = 22 + (−1)2 + (−1)2 = 4 + 1 + 1 = 6

2
(

x− 2
6

)

−
(

y + 1
6

)

−
(

z + 1
6

)

≤ 0 ⇔ 2x ≤ 1 + y + z.

38. v38 = 〈2,−1, −1
2
〉

‖v38‖2 = 22 + (−1)2 + (−1
2
)2 = 4 + 1 + 1

4
= 21

4

2
(

x− 2
21
4

)

−
(

y + 1
21
4

)

− 1
2

(

z +
1
2
21
4

)

≤ 0 ⇔ 4x ≤ 2 + 2y + z.

39. v39 = 〈3
2
,−1,−1〉

‖v39‖2 = (3
2
)2 + (−1)2 + (−1)2 = 9

4
+ 1 + 1 = 17

4

3
2

(

x−
3
2
17
4

)

−
(

y + 1
17
4

)

−
(

z + 1
17
4

)

≤ 0 ⇔ 3x ≤ 2(1 + y + z).

40. v40 = 〈3
2
,−1, −1

2
〉

‖v40‖2 = (3
2
)2 + (−1)2 + (−1

2
)2 = 9

4
+ 1 + 1

4
= 14

4

3
2

(

x−
3
2
14
4

)

−
(

y + 1
14
4

)

− 1
2

(

z +
1
2
14
4

)

≤ 0 ⇔ 3x ≤ 2 + 2y + z.

41. v41 = 〈1, −3
2
, 1
2
〉

‖v41‖2 = 12 + (−3
2
)2 + (1

2
)2 = 1 + 9

4
+ 1

4
= 14

4
(

x− 1
14
4

)

− 3
2

(

y +
3
2
14
4

)

+ 1
2

(

z −
1
2
14
4

)

≤ 0 ⇔ 2x+ z ≤ 2 + 3y.

42. v42 = 〈1, −3
2
, 1〉

‖v42‖2 = 12 + (−3
2
)2 + 12 = 1 + 9

4
+ 1 = 17

4
(

x− 1
17
4

)

− 3
2

(

y +
3
2
17
4

)

+
(

z − 1
17
4

)

≤ 0 ⇔ x+ z ≤ 1 + 3y
2
.

43. v43 = 〈1
2
, −3

2
, 1
2
〉

‖v43‖2 = (1
2
)2 + (−3

2
)2 + (1

2
)2 = 1

4
+ 9

4
+ 1

4
= 11

4

1
2

(

x−
1
2
11
4

)

− 3
2

(

y +
3
2
11
4

)

+ 1
2

(

z −
1
2
11
4

)

≤ 0 ⇔ x+ z ≤ 2 + 3y.

44. v44 = 〈1
2
, −3

2
, 1〉

‖v44‖2 = (1
2
)2 + (−3

2
)2 + 12 = 1

4
+ 9

4
+ 1 = 14

4

1
2

(

x−
1
2
14
4

)

− 3
2

(

y +
3
2
14
4

)

+
(

z − 1
14
4

)

≤ 0 ⇔ x+ 2z ≤ 2 + 3y.
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45. v45 = 〈1
2
,−2, 1

2
〉

‖v45‖2 = (1
2
)2 + (−2)2 + (1

2
)2 = 1

4
+ 4 + 1

4
= 18

4

1
2

(

x−
1
2
18
4

)

− 2
(

y + 2
18
4

)

+ 1
2

(

z −
1
2
18
4

)

≤ 0 ⇔ x+ z ≤ 2 + 4y.

46. v46 = 〈1
2
,−2, 1〉

‖v46‖2 = (1
2
)2 + (−2)2 + 12 = 1

4
+ 4 + 1 = 21

4

1
2

(

x−
1
2
21
4

)

− 2
(

y + 2
21
4

)

+
(

z − 1
21
4

)

≤ 0 ⇔ x+ 2z ≤ 2 + 4y.

47. v47 = 〈1,−2, 1
2
〉

‖v47‖2 = 12 + (−2)2 + (1
2
)2 = 1 + 4 + 1

4
= 21

4
(

x− 1
21
4

)

− 2
(

y + 2
21
4

)

+ 1
2

(

z −
1
2
21
4

)

≤ 0 ⇔ 2x+ z ≤ 2 + 4y.

48. v48 = 〈1,−2, 1〉

‖v48‖2 = 12 + (−2)2 + 12 = 1 + 4 + 1 = 6
(

x− 1
6

)

− 2
(

y + 2
6

)

+
(

z − 1
6

)

≤ 0 ⇔ x+ z ≤ 1 + 2y.

49. v49 = 〈1
2
, 1
2
, 0〉

‖v49‖2 = (1
2
)2 + (1

2
)2 = 1

4
+ 1

4
= 1

2

1
2

(

x−
1
2
1
2

)

+ 1
2

(

y −
1
2
1
2

)

≤ 0 ⇔ x+ y ≤ 2.

50. v50 = 〈1
2
, 1
2
, 1
2
〉

‖v50‖2 = (1
2
)2 + (1

2
)2 + (1

2
)2 = 1

4
+ 1

4
+ 1

4
= 3

4

1
2

(

x−
1
2
3
4

)

+ 1
2

(

y −
1
2
3
4

)

+ 1
2

(

z −
1
2
3
4

)

≤ 0 ⇔ x+ y + z ≤ 2.

51. v51 = 〈0, 1
2
, 0〉

‖v51‖2 = (1
2
)2 = 1

4

1
2

(

y −
1
2
1
4

)

≤ 0 ⇔ y ≤ 2.

52. v52 = 〈0, 1
2
, 1
2
〉

‖v52‖2 = (1
2
)2 + (1

2
)2 = 1

4
+ 1

4
= 1

2

1
2

(

y −
1
2
1
2

)

+ 1
2

(

z −
1
2
1
2

)

≤ 0 ⇔ y + z ≤ 2.
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53. v53 = 〈1
2
, 0, 0〉

‖v53‖2 = (1
2
)2 = 1

4

1
2

(

x−
1
2
1
4

)

≤ 0 ⇔ x ≤ 2.

54. v54 = 〈1
2
, 0, 1

2
〉

‖v54‖2 = (1
2
)2 + (1

2
)2 = 1

4
+ 1

4
= 1

2

1
2

(

x−
1
2
1
2

)

+ 1
2

(

z −
1
2
1
2

)

≤ 0 ⇔ x+ z ≤ 2.

55. v55 = 〈0, 0, 1
2
〉

‖v55‖2 = (1
2
)2 = 1

4

1
2

(

z −
1
2
1
4

)

≤ 0 ⇔ z ≤ 2.

56. v56 = 〈−1
2
, −1

2
, 3
2
〉

‖v56‖2 = (−1
2
)2 + (−1

2
)2 + (3

2
)2 = 1

4
+ 1

4
+ 9

4
= 11

4

−1
2

(

x+
1
2
11
4

)

− 1
2

(

y +
1
2
11
4

)

+ 3
2

(

z −
3
2
11
4

)

≤ 0 ⇔ 3z ≤ 2 + x+ y.

57. v57 = 〈−1
2
, −1

2
, 2〉

‖v57‖2 = (−1
2
)2 + (−1

2
)2 + 22 = 1

4
+ 1

4
+ 4 = 18

4

−1
2

(

x+
1
2
18
4

)

− 1
2

(

y +
1
2
18
4

)

+ 2
(

z − 2
18
4

)

≤ 0 ⇔ 4z ≤ 2 + x+ y.

58. v58 = 〈−1, −1
2
, 3
2
〉

‖v58‖2 = (−1)2 + (−1
2
)2 + (3

2
)2 = 1 + 1

4
+ 9

4
= 14

4

−
(

x+ 1
14
4

)

− 1
2

(

y +
1
2
14
4

)

+ 3
2

(

z −
3
2
14
4

)

≤ 0 ⇔ 3z ≤ 2 + 2x+ y.

59. v59 = 〈−1, −1
2
, 2〉

‖v59‖2 = (−1)2 + (−1
2
)2 + 22 = 1 + 1

4
+ 4 = 21

4

−
(

x+ 1
21
4

)

− 1
2

(

y +
1
2
21
4

)

+ 2
(

z − 2
21
4

)

≤ 0 ⇔ 4z ≤ 2 + 2x+ y.

60. v60 = 〈−1
2
,−1, 3

2
〉

‖v60‖2 = (−1
2
)2 + (−1)2 + (3

2
)2 = 1

4
+ 1 + 9

4
= 14

4

−1
2

(

x+
1
2
14
4

)

−
(

y + 1
14
4

)

+ 3
2

(

z −
3
2
14
4

)

≤ 0 ⇔ 3z ≤ 2 + x+ 2y.
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61. v61 = 〈−1
2
,−1, 2〉

‖v61‖2 = (−1
2
)2 + (−1)2 + 22 = 1

4
+ 1 + 4 = 21

4

−1
2

(

x+
1
2
21
4

)

−
(

y + 1
21
4

)

+ 2
(

z − 2
21
4

)

≤ 0 ⇔ 4z ≤ 2 + x+ 2y.

62. v62 = 〈−1,−1, 3
2
〉

‖v62‖2 = (−1)2 + (−1)2 + (3
2
)2 = 1 + 1 + 9

4
= 17

4

−
(

x+ 1
17
4

)

−
(

y + 1
17
4

)

+ 3
2

(

z −
3
2
17
4

)

≤ 0 ⇔ 3z
2
≤ 1 + x+ y.

63. v63 = 〈−1,−1, 2〉

‖v63‖2 = (−1)2 + (−1)2 + 22 = 1 + 1 + 4 = 6

−
(

x+ 1
6

)

−
(

y + 1
6

)

+ 2
(

z − 2
6

)

≤ 0 ⇔ 2z ≤ 1 + x+ y.

We use the following input in Mathematica to generate the plot of (ΠP )? for

−1 ≤ x, y, z ≤ 1 :

RegionPlot3D[x+y ≤ 1+2z && x+y ≤ 1+ 3
2
z && x+2y ≤ 2+4z && x+2y ≤ 2+3z

&& 2x+ y ≤ 2 + 4z && 2x+ y ≤ 2 + 3z && x+ y ≤ 2 + 4z && x+ y ≤ 2 + 3z &&

2+ z ≥ 0 && 2+x+ z ≥ 0 && 2+x ≥ 0 && 2+x+ y+ z ≥ 0 && 2+x+ y ≥ 0 &&

2+ y+ z ≥ 0 && 2+ y ≥ 0 && 4y ≤ 2+x+2z && 4y ≤ 2+x+ z && 2y ≤ 1+x+ z

&& 4y ≤ 2 + 2x+ z && 3y ≤ 2 + x+ 2z && 3y ≤ 2 + x+ z && 3
2
y ≤ 1 + x+ z &&

3y ≤ 2 + 2x + z && 2y + z ≤ 2 + 3x && 2(−1 + y + z) ≤ 3x && 2y + z ≤ 2 + 4x

&& y + z ≤ 1 + 2x && y + z ≤ 2 + 3x && y + 2z ≤ 2 + 3x && y + z ≤ 2 + 4x &&

y + 2z ≤ 2 + 4x && 4x ≤ 2 + y + 2z && 4x ≤ 2 + y + z && 3x ≤ 2 + y + 2z &&

3x ≤ 2 + y + z && 2x ≤ 1 + y + z && 4x ≤ 2 + 2y + z && 3x ≤ 2(1 + y + z) &&

3x ≤ 2 + 2y + z && 2x + z ≤ 2 + 3y && x + z ≤ 1 + 3
2
y && x + z ≤ 2 + 3y &&

x + 2z ≤ 2 + 3y && x + z ≤ 2 + 4y && x + 2z ≤ 2 + 4y && 2x + z ≤ 2 + 4y &&

x+ z ≤ 1 + 2y && x+ y ≤ 2 && x+ y + z ≤ 2 && y ≤ 2 && y + z ≤ 2 && x ≤ 2

&& x+ z ≤ 2 && z ≤ 2 && 3z ≤ 2 + x+ y && 4z ≤ 2 + x+ y && 3z ≤ 2 + 2x+ y

&& 4z ≤ 2+ 2x+ y && 3z ≤ 2+ x+2y && 4z ≤ 2+ x+2y && 3
2
z ≤ 1+ x+ y &&
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y + z ≤ 2 && x ≤ 2 && x+ z ≤ 2 && z ≤ 2 && 3z ≤ 2 + x+ y && 4z ≤ 2 + x+ y

&& 3z ≤ 2 + 2x + y && 4z ≤ 2 + 2x + y && 3z ≤ 2 + x + 2y && 4z ≤ 2 + x + 2y

&& 3
2
z ≤ 1 + x+ y && 2z ≤ 1 + x+ y], {x,−1, 1}, {y,−1, 1}, {z,−1, 1}]

= 0.863472.

Validation of Petty’s projection inequality for P = T ∪ [2, 2, 2] ⊂ R
3:

It is known that for any convex body P in R
3, the following inequality holds:

V (P )n−1V (ΠP )∗ ≤
(

ωn

ωn−1

)

n, (4.1)

with equality if and only if P is an ellipsoid [9].

In our example, we have a convex polytope P whose volume V (P ) = 1 ⇒ V (P )2 = 1

and V (ΠP )∗ = 0.863472.

Therefore, since

ωn = ω3 = volume of unit ball in R
3 = 4

3
π;

ωn−1 = ω2 = volume (area) of unit ball in R
3 = π;

∴ 1 · 0.863472 ≤
(

4
3
π

π

)3

= 64
27

≈ 2.3704.

Validation of the reverse of Petty’s projection inequality for P = T ∪

[2, 2, 2] ⊂ R
3:

It is known that for any convex body P in R
3, the following inequality holds

V (P )n−1V (ΠP )∗ ≥ (2n)!

nn(n!)2
, (4.2)

with equality if and only if P is a simplex [14].

In R
3, we must thus have the upper bound: V (P )2V (ΠP)∗ ≥ 6!

33(3!)2
= 720

27(6)2
= 720

972
=

20
27

≈ 0.740741.

Inspecting the inequality for our specific example, we have V (P ) = 1 ⇒ V (P )2 = 1;
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and V (ΠP )∗ = 0.863472.

⇒ V (P )2V (ΠP)∗ = 0.863472 ≥ 20
27
.

While the latest validations do not produce a new result, they illustrate the possibil-

ities available with Mathematica to work with polar and projection bodies. We think

that the calculations in this direction may also lead to new ideas on attacking the

conjectured inequality.
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