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ABSTRACT 

 

Developing Superhydrophobic Coatings for Mitigating Aircraft Icing using Plasma Spray 

Processes 

 

Navid Sharifi, PhD 

Concordia University, 2018 

 

In-flight icing due to the presence of super-cooled water droplets is a major problem for 

aircraft operators. Accumulation of ice on the surface of wings, control parts and sensors can result 

in a range of problems including navigation issues, decreased efficiency, increasing fuel 

consumption, forced flight delays and cancelation and, if neglected or mismanaged, even fatal 

flight incidents. A significant potential solution for mitigating the icing problem is the use of 

superhydrophobic coatings i.e. coating that are extremely water repelling. Superhydrophobic 

coatings, by repelling the water droplets, can delay and in some cases prevent ice accumulation. 

Additionally, superhydrophobic coatings can facilitate ice removal by heating or vibration due to 

their non-stick properties. The superhydrophobicity of a surface is a result of the combination of 

the surface micro-texture and its surface energy which is determined by the chemistry of the 

surface. The major challenge facing the use of superhydrophobic coatings is the fact that low 

surface energy materials are mainly organic, polymeric compounds that suffer from poor 

durability, and in addition, micro-textured coatings are typically made by complex and expensive 

techniques. In this work atmospheric plasma spray (APS) and suspension plasma spray (SPS) 

which are flexible, scalable and efficient surface engineering techniques, are employed to develop 

micro-textured superhydrophobic coatings for anti-icing applications. 

In this research, APS and SPS TiO2 micro-textured coatings are developed. After treatment 

by a stearic acid solution in order to lower their surface energy, these coatings demonstrate 

hydrophobicity and superhydrophobicity to different extents. APS coatings that are produced using 

10-80 micron-sized particle feedstock, although highly hydrophobic, lack the extreme water 

repellency known as water mobility, due to their relatively coarse micro-texture. In the SPS 

process, submicron-sized TiO2 particles in the form of a suspension are used as feedstock. The 

SPS coatings typically show superhydrophobicity with water contact angles higher than 150°. The 
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coatings produced using an ethanol-based suspension demonstrated extreme hydrophobicity and a 

water droplet impacting on their surface bounces back and detaches from them easily. The 

parameters influencing the SPS process are further studied and optimized to achieve coatings with 

hierarchical surface micro-texture i.e. a surface with a primary micron-sized and a secondary 

submicron-sized micro-texture. After optimization of the process, the SPS TiO2 coatings show 

extreme superhydrophobicity with water contact angles as high as 170°, water sliding angles as 

small as 1.3° and a contact angle hysteresis as small as 4°. The best of the SPS coatings is then 

tested to evaluate its performance in icing and deicing conditions as well as its durability. It is 

demonstrated that the SPS TiO2 coating developed in this work can decrease the ice accretion up 

to 62% compared to the uncoated surface for certain icing conditions. This coating can also 

significantly decrease the deicing time and the amount of heat required to maintain an ice-free 

surface. Most notably, the SPS TiO2 superhydrophobic coating shows remarkably better resistance 

to dry particle erosion and icing/deicing cycles compared to commercial superhydrophobic spray 

coatings. Furthermore, it is demonstrated that even if the superhydrophobicity of the SPS coating 

is reduced due to water droplet erosion, it is easily recoverable due to the durability of the 

hierarchically micro-textured TiO2 ceramic base. 
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Chapter 1.  Introduction 

1.1.  In-flight icing 

Ice formation on aerodynamic surfaces of aircraft is regarded as a major problem in the 

aerospace industry [1]. Ice accumulation may cause jamming and damage to parts, sensors and 

controllers and alter the aerodynamics of the airplane. Build-up of thick ice layers reduces lift and 

increases drag which can result in premature stall [2]. The combination of all these effects can lead 

to a range of undesired consequences including, but not limited to, flight delays, emergency 

landings, damaged parts and increased energy consumption to control the situation [3]. 

In-flight ice accretion occurs due to the presence of super-cooled water droplets i.e. a water 

droplet with a temperature below its freezing point. Such droplets impinge on the leading surfaces 

of the airplane and freeze either immediately or after spreading due to the relative velocity of the 

airplane and the surrounding air [4]. Gradual accumulation of ice over time, resulting from 

consecutive impingement of multiple water droplets can result in buildup of relatively thick and 

heavy ice layers [5]. 

Historically, a wide range of solutions have been employed to deal with this icing problem. 

Such solutions vary from using weather forecasts to avoid icing conditions and specialized training 

aimed to increase awareness of pilots and staff through to the use of mechanical and thermal 

deicing systems [6]. A significant potential solution to this icing problem is to apply 

superhydrophobic coatings on the airplane surfaces that are susceptible to icing. Superhydrophobic 

coatings, which are coatings with extreme water repellence, have been shown to delay ice 

formation [7] and facilitate ice removal [8] in certain icing conditions. 

A major challenge for any practical application of superhydrophobic coatings on aircraft is 

their mechanical durability. Currently, superhydrophobic coatings are typically made using 

polymeric materials due to their low surface energies [9]. However, these materials are not durable 

by nature and can deteriorate easily when exposed to erosion and wear. Recent research has also 
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led to the manufacture of micro-textured superhydrophobic coatings that rely on a distinctive 

surface morphology to provide water repelling characteristics [10]. Such surface morphology has 

two scales of roughness features: a primary, micron-sized roughness and a secondary, submicron 

or nano-sized roughness. This micro-texture (known as hierarchical morphology), if created on an 

intrinsically hydrophobic material can render the surface of the material superhydrophobic [11]. 

However, the majority of the surface engineering processes that can produce this type of 

morphology are rather complicated, expensive and impractical to apply to large surfaces such as 

the wings of an airplane [12]. 

The main objective of this research is to use thermal spray processes as a flexible in terms 

of variety of materials that can be deposited, scalable and commercially viable surface engineering 

technique to develop and optimize superhydrophobic coatings for anti-icing applications in 

aircraft. Before presenting a comprehensive literature review in Chapter 2 of this thesis, a more in-

depth perspective on the in-flight icing phenomenon and its consequences is provided herein. 

Additionally, some of the common practices used to deal with this icing problem in the aerospace 

industry are introduced and ultimately the idea of using superhydrophobic coatings to mitigate the 

icing problem is explored. At the end of this chapter, the main objectives of this research and the 

organization of this thesis are presented. 

1.1.1.  Hazards and consequences of aircraft icing 

Icing-related damage is commonly reported and can cause considerable expense to airline 

companies. For example, in 2002 alone, the total damage of twelve icing-related incidents to 

United Airlines aircraft cost over $2 million dollars [13]. According to a study [14], there have 

been 2,212 icing-related reports from 1978 to 2002, of which 693 incidents are considered 

aerodynamically significant. Icing has been the main reason for $96 million per year in terms of 

personal injuries and damage in the USA [15]. 

By disturbing the air flow, ice can cause loss of lift, increase in drag force, and 

consequently damage or jamming of control surfaces or mechanical parts [16]. To compensate for 

the further drag caused by ice accumulation, more power is needed which itself results in an 

increase of the angle of attack and causes even more ice to form on the airfoil [17]. Accumulation 

of ice disturbs the air flow and consequently deviates the aircraft from optimal flight conditions. 

This leads to higher fuel consumption as well as the possibility of damage and jamming of critical 

parts of the aircraft [18,19]. 
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1.1.2.  Icing conditions and parameters 

As mentioned before, in-flight ice forms due to the presence of super-cooled water droplets 

in the atmosphere and their impact on the surfaces of the aircraft. In other words, the icing risk 

drastically decreases either when the temperature is high enough so that water droplets are above 

their freezing temperature or the temperature is so low that only ice crystals exist. A schematic of 

the status of water droplets at different altitudes and the corresponding icing risk level and ice 

types is presented in Figure 1.1. As demonstrated in this Figure, at lower altitudes where the 

temperature is greater than 0°C, water droplets are not in a super-cooled state and their impact on 

the aircraft does not result in any ice formation. On the other hand, at high altitudes, due to the 

extremely low temperatures (lower than ≈ -40°C) only ice crystals exist which do not cause a risk 

of icing. In fact, it is at intermediate altitudes that the icing risk is considerably higher. 

 

 

Figure 1.1. Icing risk and types of ice at various altitudes [20]. 
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In addition to the ice formation, the type of ice that is formed plays an important role in 

determining the icing risk. Typically, in-flight ice is classified into three different types based on 

formation mechanism and characteristics of the ice. It is important to note that all three ice types 

form through the impact of super-cooled water droplets on the surfaces of the aircraft. The 

formation conditions and characteristics of each ice type is briefly described below. 

The first ice type is clear or glaze ice. This type of ice forms when a super-cooled water 

droplet impacts on the surface but does not immediately and completely freeze upon impact. This 

happens when the temperature is typically between 0 to -10°C, the droplets are relatively large and 

liquid water content is relatively high. Liquid water content (LWC) is an indicator of humidity, in 

terms of grams of water per a cubic meter of air and is commonly used in aeronautics and related 

literature. In such condition, the droplets do not completely freeze upon impact resulting in what 

is known as wet growth of the ice [21]. Relatively higher temperatures (close to 0°C) and larger 

volume causes the droplet to retain a liquid form and spread backwards. This phenomenon is 

known as runback flow and causes the glaze ice to form on places other than the point of impact 

of the droplet. As the name ‘clear ice’ suggest, this type of ice is mostly transparent and smooth. 

Clear ice has high adhesion to the surface and is considered to be the most undesirable type of ice 

[22]. 

The second type of ice is rime ice. Rime ice forms in different conditions to that of clear 

ice, i.e. at temperatures typically between -15 to -40°C, relatively small droplet size and lower 

liquid water contents. In the case of rime ice, the droplets immediately freeze in place upon impact, 

causing air pockets to be entrapped between them resulting in what is known as dry growth of the 

ice [21]. The rime ice is white and has low adhesion to the surface thus it is easier to remove. 

The third type of ice is mixed ice which forms typically between -10 to -15°C and has 

mixed characteristics of both clear and rime ice. A schematic representing the different ice types 

is presented in Figure 1.2. 
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Figure 1.2.Types of ice formed on an aircraft wing [23]. 

A summary of the parameters influencing the type of ice and the risk of icing is introduced 

in Table 1.1. As mentioned before the most undesirable type of ice is clear ice due to the fact that 

it is harder to detect because of being transparent and also has high adhesion to the surface. Clear 

ice is also more detrimental to flight conditions as it can affect many areas due to runback flow 

and can grow large enough to negatively affect the aerodynamics of the airplane [24]. 

Table 1.1. Conditions of formation of different ice types [25]. 

Parameters Glaze (Clear) ice Mixed ice Rime ice 

Temperature 0°C to -10°C -10°C to -15°C -15°C to -40°C 

Droplet size Large Small to large Small 

Liquid water content High Low to high Low 

Risk High Intermediate Low 

 

In Table 1.2 the conditions that are typically considered as an icing risk for aviation are 

presented [26]. As demonstrated in this table, icing risk conditions are not limited to sub-zero 

temperatures. Even at slightly warmer temperatures, there is a risk of icing since the temperature 

of the body of the airplane may still be lower than the freezing point. Additionally, it is important 
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to note that although icing risk conditions are usually assumed in the presence of water droplets 

smaller than 50 μm, the presence and effect of larger droplets cannot be ignored [27]. 

Table 1.2. Icing risk conditions [26]. 

Parameter Icing risk conditions 

Liquid water content (LWC) of water in air From 0.1 to 3 g/m3 

Temperature From +4°C to -40°C 

Droplet diameter (MVD) Usually from 1-50 μm but also up to 400 μm 

 

1.1.3.  Icing protection systems 

To deal with icing problems, weather forecast information is used as well as special training 

to improve the pilot’s awareness and skills [22]. Some automatic systems have also been developed 

for detection of icing and evaluation of aircraft icing performance in icing conditions [28]. Such 

systems provide information to the pilot and can control the operation of an aircraft’s anti-icing 

systems. Simulation tools have been developed to predict, control and optimize the aircraft’s 

response to flight in icing conditions [29]. Moreover, pre-flight preparations include deicing 

(removal of the ice) and anti-icing (providing protection against ice formation) procedures [30]. In 

addition, recent in-flight anti-icing and deicing systems based on heating or mechanical ice 

removal have been developed [31]. This approach may be effective in preventing ice accumulation 

on the leading edge. However, it is impractical to place heating elements below all surfaces that 

are prone to icing. Furthermore, the efficiency of such systems can be further improved by 

modifying the surface characteristics. 

1.1.4.  Superhydrophobic coatings for icing protection 

A remarkable potential solution to the icing problem is to treat the prone surfaces in such 

a way that they are immune to icing i.e. ice does not easily form on them. Investigations have 

shown that if a surface is superhydrophobic, under certain icing conditions, it can effectively 

reduce the chance of ice accumulation or even completely prevent ice formation [32]. Even in the 

case of ice formation, the amount of thermal energy needed to remove the ice from a 
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superhydrophobic surface has been reported as being significantly reduced [33]. 

Superhydrophobic surfaces are surface with extremely water-repelling properties. Such surfaces 

are typically identified by high water repellence (manifested through water contact angles higher 

than 150°) and high water mobility (manifested through a water sliding angle smaller than 10°). 

The characteristics, properties and types of superhydrophobic surfaces are discussed in details in 

Chapter 2. Here, the potential of superhydrophobic surfaces for anti-icing applications is discussed.  

Figure 1.3 shows two surfaces, one an uncoated aluminum alloy and the other, the same 

alloy with a superhydrophobic surface coating, that have been exposed to the same icing conditions 

for a certain period of time. As clearly demonstrated in the photo, ice accumulation is observed on 

the untreated aluminum surface while no significant amount of ice has been formed on the 

superhydrophobic surface. This figure clearly showcases the potential of superhydrophobic 

surfaces to mitigate the icing problem in these specific icing conditions. It is believed that ice 

formation on superhydrophobic surfaces is alleviated because super-cooled water droplets do not 

easily stick on these surfaces and mainly bounce off and detach from the surface before they start 

to freeze [34]. Studies have also shown that in the case of ice formation on a surface, 

superhydrophobic surfaces are additionally beneficial since ice detachment from these surfaces 

required less heating compared to conventional surfaces [35]. 

 

 

Figure 1.3. Comparison of a superhydrophobic surface (right/front) to a hydrophilic surface 

(left/back) in icing conditions 0F0F0F

1. 

                                                 
1 Courtesy of A. Dolatabadi, 2010. 
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Although it is widely accepted that superhydrophobic coatings can reduce ice accretion 

particularly in the case of clear ice, some studies have opposed this idea by arguing that surface 

roughness which is an important factor in superhydrophobic surface can contribute to ice 

nucleation as well as increasing ice adhesion to the surface [36,37]. This issue signifies the 

importance of testing and evaluating icing performance of every new superhydrophobic coating in 

expected icing conditions to determine whether such coatings are in fact advantageous i.e. to 

determine the relationship between superhydrophobicity and icephobicity. 

Another important challenge of dealing with superhydrophobic coatings for anti-icing 

purposes is the issue of durability. Many novel superhydrophobic surfaces that are described in 

the literature either demonstrate poor mechanical durability [38,39] or are made with complex and 

expensive processes and as such have limitations in terms of being practically applied to surfaces 

of aircraft components [40,41]. This is the main motivation of this work in selecting and working 

with a surface engineering technique which is capable of developing durable coatings with 

flexibility and scalability to be used in aerospace anti-icing and deicing applications. 

In this work, the main objective is to address the aforementioned issues by using thermal 

spraying as a versatile, scalable and flexible coating technique to develop, optimize and 

functionalize superhydrophobic coatings. Regarding the durability of these coatings, the aim is to 

develop coatings with adequate durability to withstand potential erosion and ice/deicing cycles for 

a reasonable amount of time with the possibility to restore and renew their functionality in a simple 

and quick way.   

1.2.  Objectives 

The main objectives of this research are presented here with respect to the sequence of the 

chapters of this thesis: 

 To develop micro-textured ceramic coatings with a dual-scale hierarchical surface 

morphology using thermal spray techniques. These coatings must be designed in such a 

way that after treatment for lowering their surface energy, they demonstrate 

superhydrophobic characteristics. 

 To optimize the coating process to control and tailor the surface micro-texture in order to 

achieve the maximum water repellency and mobility for the coatings. This objective is to 

be achieved using a parametric study and “design of experiment” methods to determine the 



9 

 

influence of various deposition parameters on coating morphology and wetting 

characteristics. 

 To investigate the anti-icing functionality of the coatings in different icing conditions and 

to determine the contribution of the superhydrophobic coatings developed in this work to 

the mitigation of ice accretion, and the facilitation of ice removal. 

 To improve the practical application of thermal sprayed superhydrophobic coatings by 

improving the durability and providing easy reparability compared to polymer-based 

superhydrophobic coatings. 

 To investigate the relationship between superhydrophobicity and icephobicity, and how 

superhydrophobic coatings can contribute to mitigating the aircraft icing. 

1.3.  Thesis organization 

This thesis comprises seven chapters. Each chapter is briefly described herein. The first 

chapter introduced the in-flight icing problem and formulated the challenges that icing imposes on 

aircraft and aviation. Various ice accretion conditions and mechanisms were explained and some 

of the current approaches to mitigate in-flight icing were described. At the end, the objectives of 

this work were presented. 

Chapter 2 provides a comprehensive literature review of the different surface engineering 

techniques that are employed to manipulate the wetting characteristics of engineering materials. 

In this chapter, first the fundamentals of surface wetting are reviewed and the different wetting 

behaviors of surfaces are introduced. Afterwards, the concept of superhydrophobicity is presented 

and the effect of surface roughness on apparent wetting behavior and wetting regimes is explored. 

Some of the techniques that are used in the scientific literature to develop superhydrophobic 

surfaces are introduced and the potential strengths and deficiencies of each technique is discussed. 

Additionally in Chapter 2, thermal spraying is introduced and two techniques used in this research, 

atmospheric plasma spraying (APS) and suspension plasma spraying (SPS) are briefly explained. 

At the end, a comprehensive review of the efforts that have employed thermal spraying to develop 

superhydrophobic coatings is presented. 

Chapter 3 presents a comprehensive investigation of the atmospheric plasma spray (APS) 

process as a promising method to develop scalable and economically reasonable coatings with 

tailored micro-texture and wettability. In this chapter, various deposition conditions in the APS 
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process are explored to determine the optimum conditions that result in the most desired coating 

morphology and consequently, wetting behavior. 

Chapter 4 focuses on developing new coatings with improved water repellency and 

mobility using the suspension plasma spray process (SPS). The SPS process allows the use of 

submicron-sized feedstock material to generate micro and nano-scale hierarchical roughness 

which can lead to superhydrophobicity. The results are then compared to that of the APS process 

and other natural and manufactured superhydrophobic surfaces. 

Chapter 5 presents a rigorous investigation of the influence of SPS process parameters on 

coating morphology and consequently the wetting behaviors of the coatings. A test matrix is 

developed and experiments are designed accordingly to determine the most important and 

influential deposition conditions. This approach contributes to obtaining finer and more uniform 

morphological features on the coatings. These results are used to control and tailor the hierarchical 

micro-texture of the coatings which in turn results in enhanced water repellence and mobility.  

Chapter 6 focuses on evaluation of the icing performance and durability of the SPS 

superhydrophobic coatings. Firstly, the coatings are tested in various icing conditions. Their icing 

performance and their contribution to delayed ice accretion and facilitation of deicing is compared 

to uncoated samples as well as commercially available, polymer-based superhydrophobic spray 

coatings. Secondly, the durability of the coatings is evaluated by exposing them to erosive and 

destructive environments including solid particle erosion, high velocity water droplet erosion, 

cloud-sized water droplet erosion and icing/deicing cyclic tests. The durability tests results are also 

compared to that of commercially available superhydrophobic spray coatings. 

Chapter 7 summarizes the findings, conclusions and contributions of this work and 

suggests some recommendations for future work. 
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Chapter 2.  Literature Review 

2.1.  Fundamentals of surface wetting 

The static wetting behavior of the surface of a solid material in interaction with water is 

typically characterized by its static water contact angle, or for short, its contact angle (also known 

as wetting angle). The contact angle is the angle between solid/liquid and liquid/gas interfaces 

when a solid, a liquid and a gas phase are in contact. The water contact angle of an ideally smooth 

surface, denoted here by θ0 is determined by the interfacial energies between the three phases as 

given in Eq. (2.1), Young’s equation [42]: 

 cos 𝜃0 =
𝛾𝑆𝐴 − 𝛾𝑆𝐿

𝛾𝐿𝐴
 Eq. (2.1) 

where γSL, γSA, and γLA are solid/liquid, solid/air and liquid/air surface tensions. For water, 

based on Young’s equation, the contact angle of an ideally smooth solid surface depends on its 

interfacial energies, γSL and γSA and as a result on the surface chemistry demonstrated in Figure 2.1. 

According to Eq. (2.1), when γSA is larger than γSL i.e. the droplet tends to spread across 

the surface, the water contact angle is smaller than 90°. This means that the surface tends to be wet 

by water. Materials that tend to be wet by water are called hydrophilic (literally, lover of water). 

Hydrophilic materials are sometimes referred to as high surface energy materials. A schematic of 

a water droplet sitting on a hydrophilic surface is demonstrated in Figure 2.1.a. 

On the other hand, when γSL is larger than γSA, the contact angle is larger than 90°. 

Consequently, the surface tends not to be wet by water. These materials with a tendency to repel 

water are called hydrophobic (literally, scared of water). Hydrophobic materials are sometimes 

referred to as low surface energy materials. A schematic of a water droplet sitting on a hydrophobic 

surface is demonstrated in Figure 2.1.b. 
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Figure 2.1. Schematic of (a) a hydrophilic and (b) a hydrophobic surface. 

In addition to static contact angle, there are other parameters that quantify the interaction 

of a moving water droplet on a solid surface. Three of these parameters, advancing contact angle 

(θA), receding contact angle (θR), and sliding angle (θS) are presented in Figure 2.2. When a water 

droplets starts to move on a surface, the contact angle on the forward moving or advancing side of 

the droplet is called its advancing contact angle, denoted here as θA. On the other hand, the contact 

angle on the backward or receding side of droplet is called the receding contact angle, denoted 

here as θR. Theoretically, the advancing and receding contact angles are respectively the largest 

and smallest contact angle values that can be measured on that surface [43,44]. The difference 

between these two values is called the contact angle hysteresis and is an indication of the energy 

that is dissipated during the movement of droplet on the solid surface. In view of that, a surface 

with a relatively large contact angle hysteresis value has a tendency to adsorb water whilst a surface 

with a relatively small contact angle hysteresis has a tendency to repel water.  

An additional parameter that is commonly used to characterize the wetting behavior of a 

surface is the sliding angle, denoted here as θS. The sliding angle is the angle to which a surface 

must be tilted for a water droplet to start to move on that surface. The sliding angle is relevant only 

for highly water repellent surfaces because on otherwise water adsorbing surfaces, a sufficiently 

small water droplet can be pinned and not move, even if the surface is turned upside down. The 

sliding angle of a surface is another indication of water repellency because the smaller the sliding 

angle, less force is required to move the droplet on the surface. In fact, for a water repelling surface, 

contact angle hysteresis and sliding angle represent a similar notion. The smaller the value of these 

two parameters, the more water repellent the surface is. However, it is important to note that the 

values of contact angle hysteresis and sliding angle are not necessarily the same. 
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Figure 2.2. Sliding angle, advancing and receding contact angles of a droplet on a tilted surface. 

2.2.  Superhydrophobicity 

The term superhydrophobic is widely used to describe surfaces that are extremely water 

repellent and show highly hydrophobic behavior. The lotus leaf is a well-known example of a 

natural superhydrophobic surface [45]. The criterion for superhydrophobic behavior is 

conventionally considered to be a contact angle value larger than 150° [46]. However, sometimes 

additional conditions such as contact angle hysteresis or a sliding angle smaller than 10° are also 

used for determining superhydrophobicity [47]. The term “ultra-hydrophobicity” is sometimes 

used interchangeably with superhydrophobicity [48] while sometimes it is used to refer to even 

higher contact angles, for example higher than 170° [49]. In the context of superhydrophobicity, 

high contact angle values are sometimes considered to represent “water repellence” or “water 

repellency” of the surface [50], whereas low contact angle hysteresis or sliding angle values 

represent “water mobility” [51]. Thus, a superhydrophobic surface is assumed to have both high 

water repellency and high water mobility [52]. 

Regarding superhydrophobic surfaces, there are two other parameters that are commonly 

used to characterize and quantify the extent of superhydrophobicity of the surface: contact time 

and coefficient of restitution. Measuring these two parameters is possible due to the fact that an 

impinging droplet of water recoils and rebounds from a superhydrophobic surface if it has the 

proper impact velocity and the surface has sufficiently high water mobility [53]. The contact time 

is the duration of time from when an impinging water droplet comes into contact with the surface 

until it is completely detached from the surface. Obviously, a shorter contact time indicates higher 

water repellency and shorter interaction between the water droplet and the surface [54,55].  

The coefficient of restitution which was originally defined for collision of two solid objects 

is defined as the ratio of the velocity before and after the impact [56]. The coefficient of restitution 
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has a value between 0 and 1 and represents dissipation of energy during the impact. The closer the 

value is to 1, the less energy is dissipated during the impact of a droplet onto a solid surface. 

Consequently, values closer to 1 are considered more desirable for superhydrophobic surfaces 

[57]. It is important to note that upon impact of a water droplet on a surface, the droplet usually 

goes through considerable deformation in the form of spreading and recoil [58–60]. If the impact 

velocity is high enough, the droplet may even experience breakup [61]. Therefore, the 

measurement of coefficient of restitution needs to be carried out carefully and in a controlled 

manner in order to obtain repeatable and comparable results for various solid surfaces. 

Superhydrophobic surfaces have been the subject of great attention for potential 

applications where minimal interaction between a solid surface and a liquid is desired. Such 

applications include but are not limited to; anti-icing [62–64], self-cleaning [65–67], drag 

reduction [68–70], and corrosion resistance [71–73]. Since in this work the main focus is on anti-

icing and deicing properties and application of superhydrophobic coatings, a comprehensive 

literature review on anti-icing and deicing of superhydrophobic surfaces will be presented further 

in this chapter. However, before discussing this topic, it is important to further explore another 

factor that plays a major role in wetting behavior of solid surfaces. This factor is the roughness or 

surface micro-texture of the solid surface. 

2.3.  Effect of surface roughness on wetting 

Surface chemistry is not the only factor effecting the wetting behavior of solid surfaces. It 

is shown repeatedly in the literature [74] that the surface morphology (roughness) also has a great 

impact on the wetting behavior of solids. The lotus leaf has been known as a symbol of purity and 

cleanliness for thousands of years. This is because of the lotus leaf’s “self-cleaning” capability 

which allows the plant to survive in muddy and polluted environments. The lotus leaf is a typical 

natural superhydrophobic surface. Scanning Electron Microscopy (SEM) imaging of the surface 

of lotus leaf [74,75], as a natural superhydrophobic surfaces shows that there is a “hierarchical” 

microstructure (dual-scale roughness) on this surface. This microstructure, shown in Figure 2.3, 

contains micro asperities 20–40 µm apart, each covered with a smaller scale roughness of 

“epicuticular wax crystalloids” [76]. The superhydrophobicity of this surface originates in these 

crystalloids both chemically and structurally. Many other natural superhydrophobic surfaces have 

been reported to have a more or less similar hierarchical micro-texture [77–79]. 
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Figure 2.3.  SEM images of lotus leaf in three different magnifications (first three pictures from 

left), and image of water droplet sitting in almost full sphere shape on the lotus leaf [74,75]. 

On superhydrophobic surfaces with hierarchical micro-texture, the primary, micro-scale 

roughness of the surface results in the formation of air pockets between the solid and the liquid. 

The water droplet sits partially on these air pockets which leads to a decrease of the actual contact 

area of the droplet with the solid surface and results in increased “apparent contact angle” and 

reduced contact angle hysteresis of the surface [80]. The term “apparent contact angle” in this 

context indicates that the contact angle which is practically measured on a rough surface is 

different from the contact angle on a smooth sample of the same material. 

There are two models to explain the influence of roughness on the wetting and contact 

angle of a rough solid surface. One model, suggested by Wenzel [81], assumes a smooth, 

homogenous water-solid interface called the Wenzel state. The other model, proposed by Cassie 

and Baxter [82], assumes a composite water-solid-air interface called the Cassie-Baxter state. A 

schematic of the two models is illustrated in Figure 2.4. The effect of Wenzel and Cassie-Baxter 

wetting regimes on the contact angle of a rough solid surface is manifested through Eq. (2.2) and 

Eq. (2.3) respectively: 

 cos 𝜃𝑐 = 𝑅𝑓 cos 𝜃0 Eq. (2.2) 

 cos 𝜃𝑐 = 𝑅𝑓 cos 𝜃0 − 𝑓𝐿𝐴(𝑅𝑓 cos 𝜃0 + 1) Eq. (2.3) 

where θc is the apparent water contact angle on a rough surface, θ0 is the contact angle on 

the smooth surface (intrinsic contact angle), Rf is non-dimensional surface roughness factor which 

is equal to the ratio of real surface area to projected surface area, (Rf  > 1), and fLA is the fraction 

of the total contact area in between liquid and air.  
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Figure 2.4. Schematic of (a) Wenzel and (b) Cassie-Baxter wetting state. 

In the Wenzel state (Figure 2.4.a and Eq. (2.2)), surface roughness amplifies the wetting 

behavior of the solid. Thus when roughened, an intrinsically hydrophilic surface becomes more 

hydrophilic and an intrinsically hydrophobic state becomes more hydrophobic when the dominant 

wetting state is Wenzel. However, it must be noted that in the case of the Wenzel wetting regime, 

since water penetrates through pores and asperities of the surface, generally the adhesion between 

water and solid surface is high. Therefore, even highly hydrophobic surfaces have typically poor 

water mobility in the Wenzel state [83]. 

On the other hand, the Cassie-Baxter wetting state generally reduces the wettability of a 

surface regardless of intrinsic wetting behavior due to the presence of air pockets between the solid 

and liquid phases. Therefore an intrinsically hydrophilic surface may show hydrophobic behavior 

when roughened in a proper manner to have a Cassie-Baxter wetting regime [84]. As a result, a 

Cassie-Baxter wetting regime is favorable for developing superhydrophobic surfaces with 

improved water repellency and mobility. The governing wetting regime on a surface is determined 

by various geometrical parameters of its roughness including the height of the features, the width 

of the gap between features and the presence of secondary scale roughness [85,86]. 

In Figure 2.5, the wettability behavior for smooth, micro-textured, nano-textured and 

hierarchically textured solid surfaces is shown. The largest contact area between the droplet and 

the surface occurs on smooth and micro-textured surfaces. The contact area decreases when using 

nanostructured surfaces and is minimized in the case of a hierarchical structure [87–89]. 

Consequently, the apparent contact angle also progressively increases. 



17 

 

 

Figure 2.5. Schematic for wetting of (a) smooth, (b) micro-textured, (c) nano-textured and (d) 

hierarchically textured solid surfaces. 

Multiple studies [90–93] have confirmed that the wettability of a surface is governed by 

both its surface micro-texture and chemical composition. A hierarchical surface structure similar 

to the one observed on the lotus leaf and other natural superhydrophobic surfaces seems to be 

crucial to make sure that a Cassie-Baxter (composite) interface is most likely to occur and is stable 

on a surface. It is speculated that in such a micro-texture, the micron-sized roughness provides air 

pockets, assuring the formation of a composite interface. Additionally, the smaller-scaled (nano-

sized) roughness helps stabilize the composite interface by pinning the liquid and preventing it 

from filling the cavities which could result in the transition from the Cassie-Baxter to the Wenzel 

state. In other words, the combination of the hierarchical roughness alongside an intrinsically 

hydrophobic material with relatively small surface free energy results in a superhydrophobic 

surface. It can be concluded that in the presence of an appropriate hierarchical surface micro-

texture, extremely low surface energy materials such as fluorocarbons are not necessarily required 

to obtain a superhydrophobic surface. This fact has been widely used by researchers to produce 

biomimetic superhydrophobic surfaces inspired by nature [94–96]. 

2.4.  Bio-inspired superhydrophobic surfaces 

As mentioned before, there are several potential applications for superhydrophobic 

surfaces that have been investigated in the literature, such as anti-icing, self-cleaning surfaces, 

corrosion resistance surfaces, biomedical devices, liquid separation, and the reduction of turbulent 

flow in water-bearing pipes. A list of applications studied in various publications for 

superhydrophobic surface is presented in Table 2.1. As a result, the topic of developing functional 

superhydrophobic surfaces has gained widespread popularity and interest in recent years, and has 

been the subject of extensive research. This is evident by the increasing number of publication on 
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the topic over the past few years [97–99]. A basic search on the ‘web of knowledge’ website shows 

that there have been 266 publications related to superhydrophobicity in 2006. This number rose to 

715 in 2011. Many of these publications present novel techniques and processes for developing 

superhydrophobic surfaces. 

Table 2.1. Potential applications sought for superhydrophobic surfaces in the literature. 

Application Anticipated Mechanisms Examples 

Anti-icing 
Delay freezing by repelling super-cooled droplets 

Reduced ice adhesion  
[100–103] 

Anti-fogging 
Repelling water micro-droplet;  

Preventing deposition of water on surface 
[104–106] 

Self-cleaning 
Repelling contaminating liquid 

Droplets removing contamination and leaving surface 
[107–109] 

Corrosion resistance Repelling corrosive liquids [110–113] 

Liquid separation Different wetting behavior towards various liquids [114–116] 

Fluid drag reduction Reduced fluid adhesion on the interface [117–119] 

Drop-wise condensation Forming drops on surface which are easily removed [120–122] 

Biomedical devices Controlled wetting and selective interaction [123,124] 

 

As previously mentioned the wetting behavior of a solid surface is a function of both its 

surface energy, which is in turn influenced by surface chemistry, and its micro-texture. If a material 

has very low surface energy it means it is intrinsically extremely hydrophobic. Very low surface 

energy materials are typically some families of hydrocarbons and polymers such as fluorosilanes 

[125]. There are several problems associated with these materials for practical applications 

including durability, safety and practicality concerns [38,126]. Due to such challenges, many of 

the recently developed superhydrophobic surfaces take inspiration from the roughness-induced 

superhydrophobicity of the lotus leaf and other natural superhydrophobic surfaces and therefore, 

are sometimes known as “bio-inspired superhydrophobic surfaces”. 

In the case of so-called “bio-inspired superhydrophobic surfaces”, the extreme 

hydrophobicity of the surface is not only due to its surface chemistry and intrinsic water repellency, 
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but also the presence of some type of surface micro-texture similar to what is observed on the lotus 

leaf and other natural superhydrophobic surfaces. In other words, this approach relies on a rough 

and textured surface in order to promote a Cassie-Baxter wetting regime and consequently a 

superhydrophobic behavior. It is important to note that in order to improve the outcome of such an 

approach, it is necessary to have an intrinsically hydrophobic (but not necessarily 

superhydrophobic) surface wetting behavior. 

Typically, there are two approaches to fabricate roughness-induced superhydrophobic 

surfaces: one is to roughen a surface which is made from hydrophobic material; and the other is to 

chemically modify a hydrophilic rough surface to become hydrophobic. Many conventional 

surface engineering techniques have been employed to develop superhydrophobic surfaces. These 

techniques include, but are not limited to; lithography, etching, deposition techniques such as 

chemical vapor deposition (CVD) and electrodeposition, sol-gel, layer-by-layer (LbL), self-

assembly and laser treatment. Multiple comprehensive reviews of these methods can be found in 

review papers such as [10,12,39,127,128]. It should be mentioned that each of these methods has 

their particular advantages and disadvantages. Take for instance lithography techniques that are 

relatively accurate and applicable to large areas, but they are also slow and costly processes. On 

the other hand, etching techniques are fast but less controllable with the possibility of chemical 

contamination. Self-assembly methods are flexible and relatively inexpensive processes but using 

them requires accessibility and availability of suitable precursors. A summary of these techniques 

and the respective wetting characteristics of the coatings developed by these techniques is 

presented in Table 2.2. It is important to note that in this table, the thermal spray processes are 

excluded since they are to be discussed in further detail in the following sections. 

Generally, the majority of existing superhydrophobic surface treatments suffer from one of 

the two main limitations for practical anti-icing application: firstly, lack of durability and secondly, 

complexity and scalability of the techniques. The first limitation is due to the fact that some of 

these surface treatments rely on polymers as low surface energy, intrinsically hydrophobic 

materials to deliver the hydrophobicity of the surface. However polymers are materials with 

secondary bonding between the molecules, and therefore typically demonstrate poor mechanical 

performance and especially, a very low resistance to wear and abrasion. Additionally, many 

polymeric materials are susceptible to environmentally degrading factors such as ultra-violet 

exposure and temperature variation. 
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Table 2.2. A list of surface engineering techniques used in recent research publications for 

developing superhydrophobic surfaces. 

Surface modification 

technique 
Examples 

Highest contact 

angle (°) 

Lowest contact angle hysteresis-

(CAH) or sliding angle (SA) (°) 

Lithography 
[129] 

[130] 

170 

169 

30 (CAH) 

2 (CAH) 

Etching 
[131] 

[132] 

155 

166 

5 (CAH) 

2 (CAH) 

CVD 
[133] 

[134] 

160 

> 160 

Not reported 

~ 2 (SA) 

Electrodeposition [135] 154 Not reported 

Sol-gel 
[136] 

[111] 

168 

155 

1 (SA) 

7 (SA) 

Layer-by-layer [137] 157 1 (SA) 

Self-assembly [138] 165 4 (CAH) 

Laser treatment 

[139] 

[140] 

[141] 

160 

166 

166 

3 (CAH) 

4 (SA) 

10 (CAH) 

 

To-date the only known materials with intrinsic hydrophobicity i.e. the static contact angle 

of a smooth sample of these materials that is larger than 90°, are hydrocarbon and polymeric 

materials with the arguable exception of rare-earth oxides. In some recent publications [142–144], 

some or all of the rare-earth oxides have been reported to be intrinsically hydrophobic. However 

these reports have been disputed in other publications [145,146] by arguing that environmental 

contamination is the main reason for apparent hydrophobicity of rare-earth oxides. The first such 

observation have been reported by Lawrence et al. [147] of cerium dioxide (CeO2) membranes 

showing a contact angle of around 120°. Martinez et al. [148] have reported contact angle ranging 

from 94° to 134° for electrodeposited CeO2.  
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Maybe the most prominent report of intrinsic hydrophobicity of rare-earth oxides has been 

made by Azimi et al. [149] about pressed and sintered samples of all rare-earth oxides. However, 

in this work the reported wetting parameter is the advancing contact angle and not the static contact 

angle and it must be noted that having an advancing contact angle of larger than 90° does not 

necessarily mean that the static contact angle is also larger than 90°. Preston et al. [150] have made 

a counterargument that once properly cleaned and contamination-free, rare-earth oxides are in fact 

hydrophilic and their apparent hydrophobicity is due to adsorption of hydrocarbon groups from 

exposure to ambient air. In a later publication, coauthored by Azimi, Khan et al. [151] respond to 

Peterson et al. [150] by claiming that rare-earth oxides demonstrate hydrophilicity due to surface 

oxygen content exceeding the stoichiometric ratio. They demonstrate this by showing that a freshly 

sputtered CeO2 with a surface O/Ce ratio of around 3 is hydrophilic, but after being left in ultra-

high vacuum, the surface O/Ce ratio reduces to around 2.2, showing hydrophobicity. 

Even though the subject of intrinsic hydrophobicity of rare-earth oxides seems debatable, 

it could potentially offer a significant solution to the issue of durability of superhydrophobic 

coatings. A ceramic material such as a rare-earth oxide is naturally much more durable compared 

to polymeric and hydrocarbon alternatives. However, as mentioned before it is not clear whether 

or not rare-earth oxide demonstrate hydrophobicity at all or just in some conditions and therefore 

this topic is further investigated and the results are reported in the Appendix section of this thesis. 

A second limitation of some of the surface engineering techniques employed to develop 

superhydrophobic surface by researchers is the complexity and limited scalability of these 

methods. Controlled environment, long and costly production processes and limited controllability 

of surface engineering process are examples of such limitations. Many of these techniques 

successfully generate fine and uniform hierarchical patterns on the surface which result in 

extremely high water repellency and in some cases reasonably durable superhydrophobic surfaces. 

However, these methods are basically impractical for treating for instance the wings and other 

large surfaces of an aircraft. 

A list of superhydrophobic surface modifications aimed for mitigating the icing problem 

are presented in Table 2.3. In this list, different superhydrophobic surfaces are classified according 

to their respective contributions to mitigating the icing problem. As also mentioned in Chapter 1, 

this contribution can be in terms of delaying ice nucleation, preventing ice or frost formation and 

reducing ice adhesion or a combination of them. 
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Table 2.3. A list of various superhydrophobic and icephobic surfaces for anti-icing applications 

and their respective contributions to the icing problem. 

Examples 

Surface 

Modification 

Technique 

Type of 

contribution 

to icing 

mitigation 

Durability 
Complexity 

(Scalability) 

Mishchenko et al. [152] 

Wang et al. [153] 

Liao et al. [154] 

Arianpour et al. [155] 

Jung et al. [37] 

Li et al. [156] 

Ion etching 

Chemical etching 

Etching 

Self-assembly 

Spray casting 

Deposit and dry 

Delaying 

ice/frost 

formation 

Not reported 

Not reported 

Durable 

Not reported 

Not reported 

Not reported 

Complex 

Scalable 

Complex 

Moderate 

Scalable 

Scalable 

Zhu et al. [157] 

Sojoudi et al. [158] 

Susoff et al. [159] 

Spin coating 

iCVD 

Sol-gel 

Reducing ice 

adhesion 

Not durable 

Durable 

Durable 

Scalable 

Complex 

Complex 

Wang et al. [101] 

Varanasi et al. [160] 

Etching 

Photolithography 

Delay ice/frost 

formation and 

reducing ice 

adhesion 

Durable 

Not reported 

Complex 

Complex 

 

In examples provided in Table 2.3, it is important to note that the supposed icing delay 

reported for some of the cases is not necessarily for in-flight icing conditions. The in-flight icing 

condition tests need to be performed in real flight tests or icing wind tunnels. However, sometimes 

(for example [103,154]) the icing delays have been reported for a static water droplet ; in other 

cases (for example [161,162]) the icing delay has been reported for droplets falling on the surface 

from a certain vertical distance. Such studies, although informative and useful, do not represent 

in-flight icing conditions, in the sense that droplet size and impact velocity are considerably 

different from that of in-flight cases. To reiterate from Chapter 1, the main icing hazard condition 

for in-flight icing is micro-droplets with an average size ranging from 20-50 μm in diameter, 

temperatures of 0 to -40°C and impact velocities of 50-100 m/s. 

As previously mentioned, the superhydrophobic surfaces developed using the 

aforementioned techniques have a variety of potential applications. Here, we mainly focus on the 
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application of superhydrophobic surfaces for anti-icing applications. The most challenging issue 

in producing these surfaces for aerospace is the fact that these surfaces need to survive harsh and 

abrasive environments. In fact, the most critical problem with bio-inspired superhydrophobic 

surfaces for use at the industrial scale is their poor mechanical properties. On one hand, we need 

to make a relatively complex hierarchical micro/nano structure on the surface to obtain the desired 

stable superhydrophobicity, while on the other hand we must make sure that these surfaces have 

the proper mechanical properties required for the particular applications (i.e. anti-icing surfaces). 

These two expectations are to some extent opposite in nature. 

So far, according to what has been discussed, there is a lack of a surface engineering 

technique that is capable of developing micro-textured surfaces with hierarchical roughness which 

is commercially viable and easily applicable and scalable to large surfaces, and moreover, is 

reasonably controllable, repeatable and capable of producing durable coatings. This brings us to 

the motivation of this work which is to employ thermal spray processes to produce these coatings. 

In the next section, a brief introduction to thermal spray techniques is presented followed by a 

more detailed discussion of atmospheric plasma spraying (APS) and suspension plasma spraying 

(SPS) which are the two thermal spray techniques used in this work. In the following section a 

literature review of thermally-sprayed, highly hydrophobic and superhydrophobic state-of-the-art 

coatings is presented. 

2.5.  Thermal spray processes 

As previously mentioned, there are two requirements to produce a superhydrophobic 

surface: a hierarchical micro/nano texture, and a low surface energy material. Plasma spray 

processes (APS and SPS) are shown to be capable of producing microstructured functional 

coatings using various types of materials. In addition, thermal spray processes are considered 

efficient, versatile and cost effective methods of surface engineering. As a result, thermal spray 

process can be considered as a potential solution to fabricate superhydrophobic surfaces for 

industrial applications.  

In thermal spray processes, the feedstock material is injected into a high temperature jet 

created by a heat source. The heat source could be a combustion or a non-combustion source such 

as an electric arc or a plasma. The heat source partially or fully melts the feedstock materials and 

propels the feedstock particles towards a substrate. The feedstock material is typically in powder, 
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wire, or rod form. Upon impact, the fully or partially molten particles form splats, rapidly cool 

down, solidify and adhere to the surface. The splat undergoes extremely high cooling rates 

(typically in the order of 106 K/s)[163]. Collection of these splats forms a layer of coating on the 

surface of the substrate. The deposition, usually with a raster pattern, scans the entire surface of 

the substrate and the process continues until the desired coating thickness is achieved. Figure 2.6 

demonstrates a schematic of thermal spray process [164]. 

 

Figure 2.6. Formation of the coating in a thermal spray process [164]. 

In thermal spray, there are numerous process parameters affecting the coating deposition, 

microstructure and characteristics [165]. By controlling and carefully adjusting these parameters, 

it is possible to achieve a wide range of surface textures and morphologies. However, this requires 

meticulous examination of these parameters for different processes and coating materials. 

Different sub-classes of thermal spray processes include flame spray, wire arc spray, plasma 

transferred arc (PTA) deposition, induction plasma, high velocity oxygen-fuel (HVOF), 

detonation-gun and DC plasma spray. In Figure 2.7 [166] a comparison between different thermal 

spray techniques in terms of temperature and velocity of particles is presented. This range of 

temperatures and velocities allows deposition of virtually any material that does not decompose 

before reaching its melting point using the thermal spray process. In this work, the coating 

development stage has been carried out using a DC plasma system. 
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Figure 2.7. Gas temperatures and velocities obtained with different thermal spray systems [166]. 

One of the most important, widely used types of thermal spraying is atmospheric plasma 

spraying (APS). In this process, a high-temperature high-velocity plasma jet is used to heat and 

accelerate particles towards the substrate. The most important advantage of the APS process is its 

versatility. A wide variety of materials can be deposited on different substrate materials [167]. A 

second major advantage of this method of coating is that it is relatively cost efficient in comparison 

to some other surface modification methods [163,168], and thus it has found several industrial 

applications for developing functional coatings. Another benefit of atmospheric plasma spraying 

is the limited heat input to the substrate material that minimizes the thermal impact on the substrate. 

This means that typically the microstructure and physical properties of the substrate will remain 

unchanged. The plasma spraying method has been widely used to apply coatings on materials to 

provide them with resistance to wear, heat, erosion, and/or corrosion as well as some other desired 

surface properties [169–172]. 

Most powders used as feedstock in APS range in size from a few tens to a few hundreds of 

micrometers. Using conventional APS powders will result in microstructured coatings [173]. In 

order to produce nanostructured coatings, submicron or nano-size powders must be used. 

However, it is not practical to use such small particles in APS. Generally, particles smaller than 

10 µm are difficult to be deposited using the APS technique. Very fine particles have very low 

mass, limiting their penetration in the high speed plasma jet so that they will not gain enough 

momentum to reach and impact the substrate  [174]. Additionally clogging problems may occur in 

the powder feeder, powder line or injector. Therefore, the deposition of submicron or a nano 
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structured coatings in APS is very challenging. A solution to this problem is a relatively new 

variety of plasma spraying called suspension plasma spraying (SPS). This method allows one to 

deposit submicron and nano-scaled materials since feedstock materials are injected in the form of 

a suspension. A schematic of suspension plasma spray technique is presented in Figure 2.8. 

 

Figure 2.8. A schematic of suspension plasma spray technique. 

In the SPS technique, the feedstock suspension usually contains a solvent (most of the time 

water or ethanol), the powder, and a dispersing agent that helps stabilize the suspension. When the 

suspension is injected into the plasma plume, it undergoes one, or sometimes multiple, breakup 

and atomization phases [175]. Then the solvent evaporates due to the heat from the plasma, leaving 

aggregates of powder. Sometimes these aggregates explode due to the jet and form smaller 

aggregates. These clusters of fine particles fully, or partially, melt depending on the condition and 

temperature and impact onto the substrate, creating splats. These stages are schematically 

demonstrated in Figure 2.9. 

 

Figure 2.9. Various stages of coating formation in SPS technique. 



27 

 

According to Fauchais et al. [165,175,176], there are numerous parameters (up to nearly 

50) that control APS and SPS processes and subsequently the coating structure. As a result, it can 

be concluded that plasma spraying processes (both APS and SPS) are capable of producing quite 

a wide variety of microstructures and coatings. The surface morphology of two plasma sprayed 

coatings is shown in Figure 2.10 [177]. In these examples, the parameters controlling the 

spraying/deposition process (in particular the deposition temperature), are modified in order to 

achieve such structures through deposition of semi-molten particles on a preheated substrate. 

Thermal spray techniques have occasionally been employed to develop coatings with special or 

controlled wetting properties including superhydrophobic coatings. In the next section a review of 

published research work that used thermal spraying to develop highly hydrophobic or 

superhydrophobic coatings is presented. 

 

Figure 2.10. SEM images of microstructure of deposited Mo particles (LEFT), and Yttria 

stabilized Zirconia (MIDDLE and RIGHT) [177]. 

2.6.  Wetting behavior and superhydrophobicity of thermally sprayed coatings 

Plasma spray coatings are widely used today for a variety of applications. Suspension 

plasma spray (SPS) process is particularly employed to produce thermal barrier coatings (TBCs) 

for aerospace applications [178–180]. However, the wettability of the thermally sprayed coatings 

has not been fully investigated. 

The wetting behavior of a plasma sprayed oxide coating has been studied by Harju et al 

[181]. All studied oxide coatings showed hydrophilicity and surface preparation methods showed 

a great influence on the surface wettability. Additionally, surface contamination from exposure to 

the atmosphere has been found to increase the contact angle of the coatings. A liquid flame spray 

process was used to develop a polymer-based coating with high contact angle on a paperboard 

surface [182]. In this study, the coating showed low mobility which is not interesting for water 

repellency applications.  
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Eigenbrod et al. [183] introduced a multilayer coating process with thermal spraying as a 

base for air-sprayed polymeric top surface. The coatings demonstrate high water mobility but the 

multilevel process is complicated and the top layer is not very durable. The HVOF process has 

also been used to develop hydrophobic coatings [184]. Li et al. [185] showed that an atmospheric 

plasma sprayed mixture of Fe, Ni, and Cr, although hydrophilic as deposited, will gradually 

become hydrophobic due to adsorption of hydrocarbon groups when left in ambient air in the 

laboratory. After 35 days, the coatings have contact angles higher than 150° and sliding angles 

lower than 10 (Figure 2.11). Gou et al. [186] employed a vacuum cold spray process to deposit  

agglomerated nano-size titanium oxide on glass substrates. After being treated by a 

fluoroalkylsilane solution the coatings demonstrate superhydrophobicity. Obviously, a vacuum-

based technique is not very practical for the large surfaces of aircraft.  

 

Figure 2.11: Change of the surface contact angle and sliding angle versus exposure time (a); and 

the microstructure of the coating (b) [185]. 

As mentioned before, there are reports of the hydrophobicity of rare-earth oxides. 

Gentleman et al. [187] claim observing hydrophobicity in thermally sprayed mixtures of various 

rare-earth oxides. Cai et al. [188] used solution precursor plasma spraying (SPPS) to deposit CeO2 

coatings. These coatings are not hydrophobic as-sprayed, but become superhydrophobic after 

being left in a vacuum chamber for 48 hours. Although no information about the carbon content 

of the surface is given, one could speculate that this change of behavior could be due to 

contamination of the coating surface in the vacuum chamber from exposure to the oil from the 

vacuum pump. 
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Leblanc, Bidkar et al. [189,190] are the first to report the development of superhydrophobic 

coatings using suspension plasma sprayed coatings that are further treated by a polymeric chemical 

for reducing surface energy. Although these coatings are mainly aimed for drag-reduction, they 

also demonstrate reduced ice adhesion. 

In two different works, Chen et al. [73] and Koivuluoto et al. [191] reported developing 

polyurethane-based thermally sprayed coatings with reduced ice adhesion. Chen et al. [192] used 

a mesh as a shield to generate a patterned thermally sprayed coatings. A secondary top layer of 

polymer-based coating render these coatings superhydrophobic. The coatings demonstrate poor 

abrasion resistance. Schematic of the method used by Chen et al [192] is presented in Figure 2.12. 

 

Figure 2.12. Schematic of a plasma sprayed superhydrophobic coating with multiscale 

topographical features achieved by shielding and then treating by PTFE [192]. 

In conclusion, as discussed above, there is a significant demand for a scalable, efficient, 

durable and easily reparable surface engineering solution to develop superhydrophobic coatings 

and test them in icing conditions. Thus the motivation of this work, which was described in detail 

in Chapter 1, is to address these gaps and shortcomings by using plasma spraying techniques for 

the development of durable, anti-icing superhydrophobic coatings. 
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Preface to Chapter 3.  

As it was discussed in the previous chapters, one of the main objectives of this work is to 

investigate the capability of thermal spray processes to generate micro-textured coatings that can 

be treated to become superhydrophobic and to be used in anti-icing applications. In view of that, 

the atmospheric plasma spraying (APS) was the first technique that was investigated. APS process 

has various advantages to be employed for this purpose. Firstly, it is a scalable technique and can 

be easily applied to large surface. Additionally, APS is an atmospheric process that does not 

require any controlled environment. Moreover, the feedstock of APS process is typically micron-

sized dry particles and poses smaller safety concerns compared to suspension feedstock which will 

be investigated later in this work. As a result, the next chapter in this thesis is entirely devoted to 

investigating the potential of APS process to created micro-textured coatings and how the process 

parameters can be controlled to optimize the wetting behavior of the resulting coatings. 
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Chapter 3.  Morphology and Wetting Behaviour of Atmospheric Plasma 

Sprayed Titanium Dioxide 1F1F1F

2 

Navid Sharifi, Martin Pugh, Christian Moreau and Ali Dolatabadi 

Department of Mechanical and Industrial Engineering, Concordia University 

Montreal, QC H3G 1M8, Canada 

Abstract 

The wettability of a solid surface is an important factor in the interaction of the surface 

with liquids. The wetting behaviour of a solid surface is a result of both its surface free energy and 

its morphology. Water wettability of solid surfaces is typically measured by their water contact 

angle. Low-wetting surfaces (hydrophobic) and extremely low-wetting surfaces 

(superhydrophobic) have various potential applications such as anti-icing coatings. In this paper, 

the wetting behaviour of atmospheric plasma sprayed (APS) titanium dioxide coatings and its 

dependence on the morphology of the coatings is investigated. The temperature and the velocity 

of the particles forming the coating are considered as the determining parameters for deposition 

conditions. By altering the two parameters, different surface morphologies were produced and 

their wetting behaviour was studied. The surface energy of the coatings was reduced using stearic 

acid treatment. It was found that within the range of particle velocity and temperature studied in 

this work, it is possible to produce surfaces with water contact angles close to a superhydrophobic 

state and as high as 144° as a combining result of both reduced surface energy and accomplished 

surface morphology. These high contact angle values were achieved through decreasing the 

temperature of the particles whilst increasing their velocity. Such coatings have a rough and 

irregular surface morphology which contributes to an increase in hydrophobicity of these coatings. 

                                                 
2 This chapter has been published as an article in the proceedings of the International Thermal Spray Conference 

(ITSC) 2015. 
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3.1.  Introduction 

The wettability of a solid surface by a liquid is governed by Young’s Equation [42]: 

𝛾𝑠𝑔 − 𝛾𝑠𝑙 − 𝛾𝑙𝑔 cos 𝜃0 = 0 

Based on Young’s Equation, the liquid contact angle (θ0) is determined by the balance of 

interfacial energies of the solid, liquid and gas phases. The liquid is considered to “wet” the surface 

if its contact angle is smaller than 90°. In the case of the liquid phase being water, surfaces with 

water contact angles below 90° are called hydrophilic and surfaces with water contact angles above 

90° are called hydrophobic. 

In addition to the interfacial energies, the roughness of a surface can also effect its 

wettability. There are two models that explain the wetting behaviour of rough solid surfaces. The 

Wenzel model [81], assumes that the wetting region is a homogeneous interface between the solid 

and liquid phases. The apparent contact angle of a rough surface (θ) can be determined by the 

Wenzel equation: 

cos 𝜃 = 𝑟 cos 𝜃0 

In this equation, the roughness ratio, r, is the ratio of the real surface area to the apparent 

surface area. According to the Wenzel model, the roughness amplifies the wetting behaviour of a 

surface. Thus, an intrinsically hydrophilic surface becomes more hydrophilic when roughened 

while an intrinsically hydrophobic surface becomes more hydrophobic when roughened.  

On the other hand, the Cassie-Baxter model [82] assumes that the liquid-solid contact area 

is heterogeneous due to small gas bubbles entrapped between the liquid and solid phases. The 

apparent contact angle of a surface in the Cassie-Baxter wetting regime can be determined by: 

cos 𝜃 = 𝑟𝑓𝑓 cos 𝜃0 + 𝑓 − 1 

In this equation, rf is the roughness ratio of the wet region and f is the area fraction of wet 

region. The effect of roughness on the wettability of the surface under the Cassie-Baxter regime is 

more complicated than that under the Wenzel regime.  

The wetting behaviour of a surface becomes especially important when it comes to 

interactions of liquid with the surface. For instance, when extended interaction of a surface with 

water is desirable, a hydrophilic surface is desirable. On the other hand, hydrophobicity is 

beneficial when minimum interaction of the solid surface with water is required. 
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When a surface is highly hydrophobic, it is typically referred to as a superhydrophobic 

surface. In the literature the criterion for superhydrophobicity is commonly considered to be a 

water contact angle greater than 150° [52]. The concept of superhydrophobicity is often associated 

with the structure of lotus leaves as natural superhydrophobic surfaces [193]. The non-wetting 

behaviour of a lotus leaf is a result of the combination of a low surface energy material with a 

special morphology, known as hierarchical or dual-scale micro-nano roughness [75]. 

There are several potential applications for highly hydrophobic and superhydrophobic 

surfaces including self-cleaning, low-friction and anti-icing surfaces [194]. There have been 

several techniques developed in recent years to produce bio-mimetic superhydrophobic surfaces 

[195]. The majority of these techniques combine the use of a low surface energy material and a 

type of surface roughness to achieve low water wettability [98]. However, many of these surfaces 

either lack good mechanical durability or have very high production costs [41]. Therefore, these 

surfaces are not appropriate for applications such as anti-icing on aeroplane external surfaces or 

power lines. 

Atmospheric plasma spraying (APS) is a promising technique for producing coatings with 

special applications. APS can be used to produce mechanically durable coatings on relatively large 

engineering surfaces such as an aeroplane wing. It is a relatively fast, economical and versatile 

surface modification method that provides the possibility of producing desired morphologies by 

controlling deposition parameters such as power of the plasma torch and size of the feedstock.  

The aim of this work is to investigate the capability of the APS technique to produce 

coatings with micro roughness to develop highly hydrophobic coatings with low water wetting 

behaviour. In this study, the focus is on adjusting the process parameters in order to control the 

temperature and velocity of the particles to produce different morphologies. The surface energy of 

the coatings is reduced using stearic acid treatment. The coatings are further studied and compared 

based on their morphologies and their apparent water contact angle. 

3.2.  Experimental 

3.2.1.  Materials 

Titanium dioxide was chosen for this study due to its relative availability and low price as 

well as its relative durability and wear resistance as a ceramic. Also, the experiments were partially 

based on another study by the same authors [196]. Titanium dioxide, like the majority of ceramics 
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and metals is intrinsically hydrophilic with a water contact angle of 72° [197]. A commercial 

sintered and crushed titanium dioxide powder (Metco 102, Sulzer Metco) with a nominal size of 

11 to 45 µm was used as the feedstock for producing the coatings. The SEM micrograph and the 

XRD pattern of the feedstock are presented consecutively in Figure 3.1 and Figure 3.2. In the SEM 

micrograph, feedstock particles are shown to have random shapes with sharp corners and edges. 

This might contribute to increasing the roughness of the coating, especially for partially molten 

particles. The XRD pattern shows that the feedstock powder mainly consists of rutile phase and 

Magneli phases. Magneli phases are reduced titanium dioxide and will transform to TiO2 if they 

are exposed to high temperatures and oxygen [198]. 

 

Figure 3.1. SEM micrograph of the feedstock powder. 

 

Figure 3.2. XRD pattern of the feedstock powder. 
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3.2.2.  Selecting Deposition Parameters 

It is widely acknowledged by scholars [165] that there are numerous parameters affecting 

the structure, phase distribution and morphology of APS coatings. This limits the repeatability of 

APS coatings. In order to deal with this problem, it was decided to focus on the temperature and 

velocity of the particles upon impact with the substrate. The effect of many deposition parameters 

can be represented by these two factors. Thus, optimization of a coating structure and performance 

is highly facilitated. 

To select the deposition parameters in such a way that the effect of change in temperature 

and velocity of the particles is easily observed, a number of experiments were carried out using a 

DPV-2000 (Tecnar) APS diagnosis system. A set of spraying conditions suggested by the 

feedstock provider (Sulzer Metco) was used as a basis. Since the suggested commercial spray 

conditions are normally designed to achieve a dense coating and the purpose of this work was to 

achieve a rough and porous coating, the suggested conditions by the provider were used as the 

highest average particle temperature and velocity and all the other conditions were selected to have 

relatively lower particle temperature and velocity. 

The final conditions that were chosen for this work are shown in terms of particle 

temperature and velocity in Figure 3.3. For the reader’s convenience, these five spray conditions 

will be referred as HT/HV (for high temperature and high velocity), LT/LV (for low temperature 

and low velocity), HT/LV, LT/HV and MT/MT (for medium temperature and medium velocity) 

throughout the rest of this article. 

In order to alter the particle temperature and velocity, the spraying conditions that were 

changed were plasma gas (argon) flow rate, secondary gas (hydrogen) flow rate and plasma 

current. Plasma gun stand-off distance was kept constant (9 cm) in order to have a relatively 

constant heat input to the substrates. The plasma torch travel speed (1 m/s), spraying pattern, 

plasma gasses pressure, feeding rate (10 g/min), carrier gas (also argon) flow and pressure were 

other parameters that were kept constant in order to have a valid comparison between the five 

coatings. The spraying parameters for the five conditions are given in Table 3.1. 
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Figure 3.3. Average particle temperature and velocity for the five deposition conditions. 

Table 3.1. Spraying Conditions. 

 HT/HV HT/LV MT/MV LT/HV LT/LV 

Ar flow rate (L/min) 40 20 40 60 30 

H2 flow rate (L/min) 6.5 6.5 2 1 1 

Plasma current (A) 500 500 500 500 300 

 

3.2.3.  Coating Process 

The coatings were carried out using a 3MB Sulzer Metco plasma torch. A 9MP Sulzer 

Metco powder feeder was used to inject the particles. All the coatings were deposited on 25 × 25 

× 3 mm low carbon steel substrates. Prior to coating, all the substrates were grit-blasted and then 

ultrasonically cleaned in acetone. During the coating process, the temperature of the substrates was 

monitored using an A320 ThermoVision (FLIR Systems) infra-red camera.  Pre-heating and air-

cooling were used to make sure that the temperature of the substrates remain in the range of 100 

to 200°C throughout the deposition process for all samples. 

3.2.4.  Reducing the Surface Energy 

After the coating process, all samples were ultrasonically cleaned in acetone. Since the 

wetting behaviour of such coatings is very sensitive to surface contamination [199], the samples 

were boiled in deionised water for 10 minutes and then dried with compressed air to ensure the 
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samples are free from contamination to a satisfactory level. Then the samples were dipped into a 

0.5 wt.% solution of stearic acid in 1-propanol and left at room temperature to dry [200]. 

3.2.5.  Characterization of the Coatings 

The XRD pattern of the coatings was obtained in order to identify the phases present in the 

coatings. The water contact angle of the coatings were measured using a sessile droplet method at 

room temperature and humidity. The setup consisted of a Photron Fastcam SA1 camera (Photron, 

USA), a manual droplet generator and a backlight LED. A schematic of the water contact angle 

measurement setup is shown in Figure 3.4. In order to achieve reliable results, the water contact 

angle measurements were carried out five times on three separate samples for each spraying 

condition and the presented results are an average of 15 measurements for each case. 

 

Figure 3.4. Schematic of the contact angle measurement setup. 

A Hitachi S-3400N VP scanning electron microscopy (SEM) equipped with an energy 

dispersive X-ray spectrometer (EDX) was used to study the morphologies and the elemental 

distribution of the coatings. 

3.3.  Results and Discussion 

The XRD patterns of the coatings that underwent the highest temperature (HT/HV) and the 

lowest temperature (LT/LV) are consecutively shown in Figure 3.5 and Figure 3.6. According to 

the XRD patterns, both coatings mainly consist of titanium dioxide in rutile form which is the 

common polymorph of titanium dioxide at ambient temperature. It is known that in thermally 

sprayed titanium dioxide coatings, rutile is more likely to form compared to the other polymorphs 
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of titanium dioxide, anatase and brookite [198]. It is also notable that some traces of iron from the 

substrates are shown in both XRD patterns due to the relatively small thickness of the coatings. 

 

Figure 3.5. XRD pattern of coating HT/HV. 

In order to have a better understanding of the net effect of the stearic acid treatment of the 

coatings, a smooth flat glass sample was treated in a similar manner that the coatings were treated. 

After treating the fairly flat sample with stearic acid solution, its contact angle was 94° making it 

slightly hydrophobic. 

 

Figure 3.6. XRD pattern of coating LT/LV. 

As mentioned before, after the deposition process, the samples were ultrasonically cleaned 

in acetone to get rid of dust, contamination and residue from the process. These samples were then 

boiled in deionised water, in order to make sure all the contamination, particularly the carbon 

species were removed from the surface. It is noteworthy that after this procedure, due to the 

intrinsic hydrophilicity of titanium dioxide and the fact that the coatings are very porous, a drop 

of water does not rest on the surfaces but rather is absorbed into the pores of the surface. Therefore 
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it is impossible to measure the water contact angle of the coatings after this cleaning process (i.e. 

very small intrinsic contact angle).  

After the coated samples were subsequently treated in the stearic acid solution, their water 

contact angle was measured and the results are illustrated in the Figure 3.7. As was mentioned, the 

intrinsic contact angle of titanium dioxide is 72° and the contact angle of smooth glass treated by 

stearic acid solution is 94°. However it is seen that the water contact angle of titanium dioxide 

APS coatings treated with stearic acid solution range from 125° to 144°. This is attributed to the 

morphology of the surface of these coatings. 

 

Figure 3.7. Measured water contact angle of the coatings. 

An SEM micrograph of the five coatings with an inset image of sessile droplet sitting on 

their surfaces is shown in Figure 3.8 to Figure 3.12. The first important thing to be mentioned is 

that, as shown in these micrographs, the stearic acid treatment has not significantly changed the 

morphology of the coatings. The layer deposited from stearic acid treatment is very thin. In the 

SEM micrographs, the only visible sign of the stearic acid treatment is a slight colour alteration 

(and possible build-up) on the relatively flat parts of the coatings. This fact suggests that the 

difference between the wetting behaviour of the coatings is mainly as a result of the difference in 

their morphology. 

As mentioned earlier, an SEM micrograph of the HT/HV coating is given in Figure 3.8. 

This coating shows the second highest water contact angle. In this coating, particles with relatively 

high temperature impacted on the substrate with relatively high velocity. Splats overlapped on 

their edges and formed the asperities seen in the micrograph. It is very difficult to distinguish single 

splats in this image. This is due to the high temperature and velocity of the impacting particles that 
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caused them to splash, split and form erratic shapes. As a result of splashing, there are some small 

satellite droplets spread on the surface of the coating. Theses satellite droplets can contribute to 

the desired morphology of the coatings if they are homogenously dispersed. 

 

Figure 3.8. An SEM micrograph of the coating HT/HV. Inset: a sessile drop of water on this 

surface. 

The SEM micrograph of the HT/LV coating is shown in Figure 3.9. Compared to the 

previous image, here the single splats are more distinguishable. Also, there are considerably more 

satellite droplets dispersed on the surface as a result of splashing and spreading of the molten 

particles. This coating apparently has the flattest surface among the five coated samples as well as 

the lowest average water contact angle. This is attributed to the relatively large splats forming 

several smooth areas in the morphology of the coating. 

The surface morphology of the MT/MV coating is shown in Figure 3.10. This surface 

shows a morphology that can be considered between the morphology of the two previous coatings. 

Its surface roughness is not as erratic as the HT/HV coating, and not as flat as HT/LV coatings. 

The surface morphology of the LT/HV coating is demonstrated in the Figure 3.11. This is 

the most interesting of the coatings because it is associated with the highest value of water contact 

angle. In this coating, the temperature of the particles was relatively lower thus more viscous and 

less mobile, giving less splashing. However, the relatively high velocity of the particles cause them 

to jam, split and overlap. As a result, this coating has the most erratic morphology among all the 
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other coatings. The high water contact angle of this coating compared to the other coatings is 

attributed to its morphology and roughness. 

 

Figure 3.9. An SEM micrograph of the coating HT/LV. Inset: a sessile drop of water on this 

surface. 

 

Figure 3.10. An SEM micrograph of the coating MT/MV. Inset: a sessile drop of water on this 

surface. 

The SEM micrograph of the LT/LV coating is shown in the Figure 3.12. Contrary the fact 

that it might have been predicted prior to this study that the lowest temperature and velocity of the 
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particles would result in the roughest surface and therefore the lowest wettability, it is shown that 

the surfaces of LT/LV coatings have less erratic roughness features and therefore give a smaller 

water contact angle. 

 

Figure 3.11. An SEM micrograph of the coating LT/HV. Inset: a sessile drop of water on this 

surface. 

Nevertheless, one interesting feature of this coating is the few, nearly spherical, asperities 

that are seen on the surface and are apparently a result of semi-molten particles impacting onto the 

substrate with relatively low velocity. These features are reported to improve hydrophobicity [201] 

in thermally sprayed coatings. However, in this case this spherical shapes are too few in number 

to significantly affect the hydrophobicity. It is expected that by controlling the deposition 

conditions, the number and distribution of such features can be adjusted in a way that 

hydrophobicity of the coating increases significantly. 
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Figure 3.12. An SEM micrograph of the coating LT/LV. Inset: a sessile drop of water on this 

surface. 

According to the results of this study, it can be concluded that with further increase in the 

particle velocity and decreasing the temperature to the lowest possible value, higher roughness and 

therefore lower wettability of the coatings may be produced. However, there are two points worth 

mentioning at this point. First, the temperature and the velocity of the particles in thermal spraying 

are to some extent coupled. This means that usually when one deposition parameter is changed, 

the other also changes. In order to increase one of these parameters and decrease the other one, it 

is necessary to alter the deposition parameters beyond their typical amounts. The second point is 

that, as there are several parameters affecting the morphology of the thermally sprayed coatings, 

there are also many morphological features that can change the wettability of a surface. In this 

sense, the conclusion from the results of this study can hardly be extended to a range of the 

parameters (i.e. temperature and velocity of the particles) significantly different from the ones 

investigated in this work. 

3.4.  Summary and Conclusion 

In this work, the wettability of titanium dioxide APS coatings is studied. The various 

deposition conditions were determined based on measuring the temperature and the velocity of the 

particles. XRD tests showed that coatings are almost entirely made of rutile phase. Measurements 

showed that the water contact angle of the coatings increased from the intrinsic contact angle of 
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hydrophilic titanium dioxide (72°) to a hydrophobic state with a water contact angle of between 

125° to 144°. The highest contact angle and therefore the lowest wettability was achieved through 

the coating with lowest particle temperature and highest particle velocity.  

The SEM imaging revealed that high particle temperature, especially if accompanied by 

low particle velocity will result in a relatively flat and plane morphology. This type of morphology 

is not favoured when a low wetting behaviour is desired. The most erratic and rough coating 

morphology is achieved for a coating with relatively low particle temperature and high particle 

velocity. The cooler particles split and solidified in a random shaped manner upon impact to form 

this morphology. This is in contrast with the case of relatively hotter particles that spread and 

splash to form a relatively more flat morphology. 

Collectively it can be concluded that the titanium oxide APS coatings that can be produced 

through controlling the deposition parameters, have a surface morphology that can promote non-

wetting behaviour and hydrophobicity. In the range of process parameters studied in this work, 

none of the coatings reached the level of superhydrophobicity (150°) however water contact angles 

as high as 144°were achieved. This shows that with further modification of deposition parameters, 

it might be possible to produce superhydrophobic coatings. 
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Preface to Chapter 4.  

In the previous chapter, it was demonstrated that atmospheric plasma spray (APS) process 

parameters can be adjusted to achieve micro-textured TiO2 coatings that after treatment 

demonstrated high water repellency. However, this amount of hydrophobicity is not sufficient for 

anti-icing applications, because to prevent or delay ice formation, a highly hydrophobic or 

superhydrophobic surface requires high water mobility in addition to high water repellency. The 

lack of water mobility i.e. sticking of water to the surface is due to the relatively large-scaled and 

irregular roughness of the surface of the APS coatings which is a result of using micron-sized 

feedstock powder to generate the coatings. Therefore, suspension plasma spray (SPS) was selected 

as an alternative. In the SPS process, submicron-sized particles are used in the form of a suspension 

as feedstock. This enables generating more refined, finely micro-textured and micro-structured 

surfaces. Therefore, the following chapter is devoted to investigating the capability of the SPS 

process in generating micro-textured coatings and comparing APS and SPS coatings in terms of 

their wetting characteristics. 
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Chapter 4.  Developing Hydrophobic and Superhydrophobic TiO2 

Coatings by Plasma Spraying 2F2F2F

3 
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1455 de Maisonneuve Blvd. W, Montreal, Quebec, Canada, H3G 1M8 

Abstract 

In this work, atmospheric plasma spraying (APS) and suspension plasma spraying (SPS) 

are employed for developing micro/nano morphologies of superhydrophobic coatings with high 

water repellence and mobility. Accordingly, multiple coatings were developed with different 

surface morphologies, then by isolating the effect of surface chemistry using a stearic acid 

treatment, the importance and influence of the achieved morphologies on wetting behavior of the 

coatings were investigated. Experimental results show that, although coatings developed by the 

APS process may reach water contact angles as high as 145°, the water mobility of these coatings 

is low due to relatively large morphological features resulting from the micron-sized feedstock 

powder. On the other hand, coatings developed by SPS show superior water repellence (manifested 

through water contact angles as high as 167°) as well as improved mobility (displayed through 

water sliding angles as small as 1.3°) due to dual-scale submicron/nano (hierarchical) roughness 

attributed to the submicron size particles in the feedstock. The dynamic behavior of an impinging 

water droplet is studied and compared to other existing natural and fabricated superhydrophobic 

surfaces. 

Keywords: superhydrophobic; atmospheric plasma spray; suspension plasma spray; TiO2 

coating, wetting; hierarchical surface roughness 

                                                 
3 This chapter has been published as an article in the Journal of Surface and Coating Technology: Sharifi, N., Pugh, 

M., Moreau, C., & Dolatabadi, A. (2016). Surface and Coatings Technology, 289, 29-36. 
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4.1.  Introduction 

The wetting behavior of surfaces is classified as hydrophobic or hydrophilic. A hydrophilic 

surface tends to be wetted by water whereas a hydrophobic surface has a tendency to repel water. 

Hydrophilic and hydrophobic surfaces are defined by a surface water contact angle (WCA) of 

below and above 90° respectively. The wetting behavior of a surface is a function of both its 

surface chemistry and surface morphology [202]. While surface chemistry is the determining 

factor when it comes to inherent wetting behavior of an ideally smooth surface, certain surface 

patterns and morphologies can drastically alter the wettability of a surface.  

Schematics demonstrating ideally smooth hydrophilic and hydrophobic surfaces are shown 

in Figure 4.1 (a) and (b) respectively. The inherent water contact angle (θ0) of a surface is 

determined by the balance of interfacial energies between solid, water (liquid) and air (gas) phases 

and is notably described by Young [42] (Figure 4.1). Accordingly, hydrophobic materials have a 

low solid/air interfacial energy compared to hydrophilic materials and thus sometimes are referred 

to as “low surface energy materials”. The wetting of a surface is furthermore significantly 

influenced by the geometrical micro or nano-roughness of the surface [48,203]. As Wenzel [81] 

and Cassie and Baxter [82] notably explained, the apparent water contact angle of a rough 

hydrophobic surface (θc) is higher than its inherent contact angle as illustrated in Figure 4.1 (c). 

This is due to the formation of microscopic air pockets between the solid surface and the water 

droplets. The presence of this air phase increases the water repellence of the surface and facilitates 

water mobility, which is often manifested through the sliding angle of a surface – the angle to 

which a surface must be tilted for a water droplet to start to move on it. 

 

Figure 4.1. Schematic of (a) a smooth hydrophilic, (b) a smooth hydrophobic, (c) single-scale 

rough hydrophobic and (d) hierarchical rough hydrophobic surface. 

Studies show [75] that a dual scale (also known as hierarchical) roughness on the surface 

can improve the water mobility of a surface further as shown in Figure 4.1 (d). When a surface is 
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highly hydrophobic, it is typically referred to as a superhydrophobic surface. These surfaces are 

characterised by their extremely high water repellence and non-wettability and in the literature, 

this is commonly manifested by a water contact angle greater than 150° and a water sliding angle 

lower than 10° [52]. 

The concept of structured superhydrophobic surfaces is often associated with the structure 

of the lotus leaf [90] as a natural superhydrophobic surface with both high water repellence and 

water mobility [193]. The non-wetting behaviour of a lotus leaf is a result of the combination of a 

relatively low surface energy material with the hierarchical or dual-scale micro-nano roughness 

[75] making this type of roughness the most desired morphology for superhydrophobic coatings 

[92]. 

The lotus structure inspired superhydrophobic surfaces and have been the subject of 

intensive research in recent years. Due to their unique wetting behaviour, there are several potential 

applications for highly hydrophobic and superhydrophobic surfaces including self-cleaning [72], 

low-friction, drag-reduced [189] and anti-icing surfaces [194]. Several techniques have been 

developed in recent years to produce bio-mimetic superhydrophobic surfaces [195]. The majority 

of these techniques combine the use of a low surface energy material and a certain type of surface 

roughness to achieve low water wettability [98,204]. However, many of these surfaces either lack 

the desired mechanical durability or have very high production costs [41]. Existing 

superhydrophobic coatings tend to be either polymer-based, low surface energy materials that have 

poor mechanical properties or are fabricated using complex or costly techniques such as chemical 

and electrochemical etching, PVD or laser pulse surface structuring. 

Thermal spraying, especially atmospheric plasma spray (APS) and suspension plasma 

spray (SPS), is a promising method to deposit coatings with structured surfaces to control 

hydrophobicity. In APS, as a fast and economical process for surface modification [185], coating 

is the result of the impact, flattening and solidification of melted or partially melted micron-sized 

(typically larger than 5 µm) particles on the substrate surface [205]. It is important to note that in 

the APS technique, the use of smaller feedstock particles is limited since these particles do not 

gain the necessary momentum in the plasma flow and fail to form a coating layer due to their small 

mass. Suspension plasma spray (SPS) permits the manufacture of thick (from 10 to 300 µm) 

coatings structured at the sub-micrometer or even nanometer scales [206]. SPS consists of the 

injection of a continuous stream of suspension (made of a solvent, particles and a dispersant) into 
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a plasma jet where it is first fragmented into droplets before solvent vaporization and melting of 

solid particles prior to their impact upon the substrate to form layers of a coating with a minimal 

thickness of about 10 µm [179]. Both these methods provide cost-efficient and straightforward 

coating techniques that are applicable to large surfaces such as aerodynamic surfaces of aircraft or 

exterior parts of a power line. In rare occasions thermal spraying processes have been employed 

to develop textured hydrophobic and superhydrophobic coatings. For instance, one research by 

Bidkar et al. [190] and its corresponding patent application [189] focused only on drag reduction 

properties of such coatings. In another case, Li et al. [185] developed metallic APS coatings that 

gain superhydrophobicity after being exposed to atmosphere for a period of nearly one month. 

However, the water mobility of these coatings is not thoroughly explored. 

In the present study, the main objective is to investigate the capability of atmospheric 

plasma spraying and suspension plasma spraying techniques to develop desired roughness and 

morphologies for high water repelling, high mobility superhydrophobic surfaces. Since the main 

focus of this research is studying the generated morphologies and their effect on the wetting 

behavior of the coatings, titanium dioxide as an available, low-cost and chemically inert material 

is selected as the coating material. The effect of different surface chemistries is removed by treating 

all the surfaces with a low energy solution of stearic acid, thus enabling us to investigate the effect 

of surface morphology in terms of static and dynamic wetting behavior of the samples. 

4.2.  Experimental  

For this study two APS coatings and two SPS coatings were developed and their 

morphology and its respective impact on the wetting behavior of the coatings were studied. The 

two APS coatings have significantly different deposition conditions leading to two distinctly 

different morphologies.  The SPS coatings were developed using two different precursor 

suspensions that also resulted in two completely different morphologies. 

4.2.1.  Materials 

For the APS coatings, a commercial Metco 102 titanium dioxide thermal spraying powder 

(Metco Oerlikon, Fort Saskatchewan, Canada) with a nominal particle size distribution of 11-45 

µm was used as the feedstock. For the SPS coatings, the feedstock comprised a sub-micron sized 

titanium dioxide powder (TKB Trading, Oakland, CA) with an average nominal particle size of 

500nm. For the study, two different suspensions of titanium dioxide were prepared in distilled 
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water and ethanol as solvents respectively. Water was chosen as one of the solvents for the 

suspension due to near complete dispersion of titanium dioxide in water and ethanol was chosen 

as it offers a different and distinct suspension compared to water, thus creating a completely altered 

coating morphology. As dispersing agent, polyacrylic acid (PAA) (Sigma-Aldrich, Oakville, 

Canada) and polyvinylpyrrolidone (PVP) (Sigma-Aldrich, Oakville, Canada) were used for the 

water-based (denoted SPS-W) and the ethanol-based (SPS-E) suspensions respectively. The solid 

content of the suspensions was 10wt% in both cases while the dispersing agent was 5wt% of the 

solid content. The suspensions were first mechanically stirred for 10 minutes and then sonicated 

with 65 W power for 10 minutes. The particle size distribution of the suspensions were determined 

by a Spraytec (Malvern Instruments, UK) unit equipped with a wet dispersion accessory. 

An SEM micrograph of the APS feedstock powder is shown in Figure 4.2 (a). The powder 

consists of particles ranging between approximately 20 to 70 µm in size. The particles are crushed 

with sharp corners and a variety of random shapes. An SEM micrograph of the SPS feedstock 

powder is presented in Figure 4.2 (b). This powder consists of particles approximately 500 nm and 

below.  

 

Figure 4.2. SEM micrograph of (a) the APS feedstock TiO2 powder; and (b): SPS feedstock TiO2 

powder. 

The particle size distribution of the water-based suspension (SPS-W) was measured and 

the result is presented in Figure 4.3. The measured average particle size in terms of Sauter mean 

diameter (D32) [207] is 504 nm which shows the titanium dioxide particles are reasonably well-

dispersed in the solvent due to the fact that TiO2 is water dispersible. 
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Figure 4.3. Particle size distribution of water-based TiO2 suspension. 

Similarly, the particle size distribution of the ethanol-based suspension (SPS-E) is 

demonstrated in Figure 4.4. In contrast to the water-based suspension, in this case, many of the 

feedstock particles form remarkably larger aggregates and agglomerates. The Sauter mean 

diameter of the particles (D32) in this case is 8.1 µm which is one order of magnitude larger than 

particles in the water-based suspension. It is noteworthy that in Figure 4.4, a second peak of 

dispersed particles appears at around 1 µm which corresponds to single particles or aggregates 

with a much smaller number of particles. Although this portion of the particles has a small volume, 

it consists of far larger number of particles than the large peak on the right side of the diagram. 
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Figure 4.4. Particle size distribution of ethanol-based TiO2 precursor suspension as sprayed; (a) 

volume frequency, and (b) number frequency of particles. 

4.2.2.  Sample Preparation 

All coating were deposited onto 25 mm × 25 mm × 3 mm stainless steel coupons. Prior to 

coating, the substrates were grit-blasted using 80 grit Al2O3 particles and then ultrasonically 

cleaned in acetone to avoid any significant contamination. For all samples, the substrates were 

preheated to approximately 100°C by the plasma immediately prior to coating. The surface 

temperature of the coatings was monitored by an A320 ThermoVision infrared camera (FLIR 

Systems, MA) and was maintained below 200°C for the APS process and below 350°C for SPS 

using forced air cooling.  

Both APS and SPS coating processes were carried out using a 3MB plasma torch (Metco 

Oerlikon, Westbury, NY). For APS, the feedstock was injected radially into the plasma using a 

9MP powder feeder (Metco Oerlikon). For SPS, the feedstock suspension was radially injected 

into the plasma using a pressure-based feeding unit developed in-house. Pressure tanks were 
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pressurized using argon. Operating parameters for the two APS (labeled APS1 and APS2) and the 

two SPS (labeled SPS-W and SPS-E) coatings are presented in Table 4.1. 

Table 4.1. Deposition condition and coating parameters. 

Parameter 
Value 

APS1 APS2 SPS-W SPS-E 

Argon (primary plasma gas) flow rate [L/min] 40 60 50 

Hydrogen (secondary plasma gas) flow rate [L/min] 6.5 1 5 

Carrier gas (argon) flow rate [L/min] 6 N/A 

Feed Rate [g/min] 20 30 

Plasma Current [A] 500 

Spray Distance [mm] 90 60 

Plasma gun traverse speed [m/s] 1 

 

A DPV-2000 (Tecnar, St-Bruno, Canada) online diagnosis system was used to monitor the 

in-flight temperature and velocity of the particles in the APS process at 90 mm from the torch exit.  

After coating deposition, all samples were ultrasonically cleaned in acetone. Since the 

wetting behaviour of such coatings is very sensitive to surface contamination [199], the samples 

were boiled in deionised water for 10 minutes and then dried with compressed air [200]. 

Subsequently, the samples were dipped into a 0.5 wt.% solution of stearic acid in 1-propanol and 

left at room temperature to dry. The stearic acid treatment reduces the surface energy of the coating 

surface rendering them hydrophobic, eliminates the effect of surface contamination and moreover, 

ensures that the chemistry of the surface of all coatings is similar, thus isolating the effect of surface 

roughness and morphology. 

4.2.3.  Morphology and Structural Characterization 

The morphology of the feedstock and coatings (top surface and cross-sectional views) was 

observed by SEM (Hitachi S-3400N VP). The samples were prepared by standard metallographic 

methods. Additionally, the morphology of the coatings and various surface roughness parameters 

were observed by a LEXT OLS4000 confocal laser microscope (Olympus, Toronto, Canada). 
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Among the various surface roughness parameters, based on the literature [208], the arithmetic 

average surface roughness (Ra), the root mean square surface roughness (Rq), skewness (Rsk) and 

kurtosis (Rku) were measured and their possible relation with the wettability of the coatings was 

investigated. The Ra is the most commonly used surface roughness parameter and has been deemed 

as being related to the water contact angle and thus repellence of a surface [92]. Skewness is a 

measure of the asymmetry of the surface profile. Kurtosis is a measures of “peakedness” (or 

alternatively “flatness”) of a surface. Skewness and kurtosis have both been used to help predict 

the water mobility on a surface [209–211]. For the roughness measurements of the samples, five 

areas of 1×1 mm on different parts of the samples were used. 

4.2.4.  Wetting Characterization 

The imaging for static water contact angle and the water sliding angle measurement of the 

coatings was carried out using a sessile droplet method at room temperature and humidity. As 

mentioned previously, the static contact angle is commonly used as a measure of the water 

repellence of a surface whereas sliding angle is often used to characterise the water mobility of a 

surface. The static contact angle was measured by putting a 10µL droplet of water on the surface 

of the samples, capturing an image and then analysing the image to calculate the contact angle. 

The sliding angle was measured by putting a 10µL droplet of water on a horizontal surface, then 

tilting the surface until the droplet started to move. The angle to which surface was tilted for the 

water droplet to move was considered the sliding angle of the surface. The setup for contact angle 

measurement consisted of a Fastcam SA1 camera (Photron Ltd, Tokyo, Japan), a manual droplet 

generator and a backlight LED and a stage for the samples with vertical, horizontal and tilting 

micro-positioners. The image analysis and the measurements were carried out using a code 

developed by Stalder et al. [212,213] as a plugin to the free image analysis software ImageJ (NIH, 

MD, USA). The measurements were repeated five times on three different samples with the same 

deposition process.  

This setup was also employed to study the dynamic interaction of an impinging water 

droplet onto the surface of the coatings. As mobility of a superhydrophobic surface plays a crucial 

role in many of its potential applications such as anti-icing, it is very important to study different 

aspects of the dynamic wetting behavior of a superhydrophobic surface in addition to its sliding 

angle. For this purpose, a 10 µL water droplet, was dropped from various heights onto the surface 

of the samples. The process of the water droplet interacting with the surface was observed and 
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recorded through the high speed camera. In the case of relatively high mobility surfaces and 

depending on the impact velocity of the droplet, it can bounce back and detach from the surface. 

A very important and common parameter in this regard is the coefficient of restitution of a surface 

during the impact of a droplet of water. The coefficient of restitution which is the ratio of droplet 

velocity after and before impact, represents the amount of energy consumed during the interaction 

of the droplet and the solid surface. In this case, the coefficient of restitution was determined as 

the ratio between the velocity of the droplet right before impact and right after detaching from the 

surface. Obviously, a surface with a higher coefficient of restitution has more mobility due to the 

smaller amount of energy dissipated during the interaction between the solid surface and the water 

droplet. The coefficient of restitution of the samples was then compared to other commercial and 

well-known superhydrophobic surfaces including a commercial polymer-based spray product 

WX2100 (Cytonix Co., MD, USA), a lotus leaf and a nano-grass (denoted NG) surface fabricated 

by depositing carbon nanotubes on a patterned silicon substrate [214]. 

4.3.  Results and Discussion 

4.3.1.  APS Process Diagnosis and Selection of Deposition Condition 

The temperature and velocity of the in-flight particles measured by the DPV-2000 system 

for the two APS coatings are shown in Table 4.2. The spray conditions for these two samples were 

chosen based on a previous study in which the influence of spray condition on particle 

temperatures and velocities was investigated [196]. These conditions are meant to produce two 

distinct morphologies resulting from relatively high temperature and low velocity (APS-1) and 

relatively low temperature and high velocity (APS-2). 

Table 4.2. Mean and standard deviation of the temperature and velocity of in-flight particles for 

the APS coatings. 

Sample Temperature (°C) Velocity (m/s) 

APS-1 2679 ±82 170 ±27 

APS-2 2235 ±148 220 ±23 
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4.3.2.  Wetting and Roughness Measurements 

The measured values of the static contact angle, sliding angle, arithmetic mean surface 

roughness (Ra), root mean square surface roughness (Rq), skewness (Rsk) and kurtosis (Rku) for the 

four samples after stearic acid treatment are presented in Table 4.3.  

According to Table 4.3, both APS coatings show relatively high contact angle values 

indicating an elevated water repellence. However, the APS samples lack the desired water mobility 

as revealed through the observed high sliding angle values. The reasons for such characteristics of 

the APS coatings are further investigated and discussed in section 4.3.3. On the other hand, both 

SPS samples show water contact angles above 150° which is the minimum requirement for a 

superhydrophobic surface. Additionally, the sliding angles of both SPS coatings are smaller than 

10° (Table 4.3), which shows these samples have relatively high water mobility. This is 

particularly true about the SPS-E sample which has very high mobility with a sliding angle of only 

1.3°. These results are comparable to those of the state of the art superhydrophobic coatings in the 

literature [215,216]. 

Table 4.3. Contact angle, sliding angle, arithmetic surface roughness (Ra), root mean squared 

surface roughness (Rq) and skewness (Rsk) for the APS and SPS samples. 

Sample 

Contact 

angle 

(deg) 

Sliding 

angle 

(deg) 

Roughness, 

Ra 

(µm) 

Roughness, 

Rq 

(µm) 

Skewness, 

Rsk 

Kurtosis, 

Rku 

APS-1 128 ± 3 > 60 3.7 ± 0.6 4.5 ± 0.5 0.23 ± 0.05 3.2 ± 0.1 

APS-2 145 ± 2 > 60 3.8 ± 0.4 4.8 ± 0.5 0.25 ± 0.04 3.0 ± 0.1 

SPS-W 156 ± 1 8 ± 1.3 6.2 ± 0.1 7.9 ± 0.1 -0.45 ± 0.04 3.8 ± 0.1 

SPS-E 167 ± 1 1.3 ± 0.3 6.7 ± 0.1 8.5 ± 0.1 0.32 ± 0.06 3.9 ± 0.1 

 

Furthermore, both SPS samples have arithmetic roughness (Ra) and root mean square 

roughness (Rq) values considerably higher than those of the APS samples. The observed increase 

in the contact angle values with increased roughness is consistent with the Wenzel and Cassie-

Baxter wetting models. These models both express that surface roughness has an amplifying effect 

on water contact angle of a surface. In terms of skewness, both APS surfaces have a positive value. 

Zero Skewness signifies perfect symmetry about the mean line and the positive skewness value 
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indicates that both APS surfaces have a disproportionate number of high peaks. On the other hand, 

the SPS-W surface has a negative skewness value that is almost two times larger in magnitude 

compared to the APS skewness values. This indicates that the SPS-W sample has a dominant 

number of valleys compared to the number of peaks. On the other hand, the SPS-E coating has a 

positive skewness value which is considerably higher than both APS samples. This means that the 

surface of this coating has a larger number of peaks than valleys. This can contribute to increasing 

the surface mobility by facilitating the formation of air pockets in the interface between the solid 

surface and water and reducing the actual contact area between them. 

A kurtosis value of 3 signifies a normal (Gaussian) distribution of peaks and a valleys 

throughout the surface of the sample. According to Table 3, both APS samples have kurtosis values 

very close to 3. On the other hand, the kurtosis value of the both SPS samples is significantly 

higher which suggests that these surfaces have comparatively more high peaks and deep vales. 

This correspondingly demonstrates how surface features contribute to the higher water repellence 

and mobility of the SPS samples as the water droplets rest on the high peaks and the valleys 

contribute to further formation of air pockets. 

4.3.3.  Morphology and Structural Characterization 

The top view and the cross-sectional view SEM micrographs of sample APS-1 are shown 

in Figure 4.5. Due to the high in-flight particle temperature, this coating is formed from a majority 

of fully molten particles and large splats are visible on the coating top surface. The splats are 

similarly distinguishable in the cross-sectional view which shows a thicker coating layer compared 

to APS-2 (Figure 4.6) with a relatively less rough and textured surface. The smaller contact angle 

of APS-1 compared to APS-2 coatings is attributed to these relatively larger gaps between 

roughness features. 

The top view and the cross-sectional view SEM micrographs of sample APS-2 are shown 

in Figure 4.6. In this case, due to the lower in-flight particle temperature, this coating is comprised 

of more partially molten particles than APS-1. Due to the relatively cooler deposition conditions, 

APS-2 has a smaller coating thickness and a more porous structure. The presence of partially 

molten particles created a relatively more erratic morphology as shown in Figure 4.6 and 

consequently resulted in higher contact angle values compared to APS1. 
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Figure 4.5. SEM micrographs of the APS-1 sample with relatively high particle temperature and 

low particle velocity; (a) top view, and (b) cross-sectional view. 

The APS coatings show relatively high contact angle values, close to superhydrophobic 

values (150°). However the coatings clearly lack the necessary water mobility as displayed through 

high sliding angle values. This is due to the relatively large and non-uniform morphological 

features created by the APS process and its inconsistent pattern. This implies the necessity of using 

a coating method that provides fine and consistent texture and morphology.  

 

Figure 4.6. SEM micrographs of the APS-2 sample with relatively low particle temperature and 

high particle velocity; (a) top view, and (b) cross-sectional view. 

In suspension plasma spray (SPS) process, the feedstock consists of a suspension of solid 

particles in a liquid carrier that allows the generation of smaller scaled and refined microstructured 

coatings. The top view and cross-sectional view SEM micrographs of the SPS-W coating (with 

TiO2 suspension in water) are shown in Figure 4.7. Clearly, the coating has a much finer 

morphology and more consistent pattern compared to the APS samples. This morphology results 

in an elevated water repellence showcased through the contact angle value of 156° and the desired 
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water mobility exhibited through a water sliding angle of less than 10°. As visible in the SEM 

images, the thin coating follows the pattern of the grit-blasted substrate as the roughness features 

of the substrate are considerably large compared to the thickness of the coatings. 

 

Figure 4.7. SEM micrographs of the SPS-W sample (water-based suspension feedstock); (a) and 

(b): top view; (c) and (d): cross-sectional view. 

The top view and cross-sectional view SEM micrographs of the SPS-E coating (with TiO2 

suspension in ethanol) are shown in Figure 4.8. This coating clearly has a very distinct morphology 

compared to the SPS-W coating. In this case, as visible in Figure 4.8 (a), protuberances with 

diameters roughly between 10-20 µm have covered the surface. These protuberances consist of 

smaller, submicron scale nubs as shown in Figure 4.8 (b). Together these two levels of 

morphological features create a dual-scale hierarchical roughness on the surface similar to the ideal 

hierarchical morphology previously discussed in section 4.2. This hierarchical roughness, which 

is an outcome of the presence of larger aggregates in the precursor suspension of this coating (see 

Figure 4.4), is the main factor responsible for the improved water repellence and mobility of this 

coating compared to the other samples in this research. The cross-sectional SEM micrographs 
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(Figure 4.8 (c) and (d)) show that the SPS-E coating is fairly porous with many roughness features 

on top. These characteristics contribute to the improved water repellence and mobility of this 

coating by decreasing the actual contact area between the water droplet surface and the coating as 

well as by facilitating the formation of micro air pockets. It is noteworthy that the preliminary 

durability tests show promising result for these coatings. A thorough investigation of water erosion 

resistance and durability of these coatings in icing condition will be presented in an independent 

future work. 

 

Figure 4.8. SEM micrographs of the SPS-E sample (ethanol-based suspension feedstock); (a) and 

(b) top view; (c) and (d): cross-sectional view. 

4.3.4.  Dynamic Wetting Behavior of SPS coatings 

The SPS coatings show very interesting results in terms of repellence and mobility. As 

discussed in previous section, the coefficient of restitution is another important characteristic for 

evaluating the mobility of superhydrophobic coatings. Figure 4.9 shows images from an 

experiment that was used to determine the coefficient of restitution for the SPS-E sample.  
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In Figure 4.9, the different stages of the interaction of a water droplet with a 

superhydrophobic surface with relatively elevated mobility are demonstrated. These stages include 

impact, spreading, recoiling, bouncing and detachment. The most important phenomenon observed 

here is the detachment of the droplet that demonstrates the elevated water mobility of this surface. 

In the process of the water droplet interacting with the solid surface, the droplet loses part of its 

energy due to contacting the surface and spreading on it and then recoiling. The energy dissipated 

through this interaction can be expressed through the coefficient of restitution. Clearly the closer 

this value is to 1, the better is the water mobility of the surface. 

 

Figure 4.9. Images of an impinging water droplet on the SPS-E coatings. (Elapsed time in 

millisecond) 

The coefficients of restitution for impact velocities of 250 mm/s and 450 mm/s are 

measured for both SPS samples and are presented in Table 4.4 and compared to three other 

superhydrophobic surfaces: a commercial polymer-based spray product WX2100, a lotus leaf and 

a nano-grass (denoted NG) surface fabricated by depositing carbon nanotubes on a patterned 

silicon substrate [214]. At low impact velocity, both SPS coatings demonstrate a higher coefficient 

of restitution than the lotus leaf and the commercial WX spray and are comparable to that of the 

nano-grass. However, at relatively higher impact velocities, the SPS-W coating has a lower 

coefficient of restitution. This may be attributed to the single scale (submicron) topographical 

features of this coating and the lack of dual-scale roughness. Conversely, the SPS-E coating that 
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possesses the hierarchical morphology shows highest value of the coefficient of restitution among 

all samples. This confirms again the elevated mobility of this sample. 

Table 4.4. Coefficients of restitution for: SPS coatings developed in this research, a commercial 

polymer-based spray coating WX2100, lotus leaf and nano-grass [214]. 

Surface 
Coefficient of Restitution 

(impact velocity = 250 mm/s) 

Coefficient of Restitution 

(impact velocity = 450 mm/s) 

SPS-W 0.82 0.38 

SPS-E 0.82 0.48 

WX2100 (commercial spray) 0.73 0.48 

Lotus leaf [33] 0.75 0.40 

Nano-grass [33] 0.83 0.45 

 

4.4.  Conclusions 

The atmospheric plasma spray (APS) and suspension plasma spray (SPS) techniques were 

shown to be capable of producing submicron-sized patterned coatings which, after lowering the 

surface energy, can result in superhydrophobic surfaces with high water repellence. The APS 

coatings typically lacked high surface mobility due to the random and relatively large surface 

features resulting from relatively large feedstock particle size. On the other hand, in addition to 

high water repellence, the SPS coatings demonstrated enhanced water mobility. This wetting 

behavior was attributed to the characteristic morphology of the SPS coatings. The submicron 

morphology of the SPS coating resulted from the use of submicron size TiO2 particles in the form 

of a suspension as feedstock. Optimum performance was observed with coatings deposited using 

a TiO2 suspension in ethanol. In this case a dual-scale hierarchical roughness was formed that 

provided coatings with significantly improved water mobility.  

Using SPS to develop superhydrophobic coatings is a comparatively cost-efficient and 

straightforward method with the capability to be applied on large surfaces. It is important to note 

that the superhydrophobic SPS coatings developed in this research are easily applicable to large 

surfaces in an atmospheric environment without the many complications of complex methods such 
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as growing the nano-grass and the SPS coating is expected to be far more durable than polymer-

based sprays. Moreover, in order to improve the wetting behavior of SPS coatings, it is important 

to focus on the dual-scale (hierarchical) structure of the coating and using a parametric study to 

determine the best deposition conditions. 
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Preface to Chapter 5.  

In the previous chapter, it was demonstrated that the suspension plasma spray (SPS) 

technique is capable of producing micro-textured coating that after treatment to lower their surface 

energy, show superhydrophobicity. The superhydrophobicity of the SPS TiO2 coatings is 

attributed to the hierarchical micro-texture of the coatings. Logically, the next step is to determine 

the significance of these hierarchical “cauliflower-like” features, how their size, density and 

uniformity affect the wetting behavior of the coating and how various process parameters of the 

SPS technique affect the morphology and consequently superhydrophobicity of these coatings. 

Therefore, the next chapter in this work focuses on an in-depth parametric study of the SPS process 

and the SPS superhydrophobic coatings. 

It is important to note at this point that the SPS TiO2 coatings that are introduced in the 

previous chapter and are to be investigated in the following chapter show superhydrophobicity due 

to the combination of their surface micro-texture and the treatment that lowers their surface energy. 

Understandably, if a ceramic material similar to TiO2 in terms of durability was to be found that 

demonstrates intrinsic hydrophobicity, it would introduce a great potential. Such a material could 

have been used to generate micro-textured SPS coatings without the need for any further treatment 

and could show superhydrophobicity due to its hypothetical intrinsic hydrophobicity. As 

mentioned in Chapter 2, all known engineering metals and ceramics are intrinsically hydrophilic, 

with the exception of the debateable case of rare-earth oxides. While some researchers claim to 

have observed indications of intrinsic hydrophobicity in rare-earth oxides, other researchers 

attribute this to presence of hydrocarbon compounds on the surface. Therefore, in the process of 

this research efforts have been made to study the validity of such claims and to investigate the 

potential of rare-earth oxide for developing micro-textured superhydrophobic coatings. The details 

of these efforts are presented in the Appendix section of this thesis. In short, in these efforts, no 

evidence was found to support the hypothesis that rare-earth oxides can demonstrate intrinsic 

hydrophobicity in certain conditions. 
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Abstract 

Beyond its conventional application for developing thermal barrier coatings, suspension 

plasma spraying (SPS) has shown promise for new applications focusing on surface textured 

coatings including superhydrophobic coatings. Such coatings have a dual-scale hierarchical 

morphology or so-called “cauliflower” features on the surface and they demonstrate extreme water 

repellence and mobility after treatment for lowering their surface energy. Studying and 

determining suitable process parameters to optimize the wetting properties of these coatings is the 

focus of this work. Herein, it is demonstrated that by carefully designing and controlling the 

process parameters, one can generate relatively fine and uniform dual-scale (hierarchical) surface 

textured coatings that after treatment for lowering their surface energy, show significantly 

improved water repellence and water mobility with water contact angles as high as 170° and sliding 

angles as low as 1.3°. It is also demonstrated that both scale levels of surface textures (i.e. micron-

scale and nanoscale) are essential for having simultaneously improved water repellence and 

mobility. Furthermore, it is established that producing finer, more uniformly distributed and 

packed surface features lead to more consistent and desirable wetting properties. The results show 

                                                 
4 This chapter has been published as an article in the Journal of Surface and Coating Technology: Sharifi, N., 

Ettouil, F. B., Moreau, C., Dolatabadi, A., & Pugh, M. (2017). Surface and Coatings Technology, 329, 139-148. 
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the significant influence of pre-deposition surface roughness, precursor suspension rheology and 

plasma power on the structure and performance of the developed coatings. 

Key words: Suspension plasma spray (SPS), superhydrophobicity, surface texture, surface 

morphology, parametric study 

5.1.  Introduction 

The plasma spraying technique is an efficient and practical method to generate functional 

coatings for various applications [166,217–219]. Atmospheric plasma spray (APS) and suspension 

plasma spray (SPS) have both been largely used for thermal barrier coatings [169], abradable 

coatings [220] and erosion, corrosion and wear resistant applications [221–223] due to their 

versatility, deposition rate and scalability. Furthermore, in recent years, new applications have 

emerged using plasma spraying that are principally focused on generating textured coatings for 

applications such as superhydrophobic coatings [196,224] and electrochemically active electrodes 

[225,226]. Due to the novelty of such applications, there is lack of thorough experimental data and 

published research about them. 

Various methods have been used to prepare superhydrophobic coating, including 

electrodeposition methods [216], vapor deposition [227], lithography [228], laser patterning [229] 

and sol-gel [200,209]. The vast majority of these works fall into one of two categories: one is using 

a low surface energy material, the other is using complex methods to tailor the micro-texture of 

the coatings. The former techniques are typically based on polymeric materials that do not 

demonstrate mechanical durability and the latter techniques are usually very complex and 

impractical for industrial applications. In the approach presented in this article we take the middle 

ground using a technique i.e. SPS which is atmospheric and easily applicable onto large surfaces 

and we demonstrated that the final micro-texture of the coatings can be controlled by controlling 

the process parameters in order to obtain desired coating macrotextures. 

In general, a main challenge of working with plasma spray processes is the fact that there 

are numerous process-related and environment-related parameters that affect the structure, 

properties and characteristics of the final coating [163,230]. Since these processes are carried out 

in atmospheric conditions, controlling all influential parameters is required to have adequate 

control over the resulting characteristics and structures. For the APS process, online diagnosis 

systems such as DPV and Accuraspray (by Tecnar) [231–233] have been developed making it 
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possible to measure the velocity, temperature and diameter of in-flight particles prior to impact on 

the substrate. This approach effectively summarizes the effects of process parameter such as 

plasma power, gas flow and feedstock particle size and provides a comprehensive understanding 

of the condition of coating formation that greatly facilitates the control and repeatability of the 

process. However, in the case of the SPS process, since particles are at least an order of magnitude 

smaller and deposition takes place very close to the plasma jet which is a source of optical noise, 

online particle diagnostics is challenging and currently under development and investigation. 

Therefore, to study the effect of process parameters on the suspension plasma spray coatings, it is 

essential to select a reference set of parameters and then to create a test matrix by changing various 

parameters one at a time. This allows for investigating the effect of each parameter by isolating 

the variation of that parameter while constraining the variation of other influential parameters. In 

the case of parameters that are very difficult to keep constant, such as particle trajectory and 

substrate temperature, they have been closely monitored to ensure that they remained within a 

limited range (typically 5% variation).  

In recent years, efforts have been made to employ thermal spraying as a relatively fast and 

efficient surface treatment method for developing coatings with controlled surface wettability. For 

example Li et al. [185,234] introduced atmospheric plasma sprayed (APS) metallic coatings that 

demonstrate superhydrophobicity after adsorbing carbon-based components from atmosphere. 

Guo et al. [186] used vacuum cold spray to deposit a nanostructured coating treated by 

fluoroalkylsilane that showed highly water-repelling characteristics. Leblanc et al. [189,190] first 

employed suspension plasma spraying to develop random textured hydrophobic surfaces with 

reduced drag in interaction with turbulent liquid flow. Chen et al. [192] used flame spraying and a 

steel mesh as shielding plate to develop cone-like features that improve the wetting behavior of 

the coating. It is important to note at this point that although some work has been done to study 

the effect of SPS process parameters [180,235], these investigations has been mainly focused on 

structural characteristics and properties related to more conventional applications of SPS process 

such as TBCs. 

The main focus of this work is on morphologically textured coatings for roughness-induced 

superhydrophobic coatings. A thorough parametric study has been carried out to identify the most 

significant factors that affect the wetting behavior of such coatings and to understand the complex 

and combined effect of various process parameters as well as morphological features of the 
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coatings. These features form the base of the extreme water repellence and water mobility that 

these coatings demonstrate. By designing a test matrix of 24 different test conditions and 

monitoring and controlling the particle jet trajectory and substrate temperature, samples of textured 

titanium dioxide coatings have been developed. After treating the samples with stearic acid to 

isolate and diminish the effect of surface chemistry, all samples have been characterized in terms 

of wettability and the most interesting ones were selected for further visual and morphological 

characterization. The objective of this work is to quantify and correlate the effect of process 

parameters and establish a control over surface texture that consequently leads to a control over 

wetting properties of the coatings. 

5.2.  Materials and Methodology 

5.2.1.  Coating Development 

All samples were manufactured using the suspension plasma spraying (SPS) technique. 

For preparation of the feedstock suspension, a commercial submicron-sized titanium dioxide 

powder with average nominal particle diameter of 500 nm (KS-203A/B, TKB Trading, US) was 

used. The main objective of this work is to study the macrotextures achieved through SPS process 

and the influential process parameters to control and design the micro-texture to optimize the water 

repellence and mobility of the coatings. TiO2 has been selected as the coating material because it 

is an easily available and inexpensive material with minimal safety concerns and reasonable 

mechanical and chemical stability. Three different suspensions were prepared to study the effect 

of suspension composition. In two of the suspensions, ethanol was used as the solvent with 10 wt% 

solid content of TiO2 for the first and 20 wt% for the second suspension. For both ethanol-based 

suspensions, polyvinylpyrrolidone (PVP, Alfa Aesar, US) was added (5 wt% of the solid content) 

as dispersant to ensure the stability of the suspension and to prevent agglomeration and 

sedimentation during the spraying process. For the third suspension, deionized distilled water was 

used as the solvent with 10 wt% solid content. For the water-based suspension, polyacrylic acid (5 

wt% of the solid content) was used as the dispersing agent. All three mixtures were mixed by 

magnetic stirring for 5 minutes and then sonicating for 10 minutes with 50 W of power. This 

routine was repeated once per each 200 ml of suspension. The particle size distribution of each 

suspension was obtained using a particle size measurement unit (Spraytec, Malvern, UK) and the 
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results are presented in Figure 5.1 along with a SEM micrograph of the submicron TiO2 power. 

Size distribution characteristics of the three suspensions is presented in Table 5.1. 

 

Figure 5.1. (a) SEM micrograph of the feedstock TiO2 powder; and (b), (c) and (d) particle size 

distribution of the three suspensions used in this study. 

Table 5.1. Size distribution characteristics of the three suspensions used in this work. 

Suspension D10 (µm) D50 (µm) D90 (µm) 

10 wt% TiO2 in ethanol 2.9 5.1 8.8 

20 wt% TiO2 in ethanol 3.0 5.4 9.6 

10 wt% TiO2 in water 0.28 0.50 0.86 

 

The coatings were deposited onto flat 304 stainless steel substrates with dimensions of 25 

× 25 × 5 mm3. Prior to the deposition, the substrates were grit-blasted by alumina particles and 

then thoroughly cleaned in acetone followed by isopropyl alcohol. To study the effect of substrate 

roughness on the morphology and consequently the wettability of the coatings, three different grit 

sizes were used, namely 24, 80 and 180 grit that using an air pressure of 354 kPa, which produced 
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a substrate roughness (Ra) of 3.5 µm, 2.5 µm and 1.5 µm, respectively. These three pre-deposition 

surface roughness values are labeled C (coarse), M (medium) and F (fine). 

5.2.2.  Test Matrix Design 

To deposit the coatings a 3MB plasma torch (Oerlikon Metco, Switzerland) was used. The 

plasma gas consisted of argon and hydrogen with argon flow rate set on 60 liters per minute and 

hydrogen flow rate changing to achieve the desired plasma power. The feedstock suspension was 

stirred during the coating process and was injected radially into the plasma plume as a simple 

continuous jet with flow rate of 55 grams per minute. Coatings were deposited using 10 

consecutive passes of a full spray raster covering the surface of the coupons with a 3 mm overlay 

distance.  To study the effect of various deposition parameters, a test matrix was designed and, 

overall, eight different combinations of process parameters were used that, combined with three 

pre-deposition substrate roughness values, produced 24 different samples. The studied parameters 

include the previously mentioned feedstock suspension compositions, surface roughness prior to 

deposition, as well as plasma power, plasma torch standoff distance and plasma nozzle diameter. 

Plasma power was modified by changing the arc current and the amount of hydrogen gas which 

increases the voltage of the plasma. It is important to note that the reported plasma power here is 

the input electrical power of the plasma. The thermal efficiency of the process is not measured 

here but studies on similar working condition typically reported a thermal efficiency of 55-60% 

[236]. A detailed list of the parameters used to design this test matrix and the corresponding 

abbreviations are presented in Table 5.2. The test matrix is detailed in Table 5.3. 
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Table 5.2. Values of variable process parameters and the corresponding abbreviations used in 

this study. 

Variable Parameter Levels Abbreviations 

Grit-blast Coarse, Medium, Fine C, M, F 

Suspension solvent Ethanol, Water E, W 

TiO2 weight percent 10, 20 (wt%) 10%, 20% 

Plasma power 25, 36 kW LP, HP 

Standoff distance 3, 5 (cm) LSD, HSD 

Plasma torch nozzle diameter 5, 8 (mm) SND, LND 

 

Table 5.3. Test matrix parameters used in this study. 

Condition Solvent 
TiO2 

(wt%) 
Grit-blast 

Plasma 

power 

(kW) 

Standoff 

distance 

(mm) 

Plasma 

nozzle 

(mm) 

10-E-LP E 10 C, M, F 25 50 8 

10-E-HP E 10 C, M, F 36 50 8 

10-E-LSD E 10 C, M, F 25 30 8 

10-E-SND E 10 C, M, F 25 50 5 

10-W-LP W 10 C, M, F 25 50 8 

10-W-HP W 10 C, M, F 36 50 8 

20-E-LP E 20 C, M, F 25 50 8 

20-E-HP E 20 C, M, F 36 50 8 

 

During the deposition process, the Accuraspray system (Tecnar, Canada) was used to 

monitor the trajectory of the particle jet to ensure the proper penetration of the particle jet into the 

plasma plume. Accuraspray is an optical diagnosis unit capable of measuring velocity and 

temperature of the cloud of particles. The temperature measurements by the Accuraspray system 
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for SPS process are accompanied by optical noise from plasma due to short spray distance and 

therefore are not reported in the study. However, the sensor still receives signals from particles 

that are passing in front of it. Accuraspray software analyzes these signals and identifies the center 

of the particle jet which slightly deviates from the center of the plasma jet due to axial injection of 

the particles. In this work, it was confirmed using Accuraspray that the deviation of the center of 

the particle jet from the center of the plasma plume remained within a range of 6% of the spray 

distance. This was achieved by slightly adjusting the angle of injection of suspension and without 

changing plasma gas flow rate. Additionally, to further increase the repeatability of the results and 

consistency of the comparative study, an infrared camera (A310, FLIR, US) was used to monitor 

the temperature of the substrate during the deposition process. Two air amplifiers (devices that 

direct a high volume and high velocity flow of air toward a target) were used during all tests to 

cool down the substrate and maintain the surface temperature below 600°C in all conditions. 

In the suspension injection system, a mass flow meter was used to ensure the constant and 

steady feeding of the suspension feedstock into the plasma and the density of the suspension was 

constantly monitored online using a Coriolis flow meter to ensure the quality and characteristics 

of the suspension were constant during the coating process. 

5.2.3.  Surface Treatment 

After coating, samples were sonicated in deionized distilled water to discard loose solid 

particles. Afterwards, the samples were thoroughly cleaned in acetone followed by isopropyl 

alcohol. To make sure the surface of the samples were free of organic contamination from the 

acetone or isopropyl alcohol, the samples were placed in boiling deionized distilled water as 

proposed by Gentlemen et al. [199]. In order to reduce the surface energy and also isolate and 

study the effect of surface roughness on the wetting behavior of the coatings, all samples were 

dipped into a 0.5 wt% solution of stearic acid in 1-propanol and then dried using compressed dry 

air [224]. A flat sample treated with stearic acid using the same method yields a contact angle of 

97° and sliding does not occur on such surface. 

5.2.4.  Characterization 

To assess the wettability of the different coatings, multiple wetting parameters were 

measured and compared for all 24 coatings. First of these wetting parameters is static contact angle 

(CA) which was measured by imaging a 5 µl droplet of high purity deionized distilled water and 
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analyzing the image using a plugin in the image analysis software ImageJ, developed by Stadler 

et. al. [212,213]. The second wetting parameter is sliding angle which was measured by placing a 

droplet of the same size on the surface of the sample, then tilting the sample using a goniometer 

until the droplet started to move on the surface. The angle at which the droplet starts to move is 

taken the sliding angle. 

The coatings were grouped based on their wetting behavior with respect to the following 

criteria: for static contact angle, a larger value is better with contact angles higher than 

150°considered satisfactory. For sliding angle, a smaller value is better with values smaller than 

10° typically considered ideal. Based on these criteria, a third of the samples with the most 

desirable properties were selected for further analysis as well as a few samples with less desirable 

wettability which were further analyzed to understand the morphological characteristics that lead 

to poor performance. 

In the next stage of characterization, the top surfaces of the selected samples were 

examined using a scanning electron microscope (SEM) [S-3400N, Hitachi, Japan]. Micrographs 

were obtained from the top of all samples at identical magnifications to be able to compare the 

size, shape and distribution of morphological features and their effect on wettability of the coatings 

and consequently, the effect of various deposition parameters on the wetting behavior through the 

variation in corresponding surface morphology. To further study the effect of pre-deposition 

substrate surface roughness, some selected samples were cut and polished to analyze their cross-

sections. These samples were cleaned, then molded in a cold mount resin, ground and polished per 

standard metallography procedures to prepare cross-section views. These samples were studied 

using SEM and micrographs of the coatings and coating/substrate interface were taken. 

To further investigate roughness features and properties of the coating surfaces, a confocal 

laser microscope [LEXT OLS4000, Olympus, Japan] was employed. Using the microscope, three 

3D maps of the surface of the coatings in 12mm × 2mm areas were obtained in three different 

spots on the same sample. Each image consists of 96 (24 by 4) single images, digitally stitched 

together to generate the three-dimensional map of the area which is large enough to be considered 

an average representation of the surface. Using this image and analytical software, all surface 

roughness parameters per ISO 25178 were calculated and studied for potential correlation with the 

wetting behavior of the different coatings. Various surface roughness parameters are presented as 

some studies [208,209] have shown that topographical characteristics of a surface cannot be 
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accurately represented using only one surface roughness parameters with one work [92] relating 

root mean square height of the surface (Sq) to wetting behavior, and others [237] claiming 

correlation between wettability to skewness (Ssk) and kurtosis (Sku) of the surface. Additionally, 

the surface ratio of the coating surface defined as the ratio of real surface area to the projected 

surface area was measured and studied. It is noteworthy that since the confocal laser microscopy 

technique is a line of sight technique, it typically underestimates the value of real surface area but 

neglecting additional surface area hidden from line of sight. However, since in this work we study 

the wetting properties of the surface which is affected by interaction of water droplet and the 

surface, it is expected that the surface ratio, although not a perfect representative but to be an 

indicator of wetting behavior of the surface. All the aforementioned surface parameters were 

investigated for a potential correlation with wetting behavior of the coatings. For this purpose the 

coefficient of correlation was calculated for each surface roughness parameters in respect to the 

contact angle and sliding angle of the coatings. The parameters with highest relative correlations 

were selected and used to plot the graphs shown combined effect of surface parameters on 

wettability of the coatings. 

5.3.  Results and Discussion: 

In Figure 5.1, the particle size distribution of the three feedstock suspensions is presented. 

Noting that the average particle size distribution of the TiO2 particles is 500 nm, in the water-based 

suspension the particles are almost completely dispersed with a nearly perfect Gaussian 

distribution. However, in the case of both ethanol-based suspensions, a different size range of 

distribution is observed. This shows that majority of particles are either single or formed small 

aggregates in the water-based suspension, while a considerable portion of the particles in the 

ethanol-based suspension formed aggregates with diameters ranging between a few micrometers 

to a few tens of micrometers. It is noteworthy that the particle size distribution of the two ethanol-

based suspensions (10 wt% and 20 wt%) is very similar which shows that in this range, the 

concentration of TiO2 particles does not considerably affect the size distribution. 

5.3.1.  Wettability 

Table 5.4 presents a summary of wetting tests in terms of water contact angle (WCA), 

sliding angle (SA). Additionally, the surface roughness measurements results including 

arithmetical mean height of the surface (Sa), maximum height of the surface (Sz), root mean square 
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height of the surface (Sq), Skewness of height distribution (Ssk), and kurtosis of height distribution 

(Sku) are presented. From this table, it is observed that all samples have relatively high water 

contact angle (WCA) values with the majority of samples having a contact angle higher than 150°. 

However, as previously mentioned, high water contact angles alone cannot guarantee the 

superhydrophobic behavior of a surface as it only represents the water repellence. To understand 

the water mobility of a surface, which plays an equally important role in superhydrophobicity, it 

is necessary to consider the sliding angle values of the surfaces. While some of the samples show 

sliding angles higher than 10° which is considered the threshold of superhydrophobicity in this 

article, some other samples show promise with sliding angle values smaller than 10° and in some 

cases even smaller than 5°. These coatings are the most interesting ones in terms of wettability and 

surface texture and are examined further. Additionally, the effect of process parameters on wetting 

behavior of the surface is further analyzed in this article by considering their effect on sliding 

angle. 

 

Table 5.4. Coating wetting characteristics including: water contact angle (WCA) and sliding 

angle (SA), and surface roughness measurements including: arithmetical mean height of the 

surface (Sa), maximum height of the surface (Sz), root mean square height of the surface (Sq), 

skewness of height distribution (Ssk), kurtosis of height distribution (Sku). [mean±SEM] 

Condition 
Grit-

blasting 
WCA (°) SA (°) Sa (µm) Sz (µm) Sq (µm) Ssk Sku 

10-E-LP 

C 165±1 11.7±1.7 7.0±0.1 81.0±2.6 8.7±0.2 -0.164 ±0.012 2.9±0.1 

M 162±1 10.3±1.2 5.8±0.1 74.3±2.4 7.3±0.1 -0.479 ±0.049 3.4±0.1 

F 165±1 10.1±0.7 5.7±0.1 62.5±2.3 7.1±0.2 -0.233 ±0.018 3.0±0.1 

10-E-HP 

C 166±1 4.1±0.5 10.4±0.1 108.8±6.8 13.0±0.2 0.497 ±0.015 3.2±0.1 

M 165±1 3.7±3.7 9.1±0.1 95.8±2.1 11.6±0.2 0.229 ±0.021 3.1±0.1 

F 168±1 1.3±0.3 8.3±0.1 82.1±2.9 10.4±0.1 0.515 ±0.008 3.0±0.1 

10-E-LSD 

C 164±1 16.3±1.1 6.7±0.2 89.5±2.7 10.2±0.2 0.244 ±0.024 3.1±0.1 

M 155±1 13.3±1.0 5.8±0.2 71.3±4.9 7.3±0.2 0.407 ±0.042 3.2±0.1 

F 165±1 9.8±1.0 5.5±0.1 66.1±2.2 7.0±0.1 0.274 ±0.054 3.3±0.1 
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10-E-SND 

C 165±1 6.2±0.5 10.1±0.1 100.9±1.5 12.6±0.1 0.246 ±0.016 2.9±0.1 

M 159±1 7.2±0.5 7.7±0.1 102.1±15.1 9.6±0.2 0.288 ±0.033 3.6±0.5 

F 163±1 5.3±0.7 8.7±0.2 88.8±2.7 10.8±0.3 0.327 ±0.017 3.0±0.1 

10-W-LP 

C 137±8 >20 5.1±0.1 71.0±3.3 6.6±0.1 0.566 ±0.041 3.9±0.2 

M 140±5 >20 4.1±0.1 58.7±1.6 5.3±0.1 0.520 ±0.045 4.2±0.2 

F 142±3 >20 3.3±0.1 51.7±3.4 4.2±0.1 0.227 ±0.045 4.0±0.2 

10-W-HP 

C 154±1 14.2±1.8 6.2±0.1 79.2±1.5 8.5±0.1 0.559 ±0.022 3.8±0.1 

M 152±1 11.1±2.2 4.7±0.2 73.5±3.6 6.2±0.3 0.543 ±0.091 4.5±0.1 

F 159±1 8.4±1.3 5.6±0.2 67.9±3.1 7.4±0.3 0.802 ±0.039 4.0±0.1 

20-E-LP 

C 165±1 3.8±1.7 8.3±0.1 97.4±7.5 10.2±0.1 0.247 ±0.054 3.0±0.2 

M 169±1 3.4±1.9 8.8±0.2 87.7±2.5 8.4±0.2 0.247 ±0.009 2.8±0.1 

F 170±1 1.4±0.3 8.5±0.1 89.4±3.7 7.8±0.3 0.305 ±0.019 3.0±0.1 

20-E-HP 

C 157±1 7.1±0.9 10.4±0.3 99.2±2.5 12.9±0.4 0.632 ±0.006 3.0±0.1 

M 155±1 6.3±0.4 9.3±0.2 91.0±4.6 11.6±0.3 0.790 ±0.009 3.2±0.1 

F 160±1 4.0±0.5 9.9±0.2 88.3±1.0 12.3±0.2 0.795 ±0.007 3.1±0.1 

 

Since the surface chemistry is the same for all coatings, the different wetting behaviors are 

linked to the different coating micro-textures. It is important to study the surfaces with different 

wetting characteristic to better understand the features and morphological properties that result in 

such wetting behavior. In Figure 5.3, six of the coatings with distinguishably different wetting 

behaviors are selected and the SEM micrographs of their surface morphology at two 

magnifications are presented. 

5.3.2.  Surface Morphologies 

A simple side by side visual comparison of micrographs presented in Figure 5.3, reveals 

that the morphology of the coatings varies significantly depending on the deposition conditions. 

In general, using water-based suspension as feedstock [Figure 5.1-(b)] results in a rather mono-

scale roughness and the so-called “cauliflower features” with hierarchical morphology are absent. 

In coatings developed using the water-based suspension (Figure 5.3 (a) and (b)) the primary 
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surface texture features or so-called cauliflower-like features are not fully formed and clearly 

distinguishable. In fact, these coatings have only a single scale of roughness instead of the desired 

hierarchical texture. On the other hand, in ethanol-based coatings, surface micro-texture features 

with two distinguished size-scales are observed. The smaller scale features are similar to those 

observed in the water-based process, while the larger scale features (cauliflowers) are unique to 

the ethanol based coatings. This is partly due to the previously mentioned particle size distribution 

of the water-based suspension which consists of many fully dispersed solid particles with fewer 

and smaller aggregates as well as rheological properties of water in comparison to ethanol. The 

combined effect of suspension characteristics affects the atomization of suspension in the cross-

flow interaction with the plasma which significantly influences the coating morphology. Based on 

the results, there is a considerable difference in the micro-texture of the coatings deposited using 

water-based and ethanol-based suspensions. This difference can be the result of combination of 

factors including dispersion of solid particles in the suspension, difference in atomization and the 

relatively large specific heat capacity and latent heat of vaporization of water in comparison to 

ethanol. This results in solid particles to be heated less in case of the water-based suspension that 

produces more unmolten particles. This can be another reason for the coatings deposited through 

water-based suspension to lack the desired hierarchical texture. 
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Figure 5.2. SEM micrographs of selected samples deposited though six spraying conditions and 

representing various surface textures and wetting behaviors. Samples are sorted in order of 

increasing water repellency and mobility: (a) condition 10-W-LP-M, (b) condition 10-W-HP-M, 

(c) condition 10-E-LP-M, (d) condition 20-E-HP-M, (e) condition 20-E-LP-M, (f) condition 10-

E-HP-F. 

As previously mentioned, the SEM micrographs in Figure 5.3 are sorted in order of 

increasing water repellency and mobility which corresponds to increasing superhydrophobicity 



79 

 

and thus desirability. Close investigation of the micrographs reveal that the improvement in water 

repellence and mobility can be attributed to two morphological characteristics in these coatings. 

The first characteristic is the presence of so-called cauliflower-like features on the surface. As seen 

in the larger magnification inserts in Figure 5.3, at the secondary submicron scale of roughness, 

all coatings have similar features. It is known that this secondary roughness in a hierarchical 

morphology has an important role to stabilize the water-solid interface and improve the 

superhydrophobicity [195]. However, as seen in Figure 5.3 (a) and (b), this submicron roughness 

alone cannot generate high water repellence and mobility. In fact, the formation and presence of 

primary roughness features which provides entrapment of air between the solid and water at the 

interface is necessary to achieve extreme water repellence and mobility. This primary texture is 

believed to form because of a phenomenon known as the shadow effect in suspension plasma 

spraying [238,239]. This effect comes into play when initial deposition of particles on the surface 

creates some bumps that affects the incoming particles’ trajectory, causing them to attach to the 

surface of these bumps and preventing them from attaching to the surrounding regions. This 

mechanism is the main cause of formation of cauliflower-like features. 

The second noteworthy characteristic of the surface texture is uniformity and refinement 

of the cauliflower-like features. In Figure 5.3 (c) and (d), it is observed that, although these two 

coatings demonstrate some of the hierarchical features, in the first coating texture, these features 

are not fully developed and packed while in the second coating texture, the hierarchical features 

are relatively large and distant. In both cases, when a water droplet is sliding on these surface, if 

at some points the features are not fully developed or there is a relatively large gap between them, 

the droplet gets trapped at those points which causes an increase in sliding angle and reduction of 

mobility. Finally, looking at Figure 5.3 (e) and (f) which are the surface textures that provide the 

highest mobility, fully developed and packed hierarchical features ultimately result in a surface on 

which a water droplet easily slides and has extremely high mobility. This is particularly true for 

the last surface texture which has finer and more uniform features and can provide a sliding angle 

as low as 1.3°. 

5.3.3.  Effect of grit-blasting 

The effect of grit-blasting with three different grit sizes is shown in Figure 5.4. 

Accordingly, by moving from coarse to fine grit size, the sliding angle generally decreases. This 

effect is observed for seven of the original eight deposition conditions. However, for the case of 
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the water-based suspension at low power, the sliding angle is so large that it is practically 

impossible to measure the sliding angle consistently and therefore the effect of grit-blasting cannot 

be correctly determined. In Figure 5.5, SEM micrographs of the cross-section of coatings for 10 

wt% TiO2 ethanol-based suspension deposited at high power respectively on coarse (C), medium 

(M) and fine (F) grit-blasted coupons are shown. These three coatings have been deposited with 

the same spray conditions with the only difference being in grit-blasting of the substrates before 

deposition. By comparing these three SEM micrographs and according to Figure 5.4, it can be 

concluded that it is the combination of deposition condition and not only the surface grit blasting 

that determines if hierarchical morphology is developed in the coatings or not. However, for 

coatings sprayed in other spray conditions, finer grit-blasting results in finer and more uniform 

surface features that improves both water repellence and mobility and thus is more desirable. 

It needs to be noted that investigating the adhesion of the coating to the substrate using 

conventional bond strength measurement techniques is not practically possible due to the relatively 

low thickness and high porosity and surface roughness of the coatings. For practical applications 

such as icing and water erosion the mechanical durability of these coating are to be thoroughly 

investigated in the future, however, we can report that we have not observed any sign of failure or 

delamination in the coatings during the process of investigation. 

 

Figure 5.3. Effect of grit size on sliding angle of the coatings. 
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Figure 5.4. SEM micrographs of the cross-section of the coatings deposited at the same process 

condition with different substrate roughness: (a) 10-E-HP, coarse, (b) 10-E-HP, medium, and (c) 

10-E-HP, fine grit-blast. 

5.3.4.  Effect of suspension solid content and plasma power 

The effect of suspension solid content on sliding angle of the coatings is shown in 

Figure 5.6. In the case of the low power condition, all three coatings show lower sliding angles 

while increasing the suspension solid content. On the contrary, for high power conditions, 

increasing the suspension solid content has the reverse effect, reducing the water mobility of the 

coatings. This apparent contradiction, can be explained by considering the interaction of the 

suspension feedstock with the plasma plume. It is speculated that, at low power, increasing the 

solid content of the suspension does not greatly affect the deposition rate as the plasma does not 

have sufficient power to considerably change the amount of fully molten and deposited particles. 

In this case, more semi-molten particles cause formation of rougher and more irregular features on 

the surface that, in turn, improve the mobility of the surface. On the other hand, at high power, the 

plasma has sufficient power to melt the additional TiO2 particles and therefore the deposition rate 

increases. This causes the 20 wt% suspension coating to grow faster which results in larger and 

more distant morphological features. This is further supported by noticing the relatively larger size 

of features in Figure 5.3 (d) and by relatively larger thickness of the coating resulted from the 20 

wt% suspension deposited in high power condition.  
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Figure 5.5. Effect of suspension solid content on sliding angle of the coatings. 

To compare the deposition rates, the thickness of the coatings deposited using 10 wt% and 

20 wt% suspensions for the two power levels 25 kW and 36 kW were measured and the result is 

reported in Table 5.6. As it can be seen the deposition rate increases more in the case of 25 kW 

compare to 36 kW which agrees with the discussion made earlier. 

Table 5.5. The deposition rate for different powers and suspension solid contents. 

Suspension solid content 

Coating deposition rate 

25 kW plasma power 36 kW plasma power 

10 wt% 1.8 2.1 

20 wt% 3.5 3.6 

 

Figure 5.7 (a) and (b) show the effect of plasma power on the sliding angle for the 10 wt% 

and 20 wt% ethanol-based suspensions respectively. For the 10 wt% suspension, an increase of 

the plasma power induces a significant decrease of the sliding angle. The same effect was observed 

for the water-based suspension since, at low power, these coatings show relatively high (>20°) 

sliding angles whereas, at high power, these coatings have noticeably lower sliding angle values. 

However, this effect is reversed for 20 wt% ethanol-based suspension where increasing the plasma 

power increases the sliding angle. The reason for this behavior as previously mentioned, is 

believed to be related to a significant increase in deposition rate in the case of the high power 

deposition of the 20 wt% suspension that results in the formation of relatively large texture features 

which decrease mobility. 
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Figure 5.6. Effect of plasma power on sliding angle of the coatings. 

5.3.5.  Effect of standoff distance 

The effect of changing standoff distance on sliding angle is presented in Figure 5.8. It is 

observed that generally the sliding angle increases when the standoff distance is reduced. In SPS, 

the standoff distance is relatively small, compared to other thermal spray processes, and the 

deposition is greatly affected by the turbulent plasma gas flow pattern close to the substrate. In this 

case, a standoff distance of 3 cm changes the flow pattern significantly and affects the deposition 

mechanism and formation of hierarchical features preventing the desired surface texture to form 

correctly and causing the surface mobility to decrease. 
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Figure 5.7. Effect of standoff distance on sliding angle of the coatings.  

The SPS is complex process that has many influential parameters, and it is difficult to 

speculate about all observed phenomena. This is particularly true about the influence of spray 

distance as it is difficult to study the particles’ behavior in flight. However, in all mentioned cases, 

it is observed that sliding angle is relatively large which means that in these coatings the desired 

features are not fully developed. It is known that the surface roughness has a major role in creating 

the shadow effect which is the main mechanism responsible for formation of micro-texture 

features. We can speculate that this effect is more pronounces for 3 cm spray distance because 

surface roughness influences the flow close to the surface and affects the deposition of the 

particles. However, as mentioned previously since none of these coatings are among the best 

performing coatings, we have focused more on more interesting deposition condition. 

It is important to note at this point that it has been reported in the literature that [235] spray 

distance is the only SPS process parameter that influences the phase distribution and ratio of 

anatase to rutile in SPS TiO2 coatings. Additionally, typically rutile is the more likely phase to 

form during plasma spraying of TiO2 [240] due to high cooling rate. However, in this study, as the 

coatings are all treated similarly in the stearic acid solution, it is not expected that difference in 

intrinsic wetting properties of rutile and anatase affect the wetting properties of the coatings. In 

other words, it is the surface micro-texture and not the phase distribution that is the determining 

factor in wetting behavior of coating developed in this study. 
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5.3.6.  Effect of plasma gas velocity 

Figure 5.9 shows the effect of changing the diameter of the plasma nozzle on the sliding 

angle of the coatings. By decreasing the diameter of the plasma nozzle and keeping all other 

parameters the same, the velocity of the plasma gas increases which in turn increases the velocity 

of the particles and decreases the time that particles travel in the plasma plume. According to the 

results, increasing the plasma gas velocity through using a smaller plasma nozzle has a positive 

effect on mobility of the water on the coatings.  

 

Figure 5.8.Effect of plasma nozzle diameter (and consequently plasma gas velocity) on the 

sliding angle of the coatings.  

5.3.7.  Topography 

In Table 5.4, multiple surface roughness parameters of the coatings are presented. The first 

three parameters, arithmetical mean height of the surface (Sa), maximum height of the surface (Sz), 

root mean square height of the surface (Sq), are all amplitude parameters that relate to the general 

roughness of a surface. More than one of these parameters is required to represent the actual 

characteristics of a surface. While all of these parameters show a coefficient of correlation smaller 

than 0.9 in regards to water contact angle or sliding angle of the samples, they collectively 

demonstrate an appropriate measure of the roughness of the coatings and it can be concluded that 

a minimum amplitude of roughness is necessary for these coatings to show reasonable degree of 

superhydrophobicity. 

Skewness (Ssk) and kurtosis of height distribution (Sku) are also shown in Table 5.4. 

Skewness and kurtosis provide additional information about the shape and type of the roughness 
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on the surface of the coatings.  A schematic in Figure 5.10 shows the type of surface features and 

the corresponding skewness and kurtosis values. 

 

 

Figure 5.9. Schematic showing the types of surfaces and corresponding skewness and kurtosis 

values: (a) positive and negative skewness; (b) kurtosis larger and smaller than 3. 

According to Table 5.4, the majority of the developed coatings have positive skewness 

values. In the case of the few negative skewness values, the coatings do not show promising water 

mobility. This can be explained by the fact that a negatively skewed surface does not allow the 

formation of large air pockets in the water-solid interface and also results in more solid/liquid 

interfacial area which reduces the mobility of the surface. In terms of kurtosis, the majority of the 

coatings have a kurtosis close to 3 which represents their distribution of the peaks and valleys. The 

coatings that have a relatively large divergence from the normal distribution and their kurtosis 

value is far from 3 typically do not show significant improvement in water mobility.  

A study of correlation coefficient between various surface topographical parameters and 

surface wettability revealed that the ratio of actual surface area to projected surface area (surface 

ratio) has the highest correlation coefficient in respect to sliding angle with a value of -0.81 

followed by arithmetic mean height with a value of -0.75. Among non-height surface roughness 

parameters, kurtosis shows the largest correlation with a correlation coefficient of 0.63. Figure 5.11 

shows a graph, depicting the variation of the sliding angle of the coatings against the two factors 

with largest correlation coefficients i.e. the surface ratio and the arithmetic mean height (Sa) of the 

samples. A second order polynomial is fitted on the data with a coefficient of determination (R2) 

of 0.75 and 0.68 respectively. 
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Figure 5.10. Graphs showing the correlation between the sliding angle of the coatings and (a) 

surface ratio; and (b) arithmetic mean height (Ra) roughness. 

In Figure 5.12, two graphs are constructed by plotting the arithmetical mean height of the 

surface and kurtosis of the coatings surfaces versus the surface ratio of the coatings and the sliding 

angle value obtained for these coatings is represented by the size of the circles. In these graphs, 

smaller circles which show coatings with higher water mobility are desirable. As previously 

mentioned, there is not a single surface roughness parameter that determines or predicts the wetting 

behavior of a surface. However, looking at a combination of the surface parameters that show the 

best correlation with the desired wetting behavior (i.e. lower sliding angle and higher mobility), it 

is possible to identify surface characteristics that seem to indicate improvement in surface wetting 

behavior. As seen in Figure 5.12 (a) and (b), there are areas (shown by dotted red ovals) in which 

most coatings with better water mobility are located. In both cases, it is clear from the graphs that 

larger surface ratios are favorable to achieve higher superhydrophobicity. Furthermore, it can be 
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concluded that a minimum height in terms of Sa is required to achieve the best result, whereas 

kurtosis values that deviate too much from normal distribution (i.e. Sku=3 which corresponds to 

similar number and height of valleys and peaks in the surface topography) are not desirable. 

 

 

Figure 5.11. (a) Arithmetic mean height of the surface (Sa) plotted against the surface ratio and 

(b) kurtosis (Sku) of the surface plotted against the surface ratio for all the coatings. The size of 

the circles is proportional to the value of the sliding angle of each coating, thus the smaller the 

circle the better the mobility of the coating. 
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Figure 5.13 schematically demonstrates some of the major conclusions of this study. As 

shown, finer grit-blasting of the surface prior to deposition results in more refined and more packed 

‘cauliflower-like’ surface features. Such surface micro-texture leads to improved water mobility 

i.e. small sliding angles. It is important to note that as previously mentioned both primary and 

secondary roughness features are essential for achieving desired wetting properties in the coatings. 

 

 

Figure 5.12. A schematic based on findings of this work that demonstrates how refinement of 

surface texture leads to improvement in water mobility of the surface. 

5.4.  Summary and Conclusion 

The effect of SPS process parameters including substrate roughness, suspension 

composition and solid content, plasma power, standoff distance and plasma gas velocity on wetting 

behavior and surface texture of TiO2 coatings was investigated. It is shown that plasma power, 

suspension composition and solid content and plasma gas velocity are the most influential 

parameters while grit-blasting size has a moderate effect. Plasma power improves the surface water 

mobility for both 10 wt% ethanol-based and water-based suspension coatings, whilst it has an 

opposite effect on 20 wt% ethanol-based suspension coatings. This is believed to be related to 

increased deposition efficiency at higher power and higher suspension solid content which results 

in larger surface features. Water-based suspension is not promising as it generates coatings without 

the needed hierarchical features. These features are shown to be critical to achieve both high 

surface water repellence and mobility. In addition to the presence of hierarchical features, the finer 

and more uniform these features are, the better the wetting behavior of the coatings, making some 

of them extremely superhydrophobic. Fine grit size during surface preparation has shown to be 

influential in generating finer and more packed surface textures. The two best coatings in this study 
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in terms of superhydrophobic performance were achieved using ethanol-based TiO2 suspension as 

feedstock deposited onto substrates grit-blasted with the finest grit size and with a plasma gun 

standoff distance of 50 mm. The best 10 wt% solid content suspension was deposited in high power 

condition (36 kW) while the best 20 wt% suspension was deposited in low power condition (25 

kW). Both these coatings showed extremely high water repellence and mobility manifested by 

contact angles larger than 165° and sliding angles smaller than 1.5°, respectively. The best coatings 

developed in this work are comparable to the best results reported in the literature [98,195] in terms 

of wetting properties.  
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Preface to Chapter 6.  

In the previous chapter, the parameters influencing the micro-texture and consequently 

wettability of SPS TiO2 coatings were studied and the optimized conditions within the operating 

window of the SPS system for achieving the highest degree of superhydrophobicity were 

determined. As these coatings are intended to be used for anti-icing applications, the next step is 

to investigate their performance in icing conditions. Additionally, as one of the main challenges of 

developing superhydrophobic surfaces for practical applications is the durability of such coatings, 

it is important to investigate their durability. Therefore, the next chapter is devoted to investigating 

the icing performance and durability of SPS TiO2 coatings. 
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Abstract 

Superhydrophobic coatings are a potential solution for mitigating the in-flight icing 

problem for aircraft. However, to develop a superhydrophobic coating which can be practically 

used for aircraft and that possesses sufficient durability is an ongoing challenge. In this work, 

superhydrophobic coatings are developed using suspension plasma spraying (SPS) as a flexible, 

versatile and scalable coating technique. The anti-icing and deicing performances of these SPS 

coatings are studied in icing wind tunnel experiments. Furthermore, the durability of these SPS 

coatings is tested in dry particle and cloud-sized water droplet erosion and icing/deicing cyclic 

tests. The capability of SPS superhydrophobic coatings to reduce ice accretion is comparable to 

that of commercial superhydrophobic coatings but perform better in deicing tests using heating. 

Additionally, compared to commercial superhydrophobic coatings, the SPS coatings demonstrate 

significantly better performance in dry particle and icing/deicing cyclic tests while showing 

comparable durability in cloud-sized water droplet erosion tests. It is also shown that in case of 

high intensity water erosion, when the superhydrophobicity of SPS coatings deteriorates, it can be 

restored using a simple and quick retreatment process due to the robustness of the hierarchical 

micro-textured TiO2 base coatings. 

Key words: Superhydrophobic coating, Suspension plasma spray, Icing, Durability 

                                                 
5 This chapter is to be submitted as an article to the Journal of Cold Regions Science and Technology. 
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6.1.  Introduction 

In-flight icing poses a major hazard to the safe and efficient operation of aircraft [241]. Ice 

accretion on various surfaces of aircraft causes an array of issues, including disturbance in 

aerodynamics, potential damage to external components and interference in the function of its 

sensors [16,18,242]. As a result, in-flight icing can cause a range of undesired consequences such 

as flight delays, emergency landings, damaged parts and increased energy consumption to deal 

with the icing problem [26]. The Federal Aviation Agency (FAA), have reported 319 icing-related 

accidents during the period of 1998-2007 [30]. Icing is estimated to cost around $96 million 

annually in terms of injuries and damage in the US only [15]. In addition, ice build-up on wind 

turbines and power lines due to super-cooled rain droplets can cause major problems [243,244]. 

In-flight icing occurs due to the presence of super-cooled water droplets i.e. water droplets 

with a temperature below their freezing point [4,27]. The accumulation of ice as a result of the 

impact of these droplets on the aircraft surfaces, progressively results in build-up of ice layers that 

can be as thick as several millimeters [17]. The rate and characteristics of the in-flight ice depend 

on a number of meteorological parameters. The first parameter is liquid water content (LWC) 

which is an indicator of the relative humidity in the cloud in terms of grams of water per cubic 

meter of air. The second parameter is the temperature of the ambient air and water droplets. The 

third parameter is the average size of water droplets in the cloud (this is expressed as median 

volumetric diameter-MVD). The typical icing risk conditions are reported in Table 6.1. 

Table 6.1. Icing risk conditions [26]. 

Parameter Icing risk conditions 

Liquid water content (of water in air) From 0.1 to 3 g/m3 

Temperature From +4°C to -40°C 

Droplet diameter (MVD) Usually from 1-50 μm but also up to 400 μm 

 

In-flight ice is often categorized into two distinct types [21]. The first type is called glaze 

or clear ice and typically forms at temperatures close to 0°C when the water droplets do not 

immediately freeze upon impact but run back and shed on the surface which results in a glassy, 

transparent, relatively smooth and dense ice. The second type of ice is called rime ice and forms 

at lower temperatures (typically -10°C and lower) when super-cooled water droplets freeze upon 
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impact with the substrate, creating a white, irregular ice. Out of these two types, glaze ice is 

considered to be potentially more dangerous due to its high adhesion and the fact that it can form 

on various regions of the surface rather than only the point of impact [24]. 

Various methods have been employed to deal with the icing problem including good 

weather forecasting, pilot training, optical ice detection systems and computer simulations [22]. 

Additionally, in-flight anti-icing and deicing systems based on heating or mechanical ice removal 

have been developed [28,29,31]. This approach can be effective in preventing ice accumulation on 

the leading edge. However, it is impractical to place heating elements or vibrators below all 

surfaces that are prone to icing on an aircraft. Therefore, efforts have been focused on using 

superhydrophobic coatings to prevent or delay ice formation or to reduce ice adhesion, in order to 

improve the efficiency of thermal and mechanical anti-icing and deicing systems [101,103,245]. 

Superhydrophobic coatings are surfaces with both high water repellency, manifested 

through water contact angles of greater than 150°, and high water mobility, manifested through 

contact angle hysteresis and/or sliding angles lower than 10° [193]. The extreme water repelling 

characteristic of a superhydrophobic surface is due to the combination of a relatively low surface 

energy and the presence of a hierarchical micro-texture i.e. a surface texture with both micron-

sized and nano-sized roughness [93]. Superhydrophobic surfaces have found potential applications 

where minimal interaction of a solid surface and a liquid is desired such as anti-icing [246], anti-

corrosion [247], drag-reduction [69] and drop-wise condensation [121].  

Studies have shown that ice formation can be efficiently delayed or even in certain 

conditions completely prevented on superhydrophobic surfaces [7,12,62]. This is because super-

cooled water droplets do not easily stick on a superhydrophobic surface and mainly bounce off 

and detach from it before freezing begins. The anti-icing capability of superhydrophobic surfaces, 

especially in the early stages of ice formation, is demonstrated frequently by comparing the onset 

of ice nucleation on superhydrophobic and non-superhydrophobic surfaces. However, some such 

icing experiments have been performed using relatively large and static water droplets [154,248] 

that do not necessarily represent in-flight icing conditions which involves water micro-droplets 

impinging on the surface with relatively high velocity. 

Furthermore, some studies have claimed that ice adhesion can be significantly reduced on 

superhydrophobic surfaces due to the formation of air pockets between the solid surface and ice 

[160,243,249]. However, on the contrary, some other studies have reported an increase in ice 
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adhesion due to the surface roughness which form a mechanical interlock with the ice [243,250]. 

These seemingly contradictory observations signify the importance of testing anti-icing 

performance of each novel superhydrophobic surface in icing conditions simulated in icing wind 

tunnels to resemble actual in-flight icing conditions. 

Another major challenge in developing new superhydrophobic coatings for anti-icing 

applications is their mechanical durability. Common low-surface-energy materials used to develop 

superhydrophobic coatings are organic or polymeric materials which typically suffer from poor 

mechanical durability, especially in terms of erosion resistance. Therefore, considerable efforts 

have been focused on developing techniques and tests to improve, quantify and compare durability 

of superhydrophobic coatings [38,251]. Consequently, it is crucial for all new superhydrophobic 

coatings developed using various surface engineering techniques to be tested for different aspects 

of mechanical durability such as water erosion, sand erosion and icing/deicing cycles. 

Recently suspension plasma spray (SPS) has been employed as a flexible (in terms of 

variety of materials that can be deposited), versatile and scalable coating techniques to develop 

superhydrophobic TiO2 coatings [224]. In addition, the SPS process has been optimized [252] to 

achieve very high water repellency and mobility. These coatings have shown water contact angles 

greater than 165°, water sliding angles as low as 1° and water contact angle hysteresis as low as 

3°. In this work, the best samples of these SPS coating have been selected and investigated for 

their icing performance and durability. Results are then compared to commercially available 

polymer-based superhydrophobic spray-on coatings in order to better demonstrate the 

characteristics of the SPS superhydrophobic coatings. 

6.2.  Methodology 

In this section, the coating deposition technique is briefly explained (more detailed 

explanations can be found in previous publications [196,224,252]), followed by two groups of 

tests designed to evaluate the icing performance and durability of the SPS TiO2 superhydrophobic 

coatings. 

6.2.1.  Coating Fabrication 

Coating samples were prepared using suspension plasma spraying of a titanium dioxide 

suspension feedstock onto 3 × 12 × 120 mm, grinded 304 stainless steel substrates. The feedstock 

suspension was prepared by mixing 10 wt% of titanium dioxide submicron sized particles (nominal 
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average particle size 500 µm, TKB Trading, US) into a solvent composed of a mixture of ethanol 

and ethylene glycol with a weight ratio of 4 to 1. Polyvinylpyrrolidone (PVP) was used as a 

dispersing agent in the suspension. Prior to deposition, the stainless steel substrates were grit-

blasted for cleaning and to increase coating adhesion. A 3MB plasma torch (Oerlikon Metco, 

Switzerland) was used with a mixture of argon and hydrogen as plasma gas. The total plasma gas 

flow rate was 60 l/min. The power of the plasma was set to 36 kW by fixing the plasma current to 

600 A, and adjusting the hydrogen flow rate so that the plasma power was 60 V. During the 

deposition, the plasma torch stand-off distance was 5 cm and the suspension feed rate was 55 

g/min. The robot that was used to move the plasma torch had a lateral speed of 1 m/s and a raster 

pattern with an overlap distance of 3 mm was used for deposition. After coating, the samples were 

cleaned with compressed dry air, decontaminated in boiling water and then isopropyl alcohol and 

finally treated with a solution of stearic acid in 1-propanol. A more detailed description of the 

development of these superhydrophobic titanium dioxide coatings and optimization of the process 

to achieve the high water repellency and mobility can be found in the authors’ previous articles 

[252]. The SPS TiO2 superhydrophobic samples are denoted as “SPS” throughout this paper. 

For comparison purposes, two commercial superhydrophobic products, NeverWet® (Rust-

Oleum, Canada) and Ultra-Ever Dry® (Ultratech International, USA) were used. These samples 

are denoted as “NW” and “UED” respectively throughout this article. Coatings were prepared on 

substrates similar to those used for preparation of SPS coatings and according to the manufacturer 

instructions. These additional samples were tested in the same conditions as SPS coatings to 

compare durability and performance. 

6.2.2.  Icing Tests 

Two groups of tests were used to evaluate the different superhydrophobic coatings. The 

first group of tests were designed to evaluate the icing performance of the samples and included 

ice accretion and heated deicing tests. The second group of tests were designed to evaluate the 

durability of the coatings. They included dry particle erosion, cloud-sized droplet erosion, high 

intensity water erosion and icing/deicing cyclic tests. All icing tests and droplet erosion and 

icing/deicing cyclic durability tests were carried out using a closed loop icing wind tunnel at 

Concordia University. A schematic of the icing wind tunnel is shown in Figure 6.1.  The test 

section of the wind tunnel has a square-shaped cross section with a width of 10 cm. The air velocity 

in the test section can reach a maximum of 45 m/s and the temperature of the air in the test section 
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can be reduced to a minimum of -20°C with an air velocity of approximately 10 m/s. It is important 

to note that the minimum operating temperature of the wind tunnel increases with increasing air 

velocity due to the decreased residence time of air in the chiller. The liquid water content in the 

test section can be varied between 0.2-1 g/m3.  

 

Figure 6.1. Schematic of the icing wind tunnel. 

The water droplets were injected into the air stream using an air atomizing spray nozzle 

placed after the fan. The size distribution and spray pattern can be adjusted using the air flow and 

water flow controllers. The spray of droplets in the test section was characterized using a phase 

Doppler particle analyzer (PDPA), and in all the tests performed, the spray had an LWC of 0.5 

g/m3 with a median volume diameter (MVD) of 30 µm [253]. For the spray, cold distilled water 

was used. For icing tests the water was maintained below 4°C to ensure super-cooled water 

droplets reach the test section. The placement of the spray nozzle at 1.14 m upstream ensured that 

the water droplets in the test section had approximately the same velocity and temperature as the 

air stream. Furthermore, the air stream velocity was measured using a Pitot tube probe and 

compared to the velocity of particles measure by PDPA to ensure that they were within 5% 

difference of each other.  

A schematic of the sample holder that was used in the icing wind tunnel for icing and water 

droplet impact tests is shown in Figure 6.2. The flexible heater shown in this schematic was used 

in the heated deicing tests. The details of these tests are discussed in the following sections. 

Motor & Fan

Chiller

Test Section

Air Flow

Spray
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Figure 6.2. Schematic of the sample holder used in the wind tunnel for icing and water droplet 

impact tests. 

6.2.2.1.  Ice Accretion Test 

Multiple sets of operating conditions were designed to represent various in-flight icing 

scenarios within the capabilities of the testing equipment. In all these conditions, the liquid water 

content (LWC) and median volume diameter (MVD) were 0.5 g/m3 and 30 µm, respectively which 

correspond to the icing risk conditions presented in Table 6.1. In the case of air stream velocity, 

two values were selected, one being the maximum capacity of the wind tunnel i.e. 45 m/s and the 

other one corresponding to a motor frequency of half of maximum power which gave 25 m/s. It is 

important to note that by increasing the air stream velocity, the water input was adjusted to ensure 

that the LWC value remained constant for all tests. In terms of temperature, two temperatures were 

selected, one slightly below the freezing temperature of water i.e. -3±1°C which typically results 

in formation of clear ice.  The other temperature was -10±1°C which was the maximum cooling 

capacity of the chiller at an air velocity of 45 m/s and typically causes the formation of rime ice. 

Except at the stagnation point/region, the impact of super-cooled water droplets on aerodynamic 

surfaces of aircraft is not perpendicular, therefore, samples were tested with both 90° and 45° angle 

of impacts to better represent the various surfaces of an aircraft. In order to better assess the delay 

in ice formation, the duration of each ice accretion test was 1 minute. The coupons were carefully 

weighed before and after each test to determine the weight of ice formed during the test. Each test 

was repeated 9 times for each sample. 
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Table 6.2. The wind tunnel operating condition. 

Variable Value(s) 

Air stream velocity (m/s) 23 and 45 

Air stream temperature (°C) -3 and -10 

Angle of impact [AoI] (°) 45 and 90 

LWC (g/m3) 0.5 

MVD of water droplets (µm) 30 

 

6.2.2.2.  Heated Deicing Tests 

To evaluate the potential contribution of superhydrophobic coatings to the deicing process 

using heating, a flexible flat heating element was placed under the coupons (Figure 6.2). Then each 

sample was exposed to the harshest icing condition given in Table 6.2 for 1 minute. Then the spray 

was stopped while the rest of the operating parameters were kept constant. Then the sample was 

turned 45° so that the surface of the sample was at a diagonal with respect to the direction of the 

air stream before heating began. This step was necessary because if the sample was left 

perpendicular to the air direction, after heating the ice that is in direct contact with the substrate 

would melt, causing a gap between the remainder of the ice and the substrate surface which 

resulted in the layer of ice remaining intact. The heater under the sample was turned on with 24 W 

electrical power. The time necessary for complete ice removal was measured as the deicing time. 

It is important to note that in some cases, complete ice removal meant that the ice was completely 

melted, and in some cases after melting the layer close to the substrate surface, the remainder of 

ice would fly away from the test coupon. Both these conditions were accepted as the ultimate 

condition of ice removal. 

For any icing condition, if enough heat input is given to the substrate, it is possible to 

maintain its surface free of ice. Consequently, another test was designed to measure the heat input 

required to maintain an ice-free surface. In this test, similar to the deicing test, a heater was 

positioned under the samples and they were fixed in the wind tunnel with the water spray closed. 

The heater was turned on and enough time was given for the temperature profile to reach steady 

state. The steady state was ensured by placing a small thermocouple under the samples, between 
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the heater and the samples. When this thermocouple showed a constant temperature i.e. steady 

state condition was achieved, the spray was started. If ice started to form on the surface of the 

sample, the test was stopped, the sample was deiced, dried and the test was repeated with a heat 

input 1 W higher than the previous run. If no ice had formed on the sample, the same process was 

repeated with a 1 W decrease in heating. Using a trial and error method, the minimum electrical 

power required to maintain an ice-free surface was measured and reported for each coating as well 

as for an uncoated sample. 

6.2.3.  Durability Tests 

Four different tests were used to evaluate the durability of the superhydrophobic coating 

including dry particle erosion, cloud-sized water droplet erosion, high intensity water erosion and 

icing/deicing cyclic tests. These tests were designed to measure the deterioration of 

superhydrophobic behavior of the coatings after being exposed to erosive and destructive factors. 

The superhydrophobicity of samples was evaluated based on measurement of static contact angle 

(CA), contact angle hysteresis (CAH) and sliding angle (SA) of water on the surface. These wetting 

characteristics were each measured using an in-house setup, using a camera, a tilting surface which 

could be tilted with the precision of 1° and an automatic droplet dispenser. The CA and SA were 

measured using a 10 µL droplet of distilled and deionized water. For measuring advancing and 

receding contact angles (ACA and RCA respectively), an inflating/deflating droplet technique was 

used with the size of the droplet changing between 5 and 10 µL. The CAH was calculated as the 

difference between ACA and RCA values. An open source plug-in [212,213] to the image analysis 

software ImageJ was used to analyze the images and determine the contact angles. 

6.2.3.1.  Dry Particles Erosion Test 

For evaluating the resistance of superhydrophobic coatings to solid particle erosion, a 

technique which is frequently used in literature [38,251,254–256] was employed. In this test, a 

fixed amount of abrasive particles, in this case 5 g of aluminum oxide particles (particle size of 

125 μm) was poured onto the surface of the coatings from a fixed distance of 30 cm. The samples 

were placed at a 45° angle with respect to falling particles to ensure that particles move away from 

the point of impact. Erosion occurs due to the impact of falling particles accelerated only due to 

gravity. Afterwards, the surface of the samples was cleaned using compressed air and CA, CAH 

and SA of the samples were measured. This cycle was repeated 5 times for each sample. 
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6.2.3.2.  Cloud-Sized Water Droplet Erosion Test 

To evaluate the resistance of coatings to water droplet impact, similar to what happens in 

flight conditions, the samples were exposed to a spray of cloud-sized droplets inside the wind 

tunnel. This test was performed at room temperature with an air stream velocity of 45 m/s and a 

droplet MVD of 150 µm with a perpendicular angle of impact for a duration of 5 minutes for each 

cycle. It must be noted that the 150 µm droplet size used in this test is considerably higher than 

the cloud droplet size (typically MVD = 1-50 µm). This droplet size was selected to reduce test 

times since it would take a long time for 50 µm droplets to cause noticeable deterioration. After 

each cycle, the samples were removed from the test section, dried using compressed air and CA, 

CAH and SA of the coatings were measured and reported. 

6.2.3.3.  High Intensity Water Erosion Test 

A high intensity water erosion rig with a rotating disk was used for this test. This rig was 

originally designed for testing erosion resistant coatings according to ASTM G73 standard 

[221,257]. The resulting erosion aggressiveness is far more severe than water erosion conditions 

encountered in flight conditions. Indeed, water erosion rate is directly proportional to the mass and 

velocity of impacting water droplets [258]. In this work, the water erosion rig was used at its least 

intense setting with water droplets with an average diameter of 260 μm and impact velocity of 200 

m/s. For an aircraft flying though clouds, which typically happens after takeoff and before landing, 

the speed is between 80-120 m/s and the droplet size in clouds is typically 5 – 50 μm [5]. Therefore, 

the kinetic energy of water droplets upon impact is at approximately three orders of magnitude 

higher in this test compared to in-flight conditions. However, it must be noted that an aircraft 

sometimes needs to fly though rain droplets which are larger than cloud-sized droplets but their 

impact on the surfaces of aircraft occurs with smaller velocities. Therefore, it is reasonable to 

assume that the type of erosion occurring during this high intensity water erosion test can be of the 

similar magnitude to the erosion from raindrops due to similar impact energy. Additionally, this 

test can be seen as an accelerated indicator of durability of superhydrophobic surfaces exposed to 

water droplet erosion. The minimum duration of the test with repeatable and consistent conditions 

was 5 seconds but the test was repeated for durations of 10, 20, 60, 300 and 12000 seconds as long 

as the coatings survived. After exposing the samples to this test, the samples were visually 
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inspected and the wetting behavior of the samples was tested. Finally, micrographs of the eroded 

regions were prepared using SEM to study the wear damage. 

6.2.3.4.  Icing/Deicing Cyclic Test 

To evaluate the durability of the coatings exposed to repetitive icing/deicing cycles, only 

the harshest icing condition i.e. highest air velocity and 90° angle of impact at -10°C was selected. 

The samples were exposed to this condition for a duration of 1 min, removed from the test section 

and then heated using a heat gun until the ice was fully molten. The samples were then dried using 

compressed air, and the SCA, CAH and SA of the samples were measured. This cycle was repeated 

multiple times for each sample. The total number of icing/deicing cycles was selected individually 

for each sample based on the observed changes in their corresponding wetting properties. It is 

important to note that the 1 minute duration of the test was selected due to the fact that any longer 

duration for each run was not expected to have a significant effect because as soon as a complete 

layer of ice forms on the surface, the impinging droplets will impact on the ice layer rather than 

the actual surface of the samples. 

6.3.  Results and Discussion 

After measuring the “as prepared” wetting behavior, SEM micrographs of the SPS and 

commercial spray-on coatings were recorded (Figure 6.3). The difference between the surface 

micro-texture of the SPS coating in comparison to the commercial polymeric coatings is clearly 

seen. While the commercial coatings have a single scale surface roughness and mainly rely on 

their surface chemistry to deliver the superhydrophobic behavior, the SPS coating has a distinct 

hierarchical surface micro-texture which, in combination with the surface treatment for lowering 

the surface energy, results in superhydrophobic behavior of this type of coating. It has been 

demonstrated [224,252] that SPS coatings without the hierarchical micro-texture do not 

demonstrate the same extreme water repelling behavior as hierarchical coatings. 
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Figure 6.3. SEM micrographs of: (a) top and (b) cross-section of SPS coating; (c) UlterEver Dry 

coating; and (d) NeverWet coating. 

6.3.1.  Icing Tests 

6.3.1.1.  Ice Accretion Test 

To evaluate the icing performance of the SPS superhydrophobic coatings in various 

conditions, a total of eight sets of icing parameters were selected as explained in the experimental 

section. For each set of icing conditions, the experiment was carried out nine times and the average 

value for ice accretion in terms of mass of ice is reported. The results for each case are compared 

to the results for an uncoated substrate. The ice accretion test results, reported in Table 6.3 show 

that the SPS superhydrophobic coating decreases the amount of accumulated ice in all tested icing 

conditions by providing delay in the ice formation. The reduction of ice accretion ranges from 13 

to 62 percent depending on the conditions. The highest decrease is observed for 23 m/s (lower) air 

velocity, -3°C (higher) temperature and an angle of impact of 45° which corresponds to glaze ice 

formation. This is expected as in temperatures closer to the freezing point, there is less chance of 
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water droplets freezing immediately upon impact and the 45° angle of impact facilitates the 

removal of droplets by the oncoming air flow (similar to the majority of aerodynamic surfaces of 

aircrafts). 

In general, according to Table 6.3, the effect of a superhydrophobic coating on decreasing 

ice accretion is more pronounced at -3°C when glaze ice typically forms compared to -10°C when 

rime ice typically forms. This is because droplets with a relatively higher temperature stay liquid 

for a longer time and there is more chance of them being removed by the air stream due to the 

superhydrophobic behavior of the coating. This is potentially a benefit since as was mentioned in 

the introduction, glaze ice is typically considered to be more hazardous compared to rime ice. 

Furthermore, according to Table 6.3, the decrease in ice accretion is larger for all cases 

when impact occurred at 45° compared to 90°. This is expected as the tilted surface allows more 

efficient removal of water droplets by the air stream and reduces freezing on the surface. At this 

point it should be noted that aircraft surfaces are normally curved and normal impact occurs around 

the stagnation point. Therefore the 90° angle of impact can be considered the worst-case scenario. 

It is reasonable to expect a more efficient decrease in icing for an aerodynamic shape such as an 

airfoil [253]. 
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Table 6.3. Ice accretion test results. For all conditions, LWC = 0.5 g/m3, MVD = 30 μm and test 

duration was 60 s. [St. Dev. = standard deviation; Est. Unc. = estimated uncertainty calculated 

using the root of the sum of the squares RSS] 

Condition 

Air 

Stream 

Velocity 

(m/s) 

Air Stream 

Temperature 

(°C) 

Angle 

of 

impact 

(°) 

Type 

of ice 

Ice 

accretion 

on uncoated 

sample (g) 

[± St. Dev.] 

Ice 

accretion 

on SPS 

sample (g) 

[±St. Dev.] 

Icing 

decrease 

(%) 

[±Est. 

Unc.] 

1 23 -3 45 Glaze 0.98 ±0.02 0.37 ±0.04 62 ±5 

2 23 -3 90 Glaze 0.96 ±0.02 0.49 ±0.02 49 ±3 

3 23 -10 45 Rime 1.12 ±0.02 0.51 ±0.02 54 ±3 

4 23 -10 90 Rime 1.3 ±0.02 0.87 ±0.03 33 ±4 

5 45 -3 45 Glaze 0.97 ±0.02 0.43 ±0.03 55 ±4 

6 45 -3 90 Glaze 1.11 ±0.03 0.54 ±0.02 51 ±4 

7 45 -10 45 Rime 1.49 ±0.02 0.84 ±0.02 43 ±3 

8 45 -10 90 Rime 1.83 ±0.04 1.58 ±0.04 13 ±9 

 

The effect of air stream velocity is more complex than the previous two parameters. Since 

doubling the air stream velocity value while keeping all other parameters constant means that the 

number of droplets coming towards the surface has also doubled; one might expect to observe a 

significant increase in ice accretion. However, this is not the case according to Table 6.3. For both 

uncoated and coated samples, the increase in the mass of ice for doubling the air velocity is 

relatively small and in a couple of cases this increase is negligible. To explain this observation, it 

is necessary to consider the aerodynamic characteristics of the test section and the samples. Since 

the samples in this test are all flat, in the case of 90° angle of impact, a strong stagnation region in 

the air flow is created. In both 45° and 90° angle of impact conditions, all droplets coming towards 

the surface of the samples do not necessarily impact on the surface and a number of them, 

especially the smaller droplets, are deviated by the air flow going around the sample. Increasing 

the velocity of the air stream can amplify this phenomenon which can explain why the ice accretion 

is not significantly increased by doubling the air stream velocity. 
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To compare the effect of the SPS superhydrophobic coating on decreasing icing with 

commercial superhydrophobic coatings, samples of the two commercial coatings were prepared 

and tested in two icing conditions (Conditions 1 and 8 in Table 6.3). The results are compared with 

the uncoated sample in Figure 6.4. This figure shows that, in these two icing conditions, all three 

superhydrophobic coatings decrease the ice accretion. The SPS coating shows slightly better 

performance in Condition 1 whereas, in Condition 8 the inverse is observed but the difference 

between the three coatings is smaller. 

 

Figure 6.4. Ice accretion test comparison for uncoated sample versus the SPS, and the two 

commercial (NW and UED) coatings. (The error bars represent standard deviation) 

6.3.1.2.  Heated Deicing Tests 

To study the effect of superhydrophobic coating on deicing time using heating, the three 

superhydrophobic coatings were put in icing Condition 8 for one minute. Afterwards, the water 

spray was stopped, and the sample was tilted to a 45° angle relative to the air stream. The electrical 

heating element underneath the sample was then turn on to a power of 24 W. The time for the 

samples to become completely ice-free was measured and is reported in Table 6.4. For all three 

superhydrophobic coatings, the deicing time was significantly shorter than that of the uncoated 

sample. One important observation is that for the three superhydrophobic surfaces, the ice-free 

surface was achieved due to detachment of the ice at some point after heating started, but for the 

uncoated sample, the ice-free surface was achieved by melting all the ice on the surface. 
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Furthermore, the SPS superhydrophobic coating demonstrated the shortest deicing time compared 

to the other two commercial coatings. This can be attributed to the fact that the commercial coating 

are several hundreds of micrometers thick layers of polymer that act as a thermal insulator, 

delaying the heating of the interface of ice and sample. The SPS coating on the other hand is only 

10-20 µm thick and TiO2 has a thermal conductivity considerably larger than most polymers, and 

therefore, the thin SPS coating is not a significant barrier to heating the interface and therefore 

deicing is faster for it. 

Table 6.4. Deicing time of each sample for 24 W heating power. [St. Dev. = standard deviation; 

Est. Unc. = estimated uncertainty calculated using the root of the sum of the squares RSS] 

Sample 
Deicing time (s) 

[± St. Dev.] 

Improvement (%) 

[± Est. Unc.] 

Uncoated 173 ± 8 -- 

SPS 34 ± 4 80 ± 5 

NW 58 ± 3 66 ± 5 

UED 47 ± 3 73 ± 5 

 

To further study the effect of a superhydrophobic surface on deicing, another experiment 

was designed to determine the minimum electrical power required to maintain an ice-free surface 

for various samples. This experiment was performed in 23 m/s air stream velocity and -3°C air 

temperature with two 45° and 90° angle of impact (Conditions 1 and 2 in Table 6.3 respectively). 

The results are reported in Table 6.5. For all three superhydrophobic coatings, less electrical heat 

input was required to maintain an ice-free surface compared to the uncoated sample. It is 

noteworthy that the SPS coating in both conditions requires the least amount of heat to maintain 

an ice-free surface. As discussed above, this can be attributed to the thickness of the coatings and 

the fact that the relatively thicker polymeric coatings act as a thermal barrier, requiring more power 

to increase the surface temperature to a level sufficient for preventing ice formation.  
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Table 6.5. Minimum electrical power required to maintain an ice-free surface at two angles of 

impact (AoI). 

Sample 

AoI = 90° AoI = 45° 

Power (W) Improvement (%) Power (W) Improvement (%) 

Uncoated 36 -- 24 -- 

SPS 30 17 16 33 

NW 33 8 20 17 

UED 33 8 21 13 

 

 

It is important to note at this point that overall, we can see that superhydrophobic coatings 

can contribute to mitigating the icing by reducing ice accretion, reducing the deicing time and 

reducing the heat required to maintain an ice-free surface. The performance of the SPS coating in 

decreasing ice accretion is similar to the commercial spray superhydrophobic coatings. However, 

the SPS coating has lower deicing time and requires less heat input to maintain an ice-free surface 

compared to both commercial polymeric superhydrophobic coatings. This difference is mainly due 

to the thickness of the polymeric coatings which causes them to act as a barrier to the heating from 

underneath the surface of the samples. Now that it has been established that the SPS coating 

performs positively in mitigating the icing and improving deicing, in the next sections its durability 

and mechanical performance are studied and compared to the commercial superhydrophobic 

coatings. 

6.3.2.  Durability Tests 

6.3.2.1.  Dry Particle Erosion Test 

The first set of durability tests were designed to evaluate the dry particle erosion resistance 

of the superhydrophobic coatings. The change in wetting characteristics of the coatings after 

multiple iterations of the dry particle erosion test is shown in Figure 6.5. 

According to Figure 6.5, the SPS coating shows significantly better durability in this test. 

The CA of the SPS coating does not change significantly even after five repetitions of this test. 

Furthermore, the SPS coating still shows a reasonable water mobility after five iterations of the 
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test with a SA of below 10° and a CAH of below 20°. This is in contrast with both commercial 

coatings that quickly deteriorate and lose their superhydrophobic behavior after a few iterations of 

the test. Indeed, as shown in Figure 6.5, the CA of both commercial coatings drops to below 150° 

after two iterations. More importantly, both commercial coatings lose their water mobility (having 

CAH of more than 60°) and a water droplet pins on their surface i.e. no sliding occurs, after only 

one iteration. 
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Figure 6.5. Change in CA, CAH and SA of different coating per accumulated mass of erosive 

particles [error bars represent standard deviation]. 
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The significant difference between the SPS coating and the commercial polymer coatings 

in terms of dry particle erosion is due to the relatively soft nature of the polymeric coatings. This 

allows for the erosive particles to not only remove material from the surface of the coating and 

damage the coating microtexture, but also for especially smaller particles, to penetrate the coating 

and adhere to the surface. This penetration and embedding of small alumina particles in the 

polymeric coatings was observed using optical microscopy. These microscopic particles result in 

a rapid deterioration of superhydrophobic characteristic of the polymeric coatings. On the other 

hand, the SPS coating, made of TiO2, is significantly harder and more resistant to penetration of 

abrasive particles. Thus, most abrasive particles are removed easily by the compressed air. 

6.3.2.2.  Cloud-Sized Water Droplet Erosion Test 

In the next step of durability testing, the water droplet erosion resistance of the 

superhydrophobic coatings was evaluated. It worth noting that these droplets are five times larger 

in diameter than the droplets used in the icing test (i.e. MVD = 30µm). This droplet size is 

considerable larger than the water droplets that impact on the surfaces of the aircraft while passing 

through clouds in icing conditions. However, they can reasonably represent larger rain droplets 

that impact onto the aircraft surface in lower altitudes. As mentioned before, these droplets were 

characterized using the PDPA laser system which revealed their velocity to be close to 45 m/s just 

before the impact on the substrate. This velocity is roughly half of the velocity of a passenger 

aircraft when it passes through the clouds. 

The change in CA, SA and CAH of the coatings after multiple iterations of the cloud-sized 

water droplet erosion test is shown in Figure 6.6. It is clear that out of the three samples, the UED 

commercial coating is more resistant to water droplet erosion. The change in wetting 

characteristics of the SPS coating is very close to the NW commercial coating. The deterioration 

in superhydrophobic properties of the SPS coating occurs mainly due to gradual removal of the 

thin stearic acid layer from the surface which will be discussed further in the following paragraph. 

This stearic acid is extremely thin and transparent and therefore it is very difficult to give an exact 

value for its thickness. 



112 

 

 

Figure 6.6. Change in CA, CAH and SA of different coatings per exposure time to 150 μm 

cloud-sized water droplet impacts at 45 m/s [error bars represent standard deviation]. 



113 

 

 

There are two important points to consider regarding the cloud-sized water droplet erosion 

results. First, attempts to increase the thickness of the stearic acid treatment and consequently 

improving its durability can cause negative side effect since a relatively thick layer of stearic acid 

covers some of the hierarchical features of the coating micro-texture and results in reduced contact 

angle and water mobility of the coating. Second, an advantage of the SPS coating compared to the 

commercial coatings is that after the superhydrophobicity of the SPS coating has been reduced due 

to water erosion, a simple and quick retreatment by stearic acid solution immediately recovers the 

CA, SA and CAH to their initial values as demonstrated in Figure 6.6 This was experimentally 

demonstrated. This is in contrast to the commercial polymeric coatings where after the coatings 

are damaged, the surface needs to be cleaned of the remaining coating and then the coated again. 

This advantage is because while the stearic acid layer is removed by cloud-sized droplet erosion, 

the bulk of the TiO2 base coating remains intact with its hierarchical micro-texture remaining 

unaffected by the water droplet erosion. On the contrary, when the wetting behavior of the 

commercial superhydrophobic coatings deteriorate, it is due to damage to the bulk of the coating. 

6.3.2.3.  High Intensity Water Erosion Test 

To verify that the bulk of the SPS coating is more resistant to water droplet erosion, a high 

intensity water erosion test was designed and performed on all coatings. As detailed in 

Methodology section, this test was performed using a test setup specifically designed to test water 

erosion resistant coatings. Noting that even the mildest setting of this specific test was too erosive 

for the superhydrophobic coatings, this least intensive condition with MVD = 260 μm droplet size 

and 200 m/s droplet impact velocity was used. 

The results of high intensity water erosion are demonstrated in Figure 6.7. It is also 

noteworthy that the shortest duration of test possible while having consistent and repeatable impact 

results was 5 seconds. As demonstrated in Figure 6.7, both commercial spray-on coatings failed 

completely even for this 5 second test i.e. the coatings were completely removed at the line of 

impact and the surface of the substrates were completely visible. The SPS coating lost its 

superhydrophobicity with its CA dropping to below 120°, no sliding and CAH increasing to larger 

than 40° after the 5 second test. However, no considerable loss of coating mass was observed for 

the SPS coating after 5, 10 and 20 seconds of testing and the first considerable loss of mass which 

was approximately 3% occurred after 60 seconds of testing. After each step of this test, the SPS 
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samples were retreated with stearic acid solution and their CA, SA and CAH was re-measured. It 

was observed that for the samples exposed to the erosion test up to 60 second, the 

superhydrophobic characteristics would completely recover after retreatment by stearic acid 

solution. The SPS samples that were exposed to the erosion test for longer than 60 seconds did not 

recover their original wetting values after retreatment and the coatings would show reduced water 

mobility. This was due to physical removal of coating material and damage to the hierarchical 

micro-texture of the coatings. 

SEM micrographs of the surface of the coating after 120, 300 and 600 seconds is 

demonstrated in Figure 6.7 (b), (c) and (d) consecutively. It can be seen in Figure 6.7 (b) that the 

cauliflower-like features of the coating are mainly removed in the initial stages of the coating 

erosion. Although at this point only around 20% of the mass of the coating has been removed, 

since the hierarchical micro-texture of the surface is lost, the coating cannot regain 

superhydrophobicity even after retreatment. 
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Figure 6.7. (a) Percent of coating material removed versus time in high intensity water erosion 

test. (b), (c) and (d) SEM micrographs of SPS coating after 120, 300 and 600 seconds, 

respectively. 

In Figure 6.7 (c) it is observed that the bulk of the SPS coating is gradually removed and 

in some regions the steel substrate is visible after 300 seconds and more. In Figure 6.7 (d), mainly 

the substrate is visible and only small fractions of the coating material can be observed at some 

spots. As mentioned before the SPS coating remains almost completely intact after 20 seconds 

with the hierarchical micro-texture preserved and it loses only 3% of its mass after 60 seconds. On 

the other hand, complete failure of both commercial spray coatings occurs faster than the shortest 

testing duration which is 5 seconds. It can be concluded that the bulk of the SPS coating is at least 

an order of magnitude more resistance to water erosion in this test than the commercial 

superhydrophobic spray coatings. 
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6.3.2.4.  Icing/Deicing Cyclic Test 

The last test was designed to evaluate the durability of the superhydrophobic coatings to 

repeated cycles of icing and deicing. As detailed in methodology section, this test involved forming 

ice on the surface of the coatings in the wind tunnel for the duration of one minute, then deicing 

and drying using a heat gun. This cycle was carried out in groups of ten repetitions after which the 

wetting characteristics of the coating were re-evaluated. Changes in the wetting characteristics of 

the coatings after exposure to multiple cycles of icing/deicing are demonstrated in Figure 6.8. It 

was observed that the superhydrophobic characteristics of the polymeric commercial coatings 

deteriorate quite rapidly after being exposed to multiple icing and deicing cycles. In fact, both NW 

and UED coatings show a quick drop in CA value and a sharp increase in SA and CA hysteresis 

after 10 icing/deicing cycles.  

In contrast, the SPS superhydrophobic coating shows almost no significant deterioration of 

properties after 50 icing/deicing cycles. The main contributor to this significantly different 

behavior can be the fact that as water droplets freeze on the surface of the polymeric coatings, the 

change of volume of the ice causes damage to the surface of the relatively soft polymeric coatings. 

On the other hand, the SPS TiO2 coating’s micro-texture remains unaffected due to the higher 

hardness and stiffness of TiO2.  
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Figure 6.8. Change in SA and CAH of samples after multiple icing/deicing cycles [error bars 

represent standard deviation]. 
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It was observed in the durability tests that the SPS coating is considerably more resistant 

to dry particle erosion and cyclic icing/deicing in comparison to both commercial 

superhydrophobic coatings. While in both of these tests the SPS coating preserves its 

superhydrophobic properties, the commercial coatings lose their properties and become sticky. 

Regarding the water erosion cloud-sized droplet test, it was demonstrated that the SPS coating 

performs similar to the NW commercial coatings while the UED commercial coating showed 

somewhat more resistance. However, it was demonstrated that the SPS coating has an advantage 

in terms of reparability. This is because the hierarchical micro-texture of the SPS TiO2 remains 

intact and is at least an order of magnitude more erosion resistant compared to the bulk of the 

commercial coatings when tested in high intensity erosion resistance tests. As long as the 

hierarchical micro-textured TiO2 is preserved, the coating can be simply re-treated with the stearic 

acid solution to regain its superhydrophobicity. This is in contrast to the commercial polymeric 

coating that if damaged, need to be completely removed, cleaned and recoated. 

6.4.  Summary and Conclusions 

In this work, a superhydrophobic coating was prepared by suspension plasma spraying 

(SPS) of a TiO2 feedstock suspension onto grit-blasted substrates to generate a hierarchically 

micro-textured surface. The coating was then treated with a solution of stearic acid to lower its 

surface energy which resulted in superhydrophobic behavior with a contact angle (CA) as high as 

170°, a sliding angle (SA) of 1° and a contact angle hysteresis of 4°. This coating was tested to 

evaluate its potential performance in mitigating in-flight icing under simulated icing conditions in 

a wind tunnel. The results are then compared to two different commercial, polymer-based 

superhydrophobic spray coatings. Additionally, since durability and especially erosion resistance 

are a major challenge in preparing superhydrophobic coatings for practical applications and more 

specifically anti-icing for aircraft; these coatings are tested for their erosion resistance and cyclic 

icing/deicing durability. 

Regarding the icing tests, it is found that the SPS coatings has a positive effect in decreasing 

the ice accretion and its performance in this case is similar to the performance of commercial 

superhydrophobic coating. However, in terms of facilitating heated deicing using an electrical 

heater placed under the samples, the SPS coating decreases both the deicing time and the electrical 

power required to maintain an ice-free surface more than the commercial coatings. This is mainly 



119 

 

attributed to the fact that the commercial polymeric coatings are relatively thick and act as a barrier 

to heat transfer as opposed to the relatively thin SPS coating which significantly reduces this effect. 

Regarding the durability tests, the SPS superhydrophobic coating demonstrated 

significantly better resistance to dry particle erosion compared to the two commercial coatings. 

This is due to the fact that the commercial polymer coatings are relatively soft and permit the sharp 

microscopic abrasive particles to penetrate into and adhere to the surface, causing a rapid 

deterioration of superhydrophobic behavior. On the other hand, the SPS coating is significantly 

more resistant to penetration and damage by abrasive particles due to the harder and stiffer TiO2 

ceramic. Furthermore, the SPS coatings also show significantly more durability after being 

exposed to multiple icing/deicing cycles. This considerable difference is once more attributed to 

the softer nature of polymer coatings compared to the harder and stiffer SPS TiO2 coatings. 

In terms of cloud-sized water droplet erosion, the SPS coating shows a behavior similar to 

one of the commercial coatings, the NeverWet (NW), while the other commercial coating, 

UltraEver Dry (UED) demonstrates slightly better resistance to water droplet erosion. However, it 

is very important to note that the SPS superhydrophobic coating present a potentially beneficial 

feature compared to both commercial coatings due to the fact that the hierarchical micro-texture 

and the bulk of the SPS coating remain intact after being exposed to extended water droplet 

erosion. This permits a quick and easy recovery of superhydrophobicity of the SPS coating using 

a simple retreatment with the stearic acid solution. This is in contrast to the commercial polymeric 

coating which, if damaged, requires complete removal, cleaning and recoating to be used again. 

The durability of the hierarchical micro-texture of the SPS TiO2 is demonstrated through a high 

intensity water erosion test. In this test, the SPS coating was shown to be at least one order of 

magnitude more durable in intensive water erosion. The collection of the results and conclusions 

presented here suggest that the SPS superhydrophobic coatings could be a very efficient and rather 

durable candidate to be used for anti-icing protection on aircraft. 
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Chapter 7.  Conclusions, Contributions and Recommendations 

7.1.  Summary and Conclusions 

The main objective of this work was to develop a scalable and durable superhydrophobic 

coating using thermal spray process that could be used as an anti-icing application for aircraft and 

to mitigate the in-flight icing problem. The methodology of the research was based on the fact that 

a combination of a hierarchical micro-texture and a low surface energy is required to achieve 

superhydrophobicity. Thermal spray processes were selected as they operate in atmospheric 

conditions, are scalable and can be applied onto large surfaces, and are capable of depositing 

almost all engineering ceramics and metals. 

Initially, the atmospheric plasma spray technique (APS) was used to deposit TiO2 micro-

textured coatings. The coatings were later treated by a stearic acid solution to lower their surface 

energy and making them hydrophobic. While all APS coatings demonstrated relatively high water 

repellency after treatment, all coatings showed low water mobility. Furthermore, it was 

demonstrated that relatively low deposition temperature (but still high enough to melt the particles) 

and relatively higher particle velocity contributed to increasing the hydrophobicity of the coatings. 

Despite relatively high water repellency, i.e. water contact angles as high as 141°, a water droplet 

would pin on their surface with limited water mobility. This was attributed to the relatively large 

and random roughness features resulted from the use of relatively large (typically between 10-100 

μm in diameter) feedstock powder in the APS technique which caused coarse surface micro-

texture. This surface was not efficient enough to create a superhydrophobic surface after treatment 

for lowering the surface energy. Consequently, in order to achieve finer micro-textures, the 

suspension plasma spray (SPS) technique was selected as an alternative. 

The SPS coatings generated from both water-based and ethanol-based suspension 

feedstocks demonstrated significantly higher water mobility and consequently 

superhydrophobicity compared to the APS coatings. However, the coating generated using the 
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ethanol based suspension demonstrated even higher water repellence and mobility manifested 

through water contact angles higher than 165° and water sliding angle lower than 2°. SEM 

investigations revealed that the use ethanol-based suspension resulted in a coating that has two 

scales of surface roughness; a primary micron-sized and a secondary submicron-sized roughness. 

This hierarchical surface micro-texture was found to be the main reason for the high 

superhydrophobicity of this coating. Additionally, the water repelling behavior of the SPS coatings 

were compared to that of the lotus leaf as a natural superhydrophobic surface and a nano-grass 

superhydrophobic coating developed by researchers. The SPS coatings showed high water 

mobility in terms of having coefficient of restitutions comparable to that of the lotus leaf and the 

nano-grass coating. 

Subsequently, a matrix of experiments was designed to study the effect of various 

parameters on morphology and superhydrophobicity of the SPS TiO2 coatings. It was 

demonstrated that by carefully designing and controlling the process parameters, one can generate 

relatively fine and uniform dual-scale (hierarchical) surface textured coatings that after treatment 

for lowering their surface energy, show significantly improved water repellence and water mobility 

with water contact angles as high as 170° and sliding angles as low as 1.3°. Additionally it was 

shown that both scale levels of surface textures (i.e. micron-scale and nanoscale) are essential for 

having simultaneously improved water repellence and mobility. 

Subsequently, the anti-icing and deicing performances and the durability of the 

superhydrophobic SPS coatings were studied and the results were then compared to two 

commercially available superhydrophobic polymeric spray coatings. Regarding the icing tests, it 

was found that the SPS coating decreases the ice accretion between 13 to 62 percent depending on 

the icing conditions. Moreover, in terms of facilitating heated deicing, the SPS coating decreases 

both the deicing time and the electrical power required to maintain an ice-free surface more 

compared to the commercially available spray-on coatings. This is mainly attributed to the fact 

that the commercial polymeric coating are relatively thick layers that act as a barrier to heat transfer 

as opposed to the relatively thin SPS coating which significantly reduce this effect. 

Regarding the durability of the coating, the SPS superhydrophobic coating demonstrated 

significantly better resistance to dry particle erosion compared to the two commercial coatings. 

Furthermore, the SPS coatings also show significantly more durability after being exposed to 

multiple icing/deicing cycles. This considerable difference is once more attributed to the softer 
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nature of polymer coatings compared to the harder and stiffer SPS TiO2 coatings. In terms of cloud-

sized water droplet erosion, the SPS coating shows a behavior similar to one of the commercial 

coatings, the NeverWet (NW), while the other commercial coating, UltraEver Dry (UED) 

demonstrates slightly better resistance to cloud-sized water droplet erosion. However, it is very 

important to note that the SPS superhydrophobic coating presents a potentially beneficial feature 

compared to both commercial coatings due to the fact that the hierarchical micro-texture and the 

bulk of the SPS coating remains intact after being exposed to extended water droplet erosion. This 

permits a quick and easy recovery of superhydrophobicity of the SPS coating using a simple 

retreatment with the stearic acid solution. The durability of the hierarchical micro-texture of the 

SPS TiO2 is demonstrated though a high intensity water erosion test. In this test the SPS coating 

is shown to be at least one order of magnitude more durable in intensive water erosion.  

The collection of the results and conclusions presented here suggest that the SPS 

superhydrophobic coatings could be a very efficient and more durable candidate to be used for 

anti-icing protection on aircraft as commercial alternative coating solutions.  

7.2.  Contributions 

The main contributions of this research can be summarized as follows. 

 Hierarchically micro-textured TiO2 coatings were developed using a suspension 

plasma spray (SPS) technique that, after treatment for lowering their surface 

energy, demonstrate superhydrophobicity with contact angles as high as 170°, 

sliding angles as low as 1° and contact angle hysteresis as low as 4°. 

 A parametric study was used to optimize process parameters for controlling and 

engineering coating micro-texture and it was determined that having a finer pre-

deposition surface roughness accompanied by optimized deposition conditions can 

result in uniform, fine and packed surface micro-texture features and consequently 

better water repellency and mobility. 

 The developed SPS TiO2 superhydrophobic coatings showed remarkable capability 

in reducing ice accretion, especially in the case of glaze ice which is considered the 

more dangerous type of ice. These coatings also required significantly reduced 

heating time and heat input to maintain an ice-free surface. 
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 The coatings showed significantly better resistance to dry particle erosion 

compared to commercial, polymer-based, superhydrophobic spray coatings. 

 The coatings showed significantly better durability after being exposed to 

numerous icing/deicing cycles compared to commercial, polymer-based, 

superhydrophobic spray coatings. 

7.3.  Recommendations for future work 

To build on the contributions and conclusions of this work for further improvement and 

potentially implementation of the superhydrophobic SPS coating for application in aircraft the 

following suggestions are presented. 

 The significance of pre-deposition surface preparation was revealed in this work. 

Further study of various surface preparation techniques, especially techniques that 

enable more control and regularity is recommended. Based on the findings of this 

work, there may be a benefit in having a more uniform and controlled micro-texture 

on the substrate that permits accurate engineering of the location, uniformity and 

packing of surface micro-texture features which may lead to even better 

hierarchically textured superhydrophobic coatings. 

 Although the stearic acid treatment already demonstrates desirable characteristics, 

its durability can still be improved, especially its resistance against cloud-sized 

droplet erosion. It is important that any alternative to this stearic acid treatment 

needs to be a very thin layer, as this is the key factor for the coating’s significant 

resistance to dry particle erosion and icing/deicing cycles. As was demonstrated, a 

significantly thicker and softer alternative has potential drawback in this regards. 

 All the coatings studied in this work were deposited on flat substrates. However for 

most potential applications in aircraft, the target surfaces are curved. It is important 

to optimize these coatings for curved surfaces as the surface curvature can 

potentially influence the micro-texture and characteristics of the SPS coatings 

significantly. 

 There is an additional drawback of using flat samples in icing and deicing 

experiments as well. Flat samples disturb the aerodynamics of the test chamber of 

the wind tunnel and do not necessarily best represent the shape of an airfoil. Also, 
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in the case of an airfoil in icing conditions, the leading edge, which is the point of 

stagnating air flow, plays an important role in initiation and formation of ice. 

Therefore, it is highly recommended to study the performance of the 

superhydrophobic SPS coatings in both icing and deicing scenarios using an airfoil 

shape, or maybe even for more simplicity, cylindrical samples. 

 The durability of SPS superhydrophobic coatings needs to be further studied in 

outdoor environment, exposure to UV and other potentially degrading factors. 
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Appendix: Studying the Wetting Behavior of Rare-Earth Oxides 

Introduction 

It was discussed in literature review of Chapter 2,  that the only known materials with 

intrinsic hydrophobicity i.e. the static contact angle of a smooth sample of these materials is larger 

than 90°, are hydrocarbon and polymeric materials. An exception to this is the arguable case of 

rare-earth oxides. In some recent publications [142–144], some or all of the rare-earth oxides have 

been reported to be intrinsically hydrophobic. However these reports have been disputed in other 

publications [145,146] by arguing that environmental contamination is the main reason for 

apparent hydrophobicity of rare-earth oxides. The first such observation have been reported by 

Lawrence et al. [147] of cerium dioxide (CeO2) membranes showing a contact angle of around 

120°. Martinez et al. [148] have reported contact angle ranging from 94° to 134° for 

electrodeposited CeO2.  

One of the most prominent report of intrinsic hydrophobicity of rare-earth oxides has been 

made by Azimi et al. [149] about pressed and sintered samples of all rare-earth oxides. However, 

in this work the reported wetting parameter is the advancing contact angle and not the static contact 

angle and it must be noted that having an advancing contact angle of larger than 90° does not 

necessarily mean that the static contact angle is also larger than 90°. Preston et al. [150] have made 

a counterargument that once properly cleaned and contamination-free, rare-earth oxides are in fact 

hydrophilic and their apparent hydrophobicity is due to adsorption of hydrocarbon groups from 

exposure to ambient air. In a later publication, coauthored by Azimi, Khan et al. [151] respond to 

Peterson et al. [150] by claiming that rare-earth oxides demonstrate hydrophilicity due to surface 

oxygen content exceeding the stoichiometric ratio. They demonstrate this by showing that a freshly 

sputtered CeO2 with a surface O/Ce ratio of around 3 is hydrophilic, but after being left in ultra-

high vacuum, the surface O/Ce ratio reduces to around 2.2, showing hydrophobicity. 
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Even though the subject of intrinsic hydrophobicity of rare-earth oxides seems debatable, 

it could potentially offer a significant solution to the issue of durability of superhydrophobic 

coatings. A ceramic material such as a rare-earth oxide is naturally much more durable compared 

to polymeric and hydrocarbon alternatives. However, as mentioned before it is not clear whether 

or not rare-earth oxide demonstrate hydrophobicity at all or just in some conditions and therefore 

this topic is further investigated in this work in an effort to find an answer. 

Methodology 

Two feedstock powders were used in this research. The first powder was a samarium-doped 

cerium oxide (ceria) powder (Fuel Cell Materials, US) with chemical formulation of Sm0.2Ce0.8O2 

and nominal particles size of 0.1-0.4 μm. The second powder was an ytterbium oxide (ytterbia - 

Yb2O3) powder (Treibacher, Autria) with a nominal particle size of 1 μm. Two suspensions were 

prepared using these two powders in ethanol. These suspensions were plasma sprayed on grit-

blasted in conditions similar to the TiO2 coatings discussed in Chapter 4. Additionally, thicker 

coatings were made by spraying 100 passes deposition. Contact angle of these coatings were then 

measured. These coating were placed in the chamber of an XPS system to measure the atomic 

oxygen to metal ratio on their surface. After the first measurement, the surface of the coatings were 

sputtered by ion beam to clean their surfaces and devoid them from contamination. After 

sputtering, a second measurement of surface oxygen to metal ration was performed and then the 

samples were left in ultra-high vacuum for 20 hours after which a third test was performed on 

them. Then, the contact angle of the samples was measured. Also as an experiments, samples of 

the ceria and ytterbia coatings were put into a conventional vacuum chamber with a mechanical 

vacuum pump and were left there with the pump continuously working for 24 hours. The contact 

angle of the coatings was measured afterwards. 

Furthermore, in order to assess the hydrophobicity of the feedstock powders, dry-pressed 

disc-shaped samples of the two powders and three combinations of the two powders with 25 at% 

ceria, 50 at% ceria and 75 at % ceria were made. These samples were sintered at 1800°C for 10 

hours to create compact disc-shaped samples. The contact angle of these samples was measured 

afterwards. Also the samples were cleaned by boiling in water and air drying according to 

Gentleman et al. [199] to remove any potential hydrocarbon contamination and then their contact 

angle was measured again. 
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Results 

Both ceria and ytterbia SPS coatings demonstrate hydrophilicity as sprayed. In fact, since 

both of these coatings have micro-textures with many pores, a water droplet placed on the surface 

spreads and wets the surface completely, making it impossible to measure the static contact angle. 

SEM micrographs of the two of the SPS ceria coatings is shown in Figure A.1 and Figure A.2. In 

Figure A.1, it is clear that the hierarchical morphology observed in SPS TiO2 coatings is absent. 

This is likely due to the fact that the process parameters were not optimized for the ceria suspension 

feedstock. However, the type of “cauliflower-like” surface features are present but are relatively 

much larger than the ones previously observed in SPS TiO2 coatings. When treated by a stearic 

acid solution for lowering the surface energy, both SPS ceria and ytterbia coating show 

superhydrophobicity with contact angles higher than 160° and sliding angles smaller than 10°. 

 

Figure A.1. SEM micrograph of the ceria SPS coating. 

The XPS results indicating oxygen to metal ratio at the surface of SPS ceria and ytterbia 

coatings, before sputtering, after sputtering and after 24 hours in ultra-high vacuum are presented 

in Table A.1. This was done to investigate the claim by Khan et al. [151] that intrinsic 

hydrophobicity of rare-earth oxides depends on oxygen to metal ratio on the surface and if this 

ratio is close to the stoichiometry ratio, then rare-earth oxide demonstrate intrinsic hydrophobicity. 
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Figure A.2. SEM micrograph of the ceria SPS coating, made through depositing 100 passes. 

As presented in Table A.1, for the ceria sample, initially the O/Ce is very close to the 

stoichiometry value i.e. 2. After sputtering the ratio decreases to 1.75 and after 24 hours in ultra-

high vacuum, it increases to 1.85. Also looking at ratio of Ce4+ to Ce3+ shows that initially at the 

surface of the coating all cerium atoms are present in +4 oxidation state. Majority of the cerium 

atoms change their oxidation state to +3 after sputtering and the some of them return to +4 state 

after 24 hours exposure to ultra-high vacuum. It is noteworthy that the wetting behavior of the 

ceria coatings did not change after these tests. 

For ytterbia coating, the O/Yb is higher than stoichiometry i.e. 1.5 in the beginning but 

decreases to the 1.5 stoichiometry value after sputtering and remains constant after 24 h in ultra-

high vacuum. All ytterbium atoms are and remain in +3 oxidation state. Similar to ceria coatings, 

the ytterbia coating do not show any change in wetting behavior after these tests. It can be 

concluded that SPS ceria and ytterbia coatings do not demonstrate intrinsic hydrophobicity even 

after exposure to ultra-high vacuum and when the surface oxygen to metal ratio is very close to 

the stoichiometry ratio. 
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Table A.1. XPS test results for the SPS ceria and ytterbia coatings. 

 
SPS ceria coating SPS ytterbia coating 

O/Ce Ce4+:Ce3+ O/Yb Yb3+:Yb2+ 

Before sputtering 1.98 100:0 1.9 100:0 

Immediately 

after sputtering 
1.75 13:87 1.5 100:0 

After 24 hours 

exposure to 

ultra-high 

vacuum 

1.85 49:51 1.5 100:0 

 

In Table A.2, contact angle of sintered samples of ceria, ytterbia and their mixtures is 

presented, as prepared and after cleaning in boiling water. None of the samples show 

hydrophobicity initially, but their contact angles are relatively high. However, after cleaning in 

boiling water, the contact angle values decrease significantly for all samples which indicates that 

initial contact angle values are affected by presence of contaminating hydrocarbon compounds on 

the surface and after these compounds are removed, all sample are unmistakably hydrophilic. 

Table A.2. Water contact angle (CA) of sintered samples of ceria, ytterbia and their mixtures. 

Sample 100 at% ceria 

75 at% ceria 

– 25 at% 

ytterbia 

50 at% ceria 

– 50 at% 

ytterbia 

25 at% ceria 

– 75 at% 

ytterbia 

100 at% 

ytterbia 

CA as 

sintered 
75° 73° 77° 82° 87° 

CA after 

cleaning 
33° 35° 41° 32° 39° 

 

At last, the SPS ceria and ytterbia coatings were left in a vacuum chamber at a medium 

vacuum of about 1000 Pa for 24 hours while the vacuum pump was continuously running. After 

this, samples showed superhydrophobicity with contact angles higher than 160° and sliding angles 

smaller than 10°. It is speculated that this happens due to contamination of samples by the oil from 

the vacuum pump. A similar experiment but with the vacuum pump turned off after the vacuum 

has been reached show that the wetting behavior of coatings does not change if the pump is not 
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continuously working. Additionally, cleaning the superhydrophobic samples in boiling water 

removed their superhydrophobicity and return then to initial hydrophilic state, indicating the 

apparent hydrophobicity was a result of contamination. 

Conclusion 

No evidence was found to support the claim that rare-earth oxides demonstrate intrinsic 

hydrophobicity in certain condition. Any hydrophobic behavior was result of surface 

contamination by adsorbing hydrocarbon compounds from environment or by oil vapor from the 

vacuum pump. The results presented here are part of an ongoing research, and are not definitively 

conclusive. However, it seems that these results strongly support the hypothesis that observed and 

reported hydrophobicity of rare-earth oxides could be result of surface contamination and these 

reports require further re-examination and reaffirmation.  


