
Rethinking Certificate Authorities:
Understanding and decentralizing domain validation

Seyedehmahsa Moosavi

A thesis in the

Concordia Institute for Information Systems Engineering

Presented in Partial Fulfilment of the Requirements for

the Degree of Master of Applied Science at

Concordia University

Montréal, Québec, Canada

April 2, 2018

i

CONCORDIA UNIVERSITY

Division of Graduate Studies

This is to certify that the thesis prepared

By : Seyedehmahsa Moosavi

Entitled : Rethinking Certificate Authorities:
Understanding and decentralizing domain validation

and submitted in partial fulfilment of the requirements for the degree of

Master of Applied Science

complies with the regulations of this University and meets the accepted standards
with respect to originality and quality.

Signed by the final examining committee :

Chair
Dr. W. Lucia

Supervisor
Dr. Jeremy Clark

CIISE Examiner
Dr. A. Youssef

External Examiner
Dr. F. McKelvey

Approved by
Dr. C. Assi
Graduate Program Director

2018.
Dr. A. Asif
Dean of ENCS

ii

ABSTRACT

Rethinking Certificate Authorities:

Understanding and decentralizing domain validation

Seyedehmahsa Moosavi

HTTPS (HTTP over TLS) protocol provides message integrity, confidentiality,

and server authentication. Server authentication relies on the client’s ability to ob-

tain a correct public key which is bound to the server. To provide this, the Public

Key Infrastructure (PKI) uses a system of trusted third parties (TTPs) called the

certificate authorities (CAs). CAs are the companies who receive certificate requests

for domain names, they then use validation techniques to verify the ownership of

those domains and once verified, they issue the digital certificates. These digital

certificates are the electronic documents which simply bind domain names to the

cryptographic keys and can be further used to secure communication channels over

the web. However, PKI’s several drawbacks enabled the malicious parties to break

the entire CA model and issue themselves fraudulent certificates for domain names.

There has been little quantitative analysis of the certificate authorities (CAs)

and how they establish domain names validation, so we first perform a thorough

empirical study on the CA ecosystem and evaluate the security issues with the domain

verification techniques. We find out that a central problem with the certificate model

is that CAs resort to indirection to issue certificates because they are not directly

authoritative over who owns what domain. Therefore, we design and implement a

iii

new and useful paradigm for thinking about who is actually authoritative over PKI

information in the web certificate model. We then consider what smart contracts

could add to the web certificate model, if we move beyond using a blockchain as

passive, immutable (subject to consensus) store of data. To illustrate the potential,

we develop and experiment with an Ethereum-based web certificate model we call

Ghazal∗, discuss different design decisions, and analyze deployment costs.

iv

Acknowledgments

First and foremost, I would like to express my heartfelt gratitude to my supervisor,

Dr. Jeremy Clark, without him I could not have completed my Master’s degree. I am

always indebted for his continuous support, encouragement, patience, friendship, and

immense knowledge. He has taught me how to do research and guided me throughout

my studies at Concordia University. Simply put, you are the best supervisor and

advisor I could have ever asked for.

My special thanks to my office mates and colleagues for making my experience at

Concordia University pleasant. I am especially thankful to Shayan Eskandari, for his

support and help he has provided.

I would like to thank my parents and little brother for being loving and caring

throughout my whole life. I left you behind to start a new journey in Canada and

I simply miss you in every single moments of my life. I extremely appreciate your

kindness, love, and support in all stages of my life.

Last but not least, I want to deeply thank a person who means a lot to me, my

husband and my best friend, Kaveh, without whose love and support I just could not

have been “myself”. I cried with you, I laughed with you, and I grew up with you.

Thank you for always being there for me and for believing in me all the time.

Mahsa Moosavi

v

Contents

List of Figures ix

1 Introductory Remarks 1

1.1 Background . 2

1.2 Contributions . 5

1.3 Organization . 5

2 Preliminaries and Related Work 7

2.1 Cryptography . 7

2.1.1 Public Key Encryption . 7

2.1.2 Digital Signatures . 8

2.1.3 Digital Hash Functions . 8

2.2 Public Key Infrastructure (PKI) . 9

2.2.1 Public Key Certificates . 9

2.3 TLS and HTTPS . 10

2.4 Blockchain . 10

2.4.1 Ethereum . 11

2.5 Conclusion . 12

3 Understanding the current paradigm for certificate issuance 13

vi

3.1 Introductory Remarks . 13

3.2 Establishing the Number of Authoritative Entities 16

3.2.1 Analysis and Results . 17

3.3 Showcasing the Indirection Used by CAs 20

3.3.1 Authoritative Issue . 21

3.3.2 Indirection Issue . 22

3.4 Conclusion . 25

4 A New Uni-Authoritative Paradigm for Certificate Issuance 27

4.1 Introductory Remarks . 27

4.2 The Ghazal∗ System . 31

4.2.1 Exploring Ghazal∗ design choices 32

4.2.1.1 Domain Name Expiration 32

4.2.1.2 Registration Fees . 34

4.2.1.3 Domain Name Renewal 35

4.2.1.4 Ownership Transfer 35

4.2.1.5 Toward Lightweight Certificate Revocation 38

4.3 Ghazal Main Operations . 40

4.4 Walkthrough of Domain Name Resolution in Ghazal∗ 42

4.4.1 Ghazal∗ with .ghazal namespace 42

4.5 Conclusion . 43

5 Implementation and Deployment of Ghazal∗ 44

5.1 Introductory Remarks . 44

5.2 Ethereum Concepts . 45

5.2.1 Ethereum Accounts . 45

5.2.2 Smart Contracts and Transactions 45

vii

5.2.3 Ether . 46

5.2.4 Gas . 46

5.2.5 Mining . 47

5.3 Design and Implementation . 47

5.3.1 Ghazal∗ Smart Contract . 47

5.3.2 Ghazal∗ Smart Contract Entities 48

5.3.3 Solidity . 48

5.3.4 Types . 48

5.3.5 Functions . 53

5.3.6 Function Modifiers . 54

5.4 Evaluation . 57

5.4.1 Deployment . 57

5.4.2 Gas Estimation . 58

5.4.3 Security Analysis . 58

5.5 Conclusion . 59

6 Concluding Remarks 61

Bibliography 62

A Ghazal Full Smart Contract 71

viii

List of Figures

3.1 Distribution of the certificates issued by 71 companies 19

3.2 Possible attacks on the DCV techniques. 22

4.1 Different approaches to provide the binding between a namespace and crypto-

graphic public keys. 28

4.2 Techniques to prevent from incorrect (namespace, keys) bindings. 30

4.3 Techniques to add visibility about (namespace, keys) bindings. 30

4.4 Primary states and transitions for a domain name in Ghazal∗. 32

5.1 Storing value x in an array. 51

5.2 Storing value x in a mapping. 51

5.3 Results of Ghazal∗ security analysis using Oyente [1]. 60

ix

Chapter 1

Introductory Remarks

In the recent years, the Internet has gained a significant ground on facilitating world-

wide communications. Unlike the past when Internet was only used as a medium for

sharing files, it is now the principle of everyone’s life. Communications take place

over the web using unlimited number of electronic devices. Thus, individuals need to

be able to authenticate the digital identities of remote parties to establish secure web

communication channels. These digital identities are managed by a group of third

parties such as Certificate Authorities (CAs), ICANN, and DNS. However, placing

too much trust on these authorities has led to single point of failures in the entire

web.

Given the centralized design of the web entities (i.e., DNS, ICANN, CAs), studies

have considered blockchain-approaches to manage digital identities in a decentralized

manner (using a consensus mechanism) to roughly eliminate the role of trusted third

parties in providing secure and authenticated transmissions of data over the web.

In this thesis, we would like to look at the public key infrastructure (PKI) and

certificate authorities (CAs) who manage digital identities on the web. We particu-

larly investigate the identity validation methods applied by the real-world CAs. We

1

also reevaluate the concept of authority — what does it mean to be authoritative

over something?, and introduce the uni-authoritative paradigm. Eventually, we rep-

resent our system Ghazal∗, a smart contract-based naming and PKI uni-authoritative

system which is implemented and tested on the Ethereum blockchain.

1.1 Background

The HTTPS (HTTP over SSL/TLS) protocol enables secure connections to websites

with confidentiality, message integrity, and server authentication. Server authenti-

cation relies on a client being able to determine the correct public key for a server.

HTTPS protocol uses the public key infrastructure (PKI) which refers to a set of

methods which enables the creation, distribution, usage of public key certificates for

a network of users. Certificate authorities (CAs) are the main components of PKI

that provide the (identity, public key) binding in the form of a certificate. Client

devices, through the browser and/or the operating system, are pre-installed with a

set of known CAs who can delegate their authority to intermediary CAs through a

protocol involving certificates. When a CA issues a certificate to a web-server, there

are generally three types: domain validated (DV) certificates bind a public key only

to a domain (e.g., example.com), while organization validated (OV) and extended

validated (EV) certificates validate additional information about the organization

that operates the server (Example, Inc.). By issuing certificates, CAs (as trusted

third parties) certify that specific public key belongs to a certain subject who owns

the corresponding private key. Thus, when a client visits a website, he can verify the

server’s public key based on his or her identity [2, 3, 4, 5, 6, 7].

The current web certificate design has led the security of the web to depend on

anchoring trust in CAs — the trust appears once CAs assure the security of their

2

private signing key. Despite CA’s solid effort and operation, there have been quite

a few incidents in which a CA’s private keys were compromised as a result of social

engineering attacks, governmental obligation, functional mistakes etc. As an example,

in 2011, Comodo[8, 9] and DigiNotar [10], two of the most significant CAs on the web,

have been compromised. Other failure occurred in other certificate authorities such

as Turkish and French CAs who issued unauthorized certificates for several Google

domains in 2013 [11, 12]. In some cases, failures and misbehaviours of certificate

authorities resulted in several attacks such as man in the middle (MITM) attacks

against popular domains. For instance, attackers were successfully able to issue a

fraudulent digital certificate for extremely high-value domains including google.com

and login.yahoo.com and simply intercepted communications with these well-known

sites [13]. Compromise of CAs private keys introduces single point-of-failures in the

entire PKI and results in large number of security violations on the web.

Therefore, one application of blockchain technology that has received some re-

search and commercial interest is the idea of replacing (or augmenting) the web

certificate model used by clients (OS and browsers) to form secure communication

channels with web-servers. This model has been plagued with issues from fraudu-

lent certificates used to impersonate servers to ineffective revocation mechanisms; see

Clark and van Oorschot for a survey [14].

Namecoin is an altcoin (software based on Bitcoin with a distinct blockchain) that

implements a decentralized namespace for domain names[15]. The main feature of

Namecoin is that for a fee, users can register a .bit address and map it to an IP

address of their choice. CertCoin [16], and PB-PKI [17] are extensions to Namecoin

that add the ability to specify an HTTPS public key certificate for the domain (as

well as other PKI operations like expiration and revocation, which we discuss in

Section 4.2.1.4). Blockstack [18] achieves the same goal by embedding data into a root

3

blockchain, a process called virtualchains that could be instantiated with OP RETURN

on Bitcoin’s blockchain.

Some research has looked at adding transparency, effectively through an efficient

log of CA-issued certificates, to augment the current web certificate model. This

is a very active area of research that includes certificate transparency (CT) [19],

sovereign keys (SKs) [20], and ARPKI [21]. IKP [22] provides an Ethereum-based

system for servers to advertise policies about their certificates (akin to a more verbose

CAA on a blockchain instead via DNS). Research a bit further removed from web

certificates concerns decentralized PKIs and broader identities. While not decentral-

ized, CONIKS provides a distributed transparency log similar to CT but for public

keys (while they could be for anything, email and IM are the primary motivations)

[23]. Bonneau provides an Ethereum smart contract for monitoring CONIKS [24].

ClaimChain is similar to CONIKS but finds a middle-ground between a small set of

distributed servers (CONIKS) and a fully decentralized but global state (blockchain)

by having fully decentralized, local states that can be cross-validated [25]. CONIKS

and ClaimChain do not use CAs but rather rely on users validating the logs, which

are carefully designed to be non-equivocating. ChainAnchor provides identity and

access management for private blockchains [26], while CoSi is a distributed signing

authority generic logging [27]. Each of these systems is concerned with logging data

(a generic umbrella that encapsulates many of these is Transparency Overlays [28]).

Finally, some research has explored having public validated by external parties but

replacing the role of CAs with a PGP-style web of trust. SCPKI is an implementation

of this idea on Ethereum [29]. Our observation is that for domain validation, a

blockchain with a built-in naming system is already authoritative over the namespace

and does not require additional validation.

4

1.2 Contributions

The primary contributions of our work are as follows:

• Empirical study of certificate validation methods. We perform a thor-

ough empirical study of certificate authorities and the validation techniques

they employ. We develop a full enumeration of all uniquely identified trusted

CAs in the real world. In total, we make an in-depth investigation of ∼700

certificate authorities and provide an overview of the validation methods they

rely on to issue certificates.

• Rethinking authorities in the PKI. Given the fundamental issues with the

current web certificate model, we reevaluate the concept of authority — what

does it mean to be authoritative over something? We claim that certificate

authorities are not any more or less authoritative over who owns what domain

than you or I.

• Decentralized PKI for the web. We design and implement Ghazal∗, a smart

contract-based naming and PKI uni-authoritative system. This system is built

and tested on the Ethereum blockchain.

1.3 Organization

The rest of the document is organized in the following way:

• In Chapter 2, we provide an overview of the background information about

cryptography, public key certificates along with its components, Blockchain

technology, and Ethereum blockchain.

5

• In Chapter 3, we provide an empirical study of the certificate authorities and

the identity validation methods they use to issue certificates. We then pinpoint

the fundamental issues with the current web certificate model.

• In Chapter 4, we provide the detailed introduction of our proposed system

Ghazal∗ along with its design decisions and functions.

• In Chapter 5, we provide in-depth real-world implementation and evaluation

details of our system Ghazal∗.

• In Chapter 6, we provide conclusion and a brief discussion for this dissertation.

6

Chapter 2

Preliminaries and Related Work

This chapter is divided into four main sections, each of which provides a brief overview

of the main concepts that a reader without sufficient background needs before reading

the thesis.

2.1 Cryptography

Cryptography is the application of techniques used to provide secure communica-

tion channels where message confidentiality and integrity are assured. This section

discusses a few basic concepts in cryptography.

2.1.1 Public Key Encryption

Public key cryptography is an encryption scheme [30] where each user owns a pair

of keys: (1) a public key Pk, which is known to everybody and (2) a private key

Sk, which is a secret key. Any user can encrypt a plain-text message P using the

recipient’s public key Pk, and the cipher-text message C can only be decrypted

using the corresponding private key. This encryption technique uses a cryptographic

7

algorithm Ae for encryption and Ad for decryption. Equations 2.1 and 2.2 represents

the encryption and decryption in public key encryption scheme.

C = Ae,Pk(M) (2.1)

M = Ad,Sk(C) (2.2)

2.1.2 Digital Signatures

A digital signature σ resembles a physical signature which proves the authenticity of

messages on the web [31]. When Alice digitally signs the message m using her private

key Sk, anybody on the web can verify the signature using the corresponding public

key Pk to assure m effectively belongs to Alice as well as it has not been altered while

being transferred. Digital signatures are part of the public key cryptography scheme

— signing a message is equal to encrypting it under the private key. Equations 2.3

and 2.4 represent creation and verification of digital signatures.

σ = Signsk(m) (2.3)

T/F = Verifypk(m, σ) (2.4)

2.1.3 Digital Hash Functions

A cryptographic hash function H(m) creates fixed size length outputs called hash val-

ues for any arbitrary size inputs (pre-image)[32]. These functions are used to verify

whether a candidate pre-image is equal to the real pre-image value. A perfect cryp-

tographic hash function is non-invertible, meaning that it is infeasible to generate a

pre-image from its hash value, this property is referred to as the pre-image resistance.

8

Another property of an ideal hash function is called collision resistance, that is, it

should be infeasible to find two values x and y in such a way that H(x) = H(y), and

x �= y.

2.2 Public Key Infrastructure (PKI)

As it is described in PKIX IETF Roadmap [33], public key infrastructure (PKI)

is “the set of hardware, software, people, policies and procedures needed to create,

manage, store, distribute, and revoke PKCs based on public-key cryptography”. The

objective of PKI is to facilitate secure web communications by assuring a correct

and proper binding between the identities and their corresponding cryptographic

information i.e., public keys. PKI establishes this binding through digitally signed

documents called certificates that are issued by certificate authorities (CAs).

2.2.1 Public Key Certificates

Public key certificate is a digitally signed document which validates the ownership

of a public key. It contains information about the certificate holder i.e., her name

and her public key. It also contains the digital signature of a certificate authority

(CA) that issues the certificate. CAs are the main components of the PKI scheme

that are meant to be authorities: that is, they are authoritative over the namespace

they bind keys to. While visiting a website that holds a certificate, one can easily

verify the signature using the corresponding CA’s public key. Successful verification

of the signature proves that certificate holder is the real owner of the identity (i.e.,

example.com) and the public key. This leads to establishment of a secure channel

between client and server.

9

2.3 TLS and HTTPS

The Transport Layer Security (TLS) is one of the leading cyprtographic protocols

which is widely to secure communications i.e., voice over-IP, email, virtual private

networks (VPN) etc. over the Internet [34]. In a TLS enabled communication, peers

make contact and negotiate their highest cipher suite (ciphersuite negotiation). Then

the server authenticate itself to the client (one-way authentication), the authentica-

tion method is selected based on the negotiated cipher suite. Eventually, they ex-

change cryptographic keys which they further use to encrypt communications. Thus,

TLS prevent communications from being tampered, forged, and intercepted. The

HTTPS is an HTTP protocol which uses SSL/TLS to provide confidentiality, message

integrity, and server authentication within for web communications [35]. Originally,

HTTPS was only used to secure payment transactions on the web, however, today it

is widely used to secure all types of web communications.

2.4 Blockchain

Blockchain technology is an incorruptible digital database which was first intro-

duced as an underlying technology of cryptocurrency Bitcoin in Satoshi Nakamoto’s

(pseudonym) whitepaper in 2008 [36]. Bitcoin, an electronic payment system, is

launched in order to solve the problem of centralization in current payment systems

i.e., banks, financial institutions etc.— where a central authority is the only authori-

tative party who is in charge of processing the electronic payments. Placing too much

trust on these third parties (TTP) introduces single point of failure — if trusted third

party becomes the target of the attackers abuse or deliberately acts maliciously the

whole system falls apart. Being a tamper-proof ledger, blockchain maintains the

transactions that are entered in a specific network. The ledger is possessed by each

10

member of any specific peer-to-peer network and no centralized version of the infor-

mation exists. every time a participant (node) creates a transaction on a blockchain

it should be first verified by all other nodes in the network using a consensus algo-

rithm such as Bitcoins proof-of-work (POW). Bitcoins proof-of-work-based consensus

mechanism is used to attain the desired fault tolerance in a decentralized network

[37, 38]. In this process, known as mining, a group of high computationally power

network nodes, known as miners, try solve a difficult mathematical puzzle, first node

who solves the puzzle is then able to add its proposed block to the blockchain and

receive the mining reward [39].

2.4.1 Ethereum

The blockchain technology has primitively gained a wide deployment in area of trans-

actions of digital currencies e.g., Bitcoin cryptocurrency. However, in 2014, Vitalik

Buterin represented a new blockchain based application known as Ethereum in his ar-

ticle ”Ethereum: A Next-Generation Cryptocurrency and Decentralized Application

Platform” [40]. As a blockchain-based distributed public network, Ethereum imple-

ments a decentralized virtual machine, known as Ethereum Virtual Machine (EVM),

which allows network nodes to execute and deploy programmable smart contracts to

the Ethereum blockchain [41]. This new platform enables developers to create and

execute blockchain applications called decentralized applications (dapps) in a more

efficient way.

Decentralized applications are completely open-source and their data is stored in

a decentralized manner on the blockchain network. Dapps are created by smart con-

tracts, self-executing contracts that are written in a high level programming language

called Solidity which is similar to C and JavaScript [42]. Digital smart contracts were

first described by Nick Szabo in 1993 [43], however, it reached a high level of adoption

11

by blockchain technology.

2.5 Conclusion

So far this chapter has focused on some of the basic concepts in cryptography. We

then gave a brief overview of the blockchain technology and the Ethereum blockchain.

In the next chapter, we will represent our thorough empirical study of web certificate

model. We will then illustrate and discuss the results that were found during our

investigations.

12

Chapter 3

Understanding the current

paradigm for certificate issuance

3.1 Introductory Remarks

HTTPS plays an important role in the maintenance of user privacy when communi-

cations take place on the web. Using HTTPS, Internet users can communicate with

a web service in a privacy-preserving manner — i.e., the communication channel

is private from any other entity that may be privy to the communication channel

(e.g., ISPs, mobile carriers, back-bone servers, company/organization gateways etc.).

However, the compelling guarantees provided by HTTPS rely on a trust model that

includes certificate authorities (CAs). Excessive trust that is being placed on these

authorities has led them to act as single point of failures — a single malicious or

compromised CA can enable HTTPS connections to be vulnerable to eavesdropping,

message modification, or injection of malicious scripts. The following issues illustrate

the root of the PKI problems on the web.

13

The number of CAs has exploded. In order to accomplish the trust in a CA

based PKI, software companies e.g., Microsoft, Mozilla, Apple, and Opera place a

default whitelist of self-signed CA certificates in the firmware of an embedded system

and/or browsers as trusted root certificates. Therefore, while visiting an HTTPS

website, the browsers merely accept those sites certificates whose validity has been

attested by at least one of the trusted root certificates in that whitelist. For instance,

Microsoft Windows includes ∼350 trust anchors from ∼140 companies. Trusted root

CAs can also issue certificates that authorize other organizations to act as a CA.

Thus, the actual number of trusted CAs is greater. Later in this chapter, we show

that about 223 companies are browser-accepted.

CAs are targets for privacy breaches. Each trusted CA can issue a browser-

acceptable certificate for any site. Hence, an adversary can deceive a weak CA to

obtain a fraudulent certificate for a domain he does not own (i.e., adversary.com).

By doing so, he is able to actively intercept every single communication that takes

place between the server hosting adversary.com domain and other entities on the

web. For example, In 2011, malicious parties were successfully able to illegitimately

obtain certificates from the two significant CAs — Comodo [8][9] and DigiNotar [10].

There is also increasing concern that some CAs are vulnerable to certificate com-

pulsion attacks. In this type of attacks, governmental entities force CAs to help them

with surveillance by issuing fraudulent certificates for specific website to be spoofed,

which they can then use to intercept and tap individuals’ secure HTTPS connections

to those websites [44]. Surveillance can occur in private networks as well e.g., in en-

terprises where computers are operated by employers. In this case, organizations can

install a root CA certificate on employees’ machines which allows them to perform

MITM attacks and intercept any HTTPS communication that is established from

14

those computers. Some client-side software, such as anti-virus and parental control,

also use a MITM attack to inspect HTTPS content and this can leave the end user

vulnerable depending on subtle configuration issues [45].

We know very little about CAs. Although some research has been carried out

on HTTPS ecosystem, our knowledge in the full spectrum of CAs is still very limited.

What is not yet clear is the number of CAs that actually issue certificates to the

public. Additionally, certification practice statements (CPSs), the only techniques

that are used by CAs to validate the ownership of domains during the issuance

of certificates, are reported to be poor. These techniques have been developed and

established by CAs based on their practical experience over a few decades and there is

no consensus about the mechanisms that are used by every CA for domain ownership

validation.

The purpose of this chapter is to assess and examine real-world CAs on their do-

main validation practices while issuing certificates. Our first objective is to develop

a full enumeration of all uniquely identified trusted CAs that can be traced to a real

world entity and issue certificates to external websites referred as companies in our

work. As a second goal, we attempt to formulate a detailed documentation of the

existing validation mechanisms undertaken by companies. The scope of our docu-

mentation includes the domain validation techniques performed by companies [46],

potential vulnerabilities (e.g., if documented parsing errors can be exploited [47]),

personal information that companies collect during a domain validation process, and

the costs related to issuing certificates to the public.

The Invisibility of Intermediate CAs. There are two categories of certificate

authorities: (i) explicitly trusted root certificate authorities that are recognized by

root certificates. These self-signed certificates play a significant role in establishing

15

trust in PKI, they are transmitted to end users by secure physical distribution i.e.,

being preinstalled on devices. (ii) Implicitly trusted intermediate or subsidiary cer-

tificate authorities that have been delegated with the certificate issuing power from

root or already-authorized intermediate CAs. There is no solid record of intermediate

certificates that currently exist on the web. This is because intermediate certificates

can be issued by a root certificate authority (delegating certificate issuing power to

another CAs by signing their certificates and creating a certificate ‘chain’) and this

authorization is unknown by anyone until a certificate chain is observed in the wild

that uses the intermediate CA. As a result, there is no way to establish how many

companies have been issued an intermediate CA. The best we can do within today’s

PKI is observe as many certificate chains as possible—e.g., by scanning the entire

internet or logging certificate chains from consenting users as they browse the web.

3.2 Establishing the Number of Authoritative En-

tities

To evaluate certificate authorities (CAs) and domain ownership validation procedures

they employ, we first need to identify these third parties. These authorities consist

of root certificate authorities and intermediate (or subsidiary) certificate authorities.

We use other research projects that have measured the internet to enumerate the

current list of intermediate certificates that have been seen in the wild. Our analysis

begins with collecting a complete record of (i) root and (ii) intermediate certificate

authorities:

Root Certificate Authorities. As explained earlier, software vendors such as Mi-

crosoft, Mozilla, Apple, and Opera configure extensive lists of built-in root certificates

in operating systems and/or browsers, by doing so, they securely transmit the root

16

certificates to the end users. In order to collect the root certificate authorities, be-

tween April and June 2015, we retrieved the list of root certificates from (i) Microsoft

Windows, (ii) Apple OS X (including OS X Yosemite, iOS 7, iOS 8, Watch OS),

and (iii) Mozilla Firefox. After merging these data and collapsing multiple identities

for the same CAs, we developed a shortlist of ∼259 actual unique root certificate

authorities called Condensed Root CAs which we believe is the most comprehensive

record of all the current root CAs.

Intermediate Certificate Authorities. Data related to the intermediate certifi-

cate authorities on the entire web was collected using the major research projects

that have been conducted in the CA ecosystem. (i) We used the data provided by

the SSL observatory, an EFF project that investigates the SSL certificates on the

Internet [8]. (ii) We employed the data supplied by three projects [48][49][50] that

use the ZMap [51], an Internet scanner tool to widely scan and analyze the HTTPS

environment. (ii) Lastly, we used known certificate logs from Google’s certificate

transparency, which provides a monitoring and auditing framework for SSL certifi-

cates by appending valid certificates to these logs [52]. The data collected from these

project was then parsed and processed and eventually merged into the list called In-

termediate CAs which contains a list of ∼446 actual unique intermediate certificate

authorities.

3.2.1 Analysis and Results

There has been little quantitative analysis of how many of the current certificate

authorities (including root and intermediate) are actually unique organizations that

provide certificate issuing services to the public. Thus, to gain insight into the domain

validation procedures, we first require to identify those CAs who directly provide

certificates to the end users, considering the fact that some CAs only issue certificates

17

internally or are managed by a different CA. To do so, we manually research the

∼700 intermediate and root certificate authorities that were gathered in the data

collection procedures. By visiting these CAs websites, it was found that merely ∼223

of these companies actually issue certificate to users. Having the list of the companies

developed, the final section of this analysis undertakes domain control validation

(DCV) methods, deployed by each of these parties. To achieve this for each company,

we chose to obtain a regular one year single-domain certificate for a domain name

we control. Clearly, we only targeted domain validated (DV) certificates because we

did not possess a registered organization nor were we able to be verified in person (to

obtain organization validated (OV) and extended validated (EV) certificates). Using

the DV certificate purchases as a pilot, we developed a comprehensive enumeration of

the companies such as (i) the number of companies that actually issue SSL certificates

(EV,OV,DV) to a member of the public, (ii) the cost of acquiring certificates, (iii)

the country where each company is located, (iv) contact information of companies,

(v) information to be provided to CAs during the domain ownership verification, (vi)

how this information is used and (viii) how is identity of users validated.

In the first stage of our scan, we contact each company in the list to obtain

a certificate for our domain, we discover that only 71 of these companies actually

issue at least one of the EV, OV, DV certificates to the public users. The other 152

companies cannot provide certificates to us due to the following reasons:

• They only issue certificates to their own country services e.g., universities and

research institutes.

• They only issue certificates to services from the national government agencies.

• They only issue certificates in projects.

• They only issue certificates to the external partners/vendors that do business

18

EV

4.2%

DV
1.4%

OV

7%

5.6%

29.6% 8.5%

43.7%

Figure 3.1: Distribution of the certificates issued by 71 companies — We found that a
large group of these companies only issue the high assurance (OV and EV) certificates.

with their company.

• They require a face-to-face registration for any type of web server certificates.

This is either at their office,or via a notary in applicants country.

Therefore, we complete our survey by contacting 71 companies that assuredly

provide certification services to us (as a public user from a foreign country). The

results of our survey indicate that among 71 companies, 42 of them are willing to

issue domain validated (DV) certificates to end users (see Figure 3.1).

Furthermore, results reveal that 73.3% of these companies issue extended vali-

dated (EV) and organization validated (OV) certificates, which are both considered

as high assurance certificates. The reason behind this is, as explained earlier, due

to the existing drawbacks in domain control validation (DCV) procedures that allow

19

malicious parties to obtain fraudulent certificates for domains they do not control.

By acquiring a fake certificate for victims domains, adversaries can perform MITM

attacks and intercept traffics before victims can receive it. This is while DV certifi-

cates are often preferred above all other certificates because (i) they are offered at

much lower prices than high assurance (EV and OV) certificates and (ii) they are

issued during effortless and automated processes. We also found that 33.3% of the

companies that issue DV certificates are currently located in the United States.

After reviewing each company’s certificate practice statements (CPS), we discov-

ered the companies do not always document their certificate issuance policies in a

precise manner. In some cases, verification procedures that companies provide in

their CPSs are not equivalent to what they offer in practice.

3.3 Showcasing the Indirection Used by CAs

Domain control validation (DCV) procedures are a set of techniques employed by

certificate authorities to verify the ownership of a (sub)domain that certificate is

asked for. Unlike high assurance certificates, domain validated (DV) certificates only

represent a certificate holder’s control over a given domain name and they do not

provide any intuition about the identity of the owner. DCV can be performed using

any one of the (i) email-based, (ii) HTTP-based, and (iii) DNS-based methods. What

follows is a brief description of the DCV methods and the security issues with them.

Email-based Validation. Email-based validation is the most supported method

of host name verification. In this approach, CA sends a unique nonce as a secret

challenge to an email address it is assumed to belong to the subscriber. If the cer-

tificate applicant can access this challenge, it is considered to have proven ownership

of the domain and causes the CA to issue the certificate. CAs specify a list of ac-

20

ceptable addresses for a given domain using a few generic names including admin,

administrator, hostmaster, postmaster, and webmaster, in addition to any email

addresses that appears on a domain’s WHOIS record.

HTTP-based Validation. In this technique, the CA delivers a unique, non-secret

nonce (or hash of the certificate request) to the subscriber through an HTTPS chan-

nel. In order to prove domain name ownership, the subscriber needs to create a text

file with the nonce and upload the file to the root directory of his domain that is to

be validated. In the final part of the verification process, CA checks the presence of

the text file. If the file is successfully retrieved by the CA and its contents match,

domain control is confirmed.

DNS-based Validation. Using the DNS based method, the subscriber receives

a unique, non-secret nonce (or hash of the certificate request) from CA through an

HTTPS channel and he is required to publicize the nonce in his DNS CNAME record

for the domain. Afterward, the CA queries the corresponding name servers to verify

the presence of the DNS CNAME record. If the record is successfully obtained,

domain ownership is validated.

3.3.1 Authoritative Issue

In the current web certificate model, certificate authorities are meant to be authorities:

that is, they are authoritative over the namespace they bind keys to. The reality is

that the web still runs largely on domain validated certificates [53][54] and for domain

validation, certificate authorities generally are not any more or less authoritative over

who owns what domain than you or I. There is arguably no single party that is author-

itative. ICANN manages the top-level domains and delegate registration of domains

to registrars. Registrars sell domains to companies or individuals. Registrars do not

21

Figure 3.2: Possible attacks on the DCV techniques.

identify the people buying the domains; instead they have the purchaser set a user-

name/password for an account that they can use to manage the domain. Registrars

are natural entities to serve the role of a CA and indeed there is overlap between

the set of registrars and the set of CAs, however a registrar/CA is not restricted to

issuing certificates to only its own customers and can in fact issue certificates for

any domain. Many CAs are not registrars or connected in any way to the domain

management eco-system. They establish who owns a domain through indirection.

3.3.2 Indirection Issue

A central problem with the certificate model is that CAs resort to indirection to issue

certificates because they are not directly authoritative over who owns what domain.

For example, email based DCV involves 2 levels of indirection: (1) CAs appeal to

DNS to establish the MX record of the domain (i.e., the subscriber’s mail server’s

IP address); and (2) CAs appeal to SMTP to establish a communication channel

22

to the subscriber. For every level of indirection, there are a set of vulnerabilities

which might allow a malicious party to break the verification process and obtain a

fraudulent certificate for a domain they do not own.

To illustrate this in more detail, we will consider email-based validation as de-

scribed above. We note that email validation works in conjunction with DNS, so

the vulnerabilities on this process subsume the set of vulnerabilities of DNS-based

validation. We leave aside HTTP-based validation as it is largely similar; but we note

one interesting issue: the CA must fetch the posted hash of the certificate request

from the website and since the website is trying to obtain a certificate, it follows that

they likely do not have an existing certificate and therefore are not providing this

file over HTTPS. Any man-in-the-middle between the webserver and the CA could

respond to the CA’s request with a fraudulent CSR (even if it doesn’t actually exist

on the webserver) and obtain a fraudulent certificate.

We now enumerate at list of threats to email-based validation to illustrate how

broad the attack surface becomes when excessive indirection is relied on. These are

summarized in Figure 3.2.

1. Reserved Emails: A CA specifies a list of email addresses to receive the chal-

lenge. The underlying assumption is that only the domain owner controls this

address. However the domain owner might not reserve that email address or

even be aware that a certain email address is being used by one of the CAs for

this purpose. And recall that just a single CA needs to use a single non-standard

email address (e.g., a translation of administrator into their local language) to

open up this vulnerability. For example, Microsoft’s public webmail service

login.live.com saw an attacker successfully validate his ownership of the do-

main using an email address sslcertificates@live.com which was open to

public registration [55].

23

2. Whois Emails: A CA will also optionally draw the email address from the

Whois record for the domain. A domain’s whois record is generally protected

by the username/password set by the domain owner with their registrar. Any

attack on this password (e.g., guessing or resetting) or directly on the account

(e.g., social engineering [56]) would allow the adversary to specify an email

address that they control.

3. MX Record: A CA will establish the IP address of the mailserver from the MX

record for the domain. As above, all domain records including the MX record is

managed through the owner’s account with her domain registrar. Any method

for obtaining unauthorized access to this account would enable an adversary to

list their own server in the MX record and receive the email from the CA.

4. DNS Records: If an adversary cannot directly change a DNS record, they

might conduct other attacks on the CA’s view of DNS. For example, they might

employ DNS cache poisoning which can result in invalid DNS resolution [57].

They might also exploit an available dangling DNS record (Dare) [58]. A Dare

occurs when data in a DNS record (such as CNAME, A, or MX) becomes invalid

but is not removed by the domain owner. For example, if the domain owner

forgets to remove the MX record (the IP address of the server) from DNS, the

associated DNS MX record is said to be dangling. If an adversary can acquire

this IP address at some future point, he is able to redirect all traffic intended

for the original domain to his server, including information sufficient for a CA’s

domain validation process. Thus a malicious party can use a Dare to obtain a

fraudulent certificate.

5. SMTP: Once the CA establishes the mailserver’s record, it will send the email

to the mailserver with SMTP (the standard protocol for transfer of email).

24

Since the email contains a secret nonce, confidentiality of this email is crucial.

SMTP uses opportunistic encryption that is not secure against an active adver-

sary. Thus a man-in-the-middle between the CA’s mailserver and the ultimate

destination (including an forwarding mailservers) could request a fraudulent

certificate, intercept the ensuing email, reply with the correct nonce, and be

issued the fraudulent certificate.

6. Email Accounts: Email accounts are generally protected with a username and

password (over IMAP or POP3) to prevent unauthorized access. In some cases,

they might be protected with a client certificate. An adversary who can gain

access to any one of the accounts that should be reserved by the domain owner

(e.g., textttadmin, hostmaster, webmaster, etc.) could obtain a fraudulent

certificate for that site. This could include guessing or resetting the password,

using social engineering, or obtaining access to the server hosting the email for

the account.

3.4 Conclusion

In this chapter, we developed a complete enumeration of all the existing certificate

authorities. We then surveyed the procedures these CAs enforce in order to validate

domain name ownership during the certificate issuing processes. It has been discov-

ered that while domain validation methods seem promising, they are not completely

secure in practice and can be compromised by malicious parties on the web. As a

result, attackers are able to deceive and/or compromise the CAs to sign invalid cer-

tificates on behalf of them. We also discussed the major issue with the the current

certification system is that the entities that issue a certificates for domain names

(CAs) are not the actual domain’s owners. We believe that certificate authorities are

25

not special and any entity that owns a domain can be a CA and issue a certificate

for that domain. In fact, Verisign is not more authoritative than anyone else in the

case of validating domain names.

As discussed above, these third parties (CAs) are vulnerable to a vast group of

vulnerabilities that if compromised, an adversary obtains a certificate for a domain

that does not belong to him. This issue can be addressed by designing a system in

which the domain owner can issue and manage certificates without having to rely

on any third party. By removing the CAs from this infrastructure and make entities

authoritative over their domain names and certificates, we can eliminate single point

of failures and their prominent consequences from the public key infrastructure.

In the next chapter, we introduce our system which is a new paradigm for the

certification model. Using this new system, we will be able to eliminate certain

limitations of the current CA model. As it was discussed in Section 3.1, currently

a large number of CAs (∼300) exist on the web and this is while the root CAs

can still delegate their issuing certificate power to the other CAs. However, our

proposed scheme eliminates the 300 CAs and replaces it with one decentralized,

authoritative system. Further, the system is fully authoritative over domain names

and cryptographic keys and so no indirection is necessary.

26

Chapter 4

A New Uni-Authoritative

Paradigm for Certificate Issuance

4.1 Introductory Remarks

In the previous chapter we discussed domain control verification (DCV) techniques

and the primary issues with these procedures. Our findings were largely based upon

our empirical study that investigates how the certificate authorities actually issue

certificates to the end users and how they verify the ownership of domain names.

Actual failures in domain validation procedures occur when CAs are not effectively

successful in verifying the subjects identities, therefore, enabling the registration of

a public key under another entity’s already-registered domain name.

Issuing certificates is equal to binding names from a namespace to cryptographic

keys. To provide this binding, a system can either rely on indirection and have cer-

tificate authorities that are not authoritative over the namespace try to verify own-

ership; or it can collapse the indirection if the issuing entity is authoritative over the

namespace—we call this the uni-authoritative paradigm (see Figure 4.1). In the cur-

27

Figure 4.1: Different approaches to provide the binding between a namespace and cryptographic
public keys.

rent web certification model, CAs heavily rely on indirection to verify the ownership

of the namespace and provide the binding. Technically, they can validate the names-

pace ownership via (i) DCV methods which are typically automated and effortless

and/or (ii) in-person validation techniques. In-person includes high assurance certifi-

cates (EV,OV) which are validated by the CA using government-issued documents,

or Web-of-Trust (WoT) where external parties validate and sign off on one’s identity

typically also after checking some government-issued ID. Note that in-person valida-

tion is still indirection as the government is authoritative over its citizen’s names or

registered business names, while CAs are typically non-government entities (and even

when CAs are governmental, they are authoritative over all domains including ones

not owned by their citizens). From here forward, we consider the case of automated

domain validated certificates.

In the uni-authoritative paradigm, the owner of the namespace is fully authorita-

tive over it and is the same entity that binds names to cryptographic keys. In this

thesis, we explore this in the context of blockchain technology. If a PKI were added

to a blockchain, who would be authoritative over the namespace of domain names?

When domain names themselves are issued through the blockchain (e.g., Namecoin),

then the blockchain is actually the authoritative entity. Such a design would thus be

uni-authoritative.

28

Arguably, indirection can be collapsed in the traditional web certificate model

as well. As we argued in the previous chapter, DNS (in conjunction with ICANN)

is authoritative over the namespace of domain names. If ICANN/DNS held key

bindings, there would be no indirection or CAs needed. Indeed exactly this has been

proposed under the same of DNS-based Authentication of Named Entities (DANE).

Thus blockchains and DANE are both examples of a uni-authoritative paradigm. A

deployment issue with DANE is that DNS records do not generally have message

integrity (except via the under-deployed DNSSEC) whereas blockchain transactions

do.

As it was mentioned in the previous chapter, a variety of attacks in the current

CA ecosystem show these third parties’ inability to provide an authentic and proper

binding between the namespaces and the cryptographic keys — where adversaries

were able to acquire fraudulent certificates for domains they do not control. incorrect

bindings can be either (i) prevented or (ii) detected. As it can be seen in Figure 4.2,

prevention techniques can be applied by any CAs and/or any sites to prevent from

a wrong binding. For example, a domain owner could add a CAA record to his DNS

where he declares a list of CAs that are allowed to issue a certificate for his domain

(IKP is a blockchain analogue); he could hardcode his certificate or constraints on

his certificate into the browser the user will install (e.g., key pins in Google Chrome);

or he could pin his certificate the first time the user visits his site to protect subse-

quent visits (TACK) assuming the first interaction is trustworthy (trust-on-first-use

or TOFU).

Unlike prevention techniques, detection methods do not prevent wrong bindings

from occurring, instead they add visibility and transparency about (namespace, keys)

binding, so it can be detected in case of failures. In the traditional web certification

model, CAs do not provide any insight about this binding. Lack of the visibility of

29

Figure 4.2: Techniques to prevent from incorrect (namespace, keys) bindings.

Figure 4.3: Techniques to add visibility about (namespace, keys) bindings.

bindings has led to several failures; thus, attempts have been made to add trans-

parency to the CAs ecosystem (see Figure 4.3). Certificate transparency (CT) [19],

sovereign keys (SKs) [20], and ARPKI [21] are systems that augment the current web

certificate mode by supplying a log of CA-issued certificates. A step further is not to

rely on CAs at all; another group of transparency solutions rely on users validating

their own entry in the log and then enforcing that all users see the same entry when

referencing the log even if the server hosting the log is malicious (a property called

non-equivocation). CONIKS is such a system and provides a distributed log but

for public keys [23]. ClaimChain is similar to CONIKS but finds a middle-ground

between using a small set of distributed servers (CONIKS) and a fully decentralized

but global state (blockchain) by having fully decentralized, local states that can be

cross-validated [25].

30

4.2 The Ghazal∗ System

Our proposed scheme is entitled Ghazal∗, a smart contract-based naming and PKI

uni-authoritative system. 1 Ghazal∗ is is actually a new uni-authoritative paradigm

that resolves some of the fundamental issues with the current certification model —

authority and indirection. It enables entities, whether they are people or organiza-

tions, to fully manage and maintain control of their domain name without relying on

trusted third parties. By proposing Ghazal∗, we argue that adding programmability

to a dapp-based PKI provides benefits beyond using the blockchain as an append-only

broadcast channel.

Using our system, users can register unclaimed domain names as globally read-

able identifiers on the Ethereum blockchain, bind the domain name to arbitrary data

i.e., public keys etc. These values are globally readable, non-equivocating, and not

vulnerable to the indirection attacks outlined in chapter 3. Anyone can claim a do-

main on a first-come, first-serve basis. Because it is decentralized, names cannot be

re-assigned without the cooperation of the owner (whereas an ICANN address like

davidduchovny.com can be re-assigned through adminstrative mediation). Another

feature of Ghazal∗ system is speeding up the DNS updates. In our system, DNS re-

source records are updated in 12 seconds (block interval in the Ethereum blockchain),

whereas it would take 3 days for users to update domain names resource records using

the traditional DNS system.

This novel system consists of two essential elements. First, the smart contract

that resides on the Ethereum blockchain and serves as the interface between entities

and the underlying blockchain. The second primary component of the system are the

clients, including people or organizations that interact with Ghazal∗ smart contract

in order to manage their domain names. Figure 4.4 represents the primary states a

1https://github.com/mahsamoosavi/Ghazal

31

domain name can be in and how state transitions work. These states are enforced

within the code itself to help mitigate software security issues related to unintended

execution paths.

Figure 4.4: Primary states and transitions for a domain name in Ghazal∗.

4.2.1 Exploring Ghazal∗ design choices

Beyond simply presenting our design, we think it is useful to explore the landscape

of possible designs. To this end, we discuss some deployment issues that we faced

where there was no obvious “one right answer.” These are likely to be faced by

others working in this space (whether working narrowly on PKI or broad identity on

blockchain solutions).

4.2.1.1 Design Decision #1: Domain Name Expiration

Typically domain name ownership eventually expires. Once a domain expires, it is

returned to the primary market, except if the users renews it. However, expiration

does not necessarily have to mean a disclaimer of ownership; there are other options.

32

1. Domain names never expire and last forever. Designing a system with

no domain name expiration would be highly vulnerable to domain squatting.

Domain squatting is registering domain names in speculation that the will in-

crease in value. These domain names generally do not point to any relevant IP

address (except to earn revenue on accidental visits). If domain names never

expire, squatting may be significantly problematic as squatted names would be

locked forever while legitimate users will end up choosing unusual names from

the remaining namespace. To be clear, even without expiration, if domains are

cheap, squatting is problematic (e.g., Namecoin [15]).

2. Domain names get deleted once they expire, except being renewed

by the user. The most restrictive system design is where a domain name

effectively gets deleted and is returned to the registry of unclaimed names once

it expires, unless the user renews it. This model has the following two issues.

First, if a browser tries to resolve an expired domain, because the blockchain

has a complete, immutable history of that domain, we would expect users to

want it resolved according to the previous owner. Rolling back expiration is

possible in a way not supported by DNS and it resolves simple human errors

of forgetting to renew domains, so we do not expect browsers to necessarily fail

when it could make a sensible guess as to which server their users are looking for.

The second reason to drop the deletion model of expiration is that Ethereum

contracts can only run when a function is called. If no one calls a function at

expiration time, the contract cannot self-execute to modify itself. The fact that

it is expired can be inferred from contract if it includes a time but the contract

itself will not transition states until someone calls a function that touches that

particular contract. An alternative is to rely on a third party like Ethereum

Alarm Clock [59] for scheduling future function calls. This is suitable only if

33

the threat model permits relying on a trusted third party and a single point of

failure (for this one feature).

3. Control over domain names is lost once they expire, except being

renewed by user. In Ghazal∗, expired domains continue to function although

the owner (i) looses the sole claim to that domain and cannot preserve it if

someone else purchases it, and (ii) she cannot modify the domain in anyway

(e.g., add certificates or change zone information) unless if she first renews it.

Essentially, purchasing a domain name does not entitle an entity to own it

forever; expired domain names are returned back to the primary market and

are available for all the users within the system. However since a full history of

a domain is present, the system’s best effort at resolving the domain will be to

preserve the last known state. Expiration in conjunction to the amount of the

fee will influence the degree of domain squatting, and having expiration at all

will allow abandoned domains to churn if they are under demand.

4.2.1.2 Design Decision #2: Registration Fees

In Ghazal∗, new registrations and renewals require a fee. This fee is a deterrent against

domain squatting. The fee amount is difficult to set and no fee will be perfectly priced

to be exactly too high for squatters but low enough for all ‘legitimate’ users. Rather

it will trade-off the number of squatters with the number of would-be legitimate users

who cannot pay the fee. Namecoin is evidently too cheap and ICANN rates seem

reasonable. We leave this as a free parameter of the system. The important decisions

are: (1) in what currency are they paid and (2) to whom. Every Ethereum-based

system, even without a fee, will at least require gas costs. Additional fees could be

paid in Ether or in some system-specific token. Since it is a decentralized system

and the fee is not subsidizing the efforts of any entity involved, there is no one in

34

particular to pay. The fee could be paid to an arbitrary entity (the system designer or

a charity), burned (made unrecoverable), or to the miners. In Ghazal∗, fees are paid

in Ether and are released to the miner that includes the transaction in the blockchain.

4.2.1.3 Design Decision #3: Domain Name Renewal

We design Ghazal∗ in such a way that the domain owners can renew their domains

before their validity period comes to an end, however they cannot renew an arbitrary

number of times. Specifically, a renewal period becomes active after the domain

is past 3/4 of its validity period. Renewal pushes the expiration time forward by

one addition of the validity period (thus renewing at the start or end of the renewal

period is inconsequential and results in the domain having the same expiration time).

Requiring renewal keeps users returning regularly to maintain domains, and unused

domains naturally churn within the system. Domain name redemption period can

take different values. We experiment with a validity period of 1 year; thus, the

renewal period would start after 9 months and last 3 months.

4.2.1.4 Design Decision #4: Domain Name Ownership Transfer

In Ghazal∗, domain owners can transfer the ownership of their unexpired domains

to new entities within the system. Basically, transferring a domain name at the

Ethereum level means changing the address of the Ethereum account that controls

the domain. Our system offers two ways of transferring the ownership of a domain:

1. Auctioning off the domain name. A domain owner can voluntarily auction

off an unexpired domain. Once an auction is over, the domain is transferred

to the highest bidder, the payment goes to the previous owner of the domain,

and the validity period is unaffected by the transfer (to prevent people from

shortcutting renewal fees by selling to themselves for less than the fee). If there

35

1 // Possible states of every auction.

2 enum Stages {Opened , Locked , Ended}

3
4 struct AuctionStruct

5 { uint CreationTime;

6 address Owner;

7 uint highestBid;

8 address highestBidder;

9 address Winner;

10 Stages stage;

11 //To return the bids that were overbid.

12 mapping(address => uint) pendingReturns;

13 //To return the deposits the bidders made.

14 mapping(address => uint) deposits;

15 //Once an address bids in the auction , its associated boolean value will be

set to true within the "already_bid" mapping.

16 mapping(address => bool) already_bid;

17 bool AuctionisValue;

18 }

19 // AuctionLists mappings store AuctionStructs.

20 mapping (bytes32 => AuctionStruct) internal AuctionLists;

Code 4.1: Implementation of AuctionStruct and AuctionLists mapping in Ghazal∗

smart contract.

are no bidders or if the bids do not reach a reserve value, the domain is returned

to the original owner. While under auction, a domain can be modified as normal

but transfers and auctions are not permitted. To implement the auction feature,

we use the fact that Solidity is object-oriented. We first deploy a basic Ghazal

function without advanced features like auctions, and then use inheritance to

create a child contract Ghazal∗ that adds the auction process. Using Ghazal∗, a

user can run any number of auctions on any number of domains he owns. This

is implemented through a mapping data structure called AuctionLists to store

every auctions along with its attributes. AuctionLists accepts Domain names

as its keys, and the AuctionStructs as the values (see Code 4.1). Using the

mapping and Ethereum state machine, we enforce rules to prevent malicious

behaviors e.g., domain owners can auction off a domain only if there is no other

auction running on the same domain. To encourage winners to pay, all bidders

must deposit a bounty in Ether the first time they bid in an auction (amount

set by the seller). This is refunded to the losers after bidding closes, and to

36

the winner after paying for the domain. Without this, users might disrupt an

auction by submitting high bids with no intention of paying.

1 modifier CheckDomainExpiry(bytes32 _DomainName) {

2 if (Domains[_DomainName]. isValue == false)

3 {Domains[_DomainName]. state=States.Unregistered ;}

4 if (now >= Domains[_DomainName]. RegistrationTime +10 minutes)

5 {Domains[_DomainName]. state = States.Expired ;}

6 _;

7 }

8 modifier Not_AtStage(bytes32 _DomainName , States stage_1 , States stage_2) {

9 require (Domains[_DomainName].state != stage_1 && Domains[_DomainName].

state != stage_2);

10 _;

11 }

12 modifier OnlyOwner(bytes32 _DomainName) {

13 require(Domains[_DomainName]. DomainOwner == msg.sender);

14 _;

15 }

16 function Transfer_Domain(string _DomainName ,address _Reciever ,bytes32 _TLSKey ,

string _IP_Adress) public

17 CheckDomainExpiry(stringToBytes32(_DomainName))

18 Not_AtStage(stringToBytes32(_DomainName),States.Unregistered ,States.Expired)

19 OnlyOwner(stringToBytes32(_DomainName))

20 {

21 DomainName = stringToBytes32(_DomainName);

22 Domains[DomainName]. DomainOwner = _Reciever;

23 if (_TLSKey == 0 && stringToBytes32(_IP_Address) != 0) { Wipe_TLSKeys(

DomainName); }

24 if (stringToBytes32(_IP_Address) == 0 && _TLSKey != 0) {

Wipe_IP_address(DomainName); }

25 if (stringToBytes32(_IP_Address) == 0 && _TLSKey == 0) {

Wipe_TLSKeys_and_IP_address(DomainName); }

26 }

Code 4.2: Transfer Domain function of Ghazal∗ smart contract.

2. Transfer the ownership of a domain name. A domain owner can also

transfer an unexpired domain to the new Ethereum account by calling the

37

Transfer Domain function which simply changes the Ethereum address that

controls the domain name. The owners can also decide to either transfer do-

main’s associated attributes (e.g., TLS certificates) or not, when they transfer

the domain. This is possible with either supplying these attributes with zero or

other desired values when calling the Transfer Domain function (see Code 4.2).

To prevent from MITM attacks, TLS certificates should be revoked once a domain

name is transferred. However, security incidents reveal that this is not commonly

enforced in the current PKI. For instance, Facebook acquired the domain fb.com for

$8.5M in 2010, yet no one can be assured if that the previous owner does not have

a valid unexpired certificate bound to this domain [14]. This has been successfully

enforced in our system as the new owner of the domain is capable of modifying the

domain’s associated TLS keys, which results in protecting communications between

the clients and his server from eavesdropping.

4.2.1.5 Design Decision #5: Toward Lightweight Certificate Revocation

In the broader PKI literature, there are four traditional approaches to revocation

[60]: certificate revocation lists, online certificate status checking, trusted directories,

and short-lived certificates. Revocation in the web certificate model is not effective.

It was built initially with revocation lists and status checking, but the difficulty of

routinely obtaining lists and the frequent unavailability of responders led to browsers

failing open when revocation could not be checked. Some browsers build in revocation

lists, but are limited in scope; EV certificates have stricter requirements; and some

research has suggested deploying short-lived certificates (e.g., four days) that requires

the certificate holders to frequently renew them [61] (in this case, certificates are not

explicitly revoked, they are just not renewed). Which model does a blockchain imple-

ment? At first glance, most blockchain implementations would implement a trusted

38

directory: that is, a public key binding is valid as long as it is present and revocation

simply removes it. The issue with this approach on a blockchain is how users estab-

lish they have the most recent state. With the most recent state in hand, revocation

status can be checked. This check is potentially more efficient than downloading the

entire blockchain (this functionality exists for Bitcoin where it is called SPV and is

a work in progress for Ethereum where it is called LES). However a malicious LES

server can always forward the state immediately preceding a revocation action and

the client cannot easily validate it is being deceived.

At a foundational level, most revocation uses a permit-override approach where

the default state is permissive and an explicit action (revocation) is required. Short-

lived certificates (and a closely related approach of stapling a CA-signed certificate

status to a certificate) are deny-override meaning the default position is to assume

a certificate is revoked unless if there is positive proof it is not. This latter approach

is better for lightweight blockchain clients as LES servers can always lie through omit-

ting data, but cannot lie by including fraudulent data (without expending consider-

able computational work). As an alternative or compliment, clients could also take

the consensus of several LES servers, although this ‘multi-path probing’ approach has

some performance penalties (it has been suggested within the web certificate model

as Perspectives [62] and Convergence [63]).

In Ghazal∗, public keys that are added to a domain name expire after a maximum

lifetime, e.g., four days. Expiration is not an explicit change of state but is inferred

from the most recent renewal time. Owners need to rerun the key binding function

every several days to renew this. If an owner wants to revoke a key, she simply fails

to renew. To verify the validity of a certificate, one is now able to use a LES-esque

protocol. Once a user queries a semi-trusted LES node for a corresponding record

of a domain, the node can either return a public key that is four days old, which

39

user will assume is revoked, or a record that newer that the user will assume is not

revoked. Although this approach requires the frequent renewal of public keys, it is

a cost that scales in the number of domains as opposed to revocation checks which

scale in the number of users accesses a domain.

4.3 Ghazal Main Operations

At the time of writing this thesis, there are 19 functions in Ghazal∗ (Ghazal’s child

contract that adds the auction process). In this section, we represent a list of primary

functions that are mainly used to mange (e.g., register, renew, etc.) the domain names

within our system.

Domain Name Registration. Register function allows entities to register unreg-

istered or expired domain names.This function is payable that is, entities need to pay

the domain registration fees to call this function and claim the domain names. Regis-

ter function takes one parameter as its input; Domain name– A string representing

a domain name the user aims to claim.

Domain Name Renewal. Renew function allows entities to renew their domain

names before their validity period comes to an end.This function is payable and takes

one parameter as its input; Domain name– A string representing a domain name

the owner wants to renew.

Add Certificate. Add TLSKey function allows domain name owner to bind TLS

keys to his domain name. This function can be also used to overwrite the existing

TLS keys in case of the private key loss or interception. It takes the followings as

input:

40

Domain name– A string representing a domain name to which the owner aims

to bind the TLS keys.

TLS Key– A dynamically sized byte array that stores TLS keys.

Add Zonefile. Using the Add Zonefile function, domain owner can add the associ-

ated resource records to his domain name. Followings represent the input parameters

of this function:

Domain Name. A string representing a domain name to which the owner aims

to the resource records.

IP Address. An string representing the domain name’s associated IP address.

Add Certificate & Zonefile. Add TLSKey & Zonefile function allows domain

owners to bind TLS keys and zone files to their domain names simultaneously. This

function takes the three following input parameters:

Domain Name. A string representing a domain name to which the owner aims

to add the attributes.

IP Address. A string representing the domain name’s associated IP address.

TLS Key. A dynamically sized byte array that stores TLS keys.

Revoke Certificates. Revoke Certificate function allows domain owners to delete

any specific certificate that is bound to their domains. This function takes two input

parameters:

Domain Name. A string representing a domain name.

TLS Key. A dynamically sized byte array representing the TLS key that owner

wants to revoke.

41

4.4 Walkthrough of Domain Name Resolution in

Ghazal∗

This section provides a walkthrough of resolving a domain using the Ghazal∗ system.

4.4.1 Ghazal∗ with .ghazal namespace

In order to visit bank.ghazal website over HTTPS, the user’s browser needs to re-

solve the IP address for bank.ghazal and obtain its public key. The browser might

be configured in one of two ways to resolve domains—one method is more secure but

has deployability challenges, while the other makes a trust assumption and gains effi-

ciency. The first option is for the user’s client to maintain a local copy of the Ethereum

blockchain. In this case, the browser can query its local copy of the blockchain and

parse the mapping data structure to recover the domain name’s associated attributes

(e.g., DNS resource records and TLS certificates). Due to the data structure, ac-

cessing these values is performed in constant time because the mapping works like

a hash table (so the entire list of domains does not have to be searched, as would

be the case with an array—see Section 5.3.4). Additionally, because the blockchain

is local, this introduces no extra rounds of communication (other than having the

blockchain updated). This approach is the most secure way of resolving .ghazal

domain names as the clients directly consult with the blockchain without relying on

any other party. However, it requires clients to download and maintain the entire

Ethereum blockchain, which is not feasible for lightweight blockchain clients such as

smartphones. Another way of resolving the bank.ghazal domain name is to rely on

semi-trusted full node LES servers. In this approach, instead of downloading the en-

tire Ethereum blockchain, browsers can connect to LES severs and obtain the domains

attributes. This check is more efficient than downloading the entire blockchain, how-

42

ever it is less secure as trust is involves trusting other parties who can be malicious.

See Section 4.2.1.5 for more on this approach.

4.5 Conclusion

In this chapter, we pinpointed and categorized existing solutions to the CAs ecosystem

failures. We then described our system Ghazal∗, a naming and PKI uni-authoritative

system which is implemented on the Ethereum blockchain. The last sections of this

chapter, we thoroughly explained our system’s design choices as well as its primary

operations.

In the chapter 5 we will further explain the implementation and deployment of

Ghazal∗.

43

Chapter 5

Implementation and Deployment

of Ghazal∗

5.1 Introductory Remarks

In the previous chapter, we described Ghazal∗, a new paradigm for a DNS system

and certification model which allows entities to securely register domain names and

obtain certificates for those names. We also discussed the various design decisions

that have been taken into account while designing Ghazal∗ scheme. While Bitcoin

scripting language is highly restrictive, the Ethereum blockchain is developed to en-

able developers to leverage the underlying blockchain security and execute their own

programs, known as smart contracts, in a fully decentralized manner. In this chapter,

we further detail the implementation and deployment of our system, that is mainly a

smart contract written in Solidity, in addition to identifying the security requirements

of its functions.

44

5.2 Ethereum Concepts

What follows is a description of the Ethereum blockchian concepts which draw upon

insights into how this technology works and what are the chief components of it.

5.2.1 Ethereum Accounts

Accounts are entities that play the most significant role in the Ethereum blockchain.

There are two types of (i) externally owned accounts and (ii) contract accounts on

the Ethereum. Both types of Ethereum accounts are associated with a 40-character

hexadecimal format public key known as Ethereum address. These accounts, as

Ethereum network entities, hold states. Externally owned accounts, referred to

accounts, own balance while contract accounts hold balance and contract storage.

Ethereum nodes keep track of the network’s state which is the most recent state of

each existing account and is updated with every block that is added to the blockchian.

5.2.2 Smart Contracts and Transactions

As mentioned, a contract is an Ethereum account that contains a piece of code and

can be executed on the Ethereum Virtual Machine (EVM). Once deployed on the

Ethereum, smart contracts are not executed unless they are called up and triggered

by mechanisms known as transactions. Transactions can be originated from either

another contracts or normal accounts, in both cases the contract code is executed on

the EVM and its state changes based on the transactions it has received as an input.

Originally, Smart contracts were written and developed high level languages in-

cluding Mutan (C-like language) [64], LLL (LISP-like language) [65], and Serpent

(Python-like language) [66]. However, smart contracts are currently written in Solid-

ity, a high level object oriented language which is similar to Java [67].

45

5.2.3 Ether

Similar to bitcoin, ether (ETH) is a class of cryptocurrency, while it alternatively

supplies ”fuel” for the Ethereum network to run the decentralized applications. In

order for the Ethereum nodes to process and execute a transaction, a transaction fee

is required to be paid in ether. These fees are calculated based on the computational

resources and the time that is required to execute them, so ether is also called the

”digital oil”. Like Bitcoin, one can obtain ether by (i) being a miner and verifying

network transactions, where every 12 seconds 5 ethers are rewarded to the miner, or

(ii) by purchasing from another Ethereum entity.

5.2.4 Gas

As it was mentioned in the above, Ethereum nodes are required to be rewarded for

executing the transactions and maintaining the Ethereum blockchain, this is achieved

by paying ether for each transaction. The amount of ether in these transaction fees

indicate the notion of gas. Every transaction contains a number of operations and

there is a precise amount of gas unit associated with each operation. Accordingly, the

ultimate amount of gas required for a transaction to be executed is equal to the gas

needed for all the operations in that transaction. Each transaction has a correspond-

ing gas price which incentivizes the network nodes to execute it and transactions with

higher amount of gas are effectively processed faster by the network.

It is almost impossible for a sender to examine the precise amount of gas needed

for the completed execution of the transaction he aims to send to the network, thus

there is a gas limit associated with each transaction. Gas limit is the maximum

amount of gas that a sender can pay as a transaction fee so that he does not loose all

of his funds. By doing so, the transaction is certainly executed by the network nodes

and the remaining gas (if there is any) is refunded to the payee.

46

5.2.5 Mining

Like all other blockchain technologies, Ethereum employs a mining process to ensure

a secure and valid decentralized record keeping. To do so, a block is broadcast to

the network after it is mined by a miner, then it is checked as valid and appended to

the blockchain, if it contains a proof of work of a determined difficulty. The proof of

work algorithm that is currently applied by the Ethereum is called Ethash [68] and it

involves finding a nonce input to the algorithm so that the result is below a certain

threshold depending on the difficulty. Note that to maintain 12 second block interval

in the Ethereum, the mining difficulty fluctuates.

Miners require to invest high computational resources to perform the proof of work

as it contains extremely expensive computations. As a reward, they gain 5 ether for

every block they create and mine in addition to total gas consumed by the entire

transactions within that block. By doing so, Ethereum provides an incentive for the

network nodes (miners) to verify the transactions and maintain a decentralized and

immutable ledger of information.

5.3 Design and Implementation

While the previous section focused on theoretical concepts of the Ethereum blckchain,

in this section, we will outline how Ghazal∗ system has been developed and designed

around these concepts.

5.3.1 Ghazal∗ Smart Contract

Our system is hosted on the Ethereum blockchain and is managed by a smart contract

written in Solidity language.The smart contract acts as an interface to the blockchain

and enables entities to (i) register domain names and (ii) manage these names by

47

binding them to cryptographic keys, transfer and/or auction off their domain names

etc. This means the same entity that is managing the domain is the one who hosts

and manages the certificates.

5.3.2 Ghazal∗ Smart Contract Entities

The only entities that interact with the current implementation of our system are

domain owners. Note that domain owners can be any human or organization or any

other party who owns a private key that is associated with an Ethereum address.

These entities can register domain names, bind their domain names to DNS records

and/or cryptographic keys, transfer their domain names to the other Ethereum ac-

counts, and auction off their domain names.

5.3.3 Solidity

As mentioned in the Section 5.2.2, Ghazal∗ smart contract is written in a high level

programming language called Solidity. Solidity is an object oriented Java-like lan-

guage which takes the human readable smart contract code and and compiles it into

the EVM byte code. Currently, it is a widely used programming language among the

Ethereum developers. Below We represent Solidity features that have been used in

Ghazal∗.

5.3.4 Types

As a high level programming language, Solidity supports different data types such

as integers and booleans. In the following sections, we discuss data types of the

Solidity language (together with a few examples from the code) that have been used

in implementing Ghazal∗.

48

1 struct Domain{

2 bytes32 DomainName;

3 address DomainOwner;

4 uint RegistrationTime;

5 bytes32 [] TLSKeys;

6 bool isValue;

7 States state;

8 ZoneFileStruct ZoneFile;

9
10 }

Code 5.1: Domain struct that stores domain names and their attributes in Ghazal∗

smart contract.

Structure

Solidity allows developers to to define an struct type with a name and related prop-

erties inside of it by using the struct statement. Code 5.1 shows one of the Ghazal∗’s

struct data types; Domain that is used to store domain names.

For each registered domain name, a Domain struct is initialized and stores the

following attributes:

• Domain Name–The domain name that is registered.

• Domain Owner– The Ethereum address of the account who registers the do-

main.

• Registration Time– The exact time when the domain is registered.

• TLSKeys– A dynamically sized byte array which can store infinite number of

public keys. As discussed in the previous chapter, we allow entities to obtain

multiple certificates for a domain name they own.

• IsValue– This boolean value is set to true once a Domain struct is initialized

for a key in mapping which we will further discuss.

• State– This is a user defined variable which represents the state of a domain at

each moment and will be discussed further while explaining the enum type.

49

1 mapping(bytes32 => Domain) public Domains;

Code 5.2: Domains mapping in Ghazal smart contract.

• ZoneFile– Each domain owns a zonefile struct that allows the domain owner to

add the domain’s associated resource records.

Arrays

Array data type is meant to store a group elements. Like other programming lan-

guages, there are two types of dynamically sized and fixed sized arrays in Solidity. In

Ghazal∗, we use Bytes32[] TLSKeys– a dynamic array of bytes32 to store as many

number as public keys.

Mappings

Mapping is referred to a hash table in Solidity which organizes values based on user

defined keys. Mappings allow users to look up an specific value using its key type that

he has defined. Domains is an example of using mapping data structure in Ghazal∗

system to store the domain structures (see Code 5.2).

As it can be seen in Code 5.2, we declare a mapping called Domains which accepts

Domain name from bytes32 type as its key, and domain struct as the value. By doing

so, we are able to look up a domain struct with its corresponding domain name and

retrieve all the associated attributes.

Given the fact that uninitialized mapping keys (the domains that are not regis-

tered yet) are set to zero by default, we use isValue boolean in domain struct; once a

domain is registered and initialized in Domains mapping, isValue is set to true. This

allows us to further verify whether an specific domain is in registered state or not.

50

Mappings vs Arrays. Here we discuss the differences between mappings and ar-

rays and the reason why we select mappings while designing our system. To do so,

assume that we are interested to retrieve a value x that is stored in 5.1 array.

Figure 5.1: Storing value x in an array.

In order to look up the value x, we have to iterate over the entire array as we

do not know where is the exact place it is stored. This can be neglected in case of

arrays with small size, however, it takes a long time to find an item as the array

size grows. On the other hand, in order to store the value x in a mapping, user

needs to provide a pair of (key, x), then the key gets hashed and outputs a number

which indicates where in the mapping x should be stored (see Figure 5.2). In order

Figure 5.2: Storing value x in a mapping.

to retrieve the value x from a mapping, user needs to provide the associated key, the

key gets hashed and supplies the exact location where x is stored in mapping. Note

51

that hash functions are deterministic and they always generate the same hash value

for a given input. Therefore, instead of iterating over the entire mapping, one only

needs to provide the exact pair of (key, value) every time he wants to look up that

value.

According to what have been presented, mappings enjoy a higher level of efficiency

in compared with arrays. Retrieving a value from array requires a full scan of the

array which results in O(n) complexity, whereas with mapping, Searching for a value is

performed in O(1) as it takes a constant time to find that value. Table 5.1 summarizes

the average complexity of performing the three insert, search, and delete functions

on arrays and mappings data structures. In view of all that has been mentioned so

Function Arrays Mappings

Insert O(1) O(1)

Search O(n) O(1)

Delete O(n) O(1)

Table 5.1: Summary of performance characteristics of arrays and mappings.

far, we select mappings to design and implement our system.

Enums

Enums enable smart contract developers to create user-defined types in Solidity. In

Ghazal∗, we use enums data types to implement state machines and encapsulate

functions’ behavior based on a given state. Code 5.3 is an example of using enums in

Ghazal∗. As the code shows, we create a user-defined type called States to (i) define

every possible states for a domain name and (ii) maintain the states of all domain

names that exist within our system.

52

1 enum States{

2 Unregistered ,

3 Registered ,

4 Expired ,

5 TLSKeyEntered ,

6 DNSHashEntered ,

7 TLSKey_And_DNSHashEntered}

8 struct Domain{

9 bytes32 DomainName;

10 address DomainOwner;

11 uint RegistrationTime;

12 bytes32 [] TLSKeys;

13 bool isValue;

14 States state;

15 ZoneFileStruct ZoneFile ;}

Code 5.3: Defining a new data type called States and declaring a new variable called
state of that type in Ghazal∗ smart contract.

States contains six values including unregistered, registered, expired, TLS key en-

tered, DNS has entered, and TLS key DNS hash entered. Each of these values indi-

cates a possible state that every domain names may go through. Interestingly, enums

can be explicitly converted to/from the any integer types e.g., States(1) represents

the registered state.

Once the new data type is defined (line 1, Code 5.3), we can declare variables

of that type that contain possible stages we have specified. Line 14 of Code 5.3

represents declaring a new variable called state as a domain struct’s property. Using

the state variable, we can maintain domain name’s possible states which we will

further explain how it leads us to design Ghazal∗ namespace properly.

5.3.5 Functions

Solidity allows developers to define units of code called functions in smart contracts

and execute those code on EVM. Solidity functions are classified into two types of (i)

transactional, also known as functions, and (ii) constant. Transactional functions, as

the name implies, generate a transaction to the Ethereum blockchain and can modify

the state of a contract, once they are invoked. In contrast, constant functions cannot

53

update the state of the contracts and modify the blockchain. Alternatively, they

can be called to return a value to the user who directly calls these function without

consuming any amount of gas. Functions can be described with four distinctive

visibility marks in Solidity. These include:

• External: These functions are part of the contract definition, although they

can not be called and invoked internally and can be merely called by external

entities within the blockchain (contracts and/or accounts).

• Public: These functions are default in Solidity and do not need to be deter-

mined. Public functions can be accessed and invoked both internally or by

external entities within the blockchain (contracts and/or accounts).

• Internal: These functions can merely be accessed and invoked by the contract

in which they are defined and its inherited functions and internal libraries.

• Private: These functions can be merely accessed and invoked by the current

contract in which they are defined and not by its inherited functions, internal li-

braries, and external entities within the blockchain (contracts and/or accounts).

5.3.6 Function Modifiers

Function modifiers allow smart contract developers to easily modify the behavior

of functions. In solidity, every function can belong to different modifiers, that is,

multiple conditions need to be satisfied in order for the function to be executed. At

the time of writing the thesis, Ghazal∗ smart contract contains 11 function modifiers

which enforce different conditions, what follows is a description of the five example

of these modifiers.

54

1 modifier Costs () {

2 require(msg.value >= Registration_Fee);

3 _;

4 }

Code 5.4: Implementation of the Costs modifier in Ghazal∗ smart contract.

1 modifier OnlyOwner(bytes32 _DomainName) {

2 require (Domains[_DomainName]. DomainOwner == msg.sender);

3 _;

4 }

Code 5.5: Implementation of the OnlyOwner modifier in Ghazal∗ smart contract.

Costs Function Modifier

As mentioned previously, users can register and/or renew domain names by paying

an certain amount of ether as domain registration fee in Ghazal∗. To enforce that, the

two register and renew functions are followed by the costs modifier which requires a

certain amount of fee to be associated with these function calls. Therefore, a user can

only invoke and execute these function if he pays the amount that is specified as the

registration fee. Additionally, in order to receive ether, these functions are marked

payable. costs modifier first checks the condition prior to executing the function (line

2, Code 5.4) and control flow continues after the ” ” in the modifier (line 3, Code 5.4).

OnlyOwner Function Modifier

In Ghazal∗ smart contract, we define the OnlyOwner function modifier in a way that

it requires a function to be only called from a certain Ethereum address. In fact, any

time that a user calls a function on an specific domain name (e.g., add TLS key),

the OnlyOwner modifier receives the domain name as its argument and allows the

user to successfully execute the function only if he is the owner of that domain (see

Code 5.5).

55

1 modifier AtStage(bytes32 _DomainName ,States stage_1 ,States stage_2) {

2 require (Domains[_DomainName].state == stage_1 || Domains[_DomainName].

state == stage_2);

3 _;

4 }

5 modifier Not_AtStage(bytes32 _DomainName ,States stage_1 ,States stage_2) {

6 require (Domains[_DomainName].state != stage_1 || Domains[_DomainName].

state != stage_2);

7 _;

8 }

Code 5.6: Implementation of the AtStage and Not AtStage function modifiers in
Ghazal∗ smart contract.

AtStage and Not AtStage Function Modifiers

In Solidity, functions are atomic operations, that is to say, they can be invoked and

executed at any time and any order irrespective of the actual order they are written

in the smart contract. Therefore, in order to design interactions within the Ghazal∗

smart contract accurately, we use AtStage and Not AtStage function modifiers to

model the states of the contract and prevent incorrect function calls by ensuring that

functions can only be executed at certain stages (see Code 5.6). For instance, using

the AtStage modifier, we enforce the register(Di) function to be executed only if the

Di is at unregistered or expired state.

CheckDomainExpiry Function Modifier

The CheckDomainExpiry function modifier, as the name implies, applies the domains

registration expiration after a certain period of time. This function modifier receives a

domain name as its argument and changes its state to expired if it meets the condition

that is specified within the modifier’s body (see Code 5.7, line 2)

56

1 modifier CheckDomainExpiry (bytes32 _DomainName) {

2 require (now >= Domains[_DomainName]. RegistrationTime + 5 years);

3 var DomainVar = Domains[_DomainName];

4 DomainVar.state = States.Expired;

5 Domains[_DomainName] = DomainVar;

6 _;

7 }

Code 5.7: Implementation of the CheckDomainExpiry function modifier in Ghazal∗

smart contract.

5.4 Evaluation

So far this chapter has focused the Ethereum concepts and data structures in addition

to Ghazal∗ smart contract’s design and description of its components. The aim of

Section 5.4 is to provide the technical implementation details of our system on the

Ethereum blockchain. We specifically discuss the costs related to the deployment

of Ghazal∗ smart contract on the Ethereum blockchain in addition to executing its

functions on the Ethereum virtual machine. Moreover, a smart contract analysis tool

is used to analyze the security of our system against a several number of security

threats to which smart contracts are often vulnerable.

5.4.1 Deployment

In order to analyze the Ghazal∗ smart contract in today’s Ethereum blockchain,

Ropsten, Ethereum test network, has been used [69]. Test networks replicate the

Ethereum network and EVM as well as offering an inexpensive way for smart con-

tract developers to test their codes. Ropsten is a public test network that entirely

stimulates the Ethereum peer to peer network except that it provides free gas. There-

fore, we successfully tested Ghazal∗ smart contract on this test network without paying

the real cost of gas for our executions.

57

5.4.2 Gas Estimation

Ghazal smart contract is implemented in 370 lines of Solidity language, a high level

programming language resembles to JavaScript, and tested on the Ethereum test

network. We use the Solidity compiler to evaluate the rough cost for publishing the

Ghazal∗ smart contract on the Ethereum blockchain as well as the cost for the various

operations to be executed on the Ethereum virtual machine. As of January 2018, 1

gas = 21× 10−9 ether1, and 1 ether = $882.922.

Table 5.2 represents the estimated costs for Ghazal∗ (and its inherited Ghazal

functionality) smart contract deployment and function invocation in both gas and

USD. As it can be seen from both Table 1, the most considerable cost is the one-time

cost paid to deploy the system on Ethereum. There are then relatively small costs

associated with executing the functions, i.e., users could easily register a domain by

paying $3.15 or they could bind a key to the domain they own for a cost of $1.43,

which is relatively cheap when compared with the real world costs associated with

these operations.

5.4.3 Security Analysis

Ethereum smart contracts, in particular the ones implemented in Solidity, are no-

torious for programming pitfalls. As they generally transfer and handle assets of

considerable value, bugs in Solidity code could result in serious vulnerabilities which

can be exploited by adversaries. We use standard defensive programming approaches,

in particular around functions that transfer money (such as the auction function that

refunds the security deposits), by using explicitly coded state machines and locks,

and by not making state-changes after transfers. We also analyze Ghazal∗ against

1https://ethstats.net/
2https://coinmarketcap.com/

58

Operation Gas Gas Cost in Ether Gas Cost in USD
Register 169 990 3.56× 10−3 $3.15
Renew 54 545 1.14× 10−3 $1.01
Transfer Domain 53 160 1.11× 10−3 $0.98
Add TLSKey 77 625 1.63× 10−3 $1.43
Add ZoneFile 57 141 1.19× 10−3 $1.05
Add TLSKey AND ZoneFile 68 196 1.43× 10−3 $1.26
Revoke TLSkey 37 672 7.91× 10−4 $0.69
StartAuction 119 310 2.50× 10−3 $2.21
Bid 112 491 2.36× 10−3 $2.08
Withdraw bids 46 307 9.72× 10−4 $0.85
Withdraw deposits 47 037 9.87× 10−4 $0.87
Settle 77 709 1.63× 10−3 $1.44
Ghazal∗ Contract Creation 2 402 563 0.05 $44.54

Table 5.2: Gas used for operations in the Ghazal∗ smart contract.

Oyente, a symbolic execution tool proposed by Luu et al. [1] which looks for poten-

tial security bugs like the re-entry attack (infamously). The results of the security

analysis represent that both of the smart contracts are not vulnerable to any known

critical security issue (see Figure 5.3).

5.5 Conclusion

In this chapter, we described and discussed the main concepts of the Ethereum

blockchain as well as the Solidity language. We also provided a few code snippets of

Ghazal∗ to show a better understanding of our system. In the last section, a thorough

security and cost evaluation of Ghazal∗ was performed. According to the results,

our system is totally secure against the existing security vulnerabilities. The overall

system costs under $100 to deploy Basic actions like domain registration costs under

$5.

59

Figure 5.3: Results of Ghazal∗ security analysis using Oyente [1].

60

Chapter 6

Concluding Remarks

In this thesis, we took a deep look into the public key infrastructure and the tra-

ditional web certification model. A thorough empirical study of the CA ecosystem

has been performed and the major issues were entirely discussed. We introduce

a novel uni-authoritative PKI and naming system called Ghazal∗ on the Ethereum

blockchain. We hope that uni-authoritative systems with programmability continue

to be explored in the literature. There are many open problems to work on. First

and foremost is understanding the scalability issues and how to minimize the amount

of data a client browser needs to fetch for each domain lookup. Blockstack has done

an excellent job on this issue for non-programmable contracts. Future work could

also look at the layer above the smart contract: building web tools with user inter-

faces to enable interaction with the underlying functions. Finally, while auctions are

one illustrative example of why programmability might be added to a PKI, we are

sure there are many others. The modular design of Ghazal∗ using object-oriented

programming should allow easy additions to our base contract, which we will provide

as open source. Indeed, the auction itself in Ghazal∗ was added via inheritance and

one function override (to enforce that ownership transfers, part of the parent class,

61

could not be called during a live auction).

62

Bibliography

[1] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart con-

tracts smarter,” in Proceedings of the 2016 ACM SIGSAC Conference on Com-

puter and Communications Security, pp. 254–269, ACM, 2016.

[2] C. M. Ellison, “The nature of a useable pki,” Computer Networks, vol. 31, no. 8,

pp. 823–830, 1999.

[3] R. Perlman, “An overview of pki trust models,” IEEE network, vol. 13, no. 6,

pp. 38–43, 1999.

[4] R. Housley, W. Polk, W. Ford, and D. Solo, “Internet x. 509 public key infras-

tructure certificate and certificate revocation list (crl) profile,” tech. rep., 2002.

[5] M. Wenbo, “Modern cryptography: theory and practice,” Publisher: Prentice

Hall PTR, Copyright: Hewlett Packard, 2004.

[6] C. Adams and S. Lloyd, Understanding PKI: concepts, standards, and deploy-

ment considerations. Addison-Wesley Professional, 2003.

[7] J. R. Vacca, Public key infrastructure: building trusted applications and Web

services. CRC Press, 2004.

[8] P. Eckersley and J. Burns, “An observatory for the ssliverse,” Talk at Defcon,

vol. 18, 2010.

63

[9] “Comodo report of incident - comodo detected and thwarted an intrusion on

26-mar-2011.” https://www.comodo.com/Comodo-Fraud-Incident-2011-03-23.

html. (Accessed on 07/11/2017).

[10] D. Kaminsky, L. Sassaman, and M. Patterson, “Pki layer cake: New collision

attacks against the global x. 509 ca infrastructure. black hat usa, august 2009.”

[11] “Google online security blog: Enhancing digital certifi-

cate security.” https://security.googleblog.com/2013/01/

enhancing-digital-certificate-security.html. (Accessed on 07/11/2017).

[12] “Google online security blog: Further improving digital cer-

tificate security.” https://security.googleblog.com/2013/12/

further-improving-digital-certificate.html. (Accessed on 07/11/2017).

[13] “Google, yahoo, skype targeted in attack linked to iran - cnet.” https://www.

cnet.com/news/google-yahoo-skype-targeted-in-attack-linked-to-iran/.

(Accessed on 07/11/2017).

[14] J. Clark and P. v. Oorschot, “SSL and HTTPS: Revisiting past challenges and

evaluating certificate trust model enhancements,” in IEEE S&P, 2013.

[15] H. A. Kalodner, M. Carlsten, P. Ellenbogen, J. Bonneau, and A. Narayanan, “An

empirical study of namecoin and lessons for decentralized namespace design.,”

in WEIS, 2015.

[16] C. Fromknecht, D. Velicanu, and S. Yakoubov, “Certcoin: A namecoin based

decentralized authentication system 6.857 class project,” 2014.

[17] L. Axon and M. Goldsmith, “Pb-pki: a privacy-aware blockchain-based pki,”

2016.

64

[18] M. Ali, J. C. Nelson, R. Shea, and M. J. Freedman, “Blockstack: A global nam-

ing and storage system secured by blockchains.,” in USENIX Annual Technical

Conference, pp. 181–194, 2016.

[19] B. Laurie, “Certificate transparency,” Queue, vol. 12, no. 8, p. 10, 2014.

[20] “git.eff.org git - sovereign-keys.git/blob - sovereign-key-design.txt.” https:

//git.eff.org/?p=sovereign-keys.git;a=blob;f=sovereign-key-design.txt;

hb=HEAD. (Accessed on 01/10/2018).

[21] D. Basin, C. Cremers, T. H.-J. Kim, A. Perrig, R. Sasse, and P. Szalachowski,

“Arpki: Attack resilient public-key infrastructure,” in Proceedings of the 2014

ACM SIGSAC Conference on Computer and Communications Security, pp. 382–

393, ACM, 2014.

[22] S. Matsumoto and R. M. Reischuk, “Ikp: Turning a pki around with

blockchains.,” IACR Cryptology ePrint Archive, vol. 2016, p. 1018, 2016.

[23] M. S. Melara, A. Blankstein, J. Bonneau, E. W. Felten, and M. J. Freedman,

“Coniks: Bringing key transparency to end users.,” in USENIX Security Sym-

posium, pp. 383–398, 2015.

[24] J. Bonneau, “Ethiks: Using ethereum to audit a coniks key transparency log,” in

International Conference on Financial Cryptography and Data Security, pp. 95–

105, Springer, 2016.

[25] B. Kulynych, M. Isaakidis, C. Troncoso, and G. Danezis, “Claimchain: Decen-

tralized public key infrastructure,” arXiv preprint arXiv:1707.06279, 2017.

[26] T. Hardjono and A. S. Pentland, “Verifiable anonymous identities and access

control in permissioned blockchains.”

65

[27] E. Syta, I. Tamas, D. Visher, D. I. Wolinsky, P. Jovanovic, L. Gasser, N. Gailly,

I. Khoffi, and B. Ford, “Keeping authorities” honest or bust” with decentralized

witness cosigning,” in Security and Privacy (SP), 2016 IEEE Symposium on,

pp. 526–545, Ieee, 2016.

[28] M. Chase and S. Meiklejohn, “Transparency overlays and applications,” in Pro-

ceedings of the 2016 ACM SIGSAC Conference on Computer and Communica-

tions Security, pp. 168–179, ACM, 2016.

[29] M. Al-Bassam, “Scpki: A smart contract-based pki and identity system,” in Pro-

ceedings of the ACM Workshop on Blockchain, Cryptocurrencies and Contracts,

pp. 35–40, ACM, 2017.

[30] W. Diffie and M. Hellman, “New directions in cryptography,” IEEE transactions

on Information Theory, vol. 22, no. 6, pp. 644–654, 1976.

[31] C. P. Pfleeger and S. L. Pfleeger, Security in computing. Prentice Hall Profes-

sional Technical Reference, 2002.

[32] B. Schneier, Applied cryptography: protocols, algorithms, and source code in C.

john wiley & sons, 2007.

[33] A. Arsenault and S. Turner, “Internet x. 509 public key infrastructure:

Roadmap,” PKIX Working Group Internet Draft, pp. 1–55, 2002.

[34] E. Rescorla, SSL and TLS: designing and building secure systems, vol. 1.

Addison-Wesley Reading, 2001.

[35] E. Rescorla, “Http over tls,” 2000.

[36] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.

66

[37] L. Lamport, R. Shostak, and M. Pease, “The byzantine generals problem,” ACM

Transactions on Programming Languages and Systems (TOPLAS), vol. 4, no. 3,

pp. 382–401, 1982.

[38] L. Lamport, “The part-time parliament,” ACM Transactions on Computer Sys-

tems (TOCS), vol. 16, no. 2, pp. 133–169, 1998.

[39] M. Jakobsson and A. Juels, “Proofs of work and bread pudding protocols,” in

Secure Information Networks, pp. 258–272, Springer, 1999.

[40] V. Buterin et al., “A next-generation smart contract and decentralized applica-

tion platform,” white paper, 2014.

[41] G. Wood, “Ethereum: A secure decentralised generalised transaction ledger,”

Ethereum Project Yellow Paper, vol. 151, 2014.

[42] “Ethereum development tutorial ethereum/wiki wiki.” https://github.

com/ethereum/wiki/wiki/Ethereum-Development-Tutorial. (Accessed on

07/12/2017).

[43] N. Szabo, “Formalizing and securing relationships on public networks,” First

Monday, vol. 2, no. 9, 1997.

[44] C. Soghoian and S. Stamm, “Certified lies: Detecting and defeating government

interception attacks against ssl (short paper),” in International Conference on

Financial Cryptography and Data Security, pp. 250–259, Springer, 2011.

[45] X. d. C. de Carnavalet and M. Mannan, “Killed by proxy: Analyzing client-end

tls interception software,” in Network and Distributed System Security Sympo-

sium, 2016.

67

[46] “Alternative methods of domain control validation (dcv) -

powered by kayako help desk software.” https://support.

comodo.com/index.php?/Knowledgebase/Article/View/791/0/

alternative-methods-of-domain-control-validation-dcv. (Accessed on

10/16/2017).

[47] “Blackhat-dc-09-marlinspike-defeating-ssl.pdf.” http://

www.blackhat.com/presentations/bh-dc-09/Marlinspike/

BlackHat-DC-09-Marlinspike-Defeating-SSL.pdf. (Accessed on 10/16/2017).

[48] Z. Durumeric, J. Kasten, M. Bailey, and J. A. Halderman, “Analysis of the

https certificate ecosystem,” in Proceedings of the 2013 conference on Internet

measurement conference, pp. 291–304, ACM, 2013.

[49] “Ssl certificates rapid7/sonar wiki github.” https://github.com/rapid7/sonar/

wiki/SSL-Certificates. (Accessed on 10/23/2017).

[50] “More ssl certificates rapid7/sonar wiki github.” https://github.com/rapid7/

sonar/wiki/More-SSL-Certificates. (Accessed on 10/23/2017).

[51] J. A. Halderman, “Fast internet-wide scanning and its security applications,”

[52] B. Laurie, A. Langley, and E. Kasper, “Certificate transparency,” tech. rep.,

2013.

[53] Z. Durumeric, J. Kasten, M. Bailey, and J. A. Halderman, “Analysis of the https

certificate ecosystem,” in IMC, 2013.

[54] R. Holz, L. Braun, N. Kammenhuber, and G. Carle, “The SSL landscape: A

thorough analysis of the X.509 PKI using active and passive measurements,” in

IMC, 2011.

68

[55] M. Zusman, “Criminal charges are not pursued: Hacking pki,” DEFCON 17,

2009.

[56] “Godaddy owns up to role in epic twitter account hijack-

ing — pcworld.” https://www.pcworld.com/article/2093100/

godaddy-owns-up-to-role-in-twitter-account-hijacking-incident.html.

(Accessed on 02/13/2018).

[57] S. Son and V. Shmatikov, “The hitchhikers guide to dns cache poisoning,” Se-

curity and Privacy in Communication Networks, pp. 466–483, 2010.

[58] D. Liu, S. Hao, and H. Wang, “All your dns records point to us: Understanding

the security threats of dangling dns records,” in Proceedings of the 2016 ACM

SIGSAC Conference on Computer and Communications Security, pp. 1414–1425,

ACM, 2016.

[59] “Home.” http://www.ethereum-alarm-clock.com/. (Accessed on 12/29/2017).

[60] M. Myers, “Revocatoin: Options and challenges,” in Financial Cryptography,

pp. 165–171, Springer, 1998.

[61] E. Topalovic, B. Saeta, L.-S. Huang, C. Jackson, and D. Boneh, “Towards short-

lived certificates,” Web 2.0 Security and Privacy, 2012.

[62] D. Wendlandt, D. G. Andersen, and A. Perrig, “Perspectives: Improving SSH-

style host authentication with multi-path probing,” in USENIX Annual Tech,

2008.

[63] M. Marlinspike, “SSL and the future of authenticity,” in Black Hat USA, 2011.

[64] “Mutan ethereum/go-ethereum wiki github.” https://github.com/ethereum/

go-ethereum/wiki/Mutan. (Accessed on 11/06/2017).

69

[65] “Lll poc 6 ethereum/cpp-ethereum wiki github.”

https://github.com/ethereum/cpp-ethereum/wiki/LLL-PoC-6/

7a575cf91c4572734a83f95e970e9e7ed64849ce. (Accessed on 11/06/2017).

[66] “Serpent ethereum/wiki wiki github.” https://github.com/ethereum/wiki/

wiki/Serpent. (Accessed on 11/06/2017).

[67] “Solidity solidity 0.4.19 documentation.” http://solidity.readthedocs.io/en/

latest/. (Accessed on 11/06/2017).

[68] “Ethash ethereum/wiki wiki github.” https://github.com/ethereum/wiki/

wiki/Ethash. (Accessed on 11/06/2017).

[69] “Github - ethereum/ropsten: Ropsten public testnet pow chain.” https://

github.com/ethereum/ropsten. (Accessed on 11/20/2017).

70

Appendix A

Ghazal Full Smart Contract

1 pragma solidity ^0.4.0;

2 contract Ghazal{

3 bytes32 public DomainName;

4 uint Registration_Fee = 1 ether; //The amount that a user has to pay in order to

register a domain.

5 mapping (bytes32 => Domain) internal Domains;

6 Domain internal CurrentDomain;

7 enum States {Unregistered ,Registered ,Expired ,TLSKeyEntered ,ZoneFileEntered ,

TLSKey_And_ZoneFileEntered}

8

9 mapping(address => uint) internal refunds;

10

11 //

12 //Each domain will hvae a zonefile struct in which the domain owner adds the

domain name associated resource records.

13 // for now we only include the IP address.

14 struct ZoneFileStruct{

15 string IP_Address;

16 }

17 //

18 struct Domain{ // Domain struct represents each domain which posses DomainName ,

71

RegistrantName , Validity

19 bytes32 DomainName;

20 address DomainOwner;

21 uint RegistrationTime;

22 bytes32 [] TLSKeys; // Dynamic array of bytes32 to store multiple

certificates for a single domain.

23 bool isValue; //IF the Domain struct is initiallized for a key (_DomianName)

, this value is set to true.

24 States state; // Keeps the state of the domain.

25 ZoneFileStruct ZoneFile;

26

27 }

28 //

29 //Cost function modifier allows a function to get executed if the msg.value is

equal or greater than the Registration_Fee (Which we defined as 1 ether)

30 modifier Costs () {

31 require(msg.value >= Registration_Fee);

32 _;

33 }

34 //

35 // OnlyOwner function modifier allows a function to get executed if the entity

that is invoking a function is the same as domain owner.

36 modifier OnlyOwner(bytes32 _DomainName) {

37 require(Domains[_DomainName]. DomainOwner == msg.sender);

38 _;

39 }

40 //

41 // AtStage function modifier allows a function to get executed if the domain is

in desired states.

42 modifier AtStage(bytes32 _DomainName , States stage_1 , States stage_2) {

43 require (Domains[_DomainName].state == stage_1 || Domains[_DomainName].

state == stage_2);

44 _;

45 }

72

46 //

47 // Not_AtStage function modifier allows a function to get executed if the domain

is not in the specified states.

48 modifier Not_AtStage(bytes32 _DomainName , States stage_1 , States stage_2) {

49 require (Domains[_DomainName].state != stage_1 && Domains[_DomainName].state

!= stage_2);

50 _;

51 }

52 //

53 // CheckDomainExpiry function modifier checks if the domain name is expired or

not.

54 modifier CheckDomainExpiry (bytes32 _DomainName) {

55 if (Domains[_DomainName]. isValue == false) {Domains[_DomainName]. state=

States.Unregistered ;} //IF the Domain struct is initiallized for the key

(_DomianName), it updates the domain ’s state to Unregistered.

56 if (now >= Domains[_DomainName]. RegistrationTime + 10 minutes) {Domains[

_DomainName].state = States.Expired ;} // each domain expires in 5 years.

57 _;

58 }

59 //

60 //A user can Register a Domain using the Register function.

61 function Register (string _DomainName) payable public CheckDomainExpiry (

stringToBytes32(_DomainName)) Costs() AtStage(stringToBytes32(_DomainName),

States.Unregistered ,States.Expired)

62 {

63 DomainName = stringToBytes32(_DomainName);

64 CurrentDomain.DomainName = DomainName;

65 CurrentDomain.DomainOwner = msg.sender;

66 CurrentDomain.RegistrationTime = now;

67 CurrentDomain.isValue = true;

68 delete CurrentDomain.TLSKeys;

69 CurrentDomain.state = States.Registered;

70 Domains[DomainName] = CurrentDomain;

71 refunds[block.coinbase] += Registration_Fee;

73

72 uint refund = refunds[block.coinbase];

73 refunds[block.coinbase] = 0;

74 block.coinbase.transfer(refund);

75

76 }

77 //

78 // Domain Owner can renew the domain at least 1 year before the domain is expired

. Note that Domian validation period is 5 years.

79 function Renew (string _DomainName) public payable CheckDomainExpiry (

stringToBytes32(_DomainName)) Costs () OnlyOwner(stringToBytes32(_DomainName)

)

80 {

81 DomainName = stringToBytes32(_DomainName);

82 require (now >= Domains[DomainName]. RegistrationTime + 10 minutes);

83 Domains[DomainName]. RegistrationTime = now;

84 refunds[block.coinbase] += Registration_Fee;

85 uint refund = refunds[block.coinbase];

86 refunds[block.coinbase] = 0;

87 block.coinbase.transfer(refund);

88 }

89 //

90 //A user can add unlimited number of certificates to his Domain using the

Add_TLSKey function.

91 function Add_TLSKey (string _DomainName ,bytes32 _TLSKey) public

CheckDomainExpiry (stringToBytes32(_DomainName)) Not_AtStage(stringToBytes32

(_DomainName),States.Unregistered ,States.Expired) OnlyOwner(stringToBytes32(

_DomainName))

92 {

93 DomainName = stringToBytes32(_DomainName);

94 Domains[DomainName]. TLSKeys.push(_TLSKey);

95 if (Domains[DomainName]. state == States.Registered) {Domains[DomainName].

state = States.TLSKeyEntered ;}//if the domain is in the registered state

, it transitions to TLSKeyEntered.

96 if (Domains[DomainName]. state == States.ZoneFileEntered) {Domains[DomainName

].state = States.TLSKey_And_ZoneFileEntered ;}//if the domain contains

the DNSHash , it transitions to TLSKey_And_DNSHashEntered.

74

97 //if Domain ’s state is TLSKeyEntered OR TLSKey_And_DNSHashEntered , its state

will not change.

98 }

99

100 //

101 //A user can add the hash of it DNS to his Domain using the Add_DNSHash function

.

102 function Add_Zonefile (string _DomainName ,bytes32 _Zone_Hash , string _IP_Address

) public CheckDomainExpiry (stringToBytes32(_DomainName)) Not_AtStage(

stringToBytes32(_DomainName),States.Unregistered ,States.Expired) OnlyOwner(

stringToBytes32(_DomainName))

103 {

104 DomainName = stringToBytes32(_DomainName);

105 // Domains[DomainName]. DNSHash = _DNSHash;

106 Domains[DomainName]. ZoneFile.IP_Address = _IP_Address;

107 if (Domains[DomainName]. state == States.Registered) {Domains[DomainName].

state = States.ZoneFileEntered ;}//if the domain is in the registered

state , it transitions to DNSHashEntered.

108 if (Domains[DomainName]. state == States.TLSKeyEntered) {Domains[DomainName].

state = States.TLSKey_And_ZoneFileEntered ;}//if the domain contains the

TLSKey , it transitions to TLSKey_And_DNSHashEntered.

109 //if Domain ’s state is DNSHashEntered OR TLSKey_And_DNSHashEntered , its

state will not change.

110 }

111 //

112 //A user can add certificates and DNSHash to his domain usign the

Add_TLSKey_AND_DNSHash function.

113 function Add_TLSKey_AND_Zonefile (string _DomainName ,bytes32 _TLSKey , bytes32

_Zone_Hash , string _IP_Address) public CheckDomainExpiry (stringToBytes32(

_DomainName)) Not_AtStage(stringToBytes32(_DomainName),States.Unregistered ,

States.Expired) OnlyOwner(stringToBytes32(_DomainName))

114 {

115 DomainName = stringToBytes32(_DomainName);

116 Domains[DomainName]. ZoneFile.IP_Address = _IP_Address;

117 Domains[DomainName]. TLSKeys.push(_TLSKey);

118 Domains[DomainName].state = States.TLSKey_And_ZoneFileEntered;

75

119 }

120 //

121 // DomainOwner can transfer the Domain to any address he wants if and only if the

Domain is not Unregistered and Expired.

122 //1- DomainOwner can only transfer the domain name. To do so, he wipes the

associated DNS Hash and TLS Key by supplying them with zero.

123 //2- DomainOwner can transfer the domain name in addition to the corresponding

certificate and and/or DNS Hash. This is done by supplying these arguments

with their previous values.

124 //Note that the Domain State and Registration_Time will not change and remain

the same .

125 function Transfer_Domain (string _DomainName , address _Reciever ,bytes32 _TLSKey ,

string _IP_Address) public CheckDomainExpiry (stringToBytes32(_DomainName))

Not_AtStage(stringToBytes32(_DomainName),States.Unregistered ,States.Expired

) OnlyOwner(stringToBytes32(_DomainName))

126 {

127 DomainName = stringToBytes32(_DomainName);

128 Domains[DomainName]. DomainOwner = _Reciever;

129 if (_TLSKey == 0 && stringToBytes32(_IP_Address) != 0) { Wipe_TLSKeys(

DomainName); }

130 if (stringToBytes32(_IP_Address) == 0 && _TLSKey != 0) { Wipe_IP_address(

DomainName); }

131 if (stringToBytes32(_IP_Address) == 0 && _TLSKey == 0) {

Wipe_TLSKeys_and_IP_address(DomainName); }

132 }

133 //

134 function Wipe_TLSKeys (bytes32 _DomainName) internal{

135 delete Domains[_DomainName]. TLSKeys;

136 if (Domains[_DomainName].state == States.TLSKey_And_ZoneFileEntered) {Domains[

_DomainName].state = States.ZoneFileEntered ;}

137 }

138 //

139 function Wipe_IP_address (bytes32 _DomainName) internal{

140 delete Domains[_DomainName]. ZoneFile.IP_Address;

76

141 if (Domains[_DomainName].state == States.TLSKey_And_ZoneFileEntered) {Domains[

_DomainName].state = States.TLSKeyEntered ;}

142 }

143 //

144 function Wipe_TLSKeys_and_IP_address (bytes32 _DomainName) internal{

145 delete Domains[_DomainName]. ZoneFile.IP_Address;

146 delete Domains[_DomainName]. TLSKeys;

147 Domains[_DomainName]. state = States.Registered;

148 }

149 //

150 //A user can revoke any certificates that belong to his domain using the

Revoke_TLSkey function.

151 function Revoke_TLSkey (string _DomainName , bytes32 _TLSKey) public

CheckDomainExpiry (stringToBytes32(_DomainName)) Not_AtStage(stringToBytes32

(_DomainName),States.Unregistered ,States.Expired) OnlyOwner(stringToBytes32(

_DomainName))

152 {

153 DomainName = stringToBytes32(_DomainName);

154 for (uint j=0; j<Domains[DomainName]. TLSKeys.length;j++)

155 {

156 if (Domains[DomainName]. TLSKeys[j] == _TLSKey){ delete Domains[DomainName].

TLSKeys[j]; }

157 }

158 }

159 //

160 // stringToBytes32 is an internal function which converts bytes to string

whenever called.

161 function stringToBytes32(string memory source) internal pure returns (bytes32

result)

162 {

163 bytes memory tempEmptyStringTest = bytes(source);

164 if (tempEmptyStringTest.length == 0) {

165 return 0x0;

166 }

77

167 assembly {

168 result := mload(add(source , 32))

169 }

170 }

171 //

172 // Get_TLSKey is a constant function which returns the TLSKeys a domain name.

173 function Get_TLSKey (string _DomainName) public view returns (bytes32 [])

174 {

175 var DomainVar = Domains[stringToBytes32(_DomainName)];

176 return DomainVar.TLSKeys;

177 }

178 //

179 function Set_Auction_Result (bytes32 _DomainName) internal

180 {

181 Wipe_TLSKeys_and_IP_address(_DomainName);

182 Domains[_DomainName]. DomainOwner = msg.sender;

183 }

184

185 //

186 }

187 // ** AUCTION SMART CONTRACT

188

189 contract Ghazal_With_Auction is Ghazal{

190 enum Stages {UnInitiallized ,Opened , Locked , Ended} // Opened: biddingTime ,

Settlement has not yet started.

191 // Locked: biddingTime ’s over ,

Settlement ’s satrted and

not finished yet.

192 // Ended: biddingTime and

Settlement are both over ,

which means the auction ’

s ended.

193

78

194 // There is an struct called "AuctionStruct" for each auction that will be

invoked.

195 struct AuctionStruct

196 {

197 uint CreationTime; //The time auction was opened.

198 address Owner; //The address who opened the auction.

199 uint highestBid; //The highestBid that has been bid in the auction.

200 address highestBidder; //The address who bid the highest bid in the auction

.

201 address Winner; //The address of the winner of this auction.

202 Stages stage; // variable stage is frm type Stages which keeps the

stage of the auction.

203 mapping(address => uint) pendingReturns; //To return the bids that were

overbid.

204 mapping(address => uint) deposits; //To return the deposits they’ve

made.

205 mapping(address => bool) already_bid; //Once an address bids in the

auction this variable will be set to true

206 bool AuctionisValue; //So the next time they bid in

the same auction , they dont have to deposit again.

207 }

208

209 // AuctionLists mappings store auction structs , the keys are the DomainNames that

are auctioned and the values are the auction structs.

210 mapping (bytes32 => AuctionStruct) internal AuctionLists;

211

212 uint Deposit_Fee = 1 ether;

213 uint public biddingTime = 4 minutes; // Bidding period. Users can ONLY bid in

this period.

214 uint public Settlement = 4 minutes; // Settlement period. Users can Withdraw

their pendingReturns (bids that were overbid)

215 //Plus their deposits. Note that the

Winner can withdraw his deposit only

if the auction is ended and he claims

the Domain

216 //and pays to the DomainOwner.

217

218 //

79

219 modifier OnlyWinner(bytes32 _DomainName) {

220 require (AuctionLists[_DomainName]. Winner == msg.sender && AuctionLists[

_DomainName]. stage != Stages.Opened);

221 _;

222 }

223

224 //

225 // Checks if the auction ’s state.

226 modifier CheckAuctionStage (bytes32 _DomainName) {

227 if (AuctionLists[_DomainName]. AuctionisValue == false) {AuctionLists[

_DomainName].stage = Stages.UnInitiallized ;}

228 if (now >= AuctionLists[_DomainName]. CreationTime + biddingTime + Settlement

) {AuctionLists[_DomainName]. stage = Stages.Ended ;}

229 if (now >= AuctionLists[_DomainName]. CreationTime + biddingTime && now <=

AuctionLists[_DomainName]. CreationTime + biddingTime + Settlement) {

AuctionLists[_DomainName].stage = Stages.Locked ;} // each domain expires

in 5 years.

230 _;

231

232 }

233 //

234 modifier AuctionAtStage(bytes32 _DomainName , Stages stage_1 , Stages stage_2) {

235 require (AuctionLists[_DomainName]. stage == stage_1 || AuctionLists[

_DomainName]. stage == stage_2);

236 _;

237 }

238 //

239 modifier ToBidAuctionAtStage(bytes32 _DomainName , Stages stage_1) {

240 require (AuctionLists[_DomainName]. stage == stage_1);

241 _;

242 }

243 //

80

244 modifier DomainNotAtStage(bytes32 _DomainName) {

245 require (Domains[_DomainName].state != States.Expired && now <= Domains[

_DomainName]. RegistrationTime + 10 minutes - biddingTime - Settlement);

246 _;

247 }

248 //

249 modifier NotWinner(bytes32 _DomainName) {

250 require (AuctionLists[_DomainName]. Winner != msg.sender);

251 _;

252 }

253 //

254 //To start and auction on a DomainName.

255 function StartAuction(string _DomainName) public DomainNotAtStage (

stringToBytes32(_DomainName)) CheckAuctionStage(stringToBytes32(_DomainName)

) OnlyOwner(stringToBytes32(_DomainName)) AuctionAtStage(stringToBytes32(

_DomainName),Stages.Ended ,Stages.UnInitiallized)

256

257 { //1-Only the DomainOwner call open auction on a domain.

258 //2-There should not be any other auction currently open on the same domain.

259 //3-Domain expiration should be greater than the whole period of auction (

biddingTime+Settlement)

260

261 var Domainname = stringToBytes32(_DomainName);

262 AuctionLists[Domainname]. Owner = msg.sender;

263 AuctionLists[Domainname]. CreationTime = now;

264 AuctionLists[Domainname]. stage = Stages.Opened;

265 AuctionLists[Domainname]. AuctionisValue = true;

266 }

267 //

268 //To bid in the auction , ONLY when the auction is Opened.

269 function Bid(string _DomainName) payable public CheckAuctionStage(

stringToBytes32(_DomainName)) ToBidAuctionAtStage(stringToBytes32(

_DomainName),Stages.Opened)

270 {

81

271 var Domainname = stringToBytes32(_DomainName);

272 uint bid;

273

274 //If the bidder has already bid in this auction , he does not deposit.

275 if (AuctionLists[Domainname]. already_bid[msg.sender] == true) {bid = msg.

value ;}

276 else

277 {

278 bid = msg.value -Deposit_Fee; //If the bidder has NOT bid in this

auction , he deposits.

279 AuctionLists[Domainname]. deposits[msg.sender] = Deposit_Fee; //

Deposit_Fee will be added to the bidder ’s deposits.

280 AuctionLists[Domainname]. already_bid[msg.sender] = true;

281 }

282

283 //if the bidder ’s bid is not higher than the highest bid , send the money

back.

284 //By adding the bids of the person to his pending returns which he can

withdrwa when the auction is Locked.

285 require(bid > AuctionLists[Domainname]. highestBid);

286

287 if (AuctionLists[Domainname]. highestBidder != 0)

288 {

289 AuctionLists[Domainname]. pendingReturns[AuctionLists[Domainname].

highestBidder] += AuctionLists[Domainname]. highestBid;

290 }

291 AuctionLists[Domainname]. highestBidder = msg.sender;

292 AuctionLists[Domainname]. highestBid = bid;

293 AuctionLists[Domainname]. Winner = AuctionLists[Domainname]. highestBidder;

294 }

295

296 //

297 // Withdraw a bid that was overbid. Only when Auction is Locked.

298 function withdraw_bid(string _DomainName) public CheckAuctionStage(

stringToBytes32(_DomainName)) ToBidAuctionAtStage(stringToBytes32(

_DomainName),Stages.Locked)returns (bool)

299 {

300 var Domainname = stringToBytes32(_DomainName);

82

301 uint amount = AuctionLists[Domainname]. pendingReturns[msg.sender];

302 if (amount > 0) {

303 // It is important to set this to zero because the recipient

304 // can call this function again as part of the receiving call

305 // before ‘send ‘ returns.

306 AuctionLists[Domainname]. pendingReturns[msg.sender] = 0;

307

308 if (!msg.sender.send(amount)) {

309 // No need to call throw here , just reset the amount owing

310 AuctionLists[Domainname]. pendingReturns[msg.sender] = amount;

311 return false;

312 }

313 }

314 return true;

315 }

316 //

317 // Withdraw Deposits. Only when Auction is Locked. Th Winner CANNOT witdraw his

deposit.

318 function Withdraw_deposits(string _DomainName) public CheckAuctionStage(

stringToBytes32(_DomainName)) NotWinner (stringToBytes32(_DomainName))

ToBidAuctionAtStage(stringToBytes32(_DomainName),Stages.Locked) returns (

bool) {

319

320 var Domainname = stringToBytes32(_DomainName);

321 uint amount = AuctionLists[Domainname]. deposits[msg.sender];

322 if (amount > 0) {

323 // It is important to set this to zero because the recipient

324 // can call this function again as part of the receiving call

325 // before ‘send ‘ returns.

326 AuctionLists[Domainname]. deposits[msg.sender] = 0;

327

328 if (!msg.sender.send(amount)) {

329 // No need to call throw here , just reset the amount owing

330 AuctionLists[Domainname]. deposits[msg.sender] = amount;

331 return false;

332 }

333 }

334 return true;

83

335 }

336

337 //

338 //End the auction ,send the highest bid to the auction ’s owner , transfer the

Domainname to the auction ’s winner.

339 //Only Winner acn call the function Settle. and ONLY when the auction is ended.

340 function Settle(string _DomainName) public CheckAuctionStage(stringToBytes32(

_DomainName)) OnlyWinner(stringToBytes32(_DomainName)) ToBidAuctionAtStage(

stringToBytes32(_DomainName),Stages.Ended) returns (bool)

341 {

342 var Domainname = stringToBytes32(_DomainName);

343 // Return back the Winner ’s deposits.

344 uint amount = AuctionLists[Domainname]. pendingReturns[msg.sender];

345 if (amount > 0) {

346 // It is important to set this to zero because the recipient

347 // can call this function again as part of the receiving call

348 // before ‘send ‘ returns.

349 AuctionLists[Domainname]. deposits[msg.sender] = 0;

350

351 if (!msg.sender.send(amount)) {

352 // No need to call throw here , just reset the amount owing

353 AuctionLists[Domainname]. deposits[msg.sender] = amount;

354 return false;

355 }

356 }

357

358 // Transfer the highest bid to the Auction Owner.

359 AuctionLists[Domainname]. Owner.transfer(AuctionLists[Domainname]. highestBid)

;

360 // Changes the ownership of the DomainName and transfers it to the auction ’s

Winner by calling the Set_Auction_Result from the Ghazal contract.

361 Set_Auction_Result(Domainname);

362 AuctionLists[Domainname]. stage = Stages.Ended;

363 AuctionLists[Domainname]. AuctionisValue = false;

364 return true;

365

366 }

367 //

84

368 function Transfer_Domain (string _DomainName , address _Reciever , bytes32 _TLSKey

, string _IP_Address) public CheckAuctionStage(stringToBytes32(_DomainName))

ToBidAuctionAtStage(stringToBytes32(_DomainName),Stages.Ended) OnlyOwner(

stringToBytes32(_DomainName))

369 {

370 super.Transfer_Domain(_DomainName , _Reciever , _TLSKey , _IP_Address);

371 }

372 //

373 }

85

