
Efficient, Scalable, and Accurate Program Fingerprinting in

Binary Code

Saed Alrabaee

A Thesis

In

The Concordia Institute

for

Information Systems Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of

Doctor of Philosophy (Information and Systems Engineering) at

Concordia University

Montreal, Quebec, Canada

February 2018

c© Saed Alrabaee, 2018

CONCORDIA UNIVERSITY
SCHOOL OF GRADUATE STUDIES

This is to certify that the thesis prepared

By:

Entitled:

and submitted in partial fulfillment of the requirements for the degree of

complies with the regulations of the University and meets the accepted standards with

respect to originality and quality.

Signed by the final examining committee:
 Chair

 External Examiner

 External to Program

 Examiner

 Examiner

Thesis Supervisor

Approved by

Chair of Department or Graduate Program Director

Dean

Saed Alrabaee

Efficient, Scalable, and Accurate Program Fingerprinting in Binary Code

(Information and Systems Engineering)

Dr. Joey Paquet

Dr. Jean-Yves Marion

Dr. Peter Grogono

Dr. Amr Youssef

Dr. Mohammad Mannan

Dr. Mourad Debbabi

Dr. Lingyu Wang

Dr. Rachida Dssouli

April 06, 2018

Dr. A. Asif, of Faculty of Engineering and Computer Science

ABSTRACT

Efficient, Scalable, and Accurate Program Fingerprinting in Binary

Code

Saed Alrabaee, Ph. D.

Concordia University, 2018

Why was this binary written? Which compiler was used? Which free software

packages did the developer use? Which sections of the code were borrowed? Who wrote

the binary? These questions are of paramount importance to security analysts and reverse

engineers, and binary fingerprinting approaches may provide valuable insights that can

help answer them. This thesis advances the state of the art by addressing some of the

most fundamental problems in program fingerprinting for binary code, notably, reusable

binary code discovery, fingerprinting free open source software packages, and authorship

attribution. First, to tackle the problem of discovering reusable binary code, we employ

a technique for identifying reused functions by matching traces of a novel representation

of binary code known as the semantic integrated graph. This graph enhances the con-

trol flow graph, the register flow graph, and the function call graph, key concepts from

classical program analysis, and merges them with other structural information to create a

joint data structure. Second, we approach the problem of fingerprinting free open source

iii

software (FOSS) packages by proposing a novel resilient and efficient system that in-

corporates three components. The first extracts the syntactical features of functions by

considering opcode frequencies and performing a hidden Markov model statistical test.

The second applies a neighborhood hash graph kernel to random walks derived from con-

trol flow graphs, with the goal of extracting the semantics of the functions. The third

applies the z-score to normalized instructions to extract the behavior of the instructions in

a function. Then, the components are integrated using a Bayesian network model which

synthesizes the results to determine the FOSS function, making it possible to detect user-

related functions.

With these elements now in place, we present a framework capable of decoupling bi-

nary program functionality from the coding habits of authors. To capture coding habits,

the framework leverages a set of features that are based on collections of functionality-

independent choices made by authors during coding. Finally, it is well known that tech-

niques such as refactoring and code transformations can significantly alter the structure

of code, even for simple programs. Applying such techniques or changing the compiler

and compilation settings can significantly affect the accuracy of available binary analysis

tools, which severely limits their practicability, especially when applied to malware. To

address these issues, we design a technique that extracts the semantics of binary code

in terms of both data and control flow. The proposed technique allows more robust bi-

nary analysis because the extracted semantics of the binary code is generally immune

from code transformation, refactoring, and varying the compilers or compilation settings.

iv

Specifically, it employs data-flow analysis to extract the semantic flow of the registers

as well as the semantic components of the control flow graph, which are then synthe-

sized into a novel representation called the semantic flow graph (SFG). We evaluate the

framework on large-scale datasets extracted from selected open source C++ projects on

GitHub, Google Code Jam events, Planet Source Code contests, and students’ program-

ming projects and found that it outperforms existing methods in several respects. First, it

is able to detect the reused functions. Second, it can identify FOSS packages in real-world

projects and reused binary functions with high precision. Third, it decouples authorship

from functionality so that it can be applied to real malware binaries to automatically gener-

ate evidence of similar coding habits. Fourth, compared to existing research contributions,

it successfully attributes a larger number of authors with a significantly higher accuracy.

Finally, the new framework is more robust than previous methods in the sense that there

is no significant drop in accuracy when the code is subjected to refactoring techniques,

code transformation methods, and different compilers.

v

ACKNOWLEDGEMENTS

I would like to express my heartfelt gratitude to my supervisors Prof. Mourad Debbabi

and Prof. Lingyu Wang, who contributed to this thesis and improved it significantly with

their guidance and advises . Their affluent and profound knowledge, precious insights,

and constructive criticism allowed me to build a successful research. I greatly appreci-

ate their dedication to helping students academically. I should not forget to mention that

despite Dr. Debbabi had very busy schedule, he allocated time to meet all students. More-

over, his charisma inspires everyone. Thank you for everything! My gratefulness extends

to the members of the examining committee: Drs. Jean-Yves Marion, Peter Grogono,

Amr Youssef, and Mohammad Mannan, who honored me by accepting to evaluate this

thesis. Their time and efforts are highly appreciated. Special thanks to my colleagues,

namely, Paria Shirani, Noman Saleem, Stere Preda, Ashkan Rahimian, who provided

their valuable expertise. I convey very special acknowledgements to Paria Shirani who

provided me with insightful technical discussions. I would like also to thanks my close

friend, Mahmoud Khasawneh, for stimulating discussions and good memories shared to-

gether. I feel very fortunate to have such nice friend. Further, I would like to express my

gratitude to Abdullah Amareen, Momen Oqaily, Ahmad Bataineh, and Suhib Melhem,

who supported me strongly. last but not least, I would like to express my profound grati-

tude to my beloved my parents, sisters, and brothers, who expressed their encouragement

and love.

vi

TABLE OF CONTENTS

LIST OF FIGURES . xiv

LIST OF TABLES . xvi

1 Introduction 1

1.1 Motivations . 2

1.2 Research objectives and contributions 4

1.2.1 SIGMA: Reused Function Identification [29] 5

1.2.2 FOSSIL: Free Open Source Packages Identification [30] 6

1.2.3 BinAuthor: Binary Authorship Attribution 7

1.2.4 BinGold: Extracting the Semantics of Binary Code [31] 8

1.3 Thesis Organization . 8

2 Background and Related Work 10

2.1 Importance of Binary Analysis . 11

2.1.1 Reverse Engineering . 11

2.1.2 Malware Analysis . 11

2.1.3 Digital Forensics . 13

2.1.4 Software Infringement . 14

2.2 Binary Analysis Challenges . 14

2.3 Binary Code Transformation . 17

vii

2.3.1 Function Inlining . 17

2.3.2 Instruction Reordering . 17

2.3.3 Refactoring Process . 18

2.4 Reused Function Identification . 18

2.5 Fingerprinting Free Open Source Function 19

2.5.1 Search-Based Function Fingerprinting 19

2.5.2 Dynamic Function Fingerprinting Methods 20

2.6 Authorship Attribution . 21

2.6.1 Source Code Authorship . 21

2.6.2 Binary Code Authorship . 22

2.7 Summary . 25

3 Towards Identifying Reused Functions in Binary Code 26

3.1 Overview . 26

3.2 Existing Representations of Binary Code 27

3.2.1 Control Flow Graph . 28

3.2.2 Register Flow Graph . 30

3.2.3 Function Call Graph . 31

3.3 SIGMA Approach . 31

3.3.1 Overview . 31

3.3.2 Building Blocks . 34

A. Structural Information Control Flow Graph 34

viii

B. Merged Register Flow Graph 36

C. Color Function Call Graph 38

3.3.3 SIG: Semantic Integrated Graph 39

3.3.4 Graph Edit Distance . 43

3.4 Experimental Results . 45

3.5 Summary . 48

4 Identifying Free Open-Source Software Functions in Binary Code 49

4.1 Overview . 49

4.2 Preliminaries . 51

4.2.1 Challenges . 51

4.2.2 Threat Model . 52

4.2.3 System Overview . 54

4.2.4 FOSS Packages . 55

4.3 Design and Implementation of Our System 56

4.3.1 Features . 56

4.3.2 Feature Selection . 59

4.3.3 Detection Method . 61

A. Hidden Markov Model . 61

B. Neighborhood Hash Graph Kernel 63

C. Calculation of Z-score . 65

D. Bayesian Network Model . 66

ix

4.4 Evaluation . 68

4.4.1 Dataset Preparation . 68

4.4.2 Evaluation Metrics . 69

4.4.3 Accuracy of FOSSIL . 70

A. Effect of Bayesian network model 71

B. Accuracy across different versions of FOSS packages 71

4.4.4 Comparison . 74

4.4.5 Scalability Study . 78

4.4.6 Confidence Estimation of Bayesian Network 79

4.4.7 Impact of Evading Techniques 80

4.5 Summary . 84

5 Identifying the Authors of Program Binaries 85

5.1 Overview . 85

5.2 Preliminaries . 86

5.2.1 Authorship Attribution . 86

5.2.2 Threat Model . 87

5.3 BinAuthor . 88

5.3.1 Filtration Process . 90

5.3.2 Feature Categorization . 92

A. General Choices . 93

B. Variable Choices . 96

x

C. Quality-Related Choices . 98

D. Embedded Choices . 99

E. Structural Choices . 100

5.3.3 Significance of BinAuthor Choices 102

5.4 Evaluation . 103

5.4.1 Implementation Setup . 103

5.4.2 Dataset . 103

5.4.3 Dataset Compilation . 104

5.4.4 Author Classification . 104

5.4.5 Accuracy . 105

5.4.6 False Positives . 108

5.4.7 Scalability . 109

5.4.8 Impact of Evading Techniques 111

5.5 Applying BinAuthor to Malware Binaries 114

5.5.1 Applying BinAuthor to Bunny and Babar 116

5.5.2 Applying BinAuthor to Stuxnet and Flame 117

5.5.3 Applying BinAuthor to Zeus and Citadel 117

5.5.4 Verifying correctness of BinAuthor Findings 118

5.6 Summary . 122

6 Towards Extracting Semantics of Binary Code 123

6.1 Overview . 123

xi

6.2 Motivating Example . 124

6.3 Extracting Semantics of Binary Code . 126

6.3.1 Architecture Overview . 127

6.3.2 Data Flow Graph Construction 128

6.3.3 Equivalence Relations and Partitions in SFG 128

6.4 Detection Process . 130

6.4.1 Exact Matching . 131

6.4.2 Graph Edit Distance . 131

6.4.3 Similarity Measure . 132

6.4.4 Weight Parameter Settings . 132

6.5 Evaluation . 132

6.5.1 Dataset . 133

6.5.2 Evaluation Metrics . 135

6.5.3 Accuracy Results of C/C++ Programs with Different Compilers

and Compilation Settings . 136

6.5.4 Accuracy Results after Applying Code Transformation Tech-

niques . 137

6.5.5 Time Efficiency . 138

6.5.6 Applications . 139

6.6 Summary . 141

7 Conclusion 142

xii

7.1 Concluding Remarks . 142

7.2 Future Directions . 145

Bibliography 147

xiii

LIST OF FIGURES

2.1 Taxonomy of authorship approaches . 24

3.1 Classical representations for bubble sort function: (a) Control Flow Graph

for bubble sort (b) Register Flow Graph for bubble sort function (c) Func-

tion Call Graph for bubble sort function 29

3.2 SIGMA architecture . 32

3.3 Enhanced classical representations for bubble sort function: (a) iCFG for

bubble sort function (b) mRFG for bubble sort function (c) Function Call

Graph for bubble sort function . 36

3.4 Simple example of SIG . 40

3.5 SIG for bubble sort function . 42

3.6 Similarity statistics of function variants 45

3.7 (a) Relation between the number of variants with the similarity score (b)

Accuracy of using exact and approximate matching 46

4.1 Overview of the proposed system . 54

4.2 Example of random walks between two nodes BB0 and BB7 in (a) CFG

of a function, by considering three radius (r) values: (b) r = 0, (c) r = 1,

and (d) r = 2 . 58

4.3 ROC curve . 75

xiv

4.4 Performance of FOSSIL against a large set of functions 79

4.5 Confidence estimation: precision vs. recall 80

5.1 BinAuthor architecture . 89

5.2 Coding habit taxonomy . 92

5.3 (a) Part of the CFG of RC4 (b) Register chain 97

5.4 Accuracy results of authorship attribution obtained by BinAuthor,

Caliskan-Islam et al. [43], Rosenblum et al. [112], and OBA2 [27], on

(a) Github, (b) Google Code Jam, (c) Planet Source Code, (d) Graduate

Student Projects, and (e) All datasets. 107

5.5 False positive analysis. 109

5.6 Large-scale author attribution . 110

5.7 Effect of choices on large-scale author identification 111

6.1 Architecture overview . 127

6.2 Example of constructing SFG . 130

6.3 Detection system . 131

xv

LIST OF TABLES

2.1 Comparison between different systems that identify the author of program

binaries . 24

3.1 Structural information categories . 35

3.2 Color classes for iCFG . 35

3.3 Updated classes of register access . 37

3.4 Part of traces for SGF bubble sort function 43

3.5 Graph features for exact matching . 43

3.6 Similarity between sort function variants 47

3.7 Similarity between encryption function variants 47

3.8 Dissimilarity between sort and encryption functions 48

4.1 Example of FOSS packages . 56

4.2 Excerpt of the selected FOSS packages 69

4.3 Effect of Bayesian network model . 71

4.4 Accuracy results of different versions of FOSS packages 72

4.5 Statistics about FLIRT signatures on the FOSS packages 74

4.6 Accuracy results of different existing approaches. (TA): total accuracy,

(FPR): false positive rate, (Prec.): precision, and (Rec.): recall 77

4.7 Evading technique tools, methods, and their effects on FOSSIL components 81

xvi

4.8 FOSS function identification with different compilers and compilation

settings . 83

5.1 Features extracted from the main function: length(l): Number of instruc-

tions in the main function . 93

5.2 Examples of actions in terminating a function 94

5.3 Register liveness (�indicates that the register is alive in a BB) 97

5.4 Logistic regression weights for choices 102

5.5 Statistics about the dataset used in the evaluation of BinAuthor 104

5.6 Evading techniques: methods used, tools used, and their affect on BinAu-

thor choices. 112

5.7 Characteristics of malware datasets . 115

5.8 Statistics of applying BinAuthor to malware binaries 115

5.9 Choices found in malware binaries . 120

5.10 Number of choices common to the malware dataset and the ground truth

dataset . 121

6.1 Graph features applied on CFGs for the fragment code in Listing 1, which

is compiled by visual studio, ICC, g++, and Clang 125

6.2 Graph features description . 126

6.3 Programs used in our system evaluation 134

6.4 Our system accuracy in determining the similarity between binaries . . . 137

xvii

6.5 Results after applying code transformation techniques 139

6.6 Effect of integrating BinGold to certain existing works 140

xviii

Chapter 1

Introduction

Binary (i.e., executable) code fingerprinting is essential to many security applications;

examples include malware detection, software infringement, vulnerability analysis, and

digital forensics. Furthermore, it is useful for security researchers and reverse engineers

since it offers very important insights of the binary code, such as revealing the function-

ality, authorship attribution, libraries used, and vulnerabilities. To this end, numerous

studies focus on analyzing binary code with the goal of extracting fingerprints that can

illuminate the semantics of a target application. However, extracting fingerprints is a

challenging task since a substantial amount of important information will be lost during

compilation, notably, variable and function naming, the original control and data flow

structures, comments, semantic information, and the layout. This thesis advances the

state of the art by addressing some of the most fundamental problems in program finger-

printing for binary code, notably, reusable binary code discovery, fingerprinting free open

1

source software packages, and authorship attribution.

1.1 Motivations

Reused Function Identification. The objective of reverse engineering often involves un-

derstanding both the control and data-flow structures of the functions in the given binary

code. However, this is usually a challenging task, as binary code inherently lacks structure

due to the use of jumps and symbolic addresses, highly optimized control flow, varying

registers and memory locations based on the processor and compiler, and the possibility

of interruptions [36]. To assist reverse engineers in such a difficult task, automated tools

for efficiently recognizing reused functions for binary code are highly desirable. This is

especially true in the context of malware analysis, since modern malware are known to

contain a significant amount of reused code derived from previous existing code [38,117].

Free Open Source Packages Identification. When analyzing malware binaries, reverse

engineers often pay special attention to reused free open source packages for several rea-

sons. First, recent reports from anti-malware companies indicate that finding the simi-

larity between malware codes attributable to reused third-party libraries can aid in devel-

oping profiles for malware families [85]. For instance, Flame [39] and other malware

in its family [39] all contain code packages that are publicly available, including SQLite

and LUA [85]. Second, a significant proportion of most modern malware consists of

third-party libraries; as such, identifying reused libraries is a critical preliminary step in

the process of extracting information about the functionality of a malware binary. Third,

2

in more challenging cases where obfuscation techniques may have been applied and the

reused third-party libraries may differ from their original source files, it is still desir-

able to determine which part of the malware binary is borrowed from which third-party

libraries. Fourth, in addition to identifying third-party libraries, clustering third-party li-

braries based on their common origin may help reverse engineers to identify new malware

from a known family or to decompose a malware binary based on the origin of its func-

tions. Fifth, third-party libraries should be filtered out when the authorship attribution

tools are applied.

Binary Authorship Identification. Existing approaches to binary authorship attribu-

tion typically employ machine learning methods to extract unique features for each au-

thor and subsequently match a given binary against such features to identify the au-

thor [27, 44, 112]. We have studied and analyzed these approaches in previous research

[28]. We have found that these approaches also share a critical limitation: they cannot

distinguish between features related to author style (e.g., coding habits) and features re-

lated to functionality. Consequently, the extracted features, though unique for each author,

may be completely unrelated to programming style. In addition, other limitations, such

as a significantly lower accuracy in the case of multiple authors, being easily defeated

by refactoring techniques or simple obfuscation methods, and not being validated against

real malware, are also shared by these existing efforts. More recently, the feasibility of

authorship attribution on malware binaries was discussed at the BlackHat conference [91].

A set of features are employed to group malware binaries according to authorship [91].

3

However, the process is not automated and requires considerable human intervention. We

present a component that is designed to recognize authors’ coding habits by decoupling

them from program functionality in binary code. Instead of using generic features (e.g.,

n-gram or small subgraphs of a CFG [112]), which may or may not be related to author-

ship, BinAuthor captures coding habits based on a collection of functionality-independent

choices frequently made by authors during coding (e.g., preferring to use either if or

switch, and relying more on either object-oriented modularization or procedural pro-

gramming).

1.2 Research objectives and contributions

The main goals of our research are summarized in the following points:

• Authorship Analysis. Malware analysts are typically interested to discover clues

that lead to the parties that are responsible. Such clues should be able to discrim-

inate code written by different developers, which also might be used to discover

stylistic similarities between binary programs.

• Function Fingerprinting. Fingerprints are useful in automating reverse engineer-

ing tasks including clone detection, library identification, authorship attribution,

cyber forensics, etc. In this thesis, a set of tools are designed for fingerprinting bi-

nary functions. The main objective is to provide an accurate and scalable solution

to fingerprint (i) reused binary functions; and (ii) reused free open source packages.

4

Specifically, this thesis makes the following contributions:

1.2.1 SIGMA: Reused Function Identification [29]

This component is based on a technique for identifying reused functions in binary code by

matching traces of a novel representation of binary code, namely, the Semantic Integrated

Graph (SIG). The SIG enhances and merges several existing concepts from classic pro-

gram analysis, including control flow graph, register flow graph, and function call graph

into a joint data structure. Such a comprehensive representation allows us to capture dif-

ferent semantic descriptors of common functionalities in a unified manner as graph traces,

which can be extracted from binaries and matched to identify reused functions, actions,

or open source software packages. In summary, our contributions to the problem of iden-

tifying reused functions in binary code are as follows:

• We introduce the novel SIG representation of binary code to unify various semantic

information, such as control flow, register manipulation, and function call into a

joint data structure to facilitate more efficient graph matching.

• We define different types of traces such as normal traces, AND-traces, and OR-

traces over SIG graphs, which are used for inexact matching. We carry out both

exact and inexact matching between different binaries, where an exact matching

applies to two SIG graphs with the same graph properties (e.g. number of nodes),

whereas an inexact matching employs graph edit distance to measure the degree of

similarity between two SIG graphs of different sizes.

5

1.2.2 FOSSIL: Free Open Source Packages Identification [30]

This component is based on a novel resilient and efficient system that incorporates three

layers. The first layer extracts the syntactical features of functions by considering opcode

frequencies and applying a hidden Markov model statistical test. The second layer applies

a neighborhood hash graph kernel to random walks derived from control flow graphs, with

the goal of extracting the semantics of the functions. The third layer applies z-score to the

normalized instructions to extract the behavior of instructions in a function. The layers

are integrated using a Bayesian network model which synthesizes the results to determine

the FOSS function. The novel approach of combining these layers using the Bayesian

network has produced stronger resilience to code obfuscation. In short, it makes the

following contributions:

• FOSSIL is the first system developed to identify reused FOSS packages in malware

binaries that supports multiple feature (syntactic, semantic, and structural features).

Its novelty also lies in its ability to integrate the ranked opcodes, subgraph search,

and function behavior. This helps reverse engineers to recognize the types of appli-

cations that a malware binary incorporates in order to characterize the malware.

• We propose an adaptive hidden Markov and Bayesian model capable of approxi-

mating the similarity between functions. This adaptive model boosts the matching

search quality and yields stable results across different datasets and metrics.

6

1.2.3 BinAuthor: Binary Authorship Attribution

This component is based on a collection of functionality-independent choices frequently

made by authors during coding (e.g., preferring to use either if or switch, and relying

more on either object-oriented modularization or procedural programming). Our main

contributions are as follows:

• To the best of our knowledge, this component is the first system capable of de-

coupling author coding habits from program functionality in binary code. The

novel approach of using functionality-independent features allows our system to

overcome a key limitation of most existing works: assuming the existence of spe-

cial training data (binaries with identical functionality but written by different au-

thors [27, 44, 112]). By avoiding such an unrealistic assumption, our system paves

the way towards practical applications of automated binary authorship attribution.

• The proposed system yields high accuracy that survives refactoring and source/bi-

nary obfuscation techniques. This shows the potential of our system as a practi-

cal tool to assist reverse engineers in a number of security-related tasks, such as

identifying the author of a malware sample, clustering malware samples based on

common authors, and determining the number of authors (e.g., a large number of

authors may indicate an organizational effort).

7

1.2.4 BinGold: Extracting the Semantics of Binary Code [31]

This component is based on extracting various types of semantics and integrating them

into a novel representation called a Semantic Flow Graph (SFG). This component makes

following contributions:

• We introduce the novel SFG representation of binary code to unify various seman-

tic information, such as control flow, register manipulation, data flow analysis, and

function call into a joint data structure to facilitate more efficient graph matching.

• We define different types of traces over SFG graphs to serve as matching fea-

tures and then carry out both exact and inexact matching between different bina-

ries, where an exact matching applies to two SFG graphs with the same number of

nodes, and an inexact matching employs graph edit distance to measure the degree

of similarity between two SFG graphs of different size.

• We test our method on a large test suite across different operating systems, compil-

ers, and compiling optimizations. Our results show that our method achieves higher

accuracy than previously available fingerprint representations.

1.3 Thesis Organization

The remainder of this thesis is structured as follows: In Chapter 2, we present the back-

ground literature about binary analysis and review the state-of-the-art techniques that are

8

close to the proposed framework. In Chapter 3, we introduce our system for identifying

reuse functions in binary code. Chapter 4 provides our designed system for fingerprint-

ing free open source code. In Chapter 5, we introduce the binary authorship attribution.

In Chapter 6, we detail the contribution of our framework in extracting the semantics of

binary code. Chapter 7 provides concluding remarks together with a discussion of future

works.

9

Chapter 2

Background and Related Work

This thesis investigates different aspects of binary code, the most important question of

which is how to extract particular aspects from a binary code. This question is central to

many works on binary code analysis. Therefore, it is necessary to understand the efforts

that are most closely related to the applications of our framework. In this chapter, we

review studies that extract semantics characteristics from binary programs. Specifically,

this chapter first presents an overview of the importance of binary analysis. Then, it

highlights the challenges might be received. After that, it reviews three areas of related

work. First, it introduces the existing efforts in reused code identification. Subsequently,

it highlights the existing efforts that are related to fingerprinting free open source software

packages. Finally, we highlight the existing techniques for authorship attribution.

10

2.1 Importance of Binary Analysis

Binary code analysis is an important process in many security applications such as mal-

ware analysis [37, 57, 95, 128], software reliability [89], reverse engineering [42, 61], de-

bugging [33], digital forensics [27], and security analysis [62, 73, 103].

2.1.1 Reverse Engineering

Binary code analysis is considered as the crucial process for the reverse engineers in sev-

eral tasks: (i) Authorship attribution that refers to the process of identifying the author

of an anonymous binary file based on stylistic characteristics. Its aim is to automate the

laborious and error-prone reverse engineering task of discovering information related to

the author(s) of binary code [28]. (ii) Reused code discovery is the process of determin-

ing the reused free open-source software packages [102, 115]. (iii) Compiler provenance

identification encompasses numerous pieces of information, such as the compiler family,

compiler version, optimization level, and compiler-related functions [108, 114]. (iv) Pro-

gram binaries normally contain a significant amount of third-party library functions taken

from standard libraries and the process of determining such functions is called library

functions identification.

2.1.2 Malware Analysis

Binary analysis is important for malware analysis because when malware attacks a com-

puter system or network, it leaves an executable behind but rarely the source code. A

11

comprehensive understanding of binary analysis is particularly vital in the ongoing war-

fare between malware writers and anti-malware vendors. Each camp performs different

operations on the binary code according to their goals as described below.

• Binary modification enables a malware writer to alter existing code or to inject new

code into programs to execute malicious behavior without requiring the source code

or debugging information [93, 118].

• Binary comparison automatically classifies new malware samples based on the as-

sumption that unknown malware is often produced from known malware [35].

• Binary obfuscation is used by malware writers to obfuscate malicious code to avoid

existing detection techniques, such as misuse detection algorithms. This operation

relies on the fact that the detection techniques are based on sensitivity to slight

modifications in the program syntax [130].

• Virus signatures are used to identify specific code patterns, called signatures, within

a program. When a signature is found, the program most likely contains a virus.

For instance, scanning for the following hexadecimal sequence can identify the

Chernobyl virus [124]:

E800 0000 005B 8D4B 4251 5050

0F01 4C24 FE5B 83C3 1CFA 8B2B

In response, malware writers may attempt to complicate the binary code to thwart

12

anti-virus techniques. Although the signature identification method is highly ef-

fective in identifying known malware, it cannot identify new or unknown mal-

ware [70].

The evasion techniques are summarized below.

• Compression techniques compress the executable binary file and include a decom-

pression algorithm in the code, which enables the compressed program to run [118].

• Polymorphism is a technique that produces different packed binary file versions

from the same source input [121].

• Code obfuscation alters malicious code to help it avoid detection. Obfuscation can

thwart most existing detection techniques [130].

• Packing is a method used by malware writers to hide their software from signature-

based investigation techniques. While packing techniques vary substantially, their

objectives are identical: to modify the appearance of the program code while en-

suring that the semantics remain the same. A common approach is to use binaries

created directly in assembly language rather than compiled from a high-level lan-

guage to avoid any evidence of the author’s intentions [80].

2.1.3 Digital Forensics

FireEye [97] discovered that malware binaries share very important information that re-

veal the digital infrastructures used, code traits, and other semantic information, such as

13

timestamp, the use of certificates, executable resources and development tools. FireEye

investigators eventually noticed that malware binaries of the same, previously discovered,

infrastructures are written by the same group of authors. In such cases, training on such

binaries and some random authors’ code may offer a vital help to forensics investigators.

In addition, testing a recent piece of malware binary code using some confidence metrics

would verify if a specific author is the actual author.

2.1.4 Software Infringement

It is very important to analyze the binary code in order to discover that a piece of code

is not written by the claimed author. Generally, the adversary attempts to modify code

written by another author to match his/her own style [43, 44]. In forensics applications,

two of the parties may collaborate to modify the style of code written by one to match the

other’s style [43,44]. This emphasizes the importance of binary analysis to discover clues

that help in tackle such scenarios. Also, building an online repository of candidate au-

thors based on previously collected malware samples, would greatly help in infringement

analysis [43].

2.2 Binary Analysis Challenges

Binary code analysis poses a considerably greater challenge than source code analy-

sis [93]. These challenges are summarized as follows:

14

C1 Compiler’s effects. Compilers may have inserted substantial changes in the bi-

nary code such as compiler tags [114]. These changes tend to hinder the abilities

of binary analysis approaches, causing inaccurate reported results produces by ap-

proaches. Such coding changes influence the analytical aptitude for understanding

the processes and objectives of a program and hinder the approach’s ability to ap-

propriately analyze the binary program.

C2 Lack of semantics. In essence, binary code lacks the larger amount of seman-

tic information available in source code. Such information may be related to the

code structure, the buffer characteristics, and the function prototypes that are to be

executed at the binary stage, complicating the binary analysis.

C3 Function boundary identification. Most of existing efforts disassemble the bi-

nary file into assembly file for gaining more information. This is considered as the

first step in binary analysis. Assembly file encompasses a set of functions. Such

functions should be recognized by defining the starting and ending address of each

function [32]. However, many existing tools cannot recognize a function’s start-

ing point [116]; therefore, they are unable to access the actual code. Therefore, the

many binary analysis techniques which rely on function boundary information must

first attempt to recover it through function identification.

C4 Binary format. For an x86 computer processor, the familiar formats currently

include the Executable and Linking Format (ELF) and the Portable Executable (PE)

15

format employed in Linux and Windows, respectively. These two formats divide a

file into segments (i.e., data and control) that can be allocated to store and/or code

data. The segments can be identified as writable, readable, and/or executable at

runtime. However, no guidelines exist regarding the allotment of data and code.

For instance, code sections frequently incorporate data such as string constants or

jump tables. Identifying all compiled binary segments as writable, readable, or

executable may not be possible.

C5 Code Sections discovery. Binary code encompasses two main sections: code and

data sections. The segregation process between these sections is very important

since binary analysis approaches may misinterpret critical data bytes as instruc-

tions or miss real instructions [93]. Also, modifying the critical data will cause

crashing the program. Moreover, the binary fingerprinting approaches require the

data sections ro be recognized carefully in order to extract a set of efficient features

for their purposes.

C6 Debug information availability. When debugging information is stripped from

the binary code, much of the valuable information will be lost in stripping process.

These information include the strings, variable information, and the standard library

functions linked into the binary code [74]. This hinders the binary fingerprinting

approaches.

16

2.3 Binary Code Transformation

This section describes a set of binary code transformation methods that most existing

works, especially for fingerprinting applications (e.g., authorship), could be affected by

them. These methods include certain binary disturbances such as compiler optimizations,

differences in build environments, refactoring process, etc. In what follows, we describe

examples of such disturbances.

2.3.1 Function Inlining

In practice, the compiler may inline a small function into its caller code as an optimization.

This may introduce additional complexity to the code. Furthermore, function-inlining

significantly changes the CFG of a program, which may become problematic for existing

binary analysis approaches [106]. Finding inlined code is a challenging task [107]. The

accuracy will undoubtedly drop if the features are derived from a function that includes

inlined functions or if the target programs do not show such inlining. Still, using the

multiple initial basic block matches will not likely find the multiple counterparts in the

non-inlined target program [106].

2.3.2 Instruction Reordering

Compilers may reorder independent computations to enhance data locality. Reordered

instructions in a basic block change the syntactic representation [106]. However, the

semantics of a basic block remain the same.

17

2.3.3 Refactoring Process

Refactoring process might alter the structure of code without changing the way it be-

haves [67]. Refactoring is considered a best practice when creating and maintaining

software; indeed, research suggests that programmers practice it regularly [99, 125]. Ex-

amples of refactoring include renaming a variable, moving a method from a superclass

to its subclasses, and taking a few statements and extracting them into a new method.

These examples are referred to as RENAME, PUSH DOWN METHOD, and EXTRACT

METHOD [67].

2.4 Reused Function Identification

There are several frameworks proposed for extracting the semantics of binary code for

particular tasks, such as BinSlayer [41], BinJuice [86], BitShred [75], and iBinHunt [96].

Such frameworks may use for identifying reused functions. BinSlayer uses a polynomial

algorithm to find the similarity between executables, obtained by fusing the well-known

BinDiff algorithm [66] with the Hungarian algorithm [98] for bi-partite graph match-

ing. BinJuice extracts the abstraction of the semantics of binary blocks which is termed

"juice". Whereas the denotational semantics summarizes the computation performed by

a block, its juice presents a template of the relationships established by the block [86].

BitShred is a framework for automatic code reuse detection in binary code [75]. BitShred

can be used for identifying the amount of shared code based on the ability to calculate

18

the similarities among binary code. iBinhunt is a technique to find the semantic differ-

ences between two binary programs when the source code is not available. It uses the

process of analyzing control flow, particularly intra-procedural control flow [96]. More

recently, ESH a new tool has been proposed [52]. They introduce a statistical approach

for measuring the similarity between two fragments (e.g., procedures). Genius [64] em-

ploys different set of features, generates codebooks from CFGs, translates the codebooks

into numeric vectors, and finally using locality sensitive hashing (LSH) to overcome the

scalability.

2.5 Fingerprinting Free Open Source Function

In this section, we review relevant research works on binary function fingerprinting.

2.5.1 Search-Based Function Fingerprinting

Creating a search engine for executables is an extremely important issue, as it helps re-

verse engineers to detect the functionality of the code. To the best of our knowledge, there

are three search engines for binaries: "Rendezvous" [81], "Tracelet" [53], and "SAR-

VAM" [101]. The SARVAM search engine is designed for malware binaries. Given a

malware query, a fingerprint is first computed based on transformed image features [101].

Tracelet introduces an engine for searching binary functions in the code base. The au-

thors decompose CFGs into fixed length subtraces excluding jump instructions, which

are called tracelets. Rendezvous [81] identifies binary code using a statistical model

19

comprising instruction mnemonics, control flow sub-graphs, and data constant features.

BinClone [63] is a binary clone system that shows the feasibility of detecting exact clones

in assembly code based on n-grams. However, it suffers from signature collisions and

is not scalable. Most recently, BinGo [47] a cross-architecture binary code search is

proposed. This system consists of two components: The first is designed to filter out

OS functions and the second is to model binary function by extracting variant traces. A

very recent approach namely BinSequence [72] has been proposed. They compare two

functions by extracting the longest common sequence path and applying neighborhood

exploration.

2.5.2 Dynamic Function Fingerprinting Methods

Dynamic fingerprinting methods are a set of ways to analyze a program to determine

the specific inputs which cause each part of a program to execute. The work introduced

by Homan et al. [76], the authors compared execution traces using longest common se-

quences. A new method to automatically find vulnerabilities and generate exploits has

been proposed [34]. These authors propose preconditioned symbolic execution, a new

technique for targeting symbolic execution. A new method is proposed for mutating well-

formed program inputs or simply fuzzing, which is a highly effective and widely used

strategy to find bugs in software [110]. Moreover, a binary search engine called Blanket

Execution (BLEX) [58], executes functions and collects the side effects of functions; two

functions with similar side effects are claimed to be similar.

20

2.6 Authorship Attribution

In this section, we review the related work to our main component that is designed for

binary authorship attribution.

2.6.1 Source Code Authorship

Most previous studies of authorship analysis for general-purpose software have focused

on source code [43,83,119]. These techniques are typically based on programming styles

(e.g., naming variables and functions, comments, and code organization) and the develop-

ment environment (e.g., OS, programming language, compiler, and text editor). The fea-

tures selected by these techniques are highly dependent on the availability of the source

code, which is seldom available when dealing with malware binaries. When dealing with

executable files, it is infeasible to use most of these features as they are lost after the com-

pilation and linking process. Spafford and Weeber [119] suggest that the use of lexical

features (e.g., variable names) and syntactic features (e.g., usage of keywords) could aid in

source code authorship attribution. Krsul and Spafford [83] attempt to find characteristics

that represent coding style, suggesting that identifying programming style should be pos-

sible within a closed environment. More recently, Caliskan-Islam et al. [43] investigate

methods to deanonymize source code authors of C++ using coding style.

21

2.6.2 Binary Code Authorship

In contrast to source code, binary code has drawn significantly less attention with respect

to authorship attribution. This is mainly due to the fact that many salient features that

may identify an author’s style are lost during the compilation process. In [27, 44, 112],

the authors show that certain stylistic features can indeed survive the compilation pro-

cess and remain intact in binary code, thus showing that authorship attribution for binary

code should be feasible. The methodology developed by Rosenblum et al. [112] is the

first attempt to automatically identify authors of software binaries. The main concept

employed by this method is to extract syntax-based features using predefined templates

such as idioms (sequences of three consecutive instructions), n-grams, and graphlets. A

subsequent approach to automatically identify the authorship of software binaries is pro-

posed by Alrabaee et al. [27]. The main concept employed by this method is to extract a

sequence of instructions with specific semantics and to construct a graph based on register

manipulation. A more recent approach to automatically identify the authorship of soft-

ware binaries is proposed by Caliskan-Islam et al. [44]. The authors extract syntactical

features present in source code from decompiled executable binaries. Although these ap-

proaches represent solid progress on authorship attribution, not one of these approaches

is applied to real malware, mostly due to their dependency on training data with the same

functionality (which is infeasible in the case of malware). In [94], the authors introduce

new fine-grained techniques to address the problem of identifying the multiple authors of

binary code by determining the author of each basic block. They extract syntactic and

22

semantic features at a basic level, such as constant values in instructions, backward slices

of variables, and width and depth of a function control flow graph (CFG). Furthermore,

these approaches suffer from certain limitations, including low accuracy in the case of

multiple authors and being potentially thwarted by simple obfuscation.

Moreover, most existing work on malware authorship attribution relies on manual

analysis. In 2013, a technical report published by FireEye [97] discovered that malware

binaries share the same digital infrastructure and code; for instance, the use of certificates,

executable resources, and development tools. More recently, the team at Citizen Lab [11]

attributed malware authors according to the manual analysis exploit type found in binaries

and the manner by which actions are performed, such as connecting to a command and

control server. The authors in [91] presented a novel approach to creating credible links

between binaries originating from the same group of authors [91]. Their goal was to add

transparency in attribution and to supply analysts with a tool that emphasizes or denies

vendor statements. The technique is based on features derived from different domains,

such as implementation details, applied evasion techniques, classical malware traits, or

infrastructure attributes, which are leveraged to compare the handwriting among binaries.

We compare the existing authorship in terms of extracted features, implantation

setup, and code availability, as shown in Table 2.1.

The extracted features include syntactic, structural, and semantic features. Most

of the approaches are compatible with Linux binaries (e.g., ELF), and the binaries that

they handle were originally compiled from C/C++ source code. Each approach requires a

23

Table 2.1: Comparison between different systems that identify the author of program

binaries

Ap
pr

oa
ch Fe

at
ur

es

Im
pl

em
en

ta
tio

n

Av
ai

la
bi

lit
y

S
y

n
ta

x

S
em

an
ti

cs

S
tr

u
ct

u
re

L
an

g
u

ag
e

P
la

tf
o

rm
s

D
at

as
et

[27] � � � C++ Windows � Private

[44] � � � C Windows/Linux � GitHub

[112] � � � C++ Linux � Public

[94] � � � C++ Linux Private

training dataset, with the exception of Meng’s approach [94]. When the tools are available

for researchers, we use private repositories, public repositories (indicates that the code is

available but not included in general repositories), and general repositories (e.g., GitHub).

Additionally, we categorize the existing approaches in Figure 2.1.

Meng et al 2017

Binary Authorship

Multiple Authors Single Author

Basic Block ProgramInstruction Function

Alrabaee et al 2014
Rosenblum et al

2011
Caliskan et al 2015

Figure 2.1: Taxonomy of authorship approaches

The features are extracted from different levels; for instance, Meng extracts fea-

tures at the basic block level [94]. The machine learning algorithms employed also vary;

for example, Rosenblum et al. used a support vector machine (SVM) algorithm [112],

24

whereas Caliskan et al. used a random forest classification algorithm [44].

2.7 Summary

In this chapter, we have reviewed different fields for the purpose of analyzing binary code.

We initially investigated different aspects to highlight the importance of binary code anal-

ysis. Then, we explored certain challenges posed by the binary code analysis process.

Such challenges should be considered by security researchers at any time they intend to

design a tool for binary code analysis. Also, to tackle the drawbacks of aforementioned

existing works, we design a framework that performs four tasks: identifying the compiler-

related functions (this component is named BinComp), determining the reused functions

(SIGMA), fingerprinting free open source software packages third-party libraries (FOS-

SIL), and finally attributing the author of program binaries (BinAuthor). Following chap-

ters describe each component in details.

25

Chapter 3

Towards Identifying Reused Functions

in Binary Code

3.1 Overview

The capability of efficiently recognizing reused functions for binary code is critical to

many digital forensics tasks, especially considering the fact that many modern malware

typically contain a significant amount of functions borrowed from open source software

packages. Such a capability will not only improve the efficiency of reverse engineer-

ing, but also reduce the odds of common libraries leading to false correlations between

unrelated code bases.

In this chapter, we propose SIGMA, a technique for identifying reused functions in

26

binary code by matching traces of a novel representation of binary code, namely, the se-

mantic integrated graph (SIG). The SIGs enhance and merge several existing concepts

from classic program analysis, including control flow graph, register flow graph, function

call graph, and other structural information, into a joint data structure. Such a com-

prehensive representation allows us to capture different semantic descriptors of common

functionalities in a unified manner as graph traces, which can be extracted from binaries

and matched to identify reused functions, actions, or open source software packages.

3.2 Existing Representations of Binary Code

Numerous representations of binary code have been developed for different purposes of

program analysis, such as data flow analysis, control flow analysis, call graph analysis,

structural flow analysis, register manipulation analysis, and program dependency analy-

sis. While these representations have been designed primarily for analyzing binary code,

they can certainly be employed to characterize the code. In particular, we focus on three

representations that capture structural information, namely, control flow graph, register

flow graph, and function call graph. These representations form the basis of our approach

to identifying reused functions in binary code. For the sake of clarity, we introduce a run-

ning example to illustrate these representations using the following sample code (bubble

sort).

Listing 3.1: Bubble Sort C++ Program

27

void bubble_sort(int arr[], int size) {

bool not_sorted = true;

int j=0,tmp;

while (not_sorted)

{

not_sorted = false;

j++;

for (int i = 0; i < size - j; i++){

if (arr[i] > arr[i + 1]) {

tmp = arr[i];

arr[i] = arr[i + 1];

arr[i + 1] = tmp;

not_sorted = true;

}//end of if

print_array(arr,5);

}//end of for loop

}//end of while loop

}//end of bubble_sort

3.2.1 Control Flow Graph

Control flow graphs (CFGs) have been used for a variety of applications, e.g., to detect

variants of known malicious applications [46]. A CFG describes the order in which basic

block statements are executed as well as the conditions that need to be met for a partic-

ular path of execution. To this end, basic blocks are represented by nodes connected by

28

f1 2 3 4 5 6 7 8t f f t

9

t

(a)

RFG

Comp eax, ecx

C8 C3

Comp ebx, esp

C1 C1

Comp ebx, esp

C5 C14

(b)

FCG

Bubble Sort

Basic_Ostream@@Z@Z

Char_traits

Basic_Ostream@@Z@H

Imp_??flush@c
har_traits@XZ

Imp_??setstate@char
_traits@N@Z

Imp_??sputn@char_tr
aits@J@Z

Imp_??sputn@char_tr
aits@D@Z

Imp_??DU@char_trait
s@XXZ

Imp_??uncaught_exc
eption@@NXZ

E E

I

I
I I I II

(c)

Figure 3.1: Classical representations for bubble sort function: (a) Control Flow Graph for

bubble sort (b) Register Flow Graph for bubble sort function (c) Function Call Graph for

bubble sort function

directed edges to indicate the transfer of control. It is necessary to assign a label true

(t), false (f), or ε to each edge. In particular, a normal node has one outgoing edge

labeled ε, whereas a predicate node has two outgoing edges corresponding to a true or

false evaluation of the predicate. As an example, the CFG for bubble sort is shown in Fig-

ure 3.1(a). In our context, CFG is a standard code representation in reverse engineering to

aid in understanding. However, while CFGs expose the control flow of a given code, they

fail to provide other useful information, such as the way registers are manipulated by the

code and the interaction between different functions.

29

3.2.2 Register Flow Graph

A register flow graph (RFG) is used to capture how registers are manipulated by binary

code, which is originally designed for authorship identification of binary code [27]. RFGs

describe the flow and dependencies between registers as an important semantic aspect of

the behavior of a program. We briefly review the concept through an example shown in

Figure 3.1(b). In the RFG, two costs are assigned to edges; β represents the basic block to

which the compare instruction belongs (basic block id), and σ is the cost that is assigned

based on the flow of the register’s values (instruction counts). Regardless of the number

or complexity degree, of functions, the following registers are often accessed: ebp, esp,

esi, edx, eax, and ecx. Therefore, the steps involved in constructing a RFG for these

registers are as follows:

• Counting the number of compare instructions,

• Checking the registers for each compare instruction,

• Checking the flow of each register from the beginning until the compare is reached,

• Classifying the register changes according to the 16 proposed classes in [27].

In RFGs, assembly instructions are classified into four families: stack, arithmetic,

logical operation, and generic operation, as detailed in the following.

• Arithmetic: this class contains the following; add, sub, mul, div, imul, idiv,

etc.

• Logical: this class contains the following; or, and, xor, test, shl.

• Generic: this class contains the following; mov, lea, call, jmp, jle, etc.

• Stack: this class contains push and pop.

30

3.2.3 Function Call Graph

A function call graph (FCG) is the representation of a function in binary code as a directed

graph with labeled vertices, where the vertices correspond to functions and the edges to

function calls. Two labels, I and E are assigned to the nodes; I represents internal library

functions and E represents external library functions. An example of FCG for the bubble

function is shown in Figure 3.1(c). In the literature, external call graphs have been used

for malware detection [60]. In such a case, model graphs and data graphs are compared

in order to distinguish call graphs representing benign programs from those based on

malware samples [60, 111].

3.3 SIGMA Approach

In this section, we first provide an overview of the proposed SIGMA approach in Sec-

tion 3.3.1. We then describe the three building blocks of an SIG in Section 3.3.2. We

introduce the SIG concept in Section 3.3.3. Finally, we describe methods for SIG graph

matching in Section 3.3.4.

3.3.1 Overview

The overall architecture of our SIGMA approach is depicted in Figure 3.2. There are two

main phases: (i) a training phase, and (ii) a testing phase, detailed as follows.

31

Figure 3.2: SIGMA architecture

The training phase consists of four steps; (i) disassembling the executable and man-

ually filtering out functions related to the compiler; (ii) constructing the following graphs

from user functions: CFG, RFG, and FCG; (iii) applying structural information to CFG

to obtain the structural control flow graph iCFG; applying new merged classes to RFG

to obtain a merged register flow graph mRFG; applying colored classes to FCG to obtain

a colored function call graph cFCG (those concepts will be explained in Section 3.3.2).

32

(iv) Merging the previous graphs into a single SIG. We then decompose the SIG into a

set of traces aiming to identify fragments in the functions. Moreover, we consider vari-

ous properties of the SIG, such as the total number of nodes, node types (data, control,

dependence, or structural), edge types, total number of edges, the depth of the graph, etc.

We save these details into a database with the function ID. On the other hand, given a

set of unknown assembly instructions, the testing phase construct the SIG and extract

the properties of the constructed graph and compare it with the existing SIGs graphs in

the database. Hence, we have two methods for matching graphs: (i) exact matching: two

graphs are said to match exactly if they have the same properties. Furthermore, a specific

fragment gi is said to belong to a specific function fi if and only if fi has a fragment with

the same properties as gi. (ii) Inexact matching: it is based on edit distance calculation

and the result is compared to predefined threshold value α. Two functions are said to

be the same if their similarity score is less than α. More formally, we have following

definitions.

Definition 1. Let f1, f2 be two functions, we say f1 is the copy (or origin) of f2, if

SIG(f1) matches SIG(f2).

Definition 2. Let f1, f2 be two functions, and SIG(f1)−→ a and let SIG(f2)−→ b

denote extracting SIG traces a and b from f1 and f2. Let sim(a,b) be a similarity

function and δ a predefined threshold value (δ < 1). We say f1 and f2 are similar if

1− sim(a, b) < δ.

33

3.3.2 Building Blocks

In this section, we extend the existing representations introduced in Section 3.2 to form

the building blocks of SIG.

A. Structural Information Control Flow Graph

As mentioned in Section 3.2, traditional CFGs consist of basic blocks each of which

is a sequence of instructions terminating with a branch instruction. We can thus only

obtain the structure of a function from a CFG. The lack of more detailed information in

CFGs means two entirely different functions may yield the same CFG, which will cause

confusion for identifying similar functions. Therefore, we extend standard CFGs with a

colored scheme based on structural information about the probable role or functionality of

each node. For example, if the majority of instructions in one node is arithmetic or logical,

it may provide hints about the functionality of the node (e.g., cryptographic function

usually involves a large number of for loops). By enriching standard CFGs with such

information as different colors of nodes, which we call iCFG, we have a better chance

to distinguish two functions even if they have the same CFG structure. Table 3.1 shows

some example categories of structural information we consider in coloring the nodes.

The assignment of classes depends on two percentages: (i) the two highest per-

centages, and (ii) the lowest percentage, among the proposed categories. By consider-

ing the highest percentages, we aim to measure the majority category in the function.

We choose two highest percentages because we have noticed that some classes, such as

34

Table 3.1: Structural information categories

Category Description
Data Transfer (DT) Data transfer instructions such as mov, movzx, movsx
Test(T) Test instructions such as cmp, test

ArLo

Arithmetic and logical instructions such as add, sub,
mul, div, imul, idiv, and, or, xor, sar,
shr

CaLe
System call, API call, and Load effective instructions such as

lea
Stack Stack instructions such as push, pop

Data Transfer, are always dominant in many cases such that considering in addition

the second highest percentage would provide more reliable coloring. Table 3.2 shows

some example colored classes. The second row in Table 3.2 shows three classes 1, 2, and

3. For example class 2 occurs when the majority is DT, T and minority is Stack.

Table 3.2: Color classes for iCFG

Color Classes Majority Minority
1/2/3 DT, T ArLo/Stack/CaLe

4/5/6 DT, ArLo T/CaLe/Stack

7/8/9 DT, CaLe ArLo/Stack/T

10/11/12 DT, Stack T/CaLe/ArLo

13/14/15 T, ArLo DT/CaLe/Stack

16/17/18 T, CaLe DT/ArLo/Stack

19/20/21 T, Stack DT/ArLo/CaLe

22/23/24 ArLo, Stack T/DT/CaLe

25/26/27 ArLo, CaLe Stack/DT/T

28/29/30 Stack, Cale T/DT/ArLo

As an example, by applying the color classes in Table 3.2 to Figure 3.1(a), we

can obtain the iCFG shown in Figure 3.3(a). This iCFG involves five color classes:

22, 4, 3, 10, and 1. From Table 3.2, we can see that a majority of those classes be-

long to: ArLo-Stack, DT-ArLo, DT-T, DT-Stack, DT-T. This is reasonable

since the main functionality of the bubble sort algorithm is manipulating values in an array

35

and consequently the main action is the transfer of values from one location to another,

which explains the large number of DT instructions. As demonstrated by the example, by

using this extended control flow graph iCFG, we can capture more semantic information

that might be helpful in identifying functions in binary code. Nonetheless, the iCFG

only contains control information about basic blocks, and it lacks other useful semantics,

such as the way registers are manipulated and the way functions interact with each other.

Hence, we introduce two other building blocks in addition to iCFG.

(a)

RFG

Cmp eax,
ecx

C8
Cmp ebx,

esp

C1

Cmp ebx,
esp

C11

cmp esi,5

C17

cmp
ebx,[…]

C19

test eax,
eax

C14

(b) (c)

Figure 3.3: Enhanced classical representations for bubble sort function: (a) iCFG for

bubble sort function (b) mRFG for bubble sort function (c) Function Call Graph for bubble

sort function

B. Merged Register Flow Graph

As mentioned in Section 3.2, RFG is a binary code representation for capturing program

behaviors based on an important semantics of the code, i.e., how registers are manip-

ulated. The original RFG is designed for authorship attribution purposes, therefore it

lacks support for some cases that are important for function identification: i) when both

36

operands of cmp are constants (C), ii) when one of the operands is a constant and the

other is a register (reg), iii) when both operands are memory locations (ML), iv) when one

of the operands is a memory location and the other is a register, and v) when the operands

are a mixture of constants and memory locations. These cases are especially important

for identifying functions in binary code, and hence we extend the RFG by adding several

new classes as shown in Table 3.3.

Table 3.3: Updated classes of register access

Class Arithmetic Logical Generic Stack C C C Reg ML ML ML Reg ML C
1 1 0 0 0 0 0 0 0 0

2 0 1 0 0 0 0 0 0 0

3 0 0 1 0 0 0 0 0 0

4 0 0 0 1 0 0 0 0 0

5 1 1 0 0 0 0 0 0 0

6 1 0 1 0 0 0 0 0 0

7 1 0 0 1 0 0 0 0 0

8 1 1 1 0 0 0 0 0 0

9 1 1 0 1 0 0 0 0 0

10 1 0 1 0 0 0 0 0 0

11 1 1 1 1 0 0 0 0 0

12 0 1 1 0 0 0 0 0 0

13 0 1 0 1 0 0 0 0 0

14 0 0 1 1 0 0 0 0 0

15 0 1 1 1 0 0 0 0 0

16 0 0 0 0 1 0 0 0 0

17 0 0 0 0 0 1 0 0 0

18 0 0 0 0 0 0 1 0 0

19 0 0 0 0 0 0 0 1 0

20 0 0 0 0 0 0 0 0 1

Moreover, as another improvement over the original RFG representation, we merge

certain nodes inside an RFG, e.g., class one and class two together are equivalent to class

five. In this manner, we can reduce the number of nodes to improve the efficiency in an-

alyzing an RFG. Finally, since the original RFG depends only on the cmp instructions,

37

we also extend RFG instructions to the test instruction. After applying those extensions

and modifications, we obtain the new representation mRFG, as shown in Figure 3.3(b).

The mRFG has three more nodes than its corresponding RFG; one of these is test

instruction, and the other two are related to the immediate memory address and the con-

stant. Moreover, we have merged the original classes (nodes in green): C8 − C3 to C8,

C1 − C1 to C1, and C5 − C14 to C11. The reference to the new classes C17 and C19

may provide useful semantics about the functions, e.g., a bubble sort function implies it

mainly deals with constants and sorts them in memory locations.

C. Color Function Call Graph

As mentioned in Section 3.2, traditional FCGs represent system calls in a binary code.

Among a set of system calls C = C1, C2, . . . , Cn, each call may be either local or external.

To distinguish these, we extend FCGs with a color scheme as follows. The label function

of labeling edges defines the label class α in two cases. For a local call, we only need

one label, because local system calls are mostly related to compiler functions rather than

to user functions. As to external calls, we define the label classes using a range of values

0 < α < 1, because we may have various external system calls potentially connecting to

API that is very important for identifying functions. More precisely, we extend FCGs to

a new representation which we call cFCG, using the label function defined as follows.

38

f(l) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

α = 0 if l is local system call

0 < α < 1 if l is external system call

As an example, having applied this new representation to our running example, we

obtain the cFCG shown in Figure 3.3(c). Besides serving as a building block of our

proposed approach, the cFCG representation may also be helpful in other related tasks

by highlighting the difference between various types of calls, such as in malware classi-

fication through clustering external system calls, and for writing pattern-based signatures

by providing analysts with a list of API call graph properties derived from external calls.

3.3.3 SIG: Semantic Integrated Graph

The building blocks introduced in the previous section provide complementary views

on binary code by emphasizing different aspects of the underlying function semantics.

Inspired by the work introduced in [126], in which different representations of source

code are combined for vulnerability detection in source code (which is a different problem

from ours as binary code lacks much of the useful information available in source code),

we combine those different but complementary representations of binary code into a joint

data structure in order to facilitate more efficient graph matching between different binary

codes for identifying reused functions. Formally, a semantic integrated graph (SIG) is

defined as follows.

39

Definition 3. A semantic graph G = (N ,V ,ζ ,γ,ϑ,λ,ω) is a directed attributed graph where

N is a set of nodes, V ⊆ (N ×N) is a set of edges and ζ is edge labeling function which

assigns a label to each edge: ζ −→ γ, where γ is a set of labels. ϑ is a coloring function

which colors each node n ε N based on statistical classes function λ. Finally, ω is a

function for coloring mRFG.

Figure 3.4 shows a simple example of SIG with four nodes. Note that a SIG is a

multigraph so two nodes may be connected by multiple edges, e.g., edges corresponding

to mRFG or cFCG. Moreover, A,B,C,D represent the outcomes of labeling nodes

of function ϑ, and a, b, c are the outcomes of function ζ . C1, C5, C2, and C11 are

outcomes of function ω. In the figure, the number in an oval shape represents the number

of outcomes of the color function for cFCG, where 0 represents a local call, and α1 and

α2 represent two different external calls.

Figure 3.4: Simple example of SIG

To utilize the SIG for inexact matching and matching for fragments of function, we

40

need to consider meaningful subgraphs of SIG. Again inspired by [126], we decompose

a SIG into short paths called traces, where each trace is a function � : S(N) −→ S(N ′)

that maps a set of nodes in an SIG to another set of nodes according to given criteria,

where S(N) denotes the power set of N . The main advantage of such a definition is the

composition of multiple traces always yields another trace, i.e., �0 and �1 can be chained

together to �0 ◦ �1. We define a number of elementary traces that serve as a basis for the

construction of other traces, and some examples are shown in the following (each trace

function also has other simpler forms, which are omitted due to space limitations).

OutI,L,K(Y) =
⋃
nεY

{m : (n,m) ε V and ϑ(n,m) = I and λ(n,m) = L and

ω(n,m) = K}

INI,L,K(Y) =
⋃
nεY

{m : (n,m) ε V and ϑ(n,m) = I and λ(n,m) = L and

ω(n,m) = K}

OR(�1, �2, ..., �n) = �1 ∪ �2 ∪ ...∪ �n

AND(�1, �2, ..., �n) = �1 ∩ �2 ∩ ...∩ �n

The trace OutI,L,K returns all nodes reachable over edge I and connected to the

node of the other graph with label L, all nodes connected with the node of the other graph

with label K. Trace INI,L,K is similarly defined to move backwards in the graph, and the

41

two traces OR and AND aggregate the outputs of other traces.

Example: SIG for Bubble Sort Function. Here, we give an example of SIG for

the bubble sort function shown in Figure 3.5.

Figure 3.5: SIG for bubble sort function

As an example of SIG trace, we show the traces of nodes 22, 4, and 3 in

Table 3.4. Also, we show just one example of OR trace and AND trace as well. More-

over, we extract additional features from the SIG shown in Figure 3.5, as depicted in

Table 3.5. The features in Table 3.5 include total number of nodes, number of control

edges(e.g., 22), number of flow edges (e.g., 0), number of flow nodes (e.g., C8), and etc.

Those features together with the SIG traces are sufficient for exact matching of SIGs,

and we will discuss inexact matching in next section.

42

Table 3.4: Part of traces for SGF bubble sort function

Node Traces Traces Type
22 ε, ε, C8 out

t in

4 f, C14 out

ε, f in

22 OR 4 ε, C8, C14, f out

f, t, ε in

4 AND 3 f out

f in

Table 3.5: Graph features for exact matching

Features Frequency
Total # of Nodes 15

Total # of Edges 18

of Control Nodes 5

of Control Edges 8

of Call Nodes 4

of Call Edges 4

of Register Nodes 6

of Register Nodes 6

3.3.4 Graph Edit Distance

For inexact matching between SIGs, we will need a distance metric. In this chapter, we

employ the graph edit distance for this purpose. The edit distance between two graphs

measures their similarity in terms of the number of edits needed to transform one into the

other [71]. We implement this concept as follows. Given two SIGs, we define the follow-

ing two elementary traces to transform one graph into another: Edge-edit traces,

including κr, re-labels the edge. Node-edit traces, including νr, re-colors the node

by merging nodes from the other graph into one node. An edit edge VG,H between two

SIGs G and H is defined as a set of sequences (�1, �2, ... , �n) of traces such that G = �n

43

(�1(�n−1(H)(... �1(H) ...)). To quantify this similarity, the weight of all edit traces is mea-

sured, i.e., V = (�n, �2, ... , �n) as w(V) =
∑n

i=1 w(�i). The edit distance between two

SIGs is thus defined as the minimum weight of all edit edges and nodes between them,

i.e., sim(G,H) = min w(VG,H). The distance measure between the nodes follows the

same reasoning, with operations instead of traces. In Algorithm 1, we calculate the graph

edit distance between two SIGs, G and H , by measuring the cost of transforming G to

H . The algorithm starts by labeling the edges of the two graphs as mentioned earlier, and

then checks the cost of transforming each node in G to nodes in H , and finally calculates

the total cost.

Algorithm 1: Graph Edit Distance

input : G: semantic integrated graph

H: semantic integrated graph

R: total set of edges

e: last element of edges

output: sim: Similarity result for two graphs

begin
Steps 1 and 2 for edge labeling
1. (G, V ′)← ExtractEdges (G, V);
2. (H,V ”)← ExtractEdges (H,V);
for each vi in V ′ do

for each vj in V ” do
if vj .� = vi.� then

sim(G,H)← � in vj ;

for each r in R do
for each 1 < e do

w(V)← w (�i);

return sim(G,H) = minw(VG,H)

We define the dissimilarity between two SIGs G and H as follows:

Definition 5. The dissimilarity ρ(G,H) between two SIGs is a value in [0, 1], where

44

0 indicates the graphs are the most similar and 1 the least similar, as formulated in the

following.

ρ(G,H) =
w(VG,H)

|NG|+ |NH |+ |VG|+ |VH |+ |�G|+ |�H |

Where w(VG,H) is the weight cost of traces, |NG| the number of nodes in G, |NH |

the number of nodes in H , |VG| the number of edges in G, |VH | the number of edges in

H , and |�| the number of traces in both SIGs.

10%

12%

17%

19%

42%

0%−20%

20%−40%

40%−60%

60%−80%

80%−100%

Figure 3.6: Similarity statistics of function variants

3.4 Experimental Results

We implement and test the proposed technique, SIGMA, with variants of sorting algo-

rithms and encryption algorithms in order to evaluate the effectiveness and correctness

45

of the proposed method. We employed two variants for each sort function (e.g., bubble,

quick, merge, and heap) and two for each encryption algorithm (e.g., RC4, MD5, Ad-

vanced Encryption Standard (AES), and the tiny encryption algorithm (TEA)). Using the

proposed method, similar scores among these samples are calculated based on the graph

edit distance and dissimilarity formulas introduced in previous section. The results are

depicted in Figure 3.6.

1 2 3 4 5 6 7 8 9 10

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of function variants

S
i
m
i
l
a
r
i
t
y

s
c
o
r
e

Sort Function

Encryption Function

Optimal Similarity

(a)

0 2 4 6 8 10
0.2

0.4

0.6

0.8

1

Number of functions (Encryption and Sort)

A
c
c
u
r
a
c
y

Aproximate Matching

Exact Matching

Optimal Matching

(b)

Figure 3.7: (a) Relation between the number of variants with the similarity score (b)

Accuracy of using exact and approximate matching

According to Figure 3.6, the similarity score shows a promising value with about

80% similarity score pairs ranging from 0.42 to 1. Furthermore, the similarity score on

pairs ranging from 0 to 0.2 is only about 10%. The results clearly show that our approach

can capture common characteristics between functions relatively well. The occurrences

of low-score pairs are mainly due to the significant differences in sizes of functions and

variants, and also the number of nodes, edges, and traces may be observably different. For

instance, the number of nodes in a bubble sort variant a is 15, whereas for variant b is 22;

the number of edges in each one is 18 and 43, and the number of traces is 147 and 278,

respectively. In Table 3.6 and Table 3.7, the similarity matrix shows similar scores of each

46

pair of encryption functions. The values (100%) in the main diagonal are the similarity

scores for the variants when compared to themselves. In both tables, we represent RC4 by

R, TEA by T, AES by A, MD5 by M, Bubble by B, Quick by Q, Heap by H, and Merge

by M.

Table 3.6: Similarity between sort function variants

B.1 B.2 Q.1 Q.2 M.1 M.2 H.1 H.2
B.1 100% 93% 71% 67% 62% 73% 65% 62%
B.2 96% 100% 79% 80% 70% 72% 60% 68%
Q.1 79% 83% 100% 94% 76% 71% 65% 60%
Q.2 71% 69% 95% 100% 79% 77% 74% 65%
M.1 67% 76% 66% 68% 100% 97% 70% 74%
M.2 73% 69% 77% 78% 94% 100% 70% 72%
H.1 69% 67% 74% 73% 79% 79% 100% 96%
H.2 72% 71% 64% 69% 79% 78% 95% 100%

Table 3.7: Similarity between encryption function variants

R.1 R.2 T.1 T.2 M.1 M.2 A.1 A.2
R.1 100% 86% 68% 57% 52% 61% 57% 62%
R.2 89% 100% 74% 66% 53% 72% 50% 59%
T.1 72% 79% 100% 87% 66% 61% 55% 67%
T.2 68% 62% 89% 100% 72% 67% 69% 55%
M.1 57% 69% 58% 51% 100% 91% 78% 74%
M.2 63% 67% 67% 70% 92% 100% 78% 72%
A.1 69% 57% 64% 68% 79% 75% 100% 94%
A.2 62% 71% 69% 64% 70% 73% 89% 100%

We can see from Table 3.6 and Table 3.7 that similarity scores among the sort func-

tions are higher than those among encryption functions. This is due to the fact that the

steps of sorting are similar among different algorithms but the steps of encryption func-

tions vary significantly with each algorithm.

In Table 3.6, the similarity between heap and other algorithms are lower, because

the steps of heap sort are significantly different from the other sorting algorithms’ steps.

47

Table 3.8: Dissimilarity between sort and encryption functions

Bubble.1 Quick.1 Merge.1 Heap.1
RC4.1 86% 93% 79% 87%
TEA.1 96% 91% 79% 89%
MD5.1 79% 88% 90% 94%
AES.1 89% 91% 95% 84%

In Table 3.7, the similarity scores show that RC4 is more similar to TEA, than MD5 is to

AES. This is due to the fact that RC4 and TEA have steps in common in the encryption

process. In Table 3.8, we list the calculated dissimilarity scores between sorting algo-

rithms and encryption algorithms.

3.5 Summary

The reverse engineering of binary code is an important but challenging task that de-

mands automated techniques for preprosessing and cleaning the code. The identification

of reused functions in binary code is one of the important aspect of this issue that has

received limited attention in comparison with other aspects of binary analysis. In this

chapter, we have presented a novel approach called SIGMA for effectively identifying

reused functions in binary code. Instead of relying on one source of information, our ap-

proach combines multiple representations into one joint data structure SIG. SIGMA also

supports inexact matching and exact matching based on traces of the SIG which deals

with function fragments. Both experimental results and case study have demonstrated the

effectiveness of our method, and we have described several potential improvements to the

approach in the previous section.

48

Chapter 4

Identifying Free Open-Source Software

Functions in Binary Code

4.1 Overview

Identifying free open-source software (FOSS) packages on binaries when the source code

is unavailable is important for many security applications, such as malware detection, soft-

ware infringement, authorship attribution, and digital forensics. This capability enhances

both the accuracy and the efficiency of reverse engineering tasks by avoiding false correla-

tions between irrelevant code bases. Although the FOSS package identification problem

belongs to the field of software engineering, conventional approaches rely strongly on

practical methods in data mining and database searching. However, various challenges

49

in the use of these methods prevent existing function identification approaches from be-

ing effective in the absence of source code. To make matters worse, the introduction of

code transformation techniques, the use of different compilers and compilation settings,

and software refactoring techniques has made the automated detection of FOSS packages

increasingly difficult. With very few exceptions, the existing systems are not resilient to

such techniques, and the exceptions are not sufficiently efficient.

To address this issue, this chapter proposes, FOSSIL, a novel resilient and efficient

system that incorporates three components. The first component extracts the syntactical

features of functions by considering opcode frequencies and applying a hidden Markov

model statistical test. The second component applies a neighborhood hash graph kernel to

random walks derived from control flow graphs, with the goal of extracting the semantics

of the functions. The third component applies z-score to the normalized instructions to

extract the behavior of instructions in a function. The components are integrated using a

Bayesian network model which synthesizes the results to determine the FOSS function.

The novel approach of combining these components using the Bayesian network has pro-

duced stronger resilience to code transformation methods. We evaluate our system on

two datasets including real-world projects whose use of FOSS packages is known and

malware binaries for which there are security and reverse engineering reports purporting

to describe their use of FOSS. We demonstrate that our system is able to identify FOSS

packages in real-world projects with a mean precision of 0.95 and with a mean recall of

0.85. Furthermore, FOSSIL is able to discover FOSS packages in malware binaries that

50

match those listed in security and reverse engineering reports.

4.2 Preliminaries

In this section, we show the challenges faced in automating the process of identifying

FOSS functions in malware binaries. Second, we briefly describe the threat model and

highlight the in-scope and out-of-scope threats of this work. We then provide an overview

of our system. Finally, we present our criteria in selecting FOSS packages for evaluation.

4.2.1 Challenges

In automating the process of identifying FOSS functions in malware binaries, several

challenges are typically encountered. The first is usability. Immediate insights obtained

about a binary file from a system to highlight FOSS packages will give reverse engineers

a direction to start their investigations. The existing approaches for the purpose of binary

search engine, clone detection, or function identification return the top-ranked candidate

functions, while these results are helpful if the repository contains a function that exhibits

a high degree of similarity to the target function. Moreover, because of the effect of dif-

ferent compilers, compiler optimization, and obfuscation techniques, a given unknown

function is less likely to be very similar to the right function in the repository, and there

is little advantage in returning a list of matches with low degrees of similarity. A resilient

system should be able to identify the matched pairs with a controller process that can syn-

thesize the available knowledge. The second challenge is efficiency. An efficient system

51

can help reverse engineers to find matches on the fly. To efficiently extract, index, and

match features from program binaries in order to detect a given target function within a

reasonable time, considering the fact that many known matching approaches imply a high

complexity is challenging. The third challenge is robustness. The distortion of features

in the binary file may be attributed to different sources arising from the platform, the

compiler, or the programming language, which may change the structures, syntax, or se-

quences of features. Hence, it is challenging to extract robust features that would be less

affected by different compilers, slight changes in the source code as well as obfuscation

techniques. The fourth challenge is scalability. Reverse engineers deal with large num-

bers of binaries on a daily basis, so it is necessary to design a system that could scale up

millions of binary functions. Accordingly, it is important to consider the factors that may

degrade the performance of FOSS package identification as the repository size increases.

The fifth challenge is stability. One of the most important concerns in the design of a

system is to provide a component to update the repository, when a new version of a FOSS

package is released. The update process should be supported by a system that does not

need to re-index the whole package.

4.2.2 Threat Model

Our system is designed to assist, instead of replace, reverse engineers in various use cases,

such as digital forensic analysis (e.g., clustering a group of functions based on similar

fingerprints) or software vulnerability disclosure (e.g., linking the code fragment of a

52

binary to a known vulnerable/buggy function). In what follows, we further clarify the

threat model and scope of this thesis.

In-Scope Threats. In designing the features and methodology of our system, we have

taken into consideration certain potential threats. First, adversaries may intentionally ap-

ply code transformation techniques to alter the syntax of binary files. Second, since the

syntax of a program binary can be significantly altered by simply changing the compilers

or compilation settings, adversaries may make such changes to evade detection. Finally,

adversaries may reuse FOSS packages through modifying and adapting them to intention-

ally avoid detection by our system. We show how our system resists and survives these

threats in Section 4.4.7. Furthermore, we can certainly envision many countermeasures

taken by future malware writers to evade detection by our system, and hardening our

system against such countermeasures will be an ongoing process.

Out-of-Scope Threats. As previously mentioned, our system is not intended to com-

pletely replace reverse engineers. Thus, the focus of our system is not on general reverse

engineering tasks, such as unpacking and de-obfuscating binaries (although we later dis-

cuss how our system handles some obfuscation methods intended to evade detection by

our system), but rather on discovering user functions. Our system assumes the binary is

already de-obfuscated. In addition, cases where the code is encrypted in order to reduce

code size or to prevent reverse engineering are also out of the scope of our system.

53

4.2.3 System Overview

The main analytical process is divided into four stages, as shown in Figure 4.1.

push eax
mov eax, esp
add eax, 04G

C
C

push eax
mov eax, esp
add eax, 04V

S

P
re

pr
oc

es
si

ng

Assembly Code

E
xt

ra
ct

in
g

Opcode

Opcode distribution

CFG-walk

Feature Extraction

D
et

ec
tin

g

HMM

HSP

z-score In
te

gr
at

in
g

Feature Processing FOSS Identification

Bayesian
Network

V
al

id
at

in
g

push R
mov R, R
add R, VG

C
C

push R
mov R, R
add R, VV

S

Normalization

Figure 4.1: Overview of the proposed system

A preprocessing stage prepares normalized disassembled instructions, followed by

feature extraction once the FOSS packages are collected. Then, different detection meth-

ods are applied to the extracted features, and the repository is explored for the purpose

of identification. Further, the results of these detection methods are integrated using a

Bayesian network model, making it possible to identify FOSS functions and label them

in the binary. In the first step, the assembly instructions are normalized. The second step

extracts opcodes, CFG-walks, and opcode frequency distribution features (Section 4.3.1).

A Bayesian network controls the application of different detection methods, including

HMM, HSP, and z-score, to the extracted features (Section 4.3.3). More specifically, the

input of first method (HMM) is function opcodes, which are normalized according to the

function length. A hidden Markov model (HMM) is applied to these opcode frequencies,

as it can efficiently detect the behavior of a function (Section 4.3.3). The second method,

54

HSP, accepts control flow graph walks, which are labelled by applying the kernel func-

tion for each node together with its neighbors efficiently, as described in Section 4.3.3.

Depending on the output of this component, either the function is identified, or the third

component of the model is checked. To achieve this, the opcode frequencies are used

as input and are converted into a probability function whose characteristics are analysed

with the use of z-score, as described in Section 4.3.3. These statistical features usually

capture the relationship between instructions and the behavior of the function. Finally, as

described in Section 4.4, we evaluate our approach in terms of efficiency against a set of

FOSS packages compiled with different compilers and compilation settings as well as in

terms of robustness against code transformation techniques.

4.2.4 FOSS Packages

Collecting FOSS packages is a crucial step in evaluating our system. To build a reposi-

tory of FOSS functions, the packages are chosen using statistics that show the prevalence

of FOSS libraries [20], studies of malware behavior [49, 68, 127, 129], and technical re-

ports [38,85,97]. We either collect the executable files or compile these packages accord-

ing to their dependencies. We tailor our system to C-family compilers because of their

popularity and widespread use, especially in the development of malicious programs [88].

The FOSS packages were created to perform various functionalities as partially listed in

Table 4.1.

55

Table 4.1: Example of FOSS packages

Functionality

Compression (e.g., info-zip) MSDN libraries (e.g., NSPR)

Database management (e.g., SQLite) Network operations (e.g., webhp)

Encryption (e.g., TrueCrypt) Random number generation (e.g., Mersenne Twister)

File manipulation (e.g., libjsoncpp) Secure connection (e.g., libssh2)

Hashing (e.g., Hashdeep) Secure protocol (e.g., openssl)

Image compression (e.g., openjpeg) Terminal emulation (e.g., xterm)

Multimedia protocols (e.g., Libavutil) XML parser (e.g., TinyXML)

4.3 Design and Implementation of Our System

In this section, we introduce our system design and describe the features in detail. We

also provide an overview of the implementation environment.

4.3.1 Features

In what follows, we introduce opcodes, CFG-walks, and opcode frequency distribution

features used in our system.

Opcodes. Opcodes are defined as operational codes, which can be used to efficiently

detect obfuscated or metamorphic malware [40]. However, Bilar et al. show that preva-

lent opcodes (e.g., mov, push, and call) do not make good indicators of malware

samples [40], and based on such opcode frequencies, the resultant degree of similarity

between two files could potentially be marred [55]. Therefore, we propose a way to avoid

this phenomenon and to give each opcode its actual relevance by applying feature ranking

based on mutual information [105] in order to consider only the top-ranked opcodes.

Control Flow Graph Walks. Control Flow Graphs (CFGs) consist of a set of basic

56

blocks, each of which represents a sequence of instructions without an intervening con-

trol transfer instruction. In the literature, CFGs have been used to detect variants of mal-

ware [46]. Exact matching of the CFG itself does not offer much help towards our goal,

since the CFG might change, for instance, due to the effect of compilers and optimization

settings. Consequently, we decompose a CFG into a set of walks, taking into consider-

ation the interactions within these walks. By doing so, we will be able to convert CFGs

into a set of semantic relations (walk interactions) such that when a malware uses part of a

FOSS function to implement a specific functionality, it would be captured based on these

semantic relations. In the literature, the random walk kernel [69] and the shortest path

kernel [122] are amongst the most prominent graph kernels that have been used. A graph

is decomposed into sequences of nodes generated by walks; it counts the number of iden-

tical walks that can be found in two graphs. We propose an instance of the substructure

fingerprint kernel suitability for the analysis of CFG walk relations.

Example: Suppose a CFG consisting of ten basic blocks (BB0, · · · , BB9) as shown in

Figure 4.2a. To illustrate the random walk selection, we consider two nodes BB0 and

BB7, where the path between them (BB0,BB4,BB6,BB7) with a distance of 3 is high-

lighted in Figure 4.2b. To reduce time complexity, we consider a radius for our random

walk, which is the shortest path with neighboring nodes. In our experiments, we consider

radius = {0, 1, 2}, as illustrated in Figures 4.2b-d, respectively. By choosing the radius

equal to 0, the information is only about node BB0 and node BB7 as shown in Figure 4.2b.

When r = 1 the (BB0, BB4), and (BB6, BB7) pairs represent the structural information

57

depicted in Figure 4.2c. The walks when radius is equal to 2 are (BB0, BB4, BB6), and

(BB4, BB6, BB7). Through our experiments, we find that a radius of 2 is the best choice

in terms of efficiency.

BB0

BB3

BB2

BB9

BB7

BB5 BB6

BB4BB1

BB8

(a)

BB0

BB3

BB2

BB9

BB7

BB5 BB6

BB4BB1

BB8

(b)

BB0

BB3

BB2

BB9

BB7

BB5 BB6

BB4BB1

BB8

(c)

BB0

BB3

BB2

BB9

BB7

BB5 BB6

BB4BB1

BB8

(d)

Figure 4.2: Example of random walks between two nodes BB0 and BB7 in (a) CFG of a

function, by considering three radius (r) values: (b) r = 0, (c) r = 1, and (d) r = 2

Opcode Frequency Distribution. We select the opcode frequency distribution feature

based on the following observations obtained from our experiments. We first consider the

simple hypothesis that FOSS functions performing the same task usually exhibit similar

distributions of opcodes [40]. Second, considering the fact that the area under a fre-

quency distribution curve is always 1, we calculate the percentage of top-ranked opcode

frequencies under the distribution. Third, the distribution of various opcodes conforms to

a consistent distribution shape [51] when it is related to a specific FOSS function, even if

the function is modified; since the semantics will be preserved [75] and may be discovered

by the distribution.

58

4.3.2 Feature Selection

We are interested in extracting features that represent the functionality and semantics

of binary functions. We extract different representations of code properties, but only a

subset of these representations may serve as indicators of the semantics of a function.

Hence, we aim to select features that best preserve the semantics of a function. As such,

instead of relying only on syntax-based features obtained from feature templates [63], we

propose capturing different function features at various abstraction levels of the binary

code. Furthermore, we consider how to efficiently extract features from binaries and how

to efficiently store them in a repository.

Opcode ranking. The first category of our features are opcodes. By applying mutual

information-based ranking [45] to the opcodes and corresponding functions of each FOSS

family, we reduce the feature set size to effectively represent the properties of coding

functionality. The opcodes with highest ranking values will be used to calculate opcode

frequency distributions and to color CFG-walks. We employ mutual information to deter-

mine the degree of statistical dependence of two variables X and Y as follows:

MI(X, Y) =
∑
x∈X

∑
y∈Y

p(x, y)log2

(p(x, y)

p(x)p(y)

)
,

where x is the opcode frequency, y is the class of FOSS function (e.g.

sqlite3MemMalloc), p(x) and p(y) are the marginal probability distribution of each

random variable, and p(x, y) is the joint probability of X and Y [113]. The joint and

59

marginal distributions are computed over the number of function variants N (For each

function we have different versions such as when it is compiled with VS or GCC). These

distributions are computed between class (function label) and feature as follows [113]:

P (x) =
1

N

N∑
i=1

�[xi=x], P (y) =
1

N

N∑
i=1

�[yi=y], P (x, y) =
1

N

N∑
i=1

�[xi=x
∧

yi=y]

Graph coloring. Relying on structural information to identify functions which are se-

mantically similar is not sufficient given the fact that two distinct functions may still have

identical CFGs [29]. This shortcoming is addressed by the idea of graph coloring, where

the content of each basic block is also taken into consideration. We use the graph color-

ing technique proposed in [84] to color the nodes based on the group of instructions in a

basic block. This technique categorizes the instructions according to their semantics; for

instance, push and pop opcodes are classified in one class (e.g., Stack operation). As a

result, there are fewer possibilities for an attacker to find semantically equivalent instruc-

tions from different classes. Furthermore, the possible variations in coloring that can be

generated with instructions from different classes are much fewer than the possible vari-

ations on the instruction level [84]. We apply the coloring technique on the normalized

instructions (including the opcodes and operands) by considering only the top-ranked op-

codes. Finally, we assign a weight to each edge by aggregating the colors of the source

and destination nodes. For instance, if there is an edge between node A to node B, and

they are colored in 2 and 8 respectively, the weight of this edge would be 10.

60

Opcode importance. We follow the model used in [40] to measure the importance of op-

codes. The top-ranked opcodes are further processed through converting the frequencies

into a histogram and measuring the area of intersection based on the probability distri-

bution. This step illustrates the importance of each ranked opcode in terms of function

behavior. The most important opcodes will be used by the third component.

4.3.3 Detection Method

In this section, we introduce the components of our detection system: the hidden Markov

model, the neighborhood hash graph kernel, and the z-score, where the Bayesian network

integrates these components.

A. Hidden Markov Model

After the mutual information between the FOSS function and the individual opcodes is

computed, an opcode relevance file based on the top-ranked features for each function is

created. These top-ranked opcodes are used for the hidden Markov model (HMM) with

chi-squared testing. Thus, the functions are scored (according to the opcode sequences)

and classified based on whether they belong to the FOSS or not. Following this, we

apply chi-squared distance with a HMM, as a way to create a confidence interval for this

component. HMM was picked to be the initial component since it is computationally

efficient [121].

In the HMM model, the states represent the sequence of instructions, however, they

61

are not fully observed; yet, the hidden states can be estimated by observing the sequences

of data [120]. To discover the hidden states (e.g., instructions related to inline functions),

we apply data flow analysis such as read and write dependencies as what follows. There

exists a data flow dependency between two instructions i1 and i2 according to the fol-

lowing rules: (i) i1 reads from a register or a memory address, and i2 writes to the same

register or memory address. (ii) i1 writes to a register or memory address and, i2 writes to

the same register or memory. (iii) i1 writes to a register or memory address, and i2 reads

from the same register or memory. Consequently, if an instruction (or set of commands)

shows no evidence of a data flow dependency, it is tagged as a hidden state. It should be

noted that “instruction side effect” (which flag is manipulated) are treated as observations.

Therefore, such observations will be annotated to the states.

In what follows, we describe the chi-squared distance, which is combined with the

HMM. The main objective is to determine the preeminent characteristics of the probability

distribution of statistical opcode variable Z. The best way to find out which hypothesis is

the best match for an observed sequence of samples (Z1, Z2, . . . , Zn) is to use statistical

testing. In fact, the Pearson’s χ2 statistic [65] is widely employed to confirm whether or

not the discrepancies between the observed and expected data are significant. We denote

this test as T 2, which is given by [120, 121]:

T 2 =
z∑

(i=1)

(m̂i −mi)
2

mi

≤ χ2(α, v − 1) (4.1)

where m̂i and mi are the normalized frequencies of opcodes in the testing phase and

62

training phase, respectively; (α, v − 1) represent type I error rate, and the degrees of

freedom, respectively. Finally, based on the comparison results of T 2 and χ2(α, v − 1),

the decision threshold is acquired. For more details, we refer the reader to [120, 121].

B. Neighborhood Hash Graph Kernel

As Gartner et al. [69] show, the distance between CFG-walks (node-node interaction rela-

tions) has a crucial impact on obtaining the semantics of a graph. To be more precise and

to take into consideration the subgraph pairs (not only pairs), we apply a hash subgraph

pairwise (HSP) [132] kernel based method to represent the structural information of the

node interactions in a linear time using hierarchical hash labels.

The label pair feature space of graph H for each label pair (li, lj) is defined as

follows [132]:

ϕli,lj(H) =
∞∑
q=0

τq|{w ∈ Wq(H) : f1(w) = li ∧ fq+1(w) = lj}| (4.2)

where Wq(H) is the set of all possible walks with q edges in graph H , f1(w) is the first

node of walk w, fq+1(w) is the last node of walk w, and (τ0, τ1, · · · , τq) are weights of

edges. Each edge is weighted by the summation of source and destination node colors

(e.g., c(i) + c(i + 1), where function c calculates the node color, discussed in Section

4.3.2). In correspondence with feature map provided above, the graph kernel function

63

based on label pairs is calculated as in [132] as follows:

K(H,H
′
) = 〈ϕ(H), ϕ(H

′
)〉 = 〈L(

∞∑
i=0

τiE
i)LT , L

′
(

∞∑
j=0

τjE
j)L

′T 〉

=

|k|∑
m=0

|k|∑
n=0

[
L

(∞∑
i=0

τiE
i

)
LT

]
mn

[
L

′

(∞∑
j=0

τjE
j

)
L

′T

]
mn

(4.3)

where Ei is the adjacency matrix of H , and L is the labeled matrix of H .

The manner by which the label process is made is described as follows. We denote

a label as a binary vector e = {u1, u2, . . . , ur} consisting of r-bits (0 or 1), representing

the presence (1) of the group of instructions (discussed in Section 4.3.2) in a node. Let

XOR(ei, ej) = ei⊕ej symbolise the XOR operation between two bit vectors of ei and ej .

Let ROTo(e) = {uo+1, uo+2, . . . , ur, u1, . . . , uo} denote the rotation (ROTo) operation

for e = {u1, u2, . . . , ur}, which shifts the last r− o bits to the left by o bits and moves the

first o bits to the right.

In order to compute the neighborhood hash of a graph, we first obtain the set of ad-

jacent nodes Nadj(n) = {Nadj
1 , . . . , Nadj

d } for each node n, and then calculate a neighbor-

hood subgraph hash label for every node, using the following equation 4.4 [133], where

li(n) indicates bit label of node n.

li+1(n) = NH(n) = ROT1(li(n))⊕ (ROTo)(li(N
adj
1))⊕ · · · ⊕ROTo(li(N

adj
d)) (4.4)

As a way to differentiate between an outgoing and an ingoing edge, we set two

ROTo operations. If the edge n1n is an incoming edge to node n, let ROTo = ROT2; if

the edge nn1 is an outgoing edge of node n, let ROTo = ROT3. It is worth nothing that

64

l0(n) describes the information of node n, while l1(n) represents the label distribution of

node n and its adjacent nodes. Finally, the structural information of subgraph of radius i

is presented by li(n). According to our experiments, we find a radius of r = 2 is the best

choice for our system.

According to hierarchical hash labels, the graph kernel is defined as [132]:

K(H,H
′
) =

r∗∑
r=0

βr

〈
Lr

∞∑
i=0

(
τiE

i

)
(Lr)T , Lr

′
∞∑
j=0

(
τjE

j

)
(Lr)

′T

〉

=
r∗∑
r=0

|k|∑
m=0

|k|∑
n=0

βr

[
Lr

(∞∑
i=0

τiE
i

)
LrT

]
mn

[
Lr

′

(∞∑
j=0

τjE
j

)
Lr

′T

]
mn

(4.5)

where E is the adjacency matrix of H and L0, L1, . . . , Lr are the hierarchical hash labels

of H . For more details, we refer the reader to [132, 133].

From a practical perspective, the whole process involved in calculating hierarchical

hash labels is linear with respect to the size of the graph [132, 133]. Consequently, com-

puting the similarity between two control flow graphs will be equivalent to comparing the

set of hash values.

C. Calculation of Z-score

The last component concerns the distribution of opcode frequencies, since each set of

opcodes that belong to a specific function will likely follow a specific distribution due

to the functionality they implement. For this purpose, we utilize the z-score in order to

convert these distributions into scores. In essence, a z-score Z = (x−μ)
SD

indicates how

many standard deviations an element is from the mean.

65

We calculate the z-score for each opcode distribution to facilitate accurate compar-

isons. Based on the possible values for the z-score, we obtain a curve distribution, where

the area under the curve provides one feature value for each function. The area under the

curve is calculated as P (min < Z < max) = P (Z < max)− P (Z > min).

D. Bayesian Network Model

We use a Bayesian Network (BN) model for measuring the knowledge obtained from each

component and for automating the interaction amongst these components. In addition,

BN can depict the relations between the three proposed components, and would encode

probabilistic relationships among their outputs. Moreover, situations where certain data

for such components are not sufficient for identification can be handled by BN. A BN

can be used to gain knowledge from a FOSS function identification problem domain as

well as to predict the consequences of intervention, since it can be used to learn causal

relationships. This feature is very important in the case of modifications performed by

malware writers. Hence, the BN can capture both causal and probabilistic relationships,

and is an ideal representation for combining prior knowledge and data.

The joint probability function would be calculated as P (f,H,W,Z) =

P (f |H,W,Z)P (f |H,W)P (f |H)P (H), and the probability is defined with Bayes’ law

by equation 4.6:

p(y|�x) = p(y)p(�x|y)
p(�x)

(4.6)

66

where p (�x|y) is the probability of a possible input x = (x1, . . . , xn) ∈ Υn given the output

y = (y1, . . . , yn) ∈ Γn. We define a set of conditional probabilities (factors) Ψ1,Ψ2, and

Ψ3 for our three components. Through extensive experiments applying logistic regression

[50], we found that, for our experimental settings, the best values for these factors are

0.45, 0.35, and 0.2, respectively. These factors are based on all possible features in the

components, and thus represent more explicitly the underlying probability distribution

of the features in each component. Each part of the joint probability is obtained by the

equation 4.7.

p(y|x) = p(x, y)

p(x)
=

p(x, y)∑
y

p(x, y)
=

1
Z
Πs∈SΨs(x, y)

1
Z

∑
y′
Πs∈SΨs(xs, ys)

=
1

Z(x)
Πs∈SΨs(x, y) (4.7)

As previously described, our system encompasses three main components to iden-

tify a FOSS function f : HMM (H), CFG-walks (W), and z-score (Z). Each component

provides particular knowledge about the FOSS function, and the provided knowledge is

measured by a factor Ψs. If the factor Ψs ≤ Ω, where Ω is a probability threshold value

set by the Bayesian network, then our system is automatically transferred to another com-

ponent, which means that the knowledge obtained from the current component is not

sufficient. In addition, each component has a direct effect on the use of the other one; for

instance, component H has a direct effect on component W . The situation can thus be

modeled with a Bayesian network model.

67

where Ψs represents the factor of the component s = {1, 2, 3}; ∏ represents the sum-

mation of the product of probabilities from each component; Z is the probability distri-

bution [92]; x is the set of features in each component; and y is the set of functions. We

therefore obtain the following equation: p(y, �x) = p(y) 1
Z(�x)

Πs∈SΨs(�x, y).

4.4 Evaluation

In this section, in order to evaluate the effectiveness of our system, we test 160 real

projects that reuse FOSS packages. The performance criterion is the accuracy (F2 mea-

sure) with which our system identifies the FOSS functions in malware binaries. In addi-

tion, we examines the effect of code transformation on the proposed system.

4.4.1 Dataset Preparation

We manually gather a collection of FOSS packages from different sources and store them

along with their features in a repository. Developing this repository is the first step to-

wards the ultimate goal of building a large index of FOSS packages. To determine which

FOSS packages are most widely incorporated, it is helpful to study code reuse on open

repositories such as Github. The method for selecting the reused code involves assessing

both the most popularly projects and the most reused libraries in modern malware based

on the existing reports. After gathering the list of FOSS packages, we download their

source code and compile them with Visual Studio (VS) 2010, VS 2012, and GNU Com-

piler Collection (GCC) 5.1 compilers. Furthermore, we obtain binaries and their PDBs

68

Table 4.2: Excerpt of the selected FOSS packages

Project Version No. Fun. Size(kb) Project Version No. Fun. Size(kb)

7zip/7z 15.14 133 1074 lshw B.02.18 2090 2545

7zip/7z 15.11 133 1068 lzip 1.19 3341 1552

avgntopensslx 14.0.0.4576 3687 976 Mersenne Twister 1.10 321 2608

bzip2 1.0.5 63 40.0 miniz 2.8 327 121

expat 0.0.0.0 357 140 ncat 0.10rc3 462 373

firefox 44.0 173095 37887 Notepad++ 6.8.8 7796 2015

fltk 1.3.2 7587 2833 Notepad++ 6.8.7 7768 2009

FileZilla 3.27.0.1 97 7701 nspr 4.10.2.0 881 181

glew 1.5.1.0 563 306 nss 27.0.1.5156 5979 1745

Hasher 1.7.0 232 183 openssl 0.9.8 1376 415

hashdeep 4.3 3096 965 pcre3 3.9.0.0 52 48

info-zip/funzip 6.0 79 28 python 3.5.1 1538 28070

info-zip/zip 3.1 343 297 python 2.7.1 358 18200

info-zip/unzip 6.0 230 231 putty/putty 0.66 beta 1506 512

ibavcodec 11.10 719 99875 putty/plink 0.66 beta 1057 332

jsoncpp 0.5.0 1056 13 putty/pscp 0.66 beta 1157 344

lcms 8.0.920.14 668 182 putty/psftp 0.66 beta 1166 352

libcurl 10.2.0.232 1456 427 Qt5Core 2.0.1 17723 3987

libgd 1.3.0.27 883 497 SQLite 11.0.0.379 1252 307

libgmp 0.0.0.0 750 669 tinyXML 2.0.2 533 147

libjpeg 0.0.0.0 352 133 TestSSL 4 565 186

libpng 1.2.51 202 60 TrueCrypt 7.2 1193 2514

libpng 1.2.37 419 254 ultraVNC/vncviewer 1.2.13 4410 2045

libssh2 0.12 429 115 Winedt 9.1 87 8617

libtheora 0.0.0.0 460 226 WinMerge 2.14.0 405 6283

libtiff 3.6.1.1501 728 432 Wireshark 2.0.1 70502 39658

libxml2 27.3000.0.6 2815 1021 xampp 5.6.15 5594 111436

from their official websites (e.g., WireShark); the compiler of these binaries are detected

by a packer tool called ExeinfoPE [3]. We evaluate our approach on a set of binaries,

where a subset of them is detailed in Table 4.2.

4.4.2 Evaluation Metrics

Our ultimate goal is to discover as many relevant functions as possible with less concern

about false positives, which means that recall has higher priority than precision. Hence,

we choose to use the F2 measure because it weights recall twice as heavily as it weights

precision. The precision, recall, false positive rate (FPR), total accuracy (TA) and F2-

measure metrics are defined as follows [54]:

69

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
, FalsePositiveRate(FPR) =

FP

FP + TN

TotalAccuracy(TA) =
TP + TN

TP + TN + FP + FN
, F2 = 5.

P recision.Recall

4Precision+Recall

(4.8)

where TP indicates number of relevant functions that are correctly retrieved; FN presents

the number of relevant functions that are not detected; FP indicates the number of irrel-

evant functions that are incorrectly detected; and TN returns the number of irrelevant

functions that are not detected.

In our experimental setup, we split the collected binaries into ten sets, reserving

one as a testing set and using the remaining nine sets as the training set. We repeat this

process 100 times and report the average output of the system in terms of aforementioned

evaluation metrics. These metrics are calculated at function level (Section 4.3.1) and at

project level (Section 4.3.2 and Section 4.4).

4.4.3 Accuracy of FOSSIL

In this subsection, we test FOSSIL in the context of several scenarios: (i) examining the

effect of Bayesian network model; (ii) examining accuracy across different versions of

FOSS packages; and (iii) comparing FOSSIL with existing state-of-the-art solutions.

70

A. Effect of Bayesian network model

We evaluate the accuracy of our system by examining it on a randomly collected binaries

compiled with VS 2010, VS 2012, and GCC compilers from our repository. We test

our system and report the precision, recall, and F2 measure metrics. The results are

summarized in Table 4.3, without and with the use of Bayesian network (BN) model.

Table 4.3: Effect of Bayesian network model

Without a BN model With a BN model

Features Prec. Rec. F2 Prec. Rec. F2

Opcodes 0.76 0.80 0.79 0.82 0.86 0.85

CFG-walks 0.72 0.76 0.75 0.84 0.83 0.83

Opcode distributions 0.70 0.72 0.71 0.81 0.86 0.85

Average/ All together 0.727 0.76 0.75 0.93 0.84 0.86

B. Accuracy across different versions of FOSS packages

We are further interested in evaluating FOSSIL with different versions of FOSS packages.

For this purpose, we collect three different versions of all 160 projects in our repository,

compile them with VS 2010 and test FOSSIL. The average output of the system in terms

of precision, recall, and F2 measure metrics is reported in Table 4.4. The highest obtained

F2 measure is 0.863 which is related to openssl, and the lowest one is 0.727 for lcms.

The low F2 measure for lcms can be attributed to the presence of many small functions

that have been inlined.

Accuracy Interpretation. Our results demonstrate the following points:

1. Pre-processing: Some of the top-ranked opcode features are related to the com-

piler functions (e.g., stack frame setup operations). It is thus necessary to filter

71

Table 4.4: Accuracy results of different versions of FOSS packages

Project Prec. Rec. F2 Project Prec. Rec. F2

SQLite 0.78 0.81 0.803 libxml2 0.76 0.78 0.775

Webph 0.80 0.74 0.751 libjsoncpp 0.84 0.83 0.831

Xterm 0.79 0.81 0.805 Mersenne Twister 0.81 0.79 0.793

Hashdeep 0.81 0.85 0.841 libssh2 0.80 0.79 0.791

TinyXML 0.79 0.74 0.749 openssl 0.83 0.88 0.863
libpng 0.77 0.79 0.785 bzip2 0.79 0.80 0.797

ultraVNC 0.73 0.80 0.785 UCL 0.73 0.9 0.859

lcms 0.81 0.71 0.727 TrueCrypt 0.77 0.79 0.785

libavcodec 0.80 0.82 0.815 liblivemedia 0.80 0.81 0.807

info-zip 0.76 0.79 0.783 Libavutil 0.84 0.86 0.855

Firefox 0.77 0.81 0.802 Expat XML parser 0.80 0.8 0.8

out compiler functions to ensure better precision. Accordingly, in future work, we

will leverage BINCOMP [108] with the current version of FOSSIL to distinguish

compiler-related functions and FOSS-related functions. This will lead to consider-

able time savings and help shift the focus of the analysis to more relevant functions.

2. Project Type: We found that the accuracy of FOSSIL depends on the type of

projects. For instance, in our experiments, FOSSIL achieves high accuracy when

it discovers cryptography libraries since these libraries generally have more arith-

metic and logical operations. Also, FOSSIL is able to identify unique CFG-walks

that are related to certain cryptography operations. In contrast, we found that the ac-

curacy of FOSSIL is slightly lower when it deals with parser libraries because they

have functionalities in common with other libraries. For instance, libucl parser

has common functionality with JSON; moreover, it can be integrated with a script-

ing language, such as lua. In Table 4.4, reasonably good precision is observed

for openSSL, while the precision for libxml2 is 0.76. To tackle the effects of

72

project type, we have to integrate more semantic features, e.g., type inference.

3. Project Size: We observed through experiments that the accuracy of our system is

not affected by the size of the function or of the project. For example, a compari-

son of the precision achieved by FOSSIL for Firefox and openSSL (0.77 and

0.83, respectively) with that of libpng and bzip2 (0.77 and 0.79, respectively)

illustrates that our features can be extracted regardless of the size of functions, and

that they can reveal the semantics of any piece of code regardless of its size.

4. Features Extraction Level. Typically, existing methods extract features from only

one code level: instruction, function, or program level. A great advantage of FOS-

SIL is that it extracts features from all levels, making it possible to discover a func-

tion through different aspects. Also, the effect of code transformations such as the

use of different compilers is reduced. In addition, we leverage concepts from bi-

ology to both extract the semantics of structural features and to improve efficiency

when we deal with structural features.

5. Parameter Selection. For the Bayesian network model, FOSSIL uses three param-

eters Ψ1, Ψ2, and Ψ3, with values of 0.45, 0.35, and 0.2, respectively. Applying

different values to the Bayesian network model makes it possible to achieve var-

ious trade-offs between precision and recall, as shown in Figure 5. Tuning these

parameters may result in different values for precision and recall.

73

4.4.4 Comparison

We compare our system to existing state-of-the-art systems: IDA FLIRT, RENDEZVOUS,

[81], SARVAM [101], BINCLONE [63], TRACY [26,53], SIGMA [29], and LIBV [107].

The code of all aforementioned systems are available, with the exception of REN-

DEZVOUS. We re-implement RENDEZVOUS with paying special attention to the definition

of its characteristics as well as its stated assumptions.

Table 4.5: Statistics about FLIRT signatures on the FOSS packages

Category No. of Signatures Example

Compression 300 E.g., Zlib, Bzip, UCL, infozip

Encryption 313 E.g., Botan, OpenSSL, TrueCrypt

Graphics 351 E.g., bgfx, openVDB, libpng

Web browser 307 E.g., crow, libOnion, firefox

Parsing 280 E.g., Expat, LibXml, TinyXml

Multimedia 171 E.g., LibVLC, SDL,

Database 178 E.g, MySQL++, SQLite, LMDB++, redis3m

JSON 204 E.g., json, jbson, libjson, jsonCPP

Networking 591 E.g., Restbed, Libcurl, Putty, WebSocket

Scripting 222 E.g., glew, lua

Math 70 E.g., libgmp

Editors 76 E.g., Notepad++

Hashing 152 E.g., Hashdeep, pHash, blockhash

Total 3215

It is worthy to note that since FLIRT is a signature-based technology, for the sake of

comparison, it is required to create a set of signatures for the projects being evaluated. To

this end, we employ FLAIR technology [19], though the process is not fully automated

and is considered a time-consuming task. Certain statistics regarding the FLIRT signa-

tures generated by FLAIR are shown in Table 4.5. The number of functions in the FOSS

package corpus for which FLIRT had signatures is 457, which is approximately 14% of

the total created signatures. This low percentage can be explained by the main goal of

74

FLIRT technology, which is to identify the standard library functions such as C-standard

libraries. In addition, the percentage of signature collision is 19%, which must be fixed

by extending the signature formed; this further increases time consumption. Since each

of the existing systems use different metrics to measure the accuracy, we unify the metric

by using precision, recall, total accuracy (TA), and false positive rate (FPR). The obtained

accuracy results on some projects as well as ROC curve of all projects are shown in Table

4.6 and Figure 4.3, respectively.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False positive rate

Tr
ue

 P
os

iti
ve

 R
at

e

FOSSIL
FLIRT

Tracy
SIGMA

libv
SARVAM

Rendezvous
BinClone

Figure 4.3: ROC curve

As can be seen, our system effectively identifies FOSS functions in the selected

projects, and returns an average of 95% precision and 89% recall. Its accuracy is superior

to that of the other systems, including FLIRT technology, which achieves the second

highest rate of average precision 91% and 78% recall, as well as TRACY, which yields

in some projects the highest rate of precision of 82%. On the other hand, BINCLONE

achieves the lowest true positive rate since it employs exact matching, which causes a

high rate of false positives. The reason of increase in precision rate in FOSSIL could

be because of the combination types of the features (e.g., semantic and syntactic). In

addition, ranking process helps to reduce the general and irrelevant opcodes in order to

75

increase the accuracy. Moreover, our system employs Bayesian network model that can

control false positives rates by defining three threshold values.

An analysis of other systems reveals various limitations. TRACY is more accurate

compared with the other systems, since data flow constraints are applied on tracelets

(decomposing CFGs into subtraces of fixed length, excluding jump instructions). How-

ever, TRACY assumes that the candidate function should contain at least 100 basic blocks

[53]; otherwise, it has a high rate of false positives. SIGMA integrates different graph

representations, such as register flow graph, control flow graph, and call graph, to repre-

sent more semantics, whereas the approach is computationally expensive. The features

used by RENDEZVOUS, such as n-grams and k-CFGs, are sensitive to code changes

that lead to more false positive rates. Although grayscale images used by SARVAM are

rich sources of information, they include many irrelevant features that increase the rate of

false positives. LIBV generates execution dependence graphs (EDG) by applying data and

control flow constraints; however, some issues such as having isomorphic EDGs for two

different functions affect the accuracy.

Performance. We also compare the performance of each system by computing the overall

execution time, which involves the feature extraction, and searching through the reposi-

tory to find matches. The purpose of measuring performance is to evaluate the practicality

of each system for large-scale datasets. For this purpose, no time limit is set to finish the

FOSS function identification. However, we notice that some approaches such as BIN-

CLONE, SIGMA, and LIBV are taking long time to detect functions since they are not

76

Table 4.6: Accuracy results of different existing approaches. (TA): total accuracy, (FPR):

false positive rate, (Prec.): precision, and (Rec.): recall

F
i
r
e
F
o
x

Z
l
i
b

J
s
o
n
c
p
p

L
i
b
p
n
g

O
p
e
n
S
S
L

P
y
t
h
o
n

W
i
r
e
s
h
a
r
k

C
u
r
l

T
i
n
y
X
M
L

X
a
a
m
p

FLIRT 0.56 0.66 0.74 0.75 0.83 0.84 0.70 0.82 0.76 0.76

TRACY 0.55 0.66 0.77 0.65 0.73 0.82 0.76 0.61 0.50 0.60

SIGMA 0.65 0.69 0.74 0.70 0.71 0.82 0.76 0.62 0.48 0.58

TA BINCLONE 0.49 0.63 0.63 0.64 0.66 0.69 0.76 0.58 0.42 0.60

RENDEZVOUS 0.53 0.65 0.64 0.65 0.63 0.68 0.65 0.53 0.39 0.52

SARVAM 0.69 0.74 0.76 0.69 0.73 0.84 0.75 0.66 0.51 0.6

LIBV 0.49 0.57 0.66 0.62 0.69 0.72 0.77 0.62 0.42 0.60

FOSSIL 0.98 0.80 0.93 0.84 0.90 0.85 0.90 0.87 0.81 0.79

FLIRT 0.09 0.26 0.13 0.18 0.49 0.32 0.26 0.34 0.26 0.39

TRACY 0.35 0.51 0.36 0.22 0.48 0.51 0.35 0.52 0.25 0.46

SIGMA 0.36 0.53 0.36 0.24 0.49 0.51 0.37 0.52 0.25 0.46

BINCLONE 0.36 0.67 0.51 0.27 0.54 0.45 0.41 0.55 0.45 0.46

FPR RENDEZVOUS 0.37 0.61 0.43 0.27 0.52 0.44 0.53 0.55 0.45 0.46

SARVAM 0.39 0.53 0.35 0.20 0.49 0.51 0.38 0.52 0.21 0.48

LIBV 0.49 0.54 0.46 0.31 0.44 0.42 0.45 0.48 0.50 0.56

FOSSIL 0.15 0.28 0.25 0.19 0.19 0.26 0.39 0.38 0.18 0.39

FLIRT 0.93 0.88 0.95 0.93 0.90 0.94 0.89 0.93 0.92 0.88

TRACY 0.77 0.78 0.90 0.86 0.84 0.89 0.90 0.72 0.77 0.74

SIGMA 0.84 0.79 0.89 0.88 0.83 0.89 0.88 0.73 0.75 0.72

BINCLONE 0.73 0.70 0.76 0.84 0.77 0.81 0.87 0.69 0.55 0.74

Prec. RENDEZVOUS 0.75 0.72 0.79 0.85 0.75 0.80 0.75 0.64 0.5 0.66

SARVAM 0.85 0.82 0.89 0.89 0.84 0.90 0.87 0.76 0.79 0.73

LIBV 0.66 0.68 0.80 0.81 0.81 0.84 0.87 0.73 0.52 0.70

FOSSIL 0.99 0.93 0.98 0.96 0.98 0.95 0.96 0.94 0.95 0.90

FLIRT 0.58 0.72 0.75 0.76 0.90 0.88 0.73 0.87 0.8 0.82

TRACY 0.65 0.78 0.83 0.64 0.83 0.90 0.81 0.74 0.53 0.71

SIGMA 0.74 0.81 0.80 0.69 0.82 0.90 0.82 0.75 0.51 0.69

BINCLONE 0.60 0.81 0.77 0.66 0.80 0.78 0.82 0.73 0.50 0.70

Rec. RENDEZVOUS 0.63 0.80 0.74 0.67 0.77 0.76 0.77 0.68 0.45 0.62

SARVAM 0.78 0.84 0.81 0.67 0.83 0.91 0.81 0.78 0.50 0.71

LIBV 0.65 0.72 0.77 0.65 0.77 0.79 0.85 0.72 0.52 0.75

FOSSIL 0.99 0.84 0.94 0.85 0.91 0.88 0.93 0.90 0.82 0.85

scalable enough to obtain the search result within a specific given time frame.

In particular, the execution time for FOSS function identification in FOSSIL was

measured by adding the time required for each step (normalization, opcode ranking, and

feature extraction in each component) to the time spent to discover the FOSS functions.

Feature extraction in the first component takes 5 sec for the small packages in our dataset

(e.g., 100 functions) and 15 sec for the large package (e.g., 50,000 functions). The

77

proposed hash subgraph kernel is fast, taking an average of 5 sec for all packages in

a similar environment. The time required to extract features in the third component is

negligible (less than 1 ms). Our system spends the majority of time on searching the

repository; further optimizing the search using advanced indexing techniques is a future

direction. Each search iteration takes a minimum of 7 sec and a maximum of 50 sec.

The overall time for FOSSIL ranges from 17 to 80 sec, while the averages for REN-

DEZVOUS, TRACY, SARVAM, SIGMA, and LIBV are 72.5, 115, 55, 155, and 111.5 sec,

respectively. We observe that the performance of SARVAM is closer to that of FOSSIL,

since the extraction of image features is relatively efficient. The performance of REN-

DEZVOUS is also close since it uses a Bloom filter, which speeds up the retrieval process.

4.4.5 Scalability Study

Since one of our ultimate goals is to build a searchable index for large-scale FOSS projects

based on the proposed approach in this chapter, in addition to time efficiency, we evaluate

the scalability of FOSSIL when it is used to index and retrieve matched functions on

a large number of projects. This made it possible to investigate the trade-off between

accuracy and efficiency. For this purpose, we add more projects, dlls, operating system

applications, and other programs to our repository. In total, there are 500 applications

and approximately 1.5 million functions. We measure the total time required to index

the project and to match the target files. In addition, we examine the accuracy of each

component separately and all together. Figure 4.4 shows that our system is scalable when

78

the number of functions reaches to 1.5 million.

2 4 6 8 10 12 14
x 105

0.7

0.75

0.8

0.85

0.9

Number of Functions

F2
 m

ea
su

re

Opcode
CFG−walks
Opcode distrbution
All together

(a)

2 4 6 8 10 12 14
x 105

0.4

0.6

0.8

1

Number of Functions

Pr
ec

is
io

n

All together
Opcode distrbution
Opcode
CFG walks

(b)

2 4 6 8 10 12 14
x 105

0.8

0.85

0.9

0.95

1

Number of Functions

R
ec

al
l

All together
Opcode distrbution
Opcode
CFG walks

(c)

Figure 4.4: Performance of FOSSIL against a large set of functions

The F2 measure falls down slightly, from 0.9 to 0.86, which provides some insight

into the scalability of system when it deals with a large number of FOSS functions. Based

on these results, we believe our system will be efficient and practical for most real-world

applications.

4.4.6 Confidence Estimation of Bayesian Network

Using a Bayesian network model provides a confidence estimator based on probability

scores, where higher probability scores correspond to higher confidence. Future research

will hopefully produce an actual probability score. Applying different factor values to the

Bayesian network model makes it possible to achieve various trade-offs between precision

and recall. Figure 4.5 shows the results of confidence estimation for three factors, varying

the trade-off between precision and recall. A precision measure of 50% is achieved with

a recall measure of just under 80%; conversely, 50% recall gives over 80% precision.

79

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

Pr
ec

is
io

n

ψ1
ψ2
ψ3

Figure 4.5: Confidence estimation: precision vs. recall

4.4.7 Impact of Evading Techniques

We consider the projects from our dataset in order to test FOSSIL against binary and

source obfuscation, as shown in Table 4.7. The obfuscation process is done in two stages.

First, C++ refactoring tools [1, 16] are used for source code level obfuscation. These rely

on the following techniques: moving a method from a superclass to its subclasses, and

extracting a few statements and placing them in a new method. We refer the reader to [67]

for in-depth explanations of these techniques. We also apply Nynaeve [21] tool, which

comprises Frame Pointer Omission and Function inlining methods. These methods are

described in 2.3.

Second, to investigate binary-level obfuscation, we compile the 160 projects with

GCC and VS compilers, and the resulting binaries are obfuscated using DaLin [87] gen-

erator and Obfuscator-LLVM [78]. These obfuscators replace instructions with other

semantically equivalent instructions (instruction substitution). Obfuscator-LLVM also

applies control flow flattening, and bogus control flow techniques, whereas DaLin per-

forms instruction reordering, dead code insertion, and register renaming as well. The

obfuscated binaries are passed as target binaries to our system, and we then measure the

80

Table 4.7: Evading technique tools, methods, and their effects on FOSSIL components

Tool Method Input Output A∗ Component

Opcode CFG-Walk Opcode Dist.

LLVM [77]

CFG flattening

Bin Bin

74% � � �
Instruction substitution 84% � � �
CFG bogus 81% � � �

DaLin [87]

Instruction reordering

Asm Asm

86% � � �
Dead code insertion 86% � � �
Register renaming 86% � � �
Instruction substitution 84% � � �

Trigress [25]

Virtulazation

Src Src

82% � � �
Jitting 83% � � �
Dynamic 83% � � �

PElock [23]

Hide procedure call

Asm Asm

86% � � �
Insert fake instruction 86% � � �
Prefix junk opcode 86% � � �
Insert junk handlers 86% � � �

Nynaeve [21]
Frame pointer omission

Src Bin
81% � � �

Function inlining 80% � � �
OREANS [22] Binary encryption Src Bin NA NA NA NA

Gas Obfuscator [17] Junk byte Asm Asm 86% � � �
Designed Script Loop unrolling Src Src 77% � � �

Note: (A∗) indicates accuracy after applying obfuscation method while the accuracy before applying obfuscation method is 86%.

(�) indicates there is no effect, while (�) means the corresponding component get affected. (NA) means not applicable. We use the

following abbreviations: (Bin) Binary, (Asm) Assembly, (Src) Source, and (Dist.) Distribution.

accuracy of function identification.

Our system obtains an average F2 measure of 83.1% in identifying similar FOSS

functions, which represents only a slight drop in comparison to the 86% observed without

obfuscation.

As can be seen in Table 4.7, the obfuscation tools work at three levels: source,

binary, and assembly. It can be observed that the obfuscation methods of CFG flattening,

function inlining, and loop unrolling decrease the accuracy of FOSSIL by approximately

6 − 12%. However, their effect on accuracy is not significant since FOSSIL employs a

Bayesian network to synthesize the knowledge obtained from the three components by

defining a confidence estimator function. Table 4.7 also shows that FOSSIL cannot deal

with encrypted binaries. The current version of FOSSIL consists of components relying

81

on static analysis. A possibility for future work is to extend FOSSIL by including dynamic

components that can deal with encrypted binaries.

There are three main reasons for the slight drop in accuracy. The first component,

HMM, deals with opcode frequencies at the function level, so in the case of instruction

reordering, all the reordered instructions, regardless of order, will be captured. In addi-

tion, since the operands are not considered in this component, register renaming does not

affect the accuracy. However, this component is affected slightly by instruction replace-

ment because this technique affects frequencies. However, as previously mentioned, the

chi-squared test is used to evaluate the frequencies, and it involves a confidence interval

that varies according to user requirements. The second component, CFG-walk, tolerates

instruction-level obfuscation to a greater extent since it deals with the semantics of a func-

tion as well as the instruction groups. To avoid bogus control flow and function inlining

techniques, we use the most important opcodes to color CFG-walks. We also label a node

with its neighbors in a novel way in order to avoid any obfuscation that can affect the CFG.

However, this component is affected by CFG flattening. The third component, z-score,

measures the area of the opcode distribution, so both instruction replacement and dead

code insertion may slightly affect it. In general, using opcode ranking, normalization,

and coloring techniques reduce the effects of most aforementioned obfuscation methods.

However, the Bayesian network model synthesizes the knowledge obtained from the three

components; therefore, if the knowledge from one is not sufficient, the Bayesian network

model will automatically assign more weight to the other components.

82

The Impact of Compilers. To create an experimental dataset, we consider 160 projects

compiled with Visual Studio (VS), GNU Compiler Collection (GCC), Intel C++ Compiler

(ICC), and Clang compilers with Od optimization setting. To measure the effect of dif-

ferent compilation options such as compiler optimization flags, we additionally compile

them with level-1, level-2, and level-3 optimizations, namely the O0, O2, and Ox flags.

We extract features for each compilation setting, and then test our system. The results

illustrated in Table 4.8 show that the features extracted by our system are greatly effective

for most optimization speed levels.

Table 4.8: FOSS function identification with different compilers and compilation settings

Compiler Optimization Speed Precision Recall

VS O0, O2, Ox 0.95, 0.95, 0.95 0.94, 0.92, 0.92
GCC O0, O2, Ox 0.92, 0.92, 0.92 0.93, 0.90, 0.89
ICC O0, O2, Ox 0.78, 0.74, 0.69 0.81, 0.80, 0.78
Clang O0, O2, Ox 0.65, 0.59, 0.60 0.64, 0.60, 0.58

The normalization process used in our system can reduce the effect of GCC and

VS compilers. Moreover, the top-ranked opcodes are more related to the semantics of

the function, in addition to the colored CFG-walks which help to avoid compiler effects.

However, the accuracy drops significantly when the source compilers are Clang or ICC,

since these compilers produce more optimized code compared to VS and GCC compilers.

Such limitations can be handled by first identifying the compiler using existing tools such

as Exeinfo [3] and then applying the suitable features accordingly.

83

4.5 Summary

To conclude, we have conducted the first investigation in identifying FOSS functions. we

proposed a novel resilient and efficient system that incorporates three components. The

first component extracts the syntactical features of functions by considering opcode fre-

quencies and applying a hidden Markov model statistical test. The second component

applies a neighborhood hash graph kernel to random walks derived from control flow

graphs, with the goal of extracting the semantics of the functions. The third component

applies z-score to the normalized instructions to extract the behavior of instructions in a

function. The components are integrated using a Bayesian network model which synthe-

sizes the results to determine the FOSS function. Our evaluation demonstrates that our

proposed system yields highly accurate results.

84

Chapter 5

Identifying the Authors of Program

Binaries

5.1 Overview

In this chapter, we present BinAuthor, a system that extracts authors’ coding habits from

binary code. To capture coding habits, BinAuthor leverages a set of features that are based

on collections of functionality-independent choices made by authors during coding. Our

evaluation shows that BinAuthor outperforms existing methods in several aspects. First,

it successfully attributes a larger number of authors with a significantly higher accuracy

when compared to existing research contributions. Second, BinAuthor is more robust than

previous methods in the sense that there is no significant drop in accuracy when the code

is subjected to refactoring techniques, code transformation, and different compilers.

85

5.2 Preliminaries

In this section, we first provide an overview of the main idea and then introduce the threat

model.

5.2.1 Authorship Attribution

The feasibility of authorship attribution generally relies on the fact that software develop-

ers usually possess certain coding habits, which may be influenced by their education and

training, experiences, development environments, etc. For example, a programmer com-

ing from a procedural programming background may be more reluctant to take advantage

of object-oriented modularization than person who starts to learn programming with an

object-oriented language. Although one coding habit is usually not enough to uniquely

identify an author, a collection of such habits may be sufficient. However, there are two

key challenges in recognizing such coding habits from a binary. First, how to ensure that

the extracted features represent coding habits instead of something dominated by the pro-

gram’s functionality? Second, which coding habits are preserved in the binaries after the

compilation process?

To address the first issue, our main idea is twofold: First, we rely on coding habits

that can be represented as functionality-independent choices; for instance, the same func-

tionality could be implemented by either in a procedural programming or object-oriented

styles, with either more global variables or more local variables, with more while loops

or more for loops, etc. Second, in addition to relying on functionality-independent

86

choices, we also ensure that these choices are habitual enough for each author, by only

considering those that frequently appear across various program binaries performing dif-

ferent tasks written by that author. As a result, only those functionality-independent

choices that are also persistent for each author regardless of varying functionality will

be considered as candidate features. To address the second issue, we investigate a large

collection of source code together with their mapping to assembly instructions to deter-

mine which candidate features are preserved in the binaries. In Section 5.3, we show how

BinAuthor captures such coding choices using a rich list of features.

5.2.2 Threat Model

BinAuthor is a system specifically designed to assist reverse engineers in discovering in-

formation from a binary that may be related to its author(s). As such, it is not intended

for general purpose reverse engineering tasks, such as unpacking or deobfuscating mal-

ware samples. We investigate refactoring and code transformations later in this Chapter in

order to demonstrate possible evading countermeasures that may be used by future mal-

ware authors in order to circumvent detection. More specifically, the threat model of this

chapter is further clarified in what follows.

Since the research on binary authorship attribution is still in its infancy, BinAuthor

is certainly not meant as a bullet-proof solution. As such, strengthening it against possi-

ble countermeasures will be an ongoing and continuous battle. Nonetheless, we dedicated

special care to evading techniques while designing and implementing BinAuthor. We have

87

taken into consideration some potential evading techniques. First, we assume that the ad-

versaries might apply refactoring techniques to evade detection. Second, the adversaries

might apply code transformations to source and binary files. Third, since a program bi-

nary can be significantly changed by simply choosing a different compiler or by altering

the compilation settings. Finally, the adversaries may intentionally avoid or fake some of

their coding habits (however, it is known to be hard for a programmer to avoid all coding

habits or use a different style for each program, and in fact, faking a style may even help

detection in some cases [91]).

We show how BinAuthor survives the first three aforementioned threats in Sec-

tion 5.4. As for the last threat, the features of BinAuthor have been carefully designed to

capture coding habits at multiple abstraction levels, which makes it harder for adversaries

to evade detection even if they are aware of the habits being looked for [91]. In addition,

an operational solution is to customize and enrich the list of features based on the actual

use case and learning data, which will both improve accuracy and make it more difficult

for adversaries to hide all their habits.

5.3 BinAuthor

Our goal is to automatically identify the author(s) of binary code. We approach this

problem using different distance metrics; that is, we generate a list of functionality-

independent choices from training data of sample binaries with known authors. Hence, we

propose a system encompassing different components, each of which is meant to achieve

88

a particular purpose. The first component, (Filtration), isolates user functions from com-

piler functions and library functions. Hence, the outcome of this component is consid-

ered as a habit (e.g., the preference in using specific compiler or free software packages

). For instance, using GCC compiler rather than visual studio, or using SQLite

rather MongoDB, etc. The second component, (Feature Categorization), analyzes binary

code to extract possible features that represent stylistic choices. The third component,

(Author Habits Profiling), constructs a repository of habits of known authors. The last

component (Authorship Attribution) performs matching to BinAuthor’s repository for au-

thor classification attribution. Figure 5.1 illustrates the architecture of BinAuthor. The

aforementioned components are explained in depth in the remainder of this section.

Known Binaries...
Known Binaries

Input Input

Author’s Habits Profiling Feature Categorization Authorship Attribution

Learning Phase Testing Phase

Known Functions...
Known Functions

Known Binaries...
Known Binaries

Filtration

Compiler Functions

User Functions

Choice
Construction

Target File

Mapping

Author(s) Identification

Feature
ExtractionProfiling

Author
Habits

Choice
Templates

Library Functions

Figure 5.1: BinAuthor architecture

89

5.3.1 Filtration Process

An important initial step in most reverse engineering tasks is to distinguish between user

functions and library/compiler functions. This step saves considerable time and helps shift

the focus to more relevant functions. The filtration process consists of three steps. First,

FLIRT [6] (Fast Library Identification and Recognition Technology) technology is used to

label library functions. Second, a set of signatures is created for specific FOSS libraries

such as Sqlite3, libpng, zlib, and openssl using Fast Library Acquisition for

Identification and Recognition (FLAIR) [6]; this set is added to the existing signatures of

the IDA FLIRT list. The last step performs compiler functions filtration, the details of

which are explained below. Also, we employ our proposed work in Chapter 3 to identify

reused functions. Further, we use FOSSIL, our proposed work in Chapter 4, in order to

identify FOSS-related functions.

The idea is based on the hypothesis that compiler/helper functions can be identified

through a collection of static signatures that are created in the training phase (e.g. opcode

frequencies). We analyze a number of programs with different functionality, ranging from

a simple “Hello World!" program to programs fulfilling complex tasks. Through the in-

tersection of these functions combined with manual analysis, we collect 120 functions as

compiler/helper functions. The opcode frequencies are extracted from these functions,

after which the mean and variance of each opcode among all opcodes are calculated. In

other words, each disassembled program P, after passing FLIRT, consists of n functions

{f1, · · ·, fn}. Each function fk is represented as m pairs of opcodes oi, where m is the

90

number of distinct opcodes in function fk. Each opcode oi ∈ O has a pair of values (μi,

νi), which represents the mean and variance values of that specific opcode. Each opcode

in the target function is measured against the same opcode of all compiler functions in

the training set. If the measured distance Di,j is less than a predefined threshold value

α = 0.005, the opcode is considered as a match. A function is labeled as compiler-related

if the matched opcodes ratio is greater than a predefined threshold value learned from

experiments to be γ = 0.75; otherwise, the target function is labeled as user-related.

Similarity measurements are performed based on distance calculations as per the follow-

ing definition [123]:

Di,j =
(μj − μj)

2(
ν2
i + ν2

i

)

where (μj , νj) represents the opcode mean and variance, respectively, of the target func-

tion. This similarity detects functions, which are closer to each other in terms of types

of opcodes. For instance, logical opcodes are not available in compiler-related functions.

Finally, a score is given to every distance that is below a predefined threshold α. A func-

tion is tagged as a compiler-related function if the ratio of summation of scores to the

number of unique opcodes is beyond a given threshold γ; otherwise, the target function is

deemed a user-related function.

91

5.3.2 Feature Categorization

Determining a set of characteristics that remain constant for a significant portion of pro-

grams, written by an author, is analogous to finding human characteristics that can later

be used for the identification of a specific person. To this end, our aim is to automate the

finding of such program characteristics, and with reasonable computational cost. To cap-

ture coding habits at different abstraction levels, we consider a spectrum of such habits, as

illustrated in Figure 5.2. As shown in Figure 5.2, an author’s habits can be reflected in the

preference of choosing certain keywords or compilers, the reliance on the main function,

or the use of an object oriented programming paradigm. In addition, the manner in which

the code is organized by the author may also reflect author habits. All possible choices

are stored as a template in this step. Moreover, we introduce a novel taxonomy of coding

habits in Figure 5.2. We provide details of each category of functionality-independent

choices in the following subsections.

Skills

Memory Allocation

Encryption Algorithms

Hashing Methods

Global Variable Usage

Semaphores and Locks Usage

Code Quality

Security Concerns

Standard Compliance

Code Organization

Reliance on main Function

Design-Oriented Model

Long Code Block Usage

Code Structure

Expertise

Advanced Methods

Choice of API Calls

Software Engineering Models

Preferences

Compilers

Keywords

Certain Data Structure

Function Termination

Figure 5.2: Coding habit taxonomy

92

A. General Choices

General choices are designed to capture the author’s general programming preferences;

for example, preferences in organizing the code, terminating a function, use of particular

keywords, or use of specific resources.

1) Code Organization: We capture how code is organized by measuring the re-

liance on the main function since it is considered a starting part for managing user func-

tions. We define a set of ratios, as shown in Table 5.1, that measures the actions used in

the main function. We thus capture the percentage of usage of keywords, local variables,

API calls, and calling user functions, as well as the ratio between the number of basic

blocks of the main function to the number of basic blocks of other user functions. These

percentages are computed in relation to the length of the main function, where the length

signifies the number of instructions in the function. The results are represented as a vector

of ratio values, which is used by the detection component.

Table 5.1: Features extracted from the main function: length(l): Number of instructions

in the main function

Ratio Equation Description

of push / l Ratio of local variables to length

of push / # of lea Ratio of local variables to memory address locations

of lea / l Ratio of memory address locations to length

of calls / l Ratio of function calls to length

of indirect calls / l Ratio of API calls to length

of BBs / total # of all BBs Ratio of the number of basic blocks of the main function to that of other

user functions

of calls / # of user functions Ratio of function calls to the number of user functions

2) Function Termination: BinAuthor captures how an author terminates a func-

tion. This could help identify an author since programmers may be used to specific ways

93

of terminating a function. BinAuthor does not only consider the last statement of a func-

tion as the terminating instruction; rather, it considers the last basic block of the function

with its predecessor as the terminating part. This is a realistic consideration since var-

ious actions may be required before a function terminates. To this end, BinAuthor not

only considers the usual terminating instructions, such as return and exit, but also

captures other related actions that are taken prior to termination. For instance, a function

may be terminated with a display of messages, calling another function, releasing some

resources, communication over networks, etc. Table 5.2 shows examples of what is cap-

tured in relation to the termination of a function. Each feature is set to 1 if it is used to

terminate a function; otherwise, it is set to 0. The output of this component is a binary

vector that is used by the detection component.

Table 5.2: Examples of actions in terminating a function

Features
Printing results to memory Printing results to file

Using system ("pause") User action such as cin
Calling user functions Calling API functions

Closing files Closing resources

Freeing memory Flushing buffer

Using network communication Printing clock time

Releasing semaphores or locks Printing errors

3) Keyword and resource preferences: BinAuthor captures the author’s prefer-

ence of using different keywords or resources. We only consider groups of such prefer-

ences with equivalent or similar functionality in order to avoid functionality-dependent

features. For instance, keyword type preferences for inputs (e.g., using cin, scanf),

preferences of using particular resources or a specific compiler (we identify the compiler

94

through tracking strings called compiler tags [108]), and the manner in which certain

keywords are used can serve as further indications of an author’s habits.

General Choice Computation: We compute a set of vectors, vgi, (where g represents

general and i represents the sub-category number). To consider the reliance on the main

function, a vector vg1, representing related features, is constructed according to the equa-

tions shown in Table 5.1. These equations indicate the author’s reliance on the main

function as well as the actions performed by the author. Function termination is repre-

sented as a binary vector, (vg2), which is determined by the absence or existence of a

set of features for function termination. Keyword and resource preferences are identified

through binary string matching, which tracks the annotations to call and mov instruc-

tions. For instance, excessive use of fflush will cause the string "_imp_fflush" to

appear frequently in the resulting binary. We extract a collection of strings from all user

functions of a particular author, then intersect these strings in order to derive a persistent

vector (vg3) for that author. Consequently, for each author, a set of vectors representing the

author’s signature is stored in our repository. Given a target binary, BinAuthor constructs

the vectors from the target and measures the distance/similarity between these vectors and

those in our repository. The vg1 vector is compared using Euclidean distance, whereas vg2

vector is compared using the Jaccard distance. For vg3, the similarity is computed through

string matching. Finally, the three derived similarity values are averaged in order to obtain

λg, which is later used in Section 5.3.3 for the purpose of author classification.

95

B. Variable Choices

Developers often have their own habits for defining local and global variables, which may

originate from the author’s experiences or skills. The variable chain has been shown to

greatly improve author attribution of source code [59]. It has been defined as the variable

usage among different functions. Inspired by this work, we introduce a register chain

to capture authors’ habits in using variables. We define the register chain concept as

the states of using a particular register through all basic blocks in a user function. To

avoid compilation setting effects, we normalize the registers to general names such as

Reg1, Reg2, etc. and keep their occurrence order. Useful characteristics of such chains

include the longest chain, the shortest chain, the number of existing chains, the liveness

of registers among basic blocks, etc.

Example: In what follows, we illustrate how a register chain is extracted. Part of the

Control Flow Graph (CFG) of the RC4 function in Citadel is shown in Figure 5.3(a).

Figure 5.3(b) shows the construction of the register liveness [100] for the indicated regis-

ters.

As illustrated in Figure 5.3(b), the used registers ecx, ebp, esi, ebx, edx, and

al are normalized to Reg1, · · · , Reg6. The first, second, and third basic blocks manipu-

late 〈Reg1, Reg2〉, 〈Reg3, Reg4〉, and 〈Reg2, Reg5, Reg6〉 registers, respectively. BinAu-

thor captures the register liveness by storing the set of basic blocks where the register is

alive. For instance, the Reg2 register appears in the first and third basic blocks and does

not appear in the second basic block, so we represent the liveness of the Reg2 register as

96

inc ecx
mov [ebp+a], ecx
cmp ecx, [ebp+b]

pop esi
pop ebx

mov al, [ebp+0x4]
mov [edx+100], al
mov al, [ebp+y]
mov [edx+101], a1
mov al, [ebp+var]
mov [edx+102], al
retn

cmpinc mov

mov cmp

pop

pop

mov

Reg1

Reg2

Reg3

Reg4

Reg5

Reg6

mov

mov

ecx

ebp

esi

ebx

edx

al

mov mov

mov mov

mov mov mov

Figure 5.3: (a) Part of the CFG of RC4 (b) Register chain

{BB1, BB3}. A summary of the registers liveness is given in Table 5.3.

Table 5.3: Register liveness (�indicates that the register is alive in a BB)

Register BB1 BB2 BB3

Reg1 � - -

Reg2 � - �
Reg3 - � -

Reg4 - � -

Reg5 - - �
Reg6 - - �

Variable Choice Computation: Since each function may have a large number of register

chains, BinAuthor employs locality-sensitive hashing (LSH) for feature reduction. The

hash is calculated over all sets of chains, and only those with similar hash values are

clustered (hashed) to the same bucket. In the case of register chain similarity, similar

register chains will be hashed to the same bucket. Once register chains have been hashed

to a corresponding bucket, any bucket containing more than one similar hash value is

identified and a list of candidate register chains is extracted. Finally, similarity analysis

97

is performed to rank the candidate pairs obtained from the previous steps. The similarity

score obtained from this choice is λv.

C. Quality-Related Choices

We investigate code quality in terms of standard compliance with C/C++ coding standards

and security concerns. In the literature, code quality can be measured with different indi-

cators, such as testability, flexibility, adaptability [109], etc. BinAuthor defines rules for

capturing code that exhibits either relatively high or low quality. For any code that cannot

be matched using such rules, the code is labeled as regular quality, which indicates that

the code quality feature is not applicable.

Rules: Examples of low-quality coding styles include reopening already opened files,

leaving files open when they are no longer in use, attempting to modify constants (i.e.,

through pointers), using float variables as loop counters, and declaring variables inside

of a switch statement, which can result in unexpected/undefined behavior due to jumped-

over instructions. Examples of high-quality coding styles include handling errors gener-

ated by library calls (i.e., examining the returned value by fclose()), avoiding reliance

on side-effects (i.e., ++ operator) within particular calls such as sizeof or _Alignof,

averting the use of particular calls on some environments or using them with protective

measures (i.e., the use of system() in Linux may lead to shell command injection or

privilege escalation; hence, using execve() instead is indicative of high-quality cod-

ing), and the use of locks and semaphores around critical sections.

98

Quality-related Choice Computation: We build a set of idiom templates to describe

high or low quality habits. Idioms are sequences of instructions with wild-card possibility

[82]. We employ the idioms templates in [82] according to our qualitative-related choice.

In addition, such templates carry a meaningful connection to the quality-related choices.

Our experiments demonstrate that such idiom templates may effectively capture quality-

related habits. BinAuthor uses the Levenshtein distance [131] for this computation due

to its efficiency. The similarity is represented by λq, which is used in Section 5.3.3 for

author classification purpose.

λq = 1− L(Ci, Cj)

max(|Ci|, |Cj|)

where L(Ci, Cj) is the Levenshtein distance between the qualitative-related choices Ci

(sequence of instructions) and Cj , max(|Ci|, |Cj|) returns the maximum length between

two choices Ci and Cj in terms of characters.

D. Embedded Choices

We define embedded choices by actions that are related to coding habits present in the

source code that are not easily captured at the binary level by traditional features such as

strings or graphs. For instance, initializing member variables in constructors and dynami-

cally deleting allocated resources in destructors are examples of embedded choices. As it

is not feasible to list all possible features, BinAuthor relies on the fact that opcodes reveal

99

actions, expertise, habits, knowledge, and other author characteristics, and analyzes the

distribution of opcode frequencies. Our experiments show that such a distribution can

effectively capture the manner by which the author manages the code. As every single

action in source code can affect the frequency of opcodes, BinAuthor targets embedded

choices by capturing the distribution of opcode frequencies.

Example: In order to pass parameters to a function, a developer may choose to pass

primitive types by value or to pass objects by reference, and may have preferences in

using one particular algorithm over another. Such examples are not straightforward to

be captured through tracking strings or CFGs. We observe through our experiments that

embedded choices may share similar opcode distributions.

Embedded Choice Computation: For measuring the distance between distributions of

opcode frequencies, the Mahalanobis distance [90] is used to measure the similarity of

opcode distributions among different user functions. The Mahalanobis distance is chosen

because it can capture the correlation between opcode frequency distributions, and this

correlation represents the embedded choices. The similarity returned is represented by

λe.

E. Structural Choices

Programmers usually develop their own habits in terms of structural design of an ap-

plication. They may prefer to use a fully object-oriented design or they may be more

accustomed to procedural programming. Such structural choices can serve as features for

100

author identification. To avoid functionality, we consider the common subgraphs and the

longest path for each user function, and then intersect them among different user func-

tions. These subgraphs are defined as k-graphs, where k is the number of nodes. These

common k-graphs form author signatures since these graphs always appear regardless of

the program functionality. In addition, we consider the longest path since it reflects how

an author tends to use deep or nested loops.

Example: An author may organize different classes in an ad hoc manner, or organize

them in a hierarchical way by designing a driver class to contain several manager classes,

where each manager is responsible for different processes (a collection of threads running

in parallel). Both ad hoc and hierarchical organizations will create a common structure in

the author’s programs.

Structural Choice Computation: BinAuthor uses subgraphs of size k in order to cap-

ture structural choices (k = 4, 5, and 6 through our experiments). Given a k-graph, the

graph is transformed into strings using Bliss open-source toolkit [79]. Then, a similarity

measurement is performed over these strings using the normalized compression distance

(NCD) [48], which enhances search performance. We have chosen NCD since it allows us

to concatenate all the common subgraphs that appear in author’s programs. Additionally,

it allows for inexact matching between the target subgraphs and the training subgraphs.

BinAuthor forms a signature based on these strings. The similarity obtained from this

choice is represented by λs.

101

5.3.3 Significance of BinAuthor Choices

As previously described, BinAuthor extracts different types of choices to characterize

different aspects of author coding habits. Such choices do not equally contribute to the at-

tribution process since the significance of these indicators are not identical. Consequently,

a weight is assigned to each choice by applying logistic regression to each choice individ-

ually in order to predict class probabilities (e.g., the probability of identifying an author).

The probability outcomes of logistic regression prediction is illustrated in Table 5.4. We

calculate the weights as follows.

wi = pi/
5∑

i=1

rnd(pi/ps)

where ps is the smallest probability value (e.g. 0.32 in Table 5.4), pi is the probability out-

come from logistic regression of each choice, and the rnd function rounds the normalized

values (pi/ps), leading us to the weights shown in Table 5.4.

Table 5.4: Logistic regression weights for choices

Choice Probability Weight
General 0.83 0.33

Qualitative 0.63 0.22

Structural 0.52 0.22

Embedded 0.39 0.12

Variable 0.32 0.11

102

5.4 Evaluation

5.4.1 Implementation Setup

The described stylistic choices are implemented using separate Python scripts for mod-

ularity purposes, which altogether form our analytical system. A subset of the python

scripts in the BinAuthor system is used in tandem with IDA Pro disassembler. The final set

of the framework scripts performs the bulk of the choice analysis functions that compute

and display critical information about an author’s coding style. With the analysis frame-

work completed, a graph database is utilized to perform complex graph operations such

as k-graph extraction. The graph database chosen for this task is Neo4j [15]. Gephi [12]

is employed for all graph analysis functions, which are not provided by Neo4j. MongoDB

database is used to store our features for efficiency and scalability purposes.

5.4.2 Dataset

The used dataset is consisted of several applications from different sources, as described

below: (i) GitHub [7], where a considerable amount of real open-source projects are

available; (ii) Google Code Jam [5], an international programming competition, where

solutions to difficult algorithmic puzzles are available; (iii) Planet Source Code [14], a

web-based service that offers a large amount of source code written in different program-

ming languages; (iv) Graduate Student Projects at our institution. Statistics about the

dataset are provided in Table 5.5. In total, we test 152 authors from different sets in which

103

each author has two to ten software applications.

Table 5.5: Statistics about the dataset used in the evaluation of BinAuthor

Source # of authors # of programs # of functions average # of code lines # of files
GitHub 5 10 40000 5000 754

Google Code Jam 50 250 10050 80 250

Planet Source Code 44 168 11650 250 400

Graduate Student Projects 25 125 9609 250 450

5.4.3 Dataset Compilation

We compile the source code with different compilers and compilation settings to measure

the effects of such variations. We use GNU Compiler Collection’s gcc or g++ with dif-

ferent optimization levels, as well as Microsoft Visual Studio (VS) 2010. We study the

impact of Clang and ICC compilers, as described in Section 5.4.8.

5.4.4 Author Classification

After extracting features, we define a probability value P(A) based on obtained weights as

described in Section 5.3.3. Further, a decision function ascribes an authorID to any new

program based on a given set of known authors. The attribution probability is defined as

follows:

P (A) =
5∑

i=1

wi ∗ λi

104

where wi represents the weight assigned to each choice, as shown in Table 5.4, and λi is

the distance metric value obtained from each choice (λg, λv, λq, λe, and λs). If P(A)≥ ζ ,

where ζ represents predefined threshold values, it is labeled as a matched author. Through

our experiments, we find that the best value of ζ is 0.87.

5.4.5 Accuracy

The main purpose of this experiment is to evaluate the accuracy of author identification

in binaries.

Evaluation Settings: The evaluation of BinAuthor system is conducted using the datasets

described in Section 5.4.2. The data is randomly split into 10 sets, where one set is

reserved as a testing set, and the remaining sets are used as training sets to evaluate the

system. To evaluate BinAuthor and to compare it with existing methods, precision (P)

and recall (R) measures are applied. We choose F0.5 because BinAuthor is much more

sensitive to false positives than false negatives. Therefore, precision is of higher priority

than recall. We employ an F-measure as follows:

F 0.5 = 1.25 .
P . R

0.25P +R

Results Comparison. We compare BinAuthor with the existing authorship attribution

methods [27, 43, 112]. We evaluate the authorship classification technique presented by

Rosenblum et al. [112], whose source code is available at [9], although the dataset is not

105

available. The source code of the proposed technique by Caliskan-Islam et al. [43] is

available at [13]. For our previous system (OBA2) [27], we have the source code as well

as the dataset. Caliskan-Islam et al. present the largest scale evaluation of binary author-

ship attribution in related work, which contains 600 authors with 8 training programs per

author. Rosenblum et al. present a large-scale evaluation of 190 authors with at least 8

training programs, while Alrabaee et al. present a small scale evaluation of 5 authors with

10 programs for each. As the datasets are not available, we compare our results with these

methods by using the datasets mentioned in Table 5.5. The system of Caliskan-Islam et

al. uses 4500 features; Rosenblum et al. use 10000 features; Alrabaee et al. use 6500

features; and our system uses 2200 features.

Figure 5.4 details the results of comparing the accuracy between BinAuthor and

all other existing methods. It shows the relationship between the accuracy (F0.5) and the

number of authors present in all datasets, where the accuracy decreases as the size of

author population increases. The results show that BinAuthor achieves better accuracy

in determining the author of binaries. Taking all four approaches into consideration, the

highest accuracy of authorship attribution is close to 96% on the Google Code Jam with

less than 50 authors, while the lowest accuracy is 22% when 150 authors are involved on

all dataset together. We believe that the reason behind Caliskan-Islam et al. approach su-

periority on Google Jam Code is that this dataset is simple and can be easily decompiled

to source code. BinAuthor also identifies the author of Github dataset with an accuracy

of 90%. The main reason for this is due to the fact that the authors of projects in Github

106

1 2 3 4 5
0.5

0.6

0.7

0.8

0.9

1

Number of Authors

F0
.5

BinAuthor
OBA2
Rosenblim
 Caliskan

(a)

10 20 30 40 50
0.5

0.6

0.7

0.8

0.9

1

Number of Authors

F0
.5

BinAuthor
OBA2
Rosenblim
 Caliskan

(b)

0 20 40
0.5

0.6

0.7

0.8

0.9

1

Number of Authors

F0
.5

BinAuthor
OBA2
Rosenblim
 Caliskan

(c)

5 10 15 20 25
0.5

0.6

0.7

0.8

0.9

1

Number of Authors

F0
.5

BinAuthor
OBA2
Rosenblim
 Caliskan

(d)

50 100 150
0.2

0.4

0.6

0.8

1

Number of Authors

F0
.5

BinAuthor
OBA2
Rosenblim
 Caliskan

(e)

Figure 5.4: Accuracy results of authorship attribution obtained by BinAuthor, Caliskan-

Islam et al. [43], Rosenblum et al. [112], and OBA2 [27], on (a) Github, (b) Google Code

Jam, (c) Planet Source Code, (d) Graduate Student Projects, and (e) All datasets.

107

have no restrictions when developing projects. In addition, the advanced programmers

of such projects usually design their own class or template to be used in the projects.

The lower accuracy obtained by BinAuthor is approximately 75% on a Graduate student

projects with 25 authors. This is explained by the fact that programs in Graduate student

projects have common choices among different students due to assignment rules, which

force students to change/restrict their habits accordingly. When the number of authors is

140 on the mixed dataset, the accuracy of Rosenblum et al., Caliskan-Islam et al., and

OBA2 approaches drop rapidly to 30% on all datasets, whereas our system’s accuracy

remains greater than 75%. This provides evidence for the stability of using coding habits

in identifying authors. In total, the different categories of choices achieve an average ac-

curacy of 84% for ten distinct authors and 75% when discriminating among 152 authors.

These results show that author habits may survive the compilation process.

5.4.6 False Positives

We investigate the false positives in order to understand the situations where BinAuthor

is likely to make incorrect attribution decisions. Figure 5.5 shows the false positives

relationship with the number of authors in repository. For this experiment, we consider 4

programs for each author. For instance, when we have 50 authors (4*50 = 200 programs),

BinAuthor misclassifies 16 programs. Also, when the number of authors is 1100 (1100*4

= 4400 programs), the number of false positives is 402. These false positives (402) are

investigated in Figure 5.5 (a). Also, we show the false positives in each dataset as shown

108

in Figure 5.5 (b). It is obviously shown that the false positives rate for student dataset is

the highest rate and we believe the reason behind this is that each student should follow

the standard coding instructions that restrict him/her to have their habits.

0 200 400 600 800 1000
0

100

200

300

400

500

Number of authors

N
um

be
r o

f f
al

se
 p

os
iti

ve
s

(a)

Google Planet GitHub Student
0

100

200

300

Dataset type

N
um

be
r o

f f
al

se
 p

os
iti

ve
s

(b)

Figure 5.5: False positive analysis.

5.4.7 Scalability

Security analysts or reverse engineers may be interested in performing large-scale author

identification, and in the case of malware, an analyst may have to deal with a large number

of new samples on a daily basis. With this in mind, we evaluate how well BinAuthor

scales. To prepare a large dataset for the purpose of large-scale authorship attribution,

we obtained programs from three sources: Google Code Jam, GitHub, and Planet Source

Code. We eliminated from the experiment programs that could not be compiled because

they contain bugs and those written by authors who contributed only one or two programs.

The resulting dataset comprised 103,800 programs by 23,000 authors: 60% from Google

109

Code Jam, 25% from Planet source code, and 15% from GitHub. We modified the script1

used in [43] to download all the code submitted to the Google Code Jam competition.

The programs from the other two sources were downloaded manually. The programs were

compiled with the Visual Studio and gcc compilers, using the same settings as those in

our previous investigations. The experiment evaluated how well the top-weighted choices

represent author habits. The results of the large-scale author identification are shown in

Figure 5.6.

0 0.5 1 1.5 2 2.5
x 104

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Authors

Pr
ec

is
io

n

Figure 5.6: Large-scale author attribution

The figure shows the precision with which BinAuthor identifies the author, and its

scaling behavior as the number of authors increases is satisfactory . An author is identified

among almost 4000 authors with 72% precision. When the number of authors is doubled

to 8000, the precision is close to 65%, and it remains nearly constant (49%) after the

number of authors reaches 19, 000. Additionally, we tested BinAuthor on the programs

from each of the sources. We found high precision (88%) for samples from the GitHub

dataset, 82% precision for samples from the Planet dataset, and low precision (51%) for

samples from Google code jam. After analyzing these results, we find that the authors

1https://github.com/calaylin/CodeStylometry/tree/master/Corpus

110

who wrote the code for difficult tasks is easier to attribute than easier tasks.

3 6 9 12 15 18 21
0

0.2

0.4

0.6

0.8

1

Number of Authors (103)

Pr
ec

is
io

n

Embedded General Quality Variable Structural

Figure 5.7: Effect of choices on large-scale author identification

We studied the impact of each choice on precision (Figure 5.7). For example, when

the number of authors is 15,000, BinAuthor achieves a precision of 70% based on the

use of variables, while with structural considerations, it achieves a precision of 50%, the

lowest for all the choices. When the number of authors reaches 21,000, the precision for

embedded, general, quality, variable, and structural choices is 56%, 45%, 49%, 60%, and

40%, respectively. From Figure 5.6, it seems reasonable to expect that when the number

of authors exceeds 20,000, there will be little additional change in the precision.

5.4.8 Impact of Evading Techniques

Refactoring Techniques. We consider a random set of 50 files from our dataset which we

use for the C++ refactoring process [1, 16]. We consider the techniques described in 2.3.

We obtain an accuracy of 83.5% in correctly classifying authors, which is only a mild drop

in comparison to the 85% accuracy observed without applying refactoring techniques.

Based on the above results, BinAuthor can tolerate refactoring techniques, as some of

111

Table 5.6: Evading techniques: methods used, tools used, and their affect on BinAuthor
choices.

Tools Method Input Output A −→ A∗ Choice

G
en

er
al

V
ar

ia
b

le

Q
u

al
it

y

E
m

b
ed

d
ed

S
tr

u
ct

u
ra

l

Refactoring [1, 16]

RV

Binary Binary

85 −→ 84 � � � � �
MM 86 −→ 82 � � � � �
NM 86 −→ 83 � � � � �

Obfuscator-LLVM

CFG flattening

Binary Binary

86 −→ 83 � � � � �
Instruction substitu-

tion

86 −→ 80 � � � � �
[77] CFG bogus 86 −→ 81 � � � � �

DaLin [87]

Instruction reordering

Assembly Assembly

86 −→ 86 � � � � �
Dead code insertion 86 −→ 86 � � � � �
Register renaming 86 −→ 86 � � � � �
Instruction replace-

ment

86 −→ 80 � � � � �

Trigress [25]

Virtualization

Source Source

86 −→ 20 � � � � �
Jitting 86 −→ 0 � � � � �
Dynamic 86 −→ 10 � � � � �

PElock [23]

Hide procedure call

Assembly Assembly

86 −→ 85 � � � � �
Insert fake instruction 86 −→ 86 � � � � �
Prefix junk opcode 86 −→ 86 � � � � �
Insert junk handlers 86 −→ 86 � � � � �

Nynaeve [21]
Frame Pointer Omis-

sion
Source Binary

86 −→ 83 � � � � �
Function inlining 86 −→ 78 � � � � �

OREANS [22] Encrypt binary Source Binary NA NA NA NA NA NA

Gas Obfuscator [17] Junk byte Assembly Assembly 86 −→ 86 � � � � �
Designed Script Loop unrolling Source Source 86 −→ 75 � � � � �

Note: (A) means the accuracy before applying obfuscation method while (A∗) means the accuracy after applying it. (�) means there

is no effect while (�) means there is an effect. (NA) means is not applicable.

112

these techniques change the syntax of the code but do not change its semantics. The

accuracy remains the same when the RV technique is applied, whereas the accuracy drops

slightly when MM and NM are applied. Since some of the choices used in BinAuthor

(general and embedded choices) are based on semantic features, they are not significantly

affected by these techniques. However, qualitative choices are more affected since these

choices rely on specific patterns captured/represented by idioms.

Impact of Obfuscation. We are interested in determining how BinAuthor handles simple

binary obfuscation techniques intended for evading detection, as implemented by tools

such as Obfuscator-LLVM [78]. These obfuscators replace instructions by other seman-

tically equivalent instructions, introduce spurious control flow, and can even completely

flatten control flow graphs. For this experiment, we consider a set of 50 authors from our

dataset, all of whom have five binary samples. Obfuscation techniques implemented by

Obfuscator-LLVM are applied to the samples prior to classifying the authors. We proceed

to extract functionality-independent choices from obfuscated samples. Using principle

component analysis to select the best features, we obtain an accuracy of 82.9% in cor-

rectly classifying authors, which is only a slight drop in comparison to the 85% accuracy

observed without obfuscation. We combine the refactoring process with the above obfus-

cation by first applying the refactoring techniques on the selected dataset (50 authors) at

the source level, after which they are compiled using Visual Studio 2010. After applying

obfuscation techniques, the accuracy dropped from 85% to 80.4%. Table 5.6 shows the

details about which tool has been used and which methods are applied. In addition, we

113

show which choice in BinAuthor is affected.

The Impact of Compilers. To create experimental datasets for this purpose, we consider

1000 authors with five training programs for each. We first compile the source code with

gcc, VS, ICC, and Clang compilers. Next, to measure the effect of different compilation

options such as compiler optimization flags, we additionally compile the source code with

level-1, level-2, and level-3 optimizations, namely the Od, O2, and Ox flags. The results

show that for most optimization speed levels coding habits are preserved to a great extent.

However, the accuracy drops significantly more (from 86% to 43%) when the Clang or

ICC compilers are used compared to the slight drop in accuracy (from 86% to 83%) when

the VS and gcc compilers are used, as the former compilers produce more variable code.

5.5 Applying BinAuthor to Malware Binaries

One challenge in applying BinAuthor to real world malware is the lack of ground truth

concerning the attribution of authorship due to the nature of malware. Also, whether a

malware package is created by an individual or an organization is generally unconfirmed.

Those limitations partially explain the fact that few research efforts have been seen on

this subject. In fact, to the best of our knowledge, BinAuthor is the first attempt to ap-

ply automated authorship attribution to real malware. Fortunately, we can correlate the

results of our automated approach to those obtained through manual analysis by domain

experts, e.g., in [91], a manual investigation is conducted to establish relationships among

114

the authors of a few samples of malware. We have applied BinAuthor to a set that com-

prises three pairs, each suspected of having common authorship: Bunny and Babar;

Stuxnet and Flame; and Zeus and Citadel. In [10, 85, 91], it is found that each of

the pairs in the dataset is likely to have originated from the same set of authors. Table 5.7

describes the characteristics of the first malware dataset.

Table 5.7: Characteristics of malware datasets

Malware Packed Obfuscated Source code Binary code Type # of functions Source of sample

Zeus � � � � PE 557 Contagio [2]

Citadel � � � � PE 794 Contagio [2]

Flame � � � � ELF 1434 Contagio [2]

Stuxnet � � � � ELF 2154 Contagio [2]

Bunny � � � � PE 854 VirusSign [4]

Babar � � � � PE 1025 VirusSign [4]

We describe the application of BinAuthor to some well-known malware binaries.

Given a set of functions, BinAuthor clusters them based on the number of common

choices. The existence of three or more shared choices is an indication that the func-

tions are likely to have a single author. Sharing only one or two choices suggests multiple

authors due to the lack of stylistic consistency.

Table 5.8: Statistics of applying BinAuthor to malware binaries

Malware
Number of functions with common choices Number of common functions with

G
en

er
al

Q
u

al
it

at
iv

e

S
tr

u
ct

u
ra

l

E
m

b
ed

d
ed

V
ar

ia
b

le

1
ch

o
ic

e

2
ch

o
ic

es

3
ch

o
ic

es

4
ch

o
ic

es

Bunny and Babar 372 494 127 450 278 290 150 478 340

Stuxnet and Flame 725 528 189 300 0 689 515 294 180

Zeus and Citadel 655 452 289 370 0 600 588 194 258

115

5.5.1 Applying BinAuthor to Bunny and Babar

Findings. We apply BinAuthor to binaries and cluster the functions based on functionality

independent choices. BinAuthor is able to find the following coding habits automatically:

the use of all capital letters for config in XML and the preference for using Visual Studio

2008 (general choices); the use of one variable over a long chain (variable choice); the

choice of methods for accessing freed memory, dynamically deallocating allocated re-

sources, and reopening resources more than once in the same function (quality choices);

and the use of a common approach to managing functions (structural choices).

Statistics. As shown in Table 5.8, BinAuthor found functions common to Bunny and

Babar that share the aforementioned coding habits: 494 functions share qualitative

choices; 450 functions share embedded choices; 372 functions share general choices;

278 functions share variable choices; and 127 functions share structural choices. Among

these, BinAuthor found 340 functions that share 4 choices, 478 functions that share 3

choices, 150 functions that share 2 choices, and 290 functions that share 1 choice.

Summary. Considering the 854 and 1025 functions in Bunny and Babar, respectively,

BinAuthor found that 44% ((340 + 478) / (854 + 1025)) are likely to have been written by

a single author, and 23% are likely to have been written by multiple authors. No common

choices were identified in the remaining 33%, likely because different segments or code

lines within the same function were written by different authors, a common practice in

writing complex software.

116

5.5.2 Applying BinAuthor to Stuxnet and Flame

Findings. BinAuthor found the following coding habits automatically: the use of global

variables, Lua scripting language, a specific open-source package SQLite, and heap sort

rather than other sorting methods (general choices); the choice of opening and terminating

processes (qualitative choices); the presence of recursion patterns and the use of POSIX

socket API rather than BSD socket API (structural choices); and the use of functions that

are close in terms of the Mahalanobis distance, with distance close to 0.1; and the passing

of primitive types by value, but the passing of objects by reference (embedded choices).

Statistics. As shown in Table 5.8, BinAuthor identified functions common to Stuxnet

and Flame that share the aforementioned coding habits.

Summary. BinAuthor clustered the functions and found that 13% ((180 + 294) / (1434

+ 2154)) were written by one author, while 34% ((515 + 689) / (1434 + 2154)) were

written by multiple authors. No common choices were found in the remaining 53% of the

functions. The fact that these malware packages follow the same rules and set the same

targets suggests that Stuxnet and Flame are written by an organization.

5.5.3 Applying BinAuthor to Zeus and Citadel

Findings. BinAuthor identified the following coding habits: the use of network resources

rather than file resources, creating configurations using mostly config files, the use of

specific packages such as webph and ultraVNC (general choices); the use of switch

statements rather than if statements (structural choices); the use of semaphores and locks

117

(qualitative choices); and the presence of functions that are close in terms of the Maha-

lanobis distance, with distance = 0.0004 (embedded choices).

Statistics. As listed in Table 5.8, BinAuthor found functions common to Zeus and

Citadel that share the aforementioned coding habits.

Summary. After BinAuthor clustered the functions, it appears that 33% were written by a

single author, while 53% were written by the same team of multiple authors. No common

choices were found for the remaining 14% of the functions. Our findings clearly support

the common belief that Zeus and Citadel were written by the same team of authors.

5.5.4 Verifying correctness of BinAuthor Findings

Due to the lack of ground truth, we verify the correctness of BinAuthor findings using

following methods: Comparing BinAuthor outputs to the findings of human experts in

available technical reports [10, 85, 91]; measuring the distance between the choices in

one cluster and the choices in another to calculate the degree of similarity; measuring

the degree of similarity between the extracted choices from the two malware packages in

one pair and those from the second dataset (for which we have the ground truth since the

source code is available) to provide a clear indication of whether the choices are closely

related to specific malware packages.

Comparison with technical reports. We compare the BinAuthor findings with those

made by human experts in technical reports. For Bunny and Babar, our results match

118

the technical report published by the Citizen Lab [91], which demonstrates that both mal-

ware packages were written by a set of authors according to common implementation

traits (general and qualitative choices) and infrastructure usage (general choices). The

correspondence between the BinAuthor findings and those in the technical report is the

following: 60% of the choices matched those mentioned in the report, and 40% did not;

10% of the choices found in the technical report were not flagged by BinAuthor as they

require dynamic extraction of features, while BinAuthor uses a static process.

For Stuxnet and Flame, our results corroborate the technical report published

by Kaspersky [85], which shows that both malware packages use similar infrastructure

(e.g., Lua) and are associated with an organization. In addition, the BinAuthor findings

suggest that both malware packages originated from the same organization. The frequent

use of particular qualitative choices, such as the way the code is secured, indicates the use

of certain programming standards and strict adherence to the same rules. Moreover, the

BinAuthor findings provide much more information concerning the authorship of these

malware packages. The correspondence between the BinAuthor findings and those in

the technical report is as follows: all the choices found in the report [85] were found

by BinAuthor, but they represent only 10% of our findings. The remaining 90% of the

BinAuthor findings were not flagged by the report.

For Zeus and Citadel, our results match the findings of the technical report

published by McAfee [10], indicating that Zeus and Citadel were written by the same

team of authors. The correspondence between the findings of BinAuthor and those of

119

McAfee are as follows: 45% of the choices matched those in the report, while 55% did

not, and 8% of the technical report findings were not flagged by BinAuthor.

Measuring similarity between choices in malware binaries. In this section, the goal is

to assess the similarity between malware binaries by reporting the statistics about common

choices (Table 5.9). We observed that there are only ten choices common to Bunny and

Stuxnet, which clearly indicates that the malware packages were written by different

authors. These choices are found in seven functions, which amounts to (7/(854 + 2154))=

0.2% shared author habits. In comparison, there are seventeen choices common to Flame

and Zeus, found in thirty-eight functions, so the percentage of shared author habits is (38

/ (1434 +557)) = 2%. The results in Table 5.9 may provide clues about the validity of the

BinAuthor findings.

Table 5.9: Choices found in malware binaries

Bunny Babar Stuxnet Flame Zeus Citadel

Bunny - 500 10 2 4 12

Babar 500 - 4 9 0 5

Stuxnet 10 4 - 750 14 3

Flame 2 9 750 - 17 6

Zeus 4 0 14 17 - 670

Citadel 12 5 3 6 670 -

Measuring the degree of similarity between ground truth datasets and malware bi-

naries.

As another verification of the correctness of the findings, we measured the degree of

similarity between the dataset used here and other datasets for which we have the ground

truth (e.g., Google code jam) to see how likely such a degree of similarity could come

120

from shared authorship. The goal of computing the degree of similarity is to determine

whether the habits found in the malware binaries are present to the same degree in con-

ventional binaries, which will reveal whether these habits are indeed specific to malware

writers. To provide an even more convincing verification, we computed the similarity

scores between related pairs of malware and the rest of the available dataset. The results

are presented in Table 5.10. BinAuthor found a total of 500 choices in Bunny & Babar,

of which 45 choices, i.e., only 1%, are similar to those in the Student project dataset.

We believe that one of the main reasons for the low similarity is that the programmers

participating in the Google code jam may have greater expertise, more extensive back-

ground knowledge, and better skills than the typical malware writer. Another comparison

revealed that 104/500 = 21% of the choices are common to GitHub authors and malware

writers. At the same time, the choices in Stuxnet & Flame have less similarity with

the other datasets: 2%, 1%, 0.2%, and 4% for Google code jam, planet code, student code,

and GitHub code, respectively.

Table 5.10: Number of choices common to the malware dataset and the ground truth

dataset

Google Planet Student GitHub

Bunny & Babar 6% 6% 1% 10%

Stuxnet & Flame 1% 4% 0% 7%

Zeus & Citadel 7% 9% 3% 17%

121

5.6 Summary

To conclude, we have presented the first known effort on decoupling coding habits from

functionality. Previous research has applied machine learning techniques to extract sty-

lometry styles and can distinguish between 5-50 authors, whereas we can handle up to

1500 authors. In addition, existing works have only employed artificial datasets, whereas

we included more realistic datasets. In summary, our system demonstrates superior results

on more realistic datasets.

122

Chapter 6

Towards Extracting Semantics of

Binary Code

6.1 Overview

In this chapter, we propose a novel technique that extracts the semantics of binary code

in terms of both data and control flow. Our technique allows more robust binary analysis

because the extracted semantics of the binary code is generally immune from code trans-

formation techniques and varying the compilers or compilation settings. Specifically, we

apply data-flow analysis to extract the semantic flow of the registers as well as the se-

mantic components of the control flow graph, which are then synthesized into a novel

representation called the semantic flow graph (SFG). Subsequently, various properties,

such as reflexive, symmetric, antisymmetric, and transitive relations, are extracted from

123

the SFG and applied to binary analysis. We implement our system in a tool called Bin-

Gold and evaluate it against thirty binary code applications. Our evaluation shows that

BinGold successfully determines the similarity between binaries, yielding results that are

highly robust against code transformation techniques. In addition, we demonstrate the ap-

plication of BinGold to two important binary analysis tasks: binary code authorship attri-

bution, and the detection of reused functions across program executables. The promising

results suggest that BinGold can be used to enhance existing techniques, making them

more robust and practical.

6.2 Motivating Example

We start with a simple example composed of part of MD5 written in C++ (Listing 1).

In this sample, the hex representation of the digest is returned as a string. MD5 per-

forms many binary operations on the “message” (text or binary data) to compute a 128-bit

“hash”. We compile this part of the MD5 example code on Windows 7 using g++, Visual

Studio 2010, Clang, and ICC. We then use IDA to disassemble the binary. Many security

tools use IDA in this way, as a first step before performing additional analysis [71, 104].

Listing 6.1: Motivating example: Part of MD5 method

std::string MD5::hexdigest() const {

if (!finalized)

return "";

124

char buf[33];

for (int i=0; i<16; i++)

sprintf(buf+i*2, "%02x", digest[i]);

buf[32]=0;

return std::string(buf);

}

We compute the control flow graph for the fragment and then compare them as

illustrated in Table 6.1. We notice through the motivating example that the compiler also

makes changes to both the control structure and the basic blocks and hence instructions.

We show a list of traditional features in Table 6.2.

Table 6.1: Graph features applied on CFGs for the fragment code in Listing 1, which is

compiled by visual studio, ICC, g++, and Clang

Feature Graph A Graph B Graph C Graph D

of nodes 8 8 13 5

of edges 9 8 15 4

K-cone 0-4 0-6 0-4 0-3

Radius 2 3 5 2

Width of graph 3 2 4 2

Length of graph 5 7 5 4

Diameter 3 4 6 2

Cyclometry Complexity 3 2 4 1

We name the graphs as graph A, graph B, graph C, and Graph D; these graphs

represent CFGs from visual studio, ICC, g++, and Clang, respectively. We can see in

Table 6.1 that among some graphs, there are features with the same values; for example

the number of nodes is the same for graphs A and B. Cyclomatic complexity varies; it is

calculated by M = E - N + 2P, where E is the number of edges, N is the number of nodes,

125

and P is the number of connected components. Additionally, we observe there are some

common values between graphs A and C. For instance, the number of nodes is 8 when it

is compiled with Visual Studio, but it is 13 with g++ and 5 with Clang. Additionally, the

number of edges ranges from 4 to 17.

Table 6.2: Graph features description

Feature Description

Number of nodes Number of basic blocks

Number of edges Number of control flows (i.e., true)

K-cone K represents the number of CFG level

Radius Minimum vertex eccentricity

Width of graph Maximum number of nodes at the same level

Length of graph Number of nodes in the longest path

Diameter The longest shortest path between any two nodes in the graph

Cyclometry Complexity Number of linearly independent paths within the CFG

As a result of the aforementioned differences, the structural approaches may lead

to false positives by claiming that two graphs are the same (because of similar graph

features), when in fact they are not. Additionally, we observe through the motivating

example that there are differences in instructions at the syntax level; these differences

affect the results of the syntax approaches in terms of reporting similarities. Hence, the

necessity of having an automated tool that can simply extract the semantics of a code will

significantly reduce the percentage of false positives.

6.3 Extracting Semantics of Binary Code

In this section, we describe how we built upon the background in Section 2 to perform the

task of extracting the semantics of a binary code.

126

004020D0 push ebp
004020D1 mov ebp, esp
004020D3 sub esp, 30h
004020D6 mov eax, ___security_cookie
004020DB xor eax, ebp
004020DD mov [ebp+var_4], eax
004020E0 push esi
004020E1 push edi
004020E2 xor edi, edi
004020E4 cmp byte ptr [this], 0
004020E7 mov esi, ecx
004020E9 mov [ebp+var_2C], esi
004020EC mov [ebp+var_30], edi
004020EF jnz short loc_402105

N
or

m
al

iz
at

io
n

T
ec

hn
iq

ue
s

004020D0 stack reg1
004020D1 generic reg1,reg2
004020D3 Math reg1, C
004020D6 generic reg2,fun
004020DB log reg2, reg1
004020DD generic [reg1+var1], reg3
004020E0 stack reg4
004020E1 stack reg5
004020E2 log reg5, reg5
004020E4 cmp reg4, C
004020E7 generic reg4, reg2
004020E9 generic [reg1+var2], reg4
004020EC generic [reg1+var3], reg5
004020EF Branch short loc_402105 D

at
a

F
lo

w
 A

na
ly

si
s

Assembly Instructions Normalized Instructions Data Flow Graph

Integrate it into Control
Flow Graph

Control Data FlowControl Flow Graph

M
erging N

odes in
G

raph

S
kelton C

onstruction

Skelton Graph

Figure 6.1: Architecture overview

6.3.1 Architecture Overview

Our architecture employs a series of techniques illustrated in Figure 6.1 and described in

the upcoming sections. First, the binary code is disassembled by IDA Pro [8] disassem-

bler. Second, a set of rules are applied to assembly instructions to normalize the code.

Third, data flow rules are applied to these normalized instructions to construct data flow

dependencies. In addition, we extract the semantics of the CFG by constructing a conser-

vative approximation of the target function prototype by means of a use-def analysis of

possible callees. We then couple these results with liveness analysis at each indirect call

site to arrive at a many-to-many relationship between call sites and target callees in order

to recover call site and callee signatures. Both types of semantics are integrated into a

new representation called the SFG. Subsequently, the properties of the SFG, such as the

reflexive, symmetric, and transitive relations are extracted from the SFG.

127

6.3.2 Data Flow Graph Construction

After normalizing the instructions, we apply data flow to infer the program variable rela-

tions using coarse reasoning about the program control flow and data dependencies. De-

pending on how such analyses choose to model the flow of information through the data

structures. Let Rk/Wk denote registers or memory that instruction Ik reads or writes. If

i1 and i2 are instructions belonging to I and they are in the same basic block, then we

define the following possible dependencies: i1 writes something which will be read by

i2; i1 reads something before i2 overwrites it; and i1 and i2 both write the same variable.

This category of dependency is considered an internal dependency. The other dependency

is control dependence. If i1 and i2 are both in the same basic block, and i2 is a control

instruction, we call it an internal control dependence. Also, i1 and i2 are in two different

basic blocks, where i1 is the last instruction in the first basic block and i2 is executed in

the second basic block as the first instruction, where the second basic block is a succes-

sor of the first basic block in the control flow graph, then it is also an internal control

dependence.

6.3.3 Equivalence Relations and Partitions in SFG

The data flow graph together with the invariants form the semantic flow graph. We com-

bine this semantic information to form a new representation in order to facilitate more

efficient graph matching between different binary codes for determining the similarity or

integrating into some existing frameworks. Formally, a semantic flow graph (SFG) is

128

defined as follows.

Definition 3. A semantic flow graph G = (N ,V , ζ , γ, ϑ, λ, ω) is a directed attributed

graph where N is a set of nodes, V ⊆ (N × N) is a set of edges and ζ is edge labeling

function which assigns a label to each edge: ζ −→ γ, where γ is a set of labels (internal

dependency or external dependency). ϑ is a call-callee relation function which colors

each node n ε N based on its relation with other node k ε N . Finally, ω is a function for

coloring dataflow control or data dependencies.

We illustrate a simple example in Figure 6.2 to show how SFG could be constructed.

As shown, ω is a function for coloring dataflow dependencies; control or data dependency.

ϑ is a call-callee relation function. We can notice the green color in Figure 6.2 (c) repre-

sents caller-callee relation. For instance, i2 has a caller-callee relation with i5. Besides,

We then construct the relations from the SFG. We generalize equivalence relations

and equivalence classes, where an equivalence relation on a set of features (semantics

features) F is a relation R ⊂ F x F such that:

• (fi, fj) ε R for all fεF , which is called the reflexive property

• (fi, fj) ε R implies (fj, fi) ε R

• (fi, fj) and (fj, fk) ε R imply (fi, fk)

We also extract a collection of nonempty sets of features F, which is called partition

P. This is a collection of nonempty sets f1, f2, ... such that fi
⋂

fj = for i �= j and

129

i1

i2

i3

i4

i5

i6

i7

i8

i1 i1

i2

i3

i4

i5

i6

i7

i8

i1

i3

ω

ω

ω

ω

ω

ω

a) Normalized

 Instructions

b) Data Flow c) Caller-Callee d) Data-Control

 Flow

e) SFG

i2

i4

i5

i6

i7

i8

i2

i3

i4

i5

i6

i7

i8

Figure 6.2: Example of constructing SFG

⋃
k Fk = X . Let∼ be an equivalence relation on a set F and let fεF . Then [f] = {fjεF :

fj ∼ fi is called the equivalence class of f}.

6.4 Detection Process

We next describe the detection system Bingold. Since Bingold extracts different types of

features that capture the semantics of code, the detection system is composed of multiple

components employing a series of techniques, as depicted in Figure 6.3 and explained in

the next subsections.

130

Assembly
Instructions

Binary
Code

Semantic
Similarity

Disassembler Normalizer

Normalized
Instructions

Data Flow
Graph

Semantic
Flow Graph

Exact
Matching

Graph Edit
Distance

Similarity
Measure

Figure 6.3: Detection system

6.4.1 Exact Matching

As previously described, we normalize the code according to predefined rules and then

apply the predefined categories to those normalized instructions. We then convert those

instructions to hash vectors. Finally, we match instructions together.

6.4.2 Graph Edit Distance

For inexact matching between data flow graphs, a distance metric is needed. We employ

Algorithm 1 introduced in 3.3.4. Given two data flow graphs, to transform one graph into

another, we define two concepts: internal flow dependency and external

flow dependency. The edit distance between two data flow graphs G and H is thus

defined as the minimum weight of all dependencies d between them; i.e., sim(G,H) =

min w(VG,H), where V is the function for checking the dependencies. We also use the

same dissimilarity introduced in 3.3.4 between two data flow graphs G and H .

131

6.4.3 Similarity Measure

For the extracted relations, we compare two graphs in terms of the similarity of their

reflexive, symmetric, and transitive relations. Given two data SFGs G and H , we define

the similarity measure sim(G,H) = max R(VG,H). R is a function extracts the common

relations between two graphs and measures the similarity between them.

6.4.4 Weight Parameter Settings

We define for each component (data flow, caller-callee relationship, and SFG) in our

system a weight. These weights are: α, β, and γ, to determine the contribution of each

component. We experimentally determine the optimal values for these parameters. The

parameter setting is computed using nine-fold cross-validation. We evaluate values of α

ranging from 0 to 1 in steps of size 0.1 and β ranging from 0 to 1 in steps of size 0.1.

For a given choice of α, β, and γ, it is required that α + β + γ = 1. In each setting, the

features are extracted using our system and the F1 score is computed that the maximum

F1 score is obtained for α = 0.5, β = 0.2, and γ = 0.3. We use these values as the default

for BinGold as well as throughout the rest of the evaluation.

6.5 Evaluation

This section details the evaluation of our system. Section 6.5.1 describes the dataset used

in our evaluation. Section 6.5.2 presents the evaluation metrics. Section 6.5.3 shows

132

the results of our system for different compilers and compilation settings. Section 6.5.4

shows the robustness of our system against code transformation techniques. Finally, sec-

tion 6.5.6 shows the effect of integrating our system into certain existing approaches and

demonstrates improvements in accuracy.

6.5.1 Dataset

We evaluate our system against 30 programs for which we have the source code. These

programs are only used to extract the ground truth by compiling the source code with

debugging information.

Table 6.3 summarizes the 30 programs. For each program, the table shows the

program identifier, the program name, the binary code statistics, and the source compiler.

From the binary code it captures the type of executable generated (PE or ELF) and the

number of functions in the executable. The binary code information is extracted using

IDA pro [8] by reading the executable’s debugging information. 3 projects compiled by 4

compilers, 8 projects compiled by 3 compilers, and 19 projects compiled by 2 compilers.

The dependency of the program restricts us to compiling each project using 4 compilers.

Our dataset are open-source projects from SourceForge [24], and the GNU software

repository [18]. Our dataset includes 17 PE binaries and 13 ELF binaries. We include

multiple programs from the same project that could be compiled by different compilers

and use those programs to analyze the applicability and efficiency of our system.

133

Table 6.3: Programs used in our system evaluation

Binary Code

ID Program Type Function Compiler

1 SQlite PE 3920 VS, GCC, ICC, Clang

2 OpenSSL PE 2163 VS, GCC

3 info-zip PE 1784 VS, ICC

4 jabber PE 5910 VS, GCC

5 Hashdeep PE 2905 VS, Clang, GCC

6 libpng PE 9226 VS, GCC

7 ultraVNC PE 3526 VS, GCC

8 lcms PE 1082 Clang, ICC, GCC

9 ibavcodec PE 739 VS, GCC, ICC

10 TrueCrypt PE 1093 VS, GCC

11 libjsoncpp PE 4114 VS, ICC

12 7z PE 2179 VS, GCC, ICC

13 7zG PE 2530 VS, GCC, ICC

14 7zFM PE 3149 VS, GCC, ICC

15 lzip ELF 33 VS, GCC

16 tinyXMLTest ELF 2744 VS, GCC, ICC, Clang

17 libxml2 ELF 58 VS, GCC, ICC

18 Mersenne Twister ELF 2740 VS, GCC

19 bzip2 ELF 285 VS, GCC

20 lshw ELF 1429 VS, GCC

21 smartctl ELF 457 VS, GCC

22 pdftohtml ELF 499 VS, GCC, Clang

23 ELF statifier ELF 2340 VS, GCC

24 FileZilla PE 6250 VS, GCC

25 ncat PE 1855 VS, GCC

26 Hasher PE 436 VS, GCC, ICC, Clang

27 tfshark ELF 439 VS, GCC

28 dumpcap ELF 448 VS, GCC

29 tshark ELF 1008 VS, GCC

30 pageant ELF 2212 VS, GCC

134

6.5.2 Evaluation Metrics

To evaluate the accuracy of our system, we conducted the following experiments. First,

we compared two sets of results: the results output by some existing tools (i.e., author-

ship attribution, clone detection) and the results after integrating our system with these

tools. Second, we compared the similarity of the same program when it is compiled by

different compilers and with different compilation settings. Third, we applied different

code transformation techniques to the same binary file and checked the similarity based

on the semantic information extracted by our system. Finally, we applied different refac-

toring techniques to the source code and compiled it using different compilers. We then

employed our tool to measure the similarity between the binary files.

We use validity metrics such as precision, recall, and F1. Precision (P) and recall

(R) are defined as follows:

P =
TP

TP + FP
, R =

TP

TP + FN
(6.1)

where TP (true positives) is the number of functions assigned correctly by our system; FP

(false positives) is the number of functions assigned incorrectly by our system; and FN

(false negatives) is the number of functions not assigned by our system but which actually

belong to it. To combine both precision and recall, we use the Fδ score with δ = 1, which

is equal to the harmonic mean of the precision and recall values. F1 scores fall within the

135

interval [0, 1], where the larger the F1 score, the better the overall accuracy.

6.5.3 Accuracy Results of C/C++ Programs with Different Compilers

and Compilation Settings

As previously mentioned, we compiled 30 programs using different compilers such as

Clang and ICC. We evaluate how well our system detects the similarities among those

executables using the F1 score. Table 6.4 summarizes the results. The median F1 score is

0.78. The precision ranges from 0.60 to 0.90, and the recall ranges from 0.64 to 0.92.

The accuracy of the C++ results is higher than the accuracy of the C results because

C++ source code contains classes with small-sized methods. These small components are

mostly unaffected by compilers or compilation settings. However, they may be inlined

and are thus easily identified based on data flow components. For instance, the program

FileZilla has the highest F1 score of 0.90, while the program dumpcap has the lowest F1

score of 0.63. For C programs, the median F1 score is 0.67. The results for C binary code

similarity are worse than the results for C++ programs. This is expected as C program-

mers are not constrained by the object-oriented paradigm and often place functions with

different semantics in the same source file. For example, the file tfshark.c in tfshark com-

bines string processing, message processing (read/write/print), and common functions for

program output. These functions are technically similar in semantic representation, but

the presence of all three reduces the F1 score to 0.64 when using automated ground truth

based on source files. Moreover, C programs have less modularity than C++ programs so

136

it may be harder to extract the semantics of a code.

Table 6.4: Our system accuracy in determining the similarity between binaries

Program Precision Recall F1 Program Precision Recall F1
SQlite 0.75 0.88 0.81 tinyXMLTest 072 0.79 0.75

OpenSSL 0.72 0.66 0.69 libxml2 0.78 0.82 0.80

info-zip 0.68 0.9 0.77 Mersenne Twister 0.78 0.88 0.83

jabber 0.67 0.88 0.76 bzip2 0.82 0.9 0.86

Hashdeep 0.63 0.72 0.67 lshw 0.83 0.83 0.83

libpng 0.82 0.68 0.74 smartctl 0.89 0.92 0.90

ultraVNC 0.81 0.67 0.73 pdftohtml 0.85 0.75 0.80

lcms 0.75 0.66 0.70 ELF statifier 0.83 0.74 0.78

ibavcodec 0.77 0.81 0.79 FileZilla 0.90 0.92 0.90

TrueCrypt 0.90 0.88 0.89 ncat 0.72 0.71 0.71

libjsoncpp 0.85 0.67 0.75 Hasher 0.71 0.68 0.69

7z 0.74 0.77 0.73 tfshark 0.70 0.65 0.67

7zG 0.66 0.81 0.73 dumpcap 0.62 0.64 0.63

7zFM 0.66 0.82 0.76 tshark 0.60 0.68 0.64

lzip 0.66 0.9 0.75 pageant 0.67 0.67 0.67

6.5.4 Accuracy Results after Applying Code Transformation Tech-

niques

We consider a random set of 15 files from our dataset and compile them using Visual

Studio 2010. The binaries are converted into assembly files through the disassembler, and

the code is then obfuscated using the DaLin generator [87]. This generator applies the

following: (i) register renaming (RR), which is one of the oldest and simplest techniques

used in metamorphic generators; (ii) Instruction reordering (IR), which transposes instruc-

tions that do not depend on the output of previous instructions; (iii) Dead code insertion

(DCI), which injects a piece of code that has no effect on program execution (i.e., may not

137

execute or may execute with no effect); and (iv) equivalent instruction replacement (EIR).

We perform initial tests on the selected files and report the accuracy measurements. code

transformation techniques are then applied and new accuracy is obtained and observed.

We used existing open-source tools for the C++ refactoring process [1, 16]. We

consider the introduced techniques in 2.3. The results are shown in Table 6.5. The results

shown in the table demonstrate that our system performs well in identifying similarities.

6.5.5 Time Efficiency

The running time for extracting the semantics of code is measured by considering the

total time spent during each step: normalization process, extracting the semantics of the

data flow, extracting the semantics of the control flow, and forming the SFG by extracting

the binary relations. In the semantic extraction process, the binary application is first dis-

assembled using IDA pro [8], and features are then extracted by running our IDApython

script. The assembly instructions must first be normalized and hashed to a unique value.

This process of extracting the features takes 15 seconds for the smallest application in

our dataset (which is dumpcap) and 45 seconds for the largest application (libpng) on

a Windows 32-bit machine with 16GB RAM. Extracting the first part of the semantics

(data flow) takes 20 seconds for dumpcap and 60 seconds for libpng, while extracting

the second part of the semantics (control flow) takes 23 seconds for dumpcap and 26

seconds for libpng. The last step, forming the new representation and extracting the rela-

tions described in Section 4.5, takes 10 seconds for dumpcap and 14 seconds for libpng.

138

Based on those results, we believe our system will be efficient enough for most real world

applications.

Table 6.5: Results after applying code transformation techniques

Method Precision Recall F1
RR 0.89 0.88 0.88

IR 0.91 0.92 0.91

DCI 0.87 0.93 0.90

EIR 0.81 0.82 0.81

RV 0.87 0.90 0.88

MM 0.85 0.82 0.83

NM 0.67 0.72 0.70

6.5.6 Applications

In this section, we demonstrate the applicability of our system to two applications: author-

ship attribution and clone detection. Previous work has demonstrated that it is possible

to identify the authors of binary code [27, 112]. However, existing approaches usually

assume that the compiler and its settings are known. In addition, the features used in

such techniques are sensitive to any code transformation techniques. Hence, we apply

our system to the binary and then re-examine their features based on the outputs of our

system. Regarding clone detection, some existing works have demonstrated the use of

K-CFG [81], Tracelet, n-grams [81, 112], idioms [81, 112], RFG [27], and strings [81].

Both authorship and clone accuracy are greatly improved by integrating our tool with the

aforementioned tools, as shown in Table 6.6.

Dataset. The dataset we use for authorship attribution originates from Google Code Jam

139

2010 [5]. It consists of single-authored programs. For each author, there are multiple

programs as the Code Jam is a multi-round programming contest. The dataset therefore

provides a perfect benchmark for authorship attribution, and data from Google Code Jam

has been used in all recent program authorship studies (e.g., [27], [112]). Regarding clone

detection, we use 10 programs from our dataset (1-10).

Evaluation. Because the application domain is much more sensitive to false positives

than false negatives, we use the F-measure as introduced in 5.4.5. Because each com-

ponent in our system can handle one or more effects, our system could enhance the ap-

plication of existing works. For instance, the normalization can handle compiler effects,

data flow analysis can identify inline functions, the caller-callee relationship can tackle

the refactoring process, and the relation extracted from the SFG can handle most code

transformation techniques. Results are summarized in Table 6.6.

Table 6.6: Effect of integrating BinGold to certain existing works

Feature F0.5 F0.5 Application
(Before applying BinGold) (After applying BinGold)

Idioms [112] 0.71 0.80 Authorship

Idioms [81] 0.72 0.88 Clone

Graphlet [112] 0.60 0.76 Authorship

RFG [27] 0.72 0.79 Authorship

Call graphlet

[112]
0.64 0.71 Authorship

K-CFG [81] 0.78 0.877 Clone

Tracelet [53] 0.66 0.70
Function Fingerprint-

ing

According to the results in Table 6.6, we can conclude that our tool leads to substan-

tial improvements in the accuracy of existing work. For instance, it improves the accuracy

of clone systems (e.g., idioms) by 16%, which is a considerable improvement. Another

140

example considers the Tracelet system, since it already includes normalization techniques

and data flow analysis, our tools only provide the benefit of semantics in terms of control

flow graph, which leads to 4% improvement of accuracy.

6.6 Summary

To conclude, we have designed a system called BinGold for accurately and automatically

recovering the semantics of a binary code. Our experimental results indicate that the

approach is efficient in terms of computational resources and could thus be considered

a practical approach to real-world binary analysis. Moreover, the experimental results

suggest that BinGold can be used to enhance existing techniques, making them more

robust and practical.

141

Chapter 7

Conclusion

This chapter concludes the findings of this thesis and highlights the future directions.

7.1 Concluding Remarks

The rise of malware attacks reported by companies and anti-virus vendors has pushed se-

curity researchers to propose new methodologies to extract intelligence about the authors

of these attacks in order to provide countermeasures. In this context, this thesis aims to

provide automated solutions for understanding the behavior of such malware binaries. We

have elaborated on four threads of research, which may help provide interesting insights

about malware binary code. We have shown how static and dynamic analyses of malware

binary code help the security community to identify binary provenance, reused functions,

third-party libraries such as free open source packages, and binary authorship attribution.

142

We began our research reviewing the existing binary code fingerprinting frame-

works. Hence, we systematized the area of binary code fingerprints according to its most

important dimensions: the applications that motivate its importance, the approaches used,

and the aspects of the framework fingerprints. The details of this study was provided in

Chapter 2. This step is important since it allowed us to investigate the different aspects of

binary code to gain expertise in malware binary analysis and to define new perspectives

related to malware research. Despite the importance of reverse-engineering prominent

malware binary code analysis, this process turns to be tedious due to the huge number of

observed malware collected in the wild. It also investigated the existing efforts that are

related to binary program provenance, reused function detection, fingerprinting free open

software packages, and binary authorship attribution.

In Chapter 3, we proposed a novel approach called SIGMA for effectively identi-

fying reused functions in binary code. Instead of relying on one source of information,

our approach combines multiple representations into one joint data structure SIG. SIGMA

also supports inexact matching and exact matching based on traces of the SIG which deals

with function fragments. Our experimental results demonstrated the effectiveness of our

method.

In Chapter 4, we introduced FOSSIL, a system for identifying FOSS functions. It

facilitates the tedious and error-prone task of manual malware reverse engineering and

enables the use of suitable security tools on binary code. Determining FOSS functions

in malware binaries has received limited attention compared to other fields such as clone

143

detection. Our evaluation demonstrated that FOSSIL yields highly accurate results.

In Chapter 5, we proposed BinAuthor, a system capable of decoupling program

functionality from authors’ coding habits in binary code. It leveraged a set of features

that are based on collections of functionality-independent choices made by authors during

coding. Our evaluation showed that BinAuthor outperforms existing methods in several

aspects. First, decoupling authorship from functionality allows us to apply BinAuthor to

real malware binaries to automatically generate evidence on similar coding habits, which

matches existing findings by security experts and reverse engineers. Second, it success-

fully attributes a larger number of authors with significantly higher accuracy when com-

pared to existing research contributions. Third, BinAuthor is more robust than previous

methods in the sense that there is no significant drop in accuracy when the code is sub-

jected to refactoring techniques, source and binary obfuscation, and different compilers.

In Chapter 6, we proposed a novel technique that extracts the semantics of binary

code in terms of both data and control flow. Our technique allowed more robust binary

analysis because the extracted semantics of the binary code are generally immune from

code transformation, refactoring, and variations of the compilers or compilation settings.

We applied data-flow analysis to extract the semantic flow of the registers as well as the

semantic components of the control flow graph, which are then synthesized into a novel

representation called the semantic flow graph (SFG). Our experimental results demon-

strated that BinGold can be used to enhance existing techniques such as binary authorship

attribution.

144

7.2 Future Directions

Our future work aims to include the following directions.

Advanced Obfuscation: This thesis is based on a main assumption that the binary code

under analysis is unpacked and de-obfuscated. While this assumption may be reasonable

for many general-purpose software, it implies the need for a pre-processing step involving

unpacking/de-obfuscation before applying the method to malware. Second, our tool fails

to handle most of the advanced obfuscation techniques such as Virtualization and jitting.

We have plan to extend this thesis to include a set of dynamic features.

Privacy Concerns: Our tool, BinAuthor, could be misused to violate privacy of the

coders. Therefore, we have to consider the privacy implications of BinAuthor in the future

work.

Multiple Architecture: This thesis deals with only one architecture (x86). We chose this

architecture because the most common CPU architectures nowadays are x86 for personal

computers and server systems. However, in the world of mobile computing, the ARM

architecture is the most common. The MIPS is also important in most control systems.

We will study how to systematically address the problem of dealing with multiple archi-

tectures in future work.

Dataset Size: Although our current repository already has a decent size, it would need

to be further enriched with a massive number of files. However, one of the biggest chal-

lenges we face involves how to automate gathering, compiling, and indexing FOSS pack-

ages. Each FOSS may have its unique dependencies, which makes automating the process

145

difficult. Our future research will include extending this system as a search engine for bi-

nary queries, and to also test it under a larger number of FOSS packages. Thus, a small

fragment of assembly code or an executable could be queried to obtain useful information

related to their functionality.

Efficiency: Through our experimental results, we notice that our tools, SIGMA and Bin-

Gold, the efficiency is an issue. Consequently, we have a plan in the future to employ

the MapReduce paradigm [56] with a distributed version of the algorithm in order to dis-

tribute the computation over a cluster of servers.

146

Bibliography

[1] CodeRush for Visual Studio: Refactoring tool. https://www.devexpress.

com/Products/CodeRush/. Last visited: Feb, 2018.

[2] Contagio: malware dump. http://contagiodump.blogspot.ca. Last

visited: Feb, 2018.

[3] PE Packer detector for Windows . http://exeinfo.atwebpages.com/.

Last visited: Feb, 2018.

[4] VirusSign: Malware Research & Data Center, Virus Free. http://www.

virussign.com/. Last visited: Feb, 2017.

[5] Google Code Jam Contest Dataset. http://code.google.com/codejam/,

2008-2017. Last visited: Feb, 2018.

[6] Fast Library Identification and Recognition Technology. https://www.

hex-rays.com/products/ida/tech/, 2011. Last visited: Mar, 2017.

147

[7] GitHub-Build software better. https://github.com/trending?l=cpp,

2011. Last visited: May, 2017.

[8] IDA Fast Library Identification and Recognition Technology. http://www.

hex-rays.com/, 2011.

[9] Materials supplement for the paper "Who Wrote This Code? Identifying the

Authors of Program Binaries". http://pages.cs.wisc.edu/~nater/

esorics-supp/, 2011. Last visited: May, 2017.

[10] Mcafee: Technical report. www . mcafee . com / ca / resources /

wp-citadel-trojan-summary.pdf, 2011. Last visited: Mar, 2017.

[11] Citizen Lab. https://citizenlab.org/, 2015. Last visited: Mar, 2017.

[12] Gephi plugin for nneo4j. Avaiable from:. https://marketplace.gephi.

org/plugin/neo4j-graph-database-support/, 2015. Last visited:

Feb, 2016.

[13] Materials supplement for the paper "Programmer De-anonymization from Binary

Executables". https://github.com/calaylin/bda, 2015. Last visited:

Jan, 2017.

[14] Planet source code. Available from:. http://www.planet-source-code.

com/vb/default.asp?lngWId=3\ #ContentWinners, 2015. Last vis-

ited: Mar, 2017.

148

[15] Scalable Native Graph Database. Available from:. http://neo4j.com/, 2015.

Last visited: Feb, 2016.

[16] C++ refactoring tools for visual studio. http://www.wholetomato.com/,

2016. Last visited: Feb, 2016.

[17] Gas Obfuscator. https://github.com/defuse/gas-obfuscation,

2016. Last visited: Mar, 2017.

[18] Gnu software repository. www.gnu.org/software/software.html,

2016. Last visited: Feb, 2016.

[19] HexRays: FLAIR, 2016. https//www.hex-rays.com/products/ida/

support/download.shtml.

[20] Lintian Reports. lintian.debian.org, 2016. Last visited: Feb, 2018.

[21] Nynaeve: Adventure in Windows debugging and reverse enigineering. http:

//www.nynaeve.net/, 2016. Last visited: Mar, 2017.

[22] Oreans: Advanced Windows software protection system . http://www.

oreans.com/themida.php, 2016. Last visited: Jan, 2017.

[23] PELock is a software security solution designed for protection of any 32 bit Win-

dows applications . https://www.pelock.com/, 2016. Last visited: Jan,

2016.

149

[24] Sourceforge. http://sourceforge.net, 2016. Last visited: Feb, 2017.

[25] Tigress is a diversifying virtualizer/obfuscator for the C language. http://

tigress.cs.arizona.edu/, 2016. Last visited: Jan, 2017.

[26] Tracelet system. https://github.com/Yanivmd/TRACY, 2016. Last vis-

ited: Feb, 2018.

[27] Saed Alrabaee, Noman Saleem, Stere Preda, Lingyu Wang, and Mourad Debbabi.

Oba2: An onion approach to binary code authorship attribution. Digital Investiga-

tion, 11:S94–S103, 2014.

[28] Saed Alrabaee, Paria Shirani, Mourad Debbabi, and Lingyu Wang. On the feasibil-

ity of malware authorship attribution. In International Symposium on Foundations

and Practice of Security, pages 256–272. Springer, 2016.

[29] Saed Alrabaee, Paria Shirani, Lingyu Wang, and Mourad Debbabi. Sigma: A

semantic integrated graph matching approach for identifying reused functions in

binary code. Digital Investigation, 12:S61–S71, 2015.

[30] Saed Alrabaee, Paria Shirani, Lingyu Wang, and Mourad Debbabi. Fossil: A re-

silient and efficient system for identifying foss functions in malware binaries. ACM

Transactions on Privacy and Security (TOPS), 21(2):8, 2018.

150

[31] Saed Alrabaee, Lingyu Wang, and Mourad Debbabi. Bingold: Towards robust

binary analysis by extracting the semantics of binary code as semantic flow graphs

(sfgs). Digital Investigation, 18:S11–S22, 2016.

[32] Dennis Andriesse, Asia Slowinska, and Herbert Bos. Compiler-agnostic function

detection in binaries. In Security and Privacy (EuroS&P), 2017 IEEE European

Symposium on, pages 177–189. IEEE, 2017.

[33] Dorian C Arnold, Dong H Ahn, Bronis R De Supinski, Gregory L Lee, Barton P

Miller, and Martin Schulz. Stack trace analysis for large scale debugging. In

IEEE International Conference in Parallel and Distributed Processing Symposium

(IPDPS), pages 1–10. IEEE, 2007.

[34] Thanassis Avgerinos, Sang Kil Cha, Brent Lim Tze Hao, and David Brumley.

AEG: Automatic exploit generation. In Network and Distributed System Security

Symposium (NDSS), pages 283–300, 2011.

[35] Gogul Balakrishnan and Thomas Reps. Wysinwyx: What you see is not what you

execute. ACM Transactions on Programming Languages and Systems (TOPLAS),

32(6):23, 2010.

[36] Musard Balliu, Mads Dam, and Roberto Guanciale. Automating information flow

analysis of low level code. In Proceedings of the 2014 ACM SIGSAC Conference

on Computer and Communications Security (CCS), pages 1080–1091. ACM, 2014.

151

[37] Ulrich Bayer, Paolo Milani Comparetti, Clemens Hlauschek, Christopher Kruegel,

and Engin Kirda. Scalable, behavior-based malware clustering. In Network and

Distributed System Security Symposium (NDSS).

[38] B Bencsáth, G Pék, L Buttyán, and M Felegyhazi. skywiper (aka flame aka flamer):

A complex malware for targeted attacks. CrySyS Lab Technical Report, No. CTR-

2012-05-31, 2012.

[39] Boldizsár Bencsáth, Gábor Pék, Levente Buttyán, and Mark Felegyhazi. The

cousins of stuxnet: Duqu, flame, and gauss. Future Internet, 4(4):971–1003, 2012.

[40] Daniel Bilar. Opcodes as predictor for malware. International Journal of Electronic

Security and Digital Forensics, 1(2):156–168, 2007.

[41] Martial Bourquin, Andy King, and Edward Robbins. Binslayer: accurate compar-

ison of binary executables. In Proceedings of the 2nd ACM SIGPLAN Program

Protection and Reverse Engineering Workshop, page 4. ACM, 2013.

[42] Juan Caballero, Noah M Johnson, Stephen McCamant, and Dawn Song. Binary

code extraction and interface identification for security applications. Technical

report, DTIC Document. No. UCB/EECS-2009-133., 2009.

[43] Aylin Caliskan-Islam, Richard Harang, Andrew Liu, Arvind Narayanan, Clare

Voss, Fabian Yamaguchi, and Rachel Greenstadt. De-anonymizing programmers

via code stylometry. In USENIX Security 15, pages 255–270, 2015.

152

[44] Aylin Caliskan-Islam, Fabian Yamaguchi, Edwin Dauber, Richard Harang, Konrad

Rieck, Rachel Greenstadt, and Arvind Narayanan. When coding style survives

compilation: De-anonymizing programmers from executable binaries. 2018.

[45] Shuang Cang and Derek Partridge. Feature ranking and best feature subset using

mutual information. Neural Computing & Applications, 13(3):175–184, 2004.

[46] Silvio Cesare, Yang Xiang, and Wanlei Zhou. Control flow-based malware variant-

detection. IEEE Transactions on Dependable and Secure Computing, 11(4):307–

317, 2014.

[47] Mahinthan Chandramohan, Yinxing Xue, Zhengzi Xu, Yang Liu, Chia Yuan Cho,

and Hee Beng Kuan Tan. Bingo: cross-architecture cross-os binary search. In

Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foun-

dations of Software Engineering, pages 678–689. ACM, 2016.

[48] Rudi Cilibrasi and Paul Vitanyi. Clustering by compression. IEEE Transactions

on Information Theory, 51(4):1523–1545, 2005.

[49] Paolo Milani Comparetti, Guido Salvaneschi, Engin Kirda, Clemens Kolbitsch,

Christopher Kruegel, and Stefano Zanero. Identifying dormant functionality in

malware programs. In IEEE Symposium on Security and Privacy (SP), pages 61–

76. IEEE, 2010.

[50] Scott A Czepiel. Maximum likelihood estimation of logistic regression models:

theory and implementation. 2002.

153

[51] Sanjeev Das, Yang Liu, Wei Zhang, and Mahintham Chandramohan. Semantics-

based online malware detection: Towards efficient real-time protection against mal-

ware. IEEE Transactions on Information Forensics and Security, 11(2):289–302,

2016.

[52] Yaniv David, Nimrod Partush, and Eran Yahav. Statistical similarity of binaries. In

Proceedings of the 37th ACM SIGPLAN Conference on Programming Language

Design and Implementation (PLDI), pages 266–280. ACM, 2016.

[53] Yaniv David and Eran Yahav. Tracelet-based code search in executables. In ACM

SIGPLAN Notices, volume 49, pages 349–360. ACM, 2014.

[54] Jesse Davis and Mark Goadrich. The relationship between precision-recall and roc

curves. In Proceedings of the 23rd international conference on Machine learning,

pages 233–240. ACM, 2006.

[55] José Gaviria de la Puerta, Borja Sanz, Igor Santos, and Pablo García Bringas. Using

dalvik opcodes for malware detection on android. In Hybrid Artificial Intelligent

Systems, pages 416–426. Springer, 2015.

[56] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on

large clusters. Communications of the ACM, 51(1):107–113, 2008.

[57] Manuel Egele, Theodoor Scholte, Engin Kirda, and Christopher Kruegel. A survey

on automated dynamic malware-analysis techniques and tools. ACM Computing

Surveys (CSUR), 44(2):6, 2012.

154

[58] Manuel Egele, Maverick Woo, Peter Chapman, and David Brumley. Blanket execu-

tion: Dynamic similarity testing for program binaries and components. In USENIX

Security 14, pages 303–317, 2014.

[59] Bruce S Elenbogen and Naeem Seliya. Detecting outsourced student programming

assignments. Journal of Computing Sciences in Colleges, 23(3):50–57, 2008.

[60] Ammar Ahmed E Elhadi, Mohd Aizaini Maarof, Bazara IA Barry, and Hentabli

Hamza. Enhancing the detection of metamorphic malware using call graphs. Com-

puters & Security, 46:62–78, 2014.

[61] Khaled ElWazeer, Kapil Anand, Aparna Kotha, Matthew Smithson, and Rajeev

Barua. Scalable variable and data type detection in a binary rewriter. In ACM

SIGPLAN Notices, volume 48, pages 51–60. ACM, 2013.

[62] Wenbin Fang, Barton P Miller, and James A Kupsch. Automated tracing and visu-

alization of software security structure and properties. In Proceedings of the ninth

international symposium on visualization for cyber security, pages 9–16. ACM,

2012.

[63] Mohammad Reza Farhadi, Benjamin CM Fung, Philippe Charland, and Mourad

Debbabi. Binclone: Detecting code clones in malware. In Eighth International

Conference on Software Security and Reliability, pages 78–87. IEEE, 2014.

[64] Qian Feng, Rundong Zhou, Chengcheng Xu, Yao Cheng, Brian Testa, and Heng

Yin. Scalable graph-based bug search for firmware images. In Proceedings of

155

the 2016 ACM SIGSAC Conference on Computer and Communications Security

(CCS), pages 480–491. ACM, 2016.

[65] Eric Filiol and Sébastien Josse. A statistical model for undecidable viral detection.

Journal in Computer Virology, 3(2):65–74, 2007.

[66] Halvar Flake. Graph-based binary analysis. Blackhat Briefings 2002, 2002.

[67] Martin Fowler. Refactoring: improving the design of existing code. Pearson Edu-

cation India, 1999.

[68] Carlos Gañán, Orcun Cetin, and Michel van Eeten. An empirical analysis of zeus

c&c lifetime. In Proceedings of the 10th ACM Symposium on Information, Com-

puter and Communications Security, pages 97–108. ACM, 2015.

[69] Thomas Gärtner, Peter Flach, and Stefan Wrobel. On graph kernels: Hardness

results and efficient alternatives. In Learning Theory and Kernel Machines, pages

129–143. Springer, 2003.

[70] William H Hawkins, Jason D Hiser, Michele Co, Anh Nguyen-Tuong, and Jack W

Davidson. Zipr: Efficient static binary rewriting for security. In 47th Annual

IEEE/IFIP International Conference on Dependable Systems and Networks (DSN),

pages 559–566. IEEE, 2017.

156

[71] Xin Hu, Tzi-cker Chiueh, and Kang G Shin. Large-scale malware indexing using

function-call graphs. In Proceedings of the 16th ACM conference on Computer and

communications security (CCS), pages 611–620. ACM, 2009.

[72] He Huang, Amr M Youssef, and Mourad Debbabi. Binsequence: Fast, accurate

and scalable binary code reuse detection. In Proceedings of the 2017 ACM on Asia

Conference on Computer and Communications Security (AsiaCCS), pages 155–

166. ACM, 2017.

[73] Emily R Jacobson, Andrew R Bernat, William R Williams, and Barton P Miller.

Detecting code reuse attacks with a model of conformant program execution. In

Engineering Secure Software and Systems, pages 1–18. Springer, 2014.

[74] Emily R Jacobson, Nathan Rosenblum, and Barton P Miller. Labeling library func-

tions in stripped binaries. In Proceedings of the 10th ACM SIGPLAN-SIGSOFT

workshop on Program analysis for software tools, pages 1–8. ACM, 2011.

[75] Jiyong Jang, David Brumley, and Shobha Venkataraman. Bitshred: feature hashing

malware for scalable triage and semantic analysis. In Proceedings of the 18th

ACM conference on Computer and communications security (CCS), pages 309–

320. ACM, 2011.

[76] Yoon-Chan Jhi, Xinran Wang, Xiaoqi Jia, Sencun Zhu, Peng Liu, and Dinghao

Wu. Value-based program characterization and its application to software plagia-

rism detection. In Proceedings of the 33rd International Conference on Software

157

Engineering, pages 756–765. ACM, 2011.

[77] Pascal Junod, Julien Rinaldini, Johan Wehrli, and Julie Michielin. Obfuscator-

LLVM – software protection for the masses. In Brecht Wyseur, editor, Proceedings

of the IEEE/ACM 1st International Workshop on Software Protection, SPRO’15,

Firenze, Italy, May 19th, 2015, pages 3–9. IEEE, 2015.

[78] Pascal Junod, Julien Rinaldini, Johan Wehrli, and Julie Michielin. Obfuscator-

llvm: software protection for the masses. In Proceedings of the 1st International

Workshop on Software Protection, pages 3–9. IEEE Press, 2015.

[79] Tommi A Junttila and Petteri Kaski. Engineering an efficient canonical labeling

tool for large and sparse graphs. In Proceedings of the Ninth Workshop on Algo-

rithm Engineering and Experiments (ALENEX), volume 7, pages 135–149. SIAM,

2007.

[80] Anatoli Kalysch, Johannes Götzfried, and Tilo Müller. Vmattack: Deobfuscating

virtualization-based packed binaries. page 2, 2017.

[81] Wei Ming Khoo, Alan Mycroft, and Ross Anderson. Rendezvous: a search en-

gine for binary code. In Proceedings of the 10th Working Conference on Mining

Software Repositories, pages 329–338. IEEE Press, 2013.

[82] Donald E Knuth. Backus normal form vs. backus naur form. Communications of

the ACM, 7(12):735–736, 1964.

158

[83] Ivan Krsul and Eugene H Spafford. Authorship analysis: Identifying the author of

a program. Computers & Security, 16(3):233–257, 1997.

[84] Christopher Kruegel, Engin Kirda, Darren Mutz, William Robertson, and Giovanni

Vigna. Polymorphic worm detection using structural information of executables.

In Recent Advances in Intrusion Detection (RAID), pages 207–226. Springer, 2005.

[85] Kaspersky Lab. Resource 207: Kaspersky Lab Research proves that Stuxnet

and Flame developers are connected. http://newsroom.kaspersky.

eu/fileadmin/user_upload/en/Images/Lifestyle/20120611_

Kaspersky_Lab_Press_Release_Flame_Stuxnet_cooperation_

final_-_UK.pdf, 2012. Last visited: Feb, 2018.

[86] Arun Lakhotia, Mila Dalla Preda, and Roberto Giacobazzi. Fast location of similar

code fragments using semantic’juice’. In Proceedings of the 2nd ACM SIGPLAN

Program Protection and Reverse Engineering Workshop, page 5. ACM, 2013.

[87] Da Lin and Mark Stamp. Hunting for undetectable metamorphic viruses. Journal

in computer virology, 7(3):201–214, 2011.

[88] Martina Lindorfer, Alessandro Di Federico, Federico Maggi, Paolo Milani Com-

paretti, and Stefano Zanero. Lines of malicious code: insights into the malicious

software industry. In Proceedings of the 28th Annual Computer Security Applica-

tions Conference (ACSAC), pages 349–358. ACM, 2012.

159

[89] Fan Long, Stelios Sidiroglou-Douskos, and Martin Rinard. Automatic runtime

error repair and containment via recovery shepherding. In ACM SIGPLAN Notices,

volume 49, pages 227–238. ACM, 2014.

[90] Prasanta Chandra Mahalanobis. On the generalized distance in statistics. Proceed-

ings of the National Institute of Sciences (Calcutta), 2:49–55, 1936.

[91] Marion Marschalek. Big Game Hunting: Nation-state malware re-

search, BlackHat. https://www.blackhat.com/docs/webcast/

08202015-big-game-hunting.pdf/, 2015. Last visited: Feb, 2018.

[92] Ryan McDonald and Fernando Pereira. Identifying gene and protein mentions in

text using conditional random fields. BMC bioinformatics, 6(1):1, 2005.

[93] Xiaozhu Meng and Barton P Miller. Binary code is not easy. In Proceedings of

the 25th International Symposium on Software Testing and Analysis, pages 24–35.

ACM, 2016.

[94] Xiaozhu Meng, Barton P Miller, and Kwang-Sung Jun. Identifying multiple au-

thors in a binary program. In European Symposium on Research in Computer

Security (ESORICS), pages 286–304. Springer, 2017.

[95] Barton P Miller, Mark D Callaghan, Jonathan M Cargille, Jeffrey K Hollingsworth,

R Bruce Irvin, Karen L Karavanic, Krishna Kunchithapadam, and Tia Newhall.

The paradyn parallel performance measurement tool. Computer, 28(11):37–46,

1995.

160

[96] Jiang Ming, Meng Pan, and Debin Gao. ibinhunt: Binary hunting with inter-

procedural control flow. In Information Security and Cryptology (ICISC), pages

92–109. Springer, 2013.

[97] Ned Moran and James Bennett. Supply Chain Analysis: From Quartermaster to

Sun-shop, volume 11. FireEye Labs, 2013.

[98] James Munkres. Algorithms for the assignment and transportation problems. Jour-

nal of the Society for Industrial and Applied Mathematics, 5(1):32–38, 1957.

[99] Emerson Murphy-Hill, Chris Parnin, and Andrew P Black. How we refactor, and

how we know it. IEEE Transactions on Software Engineering, 38(1):5–18, 2012.

[100] Robert Muth. Register liveness analysis of executable code. Manuscript, Dept. of

Computer Science, The University of Arizona, Dec, 1998.

[101] Lakshmanan Nataraj, Dhilung Kirat, BS Manjunath, and Giovanni Vigna. Sarvam:

Search and retrieval of malware. In Proceedings of the Annual Computer Security

Conference (ACSAC) Worshop on Next Generation Malware Attacks and Defense

(NGMAD), 2013.

[102] Lina Nouh, Ashkan Rahimian, Djedjiga Mouheb, Mourad Debbabi, and Aiman

Hanna. Binsign: Fingerprinting binary functions to support automated analysis of

code executables. In IFIP International Conference on ICT Systems Security and

Privacy Protection, pages 341–355. Springer, 2017.

161

[103] Pádraig OáSullivan, Kapil Anand, Aparna Kotha, Matthew Smithson, Rajeev

Barua, and Angelos D Keromytis. Retrofitting security in cots software with bi-

nary rewriting. In Future Challenges in Security and Privacy for Academia and

Industry, pages 154–172. Springer, 2011.

[104] Vasilis Pappas, Michalis Polychronakis, and Angelos D Keromytis. Smashing the

gadgets: Hindering return-oriented programming using in-place code randomiza-

tion. In IEEE Symposium on Security and Privacy (SP), pages 601–615. IEEE,

2012.

[105] Hanchuan Peng, Fuhui Long, and Chris Ding. Feature selection based on mu-

tual information criteria of max-dependency, max-relevance, and min-redundancy.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(8):1226–

1238, 2005.

[106] Jannik Pewny, Behrad Garmany, Robert Gawlik, Christian Rossow, and Thorsten

Holz. Cross-architecture bug search in binary executables. In IEEE Symposium on

Security and Privacy, pages 709–724. IEEE, 2015.

[107] Qiu, Xiaohong Su, and Peijun Ma. Using reduced execution flow graph to identify

library functions in binary code. IEEE Transactions on Software Engineering,

42(2):187–202, 2016.

162

[108] Ashkan Rahimian, Paria Shirani, Saed Alrbaee, Lingyu Wang, and Mourad Deb-

babi. Bincomp: A stratified approach to compiler provenance attribution. Digital

Investigation, 14:S146–S155, 2015.

[109] Václav Rajlich. Software evolution and maintenance. In Proceedings of the Future

of Software Engineering, pages 133–144. ACM, 2014.

[110] Alexandre Rebert, Sang Kil Cha, Thanassis Avgerinos, Jonathan Foote, David War-

ren, Gustavo Grieco, and David Brumley. Optimizing seed selection for fuzzing.

In USENIX Security, pages 861–875, 2014.

[111] Kaspar Riesen, Xiaoyi Jiang, and Horst Bunke. Exact and inexact graph matching:

Methodology and applications. Managing and Mining Graph Data, pages 217–

247, 2010.

[112] Nathan Rosenblum, Xiaojin Zhu, and Barton P Miller. Who wrote this code? iden-

tifying the authors of program binaries. In European Symposium on Research in

Computer Security (ESORICS), pages 172–189. Springer, 2011.

[113] Nathan E Rosenblum. The Provenance Hierarchy of Computer Programs. PhD

thesis, University of Wisconsin–Madison, 2011.

[114] Nathan E Rosenblum, Barton P Miller, and Xiaojin Zhu. Extracting compiler

provenance from program binaries. In Proceedings of the 9th ACM SIGPLAN-

SIGSOFT workshop on Program analysis for software tools and engineering, pages

21–28. ACM, 2010.

163

[115] Brian Ruttenberg, Craig Miles, Lee Kellogg, Vivek Notani, Michael Howard,

Charles LeDoux, Arun Lakhotia, and Avi Pfeffer. Identifying shared software com-

ponents to support malware forensics. In International Conference on Detection

of Intrusions and Malware, and Vulnerability Assessment (DIMVA), pages 21–40.

Springer, 2014.

[116] Eui Chul Richard Shin, Dawn Song, and Reza Moazzezi. Recognizing functions

in binaries with neural networks. In USENIX Security, pages 611–626, 2015.

[117] Paria Shirani, Lingyu Wang, and Mourad Debbabi. Binshape: Scalable and ro-

bust binary library function identification using function shape. In International

Conference on Detection of Intrusions and Malware, and Vulnerability Assessment

(DIMVA), pages 301–324. Springer, 2017.

[118] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens, Mario Polino,

Andrew Dutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher Kruegel,

et al. Sok:(state of) the art of war: Offensive techniques in binary analysis. In IEEE

Symposium on Security and Privacy (SP), pages 138–157. IEEE, 2016.

[119] Eugene H Spafford and Stephen A Weeber. Software forensics: Can we track code

to its authors? Computers & Security, 12(6):585–595, 1993.

[120] Mark Stamp. A revealing introduction to hidden markov models. Department of

Computer Science San Jose State University, 2004.

164

[121] Annie H Toderici and Mark Stamp. Chi-squared distance and metamorphic virus

detection. Journal of Computer Virology and Hacking Techniques, 9(1):1–14,

2013.

[122] S Vichy N Vishwanathan, Nicol N Schraudolph, Risi Kondor, and Karsten M Borg-

wardt. Graph kernels. The Journal of Machine Learning Research, 11:1201–1242,

2010.

[123] Jason Tsong-Li Wang, Qicheng Ma, Dennis Shasha, and Cathy H. Wu. New

techniques for extracting features from protein sequences. IBM Systems Journal,

40(2):426–441, 2001.

[124] Zheng Wang, Ken Pierce, and Scott McFarling. Bmat-a binary matching tool for

stale profile propagation. The Journal of Instruction-Level Parallelism, 2:1–20,

2000.

[125] Zhenchang Xing and Eleni Stroulia. Refactoring practice: How it is and how it

should be supported-an eclipse case study. In 22nd IEEE International Conference

on Software Maintenance (ICSM’06), pages 458–468. IEEE, 2006.

[126] Fabian Yamaguchi, Nico Golde, Daniel Arp, and Konrad Rieck. Modeling and

discovering vulnerabilities with code property graphs. In IEEE Symposium on

Security and Privacy (SP), pages 590–604. IEEE, 2014.

165

[127] Chaitanya Yavvari, Arnur Tokhtabayev, Huzefa Rangwala, and Angelos Stavrou.

Malware characterization using behavioral components. In International Confer-

ence on Mathematical Methods, Models, and Architectures for Computer Network

Security, pages 226–239. Springer, 2012.

[128] Yanfang Ye, Tao Li, Donald Adjeroh, and S Sitharama Iyengar. A survey on mal-

ware detection using data mining techniques. ACM Computing Surveys (CSUR),

50(3):41, 2017.

[129] Yanfang Ye, Tao Li, Yong Chen, and Qingshan Jiang. Automatic malware cat-

egorization using cluster ensemble. In Proceedings of the 16th ACM SIGKDD

international conference on Knowledge discovery and data mining, pages 95–104.

ACM, 2010.

[130] Ilsun You and Kangbin Yim. Malware obfuscation techniques: A brief survey.

In International Conference on Broadband, Wireless Computing, Communication

and Applications (BWCCA), pages 297–300. IEEE, 2010.

[131] Li Yujian and Liu Bo. A normalized levenshtein distance metric. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, 29(6):1091–1095, 2007.

[132] Yijia Zhang, Hongfei Lin, Zhihao Yang, and Yanpeng Li. Neighborhood hash

graph kernel for protein–protein interaction extraction. Journal of biomedical in-

formatics, 44(6):1086–1092, 2011.

166

[133] Yijia Zhang, Hongfei Lin, Zhihao Yang, Jian Wang, and Yanpeng Li. Hash sub-

graph pairwise kernel for protein-protein interaction extraction. IEEE/ACM Trans-

actions on Computational Biology and Bioinformatics (TCBB), 9(4):1190–1202,

2012.

167

