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Option Implied Risk Aversion under Transaction Costs: An Empirical Study 

Siying Zhou 

 

ABSTRACT 

We empirically estimate the option implied coefficient of risk aversion of the market maker for 

European S&P 500 index options (SPX), involving asset allocation and option market making 

problems in the presence of proportional transaction costs in trading the underlying asset. We 

assume that the market maker has constant relative risk aversion utility and holds a two-asset 

portfolio consisting of the underlying and the riskless asset for a fixed, finite investment horizon 

which exceeds the option maturity, and she enters a position in the option market with an optimized 

portfolio. We follow the discrete time approach of Czerwonko and Perrakis (2016a, 2016b) to 

derive the market maker’s simple investment policy and value functions, and apply a value 

matching condition to find option upper and lower bounds.  Data on the S&P 500 index and the 

SPX options is collected over the period 1996–2016, 244 months in total, and the major variable, 

volatility, is re-estimated under the physical distribution. By matching observed SPX prices with 

numerically derived reservation prices, we estimate the level of implied risk aversion. Results 

show that in general, the market maker has lower risk aversion compared to investors who she 

trades with in order to accomplish a trade. A pattern that high risk aversion precedes rare market 

events is also exhibited, suggesting that a market maker may adopt a waiting policy if market 

events can be anticipated due to the information asymmetry.  
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Option Implied Risk Aversion under Transaction Costs: An Empirical Study 

 

1. Introduction  

This paper aims to empirically estimate the option implied coefficient of risk aversion (RRA) of 

the market maker for European S&P 500 index options (SPX). It is assumed that the market maker 

has unknown constant relative risk aversion utility (CRRA) and holds a two-asset portfolio 

consisting of the riskless asset and the underlying asset for a fixed, finite investment horizon, in 

the presence of proportional transaction costs in trading the underlying. The simple investment 

policy is numerically derived using the discrete time approach that converges to continuous time 

as the time partition tends to infinity, and option upper and lower bounds are derived using the 

value matching condition under a realistic assumption that the investment horizon exceeds the 

option expiration. The option implied risk aversion is empirically found by matching the 

numerically derived option prices to a wide range of different RRAs with the observed SPX bid 

and ask prices from January 1996 to April 2016, 244 months in total. 

Index option pricing under transaction costs is a widely studied topic yet there is no satisfactory 

model. Merton (1989) first studied the option pricing for financial intermediaries who trade at the 

diametrically opposite sides of an investor. Early studies such as Leland (1985), Merton (1989), 

and Boyle and Vorst (1992) that are based on the no-arbitrage argument and portfolio replication 

only achieved trivial results. As alternatives, the stochastic dominance bounds for options with 

portfolio horizon exceeding the option maturity are valid for all risk averse investors and 

exclusively for univariate diffusion, as studied in Constantinides and Zariphopoulou (1999, 2001) 

and Constantinides and Perrakis (2002, 2007). The utility maximization approach first proposed 

by Hodges and Neuberger (1989) defines an investor’s specific utility function, but its reservation 

option prices are found by assuming that the option maturity is the same as the portfolio horizon. 

Hence, these approaches are unsuitable for option pricing and market making problems of a market 

maker whose horizons differ. In this study, we present the first formal modeling of option market 

making which focuses on the fundamentals of option market. Our approach follows Czerwonko 

and Perrakis (2011) who applied discretization asset dynamics and asset allocation under 

transaction costs to option market making problems. Based on Constantinides’ (1979, 1986) 

simple investment policy with respect to the two-asset portfolio selection problem, they formulated 
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a model that numerically derives the European option bid and ask prices in the presence of 

proportional transaction costs from a market maker’s perspective for a given risk aversion. This 

paper adopts the simple investment policy of Constantinides (1979, 1986) and follows the asset 

dynamics discretization of Czerwonko and Perrakis (2016a, 2016b) as well as their extension 

(Czerwonko and Perrakis, 2011) to estimate option upper and lower bounds and to investigate the 

level of risk aversion in the S&P 500 index option market from 1996 to 2016.  

Market makers who work for financial institutions trade on the opposite side of the investors to 

ensure a certain level of liquidity in the option market. To successfully make the market, market 

makers need to predefine the optimal bid and ask prices to make sure they earn enough profits to 

compensate for bearing risks from price movements in the underlying asset and time decay of 

options. In this work, the market maker is assumed to hold the underlying and a riskless asset. She 

quotes reservation purchase and reservation write prices for an option whose maturity is earlier 

than her finite portfolio horizon. The reservation prices are defined as the price of the long or short 

options that make the market maker indifferent from adding or not options in her two-asset 

portfolio. The optimal ask (bid) price is the highest (lowest) price that she would be willing to sell 

(buy) the option, leaving her indifferent in terms of the derived utility of wealth, as discussed in 

Zakamouline (2006).  

There are three steps to estimate the option implied risk aversion. First, we find the market maker’s 

optimal investment policy. As shown originally by Constantinides (1979), in the presence of 

proportional transaction costs, the optimal revision of a two-asset portfolio follows a simple 

investment policy. That is, the market maker will not revise her portfolio when it lies in the convex-

shaped no transaction (NT) region, otherwise she restructures her portfolio until it arrives to the 

nearest boundary of the NT region. The Euler discretization for continuous time diffusion is used 

to approximate the underlying asset dynamics in the market maker’s two-asset portfolio selection 

problem without including options. Czerwonko and Perrakis (2016a, 2016b) have shown that their 

discrete time approach has computational advantages when the investment horizon is finite, and 

that it converges to the continuous time result as the time partition tends to infinity. For this 

discretization, we apply Kamrad and Ritchken (1991)’s trinomial lattice, which is suitable to 

approximate the logarithmic underlying return process. For our range of RRAs and a finite 

investment horizon, the simple investment policy and value functions are derived by solving an 
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optimization problem whose objective is to maximize the market maker’s expected utility of her 

terminal wealth. Second, we numerically derive the reservation purchase and reservation write 

prices for the market maker by altering her initial asset holdings for option prices and for portfolio 

revisions. We use a value matching condition under the assumption that the portfolio horizon 

exceeds the option expiration. The value function of holding options, which are dependent on 

option prices, are interpolated from the already derived value function in the two-asset portfolio 

case. This derivation of the value function with an option and subsequent interpolation are feasible 

thanks to the homogeneity of this value function of the same degree as the RRA, a property shown 

in Constantinides (1979) for CRRA utility. Thus, option prices that equate the value functions with 

or without holding options after asset holdings are adjusted for option exercise and portfolio 

revisions at the option maturity, become the estimates of reservation purchase and write prices. 

Last, we match the derived reservation prices with observed SPX prices for each observed option 

of a given moneyness over 244 observation dates. The Root-Mean-Square Error is used to measure 

the difference between two types of prices, and the Piecewise Cubic Hermite Interpolation is 

applied to find which RRA provides the best fit. For each observation date, the estimated RRA is 

the one whose corresponding derived prices have the best consistency with the market prices.  

The results show that an increasing RRA shifts the boundaries of NT region toward the riskless 

asset, thus implying that a more risk averse market maker invests less in the risky asset. The mean 

of the estimated implied RRA of the market maker is 10.61, and it increases as the trading volume 

decreases, suggesting that a more risk averse market maker trades with a lower volume. In general, 

the market maker has lower risk aversion compared to investors, which implies that a market 

maker’s lower (upper) bound needs to be higher (lower) than an investor’s upper (lower) bound to 

accomplish a trade. Further, the estimated risk aversion is highly variable and peaks before rare 

market events. By plotting the estimated RRA of the market maker against observation dates, a 

pattern arises and shows that the estimated RRA is extremely high before a market event, and then 

drops significantly to a local minimum when the event starts, which suggests that should market 

events be anticipated, the trader adopts the waiting policy.  

The rest of this work is organized as follows. Section 2 presents the literature review, and Section 

3 presents the methodology. Section 4 describes the data and empirical results are discussed in 

Section 5. Conclusions and further research ideas are shown in Section 6.  
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2. Literature Review 

Numerous studies have examined option pricing under transaction costs, under which the Black-

Scholes (1973) model is invalidated by market frictions. In this section, we survey the main 

approaches: no-arbitrage and portfolio replication, stochastic dominance, and utility maximization. 

The two-asset portfolio selection problem in the presence of transaction costs in both continuous 

and discrete time is also described.  

2.1 No-Arbitrage Argument and the Portfolio Replication  

Early research on option pricing that considers transaction costs is based on the no-arbitrage 

argument, which attempts to replicate the payoff of derivatives by continuously rebalancing the 

portfolio independently of investor’s risk preferences.  

2.1.1 Modified Variance within the Black-Scholes  

In a complete underlying market without transaction costs, a unique price of a European option 

can be derived using the Black-Scholes-Merton Model (BSM model), following the no-arbitrage 

argument which demonstrates that the price of a replicating portfolio consisting of N shares of 

stock and a riskless asset should be equal to the payoff of the option at any time. Under transaction 

costs, the original BSM model becomes invalid, since endless rebalancing results in infinite 

transaction costs.  

Leland (1985) applied the modified variance ( 2̂ ) in the original BSM model. The payoff of call 

option Ĉ  inclusive of percent transaction cost k  is found by using the modified variance of an 

option inserted into the BSM model, which is defined as: 

                                           

2 2 2 2

2

ˆ ( , , ) [1 | | / ]

                     [1 (2 / ) / ]

S
k t kE t

S

k t

   

  


   

  

,                                       (2.1) 

where | | (2 / )
S

E t
S

 


  .  The return of the underlying (
S

S


) is normally distributed with 

mean zero, and the rebalancing error would approach zero as 0t  . The payoff  Ĉ  can be 

regarded as the upper bound of the option price, and a lower bound C  can be found using the 

modified variance 2 2 | | /
S

kE t
S

 


    inserted into the Black-Scholes, implying that a 

portfolio replicates a short position in the option.  
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In Boyle and Vorst (1992), the self-financing portfolio that hedges a long call option at its maturity 

inclusive of the transaction costs has a value approximated by the BSM model with an adjusted 

variance:  2 2 2
ˆ (1 )

k n

T
 


  , with k  in the adjusted variance to find the payoff of a short call 

option. Because their adjusted variance is smaller than Leland (1985)’s by (2 / ) , their model 

derives a higher option value.  

The modified variance is an intuitive approach to incorporate transaction costs into an option 

pricing model, yet it yields no satisfactory solutions because it confronts the same rebalancing 

dilemma as in the original BSM model. To decrease the rebalancing error, the difference between 

the option price and the value of the replicating portfolio at a time interval t , we need to increase 

the trading frequency. As 0t  , the frequent portfolio rebalancing becomes extremely 

expensive no matter how small the transaction cost rate k  is, and the modified variance tends to 

infinity (zero) for an upper (lower) bound.  

2.1.2 Portfolio Replication and Super Replication  

The binomial lattice approach of Cox, Ross, and Rubinstein (1979) provided a link between the 

approximation of underlying stochastic processes and the portfolio replication. Merton (1989) 

incorporated the proportional transaction costs in a two-period version of the Cox-Ross-Rubinstein 

(1979) binomial lattices and showed that the bid-ask spread can be substantial. He studied 

derivative security pricing from the financial intermediary’s perspective. It is assumed that the 

financial intermediaries trade at the opposite side of an investor and hedge themselves perfectly 

by using the two-asset replicating portfolio. Later, Boyle and Vorst (BV, 1992) extended Merton 

(1989)’s model into multiple periods.  

In a two-period binomial lattice, the underlying price S   has the probability of u  to go up and the 

probability of d  to go down, and the option price is determined at each node of the binomial tree 

by the value of the replicating portfolio. Without transaction costs, the self-financing portfolio that 

contains N  shares of stock and B dollars of riskless asset hedging a long call in one period is 

simply NSu RB ( NSd RB ) if the stock price goes up (down). In the presence of transaction 

costs, the replicating costs 1| |k N N Su  or 2| |k N N Sd  need to be included in the portfolio 



6 

 

value, under the transaction costs rate k  ( 1 2k k k  ). Given that 2 1N N N   for a portfolio 

replicating the long option, we must have the following at intermediate node of the binomial tree:  

                                               
1 1

2 2

(1 ) (1 )

(1 ) (1 )

NSu k BR N Su k B R

NSd k BR N Sd k B R

    

    
,                                        (2.2) 

which can be solved recursively from the call payoff at the option expiration date, at which the 

portfolios 1 1( , )N B and 2 2( , )N B  are known. For the short option replication ( 1 2N N N  ), the 

relation becomes:  

                                               
1 1

2 2

(1 ) (1 )

(1 ) (1 )

NSu k BR N Su k B R

NSd k BR N Sd k B R

    

    
.                                       (2.3) 

However, the no-arbitrage argument imposes restrictions on the binomial model parameters, which 

need to follow the inequalities below to have meaningful hedging probabilities:  

                                               (1 ) (1 )R k u k   , (1 ) (1 )d k R k   ,                                     (2.4) 

which yields 
1

1

k u

k d





. It will be violated when the number of periods of the binomial tree 

becomes large, because the right-hand sides gets smaller as the number of period increases.  

Bensaid, Lesne, Pagès, and Scheinkman (BLPS, 1992) introduced the concept of super replication, 

which is an alternative to derive the option price in the framework of the binomial tree. Super 

replication can avoid infinite transaction costs caused by continuous trading since the portfolio 

need not be rebalanced at each node of the binomial tree. In the super replication model, the path 

is denoted by a set of   and the transaction costs is a convex function. At any period t  of the n  

periods to the option expiration ( [0, ]t n ), we can define the stock price ( )t tS  and a replicating 

portfolio ( , )t tN B . There are two following paths 1t   with probability u  and d  for up and down 

moves, respecting to stock price tuS  and tdS . BLPS (1992) introduced a dynamic algorithm 

whose objective is to minimize the initial cash position 0 0 0( )N S B , which is required to cover 

the portfolio rebalance and transaction costs such that at each node of the binomial tree the 

portfolio satisfies the budget constraint: 1 1( ( ) ( )) ( )t t t t tRB B k N N S      . For a cash-settled 

option, they showed that the derived upper bound is lower than or equal to that of the replicating 
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strategy, which they interpret it as a potential saving on the transaction costs. Thus, they conclude 

that the super replication approach provides a tighter bound on option prices than the original 

replication approach.  

Cases that are not discussed in Merton (1989), BV (1992), and BLPS (1992) were studied by 

Perrakis and Lefoll (1997). They introduced an algorithm that specifically derives option lower 

bound for the option with physical delivery. Their algorithm compliments the BLPS (1992) when 

the restriction in (2.4) is violated and when the underlying price lies within the interval  

[ /(1 ), /(1 )]K k K k   for portfolios that hedge a short option position. They also found that the 

derived lower bound of the European call options coincides with the Merton (1973) lower bound. 

2.1.3 Problems of the Portfolio Replication  

The no-arbitrage argument and portfolio replication approach did not provide a satisfactory 

solution for option pricing under transaction costs because their results become trivial even at 

realistic revision frequencies. The option bounds derived by Leland (1985) tend to the price of the 

underlying asset for a long option and the Merton (1973) lower bound (0, )rTMax S Ke  for the 

short option at the continuous time limit. As for the portfolio replication and super replication, the 

binomial parameters, 
1e ,  tu d u    , and er tR   would violate the restriction in (2.4) in the 

continuous time setting as 0t   with probability one. There is no solution for the case when this 

restriction is violated. As the number of periods tends to infinity, the initial position in the 

underlying converges to one and the position in the riskless asset tends to zero. An investor could 

simply establish an initial position in the underlying asset of one unit and pursue the buy and hold 

policy until the option maturity, instead of replicating continuously and wasting money on 

transaction costs. Davis and Clark (1994) conjectured, and Soner, Shreve, and Cvitanic (1995) 

proved that this trivial buy and hold strategy is the cheapest way to super replicate and hedge—a 

nontrivial hedging portfolio for option pricing with transaction costs does not exist.   

2.2 Portfolio Selection under Transaction Cost  

Without transaction costs, the optimal consumption and portfolio policy is defined by the “Merton 

line” (Merton, 1969), which is an optimal constant proportion of the risky to the riskless asset  

, where . This quantity is only dependent on the risk premium, 

volatility of the underlying, and the risk aversion coefficient. However, when the transaction cost 

* */(1 )  * 2( ) /[ (1 )]r     
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exists, asset allocation that simply follows the “Merton line” is no longer optimal since the required 

continuous rebalancing is prohibitively expensive. The simple investment policy, which was 

proposed and derived in a semi-closed form by Constantinides (1979, 1986), solved the portfolio 

selection problem and offered a path to study the option pricing problem under transaction costs. 

This approach is based on the capital equilibrium and has been researched in both continuous and 

discrete time.   

2.2.1 Portfolio Selection Problem in the Continuous Time  

Constantinides (1979) examined the effect of proportional transaction costs on portfolio selection 

problem based on early conjecture of Magill and Constantinides (1976). He further proved that the 

optimal investment policy of an investor who has a two-asset portfolio and isoelastic utility under 

the transaction costs is simple. This simple investment policy is described in terms of the no 

transaction (NT) region, which is shown to be a convex zone composed of two boundaries [ , ]   

within which the investor is optimally refrained from trading. The investor would not trade if the 

proportion of the risky asset to the riskless asset  ( ) in his portfolio lies within the NT 

region, i.e., ; otherwise, he would trade until the proportion  arrives at the nearest 

NT boundary  or . Constantinides (1979) also showed that the value function ( , , )t tV x y t  is 

monotone increasing and concave in  for an investor who holds x  dollars in the riskless 

bond and y  dollars in the risky asset. Constantinides (1986) derived the NT region [ , ]   in a 

semi-closed form, under the continuous time setting for an infinite horizon. The investor’s 

consumption policy is assumed to be a constant at the rate   of the riskless asset ( t tc x ), and 

the asset dynamics within the NT region are: 

                                                             
t t t

t t t t

dx rx c dt

dy y dt y dw 

 

 
,                                                    (2.5) 

where  is the consumption and  is a Wiener process. Then the author solves the optimization 

problem by maximizing the derived utility of the infinite consumption stream: 

                                                   1[ , ; , , ] t

t t t t

t

V x y E e c dt  


    ,                                        (2.6) 

t /t ty x

[ , ]t t t  
t

t t

( , )x y

tc tw
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where  is the expectation at time , and  is the time discount factor. The relative risk aversion 

coefficient is assumed to be positive. If the proportion of the risky asset to the riskless asset t  lies 

within the NT region, the derived utility (2.6) satisfies the Bellman equation:   

                                    

2
2( ) 0,  

2
x y yy

c
rx c V yV y V V


    



       


.                         (2.7) 

When the proportion lies outside of the NT region, i.e.,  ( )t t t t     , trading is induced by 

purchasing (selling) shares with changes (1 )  ((1 ) )t tk v k v   from the bond account, to reach the 

nearest NT boundary ( )t t  . In this case, the value function will satisfy the boundary conditions: 

                                                           
(1 ) ,  

(1 ) ,  

x y

x y

k V V

k V V

 

 

  

  
.                                                     (2.8) 

Combining with the boundary conditions in (2.8), the partial differential equation can be solved in 

a semi-closed form, that is, the value function ( , , )V x y   can be found by maximizing 

( , , , , )V x y     with respect to the boundaries of NT region [ , ]  . Constantinides (1986) also 

found other properties of the NT region: the width of NT region goes up as the transaction costs 

increases, and transaction costs have more effect on the riskless account because the lower 

boundary  decreases faster in k  than the upper boundary  . The risk aversion coefficient   

and the variance 2  do not have the same effect on the width of the NT region, yet they shift NT 

region towards to riskless asset since the investors’ demand for risky asset decreases as they get 

more risk-averse or as the variance increases. Constantinides (1986) also found the “liquidity 

premium” to be small, a quantity that he defined as the excess rate of return of the risky asset 

required to compensate the utility loss caused by transaction costs. 

Davis and Norman (1990) studied the same subject as Constantinides (1986). They defined the 

proportional transaction costs as 1k  and 2k  for purchasing and selling the risky asset, respectively, 

which are incorporated into not only the boundary conditions but also the asset dynamics: 

                                               
1 2( ) (1 ) (1 )t t

t t t

dx rx c dt k dL k dU

dy ydt ydw dL dU 

     

   
,                                   (2.9) 

tE t 

tv


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where tL  and tU  are cumulative purchase and sale of the risky asset on the time interval [0, ]t . 

Then they formed the optimization problem of maximizing the derived utility 
0

0

( ( ))tE e u c t dt





  

for both isoelastic and lognormal utilities by stating a set of ordinary differential equations, which 

may be solved numerically. In the end, they arrived at the result that is qualitatively similar to 

Constantinides (1986). Their study further proved that the optimal investment policy is simple and 

the NT region is a wedge that reduces investor’s trading. 

Dumas and Luciano (1991) considered the same problem for power-utility investors who do not 

have intermediary consumption and maximize their derived utility of the terminal consumption at 

an uncertain future date, which tends to infinity. In their model, the control variables of the 

dynamic program are just the upper and the lower boundaries of NT region, [ , ]t t  . In contrast 

with Constantinides (1986), they found that there was no shift of the NT region towards the riskless 

asset as transaction costs increase, which may be explained by a lack of changes in the riskless 

asset account caused by intermediate consumptions. 

While Davis and Norman (1990) and Dumas and Luciano (1991) solved a free boundary problem 

for nonlinear differential equations, it is difficult to solve the Bellman equation in a semi-closed 

form when the investment horizon becomes finite, since this function becomes time-dependent. 

Liu and Lowenstein (2002) first solved the portfolio selection problem in a finite horizon in a 

continuous time setting. Under proportional transaction costs for sales of the risky asset, they 

examined the effect of an exponential (Erlang distributed) horizon on the investment policy of 

CRRA investors who maximize the derived utility of terminal wealth on a finite date. This date 

may be interpreted as their retirement date. The investor can purchase the risky asset at the price 

tS  or sell it at the price (1 ) tk S . The portfolio selection problem is then to choose the optimal 

amount of purchases and sales that maximizes the investor’s derived utility of terminal 

consumption. The independent single Poisson event that governs this terminal date is exponentially 

distributed at time  : { } tP dt e dt    , where 
1 
 is the investor’s expected horizon parameter. 

For an investor with a long-life expectancy, the parameter   is small. The constant finite horizon 

case corresponds to the convergence of the solution as the number of Erlang stages increases. Their 

model yields a semi-closed form solution for the value function determined numerically. They 
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found that an investor with a short life expectancy may not invest in the risky asset that is subject 

to transaction costs at all even if the risk premium is positive, because the excess return of the risky 

asset may not be sufficient to cover the transaction costs.  

2.2.2 Portfolio Selection Problem in the Discrete Time  

The discrete-time two-asset portfolio section problem was first examined by Constantinides (1979). 

To purchase tv  shares of risky asset at date t, the investor needs to pay 1(1 ) t tk v S  out of his bond 

account, whereas receives 2(1 ) t tk v S  in the bond account when he sells, assuming no dividend 

payment of the risky asset. The asset dynamics in the form of discrete time are:  

                                                  

1 1 2

1
1

[ max( , )]

( )

t t t t t

t
t t t

t

x x v k v k v R

S
y y v

S






   

 
.                                         (2.10) 

At each date  ( 1)t t T  , the investor maximizes his expected utility of terminal consumption in 

the form of the value function ( , , )t tV x y t  of derived utility: 

                              1
1 2max [ max( , )] , ( ) , 1 ,  1t

t t t
v

t

S
E V x v k v k v R y v t t T

S


  

        
  

,       (2.11) 

with the terminal condition 1 2( , , ) ( max[ , ])T T T T T TV x y T U x y k y k y    . 

Genotte and Jung (1994) numerically derived the optimal trading strategies for two cases: the same 

transaction costs for both riskless and risky asset, and transaction costs only imposed to the risky 

asset. In their model, the risky asset dynamics follow the binomial lattice. Later, Boyle and Lin 

(1997) followed their methodology and presented numerical examples. However, there are 

possible numerical flaws in the discrete-time binomial model of Genotte and Jung (1994), and the 

authors acknowledged that their algorithm cannot handle option pricing problems under 

transaction costs.  

Czerwonko and Perrakis (2016a) corrected the numerical flaws in Genotte and Jung (1994) and 

showed that the discrete time approach may provide a useful approximation of the continuous time 

approach when the time partitions tend to infinity in the fixed investment horizon. They applied 

the Euler discretization on dynamics of the risky asset for both diffusion and jump-diffusion cases, 
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and presented an efficient numerical solution to the isoelastic utility investor’s optimization 

problem for the derivation of the NT region, by applying the homogeneity of the value function 

first proven in Constantinides (1979).  Compared to the continuous time approach in Liu and 

Lowenstein (2002), their study showed clearly that the discrete time approach has numerical 

computational advantages: it converges efficiently to the continuous time solution when the time 

partition becomes dense, and it outperforms the continuous time approximations by solving the 

finite horizon problem directly. It also admits a jump-diffusion process and other empirical 

features such as cash dividends.  

Czerwonko and Perrakis (2016b) presented the flexibility of their discrete time approach in 

examining the economic impact on the portfolio selection problem related to several parameters 

of asset dynamics and of investor preferences. They relaxed the assumption of no dividends on the 

risky asset by adding them to the riskless asset account. They derived the investment policy under 

realistic transaction costs and dividend yields, and found that dividends have a very limited 

influence on the NT region. They also proved that the discrete time approach is flexible enough to 

solve the cases where the continuous time method fails. This work follows their discrete time 

approach to numerically derive the simple investment policy. Details on incorporating options into 

the investor’s utility maximization problem are presented in the methodology section.  

2.3 Stochastic Dominance Argument and Utility Maximization Approach  

An alternative approach to finding the option bounds under transaction costs is the stochastic 

dominance argument, which applies to all risk-averse investors. Constantinides and Zariphopoulou 

(1999) incorporated proportional transaction costs into the stochastic dominance approach. They 

derived an upper bound on the reservation write price of a European call option when intermediate 

trading is allowed. Without assigning specific forms of investor utility function, they assumed it 

to be increasing and concave. In their model, the option maturity is equal to the portfolio horizon. 

Later they (Constantinides and Zariphopoulou, 2001) studied the problem for CRRA investors 

with multiple securities, including a riskless asset, the underlying stock, and derivatives. The risk 

aversion coefficient is restricted to be between zero and one, and investor cannot increase their 

expected utility by further trade. Under a more realistic assumption that the portfolio horizon 

exceeds the option expiration, Constantinides and Perrakis (2002) derived stochastic dominance 

bounds on reservation prices for European options for both single- and multi-period economy, and 
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they extended the derivation to American options in their 2007 paper. Their model also has the 

advantage of accommodating a jump-process in the underlying price, and is independent of the 

initial portfolio position, provided that position contains a sufficient amount of underlying asset to 

guarantee solvency at option expiration time. The problem with stochastic dominance approach is 

a scarcity of numerical results due to computational issues. 

Hodges and Neuberger (1989) first proposed to use the utility-based approach and the indifference 

argument to find reservation purchase and reservation write prices of an option. Specifically, the 

reservation purchase price is defined as the amount of money that makes the investor indifferent 

from holding or not the option in her portfolio in terms of the derived utility. Similarly, the 

reservation write price is the price at which investors will be indifferent between writing or not the 

option. They used a binomial lattice to calculate the reservation prices of European call options 

while leaving the convergence of their numerical algorithm unproven.  Davis et al. (1993) applied 

the utility maximization approach to solve the European option pricing problem for exponential 

utility investors. Since Davis and Norman (1990) stated that it is difficult to numerically obtain the 

boundaries of the NT region for a portfolio with multiple risky assets, Davis et al. (1993) 

interpreted the risky asset as the market portfolio or an index. Based on the framework of Davis 

and Norman (1990), the derived boundaries of the NT region determine an investor’s simple 

investment policy. The option write price is found by the value matching condition. They found a 

unique viscosity solution of the nonlinear partial differential equation that is satisfied by value 

functions derived from their arguments, assuming that the portfolio horizon is equal to the option 

expiration date, but they pointed out that this assumption made the interpretation of investors’ 

reservation prices as market bid-ask prices unreasonable.  

Zakamouline (2006) extended the work of Hodges and Neuberger (1989) and Davis et al. (1993) 

by including a component of the fixed transaction cost in his utility-based model. He also 

maintained the assumption that the portfolio horizon and the option expiration date are equal,1 and 

studied the effect of transaction costs on the reservation option prices for constant absolute risk 

aversion (exponential) investors.  He solved the discrete time numerical problem by applying the 

method of the Markov chain approximation for the case of European call options. He followed the 

                                                 
1  This unrealistic assumption allows the computation of the optimal portfolio policy for the option writing or 

purchasing investor. To our knowledge, no one has derived that policy when the horizon exceeds option maturity.   
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indifference argument and applied it on the derived value functions: the value function without an 

option is ( , , )V t x y  and the value function of holding an option is ( , , , , )J t x y S  , where   is the 

number of options the investor owns. Thus, based on the indifference argument, the reservation 

prices of   European options are the prices that make the two value functions equal: 

                                                      
( , , ) ( , , , , )

( , , ) ( , , , , )

b b

w w

V t x y J t x P y S

V t x y J t x P y S





 

 

 

 
,                                     (2.12) 

where bP is the highest price that the investor would pay to purchase options when he is indifferent 

from buying or not the options. wP , on the other hand, is the lowest price that the investor would 

write. Zakamouline (2006) also tried to explore the reason of empirical pricing bias such as 

volatility smiles, volatility term structure, and the bid-ask spread, but he found that these empirical 

pricing biases cannot be fully explained by only the transaction costs even if a component of fixed 

cost is included.  

Czerwonko and Perrakis (2011)’s numerical approach corresponds to the expected utility 

maximization for a constant proportional risk aversion utility market maker whose portfolio 

horizon exceeds the option maturity. Allowing for jump components in the discrete time asset 

dynamics, they found that the number of options traded and risk aversion have a strong impact on 

the bid-ask spread, and these bid and ask quotes are tighter than the stochastic dominance bounds 

derived by Constantinides and Perrakis (2002).  

2.4 Summary  

To solve the portfolio selection problem under the transaction costs of the market maker, this paper 

follows the simple investment policy discussed by Constantinides (1986), and the discrete time 

approach presented by Czerwonko and Perrakis (2016a, 2016b). The utility maximization 

approach is preferred to the stochastic dominance approach since it allows estimating RRA from 

the observed market prices. The value matching condition (or the indifference argument) as well 

as the numerical model of Czerwonko and Perrakis (2011) are key ingredients in deriving option 

bounds under the assumption that the investment horizon exceeds the option maturity. Details of 

the methodology are presented in the next section.  
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3. Methodology  

We consider the problem of a market maker who has CRRA utility and maximizes her expected 

utility of the terminal wealth within a fixed, finite investment horizon T . She holds only two assets 

in her portfolio, a riskless asset and a risky asset, with the natural interpretation of an index. She 

also trades on a cash-settled European option whose underlying is the risky asset in her portfolio, 

and the option expires before the end of her investment horizon. The problem we consider applies 

as well to an investor who follows the same two-asset portfolio policy as the market maker. We 

treat this case as an extension and provide details later on. 

The formulation that we apply is justified for market makers by the fact that they are assumed to 

be agents of a financial institution or, to adopt the formulation of Shleifer and Vishny (1997), 

“highly specialized investors using other people’s capital”. These agents’ performance is assumed 

to be monitored at the end of a fixed time interval, the horizon of our problem. Accordingly, our 

formulation is also applicable to market making in equity options. For the investors, on the other 

hand, the two-asset portfolio assumption can be justified only if the risky asset is an index, since 

indexing is a highly popular policy for a large class of investors.   

Before entering a position in an option, the market maker solves a two-asset portfolio selection 

problem following the simple investment policy in the presence of the proportional transaction 

costs. She pays the proportional transaction costs at the rate of k  when purchasing or selling the 

underlying, but not on trading in the riskless asset. While pursuing the same simple investment 

policy as in the two-asset case, she predefines the bid and ask prices of the European option before 

trading options with investors in the market. The option prices that she quotes are in the form of 

reservation purchase and reservation write prices, which make her indifferent from holding or not 

a given option in her portfolio.  

The risk aversion of the market maker consistent with the observed market prices is estimated by 

comparing the option reservation prices derived under the above assumptions with the European 

SPX prices of a given moneyness and over 244 observation dates.   

This section is organized as follows: first, the asset dynamics in both continuous time and discrete 

time are introduced. Then we present the derivation of the simple investment policy and option 

reservation prices. Last, we demonstrate the methodology of estimating the market maker’s and 

investor’s risk aversion coefficient.  
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3.1 Asset Dynamics in Continuous and Discrete Time  

It is assumed that the market maker holds a two-asset portfolio, including tx  dollars in the riskless 

asset and ty  dollars in the underlying asset, which pays a dividend yield  . The dynamics of the 

riskless asset are: 

                                                             t t tdx rx dt y dt  ,                                                        (3.1) 

where r is the continuously compounded risk-free rate and   the dividend yield rate. The 

underlying’s dynamics follow a univariate diffusion process: 

                                                            t t t tdy y dt y dw   ,                                                     (3.2) 

where  and  respectively are instantaneous ex-dividend mean and volatility parameters, and 

tw  is a standard Wiener process. 

The Euler discretization for the continuous time diffusion process is used to solve the market 

maker’s portfolio selection problem without the presence of an option. Czerwonko and Perrakis 

(2016a) proved that this discrete time approach converges to the continuous time limit as the time 

partition tends to infinity. Further, to solve this problem the dividend yield   is added back to the 

index mean since Czerwonko and Perrakis (2016b) showed that the attribution of dividends 

between the risky and riskless assets accounts plays a limited role. For this reason, the underlying 

asset return is cum-dividend from now on. 

Define the return of the risky asset as t t
t t

t

y
Z

y


  , which yields the following valid approximation 

of (3.2) in discrete time: 

                                                        1t t t tZ t t        ,                                                  (3.3) 

where   is a random variable with mean zero and variance one, and 1/ 252t   since we use 

daily trading frequency with 252 trading days in one calendar year. The trinomial lattice introduced 

by Kamrad and Ritcheken (1991) is applied to find the distribution of the return t tZ   ( ( )h te ) 

when the portfolio lies within, below or above the NT region. Note that ( )h t is the approximating 

distribution of returns over the period [ , ]t t t  : 
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1

2

     3

   with probability p  

( ) 0    with probability p  

with probability p  

h t








 


,                                         (3.4) 

where t   , and 1  . We have following probabilities 1p , 2p , and 3p  that correspond to 

these three returns above, respectively: 

                                             

2

1 2

2

2

2

3 2

1 ( 0.5 )

2 2

( ) 1 1/

1 ( 0.5 )

2 2

t
p

p t p

t
p

 

 



 

 

  
 




  


   


.                                            (3.5) 

Therefore, the dynamics of the riskless asset and the risky asset under the proportional transaction 

costs in the discrete time setting are: 

                                                          

t+1

t+1 1

( | |)

( )

tt t

t t t

x x v k v R

y y v Z 

  

 

,                                                  (3.6) 

where tv  is the optimal portfolio revision at time t , k  represents the rate of the proportional 

transaction costs which is assumed to be the same for both purchases and sales, | |
t

k v  represents 

the dollar amount of transaction costs by which the market maker changes her riskless asset 

holdings, and 1 ( )r tR e r t o t      . The underlying purchases (sales) are financed by sales 

(purchases) of  (1 ) tk v  ( (1 ) tk v ) of the riskless asset.  

3.2 Numerical Derivation of the Simple Investment Policy  

The market maker faces the same optimization problem in both continuous time and discrete time 

settings, whose objective is to maximize her expected utility of the terminal wealth, which is 

converted to cash at the terminal date T : 

                                                    
 t [0,T-1)
max  [ ( (1 ) ,  )]

t

t T T
v

E U x k y T


  ,                                         (3.7) 
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where tv  is the time- t  investment decision, and (.)U  presents the market maker’s utility function, 

which is assumed to be the CRRA utility: 

                                                           1( ) /(1 )T TU w w    ,                                                      (3.8) 

where   is the coefficient of relative risk aversion (RRA). Since Constantinides (1979) proved 

that the optimal investment policy under proportional transaction costs for an investor with a two-

asset portfolio in the diffusion case is simple, the solution to this market maker’s optimization 

problem determines the simple investment policy. This policy is summarized by the buy and sell 

boundaries of the NT region, denoted respectively as t  and t  , and t  denotes the time- t  risky 

to riskless asset proportion ( /t ty x ). We assume that the market maker solves her portfolio 

selection problem before she enters a position in options: she will not revise her portfolio in the 

presence of transaction costs as long as it lies within the convex-shaped NT region, but restructures 

her portfolio to the nearest sell or buy boundary if it drifts out of this region. We use the dynamic 

programming to solve for (3.7): 

                                            1 1
, [0,.., 1]

( , , ) max  [ ( , , 1)]
t

t t t t t
v t T

V x y t E V x y t 
 

  ,                                  (3.9) 

with the boundary condition:  

                                                  
,( , ) ( (1 ) , )T T T TV x y T U x k y T   .                                         (3.10) 

The value function specified in (3.9)–(3.10) is concave and homogenous of the degree 1   as 

shown in Constantinides (1979). 

To numerically find the boundaries of the NT region and the market maker’s value function via 

the dynamic programming formulation (3.7)–(3.10), we follow the discrete time approach of 

Czerwonko and Perrakis (2016a). The numerical algorithm goes through the backward recursion 

to find the determinants of the simple investment policy and solves a one-period maximization 

problem in each recursive step. The only requirement is to know the value function one period 

ahead. This requirement is easily satisfied since at time 1T   the value function may be maximized 

in either boundary from the terminal condition (3.10) for a given one-period discrete probability 

space. Then the optimization procedure is repeated thus yielding a pair of boundaries at each time 

t. Because the value function is smooth and concave within the NT region, it may be easily 
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interpolated, which yields this function virtually continuous—a key ingredient of our numerical 

work. If the portfolio moves outside the NT region, the value function may be easily found due to 

its homothetic property. The details of our numerical approach are presented in the following 

paragraphs.  

Define the control variable tb  ( /t ty w )  as the proportion of the underlying asset ty  to total 

wealth tw  ( t tx y  ) at time t , and redefine the value function as ( , , )t tV w b t . In principle, since 

adding nominal values of the riskless and risky asset accounts does not result in an economically 

meaningful quantity in the presence of transaction costs, tw  should rather be termed ‘pseudo 

wealth’. For simplicity, we term it ‘wealth’ hereinafter. The control variable tb  implies the old 

control variable t  and is more numerically stable as argued in Czerwonko and Perrakis (2016a). 

At each time t ( [0,..., 1]t T  ), the wealth tw  is set equal to $1 and a value function (1, , )tV b t  is 

derived. Hence, the dollar holdings in the riskless and underlying asset are 1t tx b  , and t ty b , 

respectively. Before any portfolio revisions, the dynamics of the wealth tw  and the proportion tb  

become:  

                                                

1 1 1 1

1 1
1

1 1

(1 )

   
(1 )

t t t t t t

t t t
t

t t t t

w x y b R b Z

y b Z
b

w b R b Z

   

 


 

    

 
 

.                                          (3.11) 

We solve an optimization problem that maximizes expected utility of total wealth to derive the 

boundaries of the NT region, a convex zone characterized by the buy and sell boundaries,  and 

: 

                                             

1

1 1

1

1 1

arg max  [(1 ) ( , , 1)]

arg max  [(1 ) ( , , 1)]

t

t

t t t
b

t t t
b

b E kb V w b t

b E kb V w b t







 



 

  

  

,                               (3.12) 

where the value function 1 1( , , 1)t tV w b t    is already known at time t . To derive the value function 

1 1( , , 1)t tV w b t    that enters the expectations in (3.12), we equally space the already known time- 

tb

tb
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1t   boundaries of the NT region 1 1[ , ]t tb b   
to a suitable grid of points, and use each point in this 

set for interpolation. We will have three types of proportion 1tb   in dependence where this 

proportion falls relative to the NT region. We apply the simple investment policy at time- 1t   

relative to the discretized wealth dynamics by verifying whether the NT boundaries 1 1[ , ]t tb b   

would stipulate a trade. Specifically, the market maker would not revise her portfolio if the 

proportion 1tb   lies within the NT region (
1 1 1[ , ]t t tb b b   ). If the proportion 1tb   drifts out of the 

NT region, portfolio revisions are necessary and her wealth will be adjusted in two ways: she 

would buy (sell) 1tv   shares of underlying to arrive the buy (sell) boundary 1tb   (
1tb 
). In the case 

that the proportion 1tb   is below the lower boundary 1tb  , the market maker solves for the 

investment decision tv  to increase the proportion of the underlying asset to total wealth, where 

with the use of (3.6) we have 1
1

1

t t
t

t t

y v
b

w kv










 yielding 1 1

1

11

t t
t t

t

b b
v w

kb

 








, and by substituting the 

last quantity into 1t tw kv  ,  she would have a new level of wealth:   

                                                              1
1 1

1

1

1

t
t t

t

kb
w w

kb


 




 


.                                                      (3.13) 

If the proportion 1tb   is above the upper boundary 
1tb 
, the market maker decreases the proportion 

and solves for  1
1

1

t t
t

t t

y v
b

w kv










, which in turn yields the new level of wealth: 

                                                             1
1 1

1

1

1

t
t t

t

kb
w w

kb


 




 


.                                                      (3.14) 

The value function of wealth 1(1, , 1)tV b t   also can be derived backward from the terminal 

condition (3.10) at each time t , [0,..., 1]t T  . Given the wealth adjusted for portfolio revisions 

in (3.13)–(3.14) and the derived value function 1(1, , 1)tV b t   entering the expectations in (3.12), 

the value functions of the market maker without holding options, 1 1( , , 1)t tV w b t   , become: 
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,                    (3.15)  

where the simple investment policy is used to generate the new level of wealth and the homothetic 

property is applied to move the wealth level outside the value function. When the proportion 1tb   

falls outside NT region, the value function is simply the known value of  1(1, , 1)tV b t   at either 

extreme of the NT region multiplied by a known quantity of the new level of wealth 1tw 
 , as shown 

in (3.15). The value function is maximized recursively at all time epochs in (3.12) thus yielding 

the determinants of the simple investment policy for a given finite horizon T . 

3.3 Derivation of Bounds on Option Prices 

With a portfolio optimized for the two-asset case, the market maker trades on the European cash-

settled option with a strike price K  and expiration time 'T , set at one month for the empirical 

work. Denote the moneyness  ( / )t tm K S , equal to the strike price divided by the underlying 

price at trading date t . aC  and bC  are the ask and bid prices of the call option, while aP  and bP  

are the prices of the put, respectively. We maintain the assumption that the same simple portfolio 

policy applies in the presence of options. This assumption is valid whenever the net position in 

options is relatively small with respect to total wealth. Otherwise, our derived bid-ask spread is 

wider and contains the market maker’s optimal bid and ask prices, since our simple policy is 

suboptimal; hence, our results yield a potentially useful approximation. 

To derive the option bounds, we consider a value matching condition in which the market maker’s 

value function inclusive of an option equals the value function of two-asset portfolio: 

                                                    0

' ', , (1, , )e

t T T tE V w b T V b T  
 

,                                             (3.16) 

where 
'

e

Tw  is market maker’s wealth after option exercise and portfolio revisions, and 'Tb  is the 

corresponding proportion of the risky asset to total wealth at option maturity date.  To derive the 
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value functions in (3.16), the market maker’s wealth is set equal to $1 and the proportion of 

underlying asset to the total wealth 0

tb  is situated at the midpoint of the NT region before she 

adopts an option position, i.e., 0 ( ) / 2t t tb b b  . The value function without holding an option in 

the right-hand side of (3.16) was derived in the previous two-asset portfolio case. The value 

function in the left-hand side of (3.16) for the option case is defined below.  

3.3.1 Derivation of the Option Upper Bound  

We first consider that the market maker writes cn  call options at time t  for the total price c and 

for the notional value of the underlying index of $1. After selling cn  call options, her wealth 

changes from $1 to $ 1 c  with c  attributed to the riskless asset account. The initial proportion 

tb  will also be adjusted to a new proportion ib , /(1 )i tb b c  . Since this operation lowers the 

proportion of the underlying asset to total wealth, we consider the lower segment of the NT region 

0[ , ]t tb b  for the initial portfolio position and set the initial wealth equal to $1. In our numerical 

scheme, we equally space this segment, which yields a set of ib , 0[ , ]i t tb b b . This equally spaced 

segment implies that the following cash additions ( ic ) bring the initial position of 01 tb  and 0

tb , 

in the riskless and underlying asset respectively, to a new proportion: 

                                                              
0

t i
i

i

b b
c

b


 .                                                                (3.17) 

For each value of ib  in segment 0[ , ]t tb b , we derive the market maker’s riskless asset holdings 'Tx  

and underlying holdings 'Ty  at the option maturity date 'T . The initial asset holdings ix ( 1 ib  ) 

and iy ( ib ) vary according to the dynamics: 

                                                          

1

1 1

r tx x e

y y Z

 

  





 





, [ , ']t T  ,                                               (3.18) 

where the underlying holdings follow the Kamrad and Ritcheken (1991) trinomial lattice as in 

(3.4)–(3.5). Since we utilize 30-day options and daily portfolio revisions, we consider this lattice 

for 21 daily periods, which correspond to the average number of trading days in a month. At each 
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epoch  ( [ , ']t T  ), from the trading date t  to the maturity date 'T , we adjust asset holdings 

according to the simple investment policy in (3.13)–(3.14). At the option maturity, the asset 

holdings 'Tx  and 'Ty  inclusive of the initial cash received for a written call need to be adjusted for 

the option exercise for each ic . Since these holdings correspond to the total wealth of $1 as stated 

above, we also need to multiply both holdings at the maturity by a factor of 1 ic .  

The call option is cash settled and with the payoff ( cP ),  ' /(1 )c c t T tP n S Z m


   , where 'TZ  

is the cumulative return on the risky asset and the superscript + denotes the maximum of a given 

quantity and zero. For simplicity, the initial value of the underlying tS  is set to $1. The settlement 

of the option payoff is divided into three situations in relation to sufficiency of the riskless asset 

holdings 'Tx  for the option payoff cP : 

(1). 'T cx P , the market maker has sufficient cash holdings to settle the option payoff. Her riskless 

and risky asset holdings adjusted for the option exercise before any portfolio revisions are: 

                                                   

'
' '

' '

(1 ) ( )
1

(1 )
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e
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

   


 

.                                            (3.19) 

(2). 'T cx P , the market maker does not have sufficient cash holdings and she needs to sell the 

equivalent number of shares of the underlying to settle her position. In this case, her asset holdings 

become: 
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

.               (3.20) 

(3). ' 0Tx  , when borrowing is optimal
 
the option exercise only affects her risky asset holdings: 

                                             '
' '(1 ) [ ( ) ] /(1 )

1

e T
T i T c t

Z
y c y n m k



    


.                                 (3.21) 
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After the asset holdings are adjusted for the option exercise, they undergo the portfolio revision 

(3.13)–(3.14) due to the simple investment policy. After this step, we derive a set of value functions 

 ' ', ,e

t T TE V w b T 
 

 that corresponds to the set of candidate call prices ic  in (3.17). Thus, we arrive 

at a tabulated set of value functions, which can be easily interpolated by Hermite polynomials from 

the time- 'T value functions derived in the two-asset portfolio case in (3.15). By using the value 

matching condition (3.16) and the fact that we may easily interpolate the value function at the 

option expiration, we can precisely estimate the call upper bound ( c ) by a simple univariate 

optimization routine:  

                                             
2

0

' 'arg min , , (1, , )
i

e

t T T t
c

c E V w b T V b T  
 

,                            (3.22) 

where the function  ' ', ,e

T TV w b T  is derived numerically via interpolation. The interpretation of 

(3.22) is that it searches for a value of cn  call options that exactly satisfies the value matching 

condition in (3.16); the satisfaction of this condition may be easily verified. 

If adding cash c  to the riskless asset account from writing call options pushes the proportion of 

the underlying to riskless asset outside the NT region, i.e., ,i tb b  the initial asset holdings for the 

riskless asset and the underlying asset are simply 1 tb  and tb , since the market maker follows the 

simple investment policy and will adjust her wealth to the nearest boundary tb  at trading time t . 

This implies that both asset holdings at expiration time 'T , 'Tx  and 'Ty , need to be multiplied by 

a new factor of 

01

1

t j

t

kb c

kb

 


 instead of 1 ic  in (3.19)–(3.21) before we adjust them for option 

exercise and portfolio revisions. Another problem to consider is the market maker’s solvency 

condition. If the total wealth at the option maturity is negative at some option exercise value, the 

time- t  expectations of the value function in the presence of a written call are set equal to  . 

Last, to derive the reservation write price of the call option per $1 of the index or the call ask price 

ac , we adjust the call upper bound c  for the depth of the quote:             

                                                                  /a cc c n .                                                              (3.23) 
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To derive the reservation write price of a put option, we simply replace the call option payoff cP  

with the put option payoff  ' /(1 )p p t TP n m Z 


    in (3.19)–(3.21). We can derive a put upper 

bound p  with the same procedure as above, and the put ask price is its upper bound adjusted for 

the depth of the quote: /a pp p n .  

3.3.2 Derivation of the Option Lower Bound  

Since this case is similar to the derivation of the upper bound in many aspects, our presentation 

mainly focuses on differences between them. The derivation of the lower bound is in fact simpler, 

since the solvency condition only applies at the option purchase and the option payoff is attributed 

to the riskless asset account. In this case, the market maker receives the option payoff at its maturity 

and pays cash up front. For buying cn  European call option at time t , the market maker pays c  to 

an investor who sells cn
 
options, and thus her initial wealth changes from $1 to $ 1 c .  Hence, 

the initial proportion tb  is adjusted to the new proportion ib , /(1 )i tb b c  , for the initial wealth 

set equal to $1. Since this operation increases the proportion of the underlying to total wealth, we 

now consider the equally spaced upper segment of the NT region 0[ , ]t tb b . The candidate call prices 

ic  implied by this segmentation, which now are cash subtractions, become: 

                                                                 
0

i t
i

i

b b
c

b


 .                                                             (3.24) 

For each call price ic , we apply again the initial asset holdings through the trinomial dynamics 

(3.18) until the option maturity. Since now the initial wealth is $1 c instead of $1, the holdings 

at the option maturity, 'Tx  and 'Ty , are multiplied by a factor of 1 ic . Upon the option exercise, 

these asset holdings become:  
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.                                           (3.25) 
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The rest of the derivation of the lower bound c  is similar to the derivation of the upper bound. We 

adjust the asset holdings for portfolio revisions and apply the value matching condition. If the cash 

outlay for purchasing options pushes the underlying to riskless asset proportion out of the NT 

region, i.e. i tb b , both asset holdings at time 'T , 'Tx  and 'Ty , are multiplied by the new factor 

01

1

t j

t

kb c

kb

 


 instead of 1 ic  in (3.25). Finally, to arrive at the reservation purchase price or the call 

bid price bc , we adjust it for the depth of the quote, namely, /b cc c n . For put options, we use 

the payoff  ' /(1 )p p t TP n m Z 


    in (3.25), and adjust the put lower bound for the depth of the 

quote, which yields /b pp p n .  

3.4 Estimation of the Risk Aversion  

To find the option implied risk aversion, we first derive option reservation prices that depend on 

the RRA. Specifically, we derive those prices for 15 different candidate RRAs ranging from 0.5 

to 30.5. Our estimates of the implied RRA will be characterized by the best match with a given 

cross-section of observed market option prices as explained below. We assume that a single market 

maker quotes a call or put bid or ask price for all options in a given cross section. This assumption 

is not justified, neither economically nor numerically, since there is no reason for the same market 

maker to quote the lowest bid or ask price for different degrees of moneyness and for call and put 

options; further, the degree of approximation of our numerical approach is not independent of 

moneyness. It is also not necessary, since each observed quote can be matched individually with 

the corresponding estimate to determine the implied RRA that generally differs by the degree of 

moneyness. It does, however, allow us to represent with a single number the evolution of the quote-

implied RRA across time, which uncovers some interesting empirical facts. A single implied RRA 

will be derived in the base case as the “best match” for all option quotes, both calls and puts and 

both long and short, in a given cross section.  

Piecewise Cubic Hermite Interpolation is used to create a structure that contains 15 option prices 

derived for a given moneyness and for each RRA in our range. This structure separately includes 

upper and lower bounds of call or put options. Since these bounds are derived for the notional 

value of the underlying index of $1, now it suffices to multiply them by the observed value of the 
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index to make them comparable to the market prices. We exemplify our structure with a matrix 

that corresponds to the call upper bounds: 

                                

,1 1 ,1 2 ,1 15

, , ,2 1 2 2 2 15

, 1 , ,2 15

,1 ,2 ,[ , , ..., ]'

m m m

m m m
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  

 
 
 
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 
  

,       (3.26) 

where m  and   present the moneyness and RRA respectively, and n  is the number of options 

observed at a given observation date. This structure is easy to interpolate since the sole variable of 

interpolation is RRA. 

We minimize the Root-Mean-Square Error (RMSE) to find the best fit of the derived reservation 

prices to the observed SPX prices. The estimated RRA ̂  is the one whose corresponding derived 

prices are closest to the market prices in terms of RMSE, found in the base case from: 
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where 1n  is the number of observed call options, 2n  is the number of the observed put options at 

a given date. ,a mC , ,b jC , ,a kP , and ,b hP  denote the observed market prices for different moneyness. 

,
ˆ( )a mC  , ,

ˆ( )b jC  , ,
ˆ( )a kP  , and ,

ˆ( )b hP   respectively denote the corresponding prices that are 

interpolated from evaluation of the piecewise polynomial in the already derived reservation prices 

for a given RRA.  

As already noted, we may inverse the problem and look at the reservation write and purchase prices 

of an investor, which are the opposite relative to the ones for the market maker, in other words, 

the market maker lower bound on an option becomes the investor’s upper bound and vice versa. 

We find the investor’s RRA by simply matching derived option prices with observed market prices 
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reversely, namely, we match the derived reservation purchase (write) prices with the observed 

market bid (ask) prices. Analogously to the derivation for the market maker, the estimated RRA 

of the investor for the base case is:   
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4. Data  

Our data encompasses the period from January 1996 to April 2016. Underlying index data set 

consists of the prices of the S&P 500 index, its dividends and volatility, as well as the VIX index.  

The index option data set consists of strike prices, bid and ask prices, and time to maturity of SPX. 

The riskless rate is proxied by the three-month interest rate of the secondary market T-bill. As 

explained below, the volatility is estimated under the physical (P)-distribution.  

4.1 Estimated Volatility  

Two different methods are used to estimate the volatility under the physical or P-distribution. The 

first method uses the VIX index adjusted for an average forecasting error (AFE). The second 

method uses a linear regression forecasting model. By comparing the prediction error of each 

method, defined as the value of the estimated volatility ( ˆ
t ) less the realized volatility ( tRV ), we 

choose the method that generates the lowest prediction error. In either case, our estimate for the 

volatility contains only information available to traders at a given date. 

In the first method, the daily VIX index is collected from the Chicago Board Options Exchange 

(CBOE) for the 1990–2016 period, and the initial volatility forecast is the value of VIX at the last 

day  of calendar month t : tVIX VIX . Note that since our options data starts in 1996, we have 

at least six years in sample used to estimate the volatility. The realized volatility for month t  is 

calculated as 
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where iS  is the price on trading day i  and 1iS   is the price on the previous trading day 1i  and 

ln  denotes the natural logarithm. Hence, the cumulated AFE is the average monthly difference 

between the implied and realized volatilities: 
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t t t
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   ,                                             (4.2) 

where n  is the number of months cumulated from January 1990 to the observation month t . Then, 

the monthly estimated volatility t  is each value of the VIX at the observation date minus the 

cumulated AFE: 

                                                             ,1t obs tVIX AFE   .                                                     (4.3) 

In the second method, the monthly realized and implied volatility, tRV  and tVIX  are calculated in 

the logarithmic form and used in linear regressions. Using the logarithm assures that our volatility 

estimate is always positive. Two linear regression models are used, with and without the intercept: 
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By inverting the estimates from the regression above, the forecasted volatilities t  respectively 

are:  
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Table 1 presents the statistics for the prediction error of each method. Since our first method that 

uses the VIX subtracting the AFE has the lowest mean of the prediction error, it is selected as the 

predictor of the volatility under the P-distribution.  

[Insert Table 1 here] 
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4.2 Index and Options Data  

The historical daily prices of the S&P 500 index are collected from CBOE, and the daily strike 

prices, highest closing bid price, and lowest closing ask price of the S&P 500 index options (SPX) 

are collected from Option Metrics from January 1996 to April 2016, 244 months in total.   

The exercise value of European style SPX options is determined at the market opening on the third 

Friday in each month before it expires on the following Saturday. Our target observation date is 

30 days before the expiration date of each month. If there is no option traded on the target 

observation date, the nearest trading date before the target date is used instead. For each strike 

price K , the corresponding moneyness of the option is calculated as /t tm K S , where tS  is the 

price of the underlying at the observation date t . We select call options that have original bid price 

no less than $0.15 and moneyness between 0.96 to 1.08,  as well as put options that have original 

bid price no less than $0.15 and moneyness below 1.04. 

The three-month secondary market T-bill daily interest rate ( ti ) from 1996 to 2016 is collected 

from the Federal Reserve Economic Data. Since it uses the actual/360 calculation, the daily interest 

rates are adjusted to the annual rate as 365 / 360ti i . The annual dividends of S&P 500 Index are 

collected from the Robert Shiller online data, which is adjusted as the dividend yield for a given 

month using /(12 )m annual tDiv Div S  . Table 2 presents descriptive statistics of variables for the 

estimated volatility, interest rate, dividends, S&P 500 index price, bid-ask prices, strike prices, and 

moneyness of SPX. 

[Insert Table 2 here] 

5. Empirical Results and Discussion  

5.1 Derived NT Boundaries and Option Bounds 

The following set of parameters is used for deriving the boundaries of NT region: proportional 

transaction costs rate k  of 0.25%, risk premium of 4%, investment horizon T  of 10 years, 244 re-

estimated volatilities and interest rates, and 15 different coefficients of risk aversion ( ) ranging 

from 0.5 to 30.5. 
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Table 3 presents the derived NT region for fixed investment horizon T  = 10 years, and Table 4 

shows the derived mid-point of the NT region 0

'Tb  ( ' '( ) / 2T Tb b  ) at option maturity 'T , for 15 

RRAs, and for 6 different volatilities. 

[Insert Table 3 and Table 4 here] 

As the results show, the risk aversion has a strong effect on the market maker’s investment policy. 

The NT boundaries and their midpoint decrease as the RRA increases, implying that a more risk 

averse market maker would invest less in the risky asset. The same relation between the volatility 

and the boundaries holds, suggesting that the market maker would invest less in the risky 

investment when the market is more volatile. It is consistent with the properties of the NT region 

discussed in Constantinides (1986) which states that an increase in risk aversion or an increase in 

volatility shifts the NT region toward the riskless asset.  

Once we have the derived boundaries and the value function at each observation date, we may 

derive option prices for a given depth of the quote, arbitrarily chosen at cn  of 0.2 or of 0.1.2 A 

sample of the proportional bid-ask spreads, defined as the ratio of the difference between the upper 

and lower bound to their mean value, are presented in Tables 5 and 6.  

[Insert Table 5 and Table 6 here] 

In Table 5, the proportional bid-ask spreads are calculated for call options as 
2( )

( )

a b

a b

c c

c c




. We use 

four degrees of moneyness 0.975, 1, 1.025, and 1.05, representing the in-the-money (ITM), at-the-

money (ATM), out-of-the-money (OTM), and far out-of-the-money (far OTM) call options 

respectively. For put options, we calculate this quantity as 
2( )

( )

a b

a b

p p

p p




 in Table 6, and four degrees 

of moneyness of 0.95, 0.975, 1 and 1.025 are selected, for far OTM, OTM, ATM, and ITM puts, 

respectively. Other parameters used in the algorithm that derives the option prices are riskless rate 

of 2.32%, estimated volatility of 16.06%, and dividend yield of 0.15%, representing the mean 

values of these variables in our data set.  

                                                 
2 We assume implicitly that the market maker does not change her option position during the life of the option. The 

bounds continue to be valid under such an assumption. 
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We can observe the effect of the RRA on the market maker’s quotes from Table 5 and Table 6. 

The width of the bid-ask spread first decreases then increases as the RRA increases, and the option 

spreads get wider from ITM to far OTM options for both depths of quotes. Before proceeding any 

further with empirical results, we need to explain certain apparently implausible properties of 

option bounds discussed above. It is shown in Table 5 that the proportional spread is not 

monotonically increasing in the RRA, as one would expect. This is in apparent contradiction of 

the expected relation of the option bounds to RRA, namely, we expect the lower bound to increase 

and the upper bound to decrease as the RRA increases.  

We explain the observed non-monotonic relation by the properties of the NT region combined 

with the incompleteness of our model, which cannot estimate the optimal option bid and ask prices 

but only bounds on them, as discussed in Section 3.3. This incompleteness consists in the 

assumption that the NT region and the corresponding value function in the two-asset portfolio case 

remain valid in the presence of a short or long option position. Thus, the selected mid-point of this 

region is around where the value function reaches its maximum, since it is near this midpoint that 

the expected transactions costs reach their minimum. Also, note that in general the midpoint of 

this region is located near the Merton line, the optimal portfolio composition for the frictionless 

case. Figure 1 illustrates the value function for the above parameter set and an RRA of 4, plotted 

as a function of its location represented as a percentage of the NT region.  

[Insert Figure 1 here] 

Unreported results show that this function becomes steeper as the time horizon and RRA increases. 

Another set of unreported results shows that the derivative of the value function in the upper bound 

of the option price is lower for lower RRA, as expected. The explanation for our numerical results 

comes from the relative heights of the value function for different values of RRA, i.e., even though 

this function increases more per unit of the upper bound for a lower RRA, in some cases this bound 

may be higher for a higher RRA. In other words, in certain scenarios the disutility of getting away 

from the preferred habitat around the midpoint of the NT region is sufficiently high so as to prevail 

over the disutility of receiving a lower price for the short position (option upper bound). 

We illustrate that indeed the height of the value function without options for long investment 

horizons is the source of the problem. For two values of RRA,   of  2 and of 4, and for the depth 
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of the quote cn  of 0.2, Table 7 displays the lower and upper bounds for call options for the overall 

investment horizon T of one and of ten years, with other parameter values as above. We clearly 

see from Table 7 that for the shorter horizon 1T   the option prices and proportional spreads are 

as expected, namely wider for 4  , whereas for the longer horizon 10T   these spreads 

unexpectedly tighten for OTM options. Unfortunately, a rigorous derivation of the tightest possible 

bounds for the two-asset portfolio in the presence of options does not exist in the literature and 

will not be attempted in this study; in fact, it has not even been shown that in such case the 

investment policy remains simple and the NT region is still a cone. 

[Insert Table 7 here]           

Tables 8 and 9 present the statistics of the proportional spread of our derived prices and observed 

market prices for both call and put options. At each observation date we select the observed market 

option prices whose moneyness values are closest to 0.95, 1, and 1.05; from our derived reservation 

prices as functions of RRAs we select the ones that best match those observed market prices. The 

results show that on average, our derived prices have a wider spread in comparison to the market 

prices, especially for OTM options.  

[Insert Table 8 and Table 9 here] 

5.2 Option Implied Risk Aversion 

We estimate the level of risk aversion for each cross section in five different cases. In the base 

case, all the derived option reservation prices are used simultaneously to estimate the RRA as in 

(3.27)–(3.28). For the call only (put only) case we use the cross-section’s call (put) bid-ask prices 

exclusively, and for the bid only (ask only) case, we use bid (ask) prices of both call and put options. 

Tables 10 and 11 display the statistics of the estimated RRA of market maker and investor, 

respectively.   

[Insert Table 10 and Table 11 here] 

The smaller depth of quote generates a higher RRA for both market maker and investor, suggesting 

that market maker and investor would trade with a lower volume if they tend to be more risk averse. 

The market maker’s RRA is smaller than the investors’, except for the bid only case, indicating 

that the market maker is less risk averse than investors in general and is more concerned about 

risks when purchasing options. These results are implied by the fact that the investor’s upper bound 
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(price to sell) needs to be lower than the market maker’s lower bound (price to buy) for a trading 

to occur. The converse holds for the investor’s lower bound, i.e., it needs to be higher than the 

market maker’s upper bound.  

In Figure 2, the 244 estimated RRAs of the market maker for the depth quote of 0.2 are plotted 

against observation dates. Similar results for the investor’s RRA are shown in Figure 3. These 

figures show that the risk aversion coefficient becomes very high before the beginning of rare 

market events, and then drops significantly to a local minimum at the time when the market event 

starts. A possible interpretation is that during the market events the estimated volatility is high 

since the VIX is very high while the adjustment from VIX to physical volatility is roughly constant, 

and a relatively low RRA is sufficient to match the observed market prices. We also see in the 

figures that the RRA unexpectedly jumps to its upper limit at times when both market volatility 

and VIX are high. This is likely a result of the non-monotonicity of the spreads in RRA for our 

model, which implies that relatively low spreads observed at low volatility are best matched by 

high RRA. 

[Insert Figure 2 and Figure 3 here] 

Since a high probability of a declining market corresponds to a higher volatility, as shown in Figure 

4 and Figure 5, the S&P 500 index price dropped significantly during the market events as the 

estimated RRA decreased. Market makers may suspect an impending financial crisis from the 

decreasing index price and increasing volatility, and therefore they are more reluctant to trade 

before the crisis bursts (regression results of market maker’s RRA against S&P 500 prices and P-

distributed volatility are presented in the Appendix). 

[Insert Figure 4 and Figure 5 here] 

The estimated RRA’s of market maker and investor are regressed against three implied volatility 

(IV) smile characteristics: ATM implied volatility (ATM IV), the left skew (LS), and the right 

skew (RS). The ATM IV is the average implied volatility of the options whose call and put strike 

prices have their moneyness closest to 1. The left skew is the IV of the option whose put strike 

price has moneyness closest to 0.95 minus the ATM IV, and the right skew is the IV of the option 

whose call strike price has moneyness closest to 1.05 minus the ATM IV. Note that the ATM IV 
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is generally very close to VIX. The regression model of the estimated RRA against the IV smile 

characteristics of market maker and of investor respectively are:  

                                                 

1 2 3

1 2 3

ˆ

ˆ

Mm t t t t

Inv t t t t

ATMIV LS RS

ATMIV LS RS

     

     

    

    

.                                         (5.1)                            

The regression results in Table 12 show that the estimated RRAs of market maker and investor are 

negatively related to the ATM IV. This negative relation is closely related to the previous 

observations about the relation of the spreads to RRA. 

[Insert Table 12 here] 

6. Conclusions  

This study derived the level of risk aversion implied by the S&P 500 index option market over the 

time period of 1996 to 2016, under the market maker’s two-asset portfolio selection and option 

pricing problems in the presence of proportional transaction costs in trading the underlying asset. 

The discretization of asset dynamics and the utility maximization approach were used under the 

assumption that the market maker has a finite investment horizon which exceeds the option 

maturity, following the methodology of Czerwonko and Perrakis (2011, 2016a, 2016b).  

This is the first empirical study that recognizes the existence of proportional transactions costs in 

the problem of market making in the index option market. The applied model suggests that periods 

of high risk aversion implied by the option prices and their spreads precede adverse market events; 

we also observe a plausible result that the investor who wishes to trade with the market maker has 

a higher RRA than the market maker.  

We also observe several counterintuitive results such as the non-monotonicity of the model-

implied option spreads in RRA and the negative relation of RRA to the volatility level implied by 

the market option prices. This implies several issues in the modeling that need to be taken into 

account in future studies. Besides the properties of the value function related to the investment 

horizon mentioned in the preceding section, which cause non-monotonicity of the implied spreads 

in RRA, a problematic assumption used in this study is the re-derivation of the NT region at each 

new value of the volatility of the underlying index. If such a policy were applied in real life an 
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investor would incur high transactions costs due to the frequent restructuring implied by the high 

sensitivity of the NT region to the volatility. The idea behind the optimality of the simple 

investment policy is to reduce the trading frequency. It is also likely that by assuming a constant 

portfolio policy under a constant RRA for the market maker we would observe a plausible behavior 

for the RRA implied by matching the observed option prices to the option bounds. In other words, 

a more plausible set of assumptions would use a constant volatility to derive the NT region, a 

constant RRA for the market maker, and a time-varying RRA for the investor.   
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Tables and Figures 

 

Tables 

 

Table 1: Prediction Error of Monthly Volatility (1996–2016) 

The table presents the statistics of the prediction error of different methods. The prediction errors 

are calculated as the difference between the monthly estimated volatility predicted by a given 

method and the realized volatility. The Adjusted AFE model is the VIX on the observation date 

adjusted by the average forecast error cumulated from January 1990 to the given date. The 

Regression I model is estimated from the regression of the logarithm of realized volatility on the 

logarithm of VIX, with an intercept. The Regression II model is estimated from the same 

regression but without the intercept.  

Prediction Model Mean Median St. Dev. Skew Ex. Kurt. 

Adjusted AFE -0.0099 -0.0049 0.0479 -1.4990 5.7158 

Regression I -0.0154 -0.0065 0.0499 -2.4365 8.8690 

Regression II -0.0108 -0.0050 0.0482 -1.8215 6.8042 
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Table 2: Descriptive Statistics of Variables 

This table presents the statistics of variables including volatility, interest rate, dividend and price 

of S&P 500 index in Panel A, as well as the statistics of moneyness, strike price, highest closing 

bid and lowest closing ask of S&P 500 index option in Panel B. 

Panel A 

 Volatility 

Interest 

Rate Dividend 

S&P 500 

Index Price 

Mean 0.1606 0.0232 0.0015 1276.00 

Minimum 0.0541 0.0000 0.0006 606.37 

1st Percentile 0.0551 0.0001 0.0007 643.00 

5th Percentile 0.0664 0.0002 0.0009 749.50 

25th Percentile 0.1031 0.0010 0.0012 1076.80 

Median 0.1442 0.0167 0.0016 1241.00 

75th Percentile 0.1891 0.0481 0.0018 1434.80 

95th Percentile 0.3117 0.0543 0.0021 2028.70 

99th Percentile 0.4703 0.0617 0.0028 2114.60 

Maximum 0.7687 0.0626 0.0038 2125.80 

Std. Dev 0.0894 0.0218 0.0004 350.4508 

Skewness 2.6749 0.3049 0.8940 0.6568  

Kurtosis 15.1409 1.4159 6.3915 3.1846 

Observation 244 244 244 244 
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Panel B         

 Call Put 

  Moneyness    

Highest 

Closing 

Bid  

Lowest 

Closing 

Ask  

Strike 

Price  
Moneyness  

Highest 

Closing 

Bid  

Lowest 

Closing 

Ask  

Strike 

Price 

Mean 1.015 21.25 22.67 1412 0.901 11.11 12.20 1287.8 

Minimum 0.960 0.150 0.200 585.0 0.335 0.150 0.200 300.0 

1st PCTL 0.961 0.150 0.335 660.0 0.646 0.150 0.250 588.3 

5th PCTL 0.966 0.300 0.650 830.0 0.726 0.200 0.400 715.0 

25th PCTL 0.988 3.319 4.100 1155 0.839 0.750 1.300 1020 

Median 1.014 14.70 16.10 1345 0.916 3.375 4.200 1240 

75th PCTL 1.042 34.90 37.00 1623.8 0.980 15.60 17.00 1540 

95th PCTL 1.069 61.80 64.55 2115 1.028 46.47 49.00 1975 

99th PCTL 1.078 78.00 80.93 2210 1.037 66.43 69.77 2120 

Maximum 1.080 98.90 101.3 2290 1.040 86.90 89.70 2210 

Std. Dev 0.033 20.59 21.31 385.3 0.096 15.70 16.42 376.1 

Skewness 0.111 0.957 0.926 0.414 -0.746 1.869 1.833 0.323 

Kurtosis 1.909 3.076 3.000 2.452 3.310 6.149 5.992 2.430 

Observation 5919 5919 5919 5919 13016 13016 13016 13016 
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Table 3: Fixed-Horizon NT Region for Different RRAs and Volatilities 

This table presents the derived NT region of investment horizon of 10 years [ , ]T Tb b , for 15 risk 

aversion coefficients (  ) and for 6 volatilities (V) that are respectively, the minimum, 25th 

percentile, median, mean, 75th percentile and maximum of P-distributed volatility in the data set. 

Other parameters used are: riskless rate of 2.32%, transaction costs rate k  of 0.25%, and the risk 

premium of 4%. 

  
V=0.0541 V=0.1031 V=0.1442 V=0.1606 V=0.1891 V=0.7687 

Tb  Tb  Tb  Tb  Tb  Tb  Tb  Tb  Tb  Tb  Tb  Tb  

0.5 1.12 39.81 1.12 11.43 1.12 5.46 1.12 4.25 1.12 2.86 0.09 0.17 

1.5 1.12 13.76 1.12 3.06 1.20 1.32 1.00 1.02 0.69 0.78 0.03 0.06 

2.5 1.12 7.48 1.40 1.56 0.72 0.79 0.57 0.65 0.40 0.48 0.02 0.03 

3.5 1.12 4.90 1.04 1.07 0.50 0.58 0.40 0.47 0.28 0.35 0.01 0.02 

4.5 1.12 3.58 0.79 0.85 0.38 0.45 0.30 0.37 0.21 0.27 0.01 0.02 

5.5 1.12 2.80 0.64 0.70 0.31 0.37 0.25 0.31 0.17 0.22 0.01 0.02 

6.5 1.12 2.29 0.54 0.60 0.26 0.32 0.21 0.26 0.15 0.19 0.01 0.01 

7.5 1.12 1.93 0.46 0.52 0.23 0.28 0.18 0.23 0.13 0.16 0.01 0.01 

8.5 1.14 1.67 0.41 0.46 0.20 0.24 0.16 0.20 0.11 0.14 0.01 0.01 

9.5 1.36 1.46 0.36 0.42 0.18 0.22 0.14 0.18 0.10 0.13 0.00 0.01 

10.5 1.24 1.31 0.33 0.38 0.16 0.20 0.13 0.16 0.09 0.12 0.00 0.01 

15.5 0.85 0.88 0.22 0.26 0.11 0.14 0.09 0.11 0.06 0.08 0.00 0.01 

20.5 0.63 0.67 0.16 0.20 0.08 0.10 0.07 0.08 0.05 0.06 0.00 0.00 

25.5 0.51 0.55 0.13 0.16 0.07 0.08 0.05 0.06 0.04 0.05 0.00 0.00 

30.5 0.42 0.46 0.11 0.13 0.05 0.07 0.04 0.05 0.03 0.04 0.00 0.00 
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Table 4: Mid-point of NT region at Option Maturity for Different RRAs and Volatilities 

This table presents the midpoint of derived NT region 0

'Tb  ( ' '

2

T Tb b
 )  at option maturity 'T for 

15 risk aversion coefficients ( ) and for 6 volatilities (V)  that are respectively, the minimum, 25th 

percentile, median, mean, 75th percentile and maximum of P-distributed volatility in the data set. 

Other parameters used are: riskless rate of 2.32%, transaction costs rate k  of 0.25%, and the risk 

premium of 4%. 

  
V=0.0541 V=0.1031 V=0.1442 V=0.1606 V=0.1891 V=0.7687 

 0

'Tb   0

'Tb   0

'Tb   0

'Tb  0

'Tb    0

'Tb  

0.5 20.46 6.27 3.29 2.68 1.99 0.13 

1.5 7.43 2.09 1.26 1.01 0.73 0.04 

2.5 4.29 1.48 0.75 0.61 0.44 0.03 

3.5 3.01 1.05 0.54 0.43 0.31 0.02 

4.5 2.35 0.82 0.42 0.34 0.24 0.01 

5.5 1.96 0.67 0.34 0.28 0.20 0.01 

6.5 1.70 0.57 0.29 0.23 0.17 0.01 

7.5 1.52 0.49 0.25 0.20 0.15 0.01 

8.5 1.40 0.43 0.22 0.18 0.13 0.01 

9.5 1.41 0.39 0.20 0.16 0.11 0.01 

10.5 1.28 0.35 0.18 0.14 0.10 0.01 

15.5 0.86 0.24 0.12 0.10 0.07 0.00 

20.5 0.65 0.18 0.09 0.07 0.05 0.00 

25.5 0.53 0.14 0.07 0.06 0.04 0.00 

30.5 0.44 0.12 0.06 0.05 0.03 0.00 
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Table 5: Proportional Spread for the Call Option 

This table presents the derived call option prices in the form of proportional spread, which is 

calculated as  
2( )

( )

a b

a b

c c

c c




, for 15 different RRAs and for both depth of the quote cn  of 0.2 and of 

0.1.  Other parameters used are: riskless rate of 2.32%, estimated volatility of 16.06%, dividend 

yield of 0.15%, transaction costs rate k  of 0.25%, and the risk premium of 4%. Investment horizon 

is 10 years.  

  

cn = 0.2 cn = 0.1 

K/S=0.975 K/S=1 K/S=1.025 K/S=1.05 K/S=0.975 K/S=1 K/S=1.025 K/S=1.05 

0.5 12.86 20.70 38.93 90.51 21.40 36.69 72.82 175.60 

1.5 6.58 10.97 21.25 50.71 11.04 19.71 40.36 99.42 

2.5 5.98 9.70 18.09 42.06 9.23 16.36 33.19 81.32 

3.5 6.30 9.77 17.32 38.91 8.78 15.27 30.45 73.88 

4.5 6.81 10.18 17.27 37.52 8.69 14.85 29.12 69.94 

5.5 7.40 10.74 17.54 36.91 8.77 14.74 28.42 67.58 

6.5 8.04 11.38 17.98 36.74 8.94 14.78 28.07 66.06 

7.5 8.70 12.08 18.52 36.81 9.17 14.93 27.92 65.06 

8.5 9.38 12.80 19.12 37.06 9.42 15.14 27.90 64.38 

9.5 10.07 13.55 19.77 37.41 9.70 15.39 27.98 63.92 

10.5 10.77 14.31 20.46 37.84 10.00 15.68 28.12 63.63 

15.5 14.33 18.23 24.13 40.65 11.62 17.35 29.33 63.48 

20.5 17.94 22.24 27.99 43.95 13.35 19.20 30.94 64.34 

25.5 21.55 26.27 31.92 47.42 15.12 21.14 32.72 65.59 

30.5 25.15 30.31 35.87 50.99 16.91 23.11 34.58 67.05 
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Table 6: Proportional Spread for the Put Option 

This table presents the derived put option prices in the form of proportional spread, which is 

calculated as  
2( )

( )

a b

a b

p p

p p




, for 15 different RRAs and for both depth the quote cn  of 0.2 and of 0.1. 

Other parameters used are: riskless rate of 2.32%, estimated volatility of 16.06%, dividend yield 

of 0.15%, transaction costs rate k  of 0.25%, and the risk premium of 4%. Investment horizon is 

10 years.  

  

cn = 0.2 cn = 0.1 

K/S=0.95 K/S=0.975 K/S=1 K/S=1.025 K/S=0.95 K/S=0.975 K/S=1 K/S=1.025 

0.5 100.05 37.49 18.14 10.81 198.34 72.92 33.96 19.16 

1.5 60.83 22.89 11.12 6.54 119.66 43.61 20.03 11.00 

2.5 50.27 19.37 9.77 5.89 97.93 35.86 16.62 9.19 

3.5 46.17 18.39 9.73 6.15 88.76 32.80 15.45 8.70 

4.5 44.20 18.16 10.05 6.59 83.84 31.27 14.97 8.59 

5.5 43.18 18.29 10.52 7.12 80.83 30.43 14.80 8.63 

6.5 42.67 18.60 11.08 7.69 78.85 29.97 14.80 8.77 

7.5 42.48 19.03 11.69 8.29 77.49 29.72 14.90 8.96 

8.5 42.48 19.52 12.32 8.90 76.52 29.62 15.07 9.19 

9.5 42.62 20.07 12.98 9.53 75.83 29.62 15.27 9.44 

10.5 42.86 20.65 13.66 10.17 75.33 29.69 15.51 9.70 

15.5 44.82 23.82 17.16 13.41 74.43 30.60 16.96 11.16 

20.5 47.39 27.20 20.76 16.69 74.75 31.95 18.61 12.73 

25.5 50.18 30.67 24.38 19.98 75.55 33.48 20.34 14.34 

30.5 53.08 34.16 28.00 23.27 76.62 35.09 22.10 15.96 
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Table 7: Call Option Bounds for Investment Horizon of One and of Ten Years  

This table presents the call lower and upper bounds for the overall investment horizon T of one 

year and of ten years and for the depth the quote cn  of 0.2, using the risk aversion coefficient ( ) 

of 2 and 4. The proportional spread is calculated as  
2( )

( )

a b

a b

c c

c c




. Other parameters used are: riskless 

rate of 2.32%, estimated volatility of 16.06%, dividend yield of 0.15%, transaction costs rate k  of 

0.25%, and the risk premium of 4%. 

  =2  =4 

K/S Bid Ask 
Spread 

(%) 
Bid Ask 

Spread 

(%) 

T=1 year       

0.95 5.23 5.45 4.02 5.21 5.46 4.71 

0.975 3.25 3.45 5.91 3.24 3.45 6.50 

1 1.73 1.91 9.82 1.73 1.91 9.87 

1.025 0.79 0.94 17.06 0.79 0.95 18.75 

1.05 0.28 0.41 37.52 0.27 0.43 44.22 

T=10 years      

0.95 5.20 5.42 4.08 5.18 5.44 4.73 

0.975 3.22 3.42 5.99 3.21 3.43 6.54 

1 1.71 1.89 9.97 1.71 1.88 9.95 

1.025 0.78 0.94 19.08 0.78 0.93 17.24 

1.05 0.27 0.42 45.12 0.28 0.41 38.07 
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Table 8: Statistics of Estimated Spread and Market Spread for Call Option 

This table presents statistics of derived spread and market spread of the call option, and the 

proportional spread is calculated as  
2( )

( )

a b

a b

c c

c c




 . The market call option prices are found with 

moneyness nearest to 0.95, 1, and 1.05 at each observation date. The derived call option prices that 

best match with the market prices are selected. 

Spread (%) 
K/S=0.95 K/S=1 K/S=1.05 

Market Derived Market Derived Market Derived 

Mean 3.86 12.44 6.61 22.40 28.21 86.86 

Min 1.58 2.45 1.54 -2.88 1.40 7.25 

5th PCTL 2.46 7.06 3.09 8.75 5.83 17.97 

25th PCTL 3.07 10.21 4.89 15.62 11.76 34.79 

Median 3.61 12.42 6.38 20.89 1.18 61.40 

75th PCTL 4.28 14.87 8.12 25.48 40.00 135.36 

95th PCTL 6.34 17.29 10.82 46.02 76.58 199.89 

99th PCTL 8.29 19.57 15.07 57.53 109.55 199.93 

Max 8.86 21.52 16.39 59.91 140.00 199.93 

Mode 2.92 2.45 5.90 -2.88 46.15 7.25 

Std. Dev 1.21 3.11 2.43 10.57 23.63 65.87 

Observation 244 244 244 244 244 244 
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Table 9: Statistics of Estimated Spread and Market Spread for Put Option 

This table presents statistics of derived spread and market spread of the put option, and the 

proportional spread is calculated as  
2( )

( )

a b

a b

p p

p p




 . The market put option prices are found with 

moneyness nearest to 0.95, 1, and 1.05 at each observation date. The derived put option prices that 

best match with the market prices are selected. 

Spread (%) 
K/S=0.95 K/S=1 K/S=1.05 

Market Derived Market Derived Market Derived 

Mean 13.91 106.43 6.50 23.84 4.39 7.68 

Min 2.02 -19.78 1.23 1.43 1.93 -1.68 

5th PCTL 5.35 20.69 3.12 9.32 2.84 3.76 

25th PCTL 9.05 41.72 4.95 14.74 3.58 5.52 

Median 12.15 93.09 6.43 20.71 4.07 7.47 

75th PCTL 18.06 186.82 8.00 27.82 4.75 9.34 

95th PCTL 26.60 199.96 10.15 54.62 6.95 12.95 

99th PCTL 32.49 199.96 12.56 75.08 9.06 15.20 

Max 34.48 199.97 14.12 82.21 10.22 17.14 

Mode 18.18 -19.78 6.45 1.43 1.93 -1.68 

Std. Dev 6.55 68.69 2.23 14.09 1.31 2.90 

Observation 244 244 244 244 244 244 
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Table 10: Statistics of Estimated RRA of the Market Maker 

This table displays the statistics of the estimated RRA of market maker ˆ
Mm  for the depth of the 

quote cn  = 0.2 and cn  = 0.1. There are 244 RRAs estimated from fitting the derived option prices 

with observed market prices. In the base case, the RRA is estimated using all the derived option 

prices, whereas in other four cases, namely call, put, bid, ask only case, the RRA is estimated 

exclusively using derived call bid-ask prices, put bid-ask prices, bid of call and put prices, ask of 

call and put prices, respectively. 244 corresponding riskless rates, estimated volatilities, and 

dividend yields are used. The transaction costs rate k  is 0.25%, the risk premium is 4%, and the 

investment horizon is 10 years.  

 Base Case Call Only Put Only Bid Only Ask Only 

cn  0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 

Mean 10.61 17.01 14.53 18.16 9.66 16.25 14.36 17.17 13.94 18.38 

Minimum 0.50 0.50 0.50 1.48 0.50 0.50 0.81 0.92 0.50 0.50 

25th PCTL 2.00 5.57 4.85 8.61 1.49 4.13 5.14 8.37 2.18 5.85 

Median 6.24 16.49 10.19 17.09 3.60 12.27 10.42 15.35 9.10 21.45 

75th PCTL 16.57 30.49 25.97 30.49 16.88 30.49 23.81 29.86 30.49 30.49 

95th PCTL     30.50 30.50 30.50 30.50 30.50 30.50 30.50 30.50 30.50 30.50 

Maximum 30.50 30.50 30.50 30.50 30.50 30.50 30.50 30.50 30.50 30.50 

Mode 0.50 0.50 30.50 30.50 0.50 0.50 0.50 30.50 30.50 0.50 

Std. Dev 10.37 11.87 10.84 10.54 10.97 12.58 10.43 10.04 12.43 12.20 

Observation 244 244 244 244 244 244 244 244 244 244 
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Table 11: Statistics of Estimated RRA of the Investor 

This table displays the statistics of the estimated RRA of investor Inv  for the depth of the quote 

cn  = 0.2 and cn  = 0.1. There are 244 RRAs estimated from fitting the derived option prices with 

observed market price reversely. In the base case, the RRA is estimated using all the derived option 

prices, whereas in other four cases, namely call, put, bid, ask only case, the RRA is estimated using 

derived call bid-ask prices, put bid-ask prices, bid of call and put prices, ask of call and put prices, 

respectively. 244 corresponding riskless rates, estimated volatilities, and dividend yields are used. 

The transaction costs rate k  is 0.25%, the risk premium is 4%, and the investment horizon is 10 

years.  

 Base Case Call Only Put Only Bid Only Ask Only 

cn  0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 

Mean 15.98 22.74 14.64 19.11 15.17 21.15 12.68 17.34 17.62 23.23 

Minimum 0.50 0.50 0.50 0.50 0.50 0.50 0.50 1.43 0.50 0.50 

25th PCTL 5.70 15.74 4.42 8.75 3.93 9.83 4.77 8.58 6.16 16.72 

Median 15.50 30.49 10.36 20.39 10.49 30.49 8.58 15.51 18.71 30.49 

75th PCTL 29.77 30.49 30.34 30.49 30.49 30.49 19.65 29.48 30.49 30.49 

95th PCTL     30.50 30.50 30.50 30.50 30.50 30.50 30.50 30.50 30.50 30.50 

Maximum 30.50 30.50 30.50 30.50 30.50 30.50 30.50 30.50 30.50 30.50 

Mode 0.50 30.50 0.50 0.50 0.50 0.50 30.50 30.50 0.50 0.50 

Std. Dev 11.18 10.61 11.36 10.85 12.14 11.24 9.61 9.94 11.64 10.61 

Observation 244 244 244 244 244 244 244 244 244 244 
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Table 12: Summary of Regression results for RRA against Volatility Smile Characteristics 

This table presents the results for the regression of RRA on volatility smile characteristics for both 

market maker and investor:  

1 2 3

1 2 3

ˆ

ˆ

Mm t t t t

Inv t t t t

ATMIV LS RS

ATMIV LS RS

     

     

    

    

’ 

where   is the intercept, AIM IV is at-the-money implied volatility, LS is left skew and RS is 

right skew.  Values presented in brackets are t-values.  

Dependent Variable ˆ
Mm  ˆ

Inv  

cn  0.2 0.1 0.2 0.1 

Intercept 26.18*** 43.07*** 41.06*** 49.68*** 

(7.76) (11.36) (12.74) (17.08) 

ATM IV -0.48*** -0.61*** -0.72*** -0.79*** 

(-5.38) (-6.06) (-8.39) (-10.18) 

LS -1.19 -3.69*** -2.36*** -2.85*** 

(-1.54) (-4.24) (-3.20) (-4.27) 

RS 0.64 -0.26 0.74 0.17 

(0.95) (-0.34) (1.15) (0.29) 

Observation 244 244 244 244 

*** Significant at 99% Confidence level  

**   Significant at 95% Confidence level 
 

*     Significant at 90% Confidence level 
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Figures 

 

Figure 1. 

 

 

Figure 1: Value Functions for RRA of Four against the Percentage of the NT Region 
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Figure 2. 

 

 

Figure 2: Estimated Risk Aversion of Market Maker and Volatility (1996–2016) 
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Figure 3.  

 

 

Figure 3: Estimated Risk Aversion of Investor and Volatility (1996–2016) 
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Figure 4.  

 

Figure 4: Estimated Risk Aversion of Market Maker and S&P 500 Index Price (1996–2016) 
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Figure 5: 

 

Figure 5: Estimated Risk Aversion of Investor and S&P 500 Index Price (1996–2016)    
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Appendix  

 

Table A1: List of Adverse Market Events in the United States (1996–2016) 

This table presents 10 major adverse market events in the United States between 1996 to 2016. 

Time (YYYY-MM) Market Event 

1997-10 Asian Financial Crisis affected U.S. 

2000-03 Dot-com Bubble 

2001-03 Early 2000s Recessions 

2001-09 9-11 Attacks 

2002-09 Stock Market Downturn 

2007-10 U.S. Bear Market 

2008-10 Financial Crisis 2008 

2010-05 Flash Crush (U.S.)  

2011-08 Stock Market Fall 

2015-08 U.S. Stock Market Sell-off 
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Table A2: Regression results for RRA of Market Maker against S&P 500 Prices and Volatility 

This table presents the results for the regression of market maker’s RRA on S&P 500 Prices and 

Volatility:  

1 2
ˆ
Mm t t tS Vol        , 

where   is the intercept, tS  is the S&P 500 price, and tVol  is the P-distributed volatility. Values 

presented in brackets are t-values.  

Dependent Variable ˆ
Mm  

cn  0.2 0.1 

Intercept 30.63*** 40.36*** 

(10.49) (12.05) 

S&P 500 prices –0.0077*** –0.0093*** 

(–4.36) (–4.56) 

Volatility –63.39*** –71.83*** 

(–9.15) (–9.04) 

Observation 244 244 

*** Significant at 99% Confidence level 

**   Significant at 95% Confidence level 

*     Significant at 90% Confidence level 

 


