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NON-ISOTRIVIAL ELLIPTIC SURFACES WITH NON-ZERO AVERAGE ROOT
NUMBER

SANDRO BETTIN, CHANTAL DAVID, AND CHRISTOPHE DELAUNAY

ABSTRACT. We consider the problem of finding non-isotrivial 1-parameter families of elliptic curves
whose root number does not average to zero as the parameter varies in Z. We classify all such families
when the degree of the coefficients (in the parameter t) is less than or equal to 2 and we compute the
rank over Q(¢) of all these families. Also, we compute explicitly the average of the root numbers for
some of these families highlighting some special cases. Finally, we prove some results on the possible
values average root numbers can take, showing for example that all rational number in [—1,1] are
average root numbers for some non-isotrivial 1-parameter family.

1. INTRODUCTION

This article is concerned with families of elliptic curves defined over Q such that the root number
of the specializations does not behave, on average, as expected in the classical cases.

More precisely, by a family of elliptic curves, we mean an elliptic surface over Q or, equivalently, an
elliptic curve defined over Q(¢) given by a Weierstrass equation

(1.1) Fiy? =2 +ax(t)a? + as(t)x + ag(t)

where as(t),a4(t) and ag(t) are polynomials with coefficients in Z. We denote by rx the rank of F
over Q(t).

For each t € Q, we denote by F(t) the associated curve over Q defined by the specialization at ¢ of
F. Then, for all but finitely many values of ¢, F(¢) is an elliptic curve defined over Q and we let r#(t)
and £x(t) denote its rank over Q and its root number respectively. The parity conjecture predicts that
(=1)"®) = £x(t) and Silverman’s specialization theorem gives that r(t) > 77 for all but finitely
many values of . One also conjectures that, up to a zero density subset of Q, r is the smallest integer
compatible with the parity conjecture and thus that rx(t) is equal to either rz or rz 4+ 1 depending
on the parity given by ez (t).

We define the average root number of F over Z as

(1.2) Ava(er) = Jim LS ),

if the limit exists (and where we define ex(t) = 0 if F(t) is not an elliptic curve).!

The work of Helfgott ([Hel03, Hel09]) implies conjecturally (and unconditionally in some cases)
that Avz(ex) = 0 as soon as there exists a place, other than — deg, of multiplicative reduction of F
over Q(t). Indeed, assuming the square-free sieve conjecture, one sees that in this case ex(t) behaves
roughly like A(M(¢)) where A is the Liouville’s function and M (¢) is a certain non-constant square-free
polynomial, so that Chowla’s conjecture implies that Avy(ex) = 0. This is the typical case, which
occurs for “most” families F.

2010 Mathematics Subject Classification. 11G05, 11G40.
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L Alternatively one could define Avz(ez) with the symmetric average % >t <7 replaced by % 2o<i<r- All the
same considerations we make in the paper works in this case as well mutatis mutandis.
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When the family F has no place of multiplicative reduction (other than possibly — deg), the average
root number could be non-zero. The case when the family is isotrivial?, and more precisely the case
of quadratic twist families, has been the subject of several studies in the literature (see e.g. [Roh93,
Riz99, DD09, KMR13]). There are however very few examples of non-isotrival families with Avy(er) #
0. There is the Washington’s family ([Was87]) for which Rizzo proved ([Riz03]) that ex(t) = —1
for all t € Z. Rizzo ([Riz03]) also gave an example of a family F with j-invariant jz(t) = t and
Avz(er) ¢ {—1,0,1} (however for this family the degree of the polynomials a;(t) of the model given
in the form (1.1) are quite large: for example degag(t) = 8). Romano [Rom05] considered a slight
generalization of Washington’s family obtaining an infinite sequence of families F; all with rational
average root number and with lims_, o, Avz(er,) = %. Finally, Helfgott ([Hel09]) gave an example of a
non-isotrivial family with average root numbers over Q not in {—1,0,1} (the degree of the coefficients
a;(t) are quite large in this case too).?

In this paper we study non-isotrivial families F of elliptic curves with non-zero Avz(ex) in a more
systematic way, with particular attention to the case where we have control on the rank of F over
Q(t). One of our first motivations was to illustrate several questions on elliptic curves and on their
associated L-functions where Avy(ex) appears naturally as well as to be able to provide numerical
experimentation. For example, in a forthcoming work we show under several conjectures that the
one-level density function corresponding to a family F is

W]:(t) _ 7"]:(50(7') n (1 + (_1)7‘;: AVZ(E]:)>WSO(cven) (T) + (1 - (_1)7;: AVZ(E}-))WSO(odd)(T)

where dg is the Dirac measure at 0 and Wgo(even) (tesp. Wso(odd)) is the one-level density function of
the classical orthogonal group of even size (resp. odd size). We can also rewrite Wr as

Wi(t) = (rf L= (7 Ava(er)

2
1—(—1)77: sz(E]:)

sin 27T

)

TF

)60(7)4‘1-{-( 1) AVZ(SJ:> py—-
where rx + 5 is (conjecturally) the average rank of the specialization. Notice that if
Avz(er) € {0,£1}, then Wx(t) doesn’t reduce to Wy (even) OF W50 (even) Plus some multiple of do(t),
and so Wx(t) is not the 1-level density function of one of the classical compact groups (of course one
can divide the family into two subfamilies according to the sign of ex(t) going back to Wgo(even) OF
W50 (even); see [Far05] and [Sar08] for two proposed definitions of “families of L-functions” where this
division is requested, see also [Kow13] for a discussion on families). Another interesting case is that of
“elevated rank”, i.e. when Avz(ex) = —(—1)"7 and so almost all specializations satisfy rz(t) > rx.
Notice that when this happens then Wx(t) is, up to Dirac functions, equal to the 1-level density of the
orthogonal group with size of parity opposite to that of rx.

The knowledge of Avy(ex) is also useful for the study of the average behavior of the Selmer and
Tate-Shafarevich groups of F(t). There are several conjectures and heuristics for questions on this topic
([BKL*15], [PR12], [DJ14]). For example, let p be a prime number, one of the classical conjecture
predicts the probability that the p-part of the Tate-Shafarevich group is trivial or not; this original
prediction also depends on the rank rz(t) (at least when rz = 0 and Avgz(ez) = 0 and so when rx(¢) = 0
or 1 almost always). Now, the p-Selmer group, denoted by Sel,(F(t)), and the Tate-Shafarevich group,
denoted by II(F(t)), are related by the following exact sequence

1= F(O)(Q/pF()(Q) — Sel,(F(t)) — HI(F(#))[p] = 1

so that | Sel,(F(t))| = p"= | (F(t))[p]| if F(¢)(Q) has no p-torsion point (in general, | Sel,(F(t))| =
p'F O+ (F(t))[p]| where d is the dimension of F(t)(Q)[p] over F,,). So, the p-divisibility of | Sel,, (F(t))]

2Isotrivial means that the j-invariant of F is constant. For isotrivial families, one can take, for instance, the quadratic
twist of a fixed elliptic curve F/Q by a polynomial d(t) € Z[t], E¥Y): d(t)y? = y? = 2°® + agz? + asx + ag, where a; € Z
for ¢ = 2,5,6. In this case, it is easier to deal with the root number, for example if d(t) is coprime with the conductor of
E, then the root number is simply given by some congruence relations.

3See the end of the introduction for the precise definition of the average root number over Q.
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and |II(F(t))[p]| are correlated and depend on the rank, on the parity of the root number and so on the
average root number. In the case where 7z (t) > 0, the group Sel,(F(t)) is forced to be large because
of the presence of rx(t) generic points in F(¢)(Q) and one can naturally wonder if those rx(¢) points
do contribute in II(F(¢))[p] or not (the answer seems to be no as discussed in a forthcoming study).

We are then led to define the following notions.

Definition 1. Let F be a family of elliptic curves with rank rx over Q(t). We say that

o F is potentially parity-biased (or also potentially biased) over Z if it has no place of multiplica-
tive reduction except possibly for the place corresponding to — deg;

o F is parity-biased over Z if Avy(er) exists and is non-zero;

o F has elevated rank over Z if Avy(ex) exists and Avy(er) = —(—1)"7.

We shall describe in Section 2 the relation between potentially parity-biased and parity-biased
families.

In this article we focus on potentially parity-biased families of elliptic curves. In particular, we
classify all non-isotrivial potentially parity-biased families with dega;(t) < 2 for i = 2,4,6. We prove
that there are essentially 6 different classes of such families* (cf. Theorem 7 and Theorem 8):

Fo:y? = a® + 3ta? + 3sz + st, with s € Zso;

Gu: wy? = 2 4 3t + 3tz + t2, with w € Zo+o;

Hy: wy® = 2% + (8% — Tt + 3)2> — 3(2t — ) + (t + 1), with w € Z_0;
Ty wy? = a® + t(t — )2 — 6t(t — 6)z + 2¢(5t — 27), with w € Zs;
Tmw: wy? = 23 + 3t2z® — 3mtz + m?, with m,w € Z4o.

(1.3)

Losw: wy? = 2% + 3(t2 + v)z? + 3sz + s(t? +v), withv € Z,s,w € ZLzo;

In Section 3 we will compute the ranks and give generic points for all of families given in (1.3). We will
see that the rank over Q(t) of all these families is either 0 or 1 (depending on the parameters) except
for the family £, s, for which the rank can also be 0, 1, 2, or 3. We remark that both £, s ,(¢) and
Gw(t) could be expressed in terms of Fy. Indeed, we have that L, s, (¢) and G, (t) are isomorphic to
Fow2 (w(t? +v)) and Fy,2 (wt) respectively.
We can also compute the root number for all the specializations of the above families (the results are
quite long to express, so we only give the ones for F, is Appendix A). We use these results to compute
their average root numbers in some representative cases, pin-pointing the cases of parity-biased families
and of families with elevated rank over Z (we are able to provide families of elliptic curves of these types
with rank equal to 0,1,2 and 3). We postpone the precise statements of our results to Section 2, 3
and 4. We state here only some examples.

For a € Z+o we define

Wa: y? = 2% +ta? — at + 3a)z + a®.

Notice that the family W, is a particular case of the family Fs. Indeed, one has that W, (¢) is isomorphic
to F_gq2/4(t/3 4 a/2) or, equivalently, to F_gs442 (12t + 18a) if one wants a model defined over Z. In
Section 3 we shall see that all the families F; which have rank 1 are all of type W,. We will study
the root number and the average root number of W, in full generality and extract from them several
consequences.

In the following the letter p will always denote a prime number. Also, if n € Zo then we let n, be
such that n = p*»(Mn, where v,(n) is the p-adic valuation of n.

4By the work of Helfgott one also has that, under the square-free sieve and Chowla’s conjectures for homogeneous
polynomials in two variables, the only non-isotrivial families with dega;(t) < 2 for ¢ = 2,4,6 which can have non-zero
average root number over Q are Fs and G,,. See Corollary 4 for the precise statement.
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Theorem 1. Let a € Z,o. Then W, has rank 1 over Q(t) if and only if a = +k?* for some k € Z o,
and rank 0 otherwise. Also, ey, (t) is periodic modulo 4|a| and one has

t T+, (1)
(1.4) ew, (1) = —sa(t) ged(a,t) ] (—1)1%(“(;?) (mod 4),

ag
Pl ged(ag,t)

where s4(t) is defined in Proposition 15, and is a periodic function modulo Qu2(a)+2,

number of the family W, is

The average root

AVZ(EWH) = - H EWa (p)7

p|2a
where Eyy, (p) is defined in Proposition 17. In particular, W, is a parity-biased family if and only if
va(a) # 1. Furthermore, if a is odd and square-free then the average root number of W, is
—1/a ifa=1 (mod 8),

1/(2a) ifa=3 (mod 8),
(1.5) Avz(ew,) = —1/(2a) ifa=5 (mod8),
1/a  ifa=7 (mod 8).

The family W, can be seen as a generalization of the well-known Washington’s family associated to
simplest cubic field and defined by
Wit y? =a2® +ta? — (t+3)z + 1.

One can see that W; has rank one over Q(¢) (the point (0,1) is a point of infinite order) and Rizzo
proved that for all ¢ € Z one has £1(t) = —1 ([Riz03]), whence Avz(ew,) = —1. As a consequence of
Theorem 1, one can see that | Avyz(ew,)| = 1 if and only if @ = 41 and in that case Avy(ew,) = —1
and the rank of W, over Q(¢) is 1. So, W, can not directly provide families with elevated rank over
Z. However, one can obtain examples of families with elevated rank using subfamilies of W, ; indeed,
in Section 4.1.3 we shall prove the following result.

Corollary 2. Let p be a prime with p = £1 (mod 8), and let a,b € Z be (non zero) quadratic residue
and quadratic non-residue modulo p respectively. Then, the families

W;ya Pl =22+ (pt + a)x2 — (pSt + ap® + 3p4) +p°
Wi y? =2 + (pt + b)a® — (p°t + 3p® + pb)x + p*
are both families with elevated rank over Z. More precisely, W, , has rank 1 over Q(t) with ey (t) =1

Jor allt € Z, and W7, has rank 0 over Q(t) and e+ (t) = —1 for all t € Z.

We in fact have Wy ,(t) = Wy2(pt + a) and Wy (t) = Wy(pt +b). One can also use Wy(t) to

construct families with elevated rank and with rank 2 or 3 over Q(t) (see Section 4.1.3).
We shall also focus on another subfamily of F5, namely the subfamily

V, : y* =2 4 3ta? + 3atx + a*t.
Notice that V,(t) is isomorphic to Fy,2 (4t — 2a).
Theorem 2. Let a € Zxg. Then,

B vp(O)+vp(t—a)tvp(a)
) = w0 ) T (52)(2) 61 vp(t = a) = () + Buy(a),

Ogvp€a2)ivp(t) ! if 6 | vp(t — a) = vy(t) + 3up(a),
3t, . .
8 H - (7) if vy(t) is even
s (3) o) is odd,

0< v, (t)<vp(a)
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where wo(t) and ws(t) are given by Proposition 43 and 42 of Appendix B. Also,
Avz(ey,) = — H Ev, (p),
p prime

where By, (p) are defined in Proposition 24. In particular, V, is a parity-biased family if and only if
va(a) # 1. Finally, if a = £1 we have

1 dip -3 +p
PR Y AR R
p=>5

p=2 (mod 3)

(1.6)

We remark that the same method used to prove (1.5) and (1.6) can also be used for computing
the average root number for all the other families given in (1.3) (conditionally on the square-free sieve
conjecture in the case of £, s, and unconditionally in all other cases, cf. Remark 1).

We are also able to obtain new results on the possible numbers that can arise as average root
numbers. Before stating them we need some more notation.

We let § be the set of all families of elliptic curves over Q, and §; and §’ be the subset of § consisting
of the isotrivial and of the non-isotrivial families respectively. Furthermore, we let §z be the subset of
§ consisting of the families F such that Avy(er) exists. Similarly, define §iz and §,. By the work
of Helfgott (see Theorem 6 below) we know, under Chowla’s and the square-free sieve conjectures (see
the next section for their statements), that § = §z and thus also §; = iz and § = §7,. Furthermore,
we indicate by §, the set of families F such that ex(t) is a periodic function for almost all ¢t € Z (i.e.
the set of exceptional ¢ with [t| < T is o(T) as T — o0).

Finally, with a slight abuse of notation we write Avz(§z) := {Avz(ex) | F € §z} and similarly for
Avy(Fiz), ete.

Theorem 3. We have
{AVz(€_7:) | F e Sz} o0nN [—1, 1].

In particular, Avy(§z) is dense in [—1,1]. Moreover, the same result holds true also for Avy(FY,) and
Avy(Fiz).

Under Chowla’s and the square-free sieve conjectures we can also classify all average root numbers
that can arise from families with periodic root number.

Theorem 4. We have
(1.7) AV(Fpz) 2 {h/k € QN [-1,1] | h odd, and if k even then |h/k| <1 — 27V},
Moreover, assuming Conjgecture 1 and Conjecture 2, the equality holds.

We can also obtain an analogue of Theorem 3 in the case of averages over Q. Analogously to
Avy(er), we define

. s
(18) AVQ(E]:) = TJLI};O W Z E]—'(T/S)
Ir|,Is|<T,
s>0,(r,s)=1

if the limit exists. Also, we let Fg be the set of families 7 where Avg(F) exists, and §i g and §g be
the subsets of §g consisting of the isotrivial and non-isotrivial families.

Rizzo [Riz99], building on the work of Rohrlich [Roh93], proved that Avg(Fi o) (and thus Avg(Fg))
is dense in [—1,1]. In a similar direction, Klagsbrun, Mazur and Rubin [KMR13] prove an analogous
result for the parity of the ranks of the 2-Selmer groups in isotrivial families defined over number fields
(with techniques which are completely different from the ones of the present paper). The following
theorem refine Rizzo’s result, showing Avg(Fig) actually contains [—1,1] N Q. Moreover, also in this
case we are able to address the case of non-isotrivial families, showing that Avg(Fq) is dense in [—1, 1].
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Theorem 5. We have that Avg(8G) is dense in [—1,1]. Moreover, we have that Avz(§i ) 2 [-1,1]NQ
(and thus, a fortiori, Ave(Fg) 2 [-1,1] N Q).

Notice that in the case of Avg(Fg) we do not get [—1,1] N Q. We remark that there are reasons to
believe that in fact Avg(Fo)NQ = {0}. Indeed, by the work of Helfgott (cf. [CCHO5, Appendix A]) and
Desjardins [Des16a] one has (conjecturally) that for a non-isotrivial family F with Avg(ex) # 0, the
average root number of F over Q can be written as a convergent Euler product Avg(ex) = oo [],(1-7p)
for some co, € QN [—1,1] and some 7, which are rational polynomials in p satisfying 0 < r,(p) < 1,
rp, < p~2 for all p and r, > 0 for infinitely many p.% In particular, one has Avg(er) # +1, and one
also expects that such an infinite product is not algebraic.

We shall prove Theorem 3, 4 and 5 by considering subfamilies of W,(t) where both ¢t and the
parameter a are replaced by polynomials in Z[t]. By Theorem 1, we know exactly the root number
for all the elliptic curves in these families, and so the problem becomes that of choosing suitably these
polynomials. In the case of averages over Q, we can reduce to the case where the oo-factor of the root
number essentially determines € #(¢), whereas in the the case of Theorem 3 we work with the p-factor of
the root number for a suitably chosen p. The proof of Theorem 4 is a bit more elaborate and requires
dealing with the factors of the root number corresponding to all prime divisors of 6k.

The organization of the paper is as follow. In Section 2 we discuss more in depth the work of Helfgott
and we give our classification of the potentially parity-biased families with coefficients of low degree.
In Section 3 we compute the ranks for the families given in (1.3). In Section 4 we compute the average
root numbers of the families W, and V,. In Section 5 we use the results proven in Section 4 to prove
Theorem 3, 4 and 5. Finally, in Appendix A and B we give the local root numbers of the families
Fs and V,. Finally, this work led to many technical computation (root number, local average of root
number, ...), we used the PARI/GP software ([PAR16]) to intensively check them when it was relevant.

Acknowledgements. The authors would like to thank Jake Chinis, Julie Desjardins, Ottavio
Rizzo, Joseph Silverman and Jamie Weigandt for helpful discussions. This work was initiated while
the first author was a post-doctoral fellow at the Centre de Recherche Mathématiques (CRM) in
Montréal, and completed during several visits of the third author at the CRM, and we are grateful to
the CRM for providing very good facilities. The research of the second author is partially supported
by the National Science and Engineering Research Council of Canada (NSERC). The third author was
partially supported by the Région Franche-Comté (Projet Région).

2. THE CLASSIFICATION OF POTENTIALLY PARITY-BIASED FAMILIES OF LOW DEGREE

2.1. The work of Helfgott and its consequences. We start with a more detailed discussion of the
work of Helfgott ([Hel09, Hel03]) which gives (conditionally) a necessary condition for a family to be
potentially parity-biased. First, we state the following conjectures.

Conjecture 1 (Chowla’s conjecture). Let P(x) € Z[z| be square-free. Then, 3, - AN(P(n)) = o(N)
as N — oo, where \(n) is the Liouville function A(n) := len(—l)”l’(”).

Moreover, by strong Chowla’s conjecture for a polynomial P we mean the assumption that Chowla’s
conjecture holds for P(axz + b) for all a,b € Z, a # 0.

Conjecture 2 (Square-free sieve conjecture). Let P(x) be a square-free polynomial in Z[z]. Then,
the set of integers n such that P(n) is divisible by the square of a prime which is larger than \/n has
density 0.

Conjectures 1 and 2 are believed to hold for all square-free polynomials P. Chowla’s conjecture is
known for polynomials of degree 1 only, whereas the square-free sieve conjecture is known for polyno-
mials whose irreducible factors have degrees < 3 ([Hel04]).

5In the proof of Corollaire 2.5.4. of [Desl6a] it is shown that r, > 0 for at least one p, but the same proof actually
carries over to show that there are infinitely many such p.
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Theorem 6 (Helfgott). Let F be a family of elliptic curves. Let Mx(t) and B (t) be the polynomials
defined by

Met)= J] @@®. Brt):= [J[] @@
v mult, v quite bad,
v#— deg v#—deg

(2.1)

where the products are over the valuations v of Q(t) where F has multiplicative and quite bad® reductions
respectively and where @, (t) is the polynomial associated to the place v. Then for all but finitely many
t € Z one has
er(t) = sign(goe (O)AM#(1) [ 9(t)
p prime

where goo(t) is a polynomial, S is a finite set of (rational) primes depending on F and g, : Q, — {£1}
are functions satisfying

a) gp(t) is locally constant outside a finite set of points;

b) if p¢ S then gp(t) =1 unless v,(Br(t)) > 2.

Moreover, if F has at least one place of multiplicative reduction other than — deg, then assuming
the square-free sieve conjecture for Bx(t) and the strong Chowla’s conjecture for Mx(t), one has
AVZ(€]:) =0.

If F has no place of multiplicative reduction other than —deg (i.e. F is potentially parity-biased),
then assuming the square-free sieve conjecture for Bx(t) we have

(2.2) Avz(er) = % H/Z gp(t)dt,

where dt denotes the usual p-adic measure and ¢+ = 1imy_ 4 o0 Goo ().

The case where F is potentially parity-biased was also considered by Rizzo [Riz03] in two examples
which already contain several of the important ideas for the general result. We also mention the recent
work of Desjardins [Des16b] who revisited Helfgott’s result, and relaxed some of the assumptions.

We now give a sketch of the proof of Helfgott’s result, as it reveals quite clearly the way to proceed
when computing Avyz(er).

Sketch of the proof of Theorem 6. The root number of an elliptic curve F(t) in the family F is defined
as a product of local root numbers ex(t) = —[], wp(t), where w,(t) depends on the reduction type
of F(t) modulo p. Naively, one might expect that Avz(er) = — ][, fzp wy(t)dt however this is false

in general (the product on the right is typically non-convergent). One can however modify the wy,(¢)

to some wy(t) so that one still has £(t) = — ][, wy(t), but in this case (conjecturally) Avz(er) =

-1, pr wy (t)dt.

First, we recall that for p > 5 one has that wy(t) = 1 if F(¢) has good reduction at p, w,(t) =
(%) (where (—) is the Kroeneker symbol) if F(t) has bad, non-multiplicative reduction at p, where
—jp(t) = 1,2,3 depending on the reduction type’, and w,(t) = —(%) if F(t) has multiplicative
reduction at p where in this case j,(t) is the first non-zero p-adic digit of the invariant cg(t). Thus,

: as mu re a ] t
(2.3) er(t) = —wg(t)wg(t)(—l)#{p-f(t) h It. red. at p} H (Jpp#)
p bad

where the product is over primes p such that F(¢) has bad reduction at p. Now, the key step is to
observe that essentially F(¢) has a certain reduction type at p if and only if there is a place v # — deg

6That is, if no quadratic twist of F has good reduction at v.
"For example Jp = =3 if vp(ca(t), ce(t), A(t)) = (r,2,4) (mod 12) for some r > 2 or vp(c4,c6,A) = (1,4,8) (mod 12)
for some r > 3).
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over Q(t) where F has the same reduction type and p|@,(t). The only exceptions to this are when p
is in a finite set of primes S (depending on the family F only, essentially this amounts to excluding
the finitely many primes that divide more than one @,) and when p divides @, (t) with multiplicity
greater than 1. It follows that

6]:(t) _ _(_1)#{pgs,p\|QU(t) v place of mult red.} H ’U)p H H ( ) . H H h (t)

peS v bad, p||Q.( v bad, p2|Q, (1),
v#—deg piS vFE— deg pés

p(Qu(t))

- (_1)#{p|Mf<t)}I£[Sw lj 111;[(—@)
" H H( )UP(Qv(t)). H H h*(t)

v mult. p v bad, o (1),
v degp ’lQ ()

for some finite set of primes S, some functions hy(t), hy(t), wy(t),w,(t) which are p-locally constants

on Z, outside a finite set of points, and a suitable partition V4 U Vo U V3 of the set {v bad,v # — deg}.8
Then,°

3 .
5]:(t) _ (_1)#{P\Mf(t)} H w;(t) . H H <Q—(Zt)) y H (
v v mult.

pES i=1veV;

) I I e

v bad, p? Q. (
vFE— dcg ‘p¢S ),

Now, applying repeatedly quadratic reciprocity one sees that the factor ( 560((%) also depends on the

Z4 expansion of t at finitely many primes ¢ and on the sign of a polynomial and the same is true for

( Q;(it)).lo Finally, one can verify directly that hy(t) = 1 if F(¢) has bad but not quite-bad reduction

at p. Thus,

er(t) = MMz(t))sign(hoo(t) [T wi™®) ] hpt)
pes’ p?|B#(t),
¢S’

for a finite set of primes S/, some wy™* (t) p-locally constant outside a finite set of points and a polynomial
heo(t). Thus, we obtain the first assertion of Theorem 6. The other assertions are easy once one observes
that the square-free sieve conjecture for Bx(t) gives

. 1 . . C4+ ok ok *
lim Y er(t) = Jimlim = S oMM [T wp ) [ ko).
0<+¢<T 0<+t<T peS’ p?| By (£t),
p¢s’,
p<X
Notice that the product on the right involves finitely many primes (for each X). Thus, if Mz(t) # 1
then dividing into congruence classes modulo these primes one has that the strong Chowla’s conjecture

for Mx(t) gives that the average is 0. Otherwise, the limit over T' coincides with the product of the

8For example V3 is the set of places w # — deg of Q(t) such that vy, (ca(t), cs(t), A(t)) = (r,2,4) (mod 12) for some
r > 2 or vp(cs,ce, A) = (r,4,8) (mod 12) for some r > 3).
9We ignore the minor issue of the case where the top and bottom of the various Legendre symbol are not coprime.

10For example, if Q,(t) # 0, then (ﬁ) = sign(Qv(t))x(Quv(t)2), where x is the non-principal character (mod 4)
and Qy(t)2 = Qu(t)2~v2(Qu(®),
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p-adic integral (see [Hel09] or also [Riz03]) and, writing hj;(t) = 1 if v,(Br(t)) < 2, we have

. 1 : k3K *
Tll_{léof Z af(t)—cingnOOH/ wy ™ (t) dt H /Z hoy(t) dt

Il
e}
H
—
g
SR
*
*
-
~—
QU
~
e
S—
>
T %
~
S~—"
QU
~

with [, h(t)dt =1+ O(p~2). O

Notice that Theorem 6 implies, under Chowla’s and the square-free sieve conjectures, that Avy(ex)
exists for all families F. Moreover, recalling Definition 1, we have the following implications

elevated Parity Conj. Potentially
rank biased Helfgott  Parity-biased.

The first implication is trivial and the converse is false in general since there are examples with
Avz(er) & {—1,0,1} (see [Riz03, Hel09] or also Theorem 1). The second implication comes from
Theorem 6 and is conjectural in full generality. The converse is also false in general (see Theorem 1
with @ = 2), however assuming the square-free sieve conjecture one has that every potentially biased
family F has a parity-biased subfamily (obtained by taking ¢ to be in an arithmetic progression and/or
restricting to ¢+ > 0''). Indeed, the potentially biased families are the ones for which some of the
integrals in (2.2) are equal to 0 or with ¢y = —c_. Fixing the sign of ¢ and restricting ¢ to be in a
suitably selected congruence class one can make those integrals (as well as all the other ones) non-zero.

2.2. Potentially biased families. In this section, we find all potentially biased families such that
dega;(t) < 2. We first start by the case with a family F(t): y? = 22 + a2(t)2? + as(t)z + ag(t) where
degas < 1 and degay, ag < 2. We write ag(t) = ut+v, as(t) = at> + bt +c and ag(t) = dt> +et+ f. We
denote by ¢4, ¢, A and j the classical invariants of F(¢). Notice that the potentially biased condition
is equivalent to the fact that all the roots of A are also roots of ¢4. One can see that if A is constant
then either A = 0 or the family does not depend on ¢ (i.e. a =b=d=e¢=u=0).

We also notice that if u? — 4a is a square, say u? —4a = r? for r € Q, then the family doesn’t change
under the transformation
a+ (—da+u®—ur), u+ I(—u+3r), beb—uww+r,

@ 1 1 :
e 5(2e—cutcr), d< 5(2d—bu+br—2av+ u v — urv)

(and a suitable linear transformation in x).

Theorem 7. Let as(t),aqs(t) and ag(t) be polynomials in Q[t] with degas(t) < 1, degay(t) < 2,

degag(t) < 2 and such that the curve F(t): y* = 23 + as(t)z? + as(t)x + ag(t) is non-isotrivial and
potentially parity-biased. Then the family has rank < 1 over Q(t) and, up to some rational linear
change of variables in the parameter t and in the variables x and y, the family is either

Foiy? = a3 + 3ta® + 3sx + st
for some s € Zzo and with rank 1 if and only if s = —12k* with k € N; or
Guw: wa = 23 + 3tx® + 3tz + 2
for some w € Zyo and with rank 1 if and only if w is a square or —2 times a square.

Proof. Here we shall only show that all non-isotrivial and potentially parity-biased families satisfying
the above conditions are of the form F; or G,,. We will compute their ranks in Section 3, Propositions 5
and 8.

11Alternatively one can for example replace t by 2.
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We remind that ¢4 = 16(a3 — 3a4), cg = 32(—2a3 + 9asas — 27ag) and 1728A = ¢} — 2. Thus, with
our assumptions and the discussion above, we have 1 < degcy < 2, degcg < 3 and one easily checks
that deg A can’t be 1 and thus 2 < deg A < 6.

Now, we observe that ¢, has to be square-free. Indeed, if ¢, = ¢L? for some ¢ € Qo (for £ = 0 the
family is iso-trivial) and a degree one polynomial L, then since F is potentially parity-biased we can
write A as 1728A = kL™ for some k € Q0 and some 2 < m < 6. Then we have ¢ = L™ ((P5~™ — k),
so m € {0,2,4} (if m = 6, then the family is iso-trivial) and /L°~™ — k is a square in Q(¢) which is
clearly not possible since /L5~™ — k is square-free. Also, we must have deg(cys) > 2. Indeed, if ¢, = L,
1728A = kL™, for some linear polynomial L € Q(t), some k € Q¢ and some m € N, then we’d have
L3 — kL™ is a square in Q(t) which is clearly not possible.

Now, suppose that ¢, is square-free of degree 2. Then, ¢4 = L Lo for some coprime linear polynomials
Li,Ly € C[t]. We can write A as 1728A = ELT"LY for some k € Qxp and some m,n € N with
2<m+n<6,m<n. Thus LPLY(L3™L3™ — k) = ¢ is a square in Q(t). In particular, it can’t be
m =mn =3, nor m = 0,n =3 (since L} — k is square-free). Moreover, it can’t be m = 0,n = 2 as this
would imply that L$Ls — k is a square in C(t) which is not possible (indeed, we can assume L; = ¢
and Ly =t — 1, then for k # 0 the discriminant of t*(t — 1) — k is zero only for k = — 2% in which case
t3(t — 1) — k is not a square). Thus, we must have either m =n =2 or m = 2,n = 3. Thus, we have
two cases:

(1) ¢4 = P, 1728A = kP? for some P € Q[t] of degree 2 and some k € Q_;

(2) ¢4 = L1Lo, 1728A = kL?L3 for some coprime Ly, Ly € Q[t] of degree 1 and some k € Q.
First, let’s consider the case where ¢4 has degree 2 and 1728A = kc3. Notice that we can not have
a =0 and u = 0 at the same time (otherwise ¢4 would be a degree < 1 polynomial). Since deg A = 4,
we must have a = d = 0 or a = ©?/4 and d = (2ub — u?v)/4. By the transformations (2.4) the two
cases lead to the same families, so it suffices to consider the case a = d = 0 only.

Now, we have ¢ = ¢4 (cqs—k) and so ¢4 —k is a square in Q[t], a condition which univocally determines
k in terms of the other parameters. With this choice for k we have ¢4 —k = 16(ut+v— %)2 = (dag— %)2.
Thus, we have ¢g = +c¢4(4ag — %b) and comparing the terms of degree 3 in ¢ we see that we must take
the minus sign. Expressing ¢4 and c¢g in terms of the a; and simplifying this equality becomes

6(as — asb/u)ag — 54ag = —18asb/u
or, equivalently, 6(c—bv/u)as + 18a4b/u = 54ag. Comparing the terms of degree 1 and 2 in ¢ we obtain
6(c — bv/u)u + 18b? /u = bde, )= (9eu + bvu — 3b2) /u?,
6(c—bv/u)v + 18bc/u = 54 f f = (3ebu — b + evu?)u?
(remember we have u # 0) and so we are led to the families
9eu + bou — 3b2> 3ebu — b3 + evu?
— |z t+ et + .

u2

y? =23 + (ut +v)z? + <bt + "

We make the changes b <+ —bu and e <+ eu in order to kill the denominator and we make the change
of variables ut + v <+ t. We arrive to
(2.5) Fiy? =a% +ta® 4+ (—bt — 36> + 9e)x + et + b — 3eb.

Finally, we make the changes of variables ¢ <+ 3t — 3b/2, x <> x + b/2 and write e = s/3 + b*/4 and
obtain Fs, with associated invariants

ca(t) = 144(¢% — ),
(2.6) co(t) = —1728t(1* — s),
A(t) = —1728s(t* — )2

Notice that if d # 0, then the changes t < t/d?, x <> d*z, y < d3y transform F, into F,q(t) and so
in particular we can always reduce to the case where s € Z.
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Now, let’s consider the second case. Up to a linear change of variables in ¢ we can assume c4 has the
form ¢y = Ct(t — 1) and 1728A = 212kt3(t — 1)? for some k # 0. Comparing this expression of ¢, with
its definition, we see that we must have C' = 2*(u* — 3a), ¢ = v?/3 and b = 1(u? + 2uv — 3a). Since
deg A =5, we have a = 0 or 4a — u? = 0 and as before it suffices to consider the case a = 0 (and hence
u #0). Now, c2 = ¢} — 1728A = 212u53(t —1)?(t — 1 — k) and thus k = —1 and so cg = £25u3¢>(t — 1)
and again we need to take the minus sign. Comparing the coefficients of the polynomials in ¢ we find

—864f +320% = 0 f=v3/27
—864e + 96uv + 96uv? =0 = e = (v?v +uv?)/9
—864d + 96u> = 64u? d=u3/27

Making the change of variable x <+  — v/3, we then obtain that the dependence of v disappear and
we obtain the families

y2 = 23 4 tuz® + %tuQx + 2i7u3t2.
Writing = 3w and making the change of variables z <+ wz and y > w?y we obtain G, (t) with
ca(t) = 122wt (t — 1),
(2.7) co(t) = —123w3t?(t — 1),
A(t) = 122083 (t — 1)2.
O

We can extend Theorem 7 to the case where degas(t) = 2. First we give the following Lemma
which will allow us to exclude several cases. One could also rule out these cases by using Kodaira’s
classification of singular fibers [Mir95].

We remark that when performing the computations needed in the proofs of Lemma 3 and Theorem 7
we used Mathematica and PARI/GP.

Lemma 3. Let Ry, Ry, S and L be polynomials in C[t] of degree 2, 2, 3 and 1 respectively. Let
ke C\ {0}. Then

a) R} —k can’t be divisible by the square of a degree 2 polynomial in Cl[t].

b) RIRy —k can’t be a square in C[t].

¢) LR} —k can’t be divisible by the square of a degree 3 polynomial in Cl[t].

d) LS® —k can’t be a square in C[t].

e) S% —k can’t be divisible by the square of a degree 4 polynomial in CIt].

f) L*Ry — k can’t be a square in C[t].

Proof. We only prove the first two statements, the proofs of the other ones being very similar.

a) We can assume R; = t2 +1 or Ry = t. In the second case the statement is obvious, thus
assume R; = t? + 1. The discriminant of R — k is 65k*(k — 1) and thus it is zero only if k = 1,
but R} + 1 =t*(3 + 3t% + t*) and the second factor is not a square.

b) We can assume Ry = t2 4+ bt+cand R =t? +1 or Ry = t?; we consider the first case only,
the second one being a bit simpler. If C := R} Ry — k is the square of a degree 4 polynomials,
then C' and C’ have at least 4 zeros in common and thus the first 4 subresultants of C' and C’
are zero. The fourth subresultant is a non-zero multiple of (b* — 4c)(c — 1 + ib)?(c — i — ib)*.
If ¢ = b%/4, then the third subresultant is a non-zero multiple of (4 + b%)? and thus we need
a = #+2i, but with this choice the second subresultant is 2'7-3-5- k% #£ 0. If ¢ = 1 & ib, then
the third subresultant is zero when b = 27 or b = 0 and in both cases the second subresultant
is non-zero. Thus the first four subresultants of C' and C’ can’t be all zeros and so C' can’t be
the square of a degree 4 polynomial.

O
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Theorem 8. Let as(t),as(t) and ag(t) be polynomials in Q[t] with degas(t) = 2, degay(t) < 2,
degag(t) < 2 and such that the curve F(t): y* = 23 + az(t)2? + as(t)x + ag(t) is non-isotrivial and
potentially biased. Then, up to some rational linear changes of variables in the parameter t and in the
variables x and y, the family is one of the following

Hy: wy? = 2% + (8% — Tt + 3)2 — 3(2t — V) + (t + 1), with w € Zy,
T wy? = 2® + t(t — T)2? — 6t(t — 6)x + 2t(5t — 27), with w € Ly,

2.8
(28) Tmw: wy? = 23 4 3t22% — 3mtz + m?, with m,w € Tz,

Lo st wy? = 2® 4+ 3(t2 + v)2? + 3sz + s(t? +v), with v € Z,r,w € L.

Moreover, the ranks of Hy, Ly and Jm o are < 1. Also, T, and Jp, . have rank 1 if and only if w is
a square, whereas rankg ) (Hw) = 1 if and only if w is 2 times a square. Finally, the rank of L., s is
always < 3 and its value is given in equation (3.8) below in terms of the number of irreducible factors
of certain polynomials.

Proof. We will compute the ranks in Section 3; here we only show that all the potentially biased are
the ones given in (2.8).

First, we observe that the ¢4 and the ¢g invariants of F have degree 4 and 6 respectively since
cq = 16a2(t)? — 48a4(t) and cg = —64as(t)3 + 288a4(t)az(t) — 864ag(t). Also, 3 < deg(A) < 8. Indeed
all the terms of degree > 9 trivially cancel, whereas imposing that the coefficients of degree 5,6,7,8
cancel we can determine d, e, f, ¢; then, with this choices, the coefficients of degree 4 and 3 can be zero
at the same time only if bw — au = 0 but in that case A = 0.

Now, we notice that we can assume ¢y is square-free. Indeed, if it is not, write ¢4 = L%Lng, with L;
linear polynomials in C[t], and, since the family is potentially parity-biased, 1728A = kLﬁL%Léf with
i€{0,2,4}, j,h €{0,2,3},3<2i+j+h <8, and k # 0. Thus,

cd=c}—1728A = LY LJLY(LS > Ly /L™ — k)
) o 1—(—1)7  1—(=1"
and in particular LS L3 /L3 " —kis L, * L, ®  times a square in C[f] (if Ly = L3 and
j=h =3, and so i € {0,2}, the condition would be that L‘ffZi — k is a square, which is clearly not
possible). One can then easily rule out all the possibilities by Lemma 3.

Thus, we can assume ¢4 = Ly LyLsL, with L; € C[t] different linear polynomials. Since the family
is potentially parity-biased and non-isotrivial, we have 1728A = kLﬁLéLgLZ with & £ 0 and i, j,h,g €
{0,2,3}. Clearly at least two among i, j, h, g coincide and so we write ¢4 = L1 Lo P with P of degree 2,
and 1728A = kL’iL%Ph and we can assume i < j. Also 3 < i+ j+ 2h < 8. Then, the only possibilities
are: i =j=h=2and i =0 and either j =h=2o0r j =2,h =3 or j =3 and h = 2 (we excluded
the cases i = 2,h = 2,5 € {2,3} by b) and ¢) of Lemma 3, and i = j = 3,h =0 by a)). It follows that
there are only the following possibilities for ¢4 where P; and P; ; are polynomials in Q[t] of degree ¢,
not necessary irreducible:

(1) C4:P4 andA:k:Pf,

(2) Cq = P171P172P2 and A = kPiQPzz,
(3) Cy — P171P1’2P2 and A = kP1272P23,
(4) Cq = P3P1 and A = kP327

with ¢4 square-free in all cases.

Let’s consider the case 1). Comparing the coefficients in ¢ of the equation cg(t)? = c4(t)3 — key(t)?
we obtain 9 equations in the various parameters (since the terms of degree > 8 in ¢ are always equal).
Imposing the equality of the coefficients coming from the degree 8,7 and 6 we can easily express d, e and
f in terms of the other variables. The coefficient of degree 5 factors and gives rise to two possibilities;
one leads to k = 0 (after eliminating other variables looking at the coefficients of lower degrees) and so
A = 0, whereas the other one, eliminating b and ¢, leads to the following families (after a linear change
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of variable in k)

2 3

2 3 9 a 3a a 3ak
Y- =a° +az(t)z” + (wag(t) + 9k — w2>x+ kao(t) — e + o
with as(t) = wt? +ut +v. Up to some change of variables, this is of the form (2.5), with ¢ replaced by
az(t), so killing u with a change of variable in ¢, we see that we obtain families of the form F,(p(t? +q))
for some parameters h,p,q € Q with h,p # 0. Writing v = ¢, p = w, r = h/w? and making the changes
T > wx, Y <> wy we obtain L, . (¢) with invariants

ca(t) = 144(t* + 2t%0 + 02 — 5),
(2.9) co(t) = —1728(t% 4+ v)(s — t* — 2t%v — v?),
A(t) = —1728s(t* + 2t%v + v? — 5)°.

Now, consider the case 2). We can assume c4(t) has simple zeros at 0 and 1 and that A(t) has a
triple zero at 0. Thus, we can write c4(t) in the form c4(t) = —16w?t(t — 1)(t> + mt + n) and A(t) as
1728A(t) = kt*(t* + mt +n)? for some n, k € Zy and some m € Z. Then, we express a, b, ¢, u in terms
of m,n and the other parameters and we impose

(2.10) c2(t) = ca(t)® — kt3 (12 + mt +n)?

obtaining 9 equations for the parameters. The equations corresponding to the degrees 0,2,3 and 8
in ¢t allow us to express f,e, k,d in terms of the other parameters. Then, we use a suitable linear
combination of the equations from the degrees 5,6 and 7 to obtain a linear equation in n, so that we
can eliminate n as well. Then, (eliminating the denominator) the equations from the degrees 6 and 7

states that two polynomials in m are equal to 0. The common roots of these polynomials are m = —1
and m = —%. The former gives k = 0, i.e. A =0, whereas for m = —13—1 we see that (2.10) is verified

and so we have new families. After a change of variable in z to reduce the degree in ¢ of the coefficient
of z, the families are

1 16 64
y? =2+ §(8w — Ttw + 3t?w)x? + E(le2 — 3tw?)x + ﬁg(Sw3 + 3tw?).

We make the changes of variables x <> %wam t < 8t/3, w <> 2w, y <> %—gwgy and we arrive to H,, with
ca(t) = 16w?t(8t — 3)(8t* — 11t + 8),
(2.11) co(t) = —64w3t?(8t* — 11t + 8) (641> — 80t + 45),
A(t) = =512w5¢3 (8% — 11t + 8)2.
Now, consider the case 3). Again we write c4(t) as c4(t) = —16w?t(t — 1)(t? +mt +n) and this time
A(t) as 1728A(t) = kt?(t% + mt +n)® with k,n # 0. We impose c2(t) = c4(t)® + kt?(t2 + mt +n)? =0
and proceed as above, expressing f,k,e in terms of the other parameters, using the equations from

the degrees 1,8 and 7 in ¢. A suitable linear combination of the 5th and 6th equations give an
equation of the form (1 +m)?(5 + 2m)d = Q(m,n,v,w) for some polynomial Q(m,n,v,w). We have

Q(—1,n,v,w) = 7(n2u%)3 # 0 and thus we can assume m # —1. We now assume 5 + 2m # 0, and we
express d in terms of the other variables and with this choice the remaining equations don’t depend
on w and v anymore. Thus we are left with 4 independent equations equating polynomials in m,n to
zero, the resultants in n of the 2nd and 3th polynomials and of the 4th and 5th polynomials have the
only common zero m = —2 which we had excluded. Finally, we consider the case m = —2. With this
choice we can quickly determine also n (whereas the dependence on v disappear also in this case) and,
after some changes of variables in y, z,t we are led to the families Z,, with

ca(t) = 16w?(t — 4)t(t* — 10t 4 27),
(2.12) co(t) = —64w3(t — 1)t(t* — 10t + 27)?,
A(t) = —64wSt>(1* — 10t + 27)3.
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Finally let’s consider case 4). With a change of variables we can write c4(t) as c4(t) = —16w?t(t —
§)(#3 +mt +n) with k,n #0, § € {0,1} and 1728A(¢) = k(t> + mt +n)?. As above we expres a, b, ¢, u
in terms of the other variables and we impose c2(t) = c4(t)® + k(t> + mt + n)® = 0, from which we
can easily eliminate d,e, k, f. If § = 1, then a linear combination of the remaining equations give
(3+4m)*(2m —10n—1) = 0 and in both cases one finds k = 0. Thus, we can take § = 0; this simplifies
the remaining equations and we can eliminate m and f arriving to the families 7, , with

ca(t) = 144wt (t* 4 n),
(2.13) co(t) = —864w* (t* + n)(2t> + n),
A(t) = —432wn?(t* 4+ n)?.

Finally we observe that, up to rational linear changes of variables in ¢,x and y, one can always
reduce to the case where the parameters w, r,v,n are in Z. O

Remark 1. Note that, with the exception of Ly, s, all the families of Theorem 7 and Theorem 8 don’t
have primes of bad reduction of degree greater than 3. In particular, the square-free sieve conjecture is
known to hold for the associated polynomial B defined in (2.1). In the case of Ly s, one has that if
t* + 2t2v + v? — s is irreducible (i.e. if s is not of the form n® nor —4n?(n? +v) for some n € N),
then there is a prime of quite bad reduction of degree 4 for which the square-free sieve conjecture is not
proven.

Corollary 4. Assume Chowla’s conjecture and the square-free sieve conjecture for homogeneous square-
free polynomials (Hypothesis 1 and PBs at page 5 in [Hel09]). Then, all non-isotrivial families F of the
form (1.1), with az(t), asa(t), ae(t) € Q[t] and deg(a;) < 2 fori = 2,4,6, for which we have Avg(er) # 0
are of the form Fg or Gy, up to some rational linear changes of variables in the parameter t and in the
variables x and y.

Proof. By Main Theorem 2 of [Hel09], we have that if the family F is not potentially parity-biased or
it has multiplicative reduction at infinity, then Avg(er) = 0. Thus, we just need to check which of the
families in Theorems 7 and 8 have multiplicative reduction at infinity. By (2.6), (2.7), (2.9) and (2.11)-
(2.13) one immediately sees that the only families with non-multiplicative reduction at infinity are Fy
and G,,.

O

3. RANKS OVER Q(t)

In this section we compute the rank of the potentially parity-biased families given in Theorem 7 and
Theorem 8 following the same approach as in [ALRMO7]. Let F be a family of elliptic curves as defined
by (1.1), and suppose that F is not isotrivial. The following conjecture gives a way to determine rz,
the rank of F over Q(¢), by considering averages of the traces of Frobenius at p of the specializations
F(t), when t varies over F,. More precisely, writing the number of points of the specialization F(¢)
over the finite field ), as p 4+ 1 — az @ (p) (With az)(p) = 0 for p dividing the discriminant of F(t)),
we define

151
Ax(p) === Z ar (p)-
P
Conjecture 3 (Nagao). With the notation above, the rank of F over Q(t) is given by

(3.1) rrp= lim — " —Az(p)log(p)

where the sum runs through all prime numbers p < X.

As proved in [RS98], Tate’s conjecture implies Nagao’s conjecture, and thus Conjecture 3 holds for
rational elliptic surfaces as Tate’s conjecture holds in that case [RS98]. In particular, the conjecture
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holds if dega;(t) < 2 for i = 2,4, 6, since in this case F is a rational elliptic surface (see [SS10, section

8]).
If dega;(t) < 2, we have that deg,(z® + a2(t)z? + a4(t)z + ag(t)) < 2 and we can rewrite (1.1) as
F:y? = A(x)t* + B(z)t + C(z),

where A(x), B(z) and C(z) are in Q(z). Now, we have

> arp)=— > Y (fﬂs + ax(t)z? + as(t)r + aﬁ(t))

t (mod p) t (mod p) x (mod p) p

_ Z Z (A(x)t2+B(ac)t+C(x))7

z (mod p)t (mod p) p

(3.2)

and we can evaluate the sum over ¢ for each fixed value of z.
We will need the following formulas (see for example [LN83, Theorem 5.48]):

(3.3) p_l(B”C) :{ (%) itplB

P p 0 otherwise.

If A is non-zero mod p, then

(3.4) %(W) _ _(é) +{ p(#) ifp|(B*-440),

=0 p p 0 otherwise.

We now use the above setting to compute the rank of the families of Theorem 7 and 8 over Q(t). 2
In all cases we shall also give explicitly non-torsion points. Note that to prove that an explicit point, say
G € F(Q(t)), is non-torsion, it is sufficient to prove that it is neither a 3 nor a 4 torsion point (indeed,
we only have to check a point is non-torsion when the rank of the family is 7 > 1 which implies the
torsion subgroup has cardinality at most 4, see [0S91]). In order to do this, it is sufficient to compute
2G and check that its y-coordinate is non-zero and that its z-coordinate is not the z-coordinate of G
(indeed if 3G is zero then 2G = —G and the z-coordinates of G and 2G would coincide). We shall show
this explicitly for Proposition 5 only, the computation being completely analogous in all other cases.

We first compute the ranks of the family Fj, for which A(x) = 0.
Proposition 5. Let r € Z.o such and let F be the family
Fo:y? = a3 + 3ta® + 3sx + st.

Then, rank(F,) < 1, and rank(F,) = 1 if and only if s = —12k*, k in N. Furthermore, if s = —12k*,
then (—2k2,23k3) is a non-torsion point of F_ 101 (Q(2)).

Proof. We have B(x) = 322 + s and C(z) = 2 + 3sz. If —s/3 is a square mod p, then the 2 roots of
B(z) are £, where x, = \/—5/3, and C(£x,) = +§sz,. Then, using (3.1), (3.2) and (3.3), we have

12The study of more general formula for the rank whenever dega;(t) < 2 is a work on progress and will appear in a
forthcoming paper.
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square in Z, then the proportion of primes counted in the sum is 1/4, and hence we obtain rank(F;) < 1,
which implies that rank(F,) = 0. If —3s = —n? for some n € Zo then

rank(Fy) :Xlim % Z logp(%> <if>,
—00

. _ _ 6 2 . b N .
since for (%) = (—1> = 1 one has (%) = (%) Now if —3s is neither a square nor minus a

p<X
()=
where 55 = —1 (mod p). Note that the sum does not depend on the choice of the sign of ¢,; also,
%) = 1if and only if p = 1 (mod 8). We claim that there is a positive proportion of the primes

p =1 (mod 4) such that

(2)(3)-

so that in particular rank(F;) has to be 0 also in this case. Indeed, if the square-free part of 6n is 2¢

with ¢ odd, then take p =5 (mod 8) and p = b (mod ¢), where b is a quadratic non-residue modulo ¢

so that by quadratic reciprocity one obtains (3.5). Similarly, if the square-free part of 6n is ¢ with ¢

odd, then take p =5 (mod 8) and p = b (mod ¢), where b is a non-zero quadratic residue modulo p.
Finally, if —3s = n?, then

2
rank(Fy) :Xlim e E logp(%).
—00

If 6n # +k2, then the sum is 0; if 6n = £k2, then the sum is 1, and in that case we have that
s = —12k*. Finally, if s = —12k*, then the point G = (—2k?,8k?) is a point on F_;4(Q(t)) and we
have

16k2 ’ 64 k3

and so G is neither a 3 nor a 4 torsion point. |

96 — (9152 — 12k%t + 100k* 27t% + 18k2%t% + 324k*t + 280k6>

Corollary 6. Let W, : y? = 2% + tz? — a(t + 3a)x + a®. Then rank(W,) < 1, and the rank is 1 if and
only if a = £n>.

Proof. Tt follows from the fact that W, (t) is isomorphic to F_3s4,2(12t + 18a). O
Corollary 7. LetV, : y?> = 23 + 3tz® + 3atx + a®t. Then, rank(V,) = 0.

Proof. Tt follows from the fact that V, is isomorphic to Fy,2(4t — 2a). O
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We now compute the rank of the remaining families of Theorem 7 and Theorem 8. First, we remark
that for F as in (1.1) one has that the quadratic twist

F o wpy? = 2% 4 ag(H)2? + as(t)z + ag(t),
satisfies azw) () (p) = (%)a}-(t) (p). Then, using (3.3) and (3.4) one has

rank(F(")) = lim — Z log p< 3 (’wC}; (x)>

z (mod p)
A(z)=B(x)=0 (mod p)

CE () e ()

A(2)#£0 (mod p) A(z)#0 (mod p)
(B2 —4AC)(z)=0 (mod p)

We note that the contribution from the first sum is zero unless A and B have common factors in Qx],
whereas the contribution from the last sum is

—1 if wA(x) = P(z)? for some P(x) € Q[z],deg P(z) > 1
0  otherwise

using Weil’s bound (or also (3.4) if A has degree 2).
We now use the above formula to compute the rank of the families Gy, Z.y, Hw, Tm,w and Ly s v,
the most delicate being the last one.

Proposition 8. Let w € Z+o and G, be the family
Guw: wy2 = 2% + 3tz? + 3tz + t°.

Then, the rank of G, is < 1 and rank(G,,) = 1 if and only if w is a square or —2 times a square.
Furthermore, if w =1 (resp. w = —2) then the point (0,t) (resp. (—3,2t)) is a non-torsion point in
G (Q(2))-

Proof. We use equation (3.6) with A(z) =1, B(z) = 3z(z+1) and C(z) = 2° so that (B?> —4AC)(z) =
22(92% + 142 + 9). Notice that the discriminant of 922 + 14z + 9 is —2° and thus for p > 3 one has
that B — 4AC has 3 distinct roots in F,, if (%2) = 1 and has 1 root otherwise. Since A(z,) =1 for

any root x, of (B? —4AC)(z), we have

rank(gw)legnoo%< 3 310gp(%>+ 3 logp( ) Zlogp( >>

p<X p<X p<lx
()= (52)=-1
—2w
R ORI (ONES)
(T):l
and so the rank is 1 if w is a square or —2 times a square, and it is zero otherwise. O

Proposition 9. Let w € Z»o and Z,, be the family
Ty wy? = 2% +t(t — T)a® — 6t(t — 6)a + 2t(5t — 27)

Then, the rank of T, is < 1 and rank(Z,,) = 1 if and only if w is a square. Furthermore, if w =1 then
the point (9/4,5t/4 — 27/8) is a non-torsion point in I;(Q(t)).
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Proof. We use equation (3.6) with A(x) = 22— 62+ 10, B(z) = —72?+ 36z — 54 and C(x) = 23 so that
B? —4AC = —(4z — 9)(2® — 8z + 18)%. Note that A(9/4) = 25/16 = (5/4)2. Also, the discriminant of
2? — 8z + 18 is —8, and so if —2 is a square modulo p then the roots of 22 — 8z + 18 are @, + = 4 + 4,

where 62 = —2 modulo p. Moreover, we have A(xp +) = +26, and so by equation (3.6), we obtain
. 1 w 20,w
rank(Zw):Xlgnoof<Zlogp<g)+2 Z logp< ; >>
p<X p<X

(F#)=(3)=
The contribution coming from the first sum is 1 if and only if w is a square (and 0 otherwise), whereas
the contribution coming from the last sum is 0 (the proportion of primes counted in this sum is 1/4). O

Proposition 10. Let w € Z.o and H,, be the family
Ho: wy? = 2® + (8t — 7t +3)2® — 3(2t — Dz + (¢t + 1).

Then, the rank of H,, is < 1 and rank(H,,) = 1 if and only if w is 2 times a square. Furthermore, if
w = 2 then (—1,2t) is a non-torsion point of Ha(Q(t)).

Proof. We have A(x) = 82%, B(z) = —(z+1)(7z — 1) and C(x) = (z + 1)3. In particular, for p # 2 we
have A(xz) = 0 (mod p) if and only if x = 0 (mod p). Also, notice that A(x) is always 2 times a square.
Then, using (3.6), we get

. 1 2w 2w

rank(H,) = lim — Z log p Z — | - Z logp| —

X—o0o X = o (o4 p) P = P
- (B%—4AC)(2)=0 (mod p) B

We compute that B2—4AC = —(x+1)?(322® — 1722+ 14z —1), and we let Q(z) = 3223 —172? + 14z —1
with discriminant —2 - (320)2. Then, we have

. 1 2w 2w
rank(H,,) = XILD%O X E logp(?> + E 310gp(?> .
p<X p<X
Q(x) has one root in Fp Q(x) has three root in Fp

Now, Q(z) has exactly 1 root in F,, if and only if (%20)2) = —1. Thus, the first sum contributes

. 1 logp (2w -2 % if 2w is a rational square,
lim — Z — 1= —) )= . . .
X—oo X s 2 D D —5 if —w is a rational square.

Finally, since the Galois group of Q(z) is S3, we have that the primes such that Q(z) splits completely

have density %7 so that the contribution of the second sum is in [—%, %] Also, such a contribution
is positive if 2w or —w are rational square (indeed in the second case (271”) = (%) = 1 if @ splits
completely in F,,). Thus, since rank(#,,) is an integer, we must have that rank(#,,) = 1 if 2w is a
rational square and rank(#,,) = 0 otherwise. O

Proposition 11. Let m,w € Z+o and Jpm . be the family

Tmw: wy2 = 2% + 3222 — 3mtz + m>.
Then, rank(Jm,w) < 1 and rank(Jm,w) = 1 if and only if w is a square. Furthermore, if w = 1 then
(0,m) is a non-torsion point in Jm.1(Q(t)).

Proof. In this case, we have A(z) = 322, B(z) = —3ma, C(z) = 2* + m? and B?(z) — 4A(2)C(z) =
—322(423 +m?). Let Q(x) = 423 + m? and note that the discriminant of Q(x) is —3 - (2m)* and that
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A(z) is always 3 times a square. Also, A(x) has a common root = 0 and one has C(0) = m?. Thus,
using (3.6), we obtain

1 3 3 3
iz 3 () 3 o) % (3)-(5))
p<X p<X p<X

Q splits @ has one
completely in Fp, root in Fp

The first term contributes 1 if w is a rational square and 0 otherwise and the last contributes 1 if 3w
is rational square and 0 otherwise. As in the proof of Proposition 10 one then has that the third term
contributes % if 3w is a square, —% if —w is a square, and 0 otherwise. Thus, we must have that the
second summand contributes % if 3w or —w are squares and 0 otherwise. (]

Proposition 12. Let v € Z, s,w € Zzo and Ly, be the family
(3.7) Losv: wy? =z® + 3t + v)z? + 3sz + s(t? +v).
Then the rank of Ly s 5 < 3 and all the cases can occur. More precisely, let
C(z) = 2® 4+ 3vz? + 3sz + sv, R(z) = 2% + (155w — 2T0%w)z* + 4852w?x? — 64(s3w?),
then
(3.8) rank(Ly, 5.») = #{Irr. factors of R(x)} — #{Irr. factors of C(x)} — 01 + da,
where 53 € {0, 1} with 6o = 1 iff —4w?s is 3 times a 4-th power and
2 ifs=v? orifv=0 and —2sw is a square in Q whereas —3s and sw are not,
(39) 01:=¢1 ifv=0 and —3s,rw and —2sw are not squares in Q,
0 otherwise.

Proof. In this case we have A(z) = 322 + s, O(x) = 2 + 3vz? + 35z + sv and B(z) = 0. Using (3.6)
we obtain

rank(&,,) )giinw;pgclogp< 3 <w0p(x)) S (wf;(:v)>>

z (mod p) z (mod p)
A(z)=0 (mod p) C(z)=0 (mod p)
. 1
= lim < > logp(Si(p) + S2(p)),

p<X
say. We first consider Sa(p). The discriminant of C'(z) is —108s(s—v?)2. If s = v2, then C(z) = (v+x)3

and so Sa(p) = (W) = (%ﬁz) = (%) for p large enough. In particular

. 1 1 w is a square in Q,
lim — S logp =
X—o00 X z;( 2(p)logp {0 otherwise.

Now, assume s # v2. We have

(3.10) Say(p) = > 2- > 1= S5(p) — S5 (p),
z (mod p) z (mod p)
wA(z)=0 (mod p) C(z)=0 (mod p)
C(x)=0 (mod p)

say. Then, since C(z) is square-free, by Chebotarev’s density theorem about the density of primes
which splits, splits completely or are inert in a number field ([Lan94, VIII,§4, Th. 10] we have

. 1 1 _ . .
XlgmOo e p<ZX S5 (p) log p = #{Irreducible factors of C'(z) in Q[z]}.
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Next, we rewrite S5(p) as

Syp) = > > 1

0#¢ (mod p) z (mod p)
wA(z)=,* (mod p)
C(2)=0 (mod p)

and we express the inner sum in terms of the resultant between C(z) and wA(z) — 22, To do this we
notice that defining

R(x) := —Res(C(2),wA(2) — 2?) = 2% + (155w — 27v*w)z* + 485°w?x? — 64(s>w?)

we have that R(¢) = 0 (mod p) if and only if either C(x) and wA(z) — £* have a common zero in F,,
or if C(z) and wA(x) — £? have a common irreducible factor of degree > 1, i.e. if (wA(z) — ¢2)|C(z)
with wA(z) — ¢? irreducible in F,[z]. Moreover, for p large enough C' doesn’t have multiple zeros over
F, and we have that the resultant R(¢) has a zero ¢/ # 0 of multiplicity m if and only if there are
m solutions (mod p) of wA(z) = ¢'* (mod p), C(x) = 0 (mod p). Also, if (wA(z) — £%)|C(z) with
wA(z) — ¢'* irreducible in [, [x], then ¢ is a double root of R(¢). Thus,

Syp)= Y, m() - > 2,

0#¢ (mod p), 0#¢ (mod p),
R(£)=0 (mod p) (wA(z)—€%)|C(x) in Fplz],
wA(z)—£? irreducible in F,[z]

where m(¢) is the multiplicity of ¢ as a zero of R(f). Since R(0) = —64s® # 0 (mod p) for p large
enough, then

o1 : .
Xlgnoo % Z logp Z m(€) = #{Irreducible factors of R(z) in Q[z]}.
p<X 0#¢ (mod p),
R(£)=0 (mod p)
Now we write C'(z) as C(z) = L1(A(x))x + La(A(z)) with Ly, Lo € Q[x] of degree < 1. We have that
wA(x) — ¢ divides C(z) in Fp[z] if and only if L;(¢?/w)x + La(¢?/w) is identically zero in F,[z] and
so iff Ly(¢?/w) = Ly(¢?/w) = 0. The linear polynomials L; and Ly can have a common root (mod p)
for infinitely many p only if one is multiple of the other, i.e. if C(z) = (A(z) — a)(bz + ¢) for some
a,b,c € Q. In particular, if C'(z) cannot be written in such form then

. 1
XIKnOOYZIng Z 1=0.
p<X 0#£¢ (mod p),
(wA(2)~£%)|C(x) in Fp[a],
wA(x)—£? irreducible in F,[z]

Otherwise, since the discriminant of wA(z) — ¢? is —12w(—¢? + sw), one has

y .1 a 3w(a — sw)
B e 31 g S (3)) (- ()
p<X 0#¢ (mod p), p<X
*=a (mod p),

—Bw(sw—a)¢ (Fy)>

and this is equal to 2 if 3w(a — sw) is not a square in Q and a is, equal to 1 if a,3w(a — sw) and
3aw(a — sw) are not squares in Q*, and it is equal to 0 otherwise. Also, we observe that looking at
the first two subresultants of wA(x) — a and C(z), one has that C'(z) can have a factor of the form
A(z) — a only if v = 0 in which case a = —8sw. Thus,

. 1 ’ o . .
XlgnC>o d Z S5(p) log p = #{Irreducible factors of R(z) in Q[z]} —n
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where
2 if v =0 and —3s, sw are not a square in Q, and —2sw is a square in Q,
n:=<1 if v =0 and —3s,sw and —2sw are not a square in Q,

0 otherwise.

Thus, for s # v? we have

lim % Z Sa(p)logp = #{Irr. factors of R(z)} — #{Irr. factors of C'(z)} —n.

X —o00
p<X

Since, for s = v? (in particular v # 0 and so 7 = 0) we have that R and C have respectively 6 and 3
irreducible factors, then in general we have

(3.11) Xhm —= E Sa(p)log p = #{Irr. factors of R(x)} — #{Irr. factors of C'(x)} — d;.
—>OO
p<X

where ¢; is as in (3.9).
We now consider Sp(p). We could proceed as for Sa(p), but instead we follow a more direct approach.

For p large enough, we have that A(x) has two distinct zeros £z, mod p if and only if (_735) =1.1In

particular, S;(p) = 0 for if (’§S> # 1. Also, we notice that if (*T“Q’S) =1, then C(+x,) = 5%, and
0 S1(p) = (222 ) (14 (31))

we have that
im =Y Sip)logp= lim = Y 20Ty ) _
X X o Prprioep = IR p )
COEEON

unless —3s is a square in Q. If s = —3k? with k € Q, then x, = k and we have

. 1 2wk -1 1 2wk is £ a square,
ko s 2 (5 ()b B

<2wx‘° ) (1+ ( )) Thus, proceeding as in the proof of Proposition 5

0 otherwise.

Since 2wk € £Q? if and only if s is _W times a 4-th power, then by the above computation and (3.11)
we obtain (3.8).

We will give an example of a family £ with rank 3 in the paragraph just after the proof of the
Proposition and one can easily find families with rank 0,1 and 2. Thus, it remains to show that
rank(Ly, s.») is always < 3. To see this, we observe that the average value of Sa(p)logp given in (3.11)
is always < 2. Indeed, by the definition of Ss(p) we have

. 1 . 1
RS SILDEC NS D DD DR
(312) p<X p<X  z (mod p)
C(xz)=0 (mod p)

= #{square-free irreducible factors of C'(z)}

and thus the average value of S3(p)logp is < 2 unless C'(x) is a product of three coprime linear factors
(in which case §; = 0). Now, if C(z) factors completely then its discriminant —108s(s — v?)? must be
a square, i.e. s = —3k? for some k € N. Now, if y is a root of C(x) then from C(y) = 0 one obtains

= y(("k;glz)) (we can take y # +k since C(£k) = F8k3) and that the other roots of C(x) are %
Then,

k(y+3k k
R(z) = (wA(y) — «”) (wAEER) — o) (w AR — o)

y:tSk)

kFy
y?), 6kw(k + y) and 6kw(k — y) are squares (and the average of So(p)logp is exactly the number of

and these three quadratic polynomials factors if wA(y) and wA(EY=25)Y are squares, ie. if —3w(k? —
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such integers which are rational squares). These are all squares if and only if —3w, (k+y)/(k —y) and
6kw(k — y) are squares in Q and, in particular, for this to happen we need w < 0 and |k| > |y|. This
implies that 6kw(k — y) is negative and thus can’t be a square. Thus R(z) has at most 5 irreducible
factors and the proof of the proposition is complete. O

We remark that in the Propositions 5 to 11, the generic points appear naturally from the proofs.
For example, in Proposition 10 with w = 2, one takes the root 1 of B? — 4AC and observe that
A(x)t? + B(x)t + C(x) = 64t% so that (—2,8t) is a point in H,,. The same phenomena holds also for
Proposition 12 even if it’s a bit less immediate. Let’s illustrate this phenomena by looking at the two
extremal cases: one where C' is the product of 3 coprime linear factors over @ and one where C' is
irreducible of degree 3.

First, suppose that we are in the case where C' has three roots. In the proof of Proposition 12 we
showed that for this to happen we need s = —3k?2 for some k € N and that in this case rank (L, s.0) 18
equal to d2 plus the number of squares among —3w(k —y)(k +y), 6kw(k +y) and 6kw(k —y). As said
above it cannot happen that these three numbers are all squares, but it could be that two of them are
and that at the same time §; = 1 so that rank(£) = 3. Indeed, take

2 9k2)
(3.13) s 3k, v 3(k2 — 12)
and
82
a2 2 _ ap2 2 _
(3.14) y =6(b" —a”), k=6(b"+ a®), w 712(172 a7

with a,b,¢ € N. Then, —4w?s/3 = ¢* is a square (and so d; = 1) and so are 6wk(k — y) = (6af)? and
6wk(k+y) = (6b¢)%. These three conditions lead to generic points: with this choice for the parameters,
the discriminant in ¢ of P(z) = A(x)t*> + C(z) is a degree 5 polynomials with roots
z1 =k, x=—k; T3 =Y, T4a= *6((12 - b2l))§202 . b2)7 L5 = Cah bz)(a + 2b2)-
a?

Now we have P(z2) = w(4k?/0)?, P(xs) = w(2a/b?¢)? and P(w5) = w(2b/a?¢)?. Thus, we get
the points (z2,4k?/¢) (the d5 contribution), (z4,2a/b*¢) and (z5,2b/a*¢) in Ly, 5., (Q(t)) (the Sa(p)
contribution) with the parameters s,w and v as in (3.13) and (3.14).

Suppose now that C' is irreducible and that R factorizes as 2 irreducible factors. This means that
the contribution coming from Ss(p) gives 1. Since R(x) is the resultant in y of wA(y) — 22 and C(y)
with C' irreducible of degree 3, we claim that R(x) factors if and only if one (and so any) root p of C
is such that wA(p) is a square in Q(p). Indeed, let p1, pa, p3 the 3 roots of C' so that we have R(z) =
—(22—wA(p1))(2® —wA(p2)) (2% —wA(p3)). Let G be the Galois group of the Galois closure of Q(p;) in
Q, note that G contains a 3-cycle, o, permuting the p;. Let H(z) be an irreducible factor of R defined
over Q, H(x) can be written H(z) = [] g, (z* —wA(p)) [,es, @+ VwA(p)) [, es, (@ — VwA(p))
where Si, S3, S3 are disjoint subsets of {p1,p2,p3} and where the values wA(p) are all distinct (by
definition of S; and the fact that H is squarefree). If Sy (or S3) is not empty then for some i, £1/wA(p;)
is a root of H(z) and if wA(p;) is not a square in Q(wA(p;)) then the minimal polynomial of ++/wA(p;)
over Q(p;) is 22 —wA(p2)) and divides H which is not possible. So we have wA(p;) = M (p;)? for some
polynomial M € Q[ } (with degree < 3). Since M € Q[z] and o permutes transitively the p;, we obtain
that wA(p) = M(p)? for all p € {p1, p2,p3}. So Sz or Ss is not empty if and only if wA(p) = M(p)?
for all p € {p1,p2,p3} (the converse being clear). In this case, we have R(z) = K(x)K(—x) with
K(x) = (x — M(p1)(x — M(p2))(x — M(p3) which is fixed by the action of G and so K(z) € Q[z].
Furthermore, the values M (p;) are conjugate and distinct (if M (p1) = M (p2) then M(p3) = M(p1) by
the o-action which would imply that A(p;) = A(p2) = A(ps): impossible with the degree 2 of A) so
K (z) is irreducible. Hence R(z) factors into 2 irreducible factors of degree 3. Now, if wA(p) is not a
square in Q(wA(p)) then H(z) = HPGS1 (22 — wA(p)). By the same argument, the values wA(p) are
conjugate and distinct so H(z) = R(x) is irreducible.
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Thus, coming back to the main discussion, we get that wA(p)t? + C(p) is a square in Q(p)(t) and
so we obtain a generic point G = (p, t/w?) where 2 = wA(p) € Lus0(Q(p)(t)). Thus, the trace
trg(p)/0(G) gives a point in Ly, 5,(Q(t)). For example, take s =1, v =9 and w = 1 so that

L:y? =2+ (32 +27)2* + 3z + (12 + 9)
and the rank is 1. We have R(x) = 2% —21722* + 4822 — 64 = (2® — 4622 — 28z — 8) (2> + 4622 — 287 +8)

and if p is a root of C(x) then A(p) = (p?/12 + p/2 — 1/4)? so that G = (p,t(p?/12 + p/2 — 1/4)) €
Lu,s0(Q(p)(t)) and

15t2 + 144 2(13t* 4 216t% + 864)
tro(p)/0(G) = ( LR 3 ) € Lu,s,0(Q(1))-

Note that for all the other families we could find generic points with coordinates in Q[¢] but that in
this case we found a point with non-polynomial coordinates. We remark however that there is a point
which is polynomial in ¢ over an algebraic extension of Q.

It could appear as a little bit disappointing not to be able to find potentially parity-biased families
with higher ranks. However, there are also geometric constraints on the rank due to the condition about
the type of bad reduction. Indeed, let £ — C be an elliptic surface defined over C with non-constant
j-invariant and let R¢ be the rank of the Mordell-Weil group over C. Then, we have the following
result due to Shioda (see [Sch&8]).

Theorem 9 (Shioda). With the above notation, we have Rc < —4 4 4g + ni + 2ny — 2py, where

g is the genus of C;

ny is the number of singular fibers of the Néron model of type I, b > 0;
ng 1s the number of singular fibers of the Néron model of other types;
pg is the geometric genus of E.

Furthermore if p; = 0 then Re = —4 4 49 +nq + 2no.

For the families of Theorem 7 and 8, we have p; =0 and g =0 (C' ~ P'). The condition about the
type of bad reduction implies that the number of singular fibers is the degree of the square-free part
of A plus 1 coming from the place at infinity. Since the families are potentially parity-biased, none of
the finite fibers can be of type I, b > 0. Now if degas(t) < 1 then one obtains R¢ = 2, whereas if
degas(t) = 2 then R¢ < 6.

4. THE ROOT NUMBERS

Let F be an elliptic surface given by (1.1), and let e£(¢) be the root number of the specialization
F(t). Then, we can compute €£(t) as a product

er(t) = — le)(t)a

where the w,(t) are the local root numbers of the elliptic curve F(t) and are defined in terms of
representations on the Weil-Deligne group of Q,. We remark that the —1 appearing in the formula
corresponds to the root number at co which is always —1 for any elliptic curve defined over R. The
local root numbers can be computed in terms of the reduction type of F(¢) modulo p using tables due
to Halberstadt, Connell and Rohrlich ([Hal98], [Con94], [Roh93]). We use them in the version given
by Rizzo [Riz03] where the assumption that F is in minimal Weierstrass form is dropped.'®

13We remark that there are the following misprints in Rizzo’s table: in Table IT if (a, b, ¢) = (> 5,6, 9) then the special
condition is ¢ 4+ 2 # 3c¢4,4(9); in Table III, the second line should have (a,b,c) = (0,0,> 0), also if (a,b,c) = (2,3,1)
then the Kodaira type is I3.
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After computing the root number of every specialization, we can compute the average root number.
Notice that in general, it is false that

(4.1) Avz(er) H / wp(t

However, it is easy to see that (4.1) is true if E]—'(t) is the product of finitely many functions which
are p-adic locally constants almost everywhere (i.e. wy(t) = 1 except for finitely may primes p), and
this can be generalized if #(t) is well approximated by a finite product. In [Hel09], those are called
almost finite products of p-adic locally constant functions, and we cite his result.

Proposition 13 (Helfgott, Proposition 7.7). Let S be a finite set of places of Q, including co. For
every v € S, let g, : Q, — C be a bounded function that is locally constant almost everywhere. For
every p € S, let hy, : Q, — C be a function that is locally constant almost everywhere and satisfies
|hp(z)| < 1 for all z. Let B(x) € Zlx] be a non-zero polynomial, and assume that hy(z) = 1 when

vp(B(z)) < 1. Let
= H 9u(n) H hp(n)

veS vgS
If Congecture 2 holds for B, then one has

Avy W(n) = & +C+H/g,, ) da - H/h

pES pgsS
where ¢y = limy_, 4 o sgn(goo(t)).

We remark that ¢y differs from the value of Proposition 7.7 of [Hel09] as he considers averages
over positive integers, and we are using (1.2). Rizzo also proves a similar result in his paper [Riz03,
Theorem 19] in the particular case that B(z) = « (and then the result is unconditional).

Then, our strategy will be rewrite the root number as

~[Tw®

where the modified local root numbers wj (¢) are such that the product is finite or almost finite, and
then we can compute the average root number with Proposition 13.

The average root numbers of Theorem 1 and Theorem 2 illustrate those 2 phenomenons. For the
family of Theorem 1, the root number is a finite product and it is periodic, and the average root number
is a rational number. For the family of Theorem 2, the root number is not given by an almost finite
product in terms of the local root numbers w,(t), but can be written as an almost finite product in
terms of the modified local root numbers wy (t), and the average root number is given by a convergent
infinite Euler product, computed as in Proposition 13. Our result are unconditional, as the degree of
the polynomial B is 2.

4.1. The generalized Washington family and proof of Theorem 1. As in the introduction, we
fix a € Z+o and we consider the family of elliptic curves

Wa(t): y* = 2% + t2® — a(3a + t)x + a®
with
= 16(t* + 3at + 9a?);
32(t* + 3at + 9a?)(3a + 21);
= 16a*(t* + 3at 4 9a*)*;

(
(
(4.2) N
(o) = 25

= (t* + 3at + 9a°).



BIASED FAMILIES OF ELLIPTIC CURVES 25

Hence, W, is a potentially parity-biased family. As explained after Theorem 9, the rank of W, (t) over
C(t) is 2 and, as proved in Corollary 6, the rank over Q(¢) is < 1 and it is equal to 1 if and only if a is a
square or minus a square. In fact, the points (0, a/a) and (a, ay/—a) are two points in W, (¢)(C(¢)). By
the action of Gal(Q/Q), one can see that they are independent and the rank is thus 2 over Q(i, /a)(t).
Also, if a (resp. —a) is a square then (0,a+/a) (resp. (a,a+/a)) is an infinite order point defined over
Q(t). As stated in [Duq01], the point (0,1) can always be part of the generators of Wy (¢)(Q) for any
t € Z such that t? + 3t + 9 is square-free.

Clearly, the family W, (t) is a generalization of Washington’s family (obtained with ¢ = 1) and it
is closed under quadratic twists: if w € Zyo then the quadratic twist of W,(t) by w defined by
Waw(t): wy? = 2% + to? — a(3a + t)z + a® is isomorphic to Fu(wt). Furthermore, notice that
W, (r/s) is isomorphic to Wepsz (b?sr).

4.1.1. The local root numbers of W,(t). In this section, we give formula for the local root numbers of
Wi (t) for t € Z. In the following, we let f,(t) := (¢* + 3at + 9a?). Also, for convenience of notation,
we indicate with &,(t) the root number ey, (t) and we denote by w,(¢) (a will always be understood)
the local root number at p of W,(t). The formula below can be directly computed from Rizzo’s
tables ([Riz03]) and can be deduced from the general formula of the root number of F; given in the
appendix A.

Case p > 3.

Proposition 14. For p > 3 we have

vp(a)+vp(fa(t))
(;1) v if 0 <wp(a) < wy(t),

wy(t) = 4 — (t—"> if 0 < wp(t) < vp(a) and vy(t) is even,
(‘Tl) if 0 <wy(t) <wvy(a) and vy(t) is odd.
Proof. We check only the case p > 5. The case of p = 3 is analogous but involves a much more lengthy
case by case analysis of all possibilities using Table IT of [Riz03]). We remark that it’s quite surprising
that the final formula for p = 3 turns out to be the same as for the case p > 5.
Let p > 5, and we first suppose that 0 < v,(a) < v,(t). Then, v,(f.(t)) = 2v,(a), and
vp(Ca; 6, A) = (2vp(a), 4vp(a), 6vp(a)).

We have to find the smallest triple (g, h, k) of nonnegative integers such that g = v,(cs) (mod 4),
h = vp(cs) (mod 6) and k = v,(A) (mod 12), and then we can read the value of wy(¢) in the Tables of
[Riz03] giving the root number of the minimal model. For convenience, we use the following notation
between triplets of non-negative integers:

(g, h. k) ~ (g", 1K) <= (g,h. k) = (¢", 1, F') — A\(4,6,12),
for an integer X\. Writing v,(a) = 2¢ + 7, with 7 € {0, 1}, we have that
vp(cq, cs, A) ~ (27,37, 67)

1 vp(a)

and using Table I of [Riz03], we get that w,(t) = (‘7) " when 0 < vp(a) < vp(t), which agrees with

the statement of the proposition, as v,(f.(t) is even in that case.
Suppose now that 0 < v,(t) < vp(a). Similarly to the first case, we write v,(t) = 20+ 7, 7 € {0,1},
and then v,(a) = 20+ 7 + (vp(a) — vp(t)), with vy(a) — v, (t) > 0. This gives

vplea,ce,A) = (40+ 27,60+ 37,120+ 67 + 2(vp(a) — vp(t)))

(0,0,2(vp(a) — vp(t)) if v,(t) is even,
(2,3,6 +2(vp(a) —vp(t)) if v,(t) is odd,
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and using Table IT of [Riz03], we get

_<*Cﬂ;ft)f)) = —(%) if v,(t) is even,

wy(t) = (—_1) if v,(t) is odd.

Finally, suppose that v,(t) = vy(a). Then, vp(fa(t)) = 20,(t) + v, (£2 + 3apt, + 9a2) = 2v,(t) +
Vp(fa, (tp)), and similarly, v, (2t + 3a) = v,(t) + v, (2t, + 3a,). We write vy(fq,(tp)) = 6k + 7 with
0<7<5and v,(t) =20+ 7" with 0 < 7/ < 1. We have

vp(ca,c6,A) = (40+ 27"+ 6k + 7,60 + 37" + 6k + 7 + v,y (2t, + 3ap), 120 + 67" + 12k + 27)
~ (27 + 6k + 7,37 + 6k + T + vp(2t, + 3a,), 67" + 12k + 27)
(4.3) ~ 2k +27" + 7,37 + 7+ v,(2t, + 3ay), 67" + 27).

We first suppose that v,(t) = v,(a) is even. We note that if v,(2t, +3a,) > 0 then v,(fa, (t,) = 0, i.e.
7 =k = 0. Replacing 7/ = 0 in (4.3), and using Table T of [Riz03], it is easy to see that

1 7=0
-1 _
pr(t) E > T = 1,3,5
=) =24
P

To see that this agrees with the statement of the proposition, we remark that if v,(fa,(tp)) > 0, then
t§+3aptp+9a§ has a root modulo p and its discriminant 43a12, is a square modulo p, hence, (—3/p) = 1.
We now suppose that v,(t) = vp(a) is odd, i.e. 7/ = 1. Replacing in (4.3) and using Table I of
[Riz03], we have
(vp(ca),vp(es), vp(A)) ~ (24 2k + 27,3 + v, (3a, + 2t,) + 7,6 + 27),

and it is easy to see that

=1} 7=0,2,4
p
wp(t): _?3 T:1,5
1 T=3.

Again, using the fact that (%3) = 1 when 7 > 0, this agrees with the statement of the proposition. [J

Case p=2. For a € Z4y and t € Z, we set s4(t) € {£1} such that wa(t) = s4(t) fa(t)2 (mod 4).

Proposition 15. The values s,(t) are given by the following cases.
o For 0 <wsy(a) <wvy(t) and ve(a) even then s,(t) =1 if and only if
az ==+1 (mod 8)
or
az =3 (mod 8) and 272Dt =1,23 (mod 4) .
or
az =5 (mod 8) and 27729t =0,2,3  (mod 4)
o For 0 <wsy(a) <wy(t) and ve(a) odd then sq(t) =1 if and only if
ay =1 (mod4) and?2 "9t=1,2 (mod 4)
or .
az =3 (mod4) and?2 "t=0,1 (mod 4)
o For vy(a) = va(t) + 1 and vy(t) even then sq(t) =1 if and only if
ay=1 (mod4) andity=1,3 (mod &)
or .
ay =3 (mod4) andty=1,7 (mod 8)
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o For va(a) = va(t) + 1 and va(t) odd then s.(t) =1 if and only if ta = az (mod 4).
For va(a) = va(t) + 2 and va(t) even then s,(t) = 1 if and only if

ap =1 (mod4) andts =3,5,7 (mod 8)
or .
ay =3 (mod4) andty=1,3,7 (mod )

e o
SS
3 3
< <
NN
P
29
S—
AVAN|

va(t) + 2 and va(t) odd then s, (t) =1 if and only if to =1 (mod 4).
va(t) + 3 and va(t) even then s.(t) = 1 if and only if

va(a) =v2(t) +3 andty =3,5,7 (mod 8)
or
va(a)
or
va(a) > va(t)+5 andta =5 (mod 8)

va(t)+4 andty =1 (mod 4)

o For va(a) > va(t) + 3 and va(t) odd then sq,(t) =1 if and only if to =1 (mod 4).

Proof. As for Proposition 14, one performs a rather lengthy case by case analysis of all possibilities
using Table IIT of [Riz03]). a

Remark 2. Note that if va(a) = va(t) + 4 then in any case sq(t) = t2 (mod 4) and that if va(a) >
va(t) + 3 and va(t) odd, then s,(t) = to (mod 4). These facts will be important in the proofs of
Theorems 3, 4 and 5.

The root number of W, and proof of the first part of Theorem 1. By the previous section we have

€a(t) = — I, wp(t) we now show how to transform this product into
t 1+vp (1)
(4.4) olt) = —salt)ecdant) T (-1 () (1mod 4).
Plcats s
as given in Theorem 1. We recall that t, := p~"»()¢ and thus as := 27"2(%)q.

Proof. Let p > 3. From the definition f,(t) := (t? + 3at + 9a?) one has that if 0 < v,(¢) < v,(a), then
vp(fa(t)) = 2vp(t). Hence, by Proposition 14, if 0 < v,(t) < vp(a) then

® (1>Up(fa(t))+vp(a)< (tp)>1+vp(t) <1>u,)(t)+v,,(a)
w = — B - )
! 2 P p

1\ v lfa®)up(@) £\ 1T 1 0@
w,(t) = R . | £ __
L] H(p) g <<p>) (p>

p>3 p=>3

Thus,

0<v, (t)<vp(a)

Using the fact that (%) = p (mod 4), we have

-1 vp(fa(t))tvp(a)
H <_> = [(afa(t))2] = |az|fa(t)2 (mod 4).
p=3 p

since fq(t) > 0 for all t. Now, for a prime p, we have 0 < v,(t) < vp(a) if and only if p | zed(ay: 0

this case we also have v, (t) + vp(a) = vy(a/ged(a,t)) (mod 2). Furthermore, the odd prime factors of
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m are the prime factors of (a/ged(a,t)), and (a/ged(a,t)), = m. So,
H ( <tp > > 1+Up(t) (1 ) vp(t)+1)p(a) H ( (tp > > 1+1)p(t) (1 ) vp(a2/gcd(a2’t))
p>3 p p ol p P
0<v, (t)<vp(a) ged(ag,t)
|a2| tp 1+vP(t)
= — —| = d4
ey I ((3)) 7 meas
|gcd(a2~f)
Finally, recalling that by definition wa(t) = 5,(t) fo(t)2 (mod 4), we have
ealt) = —[Jw®
= 1+vp(t)
(fa(t)2)?|ag|? ( (t,,)) top
= —sall)~— - = mod 4
(t) acd(az, ) H2 ) ( )
Igcd(a2’t)
" 14w, (t)
= —s(edan J[ oY) (1mod 4)
a p
Plgatas s
as claimed. (]

Corollary 16 (O. Rizzo). Let Wy : y? = 2® +ta® — (t + 3)z + 1 be the Washington’s family. Then the
root number of Ey is -1 for every t € Z.

4.1.2. The average root number for W, (t) and the proof of the second part of Theorem 1. In this section,
we give a closed formula for the average root number of F(t).

Proposition 17. The average root number of the family W, is

Avz(ew,) = =[] BEw. ),

pl2a
where for p odd we have
1 _ p-2lvp(@)/2]
p—l +p (@ if p=1 (mod 4),
Bw,p) =4 7
_;2_“ (1 _ (_p—z)wa)m) F(—1)P@p=r@  ifp =3 (mod 4)
and for p =2,
1 ifa=+1 (mod 8),
1/2 ifa =43 (mod 8),
0 if va(a) =1,
1/2 if va(a) =2 and ay = +1 (mod &),
B, (2) = 3/8 if va(a) =2 and ay = £3 (mod 8),
‘ 1/4 if va(a) = 3,
21-v2(a) _ % if va(a) > 4 and vy(a) even and ag = +1 (mod 8),
3/2v2(@)+1 % if va(a) > 4 and vy(a) even and ag = +3 (mod 8),
21—va(a) 4 % if va(a) > 5 and ve(a) odd.
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Proof. Since (’71) = 1 (mod 4) for p odd, then we can rewrite (4.4) as

eult) = —sa) I <pl (= 1)1+ <2,>1+vp(t> e

plaz pl—gcd?(f%t) p|2a

where w3 (t) := s,(t) for p odd

> min(vp(az),vp(t))

(—71)””“)(—1)1+vp<t> (%)H””“) wy(t) < vp(a),
()" 0(t) 2 vyla).

Then, the average root number is given by
AVZ Ea = H /
pl2a

For p | a odd, we have

vp(a)—1 e e e+1 vp(a) oo
—1\" (=D d ~1\" 1
[momo-"3 ()55 = ((7(5)7 2 ¥ o
b e=0 b b de(Z/pZ)* P p e=v,(a) dE(Z/pL)* p
Let N, = va(a) 2J + 1. The first sum is
(et L p=1 (mod 1)
e=0,codd > P pp° — L4 (1= (=p™®)N+) p=3 (mod 4),
and the second sum is
__1 vp(a) p—l ii B __1 vp (@) (@)
D pv,,(a)+1 ~ pe - P p :
Thus,
ry— —2N,
@ [ wnan =3 0]
13 - —2\N, vp(a), —vp(a —
—p2+1(1—(—p )Ne) 4+ (1) (@p=ve(@  p =3 (mod 4)

For p = 2 we consider several cases depending on vs(a) and az (mod 8).

The case va(a) = 0. First, looking at the values of s,(t), we note that if a = £1 (mod 8) then s,(¢) =1
for all ¢t and fz sa(t)dt = 1. Otherwise, we write

/ sa(t)dt:/ sa(t)dt—i—/ sa(t)dt—i—/ Sq(t)dt
ZQ ’Uz(t)zo ’Uz(t):]. ’Uz(t)Z?

where in any case, if d is odd then s,(d2¢) depend on d (mod 4). If a = 3 (mod 8) then

1 1 1
Lo = g 3 sald) = sl + ) = 5
)= 0 de(Z/4Z) %
and
1 1 1
[ o0 = g 3 a2 = g (5a2) 406 = 5

de(Z./4Z) %
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and

1 . ,
Lm» sal®)dt =3 5og D sal@d) = D (sa(2) 4 52(29) = Y gy = oy

e>2 de(Z/47)* e>2 e>2

Summing up the various contributions we obtain fZQ sq(t)dt = 1. If a = 5 (mod 8), then the same

method leads to the same result:

1 1
/ sa(t)dt = / Sq(t)dt +/ Sq(t)dt +/ sa(t)dt =0+ 5+ 5 = .
Zo v (£)=0 va(t)=1 va(£)>2 22 22 2

Hence, summarizing the above computations, we have

(4.6) /Z salt)it = {

The case va(a) = 1. We have

/ sa(t)dt = / sa(t)dt + / sa(t)dt + / sa(t)dt
Zo ’Uz(t):O ’Ug(t)zl ’Uz(t)ZQ

where, from the table for s,(t) we have fw(t):o sa(t)dt = fvg(t):l sq(t)dt = 0 and

ifa=+1 (mod 8),
ifa=+1 (mod 8).

N[

1
o(t)dt = o (2° 9¢3)) = (_1)(a0—1)/2 o
G Y grralen(2) + 528 = (1) 2“”;2‘“’“ 0
Thus if vy(a) = 1, then
(4.7) / Sq(t)dt = 0.
Za

The case vy(a) = 2. We have

/ sa(t)dt = / sa(t)dt + / sa(t)dt + / sa(t)dt + / sa(t)dt + / sa(t)dt
Zia v (t)=0 va(t)=1 v (t)=2 va(t)=3 va(t)>4

with [, o sa(t)dt = o5 (Sa(1) + 54(3) + $4(5) + 8a(7)) = 35, [, ,(1)=1 Sa(t)dt = 0. Furthermore, we
obtain
1 2 ifay =41 (mod 8)
/ Sq(t)dt = 51 X 2 ifap =3 (mod 8)
v2(t) 0 ifap=5 (mod 8)
and [ J(1)=s Sa(t)dt = Z. Finally,
1 4 if ag =41 (mod 8)
/ Sq(t)dt = 2 X -4 ifaz =3 (mod )
va(t) 24 4 ifap =5 (mod 8)
and so

1 ifuvy(a) =2and a; = +1 (mod 8),
(4.8) / saltydt =12
Zs ¢ ifwy(a) =2 and a; =43 (mod 8).
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The case va(a) = 3. In this case, we have
1

/ sa(t)dt = o5, / sa(t)dt:/ sa(t)dt = 0,
v (t)=0 v (t)=1 va (t)=2

1
/ Sq(t)dt = —/ Sq(t)dt = (_1)(%—1)/2_5_
v2(t)=3 va(t)>4 2

Thus, if va(a) = 3 then

(4.9) /Z sa(t)dt = i

The case vy(a) > 4 with va(a) even. In this case we have

/ sa(t)dt = / sa(t)dt + / sa(t)dt + / su(B)dt + / sa(t)dt.
Zo va (t)<va(a) vz (t)=v2(a) v (t)=v2(a)+1 va (t) >va(a)+2

With the same techniques as before,
1 1 ifas =41 (mod 8),

Sa<t)dt = Svala)rl 1 if a9 = 3 (mod 8),
/vz(t)—vz(a) 2va(a)t 0 ifaz=5 (mod 8),

1
O ep—
/U2(t)=vz(a)+1 Qua(a)+2
1 1 ifap =41 (mod 8),

Sa(t)dt = Soa(a)+2 —1 if a9 = 3 (mod 8),
/v2(t)2v2(a)+2 2vaa)t2 1 if as =5 (mod 8).

Now,

/ sa(t)dtz/ sa(t)dt—i—/ sa(t)dt + > / sq(t)dt
va(t)<vz(a) vz (t)=v2(a)—2 va(t)=v2(a)—4 j=a Jv2(t)=v2(a)—2—j

Jj even

The first integral of the right hand side is TTl(aW the second one is 0 and

va(a)—2 va(a)—6

sa(t)dt — / salt)dt
; /vg(t)zvg(a)—Z—j ; va(t)=v2(a)—6—j
v2(a) =6 1 gua(a)—4 _ 1
= ZU Qua2(a)—6—j+3 (72) - 73 x Quz2(a)—4"
iz

j even

Thus, collecting the above results, we have that if a = 2%2(%)ay with as odd and va(a) > 4 even, then

(4.10) / (= L gua(a)—4 _ . sdm  ifaz=%1 (mod 8),
z, 2u2(a) 3 x Qua(a)—4 W if ag = +3 (mod 8).

The case vy(a) > 5 with vy(a) odd. In this case we have

/ sa(t)dt = / sa(t)dt + / sa(t)dt + / sa(t)dt + / sa(t)dt.
Zo va (t)<va(a) va (t)=v2(a) va (t)=v2(a)+1 va (t)>v2(a)+2

The integral | (t)dt is zero and [, 0y iy Sa(B)dt = = [, 500 )0 Sa(t)dt. Then as
above, N

o (t)=v2(a) Sa

vz (a)—1 va(a)—1

Sq(t)dt = / Sq(t)dt = / Sa(t)dt.
/Uz(t)<ﬂ2(a) ; va(t)=j ; va(t)=v2(a)—1—j

j even j even
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NOW, [, ) a1 Sa()AE =0, [, 0y 5 8a(t)dt = st and

va(a)—1 va(a)—5 va(a)—>5 1
Sa(t)dt = / Sa(t)dt = N a .
;4 /Uz(t)=U2(a)—1—j Zo va(t)=va(a)—5—j Zo 2v2()=870

21)2(@)—3 -1
T3 x2n@3
Thus, if va(a) > 5 with ve(a) odd, then

1 1— 21)2((1)73
(4.11) /Zz sa(t)dt = ot 3 g s

Thus, by (4.5) and (4.6)-(4.11) the proof of Proposition 17 is complete. O

4.1.3. Families with elevated rank. We can use the family W, (¢) in order to find families with elevated
rank over Z. First, we notice the following corollary

Corollary 18. Let a,b € Z with a = +1 (mod 8) and ged(a,b) = 1. Then for all t € Z, we have

ealat +0) = -]~ (Z) = (=1)1FAs(a]) <K<ba)>

pla

where k(a) := [, p is the kernel of a and X is the Louville function.
Proof. This a direct application of Theorem 1. O

In particular, Corollary 18 gives that the root number of W2 (pt + a) is 1 for all ¢ € Z when a is
a quadratic residue mod p and the root number of W, (pt + b) is —1 for all ¢ when b is a quadratic
non-residue mod p. This proves Corollary 2.

We can also give examples of families of rank 2 and 3 with elevated rank by considering families of
the form W, (p(t)) where p(t) is a degree 2 polynomial. Indeed, for a € N consider the family

WI(t) == W,2(2t? — 2at — a?).
We then have that
WI(t) = Wea2 (2t% — 2at — a®) =~ F_19(30)1(6(2t — a)?) =~ Lg 3341 0(2t — a).

Now, writing s = —3%a*, w = 6 and v = 0 one has that —4w?r = 3(12a)*, —3r = (3a)* and the
polynomials C(z) and R(x) of Proposition 12 factor into 3 and 5 irreducible polynomials respectively.
Thus, by Proposition 12, we have that W1, has rank 3 over Q(t) for all a.

Corollary 19. Let p be a prime number = £1 (mod 8), and let W;’Z(t) = W}(pt+1) for £ € Z. Then
for (p,£) =1, W;;é(t) is a rank 3 family with elevated rank over Z.

Proof. For any odd prime p, an easy application of Theorem 1 gives that the root number of W; (t) is
2 .
et () = (2) ifptt
? -1 ifp|t
for any ¢ € Z. Replacing t by pt 4+ ¢, and using the fact that p = £1 (mod 8), we get the result. O

It’s not difficult to construct in a similar way rank 2 families with elevated rank. For example, one
such family is given by Wy(—3t? — 4t — 21).
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4.1.4. Twists of Washington’s family. In this section, we consider quadratic twists of the original Wash-
ington’s family (see [KN92], [Bye97] for some studies about Washington’s twists). Let d € Z, the
twist by w of Washington’s family is given by

WD (1) 2 = 23 + dta® — (¢ + 3)d%x + d°.
We easily see that the family Wl(d)(t) is in fact the family Wy(dt). So in the formula of Theorem 1,
the product is empty and equal to one, hence €, @ (t) = —|d2[sq(dt) (mod 4). The value of sy(dt) is

given by the first two cases of Proposition 15, furthermore, we have 2-2()dt = dyt.

Proposition 20. The root number, Epp(@ (t) of W{d)(t) is given by the following cases.
If vo(d) is even, then

e if dy = +1 (mod 8) then ) (t) = —|d2| (mod 4);

e if dy =3 (mod 8) then Epp(@ (t) = sgn(ds) if and only if t = 1,2,3 (mod 4);

e if dy =5 (mod 8) then Epp(@ (t) = sgn(ds) if and only if t =1 (mod 4).
If vo(d) is odd then Epp(@ (t) =sgn(ds) if and only if t = 0,3 (mod 4).

One can also consider the twist by
dy(t) = v +tu® — (t+3)u+1=u(u— 1)t +u® —3u+1

for any u € Z (one could also take u to be a polynomial in ). In this case, the generic point
(udy(t),d,(t)?) is a non-torsion point of Wfd“(t)). So the rank of Wl(d“(t)) over Q(t) is at least 1.
Moreover from Proposition 20 we can deduce the following result.
Corollary 21. Let u € Z.

e [fu=1 (mod 4) then €yl (1) (t) =1 if and only if d,(t) > 0.

e Ifu=0 (mod 4) then Eyp(iu(e) (t) =1 if and only if d,(t) < 0.

Proof. Assume that u = 1 (mod 4) then d¢(u) = —1 (mod 8) for all ¢ and we apply Proposition 20:
e(Eq,(u)(t)) = —|d¢(u)| = sgn(dy(u)). If u =0 (mod 4) then d;(u) =1 (mod 8) for all £ and we apply
the same method. ]
As an example, let’s consider the case u = 5, so that d;(5) = 20¢t+111. In this case € p(20t+111) (t) >0

1

if and only if t > —5 and there are at least 2 independent points of WfQOtHH):

20t + 111 (20t + 111)?
4 ’ 8 '
4.2. The family V, and the proof of Theorem 2. First we give the root number for the family

(5(20t + 111), (20t + 111)*)  and (

V.: y2 = 2% + 3t2? + 3atx + ot

for which we have

ca(t) = 2'3%t(t — a),

c(t) = —2°33(t —a)(2t — a),

A(t) —2433a%t%(t — a)?,
893

it = —%t(t _a).

In the following we shall always assume ¢t # 0, a, so that A(t) # 0. Also, for convenience of notation,
we will use in his section g,(¢) for the root number of V,(t), and wy(t) for the local root number at p
of V,(t). Then,

ea(t) = —JJws(t).
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4.2.1. The local root numbers of V,. The local root numbers for V, can be obtained by performing a
simple but quite lengthy case by case analysis from Rizzo’s table [Riz03] as in the proof of Proposi-
tion 14. We give the final results only, here for p > 5 and in Appendix B for p = 2, 3.

Lemma 22. Let p > 5. Then, for 0 < v,(a) < v,(t) one has

o (%3) (g)ﬂp(t)ﬂp(tfa)ﬂp(a) if 6 1 vp(t —a) —v,(t) + 3uy(a),

1 if 6] vp(t —a) —vp(t) + 3vp(a),

whereas if 0 < vy(t) < vp(a) then
—(3%) if vy(t) is even,

)= (%) if vp(t) is odd.

We now modify the local root numbers w,,(¢) in order to apply Proposition 13. We will write &, (t)

ca(t) = = [T wp(®) = = [J w; @),

for some wy(t) satisfying wj () = 1 for v,(t(t — s)) < 1 for all primes p { 6a.

Let p > 5, and suppose that v,(a) = 0 and p | A(t) = —2*33a%t?(t — a)? (if not, w,(t) = 1). Then,
we have 2 cases: either v,(t) = 0 and v,(t — a) > 0, or v,(t) > 0 and v,(t —a) = 0. Thus, Lemma 22
gives in this case

(__1 vp(t—a)+1

S vp(t) = 0,v,(t —a) >0 and 6 v,(t — a),

3
P
vp(t)+1
wp(t) = (=4)(2) vp(t) > 0,0,(t — a) = 0 and 6 1 v, (%),
1 if v,(t) = 0,v,(t —a) >0 and 6 | v,(t —a) or if v,(t) > 0,6 | v,(t).

Then, for all p # 2,3, we define

i o ::wp(t)(__lyp(ta><__1>vp<t>,

p p
so that for p { 6a we have wj(t) = 1 for v,(t(t —a)) < 1.

Lemma 23. Forp > 5, let wy(t) be defined by (4.12). Let w3(t), w3 (t), w’,(t) € {£1} be defined by

wi(t) = (=1)0(=1) 0wyt
ws(t) = to(t —a)aws(p) (mod 4)
wi,(t) = sgn(t(t —a))

Then,
ealt) = —wi (t) [ [ wi (@)

Proof. Using (4.12), we have

1w = H(%)W(%)wa)pggwpa).

P#2,3 P#2,3
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1 vp(t) —1 vp(t—a)
(___) (___) = (1) (—1)n-a) T] pOp -2 (mod 4)
3

PF#2
(=)0 (=1)s =Dty (t — a)2| (mod 4),

which proves the result.

4.2.2. The average root number for V,(t). Using Lemma 23 and Proposition 13, we then have

(4.13) Avz(ey,) H /

35

since t(t — a) is positive except for finitely many values of . Computing the p-adic integrals we will

obtain the following proposition, thus completing the proof of Theorem 2.

Proposition 24. The average root number of the family V, is given by the Euler product

AVZ EV H EV

where the Euler factors for p =2 and p = 3 are given by

—1/2 if va(a) = 0
0 if va(a) =1
Ey,(2) = {178 if vala) =2
217va(e) 4 1(4=(v2la)=8)/2 _ 1) jfuy(a) > 3 with va(a) odd
2-v2(a)—1 4 %(4_(”2(‘1)_4)/2 —1) ifva(a) >4 with va(a) even,

6 1 3/, ,
73m@t2 T g (3 vl — 1) if v3(a) = 0 (mod 2)
Ey,(3) = 6 1 A 1
7 Jua(@) 2 + 1 (B*vg(a)Jr — 1) if v3(a) =1 (mod 2),

whereas for p > 5, the Euler factors are

- “1\ 1— pi—ve(@ —1\ 1 (1 p=1 (mod 3),
0= (5) 5+ (5) (1 e=2=r=) p=2 (mod 3),

where v,(a) = j (mod 2) with j € {0,1}. In particular, for vy(a) =0 and p > 5, we have

p

1 =1 (mod 3),
By, (p) = (1__gg;ggézﬁ) p=2 (mod 3).

When computing the p-adic integrals we shall need the following Lemma.

Lemma 25. For k € Zso, let S == {t €Z, : v,(t) = vp(a),vp,(t —a) = vy(a) + k}, then Sk has

measure

p—2
p—1

k=0
w(Sk) =
ifk>1
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Proof. Let xj be the characteristic function of Si. If kK = 0, then
1
#Sk) = ——51 > xo@r@a),
b de(@/pE)"

and xo(p'(@d) = 1 iff p*r(@Dd — pv»(@q, £ 0 (mod p*»(¥+1) and thus iff d # a, (mod p), which gives
the result. In the same way, considering the contribution of d = a, (mod p) only, we have

1
w(t € Zp : vp(t) = vp(a),vp(t —a) > vy(a) +1) = W
and similarly, for any k& > 1,
1
p(t € Zp = vp(t) = vp(a), vp(t — a) = vp(a) + k) = prp(@) k-
Then,
1 1 p—1
'u(Sk) - pvp(a)+k N pvp(a)+k+1 & pvp(a)+k+1
completing the proof of the Lemma. O

First, we shall compute [, w3 (t) dt for p > 5.
Proposition 26. Let p > 5. Then [, wy(t) dt = Ey,(p).

Proof. We shall consider three cases, according to whether v, (¢) is smaller, equal, or larger than v,(a).

The case 0 < v,(t) < vp(a). We have that v,(a) > 0, and v,(t — a) = v,(t) and so by (4.12) in this

case we have wy (t) = w,(t). Using Lemma 22, we have

3t —1
/ wy(t) dt - = —/ (—”) dt+/ (—) dt.
00y (1) <vp (@) B T AN ey N P

It is easy to see that the first integral is 0 and that so is the second if v,(a) = 1 (the domain of
integration is empty). Thus, suppose v,(a) > 2. Then, letting v,(a) = j (mod 2) with j € {0,1}

-1 p—1 —1 1 .
4.14 / wi(t) dt = (—) s = (—)— 1—p/ (@),
(4.14) 0< vy () <vy (a) »() P 2 pht2 p/)p+ 1( )

0<2k+1<v,(a)

Notice that the expression on the right is 0 if v,(a) = 0.

The case vp(t) = vp(a). We let v,(t — a) = vy(a) + k, with & > 0. We have

p

(;1) if 3v,(a) + k =0 (mod 6),

(4.15) wi(t) = (__?))k+1 (é)%(a) if 3v,(a) + k # 0 (mod 6),

and

/ wy,(t) dt = Z/ oty Wp(8) dl
vp(t)=vy(a) k=07, (t--a)=vn(a)+k
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with wy(t) as in (4.15). Thus, by Lemma 25 we have

‘ i k+1 j
W, tdt = ——— | — + R 2
‘/Up(t):'Up(a) ( ) pﬂp(a)“rl P Z pvp(a)+1+k P p

k#3j (mo d 6)

+ Z vp(a)+1+k: ( )

k=1
k=35 (mod 6)

The sum over k in the first line gives
] 00 k J o)
()0 2 G w5 () X
sy e - p — aoneral — p
pr@F p J\p ;g; p prr@FL\ p p ;;;
- k=3j (mod 6)
el S G A NS S et S e & N e AN
~ per@+t\p p—(ﬁ) por(@+1\ p p )pb—1
2
whereas the sum over k in the second line adds up to
(p-1p% (-1}’
pv,,(a)+1(p6 _ 1) P

Then, since (_73> =1ifp=1 (mod 3) and (‘73) = —1if p =2 (mod 3), we have

/ - (2) {7 p=1 (mod 3),
w = i . 35 (0

vp(B)=vp(a) D W (p — 24 (1) 4 %pll)) p =2 (mod 3).

The case 0 < vy(a) < vp(t). In this case, v,(t — a) = vy(a), and by Lemma 22 and (4.12) we get

(_1>vp(a)w*(t) _ (_73)%(0“ vp(t) — 4vp(a) £ 0 (mod 6)
1 vp(t) — 4v,(a) =0 (mod 6),

which gives

vp(a) e+1
-1\ / . p—1 (—3) p—1
— w(p) dt = g — | — + E S
( D ) 0<wy (@) <vp(t) »(P) pett \ p pett

e>vp(a) e>vp(a)
e—4vp(a)Z0 (mod 6) e—4vp(a)=0 (mod 6)

Thus, for v,(a) = j (mod 2) with j € {0,1} the first sum is

2: p=1(=3\"" (-3 > _p=1
e+1 p D p4'up(a)+65+1

e>vp(a) e>—1uv,(a)
_ (—_3)"1’(‘*) p-1 1 (—_3) (p— Vp®
=7 prp(s)+1 b (,73) p ) pre(a)+1(p6 — 1)
whereas the second gives
> p=1_  (-Up¥
Pt pre(@)F1(p6 — 1)

e>vp(a)
e—4vp(a)=0 (mod 6)

37
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Thus,

—1\7 | st p=1
4.16 wi(t)dt = — L v
(416) /vp(t)>'up(a) o) ( p ) AL s g 2 p =2 (mod 3).

porIFT pF1 T pup(@F1(p6 1)
Finally, summing

/ wi(t) dt = / w(t) di + / wi(t) di + / w(t) dt,
Z 0< v, (t)<vp(a) vp (t)=vp(a) 0<v; (a)<vp(t)

D

we get the result. O
Proposition 27. We have [, wj(t) dt = By, (3).
Proof. We recall that
w(t) = (=170 (1) Dy 1),
and that the values of ws(t) are given in Proposition 42 of Appendix B.
The case 0 < wvs(a) < wv3(t). In this case we have v3(t — a) = vs(a). Also, from Appendix B, we

have that w3(t) depends only on wv3(t) and (¢t — a)3 (mod 9) (and possibly a3 and wvz(a)). Thus, if
v3(t) = wvz(a) (mod 3), we have that

(_1)U3(a)+e 2(_1)1)3((1)-1—6

/ Cwi)dt =t > wealdp) = S
vz (t)=e de(Z/97)*

If v3(t) — vs3(a) £ 0 (mod 3), then the integral is easily seen to be 0. This gives that

. 2(=1)s(@ (=1°
/ wi e = 0 e O
0<vs(a)<wvs(t)

e>vs(a)
e=v3(a) (mod 3)

2 > an -1
- 3vs(a)+2 ;(_1/3) T 14 3vs(a)+2°

The case 0 < wv3(t) = wv3(a). Let e = v3(t) = v3(a) and v3(t —a) = e+ k with & > 1 so that
w3 (t) = (—1)*ws(t). First, we consider the case k > 1. If k =0 (mod 3) (and then k > 3), then ws(t)
is determined by a congruence modulo 9 on (¢t — a)3, and we compute

A (-1)* (=D*
s ()—vg(a)—e, U3 (t)dt = Je+k+2 Z w3((d —az)3) = 23e+k+2’
vg(t—a)=e+k de(z/3k+2z)*
d=ag (mod 3k)
d#ag (mod 3k+1)
For k£ # 0 (mod 3) and k > 1 we easily get
Ag(t):vg(a):e ’LU3 (t) dt - O
v3(t—a)=e+k
and thus
. 2 > R S |
(4.17) / (e W30 A= Z: (=D*/3" = — i s

vz(t—a)>e k=0 (mod 3)

Next, k = 0, that is e = v3(t) = v3(a) = v3(t — a). Then, we must have v3(2t —a) = e + ¢ with £ > 1.
Also, in this case w3 (t) = ws(t). If £ > 2, then ws(t) = 1 and

2
* —
/“3<t):v3(a>:e, w3(t) dt = Jeti+1?

vg(2t—a)=e+l
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whereas the integral is quickly seen to be 0 if £ = 1. Thus,
oo
1

* 2 —/
wi(t) dt = e+l Z?’ ~ 3us(a)r2’
k

=2

(4.18) /
v3(t)=vz(a)=e,vs(t—a)=e

Summing the contributions (4.17) and (4.18), we get

13 1
wg(t) dt = 7 20a(a) 42
/vs(t)—vs(a) 14 3vs(a)+2

The case 0 < v3(t) < vz(a). We let v3(t) = e. In this case we have v3(t — a) = v3(t) = e, and so
w3 (t) = ws(t). if e =0 (mod 2) and e < v3(s) — 1 then w — 3(t) = —1 and so we find

-2

2(t) dt = ——

JCCEE=

whereas in all other cases the above integral is 0. Thus,

: 2 L_2 13 (g~ _
/0§v3(t)<v3(a) s (t) dat 3 Z 3¢ 3 Z 9n 4 (9 1)’

0<e<wvz(a)—2, 0<n<N
e=0 (mod 2)
where N = LWJ
Then, summing the contribution of the three cases we obtain the proposition. O

Proposition 28. We have [, w3(t) dt = By, (2).

Proof. The proof of the proposition is given by a series of lemmas, which compute the contribution to
f22 w3 (t) dt in 4 cases depending on the relative valuations of ¢ and a. To obtain Proposition 28, it is
then enough to sum the 4 contributions.
Before proceeding with the lemmas we recall that for ¢ & [0,a] (note that excluding a finite number
of values of ¢ does not influence the various averages) we have
w5 (t) = ta(t — a)owa(t) (mod 4).
and that the values of wy(t) are given in Proposition 43 in Appendix B. (]

Lemma 29. Let x4 be non-principal character modulo 4. If va(a) is even, then
. 1 1 29 1
/0<v2(a)<v2(t) wy(t) dt = — oo ) — )G omn:

If vy(a) is odd,

1 46 1
wi(t) dt = xa(ag) ——— — xa(a2) — ———.
/0<v2(a)<v2(t) 2 2”1)(“)"!‘5 63 21}2((1,)-}-4

Proof. We first remark that if 0 < va(a) < va(t) = e, then
—toag (mod 4)  if va(t) — va(a) > 2,
to (t - a)2 = .
toas (mod 4) if vo(t) —wva(a) =1

We first suppose that va(a) is even. If va(t) — va(a) = 0,2 (mod 6), and va(t) # v2(a) + 2, then since
w3 (t) = taas (mod 4), it is clear that
/ wi(t) dt = 0.
va(t)=e

If va(t) — va(a) = 1,3,4,5 (mod 6), and va(t) — v2(a) > 1, then w3(t) = —az (mod 4), and

x 1 . 1
/ w2 (t) dt = 26+1 Z w2 (dpe) = —X4(a2) —2€+1 .
v2(t)=e de(z)2Z)*
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Then, if vo(a) is even, we then have that

« - 1 - X4(a,2) 29
D S R L D S 1

e>va(a)+3 e>vg(a)+3
e—wvg(a)#0,2 (mod 6)

[ va(t) = va(a) = 1, then wi(t) = _t2a2_1t2a2 (mod 4) = —1 (mod 4), so wj(t) = —1 and we have
-1

w; (t) dt = Soala)+2 "

/ﬁz(t)=v2(a)+1 Qua(a)+2

Finally, if va(t) — v2(a) = 2, then we compute

1 d=1 (mod 8),
1 d=3,7 d8 =1 d 4
w3 (d2°) = —dasws(d2°) (mod 4) = ;7 (mod 8), as (mod 4),
—1 d=3,7 (mod 8),a3 =3 (mod 4),
-1 d=5 (mod 8),
and so "
1 Xa\az
wi(t) dt = wh(dp) = 242
/712(t)_v2(a)+2 2e+3 dE(ZZ/SZ)* Qua(a)+4

Adding the contributions for v,(t) = vp(a) + 1 and v,(t) = vy(a) + 2 to (4.19), we get the result for
va(a) even.

We now suppose that va(a) is odd. If vy (t) — va(a) = 0,2,4 (mod 6), or ve(t) — ve(a) =1 (mod 6)
and va(t) # ve(a) + 1, then w3 (t) = —t3as = —ag (mod 4) and so, as before,

1
wy(t) dt = —xalaz) -
/vg(t)e 2¢+d

If va(t) — v2(a) = 3,5 (mod 6) and va(t) — v2(a) # 3, then wi(t) = taaz (mod 4) and so

/ wi(t) dt = 0.
va(t)=e

Thus, if va(a) is odd, we then have that

. B 1 xulaz) 46
(1200 % /vz(t)_eth)dtm(@) Y mH = eavig

e>vo(a)+4 e>wvy(a)+4
e—vo(a)£3,5 (mod 6)

We then have to treat the 2 remaining cases va(t) = va(a) + 1 and va(t) = v2(a) + 3. In the latter case,
we have that
X taas to =5 (mod 8),
wi(t) =
—t2a2 t2 5_'5 5 (mod 8)7

and then (a3)
* 1 * X4(G2
/ wy(t) dt = 3e73 Z wi (dp®) = ger2
vz (t)=vz2(a)+3 de(Z/82)*
Finally, if vo(t) — va(a) = 1, then we have
1 t2=1 (mod 8)
—1 t3 =3 (mod 8),a2 =1 (mod 4)
. 1 t3=3 (mod 8),as =3 (mod 4)
t) =
wa(t) = Xalaz) —1 ty =5 (mod 8)
1ty =7 (mod 8),a2 =1 (mod 4)
—1 t3 =7 (mod 8),as =3 (mod 4)
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and so

1
wy (t) dt = w3 (dp®) = 0.

de(Z/8L)*
Adding the contributions of v,(t) = v,(a) + 1 and v,(t) = vp(a) + 3 to (4.20), we get the result. O

Lemma 30. Suppose that va(a) > 2. Then,

3 vo(a) =2
/ wi(t) dt = 21‘”2(a) %(4‘(”2(“)‘3)/2 1) wvy(a) >3 odd
<z (t)<va(a)—2 —va(@) 4 1(4=(2(0)=4/2 _ 1) wy(a) > 4 even

Proof. Since e = v,(t) < vy(a) — 2, we have that (t — a)z = to — 2%ay for k = ve(a) — va(t) > 2, and
(t —a)2 = to (mod 4), which gives w;(t) = wa(t). First, suppose that va(t) is even. Then, it is easy to
see from Proposition 43 of Appendix B that

Q,Tl(a) e =wvy(a) — 2,
va(t)=e 0 e = vy(a) — 4,
2;—+12 e>wvg(a)—5

We now suppose that vy () is odd. Then, it is clear that

/ wy(t) dt = 0.
va(t)=e
Thus, summing all contributions

/ wi(t) dt = / wi (t
0<vz(t)<vz(a)—2 O<(‘<1)2((1) 2 Jv2(t)=e

e even

we get the result. O

Lemma 31. We have

/ wi () dt = 0.
va (t)=v2(a)—1

Proof. If vy(t) = va(a) — 1, then (¢t — a)y = t2 — 2a9, and one check that to — 2as = 1 (mod 4) <—
to = —1 (mod 4), which gives

wy(t) = ta(t — a)ows(t) = —wa(t) (mod 4).
From Proposition 43 of Appendix B, we then easily deduce that

/ w(t) dt =0
va(t)=v2(a)—1

for all cases. O

Lemma 32. If va(a) is even, then

X 1 1 129
/Uz(w—w(a) wa(t) db = =xa(02) 5 — gmre T al02) g gy

If vo(a) is odd, then

2 1 1 46
/ . )wz(t) dt = —X4(a2)W + X4(a2)W@_
va2(t)=va2(a
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Proof. Let e = va(t) = va(a) and ve(t —a) = e+ k. Notice that k > 1 since to —as = 0 (mod 2). We first
suppose that va(a) is even. If £ = 0,2 (mod 6), k > 3, then w3 (t) = —t2(t —a)2 = —s2(t —a)2 (mod 4)
and so

—1 * (e k
Az(t)=v2(a)=e at = 2etk+2 Z w2(2 (82 +a2 )) =0.
va(t—a)=e+k a€(Z/AZ)*

If k=1,3,4,5 (mod 6), k > 3, then wj(t) = s2 (mod 4), and

. 1

Jot i P3O @ = i)
va(t—a)=e+k
We then have that
. 1 129
(421) ‘/B'ZUQ(t):’UQ(G.) Wo (t) dt = X4(a2) Z W = X4(G2)W§.
va(t—a)>e+3 k>3

k#0,2 (mod 6)
We now have to compute the contribution for v (t — a) = va(a) + 1 and va(t — a) = va(a) + 2. For the
first case va(t —a) = va(a) + 1, by Proposition 43 we have

" 1 e e
(422) /e:UZ(t):UQ(G) Wy (t) dt = 9e+3 Z X4(a’(a‘2 + 20‘)) w2(2 (a2 + 2@)) =-2 2‘
va(t—a)=e+1 a€(Z/AZ7)*

For the second case va(t — a) = vo(a) + 2, we have w3 (t) = s2(t — so)wa(t) (mod 4) and so

s
(4.23) l:vz(t):vz(a) wa(t) dt = X;e(+§) D xala) wa(2%(az + 4a)) = —xa(s2)27 7",
va (t—a)=e+2 a€(Z/8Z)*
since wy(2%(az +4a)) = 1 only in the cases a = 1,3,7 (mod 8) if ag = 1 (mod 4), or a = 1,3,5 (mod 8)
if as = 3 (mod 4). Summing (4.22), (4.23) and (4.21), we get the result when vs(a) is even.
Suppose now that e = vy(a) = va(t) is odd. If k = va(t — a) — v2(a) =0,1,2,4 (mod 6), and k > 4,
then w3 (t) = ta(t — a)awa(t) = ta = s (mod 4), and

1

/c;:vz(t)zvg (a) W2 (t) dt = X4(82)W'
va(t—a)=e+k

If k = va(t —a) —va(a) = 3,5 (mod 6), and k > 4, then w3 (t) = ta(t — a)owa(t) = —s2(t —a)2 (mod 4)
and, as before,

/62”2(t):1)2(a) W (t) dt = 0.
va(t—a)=e+k

Summing the contributions above, we get that

. 1 1 46
(424) Ug(t)=vg(a) Wo (t) dt = X4 (0,2) Z W = X4 (az)m @

vz (t—a)>vz(a)+4 k;s,sk%liod 6)

We now have to compute the contributions for va(t —a) = va(a) + 1 and v (t — a) = ve(a) + 3. For the
first case vo(t — a) = va(a) + 1, we have

(4.25) ﬂ:UQ(t):Uz(a) wit)dt Y xala(az + 2a))ws(2°(az + 2a)) = 0
va(i-a)=cd1 ac(z/32)"

since w2(2¢(az + 2a)) = 1 only in the cases a = 1,7 (mod 8) if az =1 (mod 4) or a = 1,3 (mod 8) if
az = 3 (mod 4). Finally, if va(t — a) = va(a) + 3, we find

) 1
(426) ﬁ:’l&(t):’l)z(a) wa (t) dt = _X4<a’2) Qua(a)+5 "
va(t—a)=e+3
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Summing (4.24), (4.25) and (4.26), we get the result when vz (a) is odd. O

5. THE DENSITY OF AVERAGE ROOT NUMBERS

We shall prove Theorem 3, 4 and 5 by considering subfamilies of W, (t) of the form W, (Q(1))
where a(t) and Q(t) are polynomials in Z[t]. Thanks to Theorem 1, we know exactly the root number
for all the elliptic curves in these families, and so we just need to choose a(t) and Q(t) so that we obtain
the desired averages. In the case of averages over Q, we can reduce to the case where the co-factor of
the (modified) root number essentially determines the root number, whereas in the the case of averages
over Z, we reduce to the case where the root number is determined by its p-factor for a suitably chosen
p. The proof of Theorem 4 is more elaborate and requires working with all prime divisors of k.

Proof of Theorem 3. We first prove that Avy(§,) 2 QN [—1,1].

For any h/k € Q with (h,k) = 1, kK > 0 we need to show that there exists a non-isotrivial family &£
such that Avz(€) = h/k. First notice that we can assume 0 # |h/k| < 1, since by Theorem 1 we have
that Wa (14 4¢), Wi (t) and Ws(1 + 12t) are non-isotrivial families with root numbers constantly equal
to (—=1)f, —1 and 1 respectively. Also, let h = =+|h|.

Let p be a prime such that p + 1 = 2rk for » > 1. By Dirichlet’s Theorem on primes in arithmetic
progressions we can always find such a prime. Let m = p+ 1 — 27|h| so that 0 < m < p and m is even.
Let

Pt)y=5p[J(t=1),  a®t)=2"P(t), Q1) = (“4pt* + 1)P(1),
i=1

so that by (4.2) one easily sees that W) (Q(t)) is a potentially parity-biased non-isotrivial family.
We shall assume ¢ # 1,...,m so that P(t) # 0 and we let (¢) be the root number of Wy ) (Q(%).
First, notice that

ged(a(t)2, Q1)) = [P(t)2| =

Then, by (1.4) for ¢t # 1,...,m we have

Q(t) 144 (Q(t))
(1) = —sa0 (@) Ecd(a(t), Q1) [[  (~1)+@®) (q) (mod 4)
q prime
1+UP(Q(t))
= (@) P(D)2] (— 1) @) (@) (mod 4)

1+vp(Q(1))
) (mod 4)

= —Q(t)2]Q(t)|(—1) QM) (%

since vz (a(t)) = 4+v2(Q(t)) and thus by Remark 2 after Proposition 15 we have s,4) = Q(t)2 (mod 4).
Now, for t # 1,...,m an integer we have that |Q(t)| = FQ(t), so that

£(t) = £ (—1)1e(Q) <Q(t)p

140, (Q(1))
p > '
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Now notice that v,(Q(¢)) = 1 unlesst =1,...,m (mod p), whereas if t = ¢ (mod p) withi € {1,...,m}
then v,(Q(t)) = 1+ v,(t —i) and Q(t), = (4pt® + 1)k;(t — i), where k; = F [1;4:(j —1). It follows that

140, (Q(1)

1 . :

oy O et = i/ (—1)1+vp(Q(t))<Q( )p> i,
[t|<X Zyp p

m

p—m kit —1) up(1=4)
=+ + Z/ (—1)v(t=9) (”) dt
p i1 JtEit+pLy, p

5 T (5) [ (57
(

)4 L
; 1
p) P Jucz \p
o0

i—1 =1, PP p =0 P
£ even
— -1 2
SR L —i(l— m )_ rial _n
P p(p? —1) p+1 2rk k

and Avz(§7,) 2 QN 0, 1] as desired.
To show that we also have that Avz(F;z) 2 QN [0,1], we proceed as above taking Q(t) = P(t)
instead of Q(t) = (4pt? + 1) P(t). O

We now move to the proof of Theorem 5, about the density of average of the root number over the
rational. Given a family of elliptic curve F, we first state a result to compute Avg(ex) as defined by
(1.8). As for the averages over the integers, we write the root number as an almost finite product of
local root number, and we use the following result.

Proposition 33 (Helfgott, Proposition 7.8). Let S be a finite set of places of Q, including co. For
every v € S, let g, : Q, x Q, — C be a bounded function that is locally constant outside a finite
set of lines through the origin. For every p & S, let hy, : Q, x Q, — C be a function that is locally
constant outside a finite set of lines thought the origin, and satisfying |h,(x,y)| <1 for all x,y € Q,.

Let B(x,y) € Z[x,y] be a non-zero homogeneous polynomial of degree at most 6, and assume that
hyp(z,y) =1 when vy,(B(z,y)) < 1. Let

W(z,y) = [ 9o(@9) [] Pwl@v).

veS pgS
Then

K

- 2 pel-N N p=1 V()
Avos ) — 1 T,y > (zy)=
varcoprime W(E) 3= W 0 ) € -V, NP [ (o) = 1)
1 1
= Co R —— 3 : I | 7 9 h’ ?
e 11 1—p=2 /op o) dedy - /o L) dedy

pES pES I=r r
where Op = (Zy X L) \ (pZy % pZy), and

1 N N
o= lim —— wol@,y) dzdy.

We remark that our version of [Hel09, Proposition 7.8] is unconditional, as we are assuming that
deg B < 6.
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Proof of Theorem 5. We first prove that Avg($g) is dense in [0, 1].
For X > 2, let

my = H p and nx ::m?}f(X)JH,

2<p<X
where f(z) is any positive function such that f(X) and log X/f(X) tend to infinity. Let P(t) be a
polynomial with integer coefficients of even degree 2d > 0 and define

Qx(t) == —P(t)(1 +nxt?), ax(t) == =2*P(t)(1 + nxt?)?.

Notice that by the equations of the invariants (4.2) for the family W (t), Wa @) (@x(t)) is a non-
isotrivial potentially parity-biased family.
Now, let /s € Q with (r,s) = 1, s > 0. We have the isomorphism of elliptic curves

Wax(r/5)(Qx(1/5)) =2 Wizarag (r/) (82 Qx (1/5)) = W (r5) (Qx (1, 5)),
where
P(r,s) :=s*P(r/s),
Qx(r,s) = s2T1Qx (r/s) = —s*P(r,s)(s* + nxr?),
ax(r,s) = s> ax(r/s) = —2'P(r,s)(s* + nxr?)?
are homogeneous polynomial in 7 and s which are non-zero for all but finitely many r/s. In the following
we shall ignore such values as they give a negligible contribution to the average. Also, we let (r/s)

be the root number of t