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Abstract
Analyzing the Predictability of Source Code and its Application in Creating Parallel

Corpora for English-to-Code Statistical Machine Translation

Musfiqur Rahman

Analyzing source code using computational linguistics and exploiting the linguistic properties

of source code have recently become popular topics in the domain of software engineering. In the

first part of the thesis, we study the predictability of source code and determine how well source

code can be represented using language models developed for natural language processing. In the

second part, we study how well English discussions of source code can be aligned with code elements

to create parallel corpora for English-to-code statistical machine translation. This work is organized

as a “manuscript” thesis whereby each core chapter constitutes a submitted paper.

The first part replicates recent works that have concluded that software is more repetitive and

predictable, i.e. more natural, than English texts. We find that much of the apparent “naturalness”

is artificial and is the result of language specific tokens. For example, the syntax of a language,

especially the separators e.g., semi-colons and brackets, make up for 59% of all uses of Java tokens

in our corpus. Furthermore, 40% of all 2-grams end in a separator, implying that a model for

autocompleting the next token, would have a trivial separator as top suggestion 40% of the time. By

using the standard NLP practice of eliminating punctuation (e.g., separators) and stopwords (e.g.,

keywords) we find that code is less repetitive and predictable than was suggested by previous work.

We replicate this result across 7 programming languages.

Continuing this work, we find that unlike the code written for a particular project, API code usage

is similar across projects. For example a file is opened and closed in the same manner irrespective of

domain. When we restrict our n-grams to those contained in the Java API we find that the entropy

for 2-grams is significantly lower than the English corpus. This repetition perhaps explains the

successful literature on API usage suggestion and autocompletion.

We then study the impact of the representation of code on repetition. The n-gram model assumes

that the current token can be predicted by the sequence of n previous tokens. When we extract

program graphs of size 2, 3, and 4 nodes we see that the abstract graph representation is much

more concise and repetitive than the n-gram representations of the same code. This suggests that

future work should focus on graphs that include control and data flow dependencies and not linear

sequences of tokens.
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The second part of this thesis focuses cleaning English and code corpora to aid in machine

translation. Generating source code API sequences from an English query using Machine Translation

(MT) has gained much interest in recent years. For any kind of MT, the model needs to be trained

on a parallel corpus. We clean StackOverflow, one of the most popular online discussion forums

for programmers, to generate a parallel English-Code corpora. We contrast three data cleaning

approaches: standard NLP, title only, and software task. We evaluate the quality of each corpus for

MT. We measure the corpus size, percentage of unique tokens, and per-word maximum likelihood

alignment entropy. While many works have shown that code is repetitive and predictable, we find

that English discussions of code are also repetitive. Creating a maximum likelihood MT model, we

find that English words map to a small number of specific code elements which partially explains the

success of using StackOverflow for search and other tasks in the software engineering literature

and paves the way for MT. Our scripts and corpora are publicly available.
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Chapter 1

Introduction

Leveraging methods and algorithms fundamentally developed for Natural Language Processing [29]

in modelling and analyzing programming languages is an interesting topic of research in the domain

of software engineering. In this thesis we first investigate the regularity of multiple programming

languages using n-gram language models and then use various NLP techniques to process software

engineering documentation to create a bilingual English-code parallel corpus.

Language models are a very popular approach in the field of Statistical Machine Translation

(SMT) [32] and Natural Language Processing (NLP) [29]. The growing popularity of this approach

has resulted in the application of language modelling techniques in diverse fields. In the field of

Software Engineering recent works have exploited the benefits of language modelling to study the

‘naturalness’ of software source code [26, 50, 13, 57]. Although the term naturalness apparently does

not refer to any mathematical notion, it has been presented mathematically by using the theory of

statistical language modelling [26]. In essence, language models, being trained on a large corpus,

assign higher naturalness to previously seen code, while assigning lower naturalness to unseen or

rarely seen code. For example, Campbell et al. [13] showed that language models mark code which

is syntactically faulty as unlikely or less likely. The goal of Chapter 3 is to explain the repetitive

behaviour of source code for multiple programming languages and to compare the repetitiveness of

n-grams with graph representations of code. We perform our experiments from the point of view of

the token distribution to determine if naturalness can be found in popular programming languages.

We want to understand if there are any language specific features that make one language more

repetitive than the others. We compare the n-gram representation (i.e. sequences of n tokens) used

by previous works [71, 26, 13] with a graph based representation. We conjecture that low-level lexical

tokens may artificially inflate the repetitiveness of source code. For example, in most of the popular

programming languages the if token is always followed by a ( token. This trivial repetitiveness is
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not present in graphs. We particularly focus on the following:

• the impact of different types of tokens on the repetitiveness of source code. We examine

keywords, operators, and separators to observe their repetitiveness in source code,

• changes in token repetitiveness after the removal of language specific tokens,

• repetitiveness of API element usage, and

• graph-based representation of source code and its impact on source code repetitiveness.

Chapter 3 is broken into the following sections. In Section 3.3, we describe our data. We replicate

previous results in Section 3.4. In Section 3.5, we study the impact of types of tokens on repetitiveness.

In Section 3.6, we examine the repetitiveness of API code elements. In Section 3.7, we compare graphs

with n-gram. Since we extract different tokens and graphs, we describe the extraction methodology

in this section where they are used. In Section 3.8, we discuss limitations of our work and threats to

validity. In Section 3.9, we position our work in the context of the literature. In Section 3.10, we

summarize our contribution and conclude the chapter.

In Chapter 4, we leverage our finding regarding the ‘naturalness’ of source code. Since source code

APIs are much more repetitive than natural languages we try to process source code and software

engineering discussion in order to automatically translate from English to source code.

The process of translating between two languages automatically is known as Machine Translation

(MT). Recent advances and computational power have increased the popularity of MT. MT techniques

can be broadly classified into three classes: Statistical Machine Translation (SMT) [33, 2, 38], Example-

based Machine Translation (EBMT) [69], and Neural Machine Translation (NMT) [6, 46]. Although

MT approaches differ in terms of theory, algorithms, and efficiently, all approaches require a high

volume and low noise parallel corpus [31, 7] or bitext [25]. Application of MT algorithms is not

limited to translation between natural languages. In recent years, MT techniques have been used to

translate from natural language to programming languages [24, 49, 56].

StackOverflow can be seen as a bilingual corpus that discusses programming in both English

and code. However, StackOverflow posts are noisy because people write posts in an informal

manner. Examples of noise in StackOverflow includes incorrect spelling, inappropriate use of

punctuation, use of acronyms without elaboration, and grammatical mistakes. From a linguistic

point of view, this results in a degradation of the quality of corpus texts. Removing the noise from

the StackOverflow data without any significant loss of relevant information is challenging. In

this chapter our goal is to clean the data using techniques ranging from general Natural Language

Processing (NLP) [29] to Software Engineering specific techniques [70], and determine which techniques

yield a corpus that can be used for MT. We process data using three different methods and determine

the quality of the processed corpora using three evaluation metrics.
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Chapter 4 is structured as follows. In Section 4.3, we detail our data and data cleaning approaches.

In Section 4.4, we evaluate each corpus for MT. Finally we conclude the chapter by summarizing our

contribution and briefly discussing some potential future works in Section 4.5.

This thesis is organized as a “manuscript” thesis whereby each core chapter constitutes a submitted

paper. There is also a background section and conclusion section that combine the manuscripts

into a thesis. Chapter 2 briefly introduces the literature and background necessary for the thesis.

Chapters 3 describes our paper on the “natural” properties of software. Chapter 4 is our paper on

cleaning StackOverflow for machine translation. Chapter 5 summarizes our contributions and

suggest potential future directions.
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Chapter 2

Background and Literature

We break the related work into the following categories:

• Application of NLP in software engineering

• Research on code validation

• Research into autocompletion and recommenders

• Statistical translation

• Use of StackOverflow in software engineering research

2.1 Application of NLP in software engineering

Basic research into understanding redundancy and measuring entropy in languages has a long history.

Shannon [68] developed statistical measures of entropy for the English language. Gabel and Su [22]

noted high levels of redundancy in code and Hindle et al. [26] continued this work,s demonstrating

that software is highly repetitive and predictable. Recent work has replicated these software findings

on a giga-token corpus [3] and looked at the entropy in local code contexts [71]. Other have examined

repetition at the line level [59] or in other domains such as Android Apps [36, 5]. In each case, code

has been found to be repetitive and predictable.

Besides language entropy, many software engineering researchers used other NLP approaches

such as text classification, latent semantic analysis etc in their works. For example, Huang et al.

and Maldonado et al. in [27, 42] respectively took the text classification approach for identifying self

admitted technical debt. Lormans et al. used latent semantic indexing for designing implementation

by linking requirements and test cases [39]. Latent Dirichlet Allocation (LDA) technique was used
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by Wang et al. [72] to study developers’ interaction on StackOverflow. In [65] authors studied

what mobile App developers ask about on StackOverflow. They also use LDA technique for topic

identification from the discussion forum.

2.2 Research on code validation and checking

Most existing tools to find defects and other code faults use static analysis. Recent works have

focused on using the statistical properties of the languages to find bugs and to suggest patches. For

example, Campbell et al. [13] find that syntax errors can be identified using n-gram language models.

Ray et al. [58] identified bugs and bug fixes in code because buggy code is less natural and has a

higher entropy. Santos and Hindle [67] used the n-gram cross entropy of text in commit messages to

identify successfully commits that were likely to make a build fail.

2.3 Research into autocompletion and suggestions

Modern IDEs contain an autocompletion feature that usually uses the structure of the language to

make suggestions. Research into code suggestion have long known intuitively that code is repetitive.

For example, textual similarity of program code [4], commit messages [14], and API usage patterns [44]

have been exploited to guide developers during their engineering activities. Building on this work,

Zimmermann et al. [76] used association rule mining on CVS data to recommend source code that is

potentially relevant to a given change task. Recent work by Azad et al. [5] has extended this work

to make change rule predictions from a large community of similar Apps and the code discussed in

StackOverflow discussions.

Advanced autocompletion techniques have leveraged the history of applications and the repetitive

nature of programming to suggest code elements to developers. Robbes and Lanza [62] filtered the

suggestions made by code completion algorithms based on, for example, where the developer had

been working in the past and the changes he or she had made. Bruch et al. [9] suggested appropriate

method calls for a variable based on an existing code base that makes similar calls to a library. Buse

and Weimer [10] automatically generate code snippets from a large corpus of applications that use an

API. Duala-Ekoko and Robillard [21] use structural relationships between API elements, such as the

method responsible for creating a class, to suggest related elements to developers. Works by Nguyen

et al. [50] use statistical language models to autocomplete code accurately. Nguyen and Nguyen [47]

expanded this work to graphs in order to create suggestions that are syntactically valid.
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2.4 Statistical translation

Recent works have mirrored the success of Statistical Machine Translation in natural languages,

e.g., Google Translate, and applied these approaches to translating English to code. For example,

SWIM [56] uses a corpus of queries from Bing to align code and English and generates sequences of

API usages. DeepAPI [24] uses recurrent neural networks to translate aligned source code comments

with code to translate longer sequences of API calls. T2API [49] uses alignments between English

and code on StackOverflow to generate a set of API calls. These calls are then rearranged based

on the likelihood of existing program graphs. T2API can generate long graphs of common API

usages from English. Our work provides a frame in which to understand these works. For example,

the sequences of SWIM and DeepAPI tend to be short and simplistic as they are restricted by a

left-to-right processing of tokens. In contrast, T2API which re-orders API elements in a graph can

produce more complex usages.

2.5 Use of StackOverflow in software engineering research

Many researchers in their works used StackOverflow posts for performing experiments on

issues related to empirical software engineering, program comprehension, code completion, etc.

This data source is very popular among the software engineering research community due to its

availability as well as volume. Wong et al. mined StackOverflow data to autogenerate source code

comments [73]. Pinto et al. studied software energy consumption from StackOverflow discussion

in [53]. Wong et al. in [73] studied how developers interact in StackOverflow discussion. In

a similar work, Chowdhury et al. worked on filtering out off-topic from online discussion forums

by mining StackOverflow [15]. Rigby et al. in [61] developed a tool for extracting salient code

elements from StackOverflow posts, which we use in this thesis.
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Chapter 3

Natural Software Revisited

Note: This chapter has been submitted to a conference and has been included verbatim in this

manuscript thesis.

3.1 Abstract

Recent works have concluded that software is more repetitive and predictable, i.e. more natural,

than English texts. These works included “simple/artificial” syntax rules in their language models.

We find that while syntax is important, it is trivially predictable. For example, in “while (...)”,

bracket always follows “while”, the compiler has a rule for this. When we remove these and other

SimpleSyntaxTokens we find that code is still repetitive and predictable but only at levels

slightly above English. Furthermore, previous works have compared individual Java programs to

general English corpora, such as Gutenberg. Gutenberg contains a historically large range of styles

and subjects (e.g., Saint Augustine to Oscar Wilde). We perform an additional comparison of

StackOverflow English discussions with source code and find that this restricted English is almost as

repetitive as code. Our results hold across seven programming languages.

Although we find that code is less repetitive than previously thought, we suspect that API code

element usage will be repetitive across software projects. For example, a file is opened and closed in

the same manner across domains. When we restrict our n-grams to those contained in the Java API

we find that the entropy for 2-grams is significantly lower than the English corpus. This repetition

partially explains the successful literature on API usage recommendation and autocompletion.

Previous works have focused on sequential sequences of tokens. While n-grams work well for

sequential natural languages, we suspect that they obscure abstract patterns in code. When we

extract program graphs of size 2, 3, and 4 nodes we see that the abstract graph representation is

much more concise and repetitive than the n-gram representations of the same code. This suggests
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that future work should focus on graphs that include control and data flow dependencies and search

for new representations that go beyond linear sequences of tokens. Our replication package makes

our scripts and data available to future researchers [1].

3.2 Introduction

Language modelling is a popular approach in the field of Statistical Machine Translation (SMT)

[32] and Natural Language Processing (NLP) [29]. The growing popularity of this approach has

resulted in the application of language modelling techniques in diverse fields. In the field of Software

Engineering, language modelling has revealed power-law distributions and an apparent ‘naturalness’

of software source code [26, 50, 13, 57]. Although the term naturalness is vague, it has been expressed

mathematically with statistical language models [26]. In essence, language models trained on a large

corpus, assign higher naturalness to previously seen code, while assigning lower naturalness to unseen

or rarely seen code. For example, Campbell et al. [13] showed that language models mark code

which is syntactically faulty as unlikely or less likely than code without syntax errors. The goal

of this paper is to revisit the “natural” code hypothesis in new contexts. As in NLP, the SE tasks

and context will require different tuning and cleaning of a corpus. For example, if the goal is to

create an English grammar correction tool, then stopwords such as ‘the’ are necessary. In contrast, if

the goal is to extract news topics then stopwords must be removed as these dominant tokens will

introduce noise and reduce the quality of predictions. Analogously, if the goal is to find syntax errors

then the corpus must include SimpleSyntaxTokens. In contrast, if the goal is to recommend

multi-element API usages, then SimpleSyntaxTokens will dilute predictions. For example, Hindle

et al. [26] did not remove SimpleSyntaxTokens and in their autocompletion model they suggest

a SimpleSyntaxToken approximately 50% of the time. As a result, a recommender tool would

suggest an obvious separator before a useful token such as an API call. In this work, we examine the

repetitive behaviour of source code for multiple programming languages, we determine the impact of

SimpleSyntaxTokens on repetition, we quantify how repetitive API usages are, and we compare

the repetitiveness of n-grams vs graph representations of code. We examine each topic in the following

four research questions.

RQ1, Replication: how repetitive and predictable is source code?

We replicate the work of Hindle et al. [26]. We also examine 6 additional programming languages:

C#, C, JavaScript, Python, Ruby, and Scala. Our replication gives us confidence that our dataset is

large and diverse enough to test the “naturalness” hypothesis in new contexts.

RQ2, Artificial Repetition: how repetitive and predictable is code once we remove

SimpleSyntaxTokens?
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In NLP, it is standard practice to remove punctuation and stopwords. We examine the contribution

of three types of SimpleSyntaxTokens to the language distribution: separators such as bracket

and semi-colon; keywords, such as if and else; and operators, such as plus and minus signs.

RQ3, API Usages: how repetitive and predictable are Java API usages?

Frameworks and APIs provide reusable functionality to developers. Unlike the code written for a

particular project, API code is similar across projects. For example, a file is opened and closed in

the same manner whether it is used in banking or healthcare. We examine only Java API tokens and

determine how repetitive and predictable their usage is. Given the large and successful literature

on API usage recommendations and autocompletions, we suspect that API elements may be more

repetitive and predictable than general program code.

RQ4, Code Graphs: how repetitive and predictable are graph representations of

Java code?

An n-gram language model assumes that the current token can be predicted by the sequence of

n− 1 previous tokens. However, compilers and humans do not process programs sequentially. In the

case of compilers, parse trees or syntax trees are generated to provide abstract representations of

code. Eyetracking studies of developers reading code show a nonlinear movement along the control

and data flow of the program [11]. We extract the Graph-based Object Usage Model (Groum)[51]

from Java programs and compare how repetitive graphs of nodes sizes 2, 3, and 4 are with equivalent

sized n-grams from the same Java programs.

The remainder of this paper is structured as follows. In Section 3.3, we describe our data. In

Sections 3.4, 3.5, 3.6, and 3.7, we report the results of our experiments for each of the research

questions. Since we extract different tokens and graphs, we describe the extraction methodology in

section in which it is used. In Section 3.8, we discuss limitations of our work and threats to validity.

In Section 3.9, we position our work in the context of the literature. In Section 3.10, we summarize

our contribution and conclude the paper. We also publicly release a replication package [1] which

includes all processed n-gram and graph data as well as the scripts used in our processing pipeline.

3.3 Data Sources

Project Source Code: We create our source code corpus from 134 open source projects on GitHub.

As a starting point, we select the Java and Python project used in a prior study [71]. To ensure that

we processed a consistent number of tokens for each language, between 20M and 25M tokens, we

added Java and Python projects as well as projects from 5 additional programming languages. These

projects were selected from the most popular projects on GitHub for each language.1 For all the
1Top GitHub projects per language: https://github.com/trending/ accessed Nov 2016
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Table 1: Corpus size in tokens per language

Language Files Total Tokens Unique Tokens

Java 26,938 24,091,076 388,399 (1.61%)

C# 23,186 24,217,086 389,800 (1.61%)

C 10,932 25,255,417 938,434 (3.72%)

JavaScript 10,544 25,157,297 257,606 (1.02%)

Python 15,454 23,198,691 513,728 (2.21%)

Ruby 60,371 25,896,601 715,157 (2.76%)

Scala 34,242 23,634,250 333,794 (1.41%)

projects, we examine only the master branch. Since each research question requires the source code

to be processed differently, e.g., n-grams vs graphs, we describe the extraction methodology for each

research question. The list of projects, scripts, and the processed n-grams and graphs can be found

in our replication package [1]. A summary for each programming language is shown in Table 1.

English and StackOverflow text: Following Hindle et al. [26] we process the Gutenberg

corpus. We use a subset of the Gutenberg corpus which includes over 3.4k English works [35]. The

corpus represents a range of styles, topics, and timeperiods making Gutenberg a diverse corpus.

In contrast, the programming corpora are for single programming languages. To make a more

comparable English corpus, we process StackOverflow posts that discuss programming tasks in

English for each programming language.

We extract 200, 000 posts from StackOverflow by removing code and keeping only the English

text.2 Furthermore, we use the following constraints to reduce noise and poorly constructed English

when selecting posts:

1. We only use posts which are the accepted answer.

2. Each post has at least 10 positive votes. The corresponding question post has at least 1 positive

vote.

3. We take posts which have at least 300 characters in the text body excluding the code snippet

and any code words in the text. This ensures that our corpus has sufficient English tokens.

Although we exclude code words, we take only posts that contain a code snippet to ensure that

the discussion is about code and not, for example, configuration of an IDE.

To extract the English tokens in StackOverflow posts we extract the necessary data (body without
2https://archive.org/details/stackexchange, September 2016
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code) with a Python HTML library. We merge the posts into a single file and perform the NLP

process steps of stemming, lematization, lexicalization and stopword removal.

3.4 Replication

RQ1: How repetitive and predictable is software?

We replicate the work of Hindle et al. [26] to ensure that the data we sample produces similar

results. We also examine C#, C, JavaScript, Python, Ruby, and Scala. We want to understand if

the language and programming paradigm influence the repetitive nature of programming.

3.4.1 Theoretical background and methodology

We give the definitions of n-gram language models, cross entropy, and SelfCrossEntropy and

describe how we extract n-grams.

n-gram Language Model

We use the term language model (LM) to mean the probability distributions over a sequence of

n tokens P(k1, k2,..., kn). A LM is trained on a corpus containing sequences of tokens from the

language. Using this LM our goal is to assign high probability to tokens with maximum likelihood,

and low probability to n-grams with lower likelihood. The primary purpose of modelling a language

statistically using LMs is to model the uncertainty of the language by determining the most probable

sequence of tokens for a given input.

Consider a sequence of tokens k1, k2, k3, ... kn−1, kn in a document, D. n-gram models statisti-

cally calculate the likelihood of the nth token given the previous n-1 tokens. We can estimate the

probability of a document based on the product of series of conditional probabilities:

P (D) = P (k1)P (k2|k1)P (k3|k1, k2)...P (kn|k1, k2, ..., kn−1)

Here, P(D) is the probability of the document and P(ki) is the conditional probability of tokens. We

can transform the above equation to a more general form which is given below.

P (k1, k2, k3, ..., kn−1, kn) =
n∑

i=1
P (ki|k1, ..., kn−1)

This transformation uses the Markov Property which assumes that token occurrences are

influenced only by limited prefix of length n [75]. Furthermore, we can consider this as a Markov

Chain which assumes that the outcome of the next token depends only on the previous n− 1 tokens
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Figure 1: Pipeline for experiments performed in this study

[52]. Thus we can write:

P (ki|ki−(n−1), ..., ki−1) = P (ki|ki−(n−1))

This equation requires the prior knowledge of the conditional probabilities for each possible n-gram.

Computing these conditional probabilities is calculated from the n-gram frequencies. We use these

n-grams to determine the entropy of a language corpus including source code.

SelfCrossEntropy

Hindle et al.’s [26] calculate the average number of bits, i.e. entropy, required to predict the nth

token of the n-grams in a document. They use the standard formula for cross-entropy. They define

cross-entropy in the context of n-grams. Given a language model M , the entropy of a document D,

with n tokens, is

H(D, M) = − 1
n

n∑
i=1

log2P (ki|k1...ki−1)

They use cross-entropy in a unique manner to define SelfCrossEntropy. Instead of estimating

the language model M from another document or corpus, they divide a single corpus into 10 folds.

M is then calculated from 9 of the folds and H(D, M) is calculated with D being the remaining fold.

The final SelfCrossEntropy is the average value across all folds.

Extracting n-grams

We replicate Hindle et al. [26] using the same tools and methodology as shown in Figure 1. We

remove the source code comments. We lexicalize each source file in the project using ANTLR3 to

extract code tokens. Then we merge all the lexicalized files to create a corpus. For example, to

get the SelfCrossEntropy of the Java language, we process all .java files. Then we merge the
3ANTLR4 http://www.antlr.org/
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(a) SelfCrossEntropy with SimpleSyntaxTokens

(raw source code)

(b) SelfCrossEntropy without SimpleSyntaxTo-

kens

Figure 2: SelfCrossEntropy of programming languages with and without SimpleSyntaxTokens

processed files to create our final corpus. To calculate the SelfCrossEntropy, a single corpus

is split into 10 folds. Ten-fold cross validation is used with the probability estimated from 90% of

the data and validated on the remaining 10%. The results are averaged over the 10 test folds. We

use MIT Language Model (MITLM) toolkit4 to calculate the SelfCrossEntropy for each data

set. MITLM uses techniques for n-gram smoothing to deal with unseen n-grams in the test fold (see

Hindle et al. [26] for further discussion). We calculate the SelfCrossEntropy for token sequences,

i.e. n-grams, from 1-grams to 10-grams for each programming corpus, the Gutenberg corpus and

English text on StackOverflow corpus. The processing pipeline for the experiments is shown in

Figure 1.

3.4.2 Replication Result

How repetitive and predictable is software?

Figure 2a shows the replication of Hindle et al.’s [26] work, including six additional programming

languages and StackOverflow posts. All the programming languages under consideration for this

study show the same pattern of SelfCrossEntropy. The highest SelfCrossEntropy is observed

for unigram language models. The value of SelfCrossEntropy declines significantly for bigram

and trigram models. From 3-grams to 10-grams the SelfCrossEntropy remains nearly constant.

Since we are able to replicate Hindle et al.’s result, we are confident that our dataset is large and

diverse enough to test the “naturalness” hypothesis in new contexts.
4MITLM https://github.com/mitlm/mitlm
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While the pattern is the same, the values of SelfCrossEntropy are substantially different

for each language. With Scala being much less repetitive than C#. We conclude that the pattern

of decreasing SelfCrossEntropy across n-grams holds from the Hindle et al.’s work. However,

the difference among languages forces us to conjecture that the syntax of the language is artificially

reducing its SelfCrossEntropy.

3.5 Artificial Repetition

RQ2. how repetitive and predictable is code once we remove SimpleSyntaxTokens?

Standard preprocessing steps in NLP involve the removal of stopwords and punctuation [66, 45].

Stopwords, including articles, e.g., “the”, and prepositions, e.g., “of”, are removed in information

retrieval tasks because they introduce noise in the data set reducing the likelihood of retrieving

interesting information. In our work, we examine the impact of three types of SimpleSyntaxTokens:

separators such as brackets and semi-colons; keywords, such as if and else; and operators, such

as plus and minus signs. Hindle et al. did not remove these SimpleSyntaxTokens and in their

autocompletion model they suggest a SimpleSyntaxToken approximately 50% of the time. As a

result, an autocompletion tool would suggest an obvious separator before a useful token such as an

API call. In this section, we examine the impact of each type of SimpleSyntaxToken token on the

apparent repetitiveness of code.

3.5.1 Background and Methodology

To identify the SimpleSyntaxTokens for each programming language, we examined the language

specification to identify the keywords, separators, and operators. We calculate the percentage of

SimpleSyntaxTokens in each programming language. Then we remove SimpleSyntaxTokens

from the corpus and measure the entropy of n-grams without the language specific tokens. We report

the change in SelfCrossEntropy of the n-grams after the removal of language specific tokens and

answer the following questions:

1. What percentage of total tokens are SimpleSyntaxTokens?

2. What is the change in SelfCrossEntropy after removing SimpleSyntaxTokens?

3. How repetitive is code without SimpleSyntaxTokens compared to English?5

5For the English corpora we removed the standard stopwords with the NLTK toolkit.
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Table 2: Percentage of language specific token, i.e. SimpleSyntaxTokens, for each programming

language corpus

Language Separators Keywords Operators Total

Java 44.00% 9.36% 5.85% 59.21%

C# 42.57% 10.96% 7.55% 61.08%

C 39.23% 5.50% 15.14% 59.87%

JavaScript 47.21% 6.87% 6.53% 60.61%

Python 41.98% 4.99% 6.42% 53.39%

Ruby 23.37% 8.37% 8.93% 40.67%

Scala 39.27% 7.40% 7.28% 53.95%

3.5.2 Results and Discussion

What percentage of total tokens are SimpleSyntaxTokens? Stopwords are removed during

natural language information retrieval tasks because their high prevalence introduces noise reducing

the likelihood of retrieving highvalue information. When applied to our programming corpora, in

Table 2, we see that SimpleSyntaxTokens account for a high percentage of total tokens. Across

the programming languages, JavaScript has the highest number of SimpleSyntaxTokens at 60%

of total tokens, while the smallest percentage is 41% for Ruby. Separators account for the largest

proportion of SimpleSyntaxTokens, between 23% and 47% of all tokens.

The main implication from Table 2 is that SimpleSyntaxTokens dominate the tokens in all

corpora and when included make code look artificially repetitive.

What is the change in SelfCrossEntropy after removing SimpleSyntaxTokens?

We remove the SimpleSyntaxTokens and recalculate the SelfCrossEntropy. In Table 3 we

see that the increase in SelfCrossEntropy, i.e. a decrease in repetitiveness, is dramatic. For Java,

we see that from 1-grams to 6-grams we need a respective increase of 68%, 67%, 90%, 97%, 98%

more bits. After 6-grams we need a nearly constant 100% increase in bits. Clearly more information

is required to encode Java programs without the artificially repetitive SimpleSyntaxTokens.

How repetitive is code without SimpleSyntaxTokens compared to English?

We investigate the difference in SelfCrossEntropy between programming languages and

English by reporting the number of additional bits necessary to encode English. Hindle et al. [26]

report a maximum average per-word entropy of approximately 8 bits for English and 2 bits for Java,

which means that English requires 4 times as many bits, while for 2-grams and 3-grams, English

requires 2 and 2.7 times as many bits. Similarly we find that before removing SimpleSyntaxTokens,
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Table 3: Percentage increase in SelfCrossEntropy after the removal of SimpleSyntaxTokens

Language 1-

gram

2-

gram

3-

gram

4-

gram

5-

gram

6-

gram

7-

gram

8-

gram

9-

gram

10-

gram

Java 60.18 67.40 90.17 94.70 97.49 98.75 99.67 100.55 100.75 101.00

C# 56.73 48.26 77.66 84.34 87.52 89.42 90.04 90.65 90.94 91.16

C 46.75 64.50 81.33 84.95 87.85 90.30 91.80 92.26 92.66 92.85

JavaScript 42.48 35.72 34.61 31.47 32.58 33.03 33.43 33.60 33.66 33.69

Python 57.67 62.81 82.20 86.07 89.45 90.11 90.55 90.53 90.65 90.70

Scala 18.48 15.29 12.74 11.60 11.34 11.22 11.13 10.75 10.78 10.85

Ruby 31.18 36.82 42.91 44.65 45.55 45.87 45.99 46.02 46.05 46.07

we need 1.7, 2.3, 2.7, 2.8, 2.9, more bits for 1-grams to 5-grams for Java. After 5-grams the increase

is constant at 2.9 times.

However, without SimpleSyntaxTokens the number of additional bits required is substantially

less for Java: 1.0, 1.4, 1.4 additional bits for 1-gram to 3-grams and remains constant at 1.5 from

4-grams to 10-grams. This provides further evidence that SimpleSyntaxTokens clearly account

for a large proportion of the repetitiveness in Java. With slight variation in the actual number, this

result generalizes to the other programming languages in Figure 2b.

As we discussed in the data section, the Gutenberg corpus contains a wide range of English

writing styles, topics, and authors. In contrast, the programming corpora used in our work and

that of Hindle et al.’s are for single programming languages. To provide a more comparable English

corpora we processed StackOverflow posts related to each programming language. We find that

SelfCrossEntropy of English on StackOverflow is highly similar to that of code. For example, Java

requires .9 times as many bits as StackOverflow English to encode 1-grams. Clearly the vocabulary

on StackOverflow is very limited. For 2-grams, 1.1 times as many bits are required and this number

remains constant at 1.2 for 3-grams to 10-grams. After 2-grams we see that sequences of token usages

are larger in StackOverflow. This is likely because classes and methods tend to be used together in

Java. However, compared to the originally reported 4 times as many bits, or 300% more bits the

removal of SimpleSyntaxTokens shows a 1.1 to 1.2 times as many bits or 10 to 20% more bits.

This result is consistent across programming languages.
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3.5.3 Concluding discussion on SimpleSyntaxTokens

Hindle et al. were “worried” by the questions that we ask in this section [26]. They asked “is the

increased regularity we are capturing in software merely a difference between the English and Java

languages themselves? Java is certainly a much simpler language than English, with a far more

structured syntax.” To answer this question, they conducted an experiment were they compared the

SelfCrossEntropy of a single program with the cross entropy of predicting the tokens in one

Java program with those in other Java programs. They conclude that because the entropy for single

programs is lower than the entropy between programs that regularity of software is “not an artifact

of the programming language syntax.” However, in both cases the programs were written in the same

language, Java, using the same syntax. Their experiment clearly does not control for simple syntactical

regularities in the Java language. In contrast, in our study we remove SimpleSyntaxTokens

and find that the regularity of programs drops dramatically. We conclude that that the syntax

of programming languages artificially reduces the entropy of software. Our findings suggest that

software engineers should follow the NLP practice of removing stopwords and punctuation, in this case

SimpleSyntaxTokens, to reduce the noise they introduce and to make higher value autocompletion

suggestions.

3.6 API Usages

RQ3. How repetitive and predictable are Java API usages?

API code is used across multiple projects in the same manner regardless of the domain of the

project. We extract Java API tokens and determine how predictable their usage is. We conjecture

that sequences of API elements, i.e. API usages, should be more repetitive and predictable than

general program code.

3.6.1 Background and Methodology

We extract the Java API elements from the Java Platform Library Standard Edition 7 Specification[23].

We remove all tokens from the Java corpus which are not part of Java standard libraries. The set of

API elements includes package, class, field, and method names. For the Java corpus, we calculate

the SelfCrossEntropy for the API usage of size 1 to 10-grams.
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Figure 3: Comparing the Java API SelfCrossEntropy with raw Java source code, Java source

code without SimpleSyntaxTokens, and English
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3.6.2 Results and Discussion for API Usages

Figure 3 compares the SelfCrossEntropy of n-gram API usages in Java to raw Java, Java

without SimpleSyntaxTokens, StackOverflow English, and Gutenberg. We find that the Self-

CrossEntropy of the Java API is less repetitive and predictable than the raw corpus which contains

SimpleSyntaxTokens. This result derives from the high proportion of SimpleSyntaxToken

tokens, i.e. 57% of tokens in Java are SimpleSyntaxTokens. Java that excludes SimpleSyntax-

Tokens but includes internal code, requires 20% more bits for 1-grams and a consistent 30% more

for 2 to 10-grams compared with the Java API. This is likely because the domain specific tokens, for

example, the “BankAccount” class in a banking application, are used much less repetitively than the

API code, such as “String” or “InputStreamReader” classes in standard Java 7 libraries.

The corresponding numbers for English on StackOverflow, are 30% to 60% more bits. For

Gutenberg, which includes a diverse set of English texts, 50% to 90% more bits are required. These

differences are substantially lower than Gutenberg and raw Java which requires between 70% and

190% more bits to encode the Gutenberg corpus.

We conclude that raw Java code that contains SimpleSyntaxTokens is more repetitive than the

Java API usages likely due to the repetitive use of syntax rules. In contrast, we find that Java API is

more repetitive than general Java code that does not contain SimpleSyntaxTokens. Our finding

that Java API usages are quite repetitive quantifies the truth underlying the large and successful

literature on suggesting sophisticated API autocompletions (e.g., [44, 5, 62, 10, 50]).

3.7 Code Graphs

RQ4: how repetitive and predictable are graph representations of Java code?

The assumption made by the n-gram language model is that the current token can be predicted

by the sequence of n− 1 previous tokens. For many natural languages the assumption holds as they

are interpreted sequentially from left to right. In contrast, compilers and humans do not usually

process programs sequentially. In the case of compilers, parse trees or syntax trees are generated to

provide abstract representations. Eyetracking studies of developers reading code show a nonlinear

movement along the control and data flow of the program [11] which differs from natural language

reading strategies [18], for example, by focusing on method signatures [63] and following beacons [17]

in the code. In this section, our goal is to measure how repetitive an abstract graph representation of

code is and to understand if it reveals repetitions that cannot be identified with n-grams.
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3.7.1 Background and Methodology

In order to determine how repetitive code graphs are, we need a graph extraction technique that is

able to satisfy the following requirements:

1. Extract the code graphs from a large number of projects that may not be able to compile due

to, for example, external dependencies.

2. Filter out granular information, such as variables and expressions, to include only control and

data dependencies among class objects and methods in the code graphs.

3. Identify isomorphic code graphs to determine the occurrence frequency of each graph.

We evaluated the Eclipse AST parser, and found that it had critical limitations:

1. The Java project dependencies must be present for each project.

2. The AST includes lowlevel details, such as variable names, which would artificially reduce

graph frequencies.

3. Techniques [34, 60, 28] to identify structural similarities in the code using ASTs are computa-

tionally expensive[48].

In summary, the Eclipse AST parser is designed for static analysis, but is not appropriate for

statistical based recommendations.

In contrast, GrouMiner [47] was designed to extract GRaph-based Object Usage Models

(Groums) and to efficiently calculate isometric graphs. Below we describe the steps necessary to

extract the frequency of Java code graphs:

1. Recoder is used to extract an AST without the need to compile the program [41].

2. GrouMiner transforms the AST for each method body into a Groum. The nodes in a Groum

represent constructors, method invocations, field accesses, and branching points for control

structures. The edges represent temporal, data and control dependencies between nodes.

3. Graph induction is used to generate subgraphs of the Groum for a specified size, in our case 2,

3, and 4-node graphs.

4. GrouMiner computes the occurrence frequencies of each Groum using [48] technique.

3.7.2 Data

We use GrouMiner to capture the occurrence frequency of each Groum in the Java projects used

in the previous n-gram sections. In the previous section we found that API code tends to be more
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repetitive and predictable across multiple projects. As a result, we capture Groums containing

API usages from the Java Platform Standard Edition 7 Specification [23]. We include Groums

that contain at least one Java API node. We eliminate Groums which contain only control flow

structures or only contain internal code. To perform a fair comparison with n-grams, we use the same

inclusion and exclusion criteria to filter the n-grams tokens. Our goal is to study the inherent degree

of repetition for the two representations, graphs and n-grams. In the previous sections, we calculated

the SelfCrossEntropy by predicting the nth token for n-grams in 10-fold cross validation. Since

graphs are not sequential, the most appropriate prediction comparison is unclear. To avoid this

problem, we examine the underlying frequency distribution for each set of n-grams and n-node graphs

on the same set of Java projects. This strategy of examining the distribution has been employed in

many previous works examining code structure [40, 74, 8, 16]. The more left skewed the distribution

the more repetitive and predictable the representation.

3.7.3 Results and Discussion for Java Code Graphs

We collect Groums with 2, 3 and, 4 nodes and the corresponding n-grams. We measure the occurrence

frequencies of each Groum and n-gram across the Java projects. Since graphs represent an abstraction

of code, we conjecture, that on the same code, Groums will have a stronger Pareto-type distribution

than n-grams, i.e. graphs will be more repetitive and left skewed. In Figure 4 we plot the top 20%

of the n-grams and n-node Groums against the percentage of total n-grams and n-node Groums,

respectively. We see both n-grams and n-node Groums are highly left skewed. For example, the top

20% of n-grams account for 76%, 58%, 51% for all instances of 2, 3, and 4-grams, respectively. The

corresponding value for the top 20% of n-node Groums account for 81%, 73%, 72% of instances

of 2, 3, and 4-node graphs, respectively. The top 20% of graphs are 5, 15, 21 percentage points

more frequent than the top 20% of n-grams. Furthermore, the drop between 2-nodes and 3-nodes is

much less than between 2-grams and 3-grams, indicating that graphs remain highly repetitive with

increasing size.

Table 4 shows the complete distribution for the 10 to 90% for graphs and n-grams. The column

at 20% is represented in the Figure 4 but for space reasons we cannot show the graphs as this

would represent 18 lines. The table shows that the pattern remains clear, with n-nodes being more

left skewed than n-grams. We conclude that graph representations are much more repetitive than

sequential n-gram representations.

3.7.4 Illustration of Graphs

We have quantitatively determined that Groums are more repetitive and predictable than n-grams.

In this section, we provide illustrations of why they are more repetitive. For example, an n-gram
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sequence will not capture the relationship between File.open() and File.close(), because there

will always be other tokens, such as File.read(), between these API calls. Although we removed

SimpleSyntaxTokens in this section, if they are included the problem is exacerbated because

obvious tokens lie between related API calls. In contrast, Groums will always contain a data

dependency edge between File.open() and File.close() even when internal classes are present.

The temporal program flow will still be captured by control edges.

A more complex example from our corpus of Java programs illustrates the transformation of

separate program code fragments into a common abstract Groum with 4-nodes. The Groum

in Figure 5 represents the API usage pattern of iterating through a java.util.HashMap with an

enhanced for loop. The Groum is an abstract representation of the code in Listings 3.1 to 3.4 as

well 23 other classes in the Neo4J project. Specifically, the Groum contains the data and control flow

dependencies between Map.entrySet(), Map.Entry.getKey(), Map.Entry.getValue(), and an

enhanced for loop. For example, in Listing 3.2 the code iterates through a hashmap of tracked client

sessions and in Listing 3.1 the code iterates through a hashmap of throughput reports.

Below we use the listings to show the important differences between the Groum and n-gram

models.

Abstraction: From examining the listings, it is clear that no n-gram model would consider these

code fragments as identical. There are many internal classes and SimpleSyntaxTokens between

these API elements. Even when only API elements are considered there would be no direct sequence

with Map.entrySet() preceding Map.Entry.getValue(). This relationship is only captured as a

data dependency in a graph.

Size: the size of the n-gram necessary to capture each of these code fragments would be much

larger than the 4-node Groum. For example, if we include SimpleSyntaxTokens, for the respective

listings we need sequences with 34, 32, 30, and 38 tokens to represent the code in each listing. Without

SimpleSyntaxTokens the corresponding number of tokens is smaller but still quite large at 14, 15,

13, and 15 tokens per listing.

We conclude that Groums capture information about the control and data flow at a higher level

of abstraction which makes them a more repetitive representation of code than n-grams. Graphs are

also a more realistic representation of code than sequential n-grams as compilers and humans do not

process code sequentially. Graphs are more appropriate for statistical code autocompletion because

they can suggest non-sequential relationships that cannot be represented in an n-gram model.

Listing 3.1: TransactionThroughputChecker.java

private void printThroughputReports( PrintStream out ) {

out.println( "Throughput␣reports␣(tx/s):" );

for ( Map.Entry <String ,Double > entry : reports. entrySet() ) {
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Figure 4: The top 20% of the n-grams and n-node graphs account for the y-axis% of the usages. For

example, the top 20% of the n-node graphs account for 80.6% of all usages.
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Table 4: The cumulative proportion of n-node graphs and n-grams from 0% to 100% in 10 point

increments for all usages. For example, the top 40% of the n-node graphs account for over 89% of all

usages. The table shows the left skew of the distributions.

Cumulative
Percentage

2-node
graph

3-node
graph

4-node
graph 2-gram 3-gram 4-gram

0 0.00 0.00 0.00 0.00 0.00 0.00

10 71.46 62.18 61.50 66.22 47.34 38.72

20 80.58 72.90 72.06 75.55 58.06 50.97

30 85.82 79.21 78.38 80.95 65.96 57.13

40 89.14 84.11 83.53 85.58 70.82 63.26

50 92.21 87.75 87.14 87.98 75.69 69.38

60 93.76 90.20 89.71 90.38 80.55 75.50

70 95.32 92.65 92.28 92.79 85.41 81.63

80 96.88 95.10 94.86 95.19 90.27 87.75

90 98.44 97.55 97.43 97.60 95.14 93.88

100 100.00 100.00 100.00 100.00 100.00 100.00

Figure 5: A Groum representing iteration through a HashMap, which is an abstraction of the code

in Listings 1 through 4.
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out.println( "\t" + entry. getKey() + "␣␣" + entry. getValue() );

}

out.println ();

}

Listing 3.2: GlobalSessionTrackerState.java

public GlobalSessionTrackerState newInstance () {

GlobalSessionTrackerState copy = new GlobalSessionTrackerState ();

copy.logIndex = logIndex;

for ( Map.Entry <MemberId ,LocalSessionTracker > entry : sessionTrackers.

entrySet() ) {

copy.sessionTrackers.put( entry. getKey() , entry. getValue() .newInstance () );

}

return copy;

}

Listing 3.3: ListAccumulatorMigrationProgressMonitor.java

public Map <Strin\sectiong ,Long > progresses () {

Map <String ,Long > result = new HashMap <>();

for ( Map.Entry <String ,AtomicLong > entry : events. entrySet() ) {

result.put( entry. getKey() , entry. getValue() .longValue () );

}

return result;

}

Listing 3.4: ExpectedTransactionData.java

private Map <Node ,Set <String >> cloneLabelData( Map <Node ,Set <String >> map ) {

Map <Node ,Set <String >> clone = new HashMap <>();

for ( Map.Entry <Node ,Set <String >> entry : map.entrySet () ) {

clone.put( entry. getKey() , new HashSet <>( entry. getValue() ) );

}

return clone;

}

3.8 Limitations and Validity

Limitations of graphs: To extract an AST from a large number of projects we used Recoder [41]
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because it does not require the project to be compilable. Recoder, like PPA tool [19], has known

limitations that lead to unknown nodes in a graph. When a node is unknown we are unable to

generate a Groum. For 2, 3, and 4-node graphs we have 4.5%, 8.0%, 10.6% of graphs that contain

an unknown. These percentages are inline with the 90% accuracy of the state-of-the-art partial

programs analysis and code snippets analysis tools [19, 41, 61].

A second limitation is that identifying isomorphic graphs using GrouMiner [48] is computa-

tionally expensive. In this work, we calculated Groum sizes up to 4-nodes. Based on our analysis,

we have seen that the probability distribution of graphs for 3-node and 4-nodes remain constant

indicating that, like n-grams, higher n-node graphs exhibit similar degrees of repetition. Furthermore,

since graphs are at a higher degree of abstraction, fewer nodes are necessary to represent the same

block of code when compared to sequential n-grams.

Limitations of SelfCrossEntropy: In terms of entropy calculations, SelfCrossEntropy

is an extension of cross entropy whereby 10-fold cross validation is used to calculate the per-token

average of the probability with which the language model generates the test data [26]. Ideally, we

would calculate all possible combinations of the next token, however, as Shannon [68] points out,

this is impractical with O(tN ), where t is the number of unique tokens and N is the total number

of tokens in the corpus. For each language in our corpus there are over 300k unique tokens and 20

million total tokens. As a result, SelfCrossEntropy serves as a good approximation of entropy.

Reliability and External Validity: By examining a diverse set of languages we increase the

generalizability of our results. Furthermore, in RQ1 our goal was to replicate previous work and to

ensure that our data and scripts produced consistent results. We were successful in this replication,

increasing the validity of the data used in the novel work in subsequent research questions. In our

replication package [1], we have included all processed n-gram and graph data as well as the scripts

used in our processing pipeline to allow other researches to validate and extend our work.

3.9 Related Work

Research into language entropy.

Basic research into understanding redundancy and measuring entropy in languages has a long

history. Shannon [68] developed statistical measures of entropy for the English language. Gabel

and Su [22] noted high levels of redundancy in code and Hindle et al. [26] continued this work

demonstrating that software is highly repetitive and predictable. Recent works have replicated these

software findings on a giga-token corpus [3] and looked at the entropy in local code contexts [71].

Others have examined repetition at the line level [59] or in other domains such as Android Apps[36, 5].

In each case, code has been found to be repetitive and predictable. In our work, research question 1
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replicates Hindle et al.’s work expanding it to multiple programming languages. We noted differences

among programming languages and conjectured that these differences may be due to syntax. Following

NLP practices of removing stopwords and punctuation, we remove operators, separators, and keywords,

and find that without these highly repetitive tokens software is much less repetitive and predictable.

While we support the general conclusion that code is repetitive and predictable, we find that it is not

much more repetitive than English. This conclusion is important because it will reframe the ease

with which statistical predictions about software can be made.

Research on code validation and checking.

Most existing tools to find defects and other code faults use static analysis. Recent works have

focused on using the statistical properties of the languages to find bugs and to suggest patches. For

example, Campbell et al. [13] find that syntax errors can be identified using n-gram language models.

Ray et al. [58] identified bugs and bug fixes in code because buggy code is less natural and has a

higher entropy. Santos and Hindle [67] used the n-gram cross entropy of text in commit messages

to identify successfully commits that were likely to make a build fail. Our research confirms that

statistical code checking will work much better on syntax or APIs than on internal classes as these

former types are much more repetitive.

Research into autocompletion and suggestions.

Modern IDEs contain an autocompletion feature that usually uses the structure of the language

to make suggestions. Research into code suggestion has long known intuitively that code is repetitive.

For example, textual similarity of program code [4], commit messages [14], and API usage patterns

[44] have been exploited to guide developers during their engineering activities. Building on this

work, Zimmermann et al. [76] used association rule mining on CVS data to recommend source code

that is potentially relevant to a given change task. Recent work by Azad et al. [5] has extended this

work to make change rule predictions from a large community of similar Apps and the code discussed

in StackOverflow discussions.

Advanced autocompletion techniques have leveraged the history of applications and the repetitive

nature of programming to suggest code elements to developers. Robbes and Lanza [62] filtered the

suggestions made by code completion algorithms based on, for example, where the developer had

been working in the past and the changes he or she had made. Bruch et al. [9] suggested appropriate

method calls for a variable based on an existing code base that makes similar calls to a library. Buse

and Weimer [10] automatically generate code snippets from a large corpus of applications that use an

API. Duala-Ekoko and Robillard [21] use structural relationships between API elements, such as the

method responsible for creating a class, to suggest related elements to developers. Works by Nguyen

et al. [50] use statistical language models to autocomplete code accurately. Nguyen and Nguyen [47]

expanded this work to graphs in order to create suggestions that are syntactically valid. Much of this
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work focuses on suggesting API elements. Our work suggests that API usages are substantially more

repetitive and predictable than general code, explaining the success of API suggestion approaches.

Furthermore, we show why graphs are a more appropriate representation of code, and we hope this

will encourage future researchers to focus on graph abstractions instead of sequential tokens.

Statistical translation.

Recent works have mirrored the success of Statistical Machine Translation in natural languages,

e.g., Google Translate, and applied these approaches to translating English to code. For example,

SWIM [56] uses a corpus of queries from Bing to align code and English and generates sequences of

API usages. DeepAPI [24] uses recurrent neural networks to translate aligned source code comments

with code to translate longer sequences of API calls. T2API [49] uses alignments between English

and code on StackOverflow to generate a set of API calls. These calls are then rearranged based on

their the likelihood of existing program graphs. T2API can generate long graphs of common API

usages from English. Our work provides a frame in which to understand these works. For example,

the sequences of SWIM and DeepAPI tend to be short and simplistic as they are restricted by a

left-to-right processing of tokens. In contrast, T2API which re-orders API elements in a graph can

produce more complex usages.

3.10 Conclusion

Our findings confirm previous work that code is repetitive and predictable. However, it is not as

repetitive and predictable as Hindle et al. [26] suggested. We have found that the repetitive syntax

of the program language makes software look artificially much more repetitive than English. For

example, language specific SimpleSyntaxTokens account for 59% of the total Java tokens in our

corpus. We conclude that the researcher must ensure that the corpus is tuned and cleaned for the

prediction task. If the goal is to recommend statistically tokens that are related to complex software

engineering tasks, for example, completing a set of API calls, then suggesting SimpleSyntaxTokens,

such as semicolons, that are encoded as rules in a compiler, will simply distract from more interesting

recommendations.

We make our scripts, n-grams, and graphs available in our replication package [1] and hope that

our work will be used by researchers to select appropriate corpora with sufficient repetition. For

example, we conducted a failed experiment to suggest patches based on past fixes using an n-gram

language model. Had we had our current analysis there would have been little need to conduct the

experiment as it would be obvious that internal class tokens and usages were too infrequent to be

used successfully in a statistical model. Future work to complement static analysis with statistical

models could allow for appropriate recommendations even when a class is used infrequently.
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The success of API usage recommendations flows naturally from our findings. By tuning the

vocabulary to API code tokens and examining the usage of these APIs element across many programs

there is sufficient repetition to make accurate recommendations.

Software recommender tools are moving from simple single element autocompletions to multi-

element, non-sequential recommendations of code blocks. Our work shows that different repre-

sentations of code have different degrees of repetition. Graph representations, such as Groums,

allow for a higher degree of abstraction and the data and control flow allow for non-sequential

relationships. Furthermore, the abstract nature of graphs allows for a more concise representation

that reduces the number of noise tokens in code predictions. We hope that future work will focus on

new code representations that are tailored to statistical code suggestion allowing for complex and

useful recommendations.
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Chapter 4

Cleaning StackOverflow for use in

Machine Translation

Note: This chapter has been submitted to a conference and has been included verbatim in this

manuscript thesis.

4.1 Abstract

Generating source code API sequences from an English query using Machine Translation (MT) has

gained much interest in recent years. For any kind of MT, the model needs to be trained on a

parallel corpus. In this paper we clean StackOverflow, one of the most popular online discussion

forums for programmers, to generate a parallel English-Code corpus. We contrast three data cleaning

approaches: standard NLP, title only, and software task. We evaluate the quality of the each corpus

for MT. We measure the corpus size, percentage of unique tokens, self-cross entropy, and per-word

maximum likelihood alignment entropy. While many works have shown that code is repetitive

and predictable, we find that English discussions of code are also repetitive. Creating a maximum

likelihood MT model, we find that English words map to a small number of specific code elements

which partially explains the success of using StackOverflow for search and other tasks in the

software engineering literature and paves the way for MT. Our scripts and corpora are publicly

available.
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4.2 Introduction

The process of translating between two languages automatically is known as Machine Translation

(MT). Recent advances and computational power have increased the popularity of MT. MT techniques

can be broadly classified into three classes: Statistical Machine Translation (SMT)[33, 2, 38], Example-

based Machine Translation (EBMT)[69], and Neural Machine Translation (NMT)[6, 46]. Although

MT approaches differ in terms of theory, algorithms, and efficiently, all approaches require a high

volume and low noise parallel corpus[31, 7] or bitext[25]. Application of MT algorithms is not limited

to translation between natural languages. In recent years, MT techniques have been used to translate

from natural language to programming languages[24, 49, 56].

StackOverflow, a developer question and answer forum, can be seen as a bilingual corpus

because it discusses programming in both English and code. For example, in Figure 6 we see a

post the answers in both English and code the question “How can I refresh the cursor from a

CursorLoader?” English words in the post, such as “data will be discarded” can be aligned with

code elements such as restartLoader(). These alignments can then be used in machine translation.

Unfortunately, StackOverflow posts are noisy because people write posts in an informal manner.

Examples of noise in StackOverflow includes incorrect spelling, inappropriate use of punctuation,

use of acronyms without elaboration, and grammatical mistakes. This results in a degradation of

the quality of corpus texts. We found while applying existing SMT such as Phrase based MT and

Recurrent Neural Network (RNN) based MT that the noise reduced the quality of translation. We

clean StackOverflow so that it can be used in MT. Removing the noise from the StackOverflow

data without any significant loss of relevant information is challenging. In this paper, our goal is to

experiment with different data cleaning techniques ranging from general Natural Language Processing

(NLP)[29] to Software Engineering specific techniques[70], and determine which techniques yield a

corpus that can be used for various statistical tasks, such as SMT.

4.2.1 Data Cleaning Approaches

We prepare StackOverflow using the following cleaning approaches:

C0: Raw data approach

We prepare this corpus extracting raw text and source code from StackOverflow posts. We

do not perform any kind of processing on the English text so this serves as a baseline corpus for

comparison purposes. We extract code elements using ACE [61], which was built for extracting code

elements from freeform StackOverflow text. The alignment is at the post level with the English

being aligned with the extracted code elements.

C1: Thread title approach
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Many previous researchers report that StackOverflow thread titles contain valuable information

in a very brief yet precise manner[65, 54, 12]. We prepare the English corpus with StackOverflow

titles only. We remove stopwords and stem the text. For the code corpus we extract code from only

the accepted answer posts using ACE.

C2: Standard NLP approach

For this corpus we use NLP processing including keyword extraction, stopword removal, and

stemming. For code extraction we use ACE.

C3: Software engineering task approach

Treude et al. developed TaskNavigator [70] for extracting development tasks for software docu-

mentation. We use this tool to extract tasks from StackOverflow posts and use these tasks as our

English corpus after stemming and removing stopwords. We extract code elements from the posts

using ACE.

4.2.2 Evaluation Metrics and Criteria

After preparing the corpora we evaluate each corpus individually using the following two metrics.

EvalSize: Size of corpus

We measure the size of each corpus in terms of number of posts, number of English words, number

of code elements, and frequency of code usage.

EvalAlign: Per-Word Maximum likelihood Alignment Entropy

We create MT maximum likelihood alignment model for each English word to code elements. For

each corpus we measure the distribution of per-word alignment entropy between the English and

code. Low entropy indicates that the expectation maximization algorithm has converged to a limited,

precise set of mappings [33].

The rest of the paper is structured as follows. In Section 4.3 we detail our data and data cleaning

approaches. In Section 4.4 we evaluate each corpus for MT. Finally we conclude the paper by

summarizing our contribution and briefly discussing some potential future works in Section 4.5.

4.3 Corpus Cleaning

StackOverflow is the most popular Q&A forum where people discuss programming related issues

ranging from how to solve a problem in a particular language to the best programming practices [43].

One of the key features of StackOverflow which makes it suitable for bilingual parallel corpus

is the presence of both the verbal description of how to solve a problem and example code snippet

showing how to implement the solution.
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Figure 6: An example of a StackOverflow post that answers in both English and code the

question, “How can I refresh the cursor from a CursorLoader?” English words, such as “discarded”,

can be aligned with code elements, such as restartLoader(), for use in MT.

Post available at: https://stackoverflow.com/a/11092861/1055441

Figure 6 shows an example of a typical StackOverflow post. The is about refreshing the

cursor from CursorLoader in an Android application. A step-by-step solution has been described in

English which is followed by a sample code snippet showing how to implement the solution. As a

result one can get the solution to a programming problem both in English and source code from a

StackOverflow post making it a suitable for bilingual English-code parallel corpus.

In this work, we process posts that are tagged with “android ” between September 2011 to

September 2016. We perform corpus preparation in multiple experimental settings. The outcome of

each setting is then processed by an n-gram language model and a word-based aligner to determine

the self cross-entropy and the per-word alignment entropy respectively for each corpus.

4.3.1 C0: Raw data approach

We create a corpus with raw data extracted from StackOverflow. For each post in our English

corpus we take the title of the thread and the text from the post body. We remove the code elements
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and code snippets from the body. We extract the code element for the code using ACE. After filtering

out posts that do not contain both English and code we have a corpus of 149,476 Android posts.

4.3.2 C1: Thread title approach

Rosen et al. [65] state that “titles summarize and identify the main concepts being asked in the post."

The title is brief and in contrast to the entire post contains little noise. In this experimental setting

we align the English in the title with the code elements that are contained in positively voted answer

posts. We apply the follow additional criteria:

• Stopwords are removed from the title.

• The title text is stemmed.

• There are at least three and at most twenty code elements extracted from the answer post.

For example, the title of the post in Figure 6 is “How can I refresh the cursor from a CursorLoader?".

For this post extracted English and code will be as follows:

• English: refresh cursor CursorLoader

• Code: Bundle.getString, Uri.baseUri, SmartCallProvider.CONTENT_URI, Bundle.getString,

Bundle.getBoolean, String.getLoaderManager, String.getLoaderManager.restartLoader, Loader-

Callbacks.onCreateLoader

The final corpus comprises of 106,359 question titles and corresponding posts.

4.3.3 C2: Standard NLP approach

For this corpus we extract keywords from free-form English of the StackOverflow post body for

our English corpus. The English is processed by RAKE[64] which is a general purpose keyword

extractor. For our code corpus we use ACE[61] to extract the unique code elements present in the

post body. Code elements can be either inside a code snippet or can be embedded within free-form

English. We add the title of the thread at the top of each post due to a reason discussed in section

4.3.2.

Rapid Automatic Keyword Extraction (RAKE) RAKE splits a text into word groups sepa-

rated by sentence separators or words from a provided list of stopwords. For our implementation we

use the list of English stopwords provided in Python’s NLTK[37] library. Each of the resulting word

groups is a keyword candidate. In the next step the algorithm scores each keyword according to the

word co-occurrence graph. The word co-occurrence graph assigns the frequency of unique word-pairs
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across the set of candidate keywords. The details of the algorithm can be found in[64]. The stopword

list plays an important role in the effectiveness of the RAKE. Some works use manually curated

stopwords list for domain specific application. An example is [30] in which the authors initially

carried out their experiments with standard information retrieval stopwords list and report that this

yielded poor results for the domain specific case of Polish legal texts. They further report that this

approach generated a lot of very long keywords, containing many words that are not very informative.

To deal with this issue they create their own list of stopwords and achieved better result. However, in

our experiment we deal with this problem in a different way. As mentioned before we do not curate

any stopwords lists rather we go with the stopwords provided by NLTK. Besides observing the issue

of long keywords containing ‘uninformative’ words, we also observe other issues associated with the

software engineering keywords extracted by RAKE. We briefly discuss these issues here.

• Keywords with long sequence of tokens containing ‘uninformative’ words.

• Presence of stopwords in the multi-token keywords.

• Association of high scores with keywords having very long sequence of tokens.

In order to deal with these issues we add an additional level of filtering after the keywords are

returned by RAKE. This filtering includes constraining the length of keywords and the associated

score. It also includes a stopwords removal step performed on the extracted keywords to remove any

stopwords that may be embedded within the keywords. On the code side of the parallel corpus we

put one constraint which is on the number of extracted code elements by ACE[61]. Steps/constraints

related to the final level of filtering are as follows:

1. Keywords must be of length between 1 and 4 in terms of number of tokens to be accepted as a

valid keyword.

2. Score associated with a keyword must be greater than 5 and less than 50.

3. There has to be at least 3 code elements extracted from the post.

4. Perform stopwords removal on the extracted keywords.

5. Perform stemming with Porter Stemmer[55].

After performing all these five steps (first three steps for constraints checking and last two for

post-processing) the extracted keywords and extracted unique code elements become a part of our

Keyword-Code parallel corpus. For the same example in Figure 6 the following English (without

stemming) and code pair is returned.
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• English: move code, private instance variable, user clicks, list item, old data, different value,

discarded, trigger, cursor, refresh

• Code: Bundle.getString, Uri.baseUri, SmartCallProvider.CONTENT_URI, Bundle.getString,

Bundle.getBoolean, String.getLoaderManager, String.getLoaderManager.restartLoader, Loader-

Callbacks.onCreateLoader

This corpus contains 130,988 Android posts.

4.3.4 C3: Software engineering task approach

The previous approaches do not consider software engineering specific keywords and concepts. We

use Treude et al.’s [70] software engineering task extractor to provide concise descriptions of the tasks

contained in StackOverflow posts. The TaskNavigator [70] extracts development tasks from a

documentation based on syntactic dependencies in the sentences. Verbs associated with a direct object

and/or a prepositional phrase are identified as tasks. They consider four syntactic dependencies

for extracting tasks: direct object, prepositional modifier, passive nominal subject, and

relative clause modifier. Definitions of the these grammatical dependencies are available in [20]

and the implementation details along with the performance of TaskNavigator are available in [70].

TaskNavigator was designed to extract development tasks from formal documentation. However,

StackOverflow is an informal and noisy discussion forum. Unlike formal documentation where the

text is grammatically correct with precise descriptions, StackOverflow posts contain additional

grammatical errors and other erroneous task information. For example, posters tend to give

context before giving the precise step by step solution. This results in TaskNavigator identifying

many unrelated or irrelevant tasks because it only examines sentence structure and the associated

dependencies.

In examining these false tasks, we observed true tasks tend to contain a code element in the

sentence. For example, short tasks with fewer than three tokens are usually false positives unless one

of the tokens is a code element. Therefore, we remove extracted tasks if they contain fewer than three

tokens and no code element. The following five steps are an additional filtering on TaskNavigator:

For the example shown in Figure 6 the following English-code pair is returned by this approach.

• English: refresh cursor, move code around, change private instance variable, discard old data,

return different value.

• Code: Bundle.getString, Uri.baseUri, SmartCallProvider.CONTENT_URI, Bundle.getString,

Bundle.getBoolean, String.getLoaderManager, String.getLoaderManager.restartLoader, Loader-

Callbacks.onCreateLoader
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The final corpus contains 110,009 posts.

4.4 Evaluation

One of the limitations of MT is that there is no straightforward mechanism to judge the quality

of the corpus. In order to determine how well a corpus performs one has to train a model on the

corpus and test its performance. However, for any MT system training the model takes considerable

amount of time. For example, when we trained an RNN based MT model on our raw corpus on a

Google cloud virtual machine with 4 Nvidia GPUs each having 12GB of memory and 2496 processor

cores, it took us about 6 days to complete the training and see that the translation quality was poor.

Therefore it is not a convenient way to go through all the steps of the MT pipeline to check whether

a corpus can perform well for a given task or not. In this section we describe two evaluation criteria,

which are computationally less expensive to perform, and present our result for each corpus.

4.4.1 EvalSize: Size of corpus

Our first evaluation criterion is size of the corpora. Statistical learning requires a large number of

aligned English and code posts. Table 5 shows that number of posts, unique English tokens, unique

code elements, and the number of times each code element has been used. For our calculation we

consider tokens that occur more than once. We see that the Raw corpus has the largest size and the

largest number of unique tokens. However, to do prediction, we need repetitive use of tokens and

we can see that most code elements are only used once. In contrast, the other approaches contain

similar numbers of tokens and the median usage of code is two. From simple size measures, we can

conclude that the Raw corpus likely still contains too much noise, however, the other corpora are

difficult to differentiate purely based on size.

4.4.2 EvalAlign: Per-Word Alignment Entropy

We create simple maximum-likelihood machine translation models. Each English word is aligned to

one or more code elements using a simple maximum-likelihood model [33]. The lower the alignment

entropy for each English word the stronger the mapping to the specific code elements and the better

the model. We plot the distribution of per-word alignment entropy in Figure 7. The raw corpus

has the highest median entropy indicating that each English word maps imprecisely to many code

elements. In contrast, the 75th percentile for the the title corpus, SE task corpus, and Standard NLP

corpus 0.8390, 0.6250, 1.060 respectively. In all cases we see that most English words map with a

high probability to few code elements. Although all the distribution are highly left skewed, there are

some outlier English words that map to a large number of possible elements. The SE tasks extracted
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Table 5: Simple size measures of the corpora

Corpus Posts Unique

English

Unique

code

Median

code

usage

Raw 149,476 46,067 30,188 3

Title 106,359 10,477 12,227 6

Standard

NLP

130,988 15,266 15,949 6

Task 110,009 9,738 14,971 6

from TaskNavigator shows the most strict mapping. However, the tool requires substantial processing

time and in comparison with the simple approach of using titles, the entropy values are similar.

4.5 Conclusion

In this paper, we show the potential of StackOverflow as a bilingual machine translation corpus.

We extract the English and code from each post to create aligned corpora. We show that the Raw

StackOverflow posts contain substantial noise and do not lead to good MT models. In contrast,

the three cleaned corpora: Standard NLP, including keyword extraction, using the StackOverflow

title, and extracting SE tasks lead to low entropy alignments between English and code. This

maximum likelihood entropy implies that each English word maps to specific code elements that can

be used for translations between English and code.

Our work is empirical in demonstrating the steps necessary to prepare SE corpora. Like Hindle

et al.’s [26] our results provide an empirical basis on which to understand the literature. For example,

many researchers have used StackOverflow posts for performing experiments on issues related to

empirical software engineering. Wong et al. mined StackOverflow data to autogenerate source

code comments [73]. Pinto et al. studied software energy consumption from StackOverflow

discussion in [53]. Wong et al. in [73] studied how developers interact in StackOverflow discussion.

In a similar work, Chowdhury et al. filtered out off-topic posts from online discussion forums [15].

Finally, Nguyen et al. [49] created a tool demonstration using StackOverflow to translate from

English into code template graphs. We make our data and corpus preparation approaches available

in the hope that other researches will used these StackOverflow alignments to help software

engineers search for code and translate from English tasks to working code.
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Figure 7: Per-word maximum likelihood alignment entropy
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Chapter 5

Conclusions and Future Work

In this chapter we conclude the thesis by briefly summarizing our contributions and suggest potential

future work based on the findings in the thesis.

Our findings from the first part of the thesis (Chapter 3) confirm previous work that code is

repetitive and predictable. However, it is not as repetitive and predictable as Hindle et al. [26]

suggested. We have found that the repetitive syntax of the program language makes software look

artificially much more repetitive than English. For example, language specific SimpleSyntaxTokens

account for 59% of the total Java tokens in our corpus. If the goal is to suggest tokens that are related

to software engineering tasks, then SimpleSyntaxTokens will reduce the quality of suggested task

tokens.

We hope our work will be used by researchers to select appropriate corpora with sufficient

repetition. For example, we conducted a failed experiment to suggest patches based on past fixes

using an n-gram language model. Had we had our current analysis there would have been little

need to conduct the experiment as it would be obvious that internal class tokens and usages are too

infrequent to be used successfully in a statistical model.

The success of API usage suggestions flows naturally from our findings. By reducing the vocabulary

of unique tokens to API code elements and examining the usage of these APIs element across many

programs there is sufficient repetition to make accurate suggestions.

Finally, our work shows that different representations of code have different degrees of repetition.

Graph representations, such as Groums, allow for a higher degree of abstraction and the data and

control flow allow for non-sequential relationships. Furthermore, the abstract nature of graphs allows

for a more concise representation. Compared to n-grams, graphs reduce the number of noise tokens

and increase a researcher’s ability to make useful code suggestions and other types of predictions

that are interesting to developers.
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In the last part of the thesis (Chapter 4), we show the potential of StackOverflow as a

bilingual machine translation corpus. We extract the English and code from each post to create

aligned corpora. We show that the Raw StackOverflow posts contain substantial noise and do not

lead to good MT models. In contrast, the three cleaned corpora: Standard NLP, including keyword

extraction, using the StackOverflow title, and extracting SE tasks lead to low entropy alignments

between English and code. This maximum likelihood entropy implies that each English word maps

to specific code elements that can be used for translations between English and code.

Our work is empirical in demonstrating the steps necessary to prepare SE corpora. We make our

data and corpus preparation approaches available in the hope that other researches will used these

StackOverflow alignments to help software engineers search for code and translate from English

tasks to working code.
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