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Abstract

Dynamic Programming based approach for Energy Trading

Avinash Sharma

Bi-directional Energy Trading is going to play an essential role in facil-

itating the increased usage of distributed renewable energy sources. The

smooth transition towards these clean sources of energy would require

opening up of the energy markets to allow for a two-way electricity trade.

The study proposes a dynamic programming based energy trading frame-

work (called Dynamic Battery Charging (DBC) Algorithm) from the end-

user perspective. Using the proposed energy transfer model the framework

finds out the optimal battery charge state at the consumer end. To further

improve the performance of the framework, the original DBC algorithm

is clubbed together with a capacity fading based battery cost model. For

testing and validation purpose, a case study of three different load profiles

(different in scale) in three energy markets is done. The simulation results

show the profitability of the proposed strategy in all the tested scenarios.
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Chapter 1

Introduction to Energy Trading

1.1 Introduction

Last decade has witnessed a lot of changes in the energy sector around the world. With

the rapid rise in human population, an increasingly energy dependent human lifestyle,

industrial automation and a shift towards Electric Vehicles (EVs), the energy demand

has seen a drastic growth all around the world. Even by the conservative estimation, by

2050 the world population would rise by % to 8600 million (Figure 1.1) with a GDP

per capita rise of at least % (Figure 1.2). If the above World Energy Council (WEC)

estimates[1] are to be believed, by the year 2050, the energy consumption would increase

by at least % (Figure 1.3). The WEC estimations are for two future world scenario.

The ‘Symphony’ scenario assumes that the future energy infrastructure would continue

to be operated in a centralized manner by the government and the ‘Jazz’ scenario assumes

a wide scale decentralization of the energy infrastructure.

This would require a substantial increase in the electricity generation from both con-

ventional and non-conventional energy sources. But the conventional fossil fuel based

sources are not without problems. Man-made problems like global warming and increased

greenhouse emission are generally associated with these conventional energy sources. Fur-

ther, the recent studies[2–4] have shown the long-term benefits of the renewable energy

sources on economic growth of a country. All this together has resulted in growing un-

popularity of these conventional sources.

The recent advancements in the grids promise unprecedented improvements in the

energy efficiency. But even if the energy efficiency aspect is considered, it would not be
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Figure 1.1: WEC - Estimated Population Growth [1]

Figure 1.2: WEC - Estimated GDP per Capita Growth [1]
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Figure 1.3: WEC - Total Energy Consumption by Sector [1]

enough to fulfill the future energy demand. The deployment of decentralized generation

and storage technologies are going to play a significant role in satisfying the future de-

mand. The front-runner in this shift towards decentralization is the solar power, which

would allow for a large-scale decentralization of the energy generation and distribution

process. The pressure and challenge to further improve and transform the energy infras-

tructure is immense. Further, the future policymakers and business leaders would require

taking critical decisions to tackle the future uncertainties in the energy infrastructure.

This change towards decentralized renewable sources, although inevitable, requires a

large scale and efficient integration with the present electricity systems[5, 6]. However,

this process is not without problems. Renewable sources like solar and wind power tend

to be highly unpredictable and unstable. They tend to vary in electricity generation with

no correlation to the changes in electricity demand. Further, the conventional power grids

are not flexible enough, and due to their highly centralized and homogeneous nature, in-

creased integration of renewable energy can lead to stability and reliability issues in the

system[7–10]. The future penetration of renewable sources is rather unavoidable. This

calls for a shift towards more sophisticated smart grid based electricity grid networks[11–

14]. In general, a smart grid is a network that allows the small-scale producers to generate

and sell electricity. In contrast to the conventional grid networks, these networks are het-

3



erogeneous and decentralized in nature and incorporate a variety of resources like smart

meters, intelligent power distribution devices, two-way communications, advanced sen-

sors, and energy storage systems. These resources together would facilitate the increased

penetration of renewable sources, electric vehicles, and micro-grids into the present elec-

tricity infrastructure. This would require the current infrastructure to develop an ability

for the end-user to participate in the decentralized bilateral energy trade to partially

fulfill their needs without further stressing the grid.

However, this shift towards smart grid requires increased participation by the con-

sumers in the process of electricity generation and distribution. To facilitate this tran-

sition, the energy markets would have to be a lot more open, decentralized and must

allow the end-users to sell the surplus electricity back to the grid as well as to the other

end-users. Demand side management and response mechanisms would be an integral

part of this system[15, 16]. In this respect, energy storage units like battery are going

to play a significant role in incentivizing the consumer for adopting locally available re-

newable sources like solar power[17, 18]. These units allow the participating user to store

energy as a reserve or for enabling smart energy trade. However, deployment of storage

units in the system comes with its problem, both for the overall grid system and for the

consumer[19–21]. The issues can range from economic viability to system stability. How-

ever, the rapidly decreasing cost of battery systems[22, 23] in the recent years has made

them a lot more attractive and economically feasible to be deployed for use in small-scale

PV systems. Companies like Tesla are investing heavily in improving the battery tech-

nology and further reducing their overall cost. As in [22], the battery price has declined

at a rate of % annually and has already reached below $/kWh price level. Recent

events like negative electricity pricing in California due to massive solar energy influx,

further confirms the prospect of energy trading to be attractive.

1.2 Why Energy Trading?

1.2.1 Better Overall Efficiency

The penetration of renewable energy comes with its baggage of problems due to its

inherent uncertainty. But due to its highly decentralized nature and associated use of

storage systems along with it, the energy trading could allow the system operator to

4



provide various ancillary services to improve the overall efficiency of the system. Further,

due to localized generation, the transmission line congestion would reduce resulting in an

overall improvement of the efficiency and reduction in average cost.

1.2.2 Reduced Operation Cost

The operating cost of the utilities is generally decided by the overall load demand. In

general, they operate large-scale, low-cost generating units for the base demand and

dispatch more generators to keep up with the changing end-user demand. During peak

hours the utilities have to deploy high cost and faster gas power stations, which results

in increased operating cost with an increase in the load demand. So, to deal with the

higher operating cost, utilities have to increase the electricity price. If the energy trading

is allowed, both the utility and the users will benefit in the form of cost savings [24].

1.2.3 Reduced Green House Gas (GHG) Emissions

Power grids around the world are responsible for % of the GHG emissions. The in-

creased usage of decentralized energy can play a critical role in reducing the GHG emis-

sions. This can mainly be realized by enabling the energy trade for the excess power at

the micro-grid level.

1.2.4 Energy Profiling

The energy trading inherently allows for generation decentralization. This would lead

to the emergence of networked micro-grids. These micro-grids would enable the central

grid to better profile the end-user demand and control the flow and generation of energy.

This would allow for a better system adaptation towards future energy demand and CO2

targets. Instead of relying on centralized utility companies to build capital-intensive,

large-scale power plants, the micro-generation network can enlarge the electricity supply

at a cost-effective, small-scale local level.

5



1.3 Objective

The increasing energy demand and various problems surrounding the conventional energy

sources, has made the shift towards distributed renewable energy sources inevitable. But

the high infrastructural costs can be demotivating for the end-users to make this shift.

The objective of this work is to come up with an energy trading framework to enable

the end-user to generate profits by trading electricity with a smart grid where the energy

network has evolved enough to facilitate bi-directional energy trading.

1.4 Problem Statement

The smart grid with its inherent bi-directional electricity trading capability facilitates

the end-user to decide the amount of energy to trade. By trading electricity smartly,

the end-user can easily offset the battery system investment cost. But this requires the

development of an energy trading framework that by forecasting electricity price, load

demand and solar harvest, can decide the optimal amount of electricity to buy or sell over

a period of time so as to generate a net profit while recovering the battery investment

cost quickly.

1.5 Thesis Layout

In this work, a detailed study about the use of battery systems for energy trading was

conducted from the end-user perspective by incorporating battery dynamics in the form

of constraints in the overall energy trading framework. This was formulated in terms of an

energy trading model. Further, a strategy called Dynamic Battery Charging Algorithm

(DBC) was developed to find the optimal battery charging states during the overall

trading process. For validating the performance of the proposed strategy, the algorithm

was tested on nine different cases. For this, a case study of three different load profiles (a

small scale residential user, a Walmart Supercenter as a medium scale commercial user

and an automotive assembly unit as a large-scale industrial user) was done. Further, all

three profiles were tested in three electricity spot markets in different states (Ontario,

California and New York). Using the real-time traces, three estimators were trained for

predicting one hour-ahead price, solar power, and load demand. This was used to test

6



and validate the proposed strategy in real time scenarios.

In Chapter 2 discusses the various energy trading methods existing in the literature.

Chapter 3 formulates the core DBC based energy trading approach. Further, it shows

the simulation results of the proposed strategy in the 9 test cases. Chapter 4 formulates

a capacity fade based battery cost model and utilizes it within the core DBC algorithm

to model the battery utility cost model within it. In chapter 5 the proposed DBC and

capacity fade based hybrid model is further improved by using weighted capacity fade

battery cost model. Finally, chapter 6 concludes the overall study.
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Chapter 2

Literature Survey

2.1 Energy Trading Survey

To incentivize the battery usage among end-user, we need to come up with proper trading

strategies to enable the user to participate and gain profit in an open energy market.

Researchers are working on different such strategies in various market conditions. In

general, the energy trading can be classified into three main categories depending on the

employed solution strategy as described below:

2.1.1 Decentralized Approach:

This is a Game Theoretic Approach which assumes multiple interacting users who try

to optimize their own utilities without considering the rest of the user and the grid

conditions. This approach can be further divided into three subcategories:

• Auction Mechanism:

The primary goal of this strategy is to find the lowest cost matching between supply

and demand to maximize the economic efficiency. In [25], a basic auction mechanism

for trading in the local energy markets is proposed. In [26] authors proposed a

double auction based energy trading mechanism. In [27], a Continuous Double

Auction (CDA) based mechanism is used for congestion management with a micro-

grid based energy trading scenario. In [28], the authors modeled the energy trading

process between the distributed storage units using a double auction based strategy.

[29] authors formulated the energy exchange between Electric vehicles and grid. The

8



model utilizes a double auction based energy trading strategy.

• Stackelberg Game:

A stackelberg game models the trading process as a leader-follower based response

strategy. The game models the behavior of leader and follower. The leader is

given the first move advantage, and follower plays the best possible response based

trading strategy so as to maximize its utility [30]. In energy trading field the role of

a leader is played by the utility which sets the electricity prices as per the market

requirements and the follower role is played by the end-users. In [31], the utility

motivates the end-users to sell their surplus energy during the peak hours. In

[32], the authors modeled the energy exchange between vehicle and grid using the

leader-follower based Stackelberg Game.

• Non-cooperative Game:

A non-cooperative game models the energy trading process as the interaction be-

tween independent self-interested agents. In this strategy, the non-cooperative

games are used to estimate the net energy to be sold in the market. The opti-

mal solution is the Nash Equilibrium, where no player deviates from its strategy.

This approach has been used in a lot of work [33–36] to solve derive an optimal

energy exchange strategy in various scenarios. In [36], a non-cooperative game be-

tween storage units is proposed and is solved using a game theory-based approach.

In [34], a non-cooperative game is utilized to find the optimal energy exchange

between plug-in hybrid vehicles.

2.1.2 Centralized Approach:

In this approach the utility or trading agency is assumed to know all the information about

the buyers and sellers. The approach utilizes a single objective maximization based strat-

egy to estimate the optimal amount of energy to be traded. In [37] a profit maximization

strategy is proposed for micro-generation unit working in a mostly centralized market

with incentives for energy trading. In [38], authors analyzed an energy trading scenario

in a peer-to-peer network for energy exchange between micro-grids where a central grid

has all the information about individual micro-grid. In [39], authors proposed a heuristic

approach called Hybrid Immune Algorithm, for auction based distributed energy resource

9



management in Smart Grid. In [40], authors formulated a stochastic programming based

approach to select optimal energy and reserve bids for the storage units while working in

a scenario where a group of independently-operated investor-owned storage units seeks

to offer both energy and reserve.

2.1.3 Simulation-based Approach:

This approach models and simulates the behavior of multiple agents. These strategies

utilize various statistical algorithms like Reinforcement learning so as to automate [41,

42] the decision making process with a motive of maximizing the profit. In [43], B–M

reinforcement scheme[44] is used to attain Nash equilibrium in a constrained energy

trading game between players with incomplete information. Various other approaches

[45, 46] have utilized Reinforcement learning based strategies for this purpose. In [47],

the authors utilized Markov decision process to model the broker agent behavior.

10



Chapter 3

Dynamic Battery Charging based

Energy Trading

In this chapter, an energy trading framework called Dynamic Battery Charging

(DBC) Algorithm is proposed. The chapter includes a detailed study regarding the

use of the battery systems for energy trading from the end-user perspective. The pro-

posal incorporate the battery dynamics in the form of constraints in the overall energy

trading framework. The framework utilizes an energy balance based trading model called

Energy Transfer Model within it. Finally, the DBC Algorithm is developed to find

the optimal battery charging states during the overall trading process. For validating the

performance of the proposed framework, the algorithm is tested on nine different scenar-

ios. For this, a case study of three different load profiles (a small scale Residential user,

a Walmart Supercenter as a medium scale Commercial user and an automotive assem-

bly unit as a large-scale Industrial user) is done. Further, all three profiles are tested in

three electricity spot markets in different states (Ontario, California and New-York).

Using the real-time traces, three estimators are trained for predicting one hour-ahead

price, solar power, and load demand. This was used to test and validate the proposed

framework in the real-time scenarios.

3.1 Energy Transfer Model Formulation

The proposed model considers the trading operation from the end-user perspective. The

end-user is directly connected to a central smart grid system that allows a two-way
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electricity trade. The model formulates the monetary loss incurred by the end-user while

buying or selling the electrical power over a particular time-period. All the variables are

considered to be discrete with each time-slot taken as  hour and denoted by ‘t′. For

example, pt indicates the average one-hour spot market price of the electricity in the time

slot t. The spot market prices are taken from IESO[48], CAISO[49], and NYISO[50]

for the Ontario, California and New-York states respectively. Figure 3.1 represents the

overall system energy transfer model. The system consists of a load, a PV system for

electricity generation, a battery to store energy and a central utility to buy energy deficit

or sell energy surplus. Here dt denotes the load energy requirement in the time slot t.

st denotes the solar energy harvested using the PV system (excluding the energy loss

during the harvesting process) in time slot t.

bt indicates the initial charge of the battery (at the start of time slot t), and ∆bt

denotes the change in charge of the battery in time slot t. Positive ∆bt denotes charging

of the battery while negative ∆bt denotes discharging of the battery. This change can

be formulated as Eq.(3.1).

bt+1 = bt +∆bt (3.1)

bcapacity represents the maximum charge accumulation capacity of the battery and

bmin represents the reserved battery charge. Thus in any time-slot t the battery charge

cannot go beyond this range. Eq.(3.16) accounts for this constraint.

As represented by the Eq.(3.17), ∆bt is limited by maximum charging rate (dbcrate)

and maximum discharging rate (dbdrate).

Eq.(3.18), limits the battery discharge (−∆bt) in slot t to remain within the present

battery charge.

ut denotes the amount of electricity traded from the utility in time slot t. Positive

ut indicates that energy is brought from the utility while its negative value denotes that

the energy is sold to the utility.

The total energy supply and energy demand in a system (Figure 3.1) are always

balanced. This can be formulated as Eq.(3.2).

ut + st = ∆bt + dt (3.2)

The variable pt denotes the price at which the end-user can buy the electricity from

the grid. Whenever the energy is bought from the grid (ut ≥ ), the end-user incurs a
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This can be used to combine the two conditions in Eq.(3.3) to form monetary loss equation

as shown in Eq.(3.5).

`t = β ∗ pt ∗ ut = β ∗ pt ∗ [∆bt + dt − st] (3.5)

The Eq.(3.6) represents the total monetary loss `total incurred by the end-user.

`total =
∑

t

β ∗ pt ∗ [∆bt + dt − st] (3.6)

The objective of every end-user based strategy is to minimize this monetary loss or

rather gain a significant profit. This can also be achieved by minimizing the average

monetary loss `av as represented by Eq.(3.7).

`av = lim
T→∞

1

T

∑

t

β ∗ pt ∗ [∆bt + dt − st] (3.7)

The Eq.(3.8) represents the average monetary loss incurred by the end-user during T

consecutive time slots starting from time slot (τ ).

`av(τ, T ) =
1

T

τ+T−1
∑

t=τ

β ∗ pt ∗ [∆bt + dt − st] (3.8)

For calculating `av(τ ,T ) (as given in Eq.(3.8)), the accurate values of pt, ∆bt, dt

and st are required to be known for time slots τ , τ + .... and τ + T −  at time slot τ .

This can be approximated by estimating the price (p), load demand (d) and harvested

solar energy (s) for all the future time slots. pt(τ ), dt(τ ) and st(τ ) in Eq.(3.9), (3.10)

and (3.11) represent the forecasted estimations of pt, dt and st at τ time slot.

pt(τ) = Ep[pt; τ ] (3.9)

dt(τ) = Ed[dt; τ ] (3.10)

st(τ) = Es[st; τ ] (3.11)

By using above estimations, the Eq.(3.8) can be approximated as a function of the

change in battery charge. This leads to the loss function given in Eq.(3.12).

L(∆b(τ); τ, T ) ≈ `av(τ, T )

≈
1

T

τ+T−1
∑

t=τ

β ∗ pt(τ) ∗ [∆bt(τ) + dt(τ)− st(τ)]
(3.12)

Here, ∆b(τ ) = [∆bτ (τ ),∆bτ+(τ ), .....,∆bτ+T−(τ )]. By minimizing the loss func-

tion (Eq.(3.12)) for different time slot pairs (τ , T ), we can achieve the end-user task of

reducing the overall monetary loss. This would give the optimal values of battery charge

for different time slots.
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3.2 Dynamic Battery Charging Algorithm (DBC)

Let tf be the total number of time slots for which we have to predict the battery charge

state. The aim of the DBC algorithm is to accurately estimate these values. Prior to

estimating the optimal battery charge values, three separate time series estimators, Ep,

Ed and Es, are trained for price, load and solar power prediction. For this a machine

learning technique called Support Vector Machine [51] was used to train the three time

series regression models [52–54]. At any time slot τ , these time series estimators can be

used to predict the values of pt, dt and st for future time slots (t > τ ).

fτ : min
∆b(τ)

1

T

τ+T−1
∑

t=τ

β ∗ pt(τ) ∗ [∆bt(τ) + dt(τ)− st(τ)]

s.t.((3.16)), ((3.17)), ((3.18))

(3.13)

∆b∗(τ) = argmin
∆b(τ)

1

T

τ+T−1
∑

t=τ

β ∗ pt(τ) ∗ [∆bt(τ) + dt(τ)− st(τ)]

s.t.((3.16)), ((3.17)), ((3.18))

(3.14)

b∗τ = b∗τ−1 +∆b∗τ (τ) (3.15)

bmin ≤ bt ≤ bcapacity (3.16)

dbdrate ≤ ∆bt ≤ dbcrate (3.17)

−∆bt ≤ bt − bmin (3.18)

Fτ (∆b) =
1

T

τ+T−1
∑

t=τ

[β ∗ pt(τ) ∗ [∆bt(τ) + dt(τ)− st(τ)]

+ c1 ∗ (b(t)− bmin)2 + c2 ∗ (b
capacity − b(t))2

+ c3 ∗ (∆b(t)− dbdrate)2 + c4 ∗ (db
crate −∆b(t))2

+ c5 ∗ (b(t) + ∆b(t)− bmin)
2]

(3.19)

The Eq.(3.13) represent the minimization problem at a particular time-slot “τ”. So,

in total there are tf different minimization problems from time slots τ =  to τ = tf .
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Algorithm 1 DBC

1: Train Estimators: Ep, Ed and Ed.

2: for τ = 0 : tf do

3: for t = τ + 1 : τ + T do

4: Estimate pt(τ), dt(τ) and st(τ)

5: Solve fτ using optimizer

6: b∗τ ← b∗τ−1 +∆b∗τ (τ)

Solving the minimization problem (fτ ) at particular time slot τ yields the optimal battery

charge update (Eq.(3.14)) from t = τ to t = τ + T −  w.r.t. to the present time slot

τ . In Eq.(3.14), ∆b∗(τ ) = [∆b∗τ (τ ),∆b∗τ+(τ ), .....,∆b∗τ+T−(τ )]. Of these, the battery

charge values for future time slots (t > τ ) are affected by inaccuracies in predictions of

price, load and solar power. So, these later values are discarded and the change in battery

charge at τ (∆b∗τ (τ )) is used to calculate the optimal battery charge at that time slot

(Eq.(3.15)). By solving the minimization problem for all time slots, the required optimal

battery charge pattern can be obtained. Eq.(3.19) represents the overall minimization

objective function (Fτ ) incorporating all the battery constraints (Eq.(3.16),(3.17),(3.18)).

This is done by adding a penalty to the objective function whenever any of the constraint

is violated. c, c, c, c and c are penalty coefficients for these constraints. They are

given a positive value if the respective constraint is violated else they are . The overall

algorithm is presented in Figure 3.2.

Any iterative optimization algorithm can be used to solve fτ in step 5 of the Al-

gorithm 1. All the iterative optimization algorithms can be classified into two main

types: gradient based and non-gradient based. Both of these optimization algorithms

are tested in this work. In this work, both types of optimization algorithms are tested

with momentum-based gradient descent (MGD) representing the gradient-based method

[55] and differential evolution (DE) [56] representing non-gradient method. Compared to

other optimization algorithms, these algorithms are computationally faster and easier to

implement. Further, they are known to work well in multimodal optimization problems.
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Figure 3.2: DBC Algorithm Flowchart
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3.3 Solution Strategies Overview

In the study, three different end-user strategies are tested based on the electricity gener-

ation and storage hardware possessed by the end-user. These strategies are classified as

“Without Solar Harvesting Strategy”, “Greedy Strategy” and “Smart Strategy”.

3.3.1 Without Solar Harvesting Strategy

This represents the case where the end-user does not possess a solar harvesting system

and just buys all the required electricity directly from the grid. The monetary loss value

for this situation is calculated as Eq.(3.20).

`total =
∑

t

pt ∗ [dt]. (3.20)

3.3.2 Greedy Strategy

This represents the case where end-user does have a solar system but don’t use a battery

for energy trading. In this situation, the end-user just sells the extra solar energy to the

grid or buys the demand deficit from it. The monetary loss value for this situation is

calculated as Eq.(3.21).

`total =
∑

t

pt ∗ [dt − st] (3.21)

3.3.3 Smart Strategy

In this case, the end-user possess both a solar system and a battery and uses an algorithm

to smartly use the battery for energy trading. This strategy is tested with three different

algorithms: Reinforcement Learning, DBC algorithm with DE and DBC algorithm with

MGD. These algorithms can be used as follows:

• Reinforcement Learning:

Reinforcement learning (RL)[57] is a trail-and-error based technique that continu-

ously trains an agent using its behavioral samples in a particular environment and

using that it drives the agent behavior towards optimality w.r.t. that environment.

These samples are taken by enabling the agent to take actions (ut) in the form of

interactions with its environment. These interactions result in a change of state

18



(bt) of the agent. By taking these actions the agent gets a reward (rt as given

in Eq.(3.22)) which can then be used to calculate cumulative reward (R) using

Eq.(3.23). The algorithm makes use of these accumulated reward values to train

the agent to return better rewards in future. In our case, the monetary profits

can be used as reward function, and the battery charge can be used as the agent

state. Change in battery state is used as the action which is represented by using a

policy function (π). One class of the RL algorithm is an iterative approach called

Q-learning. Q-learning starts with randomly generating Q-value of the policy or a

reference value of the policy set by the designer. Every time the agent selects an

action, it observes a reward and a new state that may depend on both the previ-

ous state and the chosen action and updates the corresponding Q-value using the

Eq.(3.24).

rt+1 = r(bt+1|bt, ut) (3.22)

R(T ) = rT (bT ) +
T−1
∑

t=1

rt(bt, ut) (3.23)

Qt+1(ut, bt) = Qt(ut, bt) + αt(ut, bt)(rt+1+

γmax
a

Qt(bt+1, u)−Qt(bt, ut))
(3.24)

Here γ is discount factor between  and . The most popular way to implement

Q-leaning is to use neural networks as a function approximator to approximate the

policy function (π). This method implemented in [58] is called Deep Q-learning

with Experience Replay. The overall algorithm can be implemented as given in

Algorithm 2.

• DBC algorithm with Differential Evolution (DE):

Differential Evolution (DE)[56] is a non-gradient based iterative optimization tech-

nique that belongs to the class of algorithms called evolutionary computation. These

algorithms are based on the theory of evolution. DE tries to solve a problem by

iteratively improving a set of candidate solutions. The candidate population moves

in the search space iteratively by three evolutionary steps (Mutation, Crossover and
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Algorithm 2 Deep Q-learning with Experience Replay

1: Initialize the experience-replay buffer (B) of size NB.

2: Initialize high ε value (ε greedy approach ).

3: Initialize the deep neural network representing policy or state-action Q value.

4: for k = 1 : Ne do

5: Initialize system state as b1.

6: while Until Episode is Completed do

7: Generate random number rn between 0 and 1.

8: if rn ≤ ε then

9: Generate random action ut

10: else

11: bt ← max
u

Q∗(bt, u)

12: Use action ut to get reward rt and new state bt+1.

13: Update B using sample (bt,ut,rt,bt+1).

14: Create minibatch(mb) of random samples from B.

15: for Each sample xi=(bi,ui,ri,bi+1) in mb do

16: if oi+1 ends kth episode then

17: yi ← ri

18: else

19: yi ← ri +max
u′

Q∗(bt+1, u
′

)

20: Update the deep neural network parameters using minibatch samples.

21: Decrease ε value.
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Selection) given in Eq.(3.25), Eq.(3.26) and Eq.(3.27).

vi = xa + F.(xb − xc) (3.25)

ui =











vi if rj ≤ CR or j = Ir

xi if rj > CR or j 6= Ir

(3.26)

xi =











ui if Fτ (ui) ≤ Fτ (xi)

xi if Fτ (ui) > Fτ (xi)

(3.27)

Here xt
a, x

t
b and xt

c are randomly chosen candidate solutions, M is the mutation

factor (between 0 and 2) and v is a donor vector. u is the trail vector, r is a

random variable between  and , Ir is random integer between  and T , and CR

is crossover constant. The algorithm can be implemented as given in Algorithm 3.

Algorithm 3 DE to solve for fτ

1: Initialize population size (N), iterations K, M and CR.

2: Initialize candidate population x1 to xN randomly.

3: for k = 0 : K do

4: for i = 1 : N do

5: Randomly select xa, xb and xc.

6: vi ← xa +M.(xb − xc).

7: if rj ≤ CR or j = Iinteger then

8: ui ← vi

9: if rj > CR or j 6= Ir then

10: ui ← xi

11: if Fτ (ui) ≤ Fτ (xi) then

12: xi ← ui

13: Pick xi with minimum fτ (xi) value

• DBC Algorithm with Momentum based Gradient Descent:

Gradient Descent (GD) is a gradient-based iterative optimization technique. It

updates the parameters (in our case ∆bt) of the objective function by using the

slope of the function w.r.t. the parameter. Momentum-based GD (MGD)[55] helps

in accelerating the update process by adding a fraction of old update value to the
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new one. This also helps in reducing the damping oscillations present within the

vanilla gradient descent method. The algorithm can be implemented as given in

Algorithm 4. In the algorithm (Algorithm 3), vk is the velocity vector of the kth

Algorithm 4 MGD to solve for fτ

1: Initialize number of iterations K, learning rate (η) and velocity coefficient (λ)

2: Initialize solution ∆b(∆b1, .... ∆bT ) randomly.

3: for k = 0 : K do

4: for t = τ : τ + T do

5: Calculate ∆∆biFτ (∆b)

6: vkt ← λvk−1
t + η∆∆biFτ (∆b)

7: ∆bi ← ∆bi − vkt

iteration, λ is the momentum coefficient and η is the learning rate.

3.4 Experimental Setup

For evaluating the proposed model, all five approaches are tested in various energy trad-

ing scenarios. As explained earlier, the proposed DBC algorithm is tested with two op-

timization algorithms: DE algorithm and MGD. The overall approaches are mentioned

as DBC:DE and DBC:GD in further text. For DE, the population size is taken as

40, mutation factor as 0.8 and crossover constant as 0.9. For MGD, the learning rate is

iteratively reduced from 0.2 to 0.01 and momentum coefficient is increased from 0.5 to

0.9.

In the following simulations, the proposed algorithms are tested using the hourly

traces of electricity prices (pt), harvested energy (st) and electricity demand (dt). This

was done using three different load profiles (a small scale Residential user, a Walmart

Super-center as a medium scale Commercial user and an automotive assembly unit as

a large-scale Industrial user) in three different electricity markets (Ontario[48], Cal-

ifornia[49], and New-York[50]). The data was collected for a one year period from

1/1/2012-12/31/2012. The solar data for these areas was collected from National Solar

Radiation Database (NSRDB)[59]. This dataset is based on National renewable energy

laboratory (NREL)[60] developed Physical Solar Model (PSM). PSM makes use of various

atmospheric properties (gathered by Geostationary Operational Environmental Satellite
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Table 3.1: Tested Load Profiles

Unit Residential Commercial Industrial

Net Consumption MWh/year 10 5000 75000

PV Size kW 4 1000 15000

bcapacity kWh 5 2500 37500

bmin kWh 1 500 7500

dbcrate kWh 2.5 1250 18750

dbdrate kWh 2.5 1250 18750

The residential user was considered to be equipped with solar panels with a total ca-

pacity of kW . The annual electricity consumption of the user was around MWh/year.

Further, the user is equipped with a battery bank of kWh total capacity (bcapacity).

For the commercial user case, load profile of an average Walmart Supercenter [63] was

considered. For this user, mean annual electricity consumption of MWh/year is

taken. The unit was considered to be equipped with solar panels of MW capacity with

a total battery capacity of .MWh. Further, for the industrial load, an automotive

assembly unit with an average annual electricity consumption of MWh/year is

considered. The unit was considered to be equipped with solar panels of MW capac-

ity with a total battery capacity of .MWh. Table 3.1 presents the values of all the

parameters used in further simulations, related to all three load profiles.

3.5 Simulation Results And Analysis

For simulating the battery dynamics, “Thundersky Winston LiFePO4 Battery” (Model

No: WB-LYP1000AHC(A)) were considered. Each battery has a nominal capacity of

kWh. These batteries are known to last −  cycles before losing % of

its capacity. For this study, the cycle life for the battery system is taken to be 

cycles. The price of each battery is $. So, cost per kWh of battery system is

$/kWh(= $/kWh).

3.5.1 Performance Parameters

To evaluate the simulation results following performance parameters are used:-
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• Loss (Ly in $/year): This is the net monetary loss accumulated by the strategy

at the end of the year. So, Lws
y , Lgreedy

y , Lgd
y , Lde

y and Lrl
y represent the loss

accumulated at the end of year by using Without Solar, Greedy, DBC:GD, DBC:DE

and RL strategy respectively.

• Profit (p in $/year): This is the net monetary profit accumulated by a certain

strategy at the end of the year due to use of the PV and battery system. It can be

calculated by using Eq.(3.28). Here, i represent the particular strategy (DBC:GD,

DBC:DE and RL).

pi1 = Lws − Li (3.28)

So, pgd
 , pde

 and prl
 represent the profit accumulated at the end of year by using

DBC:GD, DBC:DE and RL strategy respectively.

• Profit (p in $/year): This is the net monetary profit accumulated by a certain

strategy at the end of the year due to use of the battery system. It can be calculated

by using Eq.(3.29). Here, i represent the particular strategy (DBC:GD, DBC:DE

and RL).

pi2 = Lgreedy − Li (3.29)

So, pgd
 , pde

 and prl
 represent the profit accumulated at the end of year by using

DBC:GD, DBC:DE and RL strategy respectively.

• Cycles (c in cycle/year): This is the net battery charge-discharge cycles used

by a strategy (for the purpose of energy trading) by the end of the year. Each cycle

is equivalent to one full charge and one full discharge of the battery. So, cgd, cde

and crl represent the cycles used by Without Solar, Greedy, DBC:GD, DBC:DE

and RL strategy respectively.

• Profit per cycle (p/c in $/cycle): This is the net profit (p1: by using the PV

and battery system) to cycle ratio of a particular strategy.

• Profit per cycle (p/c in $/cycle): This is the net profit (p2: by using the

battery system) to cycle ratio of a particular strategy.

• Revenue (in $): This represent the net revenue generated by the battery during

its lifetime. It can be calculated by using Eq.(3.30). Here,  represent the cycle
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life of the battery.

Revenuei = (pi2/c
i) ∗ 6000 (3.30)

• Gross Profit (GP in $): This represent the gross profit generated by the battery

during its lifetime. It can be calculated by deducting cost of the battery system

from the revenue (Eq.(3.31)).

GP i = Revenuei − cost (3.31)

• % Gross Profit (%GP in %): This represent the percentage of profit due to

investment in battery system. It can be calculated as shown in (Eq.(3.32)).

%GP i = 100 ∗
Revenuei − cost

cost
(3.32)

• Lifetime (in years): This represents the lifetime of the battery system in years by

using a particular strategy. After that, the battery cells are required to be replaced.

It can be calculated as shown in (Eq.(3.33)). Here,  represent the cycle life of

the battery.

Lifetimei = 6000/ci (3.33)

3.5.2 Simulation Results

The simulation results for the  load profiles are shown below:-

• Case 1: Ontario Residential Case: In this case, the net cost of the battery

system is $(= .$/kWh ∗ kWh). Figure 3.4 shows the loss accumulated

by the residential user up to each time slot of the year, in the Ontario state. Dif-

ferent colored lines are used to represent the performance of the different trading

strategies. In this case, the order of monetary loss from higher to lower is: DBC:DE

> DBC:GD > RL > Greedy. DBC:DE easily outperformed all other approaches.

Figure 3.5 shows the cumulative profit generated by the end-user due to use of

battery system for 3 different trading strategies: DBC:GD, DBC:DE and RL. Es-

sentially, its the profit accumulated compared to the greedy trading strategy. For

this case the Lws
y , Lgreedy

y , Lgd
y , Lde

y and Lrl
y were found out to be .$/year,

.$/year, .$/year, .$/year and .$/year respectively. Ta-

ble 3.2 summarizes the performance parameters for this case. Clearly the DBC:DE
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Table 3.2: Ontario Residential Case: Performance Parameters

Parameter Unit DBC:GD DBC:DE RL

Loss (Ly) $/year 109.33 6.95 112.75

Profit (p1) $/year 237.84 340.23 234.43

Profit (p2) $/year 47.62 150.00 44.20

Cycles (c) cycle/year 381.26 421.60 391.34

p1/c $/cycle 0.62 0.81 0.60

p2/c $/cycle 0.12 0.36 0.11

Revenue $ 749.41 2134.74 677.70

Gross Profit(GP) $ -1000.59 384.74 -1072.30

% Gross Profit(%GP) % -57.18 21.99 -61.27

Lifetime years 15.74 14.23 15.33

trading strategies. The order of monetary loss from higher to lower is: DBC:DE

> RL > DBC:GD > Greedy. Overall, DBC:DE gave better returns closely fol-

lowed by the RL strategy. Figure 3.7 shows the cumulative profit generated by

the end-user due to use of battery system for DBC:GD, DBC:DE and RL trading

strategies. For this case the Lws
y , Lgreedy

y , Lgd
y , Lde

y and Lrl
y were found out to

be .$/year, .$/year, .$/year, .$/year

and .$/year respectively. Table 3.3 summarizes the performance param-

eters for the Ontario Commercial case. Both DBC:DE and RL strategy were able

to generate positive overall returns during battery lifetime with DBC:DE giving a

.% gross profit and RL giving .% gross profit.

• Case 3: Ontario Industrial Case: In this case, the net cost of the battery

system is $(= .$/kWh ∗ kWh). Figure 3.8 shows the loss

accumulated by the Industrial user up to each time slot of the year, in the Ontario

state. Different colored lines are used to represent the performance of the different

trading strategies. The order of monetary loss from higher to lower is: DBC:DE >

RL > DBC:GD > Greedy. DBC:DE easily outperformed all other approaches in

this case. Figure 3.9 shows the cumulative profit generated by the end-user due to

use of battery system for DBC:GD, DBC:DE and RL trading strategies. For this
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Table 3.7: California Industrial Case: Performance Parameters

Parameter Unit DBC:GD DBC:DE RL

Loss (Ly) $/year 995202.66 524404.64 838269.99

Profit (p1) $/year 1262629.97 1733427.99 1419562.64

Profit (p2) $/year 219873.72 690671.74 376806.40

Cycles (c) cycle/year 337.21 291.19 325.70

p1/c $/cycle 3744.35 5953.00 4358.45

p2/c $/cycle 652.04 2371.93 1156.90

Revenue $ 3912236.40 14231584.25 6941404.37

Gross Profit (GP) $ -9212763.60 1106584.25 -6183595.63

% Gross Profit (%GP) % -70.19 8.43 -47.11

Lifetime years 17.79 20.61 18.42

Different colored lines are used to represent the performance of the different trad-

ing strategies. The order of monetary loss from higher to lower is: DBC:DE > RL

> DBC:GD > Greedy. DBC:DE easily outperformed all other approaches in this

case. Figure 3.17 shows the cumulative profit generated by the end-user due to

use of battery system for DBC:GD, DBC:DE and RL trading strategies. In this

case the Lws
y , Lgreedy

y , Lgd
y , Lde

y and Lrl
y were found out to be .$/year,

.$/year, .$/year, .$/year and .$/year respectively. Ta-

ble 3.8 summarizes the performance parameters for this case. Clearly, the DBC:DE

outperformed all other strategies by generating a gross profit of around .% in

the battery lifetime.

• Case 8: New-York Commercial Case: In this case, the net cost of the bat-

tery system is $(= .$/kWh ∗ kWh). Figure 3.18 shows the loss

accumulated by the Commercial user up to each time slot of the year, in the New-

York state. Different colored lines are used to represent the performance of the

different trading strategies. The order of monetary loss from higher to lower is:

DBC:DE > RL > DBC:GD > Greedy. DBC:DE strategy clearly outperformed all

other approaches in this case. Figure 3.19 shows the cumulative profit generated by

the end-user due to use of battery system for DBC:GD, DBC:DE and RL trading
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with decreased electricity prices are followed by a positive u value representing that the

energy was bought during those time slots. Similarly, for time slots with high electricity

prices the energy was sold to the grid represented by its negative values in those time slots.

Further, during time slots with high solar power generation the battery is getting charged

(represented by positive ∆b) and extra energy is sold back (represented by negative u)

to the grid.

Further, as shown in Table 3.2-3.10 the battery is estimated to work for − 

years in different case scenarios. The estimations are based on the average cycle life

of the battery and number of battery cycles used by the proposed approach for energy

trading. For accurate estimations of the battery cycle life, yearly lifetime and revenue

a proper battery capacity fading model is required to be designed. The next chapter

proposes a battery capacity fading model to properly estimate the performance of the

proposed energy trading strategy.
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Chapter 4

Battery Modelling

In the previous chapter, the financial performance parameters like Revenue, Gross Profit,

Lifetime, etc. (to evaluate the performance of the algorithm) were derived from the

cycle life estimations given by the manufacturer. These estimations, generally used by

the research community can give over-optimistic performance results. A proper battery

capacity fading model can give useful insight about the battery life, which can further be

used to derive more accurate performance parameters. Apart from creating an accurate

performance estimation benchmark for energy trading algorithms, these capacity fading

models can be used to derive a utility based cost model for the battery system, which can

further be merged with the core energy trading algorithm to derive a better performing

algorithm. This chapter proposes one such capacity fading model. Later on, the model

is used to derive a cost model to utilize it within the DBC framework.

4.1 Battery Capacity Fading Model

Capacity fade or capacity loss is a mechanism by which the battery loses some of its

capacity with time. This loss can be reversible as well as irreversible and can occur in

both active and inactive battery state. The acceptable irreversible capacity fade depends

on the battery application. For energy trading based applications, a net capacity fade

less than % is considered to be acceptable. After that, the battery cells are required to

be replaced. Due to high energy density, high power density, and larger overall cycle life,

rechargeable lithium-ion batteries can be a good option for energy trading application[64].

Capacity fading can occur due to two main reasons[65]. The capacity fading due to
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lithium ion and material loss is called true capacity fading. On the other hand, the

capacity fading loss due to cell impedance growth is called rate capability loss.

Different capacity fade models use linear[66, 67], quadratic[65] or exponential[68, 69]

functions to approximate the fading mechanism. Most researchers have found a logarith-

mic dependence between cycle life and Depth of Discharge (DOD)[70]. The temperature

dependence of the capacity fading is generally modelled using Arrhenius equation[71]. In

[69], the authors modelled the capacity fading rate (fd) in terms of the charge processed

during a particular interval of time. The model approximates fd in terms of mean of

SOC (Sav) and standard deviation of SOC (Sdv) during the time interval ‘t’.

Eq.(4.1) estimates the Sav(t) during the time interval ‘t’.

Sav(t) =
1

∆Aht

∫ Aht+1

Aht

S(Ah)dAh (4.1)

Eq.(4.2) estimates the Sdv(t) during the time interval ‘t’.

Sdv(t) = (
3

∆Aht

∫ Aht+1

Aht

(S(Ah)− Sav)
2)1/2 (4.2)

fd(t) for a time interval ‘t’ can be calculated using Eq.(4.3).

fd(t) = (k1.Sdv(t).e
k2.Sav(t) + k3.e

k4.Sdv(t)).e
(−Ea

R
( 1

Tt
−

1

Tref
))

(4.3)

Here k, k, k and k are the parameters of the battery fading model. S(Ah) is

the SOC of the battery at charge “Ah”. fd(t) represents the amount of charge faded (in

Ah) per amount of charge processed (in Ah). R is the gas constant, Ea is the activation

energy, T is the current temperature, and Tref is the reference temperature.

For simulating the battery dynamics, “ThunderskyWinston LiFePO4 Battery” (Model

No: WB-LYP1000AHC(A)) was considered. For finding the value of parameters (k, k,

k and k) of the battery capacity fading model, the cycle life vs DOD data was taken

from [72]. By fitting the fading model on the data, the hyper-parameter values were

calculated: k = ., k = −., k = .X− and k = −.. Figure

4.1 clearly shows that the predicted model closely follow the actual battery dynamics

over the whole DOD interval.
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during the year. Here (%) is the maximum tolerable capacity fade after which

the battery is required to be replaced.

Revenue = (p2/%fd) ∗ 30% (4.4)

• Gross Profit (GP in $): This represent the gross profit generated by the battery

during its lifetime. It can be calculated by deducting cost of the battery system

from the revenue (Eq.(4.5)).

GP = Revenue− cost (4.5)

• % Gross Profit (%GP in %): This represent the percentage of profit due to

investment in battery system. It can be calculated as shown in (Eq.(4.6)).

%GP = 100 ∗
Revenue− cost

cost
(4.6)

• Lifetime (in years): This represents the lifetime of the battery system in years by

using a particular strategy. After that, the battery cells are required to be replaced.

It can be calculated as shown in (Eq.(4.7)). Here (%) is the maximum tolerable

capacity fade after which the battery is required to be replaced.

Lifetime = 30%/%fd (4.7)

Table 4.1 shows the values of the capacity fading model based performance param-

eters for the DBC:DE strategy (best performing energy trading strategy) in all 9 cases.

Clearly, the revenue and battery lifetime estimations highly deviate from the manufac-

turer defined cycle-life based estimations. Instead of generating a positive gross profit

here the estimations are predicting negative values (i.e., a gross monetary loss). Further,

now the battery is estimated to work for only −  years. This is due to inefficiently

charging and discharging of the battery by the DBC:DE algorithm in previous simula-

tions, leading to the high amount of capacity fading (as indicated by high %fd values

in all 9 cases) in the process. To improve the performance of the proposed DBC:DE

algorithm the core algorithm is required to be merged with a battery utility based cost

model, which can better indicate if the trade in each time-slot is actually profitable. The

next section derives one such cost model based on the proposed battery capacity fading

model.
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Table 4.1: DBC:DE capacity fading derived performance parameters (Ont: Ontario, Cal:

California, NY: New York, R: Residential, C: Commercial, I: Industrial)

%fd p p/%fd Revenue GP %GP Lifetime

($/year) ($/%f˙d) ($) ($) (%) (years)

Ont R 5.814 150.00 25.8 773.5 -976.5 -55.80 5.16

C 5.597 73532.65 13125.0 393750.0 -481250.0 -55.00 5.36

I 5.597 1103638.05 197312.5 5919375.0 -7205625.0 -54.90 5.36

Cal R 4.573 96.51 21.1 633.5 -1116.5 -63.80 6.56

C 4.202 46080.71 10966.7 329000.0 -546000.0 -62.40 7.14

I 4.190 690671.74 164937.5 4948125.0 -8176875.0 -62.30 7.16

NY R 4.471 102.43 22.9 687.8 -1062.3 -60.70 6.71

C 4.225 49515.55 11754.2 352625.0 -522375.0 -59.70 7.10

I 4.208 743023.66 176750.0 5302500.0 -7822500.0 -59.60 7.13

4.3 Battery Capacity Fading based Cost Model

Capacity Fading Model discussed in section 1.1 can be used to derive a cost function

(cfd
(t)) for the battery. The cost of using battery in time slot ‘t’ can be calculated by

Eq.(4.8).

cfd(t) = fd(t) ∗∆Aht ∗ cpf (4.8)

Here cpf is the cost per fade factor (cpf) of the battery. For a particular battery

system cpf can be calculated by using Eq.(4.9).

cpf =
Bcost

0.3 ∗Bcapacity

(4.9)

Bcost is the total cost of the battery system and (. ∗Bcapacity) represent the maxi-

mum tolerable capacity fade. Here % is taken as the maximum tolerable capacity fade

after which the battery is considered to be dead and required to be replaced. This can

be combined with the previously proposed energy transfer model to formulate an overall

objective function for minimization of the consumer’s monetary loss. For the battery

system used in the simulation, each battery has a nominal capacity of kW . The price

of each battery is around $. So cpf value is around .$ per Wh capacity fade.
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4.4 Modified DBC with Battery Cost Model

The Eq.(4.10) represent the minimization problem at a particular time-slot ”τ”. Here

the highlighted part (within box) represent change in the original minimization problem

due to additional battery cost term. Similar change can be seen in optimal battery charge

update (Eq.(4.11)) and overall minimization objective equation (Eq.(4.13)). Overall al-

gorithm remains same as Algorithm 1.

fτ : min
∆b(τ)

1

T

τ+T−1
∑

t=τ

[β ∗ pt(τ) ∗ [∆bt(τ) + dt(τ)− st(τ)]+ fd(t) ∗∆Aht ∗ cpf ]

s.t.((3.16)), ((3.17)), ((3.18))

(4.10)

∆b∗(τ) = argmin
∆b(τ)

1

T

τ+T−1
∑

t=τ

[β ∗ pt(τ) ∗ [∆bt(τ) + dt(τ)− st(τ)]+ fd(t) ∗∆Aht ∗ cpf ]

s.t.((3.16)), ((3.17)), ((3.18))

(4.11)

b∗τ = b∗τ−1 +∆b∗τ (τ) (4.12)

Fτ (∆b) =
1

T

τ+T−1
∑

t=τ

[β ∗ pt(τ) ∗ [∆bt(τ) + dt(τ)− st(τ)]+ fd(t) ∗∆Aht ∗ cpf ]

+c1 ∗ (b(t)− bmin)2 + c2 ∗ (b
capacity − b(t))2 + c3 ∗ (∆b(t)− dbdrate)2

+c4 ∗ (db
crate −∆b(t))2 + c5 ∗ (b(t) + ∆b(t)− bmin)

2]

(4.13)

The simulation results using modified DBC:DE strategy are summarized in Table 4.2

which shows the values of the performance parameters for all 9 cases. Instead of giving

a negative gross profit the modification is able to generate − % profit in all 9 test

cases. Although the yearly profit p is reduced by − %, the low value of yearly

capacity fade (%fd) ultimately leads to much a higher gross profit. Due to extremely

low yearly capacity fading .− .%, the life of the battery is increased to − 

years. But this leads to a very high investment recovery time. In the tested scenarios

the investment recovery time is between −  years depending on the scenario. This

is due to high amount of fading cost penalty used in the new objective function. A more

efficient way could be to weigh down the fading cost factor in the objective function. The

next chapters simulates such a weighted fading cost model and tries to find the optimal

value of the weight.
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Table 4.2: Modified DBC:DE performance parameters (Ont: Ontario, Cal: California,

NY: New York, R: Residential, C: Commercial, I: Industrial)

%fd p p/%fd Revenue GP %GP Lifetime

($/year) ($/%f˙d) ($) ($) (%) (years)

Ont R 0.414 37.98 91.7 2750.2 1000.2 57.15 72.41

C 0.406 18709.11 46108.4 1383252.6 508252.6 58.09 73.93

I 0.405 280527.94 692384.2 20771525.2 7646525.2 58.26 74.04

Cal R 0.264 25.33 96.1 2883.2 1133.2 64.76 113.83

C 0.258 12702.79 49312.1 1479361.8 604361.8 69.07 116.46

I 0.251 184714.18 736223.2 22086695.3 8961695.3 68.28 119.57

NY R 0.319 30.39 95.1 2853.6 1103.6 63.06 93.91

C 0.309 14802.84 47862.5 1435875.0 560875.0 64.10 97.00

I 0.314 224142.93 714577.0 21437309.0 8312309.0 63.33 95.64
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Chapter 5

Weighted Capacity Fading based

modified DBC

In the previous chapter, simulations of the capacity fading based modified DBC algorithm

resulted in high returns in all test cases. But due to low usage of the battery (as indicated

by extremely low yearly capacity fading), the investment recovery rate was extremely

high. To solve the problem of effective utilization of the battery resources this chapter

simulates a weighted version of the previous strategy. The modification is done in the

fading based cost of the objective function, by multiplying the cost with a weight factor

called Fading Cost Coefficient wf . The chapter includes the test to find out the good

value of the hyper-parameter wf .

5.1 Modified DBC with weighted Battery Cost Model

The Eq.(5.1) represent the modified minimization problem at a particular time-slot ”τ”.

Here the highlighted part (within the box) represents change in the original minimization

problem due to weighing down the battery cost term. Value of wf is between  and

. This is to reduce the effect of the fading cost component in the overall objective

function. Similar change can be seen in optimal battery charge update (Eq.(5.2)) and

overall minimization objective equation (Eq.(5.4)). Overall algorithm remains same as

Algorithm 1.

52



fτ : min
∆b(τ)

1

T

τ+T−1
∑

t=τ

[β ∗ pt(τ) ∗ [∆bt(τ) + dt(τ)− st(τ)]+ wf ∗ fd(t) ∗∆Aht ∗ cpf ]

s.t.((3.16)), ((3.17)), ((3.18))

(5.1)

∆b∗(τ) = argmin
∆b(τ)

1

T

τ+T−1
∑

t=τ

[β ∗ pt(τ) ∗ [∆bt(τ) + dt(τ)− st(τ)]+ wf ∗ fd(t) ∗∆Aht ∗ cpf ]

s.t.((3.16)), ((3.17)), ((3.18))

(5.2)

b∗τ = b∗τ−1 +∆b∗τ (τ) (5.3)

Fτ (∆b) =
1

T

τ+T−1
∑

t=τ

[β ∗ pt(τ) ∗ [∆bt(τ) + dt(τ)− st(τ)]+ wf ∗ fd(t) ∗∆Aht ∗ cpf ]

+c1 ∗ (b(t)− bmin)2 + c2 ∗ (b
capacity − b(t))2 + c3 ∗ (∆b(t)− dbdrate)2

+c4 ∗ (db
crate −∆b(t))2 + c5 ∗ (b(t) + ∆b(t)− bmin)

2]

(5.4)

For finding the optimal value of wf the Ontario Commercial case was tested with

different values of the wf coefficient. wf value were varied between  and  with a step

size of .. At wf =  the simulation is same as discussed in Chapter 2 and at wf = 

its same as in Chapter 3. Figure 5.1 shows the effect of wf coefficient on yearly fading

%fd. Clearly, with increase in wf the %fd value decreases. The reduction in %fd is

more at lower values of wf and it gets saturated after wf = ..

Figure 5.2 and 5.3 shows the effect of wf coefficient on gross profit (%GP ) and

revenue in the Ontario Commercial Scenario. Clearly, both %GP and revenue increases

with increase in wf . This is due to high amount of reduction in %fd. Similar effect of

high reduction in %fd can also be seen on Cumulative Profit per %fd ratio. Despite

decrease in Cumulative profit (p) (Figure 5.4), with decrease in wf the Cumulative

Profit per %fd ratio gets increased (Figure 5.5).

Figure 5.6 shows the effect ofwf coefficient on the investment recovery time. As shown

in in Figure 5.6, the investment recovery is only possible at wf > .. The minimum

investment time occurs at wf = ., where the investment is recovered in around 

years. For later simulations the value of wf is taken as .. Table 5.1 summarizes the

effect of wf coefficient on various financial performance parameters as discussed before.
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Table 5.1: Effect of change in wf on DBC performance

wf %fd p2 p2/%fd Revenue GP %GP Lifetime Recovery

($/year) ($/%fade) ($) ($) (%) (years) (years)

0.0 5.60 73460.8 13125.0 393750.0 -481250.0 -55.0 5.4

0.1 2.35 59920.9 25540.6 766219.5 -108780.5 -12.4 12.8

0.2 1.51 47769.7 31601.3 948038.6 73038.6 8.3 19.8 18.3

0.3 1.12 40854.6 36404.5 1092136.1 217136.1 24.8 26.7 21.4

0.4 0.84 33628.5 39875.8 1196273.8 321273.8 36.7 35.6 26.0

0.5 0.67 28295.4 42096.9 1262906.9 387906.9 44.3 44.6 30.9

0.6 0.58 25064.0 43494.1 1304823.6 429823.6 49.1 52.1 34.9

0.7 0.49 22014.0 44815.8 1344472.5 469472.5 53.7 61.1 39.7

0.8 0.44 19990.8 45307.9 1359237.3 484237.3 55.3 68.0 43.8

0.9 0.43 19481.5 45554.9 1366645.9 491645.9 56.2 70.2 44.9

1.0 0.41 18709.1 46108.4 1383252.6 508252.6 58.1 73.9 46.8

5.2 Simulation Result

The value of fading cost coefficient ‘wf ’ was taken as 0.2 as per the simulations done in the

previous section. The table 5.2 shows the performance parameter values for all 9 test cases

obtained by simulating the weighted DBC:DE strategy. Although the gross profit %GP

has decreased substantially compared to the non-weighted DBC:DE strategy discussed

in Chapter 3, it is still positive unlike the vanilla (zero-weighted) DBC:DE strategy

discussed in Chapter 2 where it was negative. Further, the value of Cumulative Profit

(p) is much higher than that in non-weighted DBC:DE strategy, almost comparable to

that in vanilla DBC:DE strategy. Table 5.3 shows the improvement in the investment

recovery time in comparison to the non-weighted DBC:DE strategy. Using the optimal

weight the investment recovery time has reduced by − %. Now the recovery time

is around −  years.
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Table 5.2: Weighted fading cost based modified DBC:DE: Performance Parameters (Ont:

Ontario, Cal: California, NY: New York, R: Residential, C: Commercial, I: Industrial)

%fd p p/%fd Revenue GP %GP Lifetime

($/year) ($/%f˙d) ($) ($) (%) (years)

Ont R 1.542 95.83 62.1 1864.2 114.2 6.53 19.45

C 1.512 47769.73 31601.3 948038.6 73038.6 8.35 19.85

I 1.481 695840.94 469906.9 14097208.5 972208.5 7.41 20.26

Cal R 1.336 86.33 64.6 1938.8 188.8 10.79 22.46

C 1.262 41075.29 32558.0 976739.1 101739.1 11.63 23.78

I 1.279 611133.66 477872.9 14336186.2 1211186.2 9.23 23.46

NY R 1.360 86.98 64.0 1918.9 168.9 9.65 22.06

C 1.317 42569.47 32330.8 969923.7 94923.7 10.85 22.78

I 1.352 645515.79 477420.1 14322603.7 1197603.7 9.12 22.19

Table 5.3: Investment Recovery Time (in years)

wf = 1.0

(non-weighted)
wf = 0.2 %change

Ontario Residential 46.07 18.26 60.36

Commercial 46.77 18.32 60.83

Industrial 46.79 18.86 59.69

California Residential 69.09 20.27 70.66

Commercial 68.88 21.30 69.07

Industrial 71.06 21.48 69.78

New-York Residential 57.59 20.12 65.06

Commercial 59.11 20.55 65.23

Industrial 58.56 20.33 65.28
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Chapter 6

Conclusion and Future Work

The study proposed a Dynamic Programming based framework called Dynamic Battery

Charging (DBC) Algorithm for Energy Trading from the end-user perspective. The end-

user was assumed to possess a PV system for electricity generation, a battery system

for electricity storage and a load. Further, the grid was allowed to have a bi-directional

electricity trade with the end-user. An energy balancing model called energy transfer

model was developed to incorporate within the DBC framework. The framework utilizes

an optimization algorithm to find out the optimal battery charge state dynamically. The

basic framework was tested using two optimization algorithms: Differential Evolution

(DBC:DE) and Momentum based Gradient Descent (DBC:GD). The test bed included

three different load profiles (Residential, Commercial, and Industrial) and three different

electricity markets (Ontario, California, and New York, thus accounting for nine different

test cases. The hourly price, solar and load data in these cases was used to train machine

learning tools called support vector machine (SVM). The hourly traces of electricity price,

harvested energy and electricity demand derived from the trained SVM was used with

the DBC framework to find the optimal battery charge states. The performance of the

DBC:DE and DBC:GD based approach was tested against the Reinforcement Learning

based energy trading approach and two other end-user scenarios.

In all the nine cases the DBC:DE algorithm outperformed other approaches. To fur-

ther improve the proposed framework, a battery capacity fading based battery cost model

was developed and incorporated into the basic framework. This was done to get better

estimations of the profitability of each trade utilizing the battery. The performance of the

framework was evaluated using various monetary and battery lifetime based performance
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tested battery would cost around $/kWh. Figure 6.1 shows the estimated invest-

ment recovery time at different battery cost per kWh ratio. The relationship between

the two factors is linear and the investment recovery time is directly proportional to the

cost per kWh ratio. To lower down the investment recovery time to 10 years the battery

cost had to reduce to $/kWh.

Last few years have witnessed a significant reduction in the battery cost. The battery

cost per kWh has decreased by more than % in last  years and according to the

Bloomberg New Energy Finance Report (Figure 6.2) it is going to get below $/kWh

by the year . That’s a good sign for the investment in the battery systems for

energy trading in future. So, by the year , the battery investment recovery time

using the proposed strategy would reduce below  years. The cost is further estimated

to go below $/kWh around the year . This would further reduce the battery

investment recovery time to  years. This proves the utility of the proposed strategy in

the future energy markets.

6.1 Summary of Contributions

The proposed framework models the monetary loss of trading electricity in a certain time-

slot. Using the loss model and forecasted values of the electricity price, load demand and

solar harvest, the framework predicts the optimal sequence of decision in the form of

charging/discharging of the battery system (or amount of electricity to be traded) by

minimizing the monetary loss over that sequence.

6.2 Future Work

The current energy trading framework, designed for a PV system, can be modified to work

for an Electric Vehicle. But that would require re-tuning of the various hyper-parameters

like fading cost coefficient (wf ) as the battery system used in these system has a lower

depth of discharge (unlike the deep cycle batteries used in PV systems) and are of much

lower cost (already below 100$/kWh). The framework was designed to work using non-

gradient and gradient techniques. Further modification can enable usage of advanced

learning techniques like Trust Region Policy Optimization (TRPO) [73], which unlike
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Q-learning, can generate continuous actions (control outputs in this case). Further, work

can be done to build advanced estimators like neural networks by using meteorological

geographical features (like weather conditions) along with the temporal features used in

this study.
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consumers in smart grid: A game theoretic approach,” IEEE Transactions on Smart

Grid, vol. 5, no. 3, pp. 1429–1438, 2014.

[32] W. Tushar, W. Saad, H. V. Poor, and D. B. Smith, “Economics of electric vehicle

charging: A game theoretic approach,” IEEE Transactions on Smart Grid, vol. 3,

no. 4, pp. 1767–1778, 2012.

[33] W. Saad, Z. Han, H. V. Poor, and T. Başar, “A noncooperative game for dou-
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