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Abstract

Inference on Cure Rate Under Multivariate Random

Censoring

Elnaz Ghadimi, Ph.D.

Concordia University, 2018

In survival studies, it is often of interest to study cure rates. Sometimes the event

of interest (such as death or the occurrence of a disease) may not be experienced by

individuals under study, and the cure rate is the probability of the latter eventuality.

Furthermore, survival times (i.e., the time to the event of interest) may be subject to

random censoring due to dropping out or late entry of individuals during the study

period. Interestingly, random censoring facilitates the estimation of the cure rate.

In this research, we study cure rates for multivariate survival times under multi-

variate random censoring. Specifically, three topics have been studied. In the first

topic of this thesis, a new non-parametric multivariate cure rate estimator, based on a

multivariate Kaplan-Meier estimator, is proposed. The asymptotic normality and an

estimator of asymptotic variance of this estimator are obtained. In the second topic,

a non-parametric cure rate estimator in the presence of covariates is constructed via

kernel smoothing. The asymptotic normality of this estimator is obtained, and the

optimal choice of the bandwidth via cross-validation is discussed. In the third topic of

this thesis, we develop a test for the presence of immunes, i.e., we test if the cure rate

is zero against the alternative that it is positive, under univariate random censoring.

The limiting distribution of the test statistic under the null hypothesis is obtained

using extreme-value theory. Theoretical results are supported by simulation studies.
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Chapter 1

Introduction

1.1 Background

The main aim of survival analysis is modeling and analyzing time-to-event data.

Survival data consists of the occurrence of event of interest over time. The event

of interest could be death, occurrence of a disease, re-arrest of a released prisoner,

marriage, divorce, etc. The presence of immune individuals has an important role in

the analysis of survival data. We define the cured or immune individuals as the ones

who are not subject to the event of interest. Often our information on the survival

times of individuals is not complete because there is censoring in the study. Censoring

can happen due to loss of follow-up, drop out or termination of the study. There are

different types of censoring such as right, left and interval censoring. Right censoring

is the most common form of censoring. As an example of right censoring, we can refer

to a patient who does not experience the event of interest during study or drops out

of the study before the event could occur.

Left censoring happens when the event of interest has occurred before the entrance

of the person in the study. For example, if a person is asked at what age he used

marijuana first and he does not remember the exact age, such situation is considered
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as left censoring. A more general type of censoring is called interval censoring. It

occurs when the event occurs within an interval where the individual is not observed.

As an example, we can refer to the periodic follow-up of a patient in the study. It is

known that the event time falls in an interval between two follow-ups. The Kaplan-

Meier estimator provides a nonparametric estimate of distribution function of a time

to event variable in the presence of independent right censoring. As illustrate in [9],

the Kaplan-Meier or product limit estimator of the survival function at time t ≥ 0 is

ˆ̄F (t) =
n∏
j=1

(
1− dj

nj

)I(tj≤t)
,

where nj and dj are, respectively, the number of individuals at risk and the number

of those who fail at time tj and t1 ≤ ... ≤ tn are observed failure times. Maller and

Zhou [11] proposed the tail (i.e., ˆ̄F (tn)) of the Kaplan-Meier estimator as an estimator

of cure rate in the univariate case.

1.2 Objectives

The main objective of this research work is to construct and analyze non-parametric

cure rate estimators for multivariate survival times in the presence of multivariate

random censoring. Many examples of multivariate survival times have been studied

in the literature. For instance, Chen et al. [5] consider the following type of bivariate

survival times: (time to disease relapse, time to death) and (time to first infection,

time to second infection). In these cases, the non-occurrence of one or both of the

component events would be termed as cure.

First, we will consider the Maller-Zhou estimator and re-derive its asymptotics, but

without using martingale theory as in Maller and Zhou [11]. The estimator will then
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be extended to the multivariate case using a recently proposed multivariate Kaplan-

Meier estimator [18]. The asymptotic normality of the estimator will be established,

and its asymptotic variance will be estimated.

In the second step, our aim is to include, via kernel smoothing, the effect of covari-

ates in the multivariate cure rate model under random censoring. For this new model

with covariates, asymptotic normality of the proposed estimator and estimator of its

asymptotic variance will be derived. The optimal choice of the bandwidth will be

found through cross-validation.

In the third step, the presence of immunes will be tested under univariate random

censoring. The limiting distribution of the test-statistic will be obtained under the

null hypothesis of zero cure rate using extreme value theory.

In all three steps, a simulation study is conducted to support the mathematical

theory.

1.3 Organization of the Thesis

This section outlines the layout of this thesis. The thesis consists of five chapters.

In Chapter 1 (present chapter), a brief description of the problem is given. Chapter 2

is dedicated to the new nonparametric multivariate cure rate estimator with random

censoring. The asymptotic distribution of the proposed estimator and its variance

are also identified in Chapter 2. In Chapter 3, the covariates are included in the

model and a new nonparametric multivariate cure rate estimation with the effect of

the covariates is proposed and studied. In Chapter 4, the presence of immunes in

the univariate model is tested using the extreme value theory. In Chapter 5, a short

summary of this thesis is provided.
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Chapter 2

Multivariate Cure Rate Estimation

under Random Censoring

2.1 Introduction

One of the popular and common studies in the survival analysis is analyzing survival

data with cure rate. Survival analysis is used for modeling and analyzing time to

event data and typically in survival data, an event is defined as death or failure.

During a study, individuals can be cured (cured of a disease or no warranty claim

for a car) or fail (death from a disease or claim for a warranty). Cured or immunes

are the individuals who are not subject to the event of interest. The cure rate is the

probability of being cured for an infected individual so in other words, p = P (X =∞)

where X is time to the event of interest.

There are two main univariate cure models in the literature. The first one is a

mixture model, F̄ (t) = P (X ≥ t) = p + (1 − p)F̄o(t), where F̄o(t) is the base-

line survival function. The second one is bounded cumulative hazard (BCH) model,

P (X ≥ t) = exp(−
∫ t

0
h(s)ds) such that 0 < p = exp(−

∫∞
0

h(s)ds) < 1, where

h(.) is the hazard rate. There are not many studies in the literature focusing on the
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nonparametric cure rate estimation. One of the first studies in this field is Maller and

Zhou [11] who estimate the cure rate nonparametrically using the tail of Kaplan-Meier

estimator [10].

Chen et al. [5] proposed a Bayesian approach for a multivariate cure rates. They

used data from a melanoma clinical trial done by ECOG (Eastern Cooperative Oncol-

ogy Group) where X = (X1, X2), X1 is time to relapse after treatment and X2 is time

from relapse to death. A frailty term with a positive stable distribution is introduced

in their model to characterize the association between the failure times. They em-

phasized that sufficient follow-up of patients is crucial to their approach. They also

considered the effect of covariates in the model. However, their model is based on a

parametric approach and their model cannot be used for nonparametric approach. Xu

and Peng [24] obtained a nonparametric cure rate estimator incorporating the impact

of covariates. Their proposed estimator is consistent and asymptotically normal, but

it only handles the univariate cure rate.

Sen and Stute [18] proposed a multivariate Kaplan-Meier estimator, which was the

unique solution of an eigenfunction equation via a mass-shifting method. In this

paper, we use the tail (excess mass) of the Sen-Stute estimator as an estimator of

cure rates under multivariate random censoring, taking a cue from Maller and Zhou

[13]. The computation of our estimator is straightforward, unlike that of Chen et

al. [5]. Further, even though we use the sufficient follow-up condition to establish

asymptotic normality of our estimator, our simulation model violates this condition.

Yet the performance of our estimator is not affected. This shows that our estimator

is quite robust.

This manuscript is organized as follows. In Section 2.2, the asymptotic normality of

the Maller-Zhou estimator is established and its variance is estimated without using

martingale theory, unlike in Maller and Zhou [13]. In Section 2.3, the asymptotic
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normality of the multivariate cure rate estimator is established and its variance esti-

mator is obtained. In Section 2.4, the results from Sections 2.2 and 2.3 are illustrated

using simulations. In Section 2.5, the model is applied on real data. In Section 2.6,

a short summary of the research work is given.

2.2 Univariate Cure Rate Estimator

In this section, the univariate cure rate estimator is considered. Let Xi, 1 ≤ i ≤ n,

be independent and identically distributed (iid), non-negative random variables, each

having a distribution function F(.) such that F (x) = P{X ≤ x} = (1 − p)Fo(x).

The survival function gives the probability of surviving beyond a specific time. It

is defined as F̄ (x) = P{X ≥ x} = p + (1 − p)F̄o(x). Due to the limited study

time, the Xi’s may not be observed. So in this case, there will be censoring variables

Yi, 1 ≤ i ≤ n, an independent set of iid random variables with distribution function

G(.), so that only (δi, Zi), 1 ≤ i ≤ n, can be observed where δi = 1{Xi ≤ Yi} and

Zi = min(Xi, Yi) (1(A) indicates the indicator function of event A).

Define,

H1 (t) = E (δ 1 (Z ≤ t)) = (1− p)
∫ t

0

Ḡ (s)Fo (ds) , (1)

H̄ (t) = P (Z ≥ t) =
(
(1− p) F̄o (t) + p

)
Ḡ (t) . (2)

H1(.) and H̄(.) are estimated by the empirical versions of Eqs. (1) and (2) as

Hn1(t) =
1

n

n∑
i=1

δi 1(Zi ≤ t), H̄n(t) =
1

n

n∑
i=1

1(Zi ≥ t). (3)
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The cure rate p can be estimated by [6]

p̂ =
n∏
i=1

(1− δi
nH̄n (Zi)

), (4)

the Kaplan-Meier estimator at the largest observation. Below we establish consis-

tency and asymptotic normality of p̂, but avoiding martingale arguments of Maller

and Zhou [13]. Although for the sake of convenience, the absolute continuity of Fo

and G are assumed.

Theorem 1 Suppose Fo and G are absolutely continuous and satisfy the sufficient

follow-up assumption (τFo ≤ τG where τFo and τG are the right extremes of Fo and

G, respectively, i.e, τFo = sup(t ≥ 0 : F0(t) < 1)), then
√
n(p̂ − p) is asymptotically

Normal with mean zero and limit variance

σ2 = p2(1− p)
∫ ∞

0

Fo(dx)

(p+ (1− p)F̄o(x))2Ḡ(x)
,

A consistent estimator of σ2 is

σ̂2 = np̂2
n∑
i=1

δ[i:n]

(n− i+ 1)
2 ,

where δ[i:n] is (the concomitant) attached to the i-th order statistics Zi:n, 1 ≤ i ≤ n.

Proof: First we take logarithm of both sides of Eq.(4) and then use a Taylor

expansion,
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ln p̂ =
n∑
i=1

ln
(

1− δi
nH̄n(Zi)

)
=
−1

n

n∑
i=1

( δi
H̄n(Zi)

+
δ2
i

2nH̄2
n(Zi)

+ . . .
)
.

Under sufficient follow-up assumption [11], −1
n

n∑
i=1

( δi
2

2nH̄2
n(Zi)

+ . . .) = O( 1
n
) is negligi-

ble. Therefore,

ln p̂ ≈ −1

n

n∑
i=1

δi
H̄n(Zi)

= −
∫ ∞

0

Hn1(dt)

H̄n(t)
= −

∫ ∞
0

Hn1(dt)

H̄(t)
+

∫ ∞
0

( 1

H̄(t)
− 1

H̄n(t)

)
Hn1(dt)

= −
∫ ∞

0

H1(dt)

H̄(t)
−
∫ ∞

0

(Hn1(dt)

H̄(t)
− H1(dt)

H̄(t)

)
+

∫ ∞
0

H̄n(t)− H̄(t)

H̄(t)H̄n(t)
Hn1(dt).

By dividing H1(t) and H̄(t) in Eq.(1) and Eq.(2),

∫ ∞
0

H1(dt)

H̄(t)
=

∫ ∞
0

(1− p)Ḡ(t)F0(dt)

((1− p)F̄0(t) + p)Ḡ(t)
=

∫ ∞
0

(1− p)F0(dt)

((1− p)F̄0(t) + p)
= −ln(p).

Since
∫∞

0
H1(dt)

H̄(t)
= − ln p under absolute continuity of Fo and G, we have

ln p̂− ln p = −
∫ ∞

0

(Hn1(dt)

H̄(t)
− H1(dt)

H̄(t)

)
+

∫ ∞
0

H̄n(t)− H̄(t)

H̄2(t)
H1(dt)

+

∫ ∞
0

(Hn1(dt)

H̄(t)
− Hn1(dt)

H̄n(t)
− H̄n(t)H1(dt)

H̄2(t)
+
H1(dt)

H̄(t)

)
.

When n goes to infinity, the last term is negligible, since
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∫ ∞
0

(Hn1(dt)

H̄(t)
− Hn1(dt)

H̄n(t)
− H̄n(t)H1(dt)

H̄2(t)
+
H1(dt)

H̄(t)

)

=

∫ ∞
0

(Hn1(dt)(H̄n(t)− H̄(t))

H̄2(t)
− H1(dt)(H̄n(t)− H̄(t))

H̄2(t)

)

=

∫ ∞
0

( (Hn1(dt)−H1(dt))(H̄n(t)− H̄(t))

H̄2(t)

)

approaches to zero. Consequently,

ln p̂− ln p ≈ −
∫ ∞

0

Hn1(dt)

H̄(t)
+

∫ ∞
0

H̄n(t)

H̄2(t)
H1(dt) ≈ −1

n

n∑
i=1

δi
H̄(Zi)

+
1

n

n∑
i=1

∫ ∞
0

I(Zi ≥ t)H1(dt)

H̄2(t)
.

Note that the right side of above equation can be written as

1

n

n∑
i=1

ψ(Zi) =
1

n

n∑
i=1

∫ ∞
0

I(Zi ≥ t)H1(dt)

H̄2(t)
− 1

n

n∑
i=1

δi
H̄(Zi)

,

and E(ψ(Zi)) = 0. Hence using the Central Limit Theorem

√
n(ln p̂− ln p) =

√
n
( 1

n

n∑
i=1

∫ ∞
0

I(Zi ≥ t)H1(dt)

H̄2(t)
− 1

n

n∑
i=1

δi
H̄(Zi)

)
, (5)

is asymptotically normal. Taking variance of both sides of Eq.(5) gives us,

var(
√
n(ln p̂− ln p)) =

1

n
var
( δi
H̄(Zi)

−
∫
I(Zi ≥ t)H1(dt)

H̄2(t)

)
=

1

n
E
(

(
δi

H̄(Zi)
−
∫
I(Zi ≥ t)H1(dt)

H̄2(t)
)2
)

=
1

n
E
( δi
H̄(Zi)

)2

+
1

n

∫ ∫
P (Zi ≥ t ∨ t′)H1(dt)H1(dt′)

H̄2(t)H̄2(t′)
− 2

n

∫
E
(δiI(Zi ≥ t)

H̄(Zi)

H1(dt)

H̄2(t)

)
=

1

n
E
( δi
H̄2(Zi)

)
.
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Therefore var (ln p̂− ln p) can be estimated by

1

n2

n∑
i=1

δi
H̄2
n(Zi)

=
1

n2

n∑
i=1

δ[i:n]

(n−i+1)2

n2

=
n∑
i=1

δ[i:n]

(n− i+ 1)2
. (6)

From the ∆-method, we know that if X̄n has an asymptotic normal distribution

such that

√
n(X̄n − µ)→ N(0, σ2),

in distribution as n→∞, and assuming g has a derivative g′ at µ, and g′(µ) 6= 0,

then

√
n(g(X̄n)− g(µ))→ N(0, (g′(µ))2σ2).

Hence using the ∆-method and since here g(x) = ex, the estimator of var (p̂− p)

is

p̂2
n∑
i=1

δ[i:n]

(n− i+ 1)2
. (7)

�

2.3 Multivariate Cure Rate Estimator

Let X and Y be two independent m-dimensional random vectors with distribution

functions F and G respectively, where G is the censoring distribution. Let Zji =

min(Xji, Yji) and δji = 1(Xji ≤ Yji) for 1 ≤ i ≤ n and 1 ≤ j ≤ m. The survival
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function of X is defined as F̄ (x) = F̄ (x1, . . . , xm) = P{X1 ≥ x1, . . . , Xm ≥ xm} =

P (X ≥ x), where the inequality is coordinatewise, here as well as in the rest of the

paper. To estimate F̄ , Sen and Stute [18] employed a mass-shifting technique. In this

paper, we use the mass-shifting method to find the estimator for F̄ . This method

gives a positive mass to x∞ which is defined below, to help us to estimate the cure

rate.

Define

Xε =

{
X with probability 1− ε

x∞ with probability ε

where X is a multivariate vector. x∞ is a vector, possibly (∞, ...,∞) which exceeds

all (x1, ..., xm) componentwise, x ≤ x∞ ≤ ∞ and 0 < ε < 1. The survival function of

Xε can be written as

F̄ε(x1, ...xm) =

{
(1− ε)F̄ (x1, ...xm) + ε if (x1, ...xm) ∈Rm

ε if x∞ = (x1, ...xm)

and F̄ε(·) satisfies the integral equation below, such that F̄ε(0) = 1,

F̄ε(x) =

∫ ∞
0

I(t ≥ x, t 6= x∞)F̄ε(t)
(1− ε)F (dt)

(1− ε)F̄ (t) + ε
+ ε.

The survival function of the defective model is F̄p(t) = (1 − p)P (X ≥ t) + p =

(1− p)F̄ (t) + p where F̄ (t) is the baseline survival function and F̄p(∞) = p.

Let F̄ε,p(t) be a defective survival function with cure rate p which takes the value

of x∞ with a probability of ε,

F̄ε,p(t) = (1− ε)F̄p(t) + ε.
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Then (F̄ε,p(t), F̄ε,p(∞)) for t ≥ 0, is the unique solution [18] to

F̄ε,p(x) =

∫
I(t ≥ x, t 6=∞)F̄ε,p(t)

F̄ε,p(dt)

F̄ε,p(t)
+ F̄ε,p(∞), F̄ε,p(0) = 1. (8)

By iteration of Eq.(8), we obtain

F̄ε,p(x) = F̄ε,p(∞) + F̄ε,p(∞)

∫
I(t1 ≥ x, t1 6=∞)

Fε,p(dt1)

F̄ε,p(t1)

+

∫ ∫
I(t2 ≥ t1 ≥ x, t2 6=∞)F̄ε,p(t2)

Fε,p(dt1)Fε,p(dt2)

F̄ε,p(t1)F̄ε,p(t2)

= F̄ε,p(∞)
(

1 +

∞∑
k=1

∫
1(tk ≥ ... ≥ t1 ≥ x, tk 6=∞)

(1− ε)(1− p)F (dt1)

(1− ε)F̄p(t1) + ε
...

(1− ε)(1− p)F (dtk)

(1− ε)F̄p(tk) + ε

)
,

since F̄ε,p(0) = 1, then

F̄ε,p(∞) = p(1− ε) + ε

=
1

1 +
∑∞
k=1

∫
I(tk ≥ . . . t1 ≥ 0, tk 6=∞) (1−ε)(1−p)F (dtk)

(1−ε)F̄p(tk)+ε
. . . (1−ε)(1−p)F (dt1)

(1−ε)F̄p(t1)+ε

, (9)

and for x 6=∞,

F̄ε,p(x) =

1 +
∞∑
k=1

∫
1(tk ≥ ... ≥ t1 ≥ x, tk 6=∞) (1−ε)(1−p)F (dt1)

(1−ε)F̄p(t1)+ε
... (1−ε)(1−p)F (dtk)

(1−ε)F̄p(tk)+ε
)

1 +
∞∑
k=1

∫
1(tk ≥ ... ≥ t1 ≥ 0, tk 6=∞) (1−ε)(1−p)F (dtk)

(1−ε)F̄p(tk)+ε
... (1−ε)(1−p)F (dt1)

(1−ε)F̄p(t1)+ε
)
. (10)

Note that the mass-shifting technique ensures a unique solution [18]. The empirical

version of Eq.(8) is

F̄ε,n(x) =

∫
1(t ≥ x, t 6=∞)F̄ε,n(t)

(1− ε)H1
n(dt)

(1− ε)H̄n(t) + ε
+ F̄ε,n(∞), F̄ε,n(0) = 1 (11)
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where

H1
n(t) =

1

n

n∑
i=1

δ1i...δmi1(Z1i ≤ t1, ..., Zmi ≤ tm), H̄n(t) =
1

n

n∑
i=1

1(Z1i ≥ t1, ..., Zmi ≥ tm).

Following Sen and Stute’s work [18], Eq.(11) can be written in the following eigen-

vector form and has a unique solution,

ABF̄ = F̄, bT F̄ = 1,

where F̄ = (F̄1, F̄2, ..., F̄n, F̄n+1), A = ((aij))1≤i,j≤n+1, B = diag(b1, ..., bn, bn+1),

b = (b1, ..., bn, bn+1), and for 1 ≤ i, j ≤ n,

aij = I(Zj ≥ Zi), ai,n+1 = an+1,n+1 = 1, an+1,j = 0,

bi =
(1− ε)δi

(1− ε)
n∑
k=1

aik + nε
, bn+1 = 1,

Sen and Stute [18] proposed F̄ε,n(.) as the multivariate Kaplan-Meier estimator.

Note that in 1 dimension (i.e., m = 1) with ε = 0, this estimator reduces to the

univariate Kaplan-Meier estimator. Here we propose F̄ε,n(∞) = F̄n+1 as the cure

estimator p̂n, extending the Maller-Zhou estimator to the multivariate case. The

choice of ε = 1
n+1

appears to be a natural choice.

Under random censoring, define

F̄ oε,p(x) =

∫
1(t ≥ x, t 6=∞)F̄ oε,p(t)

(1− ε)H1
p (dt)

(1− ε)H̄p(t) + ε
+ F̄ oε,p(∞), (12)

where F̄ o
ε,p(0) = 1, H1

p (dt) = Ḡ(t)Fp(dt) and H̄p(t) = Ḡ(t)F̄p(t).
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Theorem 2 Assuming Supp F ⊆ Supp G, F̄ε,n(x) − F̄ o
ε,p(x) has the asymptotic

representation

√
n(F̄ε,n(x)− F̄ oε,p(x)) = Ln(x) + op(1), 0 ≤ x ≤ ∞

where Ln(x) is given by

Ln(x)−
∫

1(t ≥ x, t 6=∞)Ln(t)
H1
p (dt)

H̄p(t)
− Ln(∞) =

∫
1(t ≥ x, t 6=∞)αn(dt), x 6=∞

−
∫

1(t ≥ 0, t 6=∞)Ln(t)
H1
p (dt)

H̄p(t)
− Ln(∞) =

∫
1(t ≥ 0, t 6=∞)αn(dt), x = 0

where

αn(dt) := F̄ (t)
(H1

n(dt)

H̄(t)
− H̄n(t)

H1(dt)

H̄2(t)

)
, t ≥ 0.

Proof: By subtracting Eqs. (12) from (11) and multiplying both sides by
√
n, we

get

√
n(F̄ε,n(x)− F̄ oε,p(x)) =

∫
1(t ≥ x, t 6=∞)F̄ε,n(t)

√
n
( (1− ε)H1

n(dt)

(1− ε)H̄n(t) + ε
−

(1− ε)H1
p (dt)

(1− ε)H̄p(t) + ε

)

+

∫
1(t ≥ x, t 6=∞)

√
n(F̄ε,n(t)− F̄ oε,p(t))

(1− ε)H1
p (dt)

(1− ε)H̄p(t) + ε
+
√
n(F̄ε,n(∞)− F̄ oε,p(∞)), (13)

since we know F̄ε,n(0) = F̄ 0
ε,p(0) = 1 by iterating Eq.(13), we obtain
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√
n(F̄ε,n(∞)− F̄ oε,p(∞)) =

−
bε,n(0) +

∞∑
k=1

∫
1(0 ≤ t1 ≤ ... ≤ tk 6=∞)bε,n(tk)

k∏
j=1

(1−ε)H1
p(dtj)

(1−ε)H̄p(tj)+ε

1 +
∞∑
k=1

∫
1(0 ≤ t1 ≤ ... ≤ tk 6=∞)

k∏
j=1

(1−ε)H1
p(dtj)

(1−ε)H̄p(tj)+ε

, (14)

where

bε,n(x) =

∫
1(t ≥ x, t 6=∞)F̄ε,n(t)

√
n
( (1− ε)H1

n(dt)

(1− ε)H̄n(t) + ε
−

(1− ε)H1
p (dt)

(1− ε)H̄p(t) + ε

)
,

and consequently, by replacing Eq.(14) in Eq.(13) and iterating it, we get

√
n(F̄ε,n(x)− F̄ oε,p(x)) = bε,n(x)− bε,n(0) +

∞∑
k=1

∫
(1x − 10)bε,n(tk)

k∏
j=1

(1− ε)H1
p (dtj)

(1− ε)H̄p(tj) + ε
,

where 1u = 1(tk ≥ ... ≥ t1 ≥ u, tk 6=∞).

Now it may be verified that if we choose ε = o( 1√
n
), (e.g., ε = 1

n+1
), then as n→∞,

√
n(F̄ε,n(x)− F̄ op (x)) = Op(1) 0 ≤ x ≤ ∞,

bε,n(x) =
√
n

∫
1(t ≥ x, t 6=∞)αn(dt) + op(1),

so using Eq.(13), Ln(x) satisfies
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Ln(x)−
∫

1(t ≥ x, t 6=∞)Ln(t)(F̄ )
H1
p (dt)

H̄p(t)
− Ln(∞) =

∫
1(t ≥ x, t 6=∞)αn(dt), x 6=∞,

(15a)

−
∫

1(t ≥ 0, t 6=∞)Ln(t)
H1
p (dt)

H̄p(t)
− Ln(∞) =

∫
1(t ≥ 0, t 6=∞)αn(dt). (15b)

�

The asymptotic covariance function of Lx is denoted by Vxy = E(Ln(x)Ln(y)). To

obtain the covariance function, first we rewrite Eq.(15a-b) for y,

Ln(y)−
∫

1(s ≥ y, s 6=∞)Ln(s)(F̄ )
H1
p (ds)

H̄p(s)
− Ln(∞) =

∫
1(s ≥ y, s 6=∞)αn(ds), (16a)

−
∫

1(s ≥ 0, s 6=∞)Ln(s)
H1
p (ds)

H̄p(s)
− Ln(∞) =

∫
1(s ≥ 0, s 6=∞)αn(ds). (16b)

We know

∫
1(t ≥ x)αn(dt) = n−1

n∑
i=1

(δi1{Zi ≥ x}
Ḡ(Zi)

−
∫

1{Zi ≥ t ≥ x}F (dt)

H̄(t)

)
for all x ≥ 0,

so multiplying for x, y ∈ IR2
+ := [0,∞) × [0,∞) and taking expectation give us the

following function, call it Axy,
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Axy = n−1
(∫

1{t ≥ x ∨ y}F (dt)

Ḡ(t)
−
∫

1{t ≥ x}F̄ (t ∨ y)
F (dt)

H̄(t)
−
∫

1{s ≥ y}F̄ (s ∨ x)
F (ds)

H̄(s)

+

∫ ∫
1{t ≥ x, s ≥ y}H̄(t ∨ s)F (dt)

H̄(t)

F (ds)

H̄(s)

)
= n−1

(∫
1{t ≥ x ∨ y}F (dt)

Ḡ(t)

+

∫ ∫
1{t ≥ x, s ≥ y}(1− 1{t ≥ s} − 1{t < s})H̄(t ∨ s)F (dt)

H̄(t)

F (ds)

H̄(s)

)

= n−1
(∫

1{t ≥ x ∨ y}F̄ 2(t)
H1(dt)

H̄2(t)

+

∫ ∫
1{t ≥ x, s ≥ y}(1− 1{t ≥ s})(1− 1{t < s})H̄(t ∨ s)F̄ (t)F̄ (s)

H1(dt)

H̄2(t)

H1(ds)

H̄2(s)

)
. (17)

Multiplying Eq.(15a)× Eq.(16a), Eq.(15a)× Eq.(16b), Eq.(15b)× Eq.(16a), Eq.(16b)

× Eq.(16b), then taking expectation give us Eqs.(18a-d) respectively
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Vxy −
∫

1(t ≥ x, t 6=∞)Vty
H1
p (dt)

H̄p(t)
−
∫

1(s ≥ y, s 6=∞)Vxs
H1
p (ds)

H̄p(s)
− Vx∞ − Vy∞

+

∫ ∫
1(t ≥ x, t 6=∞, s ≥ y, s 6=∞)Vts

H1
p (dt)

H̄p(t)

H1
p (ds)

H̄p(s)
+

∫
1(t ≥ x, t 6=∞)Vt∞

H1
p (dt)

H̄p(t)

+

∫
1(s ≥ y, s 6=∞)Vs∞

H1
p (ds)

H̄p(s)
+ V∞∞ = Axy, (18a)

−
∫

1(s ≥ 0, s 6=∞)Vsx
H1
p (ds)

H̄p(s)
− Vx∞ +

∫ ∫
1(s ≥ o, s 6=∞, t ≥ x, t 6=∞)Vts

H1
p (ds)

H̄p(s)

H1
p (dt)

H̄p(t)

+

∫
1(s ≥ 0, s 6=∞)Vs∞

H1
p (ds)

H̄p(s)
+

∫
1(t ≥ x, t 6=∞)Vt∞

H1
p (dt)

H̄p(t)
+ V∞∞ = Ax0, (18b)

−
∫

1(t ≥ 0, t 6=∞)Vty
H1
p (dt)

H̄p(t)
− Vy∞ +

∫ ∫
1(t ≥ o, t 6=∞, s ≥ y, s 6=∞)Vts

H1
p (dt)

H̄p(t)

H1
p (ds)

H̄p(s)

+

∫
1(t ≥ 0, t 6=∞)Vt∞

H1
p (dt)

H̄p(t)
+

∫
1(s ≥ y, s 6=∞)Vs∞

H1
p (ds)

H̄p(s)
+ V∞∞ = A0y, (18c)

∫ ∫
1(t ≥ 0, t 6=∞, s ≥ 0, s 6=∞)Vts

H1
p (dt)

H̄p(t)

H1
p (ds)

H̄p(s)
+

∫
1(t ≥ 0, t 6=∞)Vt∞

H1
p (dt)

H̄p(t)

+

∫
1(s ≥ 0, s 6=∞)Vs∞

H1
p (ds)

H̄p(s)
+ V∞∞ = A00. (18d)

Matrix Form We estimate Vxy by V̂xy = Vij at x = Zi and y = Zj, for 1 ≤ i, j ≤

n+ 1 where Zn+1 = x∞ and Vn+1,n+1 = V̂∞,∞ = V̂ (p̂n). Let A, B and b be as before,

and let ĪF = diag(F̄1, . . . , F̄n). Define the matrix D = ((dij))1≤i,j≤n as
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dij = (1− aij)(1− aji)
n∑
r=1

airajr, 1 ≤ i, j ≤ n.

Then the sample version of Eqs.(18a-d) can be written as

 (I−AB)

−bT

V
[

(I−AB)T −b
]

=

 (AB)n×nĪF

bTn ĪF

 (I + BnDBn)
[
ĪF (BA)Tn×n ĪFbn

]
,

where bn is a subvector of b with first n elements and matrices of Bn and (AB)n×n

are submatrices of matrix B and matrix AB, respectively, with the first n rows and

first n columns. So V can be found by

V =

 I−AB

−bT

−  ABĪF

bT ĪF

 (I + BDB)
[
ĪFBAT ĪFb

] [
(I−AB)T −b

]−
,

where for any matrix w, w− denotes the g-inverse of w. Here we use,

 I−AB

−bT

− =

( I−AB

−bT

T  I−AB

−bT

)−1
 I−AB

−bT

T .

2.4 Simulation

Univariate Case: In this section, a simulation study is conducted. We first gener-

ate n independent random variables, Xi, 1 ≤ i ≤ n from an exponential distribution

with mean of m1 and n independent random censored times, Yi, 1 ≤ i ≤ n from an
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exponential distribution with mean of m2. Xi and Yi are chosen to be dependent of

each other. The cure rate p is assumed to be known and u is generated from the

uniform (0,1) distribution. δ1 is generated as a binary variable (if u > p and X1 ≤ Y1

then δ1 ≡ 1, otherwise δ1 ≡ 0). Using Eq.(7) and setting m1 = 2, m2 = 4 and

different values for n and p, we got Table 1.

Sample size n=100 n=200 n=500

p=0 p̂ 0.01553 0.01000 0.00655
ˆvar 0.00029 0.00001 0.00005

MSE 0.00095 0.00035 0.00018

p=0.25 p̂ 0.25846 0.25436 0.25315
ˆvar 0.00422 0.00243 0.00115

MSE 0.00719 0.00294 0.00152

p=0.5 p̂ 0.50324 0.50168 0.49890
ˆvar 0.00533 0.00289 0.00120

MSE 0.00651 0.00337 0.00104

Table 1: Table of univariate cure rate estimators (for different n and p)

Bivariate Case: To run a bivariate simulation study, the independent random

vectors of Sij, Tij and Dij for 1 ≤ i ≤ n and j = 1, 2 with following densities are

generated

Si1 ∼ exp(λ1 − c1), Si2 ∼ exp(λ2 − c1), Di1 ∼ exp(c1),

Ti1 ∼ exp(λ3 − c2), Ti2 ∼ exp(λ4 − c2), Di2 ∼ exp(c2).

Then Xi1, Xi2, Yi1 and Yi2 are generated as the following such that Xi1 and Xi2,

and Yi1 and Yi2 are dependent:
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Xi1 = min(Si1, Di1) ∼ exp(λ1), Xi2 = min(Si2, Di1) ∼ exp(λ2),

Yi1 = min(Ti1, Di2) ∼ exp(λ3), Yi2 = min(Ti2, Di2) ∼ exp(λ4).

So, we can easily obtain that the survival function of a defective model is

F̄p(xi1, xi2) = (1− p)exp(−λ1xi1 − λ2xi2 − c1max(xi1, xi2)) + p, for i = 1, ..., n.

A random sample with λ1 = 0.4, λ2 = 0.4, λ3 = 0.15, λ4 = 0.15, c1 = 0.1

and c2 = 0.1 with different values of n are generated 100 times. After running the

simulation, we got the estimated cure rate, its estimated variance and its MSE for

different n and p which are shown in Table 2.

Sample size n=100 n=200 n=500

p=0 p̂ 0.05802 0.03523 0.01956
ˆvar 0.00021 0.00079 0.00023

MSE 0.00397 0.00139 0.00045

p=0.25 p̂ 0.28098 0.26836 0.25746
ˆvar 0.00648 0.00360 0.00176

MSE 0.00756 0.00340 0.00205

p=0.5 p̂ 0.53117 0.49564 0.50668
ˆvar 0.00794 0.00439 0.00173

MSE 0.00672 0.00390 0.00211

Table 2: Table of bivariate cure rate estimators (for different n and p)

Both univariate and bivariate results show that our estimator’s performance is

great for moderate to large sample size. The p̂ is very close to p and the variances

and MSE’s are very close to each other.

In Fig. 1, the plots show the bivariate surface of F̄ (left) and its estimation F̄n

(right) for one simulated data set. p is assumed to be 0.25.
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Figure 1: The bivariate surface of F̄ (left) and its estimation F̄n (right)

Fig. 1 shows that F̄ and F̄n are very similar and the values are very close to each

other.

2.5 Illustration of the Model through Real Data

We applied our proposed model to the data from the Litter-matched tumorigenesis

experiment [14]. In this study, 150 rats were divided into three different groups,

control 1, control 2 and drug-treated. The event of interest is considered as tumor

appearance. Any death due to other causes are considered as censoring. The length

of the study is 104 weeks. For our model, we applied some modifications to their

data to use it for a bivariate model. For our study, the drug-treated group is ignored,

the control 1 is considered as X1 and the control 2 is considered as X2. Our goal is

to estimate the probability of a cure among rats with a tumor. The Kaplan-Meier

survival estimate is shown in Fig. 2 to show the possible presence of cured patients.

The cure rate is estimated around 0.9024 and the estimated variance is equal to 0.003.
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Figure 2: The Kaplan-Meier plot for control 1 (left) and control 2 (right).

2.6 Conclusion

In this research work, we have proposed a new multivariate cure rate model and

have examined several of its properties. In this new approach, the tail of the Sen-

Stute estimator has been used for the estimation of the cure rate. The asymptotic

normality of this estimator has been obtained under the sufficient follow-up condition.

One of the advantages of this model is that the proposed estimator is quite robust,

its calculation is not complicated and it can handle both univariate and multivari-

ate cases. For ease and clarity of exposition, we conducted a simulation study for

univariate and bivariate cure rate estimators.
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Chapter 3

Nonparametric Multivariate Cure

Rate Estimation with Covariates

3.1 Introduction

One of the popular and common studies in the survival analysis is survival data

with cure rate. In survival analysis, a proportion of the population may be cured, i.e.,

will not experience the event of interest under study, such as death, disease onset,

etc. On the other hand, survival data is often subject to random censoring which

can happen due to reasons such as loss to follow-up, drop-out and limited study

period. In this chapter, we consider the estimation of the conditional cure-rate, i.e.,

cure-probability as a function of covariates, under multivariate random censoring.

Let Ui, 1 ≤ i ≤ n, be independent and identically distributed (iid), non-negative

random vectors, each having a marginal distribution function F (u) = P (U ≤ u) and

survival function F̄ (u) = P (U ≥ u). A proportion of individuals cured because of

covariates, are considered in the model. Since a proportion of individuals are cured,

the conditional survival function is defective and it has the following form
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F̄0(u|c) = P (U ≥ u|U <∞, C = c),

π(c) = P (U =∞|C = c),

where C is the vector of covariates and π(c) is the conditional cure rate which

depends on the covariates. The overall conditional survival function therefore has the

following mixture model form:

F̄ (u|c) = P (U ≥ u|C = c) = π(c) + (1− π(c))F̄0(u|c).

Beran [1] considered univariate conditional Kaplan-Meier estimators in the presence

of covariates and censoring. Beran [1] and Dabrowska [6] studied the asymptotic

distribution and uniform consistency for the kernel and nearest neighbour estimates

of the survival function.

Nieto-Barajas and Yin [15] studied a Bayesian semiparametric model with cure

rates. They proposed a model in which each individual’s cure time can be different

depending on the parametrically modelled covariates.

Tsodikov [21] used the proportional hazard model to find the effect of covariates on

the cure rate in a non-parametric framework. One of the disadvantages of his method

is that it is only applicable on discrete covariates.

Xu and Peng [24] proposed a fully non-parametric estimator for the cure rate with

covariates. Following Maller and Zhou [11], they used the conditional Kaplan-Meier

estimator of Beran [1] at the largest uncensored failure time to find a consistent and

asymptotically normal estima for conditional cure rate. They considered the effect

of one and more than one covariates on the model, although the survival time is

univariate.
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Chen et al. [5] developed a Bayesian estimator for multivariate cure rates in the

presence of right censoring, based on a parametric model. In their proposed model,

the proportional hazard model is used to estimate the effect of covariates on the

cure rate. However, no non-parametric cure-rate estimator seems to exist in the

multivariate set-up.

In this chapter, we propose a new non-parametric multivariate cure rate estimator

in the presence of multivariate censoring and covariates. Our estimator thus extends

the estimator of Xu and Peng [24] to the case of multivariate survival time and reduces

to the latter in the univariate case. The estimator is obtained by introducing kernel

smoothing into the fundamental eigenvector equation of the previous chapter.

In Section 3.2, the smoothing equation is introduced and a nonparametric multi-

variate cure rate estimator in the presence of covariates is obtained. In Section 3.3,

the asymptotic distribution of the proposed estimator is obtained. In Section 3.4,

the estimated covariance function has been obtained along with optimal order and

choice of bandwidth via cross-validation. A simulation study of the proposed model

is conducted in Section 3.5. A brief conclusion and discussion are provided in Section

3.6.

3.2 Nonparametric Multivariate Cure Rate Esti-

mator with Covariates

Let X and Y be independent m and r-dimensional random vectors with distribution

functions F and G, respectively, where X = (U,C) = (U1, . . . , Ur, C1, . . . , Cs), r+s =

m, r ≥ 1, s ≥ 1, are random variables such that U is subject to censoring and

C is the s dimensional vector of covariates which is not subject to censoring. Let

Y = (Y1, . . . , Yr) be the censoring variable. We assume the conditional distribution
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of U |C = c, is given by

(1− π(c))fU |C(u|c) 0 ≤ u <∞ [conditional density],

π(c) = P (u =∞|c) u =∞ [mass point].

In other words, the finite (i.e., non-cured) part of the conditional distribution is

given by a conditional density. Further, assuming C has a density, the joint distribu-

tion of U and C is given by

(1− π(c))fU,C(u, c) 0 ≤ u <∞, 0 ≤ c <∞,

π(c)fC(c) u =∞, 0 ≤ c <∞,

and the marginal distribution of U is given by

∫
(1− π(c))fU |C(u|c)fC(c)dc 0 ≤ u <∞,∫
π(c)fC(c)dc = p u =∞.

Our aim is to estimate the conditional cure-rate function π(c).

Assume Wj = min(Uj, Yj) and ηj = I(Uj ≤ Yj) for j = 1, . . . , r so (Z, δ) are

observable under random censoring, where δ = (η1, . . . , ηr, 1, . . . , 1) and Z = (W,C) =

(W1, . . . ,Wr, C1, . . . , Cs) are m-dimensional vectors. Note again that C = (C1, ..., Cs)

is uncensored. Our estimation is based on sample size of n.

Let F̄ π(u|c) be the defective conditional survival function with cure rate π(c), i.e.,

F̄π(u|c) = (1− π(c))F̄U |C(u|c) + π(c),
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then it is the unique solution to the following equation

F̄π(u|c) =

∫
I(u ≤ t <∞)F̄π(t|c)Fπ(dt|c)

F̄π(t|c)
+ F̄π(∞|c) 0 ≤ u <∞,

where F̄ π(∞|c) = π(c) and F̄ π(0|c) = 1.

To find smooth structure in the data, kernel smoothing is commonly used in the

literature. The general form of s-dimensional kernel density estimator is

f(x, hn) =
1

n

n∑
i=1

Kn(x−Xi),

where Kn(x−Xi) = 1
hsn
K(x−Xi

hn
) and K(.) is a non-negative, s-variate kernel function

such as Gaussian (K(x) = (2π)−s/2 exp(−x′x
2

)), satisfying
∫
K(x)dx = 1 and hn is

the bandwidth satisfying, as n→∞, hn → 0 and nhsn →∞ [23].

If ϕ(U) be an arbitrary function of U , we have

E(ϕ(U)Kn(c− C)) =

∫
ϕ(u)I(0 ≤ u <∞)Kn(c− c′)(1− π(c′))fU |C(u|c′)fC(c′)dudc′

+ ϕ(∞)

∫
Kn(c− c′)π(c′)fC(c′)dc′. (19)

If the bandwidth approaches zero, the equation above becomes (all the limit state-

ments below assume appropriate smoothness and integrability conditions, to be speci-

fied later):

E(ϕ(U)Kn(c− C))
hn→0−−−−→ (1− π(c))fC(c)

∫
ϕ(u)I(0 ≤ u <∞)fU |C(u|c)du+ ϕ(∞)π(c)fC(c)

= fC(c)E(ϕ(U)|C = c).
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Further, by taking ϕ(U) = I(U ≥ u),

E(I(U ≥ u)Kn(c− C))
hn→0−−−−→ (1− π(c))fC(c)F̄U |C(u|c) + π(c)fC(c) = fC(c)F̄π(u|c). (20)

For the censored data, define the empirical processes as

∫
ϕ(w)Hn1(dw|c, hn) =

1

n

n∑
i=1

ηiKn(c− Ci)ϕ(Wi),

H̄n(w|c, hn) =
1

n

n∑
i=1

Kn(c− Ci)I(Wi ≥ w),

which are kernel weighted versions of Hn1(.) and H̄n(.), respectively, of the previous

chapter. Here, as before, η = η1η2...ηr. Note that

∫
ϕ(w)H1(dw|c, hn) = E

(∫
ϕ(w)Hn1(dw|c, hn)

)

=

∫
Ḡ(u)ϕ(u)I(0 ≤ u <∞)Kn(c− c′)(1− π(c′))fU |C(u|c′)fC(c′)dudc′, (21)

so that

∫
ϕ(w)H1(dw|c, hn)

hn→0−−−−→ fC(c)E
(
ϕ(U)Ḡ(U)I(0 ≤ U <∞)|C = c

)
, (22)

and

H̄(w|c, hn) := E(H̄n(w|c, hn))
hn→0−−−−→ fC(c)Ḡ(w)F̄π(w|c). (23)

Hence
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∫
ϕ(w)

H1(dw|c, hn)

H̄(w|c, hn)

hn→0−−−−→
∫
ϕ(w)I(0 ≤ w <∞)

Fπ(dw|c)
F̄π(w|c)

, (24)

and it follows that we may use the unique solution (F̄n(u|c, hn), 0 ≤ u <∞, πn(c))

of the following equation as estimators of (F̄π(u|c), 0 ≤ u <∞, π(c)):

F̄n(u|c, hn) =

∫
I(u ≤ t <∞)F̄n(t|c, hn)

(1− ε)Hn1(dt|c, hn)

(1− ε)H̄n(t|c, hn) + ε
+ πn(c) 0 ≤ u <∞, (25)

where F̄n(0|c, hn) = 1 and ε > 0 is a sufficiently small mass-shifting parameter

(below we take ε = 1
n+1

, as before). For convenience of comparison, we recall the

equation for (F̄π(u|c), 0 ≤ u <∞, π(c)) :

F̄π(u|c) =

∫
I(u ≤ t <∞)F̄π(t|c)Fπ(dt|c)

F̄π(t|c)
+ π(c) 0 ≤ u <∞, F̄π(0|c) = 1. (26)

Eq.(25) can be re-written as the following eigenvector equation,

ABCF̄ = F̄, bTC F̄ = 1, (27)

where for 1 ≤ i, j ≤ n, F̄ = (F̄1, ..., F̄n, F̄n+1),A = ((aij)),BC = diag(b1(c), ..., bn(c), 1),

b(c) = (b1(c), ..., bn(c), 1) and aij = I(Zj ≥ Zi) = I(Wj ≥ Wi, Cj ≥ Ci), ai,n+1 =

an+1,n+1 = 1, an+1,j = 0,

bi(c) =
(1− ε) ηi

nhsK( c−Ci

h )

(1− ε)
∑n
k=1 aik

1
nhsK( c−Ck

h ) + ε
. (28)

Note that πn(c) = F̄n+1 and the inequalities are coordinate-wise, i.e., I(Zj ≥ Zi) =

I(Zjk ≥ Zik, 1 ≤ k ≤ m).
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3.3 Asymptotic Properties

In this section, we first aim to find the expressions for F̄n(u|c, hn) − F̄π(u|c) and

πn(c)− π(c) as below. Note that

F̄n(u|c, hn)− F̄π(u|c) =

∫
I(u ≤ t <∞)F̄n(t|c, hn)

( (1− ε)Hn1(dt|c, hn)

(1− ε)H̄n(t|c, hn) + ε
− (1− ε)H1(dt|c, hn)

(1− ε)H̄(t|c, hn) + ε

)
+

∫
I(u ≤ t <∞)[F̄n(t|c, hn)− F̄π(t|c)] (1− ε)H1(dt|c, hn)

(1− ε)H̄(t|c, hn) + ε
+

∫
I(u ≤ t <∞)F̄π(t|c)

( (1− ε)H1(dt|c, hn)

(1− ε)H̄(t|hn) + ε
− Fπ(dt|c)

F̄π(t|c)

)
+ [πn(c)− π(c)]. (29)

Eq.(29) can be re-written as

[F̄n(u|c, hn)− F̄π(u|c)]−
∫
I(u ≤ t <∞)[F̄n(t|c, hn)− F̄π(t|c)]Λ(dt|c, hn)(c)− [πn(c)− π(c)]

=

∫
I(u ≤ t <∞)F̄n(t|c, hn)αn(dt|c, hn) +

∫
I(u ≤ t <∞)F̄π(t|c)α(dt|c, hn),

F̄n(0|c, hn)− F̄π(0|c) = 0, (30)

where
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αn(dt|c, hn) =
(1− ε)Hn1(dt|c, hn)

(1− ε)H̄n(t|c, hn) + ε
− (1− ε)H1(dt|c, hn)

(1− ε)H̄(t|c, hn) + ε
,

α(dt|c, hn) =
(1− ε)H1(dt|c, hn)

(1− ε)H̄(t|c, hn) + ε
− Fπ(dt|c)

F̄π(t|c)
,

Λ(dt|c, hn) =
(1− ε)H1(dt|c, hn)

(1− ε)H̄(t|c, hn) + ε
.

By iteration Eq.(30) becomes,

F̄n(u|c, hn)− F̄π(u|c)

=
∞∑
k=1

∫
...

∫
I(u ≤ t1 ≤ ... ≤ tk <∞)F̄n(tk|c, hn)Λ(dt1|c, hn)...Λ(dtk−1|c, hn)αn(dtk|hn)

+

∞∑
k=1

∫
...

∫
I(u ≤ t1 ≤ ... ≤ tk <∞)F̄π(tk|c)Λ(dt1|c, hn)...Λ(dtk−1|c, hn)α(dtk|c, hn)

+ (πn(c)− π(c))
(

1 +
∞∑
k=1

∫
...

∫
I(u ≤ t1 ≤ ... ≤ tk−1 <∞)Λ(dt1|c, hn)...Λ(dtk−1|c, hn)

)
.

(31)

Now using F̄n(0|c, hn)− F̄π(0|c) = 0, we get

πn(c)− π(c) = −
( ∞∑
k=1

∫
...

∫
I(0 ≤ t1 ≤ ... ≤ tk <∞)[F̄n(tk|c, hn)αn(dtk|c, hn)

+ F̄π(tk|c)α(dtk|c, hn)]Λ(dt1|c, hn)...Λ(dtk−1|c, hn)
)
.
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(
1 +

∞∑
k=1

∫
...

∫
I(0 ≤ t1 ≤ ... ≤ tk <∞)Λ(dt1|c, hn)...Λ(dtk|c, hn)

)−1

. (32)

Eqs. (31) and (32) are the key to establishing asymptotic properties –consistency

and asymptotic normality– of (F̄n(.|c, hn)− F̄π(.|c)) and (πn(c)− π(c)).

First we list some basic convergence results, involving Hn1(.|c, hn), H̄n(.|c, hn), in

the following lemma whose proof is easy:

Lemma 1 Assume that

(A1) K(.) is a product-kernel, i.e., of the form K(x1, ..., xs) = K0(x1)...K0(xs),

where K0(.) is a symmetric, univariate density function satisfying

∫
x2K0(x)dx =: σ2(K0) <∞,

∫
K2

0 (x)dx =: R(K0) <∞.

(A2) The s-variate marginal and conditional densities fC(c) and fU |C(.|c), respec-

tively, as well as the cure-rate function π(c) are twice continuously differentiable at

c.

Suppose E(ϕ2(W )) <∞ and n→∞,

(a) if hn → 0 and
∑∞

n=1 exp(−ρnhsn) <∞ for all ρ > 0,

(i)

∫
ϕ(w)Hn1(dw|c, hn)− fC(c)E

(
ϕ(U)Ḡ(U)I(0 ≤ U <∞)|C = c

)
→ 0,

and

(ii) max
w≥0
|H̄n(w|c, hn)− fC(c)Ḡ(w)F̄π(w|c)| → 0,
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for each 0 ≤ c <∞, with probability one.

(b) if hn → 0, nhsn →∞, n(hn)s+4 → 0,

(nhsn)1/2
(∫

ϕ(w)Hn1(dw|c, hn)− fC(c)E
(
ϕ(U)Ḡ(U)I(0 ≤ U <∞)|C = c

))
→ N(0, σ2(ϕ, c))

in distribution, where

σ2(ϕ, c) := (R(K0))sfC(c)E
(
ϕ2(U)Ḡ(U)I(0 ≤ U <∞)|C = c

)
,

and

(nhsn)1/2(H̄n(w|c, hn)− fC(c)Ḡ(w)F̄π(w|c))→ N
(
0, (R(K0))sfC(c)Ḡ(w)F̄π(w|c)

)
,

in distribution, for each 0 ≤ c <∞, 0 ≤ w.

Proof: Note that both
∫
ϕ(w)Hn1(dw|c, hn) and H̄n(w|c, hn) are averages of iid

random variables, and the condition
∑∞

n=1 exp(−ρnhsn) <∞ for ρ > 0 implies nhsn →

∞.

The proofs of Parts (a) and (b) follow by standard methods used in curve smoothing

literature, i.e., splitting each difference into random and bias terms, then calculating

variance of the random part and finally using Taylor’s expansion on both variance

and bias terms. See, for instance, Wand and Jones [23]. In particular, the uniform

convergence in Part (a), (ii), follows from Theorem 1 of Stute [20].

�

Lemma 2 Under the conditions of Lemma 1(a), the empirical process
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Dn(u|c) =

∫
I(u ≤ t <∞)F̄π(t|c)(nhsn)1/2

( (1− ε)Hn1(dt|c, hn)

(1− ε)H̄n(t|c, hn) + ε
− (1− ε)H1(dt|c, hn)

(1− ε)H̄(t|c, hn) + ε

)

=

∫
I(u ≤ t <∞)F̄π(t|c)(nhsn)1/2αn(dt|c, hn) 0 ≤ u <∞, (33)

converges in distribution, as n→∞, to the mean-zero Gaussian process D(u|c), 0 ≤

u <∞, with covariance function

σ(u, v|c) :=
(R(K0))s

fC(c)

(
E
(η1F̄

2
π (W1)

H̄2(W1)
I(max(u, v) ≤W1 <∞)|C = c

)

+ E
(
(
η1η2F̄π(W1)F̄π(W2)

H̄2(W1)H̄2(W2)
H̄(max(W1,W2))(1− I(W1 ≥W2))(1− I(W1 < W2))).

I(u ≤W1 <∞, v ≤W2 <∞)|C = c
))

0 ≤ u, v <∞,

where Wi = min(Ui, Yi), ηi = I(Ui ≤ Yi), i = 1, 2, are independent, as above.

Proof: Note that

Dn(u|c) =

∫
I(u ≤ t <∞)F̄π(t|c).

(nhsn)(1/2)(1− ε)
(

((1− ε)H̄(t|c, hn) + ε)Hn1(dt|c, hn)− ((1− ε)H̄n(t|c, hn) + ε)H1(dt|c, hn)
)

((1− ε)H̄n(t|c, hn) + ε)((1− ε)H̄(t|c, hn) + ε)
.

Next, note that tightness of Dn(.|c) follows from that of Dn(0|c), and the latter

follows by the facts that F̄π(.|c) is bounded and H̄n(t|c, hn) in the denominator of the

integrand can be replaced, by Lemma 1(a), (ii), by fC(c)Ḡ(t)F̄π(t|c.) Further, once
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we make this replacement the expression for the limiting covariance function follows

by Lemma 1(b) and elementary covariance calculations.

�

Theorem 3 Denote

Ln(u|c) := (nhsn)1/2(F̄n(u|c, hn)− F̄π(u|c)),

Ln(∞|c) := (nhsn)1/2(πn(c)− π(c)).

Then under the conditions of Lemma 1(a), (Ln(u|c), u ≥ 0, Ln(∞|c)) converges in

distribution, as n→∞, to the Gaussian process (L(u|c), u ≥ 0, L(∞|c)) determined

by the equations

L(u|c)−
∫
I(u ≤ t <∞)L(t|c)Fπ(dt|c)

F̄π(t|c)
− L(∞|c) = D(u|c) u ≥ 0,

L(0|c) = 0↔ −
∫
I(0 ≤ t <∞)L(t|c)Fπ(dt|c)

F̄π(t|c)
− L(∞|c) = D(0|c). (34)

Proof: Multiplying both sides of Eq.(30) by (nhsn)1/2, we get

37



Ln(u|c)−
∫
I(u ≤ t <∞)Ln(t|c)Λ(dt|c, hn)− Ln(∞|c)

=

∫
I(u ≤ t <∞)F̄n(t|c)(nhsn)1/2αn(dt|c, hn)

+

∫
I(u ≤ t <∞)F̄π(t|c)(nhsn)1/2α(dt|c, hn) 0 ≤ u <∞,

Ln(0|c) = 0 n ≥ 1. (35)

It then follows by Lemma 2 that the process (Ln(u|c), u ≥ 0, Ln(∞|c)) is tight,

since F̄n(.|c, hn) is bounded, and Eq.(31) and Eq.(32) show that Eq.(35) is invertible.

Note that the second term on the right hand side of Eq.(35) is non-random and tends

to 0, as n → ∞ by Taylor expansion arguments similar to those in the proof of

Lemma 1. Further, the latter also means that Eq.(24) holds, i.e.,

Λ(dt|c, hn)→ Fπ(dt|c)
F̄π(t|c)

as n→∞.

By the above arguments, we conclude from Eq.(35), Lemma 2 and Theorem 3.3.1,

p.310, of van der Vaart and Wellner [22] that the limit (L(u|c), 0 ≤ u < ∞, L(∞|c))

satisfies Eq.(34).

�

Corollary 1 Denote by τ(., .|c), the covariance of the limiting Gaussian process

(L(u|c), u ≥ 0, L(∞|c)) in Theorem 3, i.e.,
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τ(u, v|c) = E(L(u|c)L(v|c)) 0 ≤ u, v ≤ ∞.

Further, define the measure

Λπ(dt|c) =
Fπ(dt|c)
F̄π(t|c)

0 ≤ t <∞, Λπ(∞|c) = 1.

Then τ(., .|c) is determined by the following equations:

τ(u, v|c)−
∫
I(t ≥ u)τ(t, v|c)Λπ(dt|c)−

∫
I(s ≥ v)τ(u, s|c)Λπ(ds|c)

+

∫ ∫
I(t ≥ u, s ≥ v)τ(t, s|c)Λπ(dt|c)Λπ(ds|c) = σ(u, v|c),

−
∫
I(s ≥ 0)τ(u, s|c)Λπ(ds|c) +

∫ ∫
I(t ≥ u, s ≥ 0)τ(t, s|c)Λπ(dt|c)Λπ(ds|c) = σ(u, 0|c),

−
∫
I(t ≥ 0)τ(t, v|c)Λπ(dt|c) +

∫ ∫
I(t ≥ 0, s ≥ v)τ(t, s|c)Λπ(dt|c)Λπ(ds|c) = σ(0, v|c),

∫ ∫
I(t ≥ 0, s ≥ 0)τ(t, s|c)Λπ(dt|c)Λπ(ds|c) = σ(0, 0|c), (36)

where σ(., ., c) is the covariance function in Lemma 2.

Proof: Follows by writing Eq.(34) once each for u ≥ 0 and v ≥ 0, then multiplying

the two and taking expectation on both sides. Note that Eq.(36) can in fact be

explicitly solved for τ(., .|c) by the iteration technique leading to Eqs.(31) and (32).

�
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3.4 Estimated Covariance Function

We now obtain the empirical version of Eq.(36) by replacing every function by its

empirical version, which necessarily has jumps at sample values, referring to Eqs.

(27) and (28).

On the left-hand side of Eq.(36), note that

Λπ(dt|c) =
Fπ(dt|c)
F̄π(t|c)

0 ≤ t <∞, Λπ(∞|c) = 1,

can obviously be estimated, at t = Zi and t =∞, by

(1− ε)Hn1(dt|c, hn)

(1− ε)H̄n(t|c, hn) + ε
= bi(c), 1 ≤ i ≤ n, and bn+1(c) = 1,

respectively. On the right-hand side, σ(u, v|c) can be estimated at u = Zi and

v = Zj, by

n∑
k=1

aikajkF̄
2
k b

2
k(c) +

n∑
k=1,l=1

aikajldklF̄
2
k F̄

2
l b

2
k(c)b2l (c),

whereas σ(u, 0|c) at u = Zi by

n∑
k=1

aikF̄
2
k b

2
k(c) +

n∑
k=1,l=1

aikdklF̄
2
k F̄

2
l b

2
k(c)b2l (c),

and so on, where

dkl = (1− akl)(1− alk)
n∑
r=1

akralr 1 ≤ k, l ≤ n.
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Hence, denoting the matrices

V = ((τ̂(Zi, Zj |c)))1≤i,j≤n+1,D = ((dij))1≤i,j≤n, F̄ = diag(F̄1, ..., F̄n),

where Zn+1 =∞, and using the notation of Eqs. (27)-(28), we get the equation

 I−ABc

−bTc

V
[

(I−ABc)
T −bT

]
=

 A0B0cF̄

bT0cF̄

 (I + B0cDB0c)
[
F̄B0cA

T
0 F̄b0c

]
,

where T denotes the matrix transpose, A0, B0c are obtained by deleting the (n+1)-

st row and column of A, Bc, respectively, and b0c is obtained from bc by deleting its

(n+ 1)-st component (which is 1).

3.4.1 Optimal Order of Bandwidth hn

From Eq.(30), it is clear that the convergence of (F̄n(.|c, hn)− F̄π(.|c), πn(c)−π(c))

is controlled by the random part (’variance’ term)

vn :=

∫
I(u ≤ t <∞)F̄π(t|c, hn)αn(dt|c, hn),

and the deterministic part (’bias’ term)

Bn =

∫
I(u ≤ t <∞)F̄π(t|c, hn)α(dt|c, hn).

Since, under assumption A1, A2 of Lemma 1,

var(Vn) = O(
1

nhsn
), B2

n = O(h4
n),
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it follows that the optimal order of hn, minimizing the mean squared error of a

fixed c, is

hn = O(
1

n
1

s+4

),

which is the usual optimal order in kernel-smoothing.

3.4.2 Optimal Choice of hn via Cross-Validation

One of the common ways to find the optimal hn is minimizing the mean integrated

squared error (MISE). The general form for MISE is

MISE =

∫
E(fn(x)− f(x))2dx,

where fn is the density estimator of f . Rudemo [17] and Bowman [2] proposed

least squares cross-validation,

CVn =

∫
f̂2(x)− 1

n

n∑
j=1

f̂j ,

where f̂j is the kernel density estimator with j-th observation deleted from sample.

We propose to make an optimal, data-based choice of hn via cross-validation,

namely by minimizing the criterion

CVn(h|c) :=
n∑
i=1

(πin(c)− πn(c))2,

where πin(c) is the estimator of π(c) obtained from the same sample, but with i−th

data-point deleted, i.e., πin(c) is based on (δj, Zj, j 6= i) for 1 ≤ i ≤ n.
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3.5 Simulation

In this section of thesis, a simulation study is conducted to see how the theory works

on the data. For the ease of calculation and make it more visual, we assume that

there is only one covariate in the model. A sample of n = 100 independent random

variables Ci (covariates) from Exponential(1) has been generated. Variables Xi’s are

dependent on the covariates and they follow the distribution function Exponential(c).

Censoring variables Yi’s are generated from the distribution of Exponential(0.2). The

cure rate function is taken to be π(c) ≡ exp(− exp(−c)). Figure 3 shows the behaviour

of cure rate estimator versus different values of covariate. The red and blue dots show

the cure rate and the cure rate estimator using the proposed nonparametric model,

respectively.

Figure 3: Cure rate estimation for different value of covariates
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Using the cross-validation method, for a fixed value of c = 0.2952, different band-

widths have been chosen for the model. Based on the smallest CVn, the best band-

width is chosen as h = 0.2.

Bandwidth 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

CVn 0.2772 0.2067 0.2144 0.2359 0.2712 0.3066 0.3322 0.3470 0.3543 0.3584

Table 3: Table of CVn values based on different bandwidths

3.6 Conclusion

In this research work, we proposed a new multivariate cure rate estimator under

random censoring when the cure rate is a function of covariates. This estimator in

fact is an extension to Xu and Peng [24] estimator. In this research work, the kernel

smoothing is used into the eigenvector equation to give us a smoother estimator.

One of the advantages of this estimator, compared to Tsodikov method [21], is

that it is applicable on discrete and continuous covariates. In this chapter, not only

the asymptotic distribution of the model has been found but also the optimal order

of bandwidth and the optimal bandwitdth choice have been obtained through the

cross-validation method.
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Chapter 4

A Nonparametric Test for the

Presence of Immunes in the

Univariate Case

4.1 Introduction

In time-to-event data, there is a possibility that immunes exist. The presence of

immune individuals has an important role in the analysis of survival data. Cured or

immune individuals are defined as the ones who are not subject to the event of interest

(e.g. death). Since we consider only a specific period of time, there is censoring in

the study, which is one of the most important issues in survival analysis.

Let Xi, 1 ≤ i ≤ n, be independent and identically distributed (iid), non-negative

random variables, each having distribution function F (x) = P (X ≤ x) and survival

function S(x) = F̄ (x) = P (X ≥ x). There are also an independent set of censoring

variable Yi, 1 ≤ i ≤ n, with distribution function G. Assume that we observe
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Zi = min(Xi, Yi), δi = I(Xi ≤ Yi) 1 ≤ i ≤ n,

Consider the following model

F (t) = (1− p)F0(t),

where F0(t) is the baseline survival function and p is the probability of cure. As

discussed in Chapter 2, Maller and Zhou [11] proposed p̂ = 1− F̂n(tn) as a consistent

estimator for p, where F̂n(·) is the Kaplan-Meier estimator of F (·) and tn is the

maximum observed failure or censored time. They also proved that under some

conditions,

√
n(p̂− p)→ N

{
0, p2

∫ t

0

dF (s)

(1− F (s))2(1−G(s))

}
for t > 0.

Since the limiting variance depends on p, a question arises here that what happens

if there is no cure rate in the model. If p = 0, the limiting distribution is degenerate

so it is important to test the existence of cure rate in the model. Maller and Zhou

[12] addressed this problem with the following null hypothesis,

H0 : p = 0, against H1 : p > 0.

They assumed that baseline survival function is the exponential survival function

with parameter λ. θ̂ = (p̂, λ̂) is the maximum likelihood estimates (MLE) under the

mixture model and θ̂0 is the MLE under H0. They introduced dn = −2(ln(θ̂0) −

ln(θ̂)) statistic to test the null hypothesis, where ln is the log-likelihood function.
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The limiting null distribution of the test-statistic was found to be a 50-50 mixture

distribution of chi-square random variable with 1 degree of freedom and a probability

distribution degenerate at 0. If dn ≥ C1−α, the null hypothesis of no immunes is

rejected, where

1

2
+

1

2
P (χ2

l ≤ C1−α) = 1− α.

In most of the studies the presence of cured patients was studied under the gamma

distribution. Peng et al. [16] did a simulation study to find the asymptotic null

distribution of the likelihood ratio test (LRT) for presence of cured patients under

Weibull and log-normal mixture models. They found that the results from Weibull,

log-normal and gamma are very close to each other and they have approximately the

same asymptotic null distribution.

In 2007, Sen and Tan [19] considered a nonparametric estimator of cure rate under

the mixture model and Case-1 interval censoring. Their proposed estimator is based

on the non-parametric MLE and degenerates like Maller and Zhou’s [11], when there

is no cure in the model.

In this chapter, we propose a test-statistic for the hypothesis of no cure, based on

Poisson convergence of censored empirical processes when the F is in the max domain

of attraction of some extreme-value distribution.

4.2 The Proposed Test-statistic

First we need to consider some assumptions.

Assumption 1 Suppose there exists a sequence of constants an > 0 and bn such
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that max(X1,...,Xn)−bn
an

has a non-degenerate limit distribution G0 as n → ∞. This

means that for every continuity point x of G0 we have

lim
n→∞

Fn(anx+ bn) = G0(x),

where G0 is an extreme value distribution (EVD). Consequently,

lim
n→∞

(1− n(1− F (anx+ bn))

n
)n = G0(x),

for every continuity point x of G0. It follows that

lim
n→∞

n(1− F (anx+ bn)) = − logG0(x).

Theorem 4 If (1 − G) = (1 − F )α (Koziol-Green model) for some α > 0, and if

there are constants an(α) > 0, bn(α) such that

n
(

1− F (an(α)x+ bn(α))
)α+1

→
(
− logG0(x)

)α+1

.

Then under the assumption of no cure rate in the model (H0 : p = 0),

i) Nn(x) =
∑n

j=1 I(Zj ≥ an(α)x+ bn(α))
d−→ N ′(x) where N ′(.) is a Poisson process

with mean (− logG0(.))α+1,

ii) N1n(x) =
∑n

j=1 δjI(Zj ≥ an(α)x + bn(α))
d−→ N ′1(x) and N ′1(x)

d
=
∑N ′(x)

j=1 ηj,

where η1, η2, ... are iid with Bernoulli distribution with mean 1
α+1

= E(δ) and it can

be estimated by 1
n

∑n
i=1 δi.

iii) η1, η2, ... and N ′(.) are independent.
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Proof:

i) For proof, see Charras and Lezaud [3] and Embrechts et al. [7].

ii) and iii) For proof, see Sen and Tan [19].

�

Theorem 5 Under the null hypothesis of no cure rate and previous assumptions,

we construct the following test statistic which has asymptotic standard normal dis-

tribution,

Tn(xn) =
(∑n

i=1 δiI(Zi ≥ xn)∑n
i=1 I(Zi ≥ xn)

− ĉ
)√∑n

i=1 I(Zi ≥ xn)

ĉ(1− ĉ)
→ N(0, 1),

where ĉ = 1
α̂+1

= 1
n

∑n
i=1 δi, provided xn is chosen to satisfy as n → ∞, xn → ∞

and n(1 − F (xn)) → ∞. Furthermore, if Tn < −zα, where P (N(0, 1) < −zα) = α,

the null hypothesis is rejected.

Note that we are yet to find a method for optimal choice of xn.

Proof: Note that the weak convergence in Theorem 4 can actually be strengthened

to a strong convergence as follows.

Based on the Theorem 2 in Sen and Tan [19], one can construct a sequence of

Poisson processes N ′1 and N ′ on R× R such that as n→∞,

sup
x
|N1n(x)−N ′1(x)| → 0,

sup
x
|Nn(x)−N ′(x)| → 0.

Now
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lim
n→∞

√∑n
i=1 I(Zi ≥ xn)

ĉ(1− ĉ)

(∑n
i=1 δiI(Zi ≥ xn)∑n
i=1 I(Zi ≥ xn)

− ĉ
)

= lim
n→∞

√
N(xn)

ĉ(1− ĉ)

(N1(xn)

N(xn)
− ĉ
)

= lim
n→∞

√
N(x′n)

ĉ(1− ĉ)

(N1(x′n)

N(x′n)
− ĉ
)
, (37)

where x′n = xn−bn
an

.

By Theorem 3, part (a) of Sen and Tan [19], as n→∞, (− logG0(x′n))α+1 →∞ and

N ′(x′n)
(− logG0(x′n))α+1 → 1. Since N ′1(x) =

∑N ′(x)
j=1 ηj and (η1, η2, ...) are iid Bernoulli ( 1

α+1
),

independent of N ′(.), using Assumption 2 and the random central limit theorem, we

have the result.

�

4.3 Simulation

A sample of n = 200 independent random variables, Xi from Exponential(1) and

Yi from Exponential(0.5) are randomly selected. The following graph shows how Tn

behaves for different values of p when F ≈ Exp(1) and G ≈ Exp(0.5).
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Figure 4: The behaviour of Tn(x) when p = 0, F ≈ Exp(1) and G ≈ Exp(0.5)

Figure 5: The behaviour of Tn(x) when p = 0.25, F ≈ Exp(1) and G ≈ Exp(0.5)

We also applied the proposed statistic to the data from AMS study [8]. Twenty-six

eligible patients are randomly assigned to receive either maintenance chemotherapy

or to receive no maintenance therapy. The proposed statistic is illustrated on this

data as follows:
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Figure 6: The behaviour of Tn(x) for AML data (Non-Maintained)

Figure 7: The behaviour of Tn(x) for AML data (Maintained)

In Figure 7, although all the values of Tn are greater than -1.96, for α = 0.05, and

the null hypothesis cannot be rejected for the maintained AML data, we should note

that all Tn values are below zero, as is expected when cure-rate is positive. In both

AML maintained and non-maintained data, sample sizes are too small, so nothing

can be concluded conclusively.
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4.4 Conclusion

In this chapter, we proposed a test for the absence of a cure rate. Our approach

is based on Poisson convergence of censored empirical processes. We proposed a new

test-statistic to test the existence of cure in the study. Our proposed statistic has

a normal distribution with mean of zero and variance of one. A simulation is also

conducted to see the behaviour of proposed statistic.
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Chapter 5

Conclusion

5.1 Concluding Remarks

In Chapter 2, we proposed a new non-parametric multivariate cure rate estimator

under random censoring. We found that its asymptotic distribution is normal and we

proposed a variance estimator applicable under the sufficient follow-up condition. It

is demonstrated that the proposed model is robust and can be easily calculated. A

simulation study is conducted to support the theoretical results. We applied our pro-

posed model to the data from the Litter-matched tumorigenesis experiment [14]. The

estimation of cure rate and variance for the Litter-matched tumorigenesis experiment

are obtained.

In Chapter 3, a new multivariate cure rate estimator with covariates under ran-

dom censoring is considered. The proposed estimator is based on the non-parametric

approach and in fact, it is the extension of Xu and Peng [24] estimator to the mul-

tivariate survival time. Using cross-validation, the asymptotic distribution, variance

estimator and the optimal order of bandwidth for the proposed multivariate cure rate

estimator are obtained. A kernel smoothing method has been used to smooth the

proposed estimator.
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In Chapters 2 and 3, the asymptotic distribution and covariance functions of the

estimator have been obtained assuming that immunes exist. If the immunes do not

exist, limiting distribution is degenerate, so it is very important to find out if the

cure rate exists. In Chapter 4, a test-statistic regarding the presence of immunes in

the univariate case is proposed and the limiting distribution of the test-statistic is

obtained based on Poisson convergence of censored empirical processes and extreme

value theory.

5.2 Suggestion for Future Research

One of the suggested future work is to use Chaubey-Sen Poisson smoothing method

[4] instead of kernel smoothing in estimation of the nonparametric multivariate cure

rate with covariates. Their proposed method has solved many issues which exist in

the other methods.

The kernel smoothing method can be used for estimating functions with non-

negative random variables such as survival function and hazard function. In kernel

smoothing, some modifications have to be applied on the kernel to avoid the possible

probability of negative values. These lead to affect the bias and rate of convergence.

However, in Chaubey-Sen smoothing method, this condition is eliminated.

Another restriction of using kernel smoothing is the boundedness of the second

derivative of the density function which in Chaubey-Sen smoothing model, is not

necessary.

In the future, the proposed estimator can be applied on the first-hand survival-

analysis data where cure is a possibility, such as criminal recidivism, smoking cessa-

tion, etc.

In this thesis, simulations are presented for illustrative purposes and the strength

of the whole thesis lies on the theoretical aspects. Potential tests such as finite
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sample normality assessment and coverage tests for confidence intervals could be

added to the list of potential future work. Another potential work could be to use

other distributions than the exponentials. The results could be compared with other

estimators.
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