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Abstract

Robust Design of Distribution Networks Considering Worst Case

Interdictions

Alexandre Couedelo

Multi-echelon facility location models are commonly employed to design transporta-

tion systems. While they provide cost-efficient designs, they are prone to severe

financial loss in the event of the disruption of any of its facilities. Additionally, the

recent crisis in the world motivates OR practitioners to develop models that better

integrate disruptive event in the design phase of a distribution network.

In this research, we propose a two-echelon capacitated facility location model un-

der the risk of a targeted attack, which identifies the optimal location of intermediate

facilities by minimizing the weighted sum of pre and post interdiction flow cost and

the fixed cost of opening intermediate facilities. The developed model results in a

tri-level Mixed Integer Programming (MIP) formulation, reformulated in a two-level

MIP. Hence, we prescribe solution methods based on Bender Decomposition as well

as two variants that enhance the speed performance of the algorithm.

The results reveal the importance of selecting backup facilities and highlight that

premium paid to design a robust distribution network is negligible given the benefit

of reducing the post-interdiction cost when a disruptive event occurs.
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Chapter 1

Introduction

Disasters or intentional attack on supply chains, even though they rarely occur, may

result in significant financial losses due to the complexity and scale of today’s logistic

networks. Multiple recent crisis emphasis the need for more studies in network dis-

ruption such as the US border and air traffic shut down following the 11 September

2001 terrorist attack, which forced Ford to idle five plants because of shortage in sup-

plies (Sheffi and Rice Jr, 2005), or more recently in 2015, after Paris terrorist attack

the transport of goods has been reduced between France, Belgium and Luxembourg

resulting in higher transportation cost in Europe (BSI, 2017)

In addition to the growing threat, today‘s logistics network design methods creates

particularly vulnerable networks (Snyder et al., 2006), (Li et al., 2013). Undoubt-

edly, the just-in-time paradigm designs are cost efficient but may result in unreliable

network under interdiction of facilities or transportation arcs. Taking disruption risk

into account would be beneficial, not only because it limits repercussion of operating

the network under degraded conditions, but also it leaves room for better strategic

decision as the system gains more flexibility.

As a result of both the increase in recent severe disruption in supply chains af-

fecting major corporation in the world and a weakness mentioned above in network

design, studies in network disruption have gain ground within the past decade (Sny-

der et al., 2006). Those contributions are part of a more general effort put into supply

chain risk management and network reliability. The current strategy to protect a dis-

tribution system is extending fundamental problems such as the P-median problem

or the Fixed-Charge problem that focused on a location and allocation of customers
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to suppliers. Indeed, the supply chain network function is to distribute goods from

supplier to customer. However, modern networks are more complicated than the sup-

plier and customer relationship. It usually involves a sequence of facilities of different

types that fulfill each a specific function or service to complete the manufacturing

process. Since the topology of a supply chain network dramatically influences the

operational capabilities under a disruption, considering such risk to enhance existing

multilevel facility location model is critical.

Strategies that integrate the risk aspect into the design process are divided into

stochastic and deterministic interdiction. The first category look at potential failure

at different level including machine malfunction, road closure, plant shut down. This

strategy aims to quantify the risk of interdiction through the enumeration of possible

scenarios. On the other hand, deterministic interdiction focuses on a game theory

approach where two opponents face each other. Therefore the design emerging from

this approach aims to prevent the worst-case scenario. Both techniques assure the

selection of a robust set of facility, such that an attack on the network will have little

effect on its operation. Furthermore, a robust set must necessarily be considered in

the design phase since the type of disruption in question is very sudden and would im-

mediately result in negative financial impacts. On top of that, one may not optimally

harden/protect a facility location design by adding backup facilities later on, because

the number of facilities involved impact considerably the topology of a network.

The purpose of this thesis is to design distribution networks by considering the

network interdiction aspect at the design stage by combining network interdiction

and Multi-echelon facility location problem. While most studies considered mainly

random and single failure, we focus on multiple deterministic interdictions which cor-

respond to the worst case scenario possible in case of disruption. Furthermore to

the best of our knowledge, there is no proposed model in literature to design com-

plex supply chain under the assumption of a deterministic disruption. Therefore, we

based our model on the standard Two-echelon Capacitated Facility Location Problem

(TCFLP), in which the designer create a distribution network between supplier and

client with an intermediary storage facility, and derive a new version robust against

target attack. The enemy is assumed to have a fixed budget to eliminate facilities, and

the designer is taking the potential threat into account while selecting the network

design. The formulation of this problem is generic enough to extend it to k-echelon.
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We provide algorithms based on Bender Decomposition, much as Smith et al. (2007)

solved Multi-commodities flow network design under optimal interdiction. Besides,

we explore several well-known enhancement techniques to accelerate the standard

Bender Decomposition.

This thesis focuses on the optimal selection of transshipment facilities in a hier-

archical network to minimize the design cost as well as both operating the network

under usual and worst case disruption scenario. The rest of the thesis is organized as

follows: Section 2 review the relevant literature; In Section 3 the problem statement

is presented; In Section 4 we describe the proposed solution method, which includes

a standard Bender Decomposition and two enhancement techniques; the numerical

experiments in Section 5 illustrate the managerial insights and the computational per-

formances of the algorithms; and Section 6 states the conclusions and future research

areas.

4



Chapter 2

Literature Review

In this Chapter, we present an overview of the literature for network interdiction and

Multi-Echelon Facility Location Problems (MEFLP), the two area of research that

are brought together in the present thesis. We first look at real-world applications of

network interdiction problems that have been considered in the literature. Later, in

section 2.2 and 2.3 we expose the main contributions related to this thesis in both

network interdiction and MEFLP. This work leads us to propose a classification of

network introduction problems based on the initial model they study (e.g., flow rout-

ing, facility location, etc.) and the characteristic associated with the way potential

disruptions are introduced into the model.

2.1 Topics in Network Interdiction

In this section, we introduce the notion of network interdiction and present the topics

tackled in this field. The selected papers highlight the most common application of

network interdiction relevant to this thesis.

A network interdiction problem involves two parties (i.e players, sides), an at-

tacker (also called leader, enemy, interdictor or adversary) and a defender (also called

follower, operator or owner). Both opponent participate to a game in which the de-

fender operate a network and therefore aim to optimize its actions such as minimizing

the operation cost, maximize the profitability or service level. On the other hand, the

attacker attempt to disrupt the network such that it inflicts the maximum damage
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to the defender. The two person structure of such game designated as an attacker-

defender model (defender-attacker depending on who is acting first) result in nested

optimization problems that address simultaneously the criticality of infrastructures,

and the robustness of a network. A structure is defined as critical for a network if its

removal degrades the performances of the network significantly. While a network is

said robust if he can fulfill its function after random or deliberate disruption.

The network interdiction problem has been studied for more than sixty years

starting with the military and Homeland security concerns. For instance McMasters

and Mustin (1970) and Ghare et al. (1971) studied the best possible way to plan

an aircraft strike that interdicts the maximum flow of enemy supply. Brown et al.

(2005) designed a defensive ballistic missile network that prevents the threat of an

enemy strike. Barkley (2008) research on creating a robust IP-Network with regard to

potential interdiction on routers (nodes) and connections (arcs). Brown et al. (2009)

aim to best delay the completion of batches of nuclear weapon as long as possible

based on scheduling theory.

Later, in this area of research Wood also tackled civil-world problems such as

minimizing drug smuggling in two papers Wood (1993) and Washburn and Wood

(1995). Assimakopoulos (1987) developed a strategy to limit the propagation of

infections in hospitals. Anandalingam and Apprey (1991) used network interdiction

to help resolve water sharing conflict between two nations with the intervention of an

arbitrator such as the United Nation.

2.2 Network Interdiction Problems

Table 1 provides an overview of the literature of network interdiction problems with

respect to the type of problem which can be a General model (G), Shortest Path

Problem (SPP), Maximum Flow Problem (MFP), Multi-Commodity Flow network

design (MCFP), Facility Location Problem (FLP), Multi-Echelon Facility Location

Problem (MEFLP). The also differentiate the formulation approach which can be

either Stochastic or deterministic; the type of disruption that corresponds to the

attacker decision that is either continuous (i.e., the attacker can partially interdict an

element of the network) or discrete (i.e., the attacker remove the target entirely from

the network). Additionally, we indicate if the model integrates capacity constraint in
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the model. The designer may attempt to protect the network by using fortification

(F), to design of the network (D) or focus on the optimal attack strategy (A).

Paper Type of

model

Formulation Disruption Capa. Objective

General model (G)

Brown et al., 2006 G Det. Disc. X F

Wood, 2011 G Det. Disc. N.A. N.A.

Maximum Flow Problem (MFP)

Wollmer, 1964 MFP Det. Disc. X A

McMasters and Mustin, 1970 MFP Det. Cont. X A

Ghare et al., 1971 MFP Det. Cont. X A

Multi-Commodity Flow network design (MCFP)

Wood, 1993 MCFP Det. Disc. and Cont. X D

Washburn and Wood, 1995 MCFP Det. Disc. X N.A.

Lim and Smith, 2007 MCFP Det. Cont. X D

Smith et al., 2007 MCFP Det. Disc. and Cont. X D

Barkley, 2008 MCFP Det. Disc. X F

Azad et al., 2013 MCFP Det. Disc. and Cont. X F

Shortest Path Problem (SPP)

Fulkerson and Harding, 1977 SPP Det. Cont. X A

Israeli and Wood, 2002 SPP Det. Disc. X A

Bayrak and Bailey, 2008 SPP Det. Disc. X A

Cormican et al., 1998 SPP Sto. Disc. X A

Morton et al., 2007 SPP Sto. Disc. X A

Pan and Morton, 2008 SPP Sto. Disc. X A

Brown et al., 2009 SPP Det. Disc. X A

Facility Location Problem (FLP)

Drezner, 1987 FLP Sto. Disc. D

Bundschuh et al., 2003 FLP Sto. Disc. X D

Church et al., 2004 FLP Det. Disc. D

Snyder and Daskin, 2005 FLP Sto. Disc. D

Snyder et al., 2006 FLP Sto. Disc. X D

Li et al., 2013 FLP Sto. Disc. D

Shishebori et al., 2014 FLP Sto. Disc. D

Multi-Echelon Facility Location Problem (MEFLP)

Peng et al., 2011 MEFLP Sto. Disc. and Cont X D

An et al., 2014 MEFLP Sto. Disc. X D

Our Contribution MEFLP Det. Disc. X D

Table 1: Classification of network interdiction literature
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2.2.1 Maximum Flow Interdiction

Reducing the maximum flow has received the most attention in the deterministic

network interdiction problems. This problem extends the max flow problem (MFP)

which constitutes the basis of the multi-commodity flow problem (MCFP) used to

design transportation networks with multiple sources and sink in which the flow must

travel from adjacent nodes.

Initially, Wollmer (1964) work on a flow network design with single source and sink.

He investigates the consequences of arc interdiction while assessing the vulnerability

of an existing network. He develops an algorithm that minimizes the maximum flow

in a network by removing precisely k-arcs.

Later, McMasters and Mustin (1970) and Ghare et al. (1971) apply minimizing

the maximum flow model to transportation network represented as a planar con-

nected graph. They consider that the attacker is able to reduce arc capacity within

a restricted budget, as a result not only he decides on the target but also on the as-

sociated effort. The more effort, the more budget is allocated, the more the capacity

is reduced.

Wood (1993) generalized the integer programming formulation of deterministic

interdiction problem applied to MCFP. Unlike the previous studies, his model does

not require the network to be source-sink planar. Even thought source-sink planar

assumption allows the problem to be solved efficiently via a dual-primal algorithm

it imposes a single source and a single sink located on the periphery of the network.

This assumption is not realistic for most real-life applications. Relaxing that strong

assumption let the designer select multiple sources and sink anywhere in the network.

Washburn and Wood (1995) developed a general model for network interdiction

using game theory. Their problem is modeled as a Two-player zero-sum game in which

an evader (i.e., prisoner) tries to cross a network from source to sink by minimizing the

probability of being discovered (i.e., arrested). The optimal solution to this problem

is difficult to find, because it exists an exponentiation number of paths for the evader

can choose. However, by reformulating the problem as minimizing the maximizing

flow, then the optimal the solution may be obtained in polynomial time.

Lim and Smith (2007) formally characterize model and solution methods for multi-

commodity flow with continuous and discrete interdiction. In a discrete interdiction
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problem, the attacker decision variables can only take integer values, while in contin-

uous interdiction they can be any real value. They present two formulations for the

problem in the discrete case, and they develop exact and heuristic algorithm for the

continuous case. In a second contribution, Smith et al. (2007) tackle MCFP again,

but solve the worst-case scenario that corresponds to disruption made by an intelli-

gent enemy with full information, and also studied the attacks of an enemy with only

partial information on the network. They modeled the worst-case scenario using a

nested attacker-defender model. Attacks based on incomplete information are mod-

eled using heuristics such as targeting arc with maximum capacity or targeting arc

with maximum flow. The heuristic approaches can be easily solved using a cutting

plane algorithm that rapidly generates solutions while minimizing the impact of the

enemy strategy.

2.2.2 Shortest Path Interdiction

A second growing topic in this area of network interdiction is the shortest path inter-

diction. These models are more simplistic than MFP or MCFP; however authors on

this subject develop efficient algorithms to solve their problems, and those techniques

can be applicable to more general interdiction problems.

The first shortest path interdiction model was introduced by Fulkerson and Hard-

ing (1977), assuming that the enemy is able the extend the length of an arc within

a constrained budget. To solve this problem, they used a reformulation of the maxi-

mum minimum-path problem into a single maximization problem by using the dual

of the inner minimum-path problem.

Israeli and Wood (2002) develop a model where the interdictor maximizes the

shortest path by removing or increasing the length of an arc by a fixed amount.

Unlike Fulkerson and Harding (1977) paper the interdiction is modeled as a binary

decision (i.e., discrete interdiction) therefore reformulation technique is not possible,

instead of in that paper the authors develop an extreme point enumeration technique

based on Bender Decomposition and super-valid inequalities.

Similar studies aim to maximize the critical path Brown et al. (2009), Granata

et al., 2013 in that particular case the goal of the interdictor is to target the longest

path in the optimal schedule.

The stochastic version of the SPP interdiction problem is studied in the following
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papers Cormican et al. (1998), Morton et al. (2007), Pan and Morton (2008). for a

more detail literature review on shortest path network interdiction we refer to Sadeghi

et al. (2017).

2.2.3 Facility Location and Network Disruption

Few papers consider discrete interdiction associated with the topic of facility location

and very little tackle multi-level supply chain network design (Snyder et al., 2016).

The early literature that integrates risk management in facility location focuses on

randoms event such demand and uncertainty or machine failure.

A primary stream of the literature pursues the design of reliable supply chain.

The reliability of a network refers to its ability to fulfill the demand completely even

when subject to unplanned event. On the other hand, robustness focuses on the

performance of the system under disruption; thus a solution is robust if a disruption

has little impact on its objective value. For instance, Bundschuh et al. (2003) focus

on supplier failure and presents a stochastic model that integrates both reliability and

robustness in a multi-stage single customer facility location problem.

Drezner (1987) is the first to introduce potential disruption touching the network

itself such as facilities or transportation arc. Most studied in FL consider stochastic

interdiction represented by the probability that a facility will fail and become inactive.

Snyder and Daskin (2005) and Li et al. (2013) worked on the reliable model

for facility location and developed the reliable p-median problem (RPMP) and the

reliable uncapacitated facility location problem (RUFLP). Shishebori et al. (2014)

established reliable facility location and network design that associate each customer

with multiples facilities (backup facilities) considering the maximum allowable failure

cost; therefore it limits the increase in cost incurred during the disruption to an

acceptable loss in any circumstances.

Peng et al. (2011) work a reliable two-echelon (supplier, transshipment, customer)

network design problem based on the p-robustness approach that protects the network

against potentially unreliable transshipment facilities. An et al. (2014) introduce a

two-stage stochastic interdiction problem and formulate the objective as to minimize

the weighted sum of the operation both before and after disruption much as Smith

et al. (2007) did for MCFP.

Church et al. (2004) studies the deterministic interdiction of facilities, applied to
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a standard facility location problem, he introduces the r-interdiction median problem

which is a version of p-median problem robust against intentional strikes.

2.3 Multi-level Facility Location Problems

In this subsection, we summarize the main contribution in terms of formulation and

characteristic of the model.

Multi-echelon facility location problem (MEFLP) is a traditional problem in sup-

ply chain design. It aims to simultaneously select the required facilities in a network

(Network Design Problem) and satisfy the customer demand by assigning them to a

sequence of open facilities (Flow Routing Problem). This family of problems is also

commonly designated by the terms multi-stage, multi-level, hierarchical, multi-layer.

Those models provide a tightly optimize solution, which is often very sensitive to

disruption. Indeed the unexpected losses of critical infrastructures may substantially

impact the cost of operation and distribution of products through the network. The

best performance of the supply chain is the trade-off between the location of facilities

and allocation of customers.

Problems in facility location can be categorized based on their objective function

(Daskin, 2008). This classification defines two categories of problems (i) covering

base model, (ii) median base model that constitute the foundation for most of the

advanced models in either network interdiction models or hierarchical network mod-

els. The first category focuses on covering the customers, by only looking at their

allocation to facilities. For instance, the Set Covering Problem (SCP) is one of the

problems in this category and has the objective of minimizing the number of facilities

required to satisfy the diniemand. The second category mainly targets the cost of

delivering a given amount of demand. The P-Median Problem (PMP) for instance

aim to minimize the demand-weighted average distance between customers and fa-

cilities (Hakimi, 1964). This category also includes Fixed-Charge Location Problem

that does not contain a limit on the number of facilities but instead has the objective

to minimize the cost of utilizing a facility (i.e., operation, construction) and the cost

of serving each customer. The uncapacitated facility location problem (UFLP) is a

well-known problem fixed-charge problem (Cornuéjols et al., 1983).

The location-allocation models stated before are usually too simplistic to manage

11



the complete distribution channel. Indeed, to best manage a supply chain we would

like to integrate multiple types of infrastructures such as suppliers, plants, distribution

centers, customers, etc. Therefore one important extension looks at the inclusion of

multiple layers (i.e., levels) where each one of which playing a specified role. This

family of models is designated in the literature as hierarchical facility location models.

Şahin and Süral (2007) develop a classification of the research on this topic.

Facility interdiction in multi-echelon distribution networks has received scarce

attention in the literature. Therefore we want to expand this area of by tackling a

fundamental problem in the topic. The simplest MEFLP is without a doubt the two-

echelon uncapacitated facility location, which can be used to design a distribution

network with intermediate facilities (e.g., distribution center). This problem is one

of the most studied in the field (Ortiz-Astorquiza et al., 2017). A more interesting

version is the capacitated two-echelon facility location (TCFLP) however less effort

in the litterature has been made on the capacitated case. Aardal (1992) presented an

early study on this problem and later a reformulation called the two-index formulation

(Aardal, 1998). For a detailed review of multi-level facility location problem we

refer to Melo et al. (2009) and for a more recent review focusing on the formulation

approaches we refer to Ortiz-Astorquiza et al. (2017).

2.4 Conclusion

The above literature review shows that network interdiction is a growing topic in

network operations. Even though it emerged from military concerns, authors on

the subject demonstrate its use in numerous domains, particularly, the design of

distribution network. However, we found that the literature only scratches the surface

of the problem of designing robust distribution network, and little or no work consider

the following aspects together (i) the protection against worst case scenario in facility

location; (ii) The design of complex distribution systems such as multi-echelon facility

location that reflect real-world application; (iii) the interdiction of capacitated facility.

In this regard, we identify in the multi-echelon literature an initial model namely

TCFLP that would answer the aforementioned gaps in the literature if it is coupled

with the deterministic network interdiction approach. The proposed TCFLP is a ca-

pacitated model, and it addresses the design of distribution network with intermediate
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facilities which are a typical complex structure in the field. Additionally, determinis-

tic network interdiction focuses on the study of the worst-case scenario. Finally, we

aim to develop efficient solution methods for our problem by taking inspiration from

the state of the art in determianistic network interdiction such as multi-commodity

flow interdiction and shortest path network interdiction. We compare our model to

the previous work in the literature in Table 1.
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Chapter 3

Problem Statement and Notation

The problem concerned with the best placement of infrastructures and the best allo-

cation of customers is one of the most studied topics in operation research. Indeed,

selecting the location of intermediate facilities reflect a critical long-term strategic

decision for a company. Moreover, a dominant structure in transportation systems

employs multi-echelon design.

In this context, our objective is to provide a network design that minimizes the

total costs while preventing the financial damage that could result from a disruption

affecting facilities in a network. To achieve this, we applied network interdiction

approach to a well studied hierarchical facility location problem.

In the following subsections, we first introduce and illustrate the problem state-

ment of this research, then present the mathematical formulation that provides a

robust solution with respect to intentional attack. Finally, we offer an interpreta-

tion of the formulation to help the reader to understand its meaning and practical

implications.

3.1 Problem Description

We consider a single product supply chain design that includes a set of suppliers, a set

of intermediate facilities (e.g., distribution center, or depot), and a set of customer.

In this problem, the designer aims to construct a two-echelon distribution network

while minimizing two types of cost (i) a fixed annualized setup cost related to the

acquisition of distribution center and (ii) the transportation cost associated with
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(a) Pre-interdiction

(b) Post-interdiction

Figure 1: Example of Network Design and Interdiction

the satisfaction a deterministic demand. The designer’s decisions are the selection

of intermediate facilities among a pre-selected set of candidates, and the number of

products to flow between each level of the network to meet the demand. Also, the

capacity of every intermediate facility is limited. Figure 1a this problem illustrates

and show the pre-interdiction flow routing decision. Nonetheless, this problem does

not protect the network against enemy attack.

To better design the network against a targeted attack, we must consider the

optimal attacker strategy. The enemy will, given a limited budget, maximize the post-

interdiction flow routing cost by destroying intermediate facilities (completely). As

a consequence of the facility interdiction, the designer is forced to find an emergency
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routing strategy. It is essential to state the assumption that the designer can not

open new facilities after a disruptive event. This assumption is justified by the fact

that disruptions are very sudden an unpredictable. Therefore the design is only

capable of reacting on an operational level. This problem reflects the cost of operating

the network after an attack. Figure 1b illustrates the post-interdiction flow routing

decision, the ennemy interdict one fqcility from Figure 1a, and it shows the possibles

consequences of such disruptive scenario: (i) the need of rerouting the flow of product

(ii) the incapability of satisfying the demand due to a lack of capacity (the extra flow

goes the dummy facility).

Finally, The design of a robust distribution network under the risk of interdiction

can be modeled as a three-stage game: (i) the operator design an initial multi-echelon

distribution network by selecting a set of facilities and allocate the flow of supply in

the network (ii) the attacker removes facilities within its budget as to maximize

the post-interdiction cost (iii) the operator redistribute the flow among the survived

facilities as to minimize the post-interdiction cost.

However, the network we design is not always under attack, so we which to consider

both the cost under normal and disrupted circumstances. Therefore we define the

objective of this problem as a weighted sum of the pre-interdiction flow cost, the

post-interdiction flow cost and the fixed setup cost of opening facilities. As a result

that the designer is capable of taking into account the attacker strategy by defining

the importance he which to give to the threat to design a network robust against the

worst disruption scenario.

3.2 Mathematical Formulation

The purpose of this research is to provide a robust solution against targeted attack

for multi-echelon facility location network. Consequently, we introduce a generic for-

mulation that applies to all facility location problem, and we called it robust facility

location problem R-FLP because it derives from a generic facility location problem

(FLP). Then we extend the two-level capacitated facility location problem (TCFLP)

using that formulation. We choose TCFLP because it has been the most studied

among the multi-level facility location problem (Ortiz-Astorquiza et al., 2017). The

result of this section is the explicit formulation of the robust two-level capacitated
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facility location problem (R-TCFLP). R-TCFLP is composed of two subproblem

namely Pre-interdiction (Pre(y)) and Post-interdiction (Post(y)) flow routing as-

sociated with the network topology y. Table 2 present the list of mathematical terms

introduced in this section as well as their notation.

Notation Description
FLP Facility Location Problem
R− FLP Robust Facility Location Problem
TCFLP Two-echelon Capacitated Facility Location Problem
R− TCFLP Robust Two-echelon Capacitated Facility Location Problem
Pre(y) Pre-interdiction flow routing Problem given network topology y
Post(y) Post-interdiction flow routing Problem given network topology y

Table 2: List of Problems

The lists of notations and decision variables are used in this chapter are defined

in Tables 3 and 4.

Notation Description
i Index of customer; i ∈I
j1 Index of warehouse; j1 ∈ V1

j2 Index of supplier; j2 ∈ V2

cab Unit transportation cost from node a to node b
fj Setup cost to open warehouse j
αj Capacity of facility j
B Attacker budget
bj Budget required to target facility j

Table 3: List of decision variables

Notation Description
vab Unit of flow from node a to b in the pre-interdiction problem
wab Unit of flow from node a to b in the post-interdiction problem
yj 1 if warehouse j is selected
tj 1 if warehouse j is not targeted by an attack

Table 4: List of decision variables

3.2.1 Robust Facility Location Problem

As described previously, we begin with considering a multi-echelon facility location

problem composed of two type of cost noted Ψ(y) for the flow routing and F (y) for
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the fixed setup cost. We aim to find the set of facilities y that minimize those two

costs and respect the system of constraint YΨ associated with the distribution of flow

in the system. Equation 1 provide a general formulation of this initial facility location

problem (FLP).

(FLP ) miny∈YΨ
: Ψ(y) + F (y) (1)

We modify FLP formulation in order to take into account a potential threat by

considering a weighted combination of the pre-interdiction flow cost Ψ(y), the post-

interdiction flow cost Φ(y), and the fixed setup cost of opening facilities F (y). We

introduce the weight ρ to control the importance of the pre-interdiction cost over

the post-interdiction cost. The decision variable y has to respect both the post-

interdiction and pre-interdiction constraint noted respectively YΨ and YΦ. Equation

2 represent the formulation for the robust multi-echelon facility location (R-FLP).

(R− FLP ) miny∈YΨ∩YΦ
: ρΨ(y) + (1− ρ)Φ(y) + F (y) (2)

The post-interdiction problem is a critical part of our formulation because it in-

volves a two player game structures resulting in a nested min-max optimization also

called attacker-defender model (Brown et al., 2006). In an attacker-defender model,

the defender model is the foundation of the problem. In our research, the defender

aims to minimize the operation cost represented by Ψ(y). Given a network topology

y and the defender model, the enemy maximize the damages he deals Φ(y) described

by Equation 3. The enemy modifies the network topology y by targeting facilities

represented by the vector t. The survived network topology is given by t ◦ y (where

◦ is the element-wise multiplication of vectors).

Φ(y) = maxt∈TΨ(t ◦ y) (3)

We have now a general formulation for our problem. The rest of this section

apply this formulation to TCFLP, which leads us to define in that context the pre-

interdiction problem Pre(y) and the post interdiction problem Post(y). The explicit

formulation of TCFLP is introduced in the next subsection.
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3.2.2 Robust Two Echelon Facility Location Problem

Two Echelon Facility Location Problem

The commonly accepted formulation of TCFLP was introduced by Aardal, 1998 with

the particularity of using two sets of continuous variables vij1 and wj1j2 representing

the flow to customer i from warehouse j1, and to warehouse j1 from the source j2

respectively. The unit transportation cost associated to vij1 and wj1j2 is respectively

cij1 and cj1j2 . The demand of a customer is represented by di and the capacity of the

warehouse and the source are respectively αj1 and αj2 . Finally, the binary decision

variable yj1 is equal to 1 if we decide to open the facility j1 at a cost fixed fj1 . The

designer problem TCFLP is formulated as follows:

(TCFLP )

minv,y :
∑
i∈I

∑
j1∈V1

cij1vij1 +
∑
j1∈V1

∑
j2∈V2

cj1j2vj1j2 +
∑
j1∈V 1

fj1yj1 (4a)

s.t :
∑
j1∈V1

vij1 ≥ di ∀i ∈ I (4b)

∑
j2∈V2

vj1j2 ≥
∑
i∈I

vij1 ∀j1 ∈ V1 (4c)

∑
i∈I

vj1j2 ≤ αj2yj2 ∀j2 ∈ V2 (4d)∑
j2∈V2

vj1j2 ≤ αj1yj1 ∀j1 ∈ V1 (4e)

The objective function 4a includes flow routing cost and setup cost for warehouses.

The demand must be satisfied 4b. The networks follows the flow conservation property

4c. The capacity of each facility must be respected 4d and 4e.

Pre-Interdiction Problem

We identify the pre-interdiction problem Pre(y) and the fixed setup cost F (y) in the

context of TCFLP. Given TCFLP formulation we identify the element of Equation

1. The fixed cost is expressed in Equation 5.

F (y) =
∑
j1∈V 1

fj1yj1 (5)
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The rest the problem once we remove F (y) is the pre-interdiction flow network

problem Pre(y). You may notice that this problem is purely a linear, this will be

useful in the following section.

(Pre(ŷ))

Ψ(ŷ) = minv :
∑
i∈I

∑
j1∈V1

cij1vij1 +
∑
j1∈V1

∑
j2∈V2

cj1j2vj1j2 (6a)

s.t :
∑
j1∈V1

vij1 ≥ di ∀i ∈ I (6b)

∑
j2∈V2

vj1j2 ≥
∑
i∈I

vij1 ∀j1 ∈ V1 (6c)

∑
i∈I

vj1j2 ≤ αj2 ŷj2 ∀j2 ∈ V2 (6d)∑
j2∈V2

vj1j2 ≤ αj1 ŷj1 ∀j1 ∈ V1 (6e)

Post-Interdiction Problem

We define the post-interdiction problem in the context of TCFLP using the attacker-

defender model, and then we use reformulation technique to convert the bilevel min-

max formulation into a single level maximization model.

Equation 7 uses the general attacker-defender model introduced by Equation 3.

We assume that only intermediate facilities can be targeted. Therefore the facility

interdiction is only reflected in the constraint 7f, and it signifies that when a facility

is targeted its capacity becomes null. To differentiate the decision variables between

post-interdiction and pre-interdiction, we note v the decision variables related to the
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pre-interdiction flow and w the one related to the post-interdiction flow.

(Post(ŷ))

Φ(ŷ) = maxt∈TΨ(ŷ ◦ t) (7a)

Ψ(ŷ ◦ t) = minw :
∑
i∈I

∑
j1∈V1

cij1wij1 +
∑
j1∈V1

∑
j2∈V2

cj1j2wj1j2 (7b)

s.t :
∑
j1∈V1

wij1 ≥ di ∀i ∈ I (7c)

∑
j2∈V2

wj1j2 ≥
∑
i∈I

wij1 ∀j1 ∈ V1 (7d)

∑
i∈I

wj1j2 ≤ αj2 ŷj2 ∀j2 ∈ V2 (7e)∑
j2∈V2

wj1j2 ≤ αj1 ŷj1tj1 ∀j1 ∈ V1 (7f)

where: T = {t ∈ R|V 1||
∑

j1∈V 1 bj1(1− tj1) = B, tj1 ∈ {0, 1}, ∀j1 ∈ V 1}
In this study, the attacker is allowed to remove nodes from the set of the selected

warehouse ŷ to maximize the designer’s (minimum) operational cost within the lim-

ited budget B. The binary vector t represent the enemy targets. If the decision

variable tj1 it is equal to 0 then the facility j1 is interdicted.

In a capacitated case, it may happen that after an attack the combined capacity

of the remaining intermediate facilities is not sufficient to handle all the demand. To

handle that case, we assume that we dispose of an untargetable emergency facility

that collect and distribute the remaining flow, applying a penalty for each unit of

flow delivered via this dummy facility. For the sake of simplicity, we add the emer-

gency facility to the dataset as a free warehouse with unlimited capacity, and a fixed

transportation cost designated as emergency cost.

Post(ŷ) is a bi-level mixed integer problem, however, as mentioned before the

inner flow routing problem is a linear problem; therefore we can use the duality theory

to convert this bi-level formulation into in single level maximization model by taking

the dual of the inner optimization. We consider β, γ, δ, ϵ the dual variables associated
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with the inner minimization problem and reformulate our problem as follows:

(Post(ŷ)))

Φ(ŷ) = maxβ,γ,δ,ϵ,t :
∑
i∈I

diβi −
∑
j2∈V 2

(αj2yj2)δj2 −
∑
j1∈V 1

(αj1 ŷj1)tj1ϵj1 (8a)

s.t :βi − γj1 ≤ cij1 , ∀i ∈ I, ∀j1 ∈ V 1 (8b)

γj1 − δj2 − ϵj1 ≤ cj1j2 ∀j1 ∈ V 1, ∀j2 ∈ V 2 (8c)∑
j1∈V 1

bj1tj1 ≤
∑
j1∈V 1

bj1 − B (8d)

The terms tj1 × ϵj1 in the objective function 8a is nonlinear because it involves

the product of two decision variables. This problem can be linearized by substituting

tj1 and ϵj1 by a single decision variable that we call tϵj1 and by adding the standard

linearizion constraints 9a, 9b, and 9c.

tϵj1 − ϵ̄j1 ∗ tj1 ≤ 0 , ∀j1 ∈ V 1 (9a)

tϵj1 − ϵj1 ≤ , ∀j1 ∈ V 1 (9b)

tϵj1 − ϵj1 − ϵ̄j1tj1 ≥ −ϵ̄j1 , ∀j1 ∈ V 1 (9c)

ϵj1 is the shadow cost associated with the capacity constraint of facility j1. ϵ̄j1

represents an upper bound for ϵj1 . However Lim and Smith, 2007 emphasize that to

obtain the best result from this linearized mixed-integer programming formulation

one must use the smallest possible upper bound for ϵ̄j1 . A good upper bound we

choose is the longest simple path linking a facility j1 to any couple customer-supplier

(i, j2) ∈ V 1 ∗ V 2 defined in Equation 10.

ϵj1 ≤ ϵ̄j1 = max(cij1 + cj1j2), ∀i ∈ I, ∀j2 ∈ V 2 (10)
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Final Formulation

By pulling together all the elements of the previous sections, we define the final

formulation for R-TCFLP as follows:

(R− TCFLP )

miny,v :ρ[
∑
i∈I

∑
j1∈V1

cij1vij1 +
∑
j1∈V1

∑
j2∈V2

cj1j2vj1j2 ]

+ (1− ρ)maxβ,γ,δ,ϵ,t[
∑
i∈I

diβi −
∑
j2∈V 2

(αj2yj2)δj2 −
∑
j1∈V 1

(αj1yj1)tϵj1 ]

+
∑
j1∈V 1

fj1yj1 (11a)

s.t :
∑
j1∈V1

vij1 ≥ di ∀i ∈ I (11b)

∑
j2∈V2

vj1j2 ≥
∑
i∈I

vij1 ∀j1 ∈ V1 (11c)

∑
i∈I

vj1j2 ≤ αj2yj2 ∀j2 ∈ V2 (11d)∑
j2∈V2

vj1j2 ≤ αj1yj1 ∀j2 ∈ V2 (11e)

βi − γj1 ≤ cij1 ∀i ∈ I, ∀j1 ∈ V 1 (11f)

γj1 − δj2 − ϵj1 ≤ cj1j2 ∀j1 ∈ V 1, ∀j2 ∈ V 2 (11g)∑
j1∈V 1

bj1tj1 ≤
∑
j1∈V 1

bj1 − B (11h)

tϵj1 − ϵ̄j1 ∗ tj1 ≤ 0 ∀j1 ∈ V 1 (11i)

tϵj1 − ϵj1 ≤ ∀j1 ∈ V 1 (11j)

tϵj1 − ϵj1 − ϵ̄j1tj1 ≥ −ϵ̄j1 ∀j1 ∈ V 1 (11k)

3.3 Interpretation of the Formulation

The formulation presented in the previous section is convenient for two reasons; first,

the designer can adjust the importance given to a disruption or threat, second, it

offers it is suitable regarding resolution methods. However, it is not easy for the
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manager to visualize the ins and outs of this formulation as it is. Therefore in this

section, we offer comprehensive insight on the subject.

To illustrate the use of this methodology we propose a more user-friendly formu-

lation of R-TCFLP and we introduce r(y) the increase in operating cost due to an

optimal interdiction when given a set of open intermediary facility y.

Φ(y) = Ψ(y) + r(y) (12)

R-TCFLP can be reformulated as the sum of the annualized cost of the network

under normal circumstances Ψ(y) + F (y) and the weighted additional cost due to

any malicious disruptive event.

Z = miny∈YΨ(y) + F (y) + (1− ρ)r(y) (13)

Figure 2 illustrates the difference between TCFLP and R-TCFLP per unit of time.

The design produced with R-TCFLP increase the network pre-interdiction operation

cost and fixed setup cost Ψ(y) + F (y). However, in return, the cost of operating the

network during the post-interdiction phase (d) will be significantly reduced. Adjusting

the parameter ρ let the managers decide to which extent the threat must be taken

into account in the design of a supply chain network. One must not forget that the

budget of the interdictor B is the second parameter that influences r(y).

Figure 2: Example of network life cycle under disruption
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Chapter 4

Solution Methodology and

Algorithm

The mathematical description of our problem is a bi-level mixed-integer linear pro-

gram (BLMIP). The traditional method used to solve such problem is reformulation

based on Karush-Kuhn-Tucker (KKT) optimality condition to convert the bi-level

problem into a single level problem. However, the KKT condition does not apply to

the inner optimization when its variables are not all continuous, because the problem

has, in general, no strong duality property. Therefore it is in general not possible

to use reformulation technique when solving discrete interdiction problems. Instead,

decomposition techniques using an enumeration of extreme points are used to solve

such problem. It is proven that in this type of problem at least one optimal solution

is reached at an extreme point of the constraint region (Saharidis and Ierapetritou,

2009).

In this chapter, we developed a Bender Decomposition (BD) algorithm and im-

proved Bender decomposition to solve as efficiently as possible our problem to op-

timality. We formally introduce the Standard Bender Decomposition in the next

section, and then we apply BD to our problem. Finally, we review the methods

dedicated to accelerating the Bender Decomposition and we develop two ways of

improving the computation time of this algorithm. The Section 4.3 deals with inte-

grated the so-called super-valid inequalities to further constrain our problem at each

iteration and converge faster toward the solution. Section 4.4 uses the Papadakos

(2008) method which aims to find a non-dominated cut at each iteration by adding
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cuts called Pareto-optimal.

4.1 Standard Bender Decomposition

4.1.1 Formal Definition

Decomposition methods are often used to solve a large-scale optimization problem

because they reduce the size of the problem that the computer has to consider at

once. Such techniques as introduced by Benders (1962) can be used to solve bi-

level linear problems (Saharidis and Ierapetritou, 2009). The Bender decomposition

algorithm (BD) divide any problem into a master problem (MP) and a slave problem

(SP). Then the result of MP provide a solution that is used to set variable constant for

SP, and by solving SP we can create a Bender cut that will constraint MP. We repeat

the process of solving variations of SP based on the solution of MP and constrain

MP based on SP solution until MP and SP objective function reach an acceptable

gap. Upper and lower bound of the original problem are provided by MP and SP

respectively at each iteration, and Benders (1962) demonstrated that after a finite

number of iteration this algorithm converges to an optimal solution.

We formally introduce some general minimization problem P:

(P ) min : cTw + f(y) (14a)

s.t : Aw + F (y) ≤ b (14b)

w ≥ 0 (14c)

y ∈ Y (14d)

Where c is a vector of coefficient associated to the vector of continuous variables

w, and f is scalar functions that take the vector of variables y as input. Similarly,

A is the matrix of coefficient associated with the constraints multiplied with the

vector of variables w and F a set of scalar functions that takes as input the vector of

variables y. Given this problem P we isolate the set of variable w, and we formulate

the following sub-problem (SP) where y become a constant vector noted ȳ. SP is
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mathematical describe as following:

(SP )min : z(w) := cTw (15a)

s.t : Aw ≤ b− ȳ (15b)

u ≥ 0 (15c)

The Bender Decomposition algorithm deals with on the dual problem of SP instead

(Dual-SP), because the dual variables’ are related to constraint right-hand side value

and are required to generate Bender cut for MP. We define u the set of dual variables

of Dual-SP.

(Dual − SP )max : z(u, ȳ) := (b− ȳ)Tu (16a)

s.t : ATu ≥ c (16b)

u ≥ 0 (16c)

By successively solving Dual-SP for different values of y provided by MP we

characterize the polyhedron U which define the feasible region of our problem P

by enumerating the set of extreme points P and extreme rays R. As a result, the

corresponding Bender Master Problem (MP) is:

(MP )min : f(y) + z (17a)

s.t : (b− y)T ū ≤ z , ∀ū ∈ P (17b)

(b− y)T ū ≤ 0 , ∀ū ∈ R (17c)

y ∈ Y (17d)

Constraints 17b and 17c represent the set of all the Bender cuts. If all possible

elements of P and R were added at once, the problem would be solved in one iteration.

Instead of enumerating all possible extreme ray and point which is very difficult,

Bender proposes an iterative procedure which starts with empty sets P and R, and

then iteratively solve Dual-SP and MP. Where Dual-SP uses the solution ȳ of the MP

and the solution ū of Dual-SP provides 17b if the solution is unbounded otherwise

17c is generated. The process repeats as long as the optimality gap is not closed. As
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a result, it is often not necessary to find all elements of P and R to find an optimal

solution.

According to the previous decomposition, Algorithm 1 provide an ϵ-optimal solu-

tion where ϵ is the user-defined acceptable optimality gap.

Algorithm 1: Bender decomposition

Result: ϵ-optimal solution ȳ and w̄

initialization;

while UB-LB ≥ ϵ do

Step 1: Solve MP and obtain ȳ ;

Step 2: Solve Dual-SP and obtain ū ;

if SP is unbounded then

R ← R ∪ { ū } ;
else

P ← P ∪ { ū } ;
LB ← c(ȳ) + z̄ ;

UB ← min {UB, c(ȳ) + z(ū)};
end

end

The Bender decomposition methods convert the initial problem into a bi-level

min-max problem. In the specific case of an attacker-defender model, we are al-

ready dealing with such structure. Thus solving our bi-level interdiction network is

equivalent to apply a special case of BD where the decomposition splits attackers

and defenders decision variables. Wood (2011) demonstrated the correctness of such

methodology and several studies applied it to solve similar problems (Lim and Smith,

2007), (Smith et al., 2007).

4.1.2 Application to R-TCFLP

As mentioned before we use Bender Decomposition to be able to solve our bi-level

mixed integer problem. In our case, the dual sub-problem (Dual-SP) correspond

exactly to Post(y) the post-interdiction flow routing problem. By doing so, the

master problem (MP) is single level mixed integer program that we can solve with
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any commercial solver. At each iteration the following (MP) is solved:

ZMP = miny :ρΨ(y) + (1− ρ)ZΦ + F (y) (18a)

s.t :(6b), (6c), (6d), (6e) (18b)

ZΦ ≥ zΦ(ū, y) , ∀π ∈ Π (18c)

yj1 ∈ {0, 1} , ∀j1 ∈ V 1 (18d)

Where constraint (18c) represents the Bender cut added to the master problem

at iteration π and Π is the set of generated cut.

At each iteration the problem Post(y) (Equation 8) is solved and the decision

variables u = β||δ||ϵ (|| Concatenation of vector) values are used to define a new

Bender cut, we note those values ūπ = β̄π||δ̄π||ϵ̄π. zΦ(ū, y) designate the objective

function of Post(y) (see 8a) at iteration π where the decision variables are replaced

byβ̄π, δ̄π, ϵ̄π and the decision variable y is set free. The explicit form of the Bender

cut at iteration π is the following.

Zφ ≥
∑
i∈I

diβ̄iπ −
∑
j2∈V 2

(αj2δ̄j2π)yj2 −
∑
j1∈V 1

(αj1
¯tϵj1π)yj1 (19)

We consider ϵ an acceptable optimality gap, then the lower bound zφ
¯

is provided

by the (MP) as the value of the decision variable ZΦ, while the upper bound z̄φ is

equal to (Dual-SP) objective value. Finally, we implemented Algorithm 2 to solve

our specific problem.

Algorithm 2: Bender decomposition applied to T-TCFLP

Result: ϵ-optimal solution ȳ (robust set of facility)

initialization;

while z̄φ − zφ
¯
≥ ϵ do

Step 1: Solve MP and obtain ȳ and zφ
¯

;

Step 2: Solve Dual-SP and obtain β̄, δ̄, t̄ϵ and z̄φ;

Step 3: add a new Bender cut ZΦ ≥ zΦ(ū, y) ;

end
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4.2 Background in Acceleration Methods for BD

The standard Bender decomposition is known for its slow convergence (Saharidis and

Ierapetritou, 2010). This is particularly true for network design problems as demon-

strated by Magnanti and Wong (1981). Indeed, the deficiency of DB on that type of

problem leads to the generation of an exorbitant number of cut in order to converge.

The issues of BD in general are (i) The quality of the BD cut at each iteration, (ii)

The weak lower bound generated in case of minimization problem Azad et al. (2013),

(iii) The deterioration of the solution as the number of cut increase. Decomposi-

tion procedures are attractive candidates since a lot of design problem involves at

least two types of decisions and it is very tempting to isolate the complicating vari-

able. Therefore Bender decomposition has been extensively studied and researcher

developed accelerated versions of BD algorithm.

Early work on the topic such as Geoffrion and Graves (1974) focuses on the im-

portance of finding a proper formulation of the problem that would improve the

convergence of the BD algoritm. Later works looked on ways to reduce computa-

tion time at each iteration especially when the MP or SP arehHard to solve. For

instance McDaniel and Devine (1977) proposed to solve the LP relaxation of MP in

a first phase until we reach an acceptable optimality gap and then terminating the

algorithm by reintroducing the integrality constraints. Cote and Laughton, 1984 uses

heuristics that replace the MP and/or SP. Zakeri et al. (2000) introduces inexact cuts

in the MP by not solving the SP to optimality.

The most recent literature offers numerous efficient techniques to accelerate BD

algorithm. We can summarize those new techniques applied to improve BD into three

categories namely (i) generation of valid inequalities that speed-up the algorithm, (ii)

the generation of super-valid inequalities that cut-off non optimal feasible solution

such that it reduces the number of iteration, and (iii) the generation of cut bundles

such that each iteration generates multiple cuts to further constraint the MP. In our

thesis we focuses our efforts on the two first techniques and implemented them into

our solution methods. The third technique is not suitable for our problem because SP

is relatively difficult while this technique is a tradoff between the number of iteration

(i.e solving MP and SP) and the number of cut generated at each iteration (i.e solving

MP and multiple time variations of SP) Azad et al., 2013.

Magnanti and Wong (1981) studied the generation of non-dominated cut at each
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iteration, what they refer to as Pareto-optimal cuts. They design a modified version

of BD in which at each iteration the Magnanti-Wong cut generation problem is solve

using a MP core point. Later on Papadakos (2008) proposed to solve the independent

Magnanti-Wong problem in order to enhance the Pareto-optimal cut generation and

demonstrate that it is not necessary to use a core point to generate Pareto-optimal

cut, but instead what he called alternative Magnanti-Wong point are suffisant.

Israeli and Wood (2002) to improve the bender decomposition applied the the

shortest path network interdiction problem develop a specific type of cut that called

super-valid inequalities. The particularity of a SVI is that it removes feasible solution

but not the optimal solution, as a result it helps solving the problem by reducing the

volume of the convex hull. Later, Wood (2011) generalize the idea for bilevel network

interdiction problem.

4.3 Super-Valid Inequalities

In this subsection, the strategy adopted to speed-up the BD algorithm is to generate

additional cuts called super-valid inequalities (SVIs) that will strengthen the linear

relaxation of MP. The principle of SVIs is introduced in Israeli and Wood, 2002 and

extend the theory of valid inequalities in integer-programing theory. Valid inequalities

are cutting down the feasible region of a linear relaxation but keep all feasible integer

solution, whereas SVIs reduce the size of the integer feasible area and are guaranteed

not to eliminate all optimal solutions. In the section we introduce the formal concep

of super-valid inqualites and provide two type of SVIs to solve our problem.

Definition 4.3.1 ibid. Let x and y denote, respectively, the vectors of continuous

and integer variables in an MIP, let c1 and c2 be two conforming vectors of constants,

respectively, and let c0 be a scalar constant. The inequality c1x+c2y ≥ c0 is supervalid

for this MIP, that is, it is a supervalid inequality for the MIP, if (i) adding that

inequality to the MIP does not eliminate all optimal solutions or (ii) an incumbent

solution to the MIP, (x̂,ŷ), is (already) optimal.

The SVI are added to MP as the same time as the Bender cut generated. Al-

gorithm 3 shows the enhanced Bander decomposition using super-valid inequalities.

This algorithm is composed of two phases. The first phases relax the integrality con-

straint in the MP and follow the Bender procedure until an ϵ-optimal is found for the
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relaxed problem. The second phase reintroduce the itegrality constraint and continue

the Bender procedure untill we find an ϵ-optimal.

Algorithm 3: SVI: BD and Super-Valid Inequalities applied to T-TCFLP

Result: ϵ-optimal solution ȳ (robust set of facility)

Initialization:

Solve MP and obtain initial y0 ;

Phase 1:

integrality tolerance← 0.5 ;

while z̄φ − zφ
¯
≥ ϵ do

Step 1: Solve MP and obtain ȳ and zφ
¯

;

Step 2: Solve Dual-SP and obtain t̄ϵ and z̄φ;

Step 3: add a new Bender cut ZΦ ≥ Φπ(y) to MP ;

Step 4: Add a new SVI to MP ;

end

Phase 2:

Add integer constraint: integrality tolerance← 1× 10−5 ;

while z̄φ − zφ
¯
≥ ϵ do

Step 1: Solve MP and obtain ȳ and zφ
¯

;

Step 2: Solve Dual-SP and obtain t̄ϵ and z̄φ;

Step 3: add a new Bender cut ZΦ ≥ zΦ(ū, y) ;

Step 4: Add a new SVI to MP ;

end

4.3.1 Type-I SVI applied to R-TCFLP

The first type of SVIs (Type-I) is directly derived from Wood, 2011. The decision

variable of SP ¯tϵj1π is equal to 0 if the facility j1 was a target of the interdictor or

if the shadow cost associated to the capacity of j1 is null. In that case, at least one

of the remaining facilities must be selected. Lets considere the following Bender cut

generated at iteration π:

Zφ ≥
∑
i∈I

diβ̄iπ −
∑
j2∈V 2

(αj2δ̄j2π)yj2 −
∑
j1∈V 1

(αj1
¯tϵj1π)yj1
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Then according to Wood, 2011 the following inequality is super-valid:

∑
j1∈V 1

I( ¯tϵj1π)yj1 ≥ 1 (20)

I( ¯tϵj1π) =

⎧⎨⎩1 if ¯tϵj1π ≤ 0

0 otherwise
(21)

Type-I SVI attempt to convert the problem into a purely combinatorial prob-

lem. Note that we can also design a lifting procedure for Type-I inequalities. Let

A = (αj1
¯tϵj1π)j1∈V 1, we define S = (si)

|V 1|
i=1 = sort(A) as the unique non-increasing

sequence of element of A. We are looking for le largest k such that:

∑
i∈I

diβ̄iπ −
∑
j2∈V 2

(αj2δ̄j2π)ȳj2 − z̄φ −
k∑

i=1

si ≥ 0 (22)

As a result, the previous SVI can be tighten as following:

∑
j1∈V 1

I( ¯tϵj1π)yj1 ≥ k (23)

4.3.2 Type-II SVI applied to R-TCFLP

The second type of SVI (Type-II) uses a particularity of our problem. As a matter

of fact, the post-interdiction problem will always be more expensive than the pre-

interdiction problem, because the cost of operating the network after removing any

facility increase. Thus it is true that for any feasible solution ȳ and we can state that

Ψ(ȳ) ≤ Φ(ȳ)

ZMP (ȳ) = ρΨ(ȳ) + (1− ρ)Φ(ȳ) + F (ȳ) (24)

ZMP (ȳ) ≤ ρΨ(ȳ) + (1− ρ)Ψ(ȳ) + F (ȳ) (25)

ZMP (ȳ)− F (ȳ) ≤ Ψ(ȳ) (26)

For any given Bender cut π, the following inequality is super-valid for MP:

ZΦ ≥ ZMP (ȳ)− F (ȳ) (27)
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Table 5: Example - Problem 6b43 first iteration

j1 1 2 3 4 5 6 7 8 9 10

tϵj1 7,755 7,077 0 8,115 7,200 10,385 0 7,755 6,164 9,020
αj1 21 8 19 17 13 10 21 15 13 9

Each iteration provides a Type-II, resulting in a strong lower bound for ZΦ that

will remove inadequate solutions and faster the convergence ot this algorithm.

4.3.3 Illustration of Type-I and Type-II SVI

Here, we demonstrate on an example the application of Type-I and Type-II for a

given iteration of the Bender Decomposition algorithm. As an example we consider

the dataset 6b43 that contain 10 customers, 10 potential facilities and 5 suppliers.

The first iteration of this problem provide the following bender cut:

Zφ +
∑
j1∈V 1

(αj1
¯tϵj1π)yj1 ≥ 659310

The coefficients αj1 and ¯tϵj1π are summarized in table 5. Additional informations

are summarize below.

ȳ = [2, 6, 7, 8]

ZMP (ȳ) = 322209

F (ȳ) = 285999∑
i∈I

diβ̄iπ −
∑
j2∈V 2

(αj2δ̄j2π)ȳj2 = 659310

This Bender cuts result into a lifted Type-I SVI where the sum of yj1 with ji ∈ V 1

{3, 7} must be greater or equal to 2 and a Type-II SVI defining a lower bound for ZΦ

Type− I : y1 + y2 + y4 + y5 + y6 + y8 + y9 + y10 ≥ 2 (28a)

Type− II : ZΦ ≥ 36210 (28b)
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4.4 Pareto Optimal cuts

In this subsection, the strategy adopted to speed-up the BD algorithm is adding a

non-dominated cut at each iteration. That particular type of cut is called Pareto-

Optimal.

Definition 4.4.1 Pareto-Optimal (Magnanti and Wong, 1981) A cut is called Pareto-

optimal if no other cut dominate it. Since, a cut is defined by the point u0. This is

said Pareto-optimal.

Magnanti andWong (ibid.) created a method to systematically find Pareto-Optimal

cut by using a core point of the problem studied.

Definition 4.4.2 Core Point (ibid.) y0 is a core point of Y if and only if it is con-

tained in the relative interior y0 ∈ ri(Y c) of the convex hull Y c of Y.

However Magnanti and Wong (ibid.) cut generation method is difficult to solve

and may reduce the performance of the algorithm. Instead, we used in our algorithm

the Papadakos cut generation problem (Papadakos, 2008) also called Independent

Magnanti-Wong problem, because it has better performances. Moreover, Papadakos

methods elegantly fits our needs, because it is equivalent to the Bender subproblem

Φ(y) for a core point of our problem.

Definition 4.4.3 Papadakos cut generation problem (ibid.) Let y0 be a core point of

Y, then the optimal solution solution u0 of Φ(y0) is pareto optimal

Another difficulty of Magnanti and Wong (1981) methods is finding a core point.

Fortunately Papadakos, 2008 also demonstrate that a core point is not necessary to

generate a Pareto-Optimal cut. He introduces instead the Magnanti-Wong Point that

is sufficient to generate Pareto-Optimal cuts.

Definition 4.4.4 Magnanti-Wong Point (ibid.) A Magnati-Wong point is a point y0

for which the solution of Φ(y0) gives a Pareto-Optimal sulution u0

Finally, Magnanti andWong, 1981 provided multiple techniques to generate Magnanti-

Wong Point. We use Equation 29 to generate approximate Magnanti-Wong Point.
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The approximate point of the next iteration yπ+1
0 is the combination of the previous

approximate Magnanti-Wong Point yπ0 and the previous solution of MP ȳπ.

yπ+1
0 =

1

2
yπ0 +

1

2
ȳπ (29)

Algorithm 4 was implemented using Equation 29 where yπ=1
0 has all its elements

equals to 1 at the first iteration. This algorithm is similar to Algorithm 3 in the sense

that it is composed of two phases: (i) relaxation of the integrality constraint in MP,

(ii) reintroducing integrality constraint in MP. The differences are located in step 1

and 5.

Algorithm 4: BD and Independent Magnanti-Wong problem applied to R-
TCFLP
Result: ϵ-optimal solution ȳ (robust set of facility)
Initialization:
Solve MP and obtain initial y0 ;
Phase 1:
integrality tolerance← 0.5 ;
while UB-LB ≥ ϵ do

Step 1: Solve I-MW and obtain cut ZΦ ≥ Φy0,π(y) ;
Step 2: Solve MP and obtain ȳ and zφ

¯
;

Step 3: Solve Dual-SP and obtain t̄ϵ and z̄φ ;
Step 4: Add a new Bender cut ZΦ ≥ zΦ(ū, y) ;
Step 5:Update y0 ← 1

2
y0 +

1
2
ȳ

end
Phase 2:
Add integer constraint: integrality tolerance← 1× 10−5 ;
while UB-LB ≥ ϵ do

Step 1: Solve I-MW and obtain cut ZΦ ≥ Φy0,π(y) ;
Step 2: Solve MP and obtain ȳ and zφ

¯
;

Step 3: Solve Dual-SP and obtain t̄ϵ and z̄φ ;
Step 4: Add a new Bender cut ZΦ ≥ zΦ(ū, y) ;
Step 5:Update y0 ← 1

2
y0 +

1
2
ȳ

end
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Chapter 5

Numerical Experiments

We perform a series of numerical experiments to evaluate the performance of our

proposed model and solution methods. We tested all algorithm on three datasets

containing 49, 88 nodes. The datasets are directly extracted from Snyder and Daskin

(2004). We used our solution method on networks for |V 2| equals 5 suppliers located

in a randomly selected city based on Li et al. (2013) which states that five to eight

distributor is a reasonably large regional distribution network for up to 150 customers.

Each dataset size was solved over 5 instances with different randomly selected supplier

location. In all datasets the set of customer I is equal to the set of potential warehouse

V1, in other words, each city can host both customer and facility.

Tables 6 and 7 provides a description of the instances we used in this study. They

displays TCFLP solution in terms of cost and selected intermediate facilities.

|V 1| |V 2| F (ȳ) F (ȳ) + Ψ(ȳ) Ψ(ȳ) ȳ
problem id $k $k $k

P0 1276 49 5 263 1,620 1,356 11, 38, 40, 42, 47
P1 1277 49 5 268 817 549 3, 9, 13, 30, 35
P2 1278 49 5 340 1,576 1,236 1, 10, 18, 21, 22
P3 1279 49 5 197 1,792 1,594 6, 12, 31, 33
P4 127a 49 5 379 1,006 627 6, 10, 19, 21, 23, 43

Table 6: 49-node instances

The algorithms are coded in Python, uses CPLEX version 12.8 as a linear pro-

gramming solver and run on Windows 7 SP1 PC with 3.20 GHz 2 Duo core CPU and

16.0 GB of physical RAM. The gap tolerance is set at 5% and the algorithm after
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|V 1| |V 2| F (ȳ) F (ȳ) + Ψ(ȳ) Ψ(ȳ) ȳ
problem id $k $k $k

P5 127c 88 5 236 2,893 2,656 8, 49, 54, 59, 75
P6 127d 88 5 248 2,937 2,689 6, 9, 15, 46, 66
P7 127e 88 5 380 2,040 1,660 11, 33, 52, 75, 77, 78
P8 127f 88 5 320 2,709 2,388 22, 28, 31, 49, 71
P9 1280 88 5 246 3,142 2,895 7, 11, 30, 48, 85

Table 7: 88-node instances

7200s if it did not attain the tolerance gap.

Parameter values for our datasets are given in Table 8, those values are extracted

from Snyder and Daskin (2005).

Description notation value
Transportation cost ca,b Euclidean distance between city a and city b
Demand di equal to the state population divided by 105

Fixed cost fj1 Median home value in the city
Emergency cost e 104

Optimality tolerance ϵ 0.05

Table 8: Parameters for datasets

5.1 Benefit of Considering Facility Interdiction

In this section, we investigate the benefit of the proposed design model. First, the

proposed methods are illustrated on a single example to visualize and compare its

solution to the classical TCFLP, and then we analyze the impact of parameters such as

the weight of the post-interdiction (ρ), and the attacker budget (B) on the decision.

5.1.1 Topology and Cost Comparison

In this subsection, we study the benefits of considering potential disruption resulting

from a targeted attack while designing a supply chain network. For this purpose, we

look at the robustness of a solution for different values ρ and budget B. We use a

detailed example derived from the 49-node dataset.
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(a) TCFLP (b) R-TCFLP ρ = 0.99, B=2

(c) R-TCFLP ρ = 0.90, B=2 (d) R-TCFLP ρ = 0.80, B=2

Figure 3: Pre-Interdiction flow routing

This experiment is designed as follows: first, we consider problem P1 of the 49-

node dataset which serves the best our explanation and solves TCFLP using this

dataset. The topology of this solution is represented in Figure 3a. Then we compute

the best possible attack on TCFLP solution and the post-interdiction routing using

the attacker-defender model. Figure 4a represents the topology of the network after

an attack on TCFLP solution. We applied the same procedure to compare R-TCFLP

solutions for different values of ρ and TCFLP solution. Figure 3 represent the topology

of the network designed using TCFLP and R-TCFLP with ρ equals to 0.99, 0.90, and

0.8. Each solution can be compared with their topology after an intelligent attack

in figure 4. For this experiment, we assume that the attacker as sufficient budget to

eliminate two facilities (i.e., B = 2).

Table 9 display the selected facilities and the costs associated to each of the four

solutions studied in this section. TCFLP selects five intermediate facilities resulting

in an annualized fixed cost of $268,200 and an annual transportation cost of $549,008.

However, in the hypothesis of a targeted attack, this design will undergo tremendous

financial loss. In that event, the designer implements mitigation operation by reas-

signing the customers to a surviving facilities; however the impossibility of satisfying
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(a) TCFLP (b) R-TCFLP ρ = 0.99, B=2

(c) R-TCFLP ρ = 0.90, B=2 (d) R-TCFLP ρ = 0.80, B=2

Figure 4: Post-Interdiction flow routing

the demand facilities result in a tremendous increase is post-interdiction cost. The

post-interdiction cost is 37 times larger than the pre-interdiction cost with this model.

In that specific example, 40% of the demand can not be met, and 20 cities out of

49 are ignored in the disrupted distribution network. This situation is represented in

Figure 4a. A tightly optimized solution in a capacitated case, result in catastrophic

financial impact due to the limited capacity of the remaining intermediate facilities.

solution F Φ Ψ

R-TCFLP ρ = 0.80 3, 9, 13, 15, 24, 30, 35, 41 451,900 1,227,128 455,039
R-TCFLP ρ = 0.90 3, 9, 13, 24, 25, 30, 35 408,200 1,459,292 466,041
R-TCFLP ρ = 0.99 3, 9, 13, 15, 24, 30, 35 385,300 2,009,783 473,741
TCFLP 3, 9, 13, 30, 35 268,200 21,102,407 549,008

Table 9: Solutions and costs for problem P1

A quantitative evaluation of those four solutions are displayed in Figure5 with

respect to annual investment Ψ(y⃗)+F (y⃗) and in terms of post-interdiction cost Φ(y⃗)

. A robust solution generated with R-TCFLP contains between 7 and 8 facilities

depending on the importance given to the threat (i.e., the closer to ρ is from 1, the

less the threat is taken into account). It is reasonable to say that we are selecting
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backup facilities to prevent the losses in case of major disruption, because if we

compare the solution in Table 9 we see that the facilities selected by TCFLP are

also in R-TCFLP solution. However, the location of the backup facilities may change

based on the importance of the threat. Adding intermediate facilities to the network

comes at a cost. For instance, in the robust design of the experiment, the fixed cost

(F) increases from 40% to 70% compared to TCFLP (Table 9), however having more

intermediate facilities also reduce the transportation cost due to the fact that each

facility delivers customers in a smaller area. As a result, the total annual cost (figure

5a) of designing a robust network increase by 5% to 10% compared to TCFLP. In

return, in the event of an attack the post-interdiction cost increase by 2 to 3 times

compared to the pre-interdiction cost against 37 times in the case of TCFLP.

(a) Design costs (b) Post interdiction

Figure 5: The cost of facility interdiction

5.1.2 Impact of the Weight Attributed to The Disruption

To compare solutions for different value of ρ we would like to know how many days of

disruption the network should be exposed to in order to observe potential savings. In

this experiment, we consider three values for ρ and look at the difference in investment

and robustness of the solution obtained for the problem P1 studied in the previous

section.

We define the relative investment ∆I as the difference between the annualized cost

without disruption for R-TCFLP and TCFLP objective value. let ȳR be R-TCFLP
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optimal solution and ȳ TCFLP optimal solution then ∆I is given by Equation 30.

∆I = Ψ(ȳ) + F (ȳ)− [Ψ(ȳR) + F (ȳR)] (30)

We also define relative post-interdiction ∆r which is given by Equation 31.

∆r = −[r(ȳ)− r(ȳR)] (31)

We are looking to evaluate the least recovery time such that selecting the robust

solution is financially beneficial. In other words, if the disruption time over a year is

higher than d, then the robust solution is profitable.

d =
∆I

∆r
(32)

∆I ∆r d
$ $k days

R-TCFLP ρ = 0.80 89,730 19,781 2
R-TCFLP ρ = 0.90 57,033 19,560 1
R-TCFLP ρ = 0.99 41,833 19,017 1

Table 10: Comparison of Investment for problem P1

Table 10 demonstrates that the investment in robust network creates saving if

the disruption last a minimum of 1 or 2 days per year. We perform this analysis of

the least recovery time before return on investment on all instances and summarises

them in Table 11.The solutions generated in this example protects the network against

the interdiction of two facilities (i.e., B=2), and we look at the performances of the

network against worst case interdictions from 1 up to 4 facilities (B*). A solution

obtain with R-TCFLP will be viable in less than two weeks if the enemy attacks

a single facility, and less than two days if the enemy target more than one facility.

Moreover, when two facilities are interdicted where the network is designed to be

robust against an attacker with a budget of two the resulting value of d is about the

same no matter the value of ρ.

Tables 12 and 13 in there first column displays the solution of R-TCFLP for each

instance and different values of ρ. One should notice that we observe minor changes a

ρ changes. The changes consist of adding an extra facility or replacing some facilities

42



B* 1 2 3 4
ρ 0.99 0.90 0.80 0.99 0.90 0.80 0.99 0.90 0.80 0.99 0.90 0.80

49-node 6 11 14 1 2 3 2 2 2 1 2 3
88-node 6 9 15 1 1 2 1 1 1 1 1 6

Table 11: Average annual disruption time before return on investment

B* (# facility interdicted) 0 1 2 3 4
rho solution k$ % % % %

P0 0.99 11, 28, 29, 38, 40, 42 1,316 14 55 1046 2026
0.9 9, 28, 29, 38, 40, 42 1,310 10 42 1051 2036
0.8 11, 18, 28, 38, 40, 42, 47 1,310 5 24 346 1317

P1 0.99 3, 9, 13, 15, 24, 30, 35 473 119 324 2849 5331
0.9 3, 9, 13, 24, 25, 30, 35 466 88 213 1781 4379
0.8 3, 9, 13, 15, 24, 30, 35, 41 455 90 170 1369 3950

P2 0.99 1, 7, 10, 21, 34, 45 1,235 99 122 1239 2272
0.9 0, 10, 21, 22, 27, 34, 38, 45 1,188 12 39 406 1366
0.8 0, 10, 21, 22, 27, 38, 45, 46 1,188 12 34 406 1366

P3 0.99 6, 12, 21, 31, 33, 36 1,524 5 78 861 1674
0.9 6, 12, 15, 31, 33, 36, 38 1,518 6 24 480 1274
0.8 6, 12, 18, 21, 31, 33, 36 1,512 4 20 344 1134

P4 0.99 6, 10, 19, 21, 23, 32, 41 569 55 644 2855 4931
0.9 6, 10, 19, 21, 23, 32, 43, 47 573 21 123 1409 3323
0.8 6, 10, 19, 21, 23, 32, 43, 47 573 21 123 1409 3323

Table 12: Comparison of solution depending on ρ - 49-node

while the total number of facilities remain the same. The remaining column of those

tables represents first the cost of distributing the goods in the network under normal

condition Ψ(ȳ) then the percent post-interdiction increase when optimally targeting

1 to 4 facilities. We can see that some problem are more robust, because the percent

increase is smaller (P0 and P3 for instance).

5.1.3 Impact of the Attacker Budget

In this subsection, we analyze the impact of choosing different attacker budgets when

designing a network using R-TCFLP. In this experiment, we are only concerned by

the 49-node datasets and ran the algorithm for B varying between 1 and 3. The

parameter ρ takes the values 0.99, 0.90, 0.80. As a result, this experiment compares
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B* (# facility interdicted) 0 1 2 3 4
rho solution k$ % % % %

P5 0.99 1, 7, 8, 49, 54, 59, 75 2,619 5 30 833 1732
0.9 1, 7, 48, 54, 59, 70, 73 2,608 6 24 760 1488
0.8 1, 7, 8, 41, 49, 54, 59, 73, 75 2,612 4 9 30 211

P6 0.99 6, 8, 9, 15, 46, 66 2,686 4 51 909 1741
0.9 6, 7, 8, 9, 15, 46, 66 2,657 4 18 52 920
0.8 6, 8, 9, 15, 30, 46, 59, 66 2,677 4 8 42 583

P7 0.99 4, 11, 36, 41, 43, 52, 78 1,695 17 123 1243 2387
0.9 11, 33, 48, 52, 56, 66, 75 1,639 13 81 1363 2715
0.8 4, 11, 26, 33, 43, 46, 48, 52,

66, 75
1,632 7 32 73 131

P8 0.99 3, 22, 28, 31, 49, 71, 80 2,341 20 41 517 1380
0.9 22, 28, 31, 36, 49, 71, 80 2,338 20 34 386 1260
0.8 22, 28, 31, 36, 49, 71, 80 2,338 20 34 386 1260

P9 0.99 7, 11, 12, 25, 48, 85 2,916 16 47 821 1594
0.9 7, 11, 30, 32, 48, 77, 85 2,876 2 21 538 1204
0.8 7, 11, 25, 30, 32, 48, 51, 85 2,873 2 10 31 465

Table 13: Comparison of solution depending on ρ - 88-node

nine decisions corresponding to all possible pairs (B,ρ).

Figure 6 represents ratio of the relative investment ∆I to the optimal objective

function value of TCFLP for each of the nine designs. It is clear that the higher B,

the more significant the investment in robustness. Similarly, the smaller ρ, the lower

the investment. On top of that, the investment seems to increase linearly for a given

ρ.

Figure 7 compare the robustness of each solution when removing 1, 2, 3 or 4 facil-

ities. It displays the ratio ∆r to TCFLP solution’s post-interdiction cost. Therefore

if a point value equals to 1, then it means that the solution has the same perfomances

as TCFLP.

When optimally removing one facility (Figure 7a) all the solution are performing

equally and reduce r(y) by about ten times.

Similarly, when optimally removing two facilities, the performances of solutions

designed to sustain an attacker budget of two or three also reduce r(y) by about ten

times (Figure 7b). However, the performances of the solutions designed with B = 1

drop, but remain better than TCFLP. It is also important to notice that the results
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Figure 6: Relative investment for multiplies values of B and ρ

for (1,0.80), (1,0.90), (1,0.99) are extremely spread, they are going from 0.05 to 1

depending on the instances. This can be explain vy the fact that the initial design

did not have enught slack to to accomodate interdictions greater than 1 facility

Figure 7c and Figure 7d are very similar and illustrates how the solution performs

when optimally removing three or four facilities. In those case, we see a pattern similar

to Figure 6: the performances linearly decreases when B increase and ρ decreases.
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(a) 1 facility removed (b) 2 facilities removed

(c) 3 facilities removed (d) 4 facilities removed

Figure 7: Relative post-interdiction cost reduction for multiplies values of B and ρ

5.2 Comparison Between Solution Methods

In this section, we present result based on instances described in Table 6 and 7. We

show in which extent the proposed methods improve the efficiency of the standard

Bender Decomposition. We compare four types of algorithms listed in Table 14. We

aim primarily to compare BD to MW and SVI; however, both use the linear relaxation

of the master problem (LR). Therefore we also include in our study LR algorithm to

better assess the performance of MW and SVI. Indeed, that way we know the impact

of relaxing the integrability constraint in the master problem independently of the

cuts added by the two other methods in the Bender decomposition.

Detailed result for each of the four algorithm are listed in Tables 16 and 17. Each

table provides performances regarding CPU time (T (s)) and the number of iteration

(Iter.) as well as gaps for both the Bender Decomposition (BD gap) and the overall

problem R-TCFLP (overall gap). BD gap is computed using BD LB corresponds

to the biggest value of Zφ in the master problem, and BD UB that corresponds to
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Abbr. Designation
BD Standard Bender Decomposition
LR Bender Decomposition with linear relaxation of the master problem
MW Bender Decomposition with Magnanti-Wong pareto-optimal cuts
SVI Bender Decomposition with super-valid inequalities

Table 14: List and designation od compared algorithm

the smallest solution of the subproblem φ(y). Similarly, the overall gap is computed

using the overall LB which corresponds to the biggest value of the objective function

of R-TCFLP during the Bender Decomposition (see Equation 18a), while the UB is

an evaluation of the objective function given the solution ȳ (see Equation 2).

The renaming of this section provides a comparison between each of the four

algorithms in terms of speed, quality of solution and convergence of the algorithm.

5.2.1 Comparison of CPU Time and Number of Iteration

The standard Bender decomposition (BD) solved 27 out 30 datasets within the 7 200-

seconds time limit (i.e 90% of the problems), only three cases where ρ = 0.8 reached

the time limit. The enhanced methods can solve the same number problem, therefore

we can conclude that an instance that is hard for BD is also for LR, SVI, and MW.

Table 15 summarize the average CPU time and the number of iteration per problem

size and post-interdiction weight for each of our four algorithms. First of all, we can

see in this table that the complexity of all algorithm increase for instances with a

higher problem size |V 1| and a smaller value of ρ.

T (s) Iter.
BD LR SVI MW BD LR SVI MW

|V 1| ρ

49 0.8 225 123 145 74 75 84 86 45
0.9 105 57 49 32 48 57 56 35
0.99 21 13 15 13 14 28 28 19

88 0.8 5,843 5,937 5,342 3,897 100 129 123 72
0.9 2,045 1,097 879 618 69 87 80 45
0.99 91 56 54 46 14 29 26 18

Avg. var. -35.8% -36.9% -54.1% +49.6 % +43.3% -9.1%

Table 15: CPU time and number of iterations
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We observe that relaxing the integrability condition on the master problem (LR)

already improve significantly the performance in terms of CPU time, while the number

of iteration increases. The better performance of LR can be partially explained by

the fact that the relaxed MP is easier to solve, in consequence, we generate a greater

number of cut in a smaller amount of time. According to table 15, LR requires on

average about 50% more iterations while performing 36% better in terms of CPU

time (15). Another explanation to LR performances is that more decision variables

covered at each iteration. Indeed relaxing the integrality constraint in MP allow the

decision variable yj1 associated to open a facility to can take any real value between

0 and 1. This directly impact the fixed cost associated to a facility j1 equals to

fj1 × yj1 and its capacity equals to αj1 × yj1. In consequence, we can choose the

capacity we need for a facility and at the same time reduce the cost associated, which

encourage the designer to open more facilities closer to the customer. As a result,

the relaxed MP solution contains more non zero value for the vector y, then SP

provides tighter coefficient for those non zero values, thus the Bender cut generated

covers more variables. As Saharidis and Ierapetritou, 2010 emphasizes it is important

for the Bender Decomposition to cover more decision variables to better restrict the

solution space of the decomposed problems.

The SVI algorithm performances are similar to the LR algorithm, meaning that

the inequalities generated do not improve the efficiency of this algorithm significantly

on the problem studied. We only observe on average 1% improvement in terms of

CPU time compared to LR. We believe that this is due to the emergency facility

contained in the problem. Indeed because of this emergency facility, every Type-I

SVI will imply that at least one facility is open and the emergency facility is always

the best candidate because it is inexpensive. On top of that it is not always possible

to find a lifted Type-I SVI, therefore some iteration results in weak SVI. On the other

hand, MW demonstrates a good improvement in reducing both the CPU time (54.1%

average CPU time reduction) and the number of iteration (9.1% average number of

iteration reduction).

5.2.2 Comparison of Bounds

When the problem is solved with an ϵ-optimal solution while ϵ = 0.05, we obtain

very good overall bounds. Table 18 outline the average performance regarding the
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BD LR MW SVI

BD

gap

overall

gap

T Iter. BD

gap

overall

gap

T Iter. BD

gap

overall gap T Iter. BD

gap

overall

gap

T Iter.

rho % % s % % s % % s % % s

P0 0.99 0.0 0.0 6 10 0.0 0.0 7 27 0.0 0.0 7 18 0.0 0.0 7 25

0.90 0.7 0.1 31 31 1.7 0.2 24 41 0.8 0.1 25 35 0.0 0.0 32 49

0.80 4.5 0.8 105 56 3.4 0.6 88 83 3.2 0.6 60 46 0.2 0.0 165 97

P1 0.99 0.0 0.0 5 7 0.0 0.0 4 19 0.0 0.0 5 15 0.0 0.0 4 17

0.90 0.9 0.1 30 22 0.0 0.0 26 47 0.0 0.0 14 23 1.0 0.2 23 40

0.80 3.4 0.8 115 43 2.8 0.6 84 64 1.4 0.3 69 40 2.4 0.5 85 68

P2 0.99 0.0 0.0 84 36 0.0 0.0 36 38 0.0 0.0 34 27 0.0 0.0 48 37

0.90 3.5 0.3 291 98 3.5 0.3 147 79 4.1 0.4 66 47 3.6 0.3 113 75

0.80 4.6 0.8 570 134 3.6 0.7 275 109 0.9 0.2 125 54 4.9 0.9 205 87

P3 0.99 0.0 0.0 3 9 0.9 0.0 5 25 4.8 0.1 5 14 1.4 0.0 7 34

0.90 0.0 0.0 102 54 3.8 0.4 45 55 4.4 0.4 27 31 2.3 0.2 38 62

0.80 1.6 0.3 175 82 4.9 0.9 80 77 1.0 0.2 44 38 3.4 0.6 109 78

P4 0.99 2.1 0.1 8 6 0.0 0.0 12 29 0.0 0.0 15 22 0.0 0.0 12 25

0.90 4.2 0.5 74 33 4.0 0.4 43 62 3.0 0.3 29 37 1.0 0.1 40 52

0.80 4.2 0.9 160 59 1.5 0.3 87 89 1.6 0.3 74 49 1.0 0.2 159 100

Table 16: 49-node experimental results
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BD LR MW SVI

BD

gap

overall

gap

T Iter. BD

gap

overall

gap

T Iter. BD

gap

overall gap T Iter. BD

gap

overall

gap

T Iter.

rho % % s % % s % % s % % s

P5 0.99 0.6 0.0 26 23 0.0 0.0 29 8 0.3 0.0 26 12 0.0 0.0 34 20

0.90 2.1 0.2 469 73 4.0 0.4 1,519 73 2.5 0.3 459 42 5.0 0.6 520 73

0.80 3.5 0.6 5,346 133 4.0 0.7 4,863 105 5.0 0.9 2,225 64 19.1 1.0 7,219 135

P6 0.99 3.3 0.0 23 29 0.0 0.0 83 16 0.0 0.0 26 15 4.0 0.1 21 24

0.90 0.4 0.0 820 82 3.3 0.3 1,012 55 4.7 0.5 230 36 2.1 0.2 587 80

0.80 4.2 0.8 2,221 102 4.3 0.8 2,415 72 2.2 0.4 1,883 69 3.9 0.7 1,253 90

P7 0.99 0.0 0.0 117 28 0.0 0.0 170 16 0.0 0.0 90 22 0.0 0.0 135 27

0.90 1.8 0.2 2,463 105 4.1 0.6 4,600 99 4.5 0.6 1,289 48 4.6 0.6 2,053 93

0.80 10.3 8.9 7,395 128 28.2 5.4 7,341 90 42.0 2.6 7,262 79 42.9 2.0 7,275 115

P8 0.99 0.0 0.0 30 28 0.0 0.0 27 11 0.0 0.0 32 21 0.0 0.0 28 27

0.90 4.0 0.4 296 74 0.0 0.0 564 41 0.0 0.0 287 39 0.0 0.0 305 70

0.80 49.6 7.0 7,326 141 2.4 0.2 7,277 116 4.3 0.9 877 54 0.0 0.0 3,741 133

P9 0.99 0.1 0.0 83 35 0.0 0.0 144 18 0.1 0.0 58 22 0.1 0.0 53 31

0.90 3.9 0.4 1,438 102 1.2 0.1 2,531 77 1.1 0.1 827 59 1.0 0.1 932 83

0.80 19.6 7.7 7,397 142 26.0 2.7 7,318 117 0.4 0.1 7,239 96 15.7 1.1 7,224 142

Table 17: 88-node experimental results
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optimality gap and the overall gap for instances of the same size and value ρ for each

of the tested algorithms. All that dataset are solved to optimality except for three

cases for 88-node and ρ = 0.8, therefore for the problem solve to optimality Table

18 shows that the average overall gap is less than 1% even though the optimality

tolerance of the Bender decomposition is 5%.

Bender Gap Overall Gap
BD LR MW SVI BD LR MW SVI

cities rho % % % % % % % %

49 0.8 3.6 3.3 1.6 2.4 0.7 0.6 0.3 0.5
0.9 1.9 2.6 2.4 1.6 0.2 0.3 0.2 0.2
0.99 0.4 0.2 1.0 0.3 0.0 0.0 0.0 0.0

88 0.8 13.0 17.4 10.8 16.3 2.0 5.0 1.0 1.0
0.9 2.5 2.4 2.6 2.5 0.3 0.3 0.3 0.3
0.99 0.0 0.8 0.1 0.8 0.0 0.0 0.0 0.0

Table 18: Bender Optimality Gap and Overall Gap

Of the three problems not solved to optimality by BD (cf. problem P7, P8, P9 )

even though the bender gap seems important (up to 49 %), once again the overall

gap is very good (less than 5%) for both improved methods. Table 19 summarize the

results in terms bound for the two problems we are discussing. We also must notice

that MW and SVI are able to solve P8 problem to optimality, and P9 can be solved

using MW.

Bender Gap Overall Gap
BD LR MW SVI BD LR MW SVI
% % % % % % % %

P7 10.3 28.2 42.0 42.9 8.9 5.4 2.6 2.0
P8 49.6 2.4 4.3 0.0 7.0 0.2 0.9 0.0
P9 19.6 26.0 0.4 15.7 7.7 2.7 0.1 1.1

Table 19: Bender Optimality Gap and Overall Gap for problems P7, P8, P9 with
ρ = 0.80

We saw in the previous section that the bigger ρ, the less impact the post-

interdiction as on the objective value. As a result, it is also true that a higher

value of ρ help to close the overall gap even though the bender decomposition has

not yet reach optimality.
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5.2.3 Comparison of the Convergence

8 shows the convergence of the four algorithm for the problem 1277 with ρ = 0.8 and

B = 2, while 9 shows the same figure under a time limit of 20s . As expected, the

standard Bender decomposition perform badly in terms of closing the optimality gap.

Relaxing the integrability constraint in the master problem (LR) help the algorithm

to constantly improve the optimality gap. All methods are characterized in terms of

objective value overtime by a fast convergence under 20s and a very slow slope until

optimality is reach. We also observe that the optimality gap evolution is very chaotic

and has clearly no convergence property. This can be explained by the fact that the

restrict solution space is define as the algorithm progresses and some poor solution in

terms of optimality gap are selected because they are not yet covered in the master

problem, therefore nothing penalize that solution to be selected yet.

We clearly see the end of the fist phase (integrality relaxation of the MP) after

about 10s for the LR, SVI, and MW enhancement methods as we can see in Figure

9b. At the same time we observe a plateau on Figure 9a between 2.5s and 10s that

also correspond at end of the first phase.
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(a) Lower Bound over Time

(b) Bender Optimality Gap over Time

Figure 8: Convergence Plot
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(a) Lower Bound over Time

(b) Bender Optimality Gap over Time

Figure 9: Convergence Plot under 20s
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Chapter 6

Conclusion

In this research, we present a model that takes into account the risk of a potential at-

tack on the classical two-echelon facility location problem. We saw that in the original

model an intelligent attack has a severe financial impact on the distribution network.

Our model offers decisions makers a tool to design a distribution network that will

diminish the cost of distributing products after a disruptive event by investing in a

more robust network topology. In particular, the designer is given a choice on how

much importance he wishes to assign into reducing the post-interdiction cost.

We implemented a Bender Decomposition approach to address this porblem, and

we provided two accelerating approaches namely super-valid inequalities and Pareto-

optimal cut. Both solutions offer significant CPU time decrease compared to the

standard Bender Decomposition. However, the Pareto-optimal cut generation ap-

proach is the fastest, and we recommend this technique to solve the studied problem.

We solved scenarios with 49-node and 88-node customers and potential interme-

diate facilities. The results show that an intentional attacker can quickly destabi-

lize the network,and customers may not be served by the distribution network post-

interdiction resulting in a significant financial loss. The formulation we developed

offers flexibility concerning the weight of the post-interdiction cost in the design of a

distribution network. However, the robustness of a solution is only slightly affected by

the weight of the post-interdiction. The premium paid for designing a robust network

is recouped after a couple of days of disruption no matter the weight chosen for the

post-interdiction. On the other hand, the enemy budget is an important parameter

to consider. Anticipating the number of potential simultaneous targets is critical.
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For future work, multiple possible extensions are available given the fact that we

based this research on the most simple multi-echelon facility location problem to open

the work on this area of research that considers deterministic network interdiction on

hierarchical network design. We believe that the model and methodology studied

in this research is general enough to be extended to other classical models. A more

straightforward extension would be to look at the location and interdiction of suppliers

that have not been tackled in this study. It would also be very beneficial to integrate

other types of decision which could be strongly impacted by disruptive events such

as inventory management and routing decision.
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Appendix A

Bender Master Problem

from operator import i t emgetter , a t t r g e t t e r

# f i r s t import t h e Model c l a s s from docp l e x .mp

from docplex .mp. model import Model

def DOcplex tcnip master problem (pb , rho ) :

””” I n i t i a l Two eche l on c a p a c i t a t e d network i n t e r d i c t i o n prob lem

arguments :

pb −− Dic t i ona ry r e p r e s e n t i n g t h e prob lem ( see prob lem documentat ion )

”””

###################

# e x t r a c t data from the prob lem

d , f , c , a1 , a2 , I ,V1 ,V2 = i t emget t e r ( ’d ’ , ’ f ’ , ’ c ’ , ’ a1 ’ , ’ a2 ’ , ’ I ’ , ’V1 ’ , ’V2 ’ ) (pb)

###################

# cr e a t e one model i n s t an c e

m = Model (name=’Two eche lon capac i ta t ed f a c i l i t y l o c a t i o n ’ )

###################

# Def ine v a r i a b l e s

# x ( i , j ) i s t h e f l ow go ing out o f node i to node j

X1 = {( i , j 1 ) : m. cont inuous var (name=’ x1 {0} {1} ’ . format ( i , j 1 ) )

for i in I for j 1 in V1}
X2 = {( j1 , j 2 ) : m. cont inuous var (name=’ x2 {0} {1} ’ . format ( j1 , j 2 ) )

for j 1 in V1 for j 2 in V2}
Y = {( j ) : m. b inary var (name=’Y {0} ’ . format ( j ) ) for j in V1}
Z = m. cont inuous var (name=’Z ’ )

###################

# Def ine c o n s t r a i n t s

# c on s t r a i n t #1: demande c o n s t r a i n t

for i in I :

m. add cons t ra in t (m.sum(X1 [ i , j 1 ] for j 1 in V1) >= d [ i ] , ctname=’ demande %s ’ % i )

# con s t r a i n t #2: Flow con s e r v a t i on c o n s t r a i n t

for j 1 in V1 :

m. add cons t ra in t (m.sum(X2 [ j1 , j 2 ] for j 2 in V2) >= m.sum(X1 [ i , j 1 ] for i in I ) , ctname=’

f l ow %s ’ % j1 )

# con s t r a i n t #3: Capac i ty c o n s t r a i n t on f a c i l i t y V2

for j 2 in V2 :

m. add cons t ra in t (m.sum(X2 [ j1 , j 2 ] for j 1 in V1) <= a2 [ j2 ] , ctname=’ c apa l v l 2 %s ’ % j2 )
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# con s t r a i n t #4: Capac i ty c o n s t r a i n t on f a c i l i t y V1

for j 1 in V1 :

m. add cons t ra in t (m.sum(X2 [ j1 , j 2 ] for j 2 in V2) <= a1 [ j1 ] ∗ Y[ j1 ] , ctname=’ c apa l v l 1 %s ’ %

j1 )

###################

# Def ine Ob j e c t i v e

m. minimize (m.sum( rho ∗ X1 [ i , j 1 ] ∗ c [ i ] [ j 1 ] for i in I for j 1 in V1) \
+ m.sum( rho ∗ X2 [ j1 , j 2 ] ∗ c [ j 1 ] [ j 2 ] for j 1 in V1 for j 2 in V2) \
+ (1−rho ) ∗ Z \
+ m.sum(Y[ j1 ] ∗ f [ j 1 ] for j 1 in V1) )

return m
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Appendix B

Bender Sub Problem

from operator import i t emgetter , a t t r g e t t e r

# f i r s t import t h e Model c l a s s from docp l e x .mp

from docplex .mp. model import Model

def DOcp l ex two eche l on capac i t a t ed in t e rd i c t i on prob l em (pb ,B, dummy=False ,m dummy=10) :

””” So l v e t h e f a c i l i t y l o c a t i o n prob lem

arguments :

pb −− Dic t i ona ry r e p r e s e n t i n g t h e prob lem ( see prob lem documentat ion )

B −− Number o f f a c i l i t y to i n t e r d i c t

Note :

V1 −− Set o f open f i c i l i t y . There i s no de s i gn d e c i s i o n in t h i s prob lem

”””

###################

# e x t r a c t data from the prob lem

d , f , c , a1 , a2 , I ,V1 ,V2 , b = i t emget t e r ( ’d ’ , ’ f ’ , ’ c ’ , ’ a1 ’ , ’ a2 ’ , ’ I ’ , ’V1 ’ , ’V2 ’ , ’b ’ ) (pb)

Targets = V1

# dummy f a c i l i t y

i f dummy:

V1 = l i s t (V1) + [ len (V1) ]

a1 = l i s t ( a1 ) + [sum(d) ]

c temp = [ ]

for i in I :

c temp . append ( c [ i ] + [max( c [ i ] ) ∗m dummy ] )

c temp . append ( [max( c temp [ i ] ) for i in I ] + [ 0 ] )

c = c temp

Targets = Targets [ : −1 ]

###################

# cr e a t e one model i n s t an c e

m = Model (name=’Two eche lon capac i ta t ed i n t e r d i c t i o n problem ’ )

###################

# Def ine v a r i a b l e s

beta = { i : m. cont inuous var (name=’ beta {0} ’ . format ( i ) ) for i in I }
gamma = { j 1 : m. cont inuous var (name=’gamma {0} ’ . format ( j 1 ) ) for j 1 in V1}
de l t a = { j 2 : m. cont inuous var (name=’ d e l t a {0} ’ . format ( j 2 ) ) for j 2 in V2}

Teps i lon = { j 1 : m. cont inuous var (name=’ Teps i l on {0} ’ . format ( j 1 ) ) for j 1 in V1}
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T = { j 1 : m. b inary var (name=’T {0} ’ . format ( j 1 ) ) for j 1 in V1}
ep s i l o n = { j 1 : m. cont inuous var (name=’ e p s i l o n {0} ’ . format ( j 1 ) ) for j 1 in V1}

###################

# Def ine c o n s t r a i n t s

# c on s t r a i n t #1: Shadow co s t c o n s t r a i n t

for i in I :

for j 1 in V1 :

m. add cons t ra in t ( beta [ i ] − gamma[ j1 ] <= c [ i ] [ j 1 ] , ctname=’ shadow cost1 %s %s ’ % ( i , j 1 )

)

# con s t r a i n t #2:

for j 1 in V1 :

for j 2 in V2 :

m. add cons t ra in t (gamma[ j1 ] − de l t a [ j 2 ] − ep s i l o n [ j 1 ] <= c [ j1 ] [ j 2 ] , ctname=’

shadow cost2 %s %s ’ % ( j1 , j 2 ) )

# con s t r a i n t #3: I n t e r d i c t i o n budge t

m. add cons t ra in t (m.sum(b [ j 1 ] ∗ (1 − T[ j1 ] ) for j 1 in Targets ) <= B, ctname=’

i n t e r d i c t i o n budg e t ’ )

e p s i l o n ba r = { j 1 : 2∗max( c [ j 1 ] ) for j 1 in V1}

# con s t r a i n t #4: l i n e a r i s a t i o n 1

for j 1 in V1 :

m. add cons t ra in t ( Teps i lon [ j 1 ] − ep s i l o n ba r [ j 1 ]∗T[ j1 ] <= 0 , ctname=’ l i n 1 %s ’ % j1 )

# con s t r a i n t #5: l i n e a r i s a t i o n 2

for j 1 in V1 :

m. add cons t ra in t ( Teps i lon [ j 1 ] − ep s i l o n [ j 1 ] <= 0 , ctname=’ l i n 2 %s ’ % j1 )

# con s t r a i n t #6: l i n e a r i s a t i o n 3

for j 1 in V1 :

m. add cons t ra in t ( Teps i lon [ j 1 ] − ep s i l o n [ j 1 ] − ep s i l o n ba r [ j 1 ]∗T[ j1 ] >= − ep s i l o n ba r [ j 1 ] ,

ctname=’ l i n 3 %s ’ % j1 )

###################

# Def ine Ob j e c t i v e

m. maximize (m.sum(d [ i ]∗ beta [ i ] for i in I ) \
− m.sum( a2 [ j 2 ]∗ de l t a [ j 2 ] for j 2 in V2) \
− m.sum( a1 [ j 1 ]∗ Teps i lon [ j 1 ] for j 1 in V1) )

return m
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Appendix C

Bender Decomposition Algorithm

import pkg

import cp lex

from t ime i t import de f au l t t ime r as t imer

class DOcplex tcnip :

””” Generator f o r l o o p i n g over t h e bender cu t a l g o r i t hm ”””

def i n i t ( s e l f , pb ,B, rho ,

e p s i l o n =0.05 , max time=7200 , re lax ing m=False ,

r e l a x i n g s=False ,

debug=False , verbose=False , UB=True , ∗∗kw) :

”””

pb :

d [ i ] demand o f customer i − 1D array

f [ j ] c o s t o f opening f a c i l i t y j − 1D array s

c [ a ] [ b ] t r a n s p o r t a t i o n c o s t be tween node a and b − 2D array s

a [ j ] c a p a c i t y o f f a c i l i t y j − 1D array s

b [ j ] c o s t o f d e s t r o y i n g f a c i l i t y j − 1D array s

I ,V1 ,V2 s e t o f index f o r each group o f f a c i l i t y

e p s i l o n : a c c e p t a b l e o p t ima i l y gap

max time : t e rmina t e t h e a l g o r i t hm a f t e r max time ( s )

”””

s e l f . d i c t . update (kw)

s e l f . d i c t . update ( locals ( ) )

s e l f . i n i t i a l i s a t i o n ( )

def i n i t i a l i s a t i o n ( s e l f ) :

””” Create t h e prob lem ”””

s e l f . stop = False ; s e l f . s s t a t u s = 0 ; s e l f . m status = 0 ;

s e l f . loop = 0 ; s e l f . time = 0 ; s e l f . obj = 1 ;

s e l f . b e s t o b j e c t i v e = 0 ; s e l f . b e s t s o l u t i o n = [ ]

s e l f . b e s t s t op gab = 0 . 5 ; s e l f . b e s t o b j e c t i v e = f loat ( ’ I n f ’ ) ;

s e l f . b e s t ph i = f loat ( ’ I n f ’ )

# Generate t h e op l prob lem wi th Docp lex

m prob = pkg . DOcplex tcnip master problem ( s e l f . pb , s e l f . rho )

s prob = pkg . DOcp l ex two eche l on capac i t a t ed in t e rd i c t i on prob l em ( s e l f . pb , s e l f .B)

# Write t h e op l

m prob . e xpo r t a s l p ( ’ temp DOcplex tcnip m prob . lp ’ )

s prob . e xpo r t a s l p ( ’ temp DOcplex tcnip s prob . lp ’ )
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# Create Cplex o b j e c t

s e l f . m prob = cplex . Cplex ( ’ temp DOcplex tcnip m prob . lp ’ )

s e l f . s prob = cplex . Cplex ( ’ temp DOcplex tcnip s prob . lp ’ )

# Turn on/ o f f Cplex l o g ( a c t i v a t e d t h e l o g w i l l r educe t h e speed o f t h e a l g o r i t hm )

i f not s e l f . verbose :

s e l f . m prob . s e t l o g s t r e am (None ) ; s e l f . s prob . s e t l o g s t r e am (None )

s e l f . m prob . s e t e r r o r s t r e am (None ) ; s e l f . s prob . s e t e r r o r s t r e am (None )

s e l f . m prob . se t warn ing s t ream (None ) ; s e l f . s prob . se t warn ing s t ream (None )

s e l f . m prob . s e t r e s u l t s s t r e am (None ) ; s e l f . s prob . s e t r e s u l t s s t r e am (None )

# need to use t r a d i t i o n a l branch−and−cu t to a l l ow f o r c o n t r o l c a l l b a c k s

s e l f . m prob . parameters . mip . s t r a t egy . search . set (

s e l f . m prob . parameters . mip . s t r a t egy . search . va lues . t r a d i t i o n a l )

# The prob lem w i l l be s o l v e d s e v e r a l t imes , so turn o f f advanced s t a r t

s e l f . m prob . parameters . advance . set (0 )

s e l f . s prob . parameters . advance . set (0 )

# We want to p r e v en t t h e branch and cu t to consume to much t ime

s e l f . s prob . parameters . t ime l im i t . set ( s e l f . max time / 10)

s e l f . m prob . parameters . t ime l im i t . set ( s e l f . max time / 10)

i f s e l f . r e lax ing m :

###Re lax ing t h e i n t e g r a l i t y c o n s t r a i n t

# Keeping t h e in f o rma t i on on i n t e g r a l i t y o f some v a r i a b l e s might a l l ow the

# MIP p r e s o l v e to f i x some v a r i a b l e or t i g t h e n the bounds o f some

v a r i a b l e s

# Also i f cu t g en e r a t i on i s k ep t a c t i v e , new cu t s w i l l be added to t h e roo t node .

# A l l t h a t w i l l a l l ow you to g e t a t i g h t e r ( t hu s b e t t e r ) r e l a x a t i o n o f your MIP.

s e l f . m prob . parameters . mip . t o l e r an c e s . i n t e g r a l i t y . set ( 0 . 5 )

s e l f . phase2 = False

i f s e l f . r e l a x i n g s :

s e l f . s prob . parameters . mip . t o l e r an c e s . i n t e g r a l i t y . set ( 0 . 5 )

s e l f . phase2 = False

i f not s e l f . r e lax ing m and not s e l f . r e l a x i n g s :

s e l f . phase2 = True

#### Algor i thm Step s ####

def add bender cut ( s e l f ) :

””” Add cu t to t h e master prob lem ”””

s e l f . bdc r = [ s e l f . pb [ ’ a1 ’ ] [ j 1 ] ∗ \
s e l f . s prob . s o l u t i o n . g e t va l u e s ( ’ Teps i l on %s ’ %j1 )

for j 1 in s e l f . pb [ ’V1 ’ ] ]

s e l f . bdc rhs = sum ( [ s e l f . pb [ ’d ’ ] [ i ] ∗ \
s e l f . s prob . s o l u t i o n . g e t va l u e s ( ’ beta {0} ’ . format (

i ) )

for i in s e l f . pb [ ’ I ’ ] ] ) \
− sum ( [ s e l f . pb [ ’ a2 ’ ] [ j 2 ]∗ s e l f . s prob . s o l u t i o n . g e t va l u e s ( ’ d e l t a {0} ’ . format (

j 2 ) )

for j 2 in s e l f . pb [ ’V2 ’ ] ] )

cut = {
” l i n e xp r ” : [ cp lex . SparsePair ( ind = [ ”Z” ] + [ ”Y %s” % j1 for j 1 in s e l f . pb [ ’V1 ’ ] ] ,

va l = [ 1 ] + s e l f . bdc r ) ] ,

” s en s e s ” : [ ”G” ] ,

” rhs ” : [ s e l f . bdc rhs ]

}

s e l f . m prob . l i n e a r c o n s t r a i n t s . add ( l i n e xp r=cut [ ” l i n e xp r ” ] ,

s en s e s=cut [ ” s en s e s ” ] ,

rhs=cut [ ” rhs ” ] )

def step1 ( s e l f ) :

””” So l v e master prob lem ”””
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# pro c e s s i n g

s t a r t = timer ( )

s e l f . m prob . s o l v e ( )

end = timer ( )

# post−p r o c e s s i n g

s e l f . F1 = s e l f . m prob . s o l u t i o n . g e t va l u e s (

[ ’Y %s ’ % j1 for j 1 in s e l f . pb [ ’V1 ’ ] ] )

# Update t h e Sub−prob lem o b j e c t i v e f u n c t i o n

s e l f . s prob . ob j e c t i v e . s e t l i n e a r (

[ ( ” Teps i l on %s” % j1 ,− s e l f . pb [ ’ a1 ’ ] [ j 1 ]∗ item ) for j1 , item in enumerate ( s e l f . F1) ] )

return end − s t a r t

def step2 ( s e l f ) :

””” So l v e sub prob lem ”””

# p r o c e s s i n g

s t a r t = timer ( )

s e l f . s prob . s o l v e ( )

end = timer ( )

return end − s t a r t

def step3 ( s e l f ) :

””” Summary/ Repor t ing ”””

s e l f . loop += 1

s e l f . s s t a t u s = s e l f . s prob . s o l u t i o n . g e t s t a t u s ( )

s e l f . m status = s e l f . m prob . s o l u t i o n . g e t s t a t u s ( )

# S t a t s

s e l f . obj = s e l f . m prob . s o l u t i o n . g e t o b j e c t i v e v a l u e ( )

s e l f . Z = s e l f . m prob . s o l u t i o n . g e t va l u e s ( ’Z ’ )

s e l f . phi = s e l f . s prob . s o l u t i o n . g e t o b j e c t i v e v a l u e ( )

s e l f . f i x e d c o s t = sum( s e l f . pb [ ’ f ’ ] [ j 1 ] ∗ item for j1 , item in enumerate ( s e l f . F1) )

s e l f . p s i = ( s e l f . obj − s e l f . f i x e d c o s t − (1− s e l f . rho ) ∗ s e l f . phi ) / s e l f . rho

s e l f . s o l u t i o n = [ j1 for j1 , item in enumerate ( s e l f . F1) i f item > 0 . 5 ]

# Stop ing c r a t e r i a s

s e l f . s top gab = abs (1 − s e l f . Z / s e l f . phi )

s e l f . stop = s e l f . stop or s e l f . s top gab < s e l f . e p s i l o n or s e l f . time > s e l f . max time

# Terminat ing LP r e l a x a t i o n

i f s e l f . stop and not s e l f . phase2 :

s e l f . stop = False

s e l f . phase2 = True

s e l f . m prob . parameters . mip . t o l e r an c e s . i n t e g r a l i t y . set (0 . 00001)

s e l f . s prob . parameters . mip . t o l e r an c e s . i n t e g r a l i t y . set (0 . 00001)

s e l f . r epor t [ ”LR i t e r . ” ] = s e l f . loop

i f s e l f . debug :

print ( ”−−− MIP −−−” )

#Summary

r epor t = {
” i t e r a t i o n ” : s e l f . loop ,

” ob j e c t i v e ” : s e l f . obj ,

” s o l u t i o n ” : s e l f . s o lu t i on ,

’ cpu time ’ : s e l f . time ,

” opt ima l i ty gap” : s e l f . stop gab ,

}

i f s e l f . debug : # d e t a i l s

r epor t . update ({
” p s i ” : s e l f . ps i ,

” phi ” : s e l f . phi ,

” Z phi ” : s e l f . Z ,
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” f i x e d c o s t ” : s e l f . f i x e d c o s t ,

” t ime s ” : s e l f . t ime s ,

”time m” : s e l f . time m ,

})

r epor t . update ({
” o v e r a l l UB” : s e l f . b e s t ob j e c t i v e ,

” o v e r a l l LB” : s e l f . obj ,

” o v e r a l l gap” : abs ( ( s e l f . b e s t o b j e c t i v e / s e l f . obj ) − 1) ,

”Phase” : 2 i f s e l f . phase2 else 1

})

return r epor t

#### Co l l e c t i n g In f o ####

def ge t Teps i l on ( s e l f ) :

return [ s e l f . s prob . s o l u t i o n . g e t va l u e s ( ’ Teps i l on %s ’ %j1 )

for j 1 in s e l f . pb [ ’V1 ’ ] ]

def ge t be ta ( s e l f ) :

return [ s e l f . s prob . s o l u t i o n . g e t va l u e s ( ’ beta %i ’ % i )

for i in s e l f . pb [ ’ I ’ ] ]

def g e t d e l t a ( s e l f ) :

return [ s e l f . s prob . s o l u t i o n . g e t va l u e s ( ’ d e l t a %j2 ’ % j2 )

for j 2 in s e l f . pb [ ’V2 ’ ] ]

def s a v e b e s t s o l u t i o n ( s e l f ) :

””” Ca l c u l a t e an Upper bound f o r Master o f we o b t a i n a b e t t e r Upper bound

f o r t h e Subproblem ”””

# I f t h e Algor i thm doesn ‘ t t e rmina t e we want a good approx imate s o l u t i o n

# On top o f t h a t t h e DOcp l e x t c n i p o b j i s ve ry f a s t t o s o l v e

i f s e l f . phi < s e l f . b e s t ph i : # min SP => a c t u a l < b e s t

psi , phi , f i x e d c o s t = pkg . DOcplex tcnip obj ( s e l f . pb , s e l f . s o lu t i on , s e l f .B, l og output=

False )

i f ps i i s not None :

ob j e c t i v e = s e l f . rho ∗ ps i + (1− s e l f . rho )∗phi + f i x e d c o s t

i f ob j e c t i v e < s e l f . b e s t o b j e c t i v e : #b e t t e r UB => a c t u a l < b e s t

s e l f . best gab = abs (1 − ( ob j e c t i v e / s e l f . obj ) )

s e l f . b e s t s o l u t i o n = s e l f . s o l u t i o n

s e l f . b e s t o b j e c t i v e = ob j e c t i v e

s e l f . b e s t ph i = s e l f . phi

#### I t e r a t i o n Log ic ####

def terminate ( s e l f ) :

i f s e l f . time > s e l f . max time : #time out

s e l f . r epor t [ ” ob j e c t i v e ” ] = s e l f . b e s t o b j e c t i v e

s e l f . r epor t [ ” s o l u t i o n ” ] = s e l f . b e s t s o l u t i o n

# Ove r a l l LB−UB and gap

# Note : r e q u i r e s a v e b e s t s o l u t i o n to be c a l l e d to opdate bounds

s e l f . r epor t [ ” o v e r a l l gap” ] = abs ( ( s e l f . b e s t o b j e c t i v e / s e l f . obj ) − 1)

s e l f . r epor t [ ” o v e r a l l UB” ] = s e l f . b e s t o b j e c t i v e

s e l f . r epor t [ ” o v e r a l l LB” ] = s e l f . obj

# Bender LB−UB and gap

s e l f . r epor t [ ”BD gap” ] = s e l f . s top gab

s e l f . r epor t [ ”BD UB” ] = s e l f . phi

s e l f . r epor t [ ”BD LB” ] = s e l f . Z

# Problem parameters

s e l f . r epor t [ ”B” ] = s e l f .B

s e l f . r epor t [ ” rho” ] = s e l f . rho

return s e l f . r epor t

def run ( s e l f ) :

””” Generetor f o r i t e r a t i n g over t h e prob lem ”””

#s e l f . i n i t i a l i s a t i o n ( )
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while (not s e l f . stop ) :

s e l f . s tep ( )

y i e l d s e l f . r epor t

s e l f . terminate ( )

y i e l d s e l f . r epor t

def s tep ( s e l f ) :

# Bender

s e l f . temp obj = s e l f . obj

s e l f . time m = s e l f . s tep1 ( )

s e l f . t ime s = s e l f . s tep2 ( )

# Repor t ing

s e l f . time += s e l f . time m + s e l f . t ime s

s e l f . r epor t = s e l f . s tep3 ( )

s e l f . add bender cut ( )

return s e l f . r epor t
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Appendix D

Bender Decomposition and

Super-valid Inequalities Algorithm

import pkg

import cp lex

class DOcplex tcnip 2 ( pkg . DOcplex tcnip ) :

def i n i t i a l i s a t i o n ( s e l f ) :

”””Add i n i t i a l i s a t i o n r e l a t i v e to SVI”””

s e l f . best LB Z = 0 ; s e l f . nb r sv i = 0 ; s e l f . UB phi = 0 ;

super ( ) . i n i t i a l i s a t i o n ( )

def add SVI ( s e l f ) :

”””The Post−i n t e r d i c t i o n must be a t l e a s t e qua l t o t h e pre−i n t e r d i c t i o n c o s t ”””

LB Z = s e l f . obj − s e l f . f i x e d c o s t

### SVI 1

# Add the cu t on l y i f i t f u r t h e r c on s t r a i n t h e a l g o r i t hm

i f LB Z > s e l f . best LB Z :

# Add Z s v i

cut = {
” l i n e xp r ” : [ cp lex . SparsePair ( ind = [ ”Z” ] ,

va l = [ 1 ] ) ] ,

” s en s e s ” : [ ”G” ] ,

” rhs ” : [ s e l f . obj − s e l f . f i x e d c o s t ]

}

s e l f . nb r sv i += 1

s e l f . r epor t [ ” s v i ” ] = s e l f . obj − s e l f . f i x e d c o s t

s e l f . m prob . l i n e a r c o n s t r a i n t s . add ( l i n e xp r=cut [ ” l i n e xp r ” ] , s en s e s=cut [ ” s en s e s ” ] , rhs=

cut [ ” rhs ” ] )

### SVI 2

# Add the cu t on l y i f i t f u r t h e r c on s t r a i n t h e a l g o r i t hm

# l i f t i n g procedure

r = sorted ( s e l f . bdc r , r e v e r s e=True )

for i in range (1 , len ( s e l f . pb [ ”V1” ] ) ) :

i f s e l f . bdc rhs − sum( r [ : i ] ) − s e l f . phi < 0 :

break

cut = {
” l i n e xp r ” : [ cp lex . SparsePair ( ind = [ ”Y %s” % j1 for j 1 in s e l f . pb [ ’V1 ’ ] ] ,
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va l = [1 i f Teps i lon > 0 else 0 for Teps i lon in s e l f .

g e t Teps i l on ( ) ] ) ] ,

” s en s e s ” : [ ”G” ] ,

” rhs ” : [ i ]

}

s e l f . m prob . l i n e a r c o n s t r a i n t s . add ( l i n e xp r=cut [ ” l i n e xp r ” ] , s en s e s=cut [ ” s en s e s ” ] , rhs=cut [

” rhs ” ] )

def s tep ( s e l f ) :

super ( ) . s tep ( )

# SVI

s e l f . add SVI ( )

i f s e l f . debug :

s e l f . r epor t [ ” nb r sv i ” ] = s e l f . nb r sv i

return s e l f . r epor t
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Appendix E

Bender Decomposition and Pareto

Optimal Cut Algorithm

%%f i l e ” . / pkg/DOcplex tcnip 3 . py”

import pkg

import cp lex

from t ime i t import de f au l t t ime r as t imer

class DOcplex tcnip 3 ( pkg . DOcplex tcnip ) :

def i n i t i a l i s a t i o n ( s e l f ) :

super ( ) . i n i t i a l i s a t i o n ( )

s e l f .mw = True ; s e l f . mw cut = 0

def step mw ( s e l f ) :

””” So l v e independant Magnanti−Wong Problem ”””

# Update core po i n t

s e l f .Y0 = [ 0 . 5 ∗ s e l f .Y0 [ j1 ] + 0 .5 ∗ s e l f . F1 [ j 1 ] for j 1 in s e l f . pb [ ”V1” ] ]

# Update Ob j e c t i v e f u n c t i o n

s e l f . s prob . ob j e c t i v e . s e t l i n e a r (

[ ( ” Teps i l on %s” % j1 ,− s e l f . pb [ ’ a1 ’ ] [ j 1 ]∗ s e l f .Y0 [ j1 ] ) for j 1 in s e l f . pb [ ”V1” ] ] )

# pro c e s s i n g

s t a r t = timer ( )

s e l f . s prob . s o l v e ( )

s e l f . s s t a t u s = s e l f . m prob . s o l u t i o n . g e t s t a t u s ( )

# cu t s

cut = {
” l i n e xp r ” : [ cp lex . SparsePair ( ind = [ ”Z” ] + [ ”Y %s” % j1 for j 1 in s e l f . pb [ ’V1 ’ ] ] ,

va l = [ 1 ] + [ s e l f . pb [ ’ a1 ’ ] [ j 1 ]∗ s e l f . s prob . s o l u t i o n .

g e t va l u e s ( ’ Teps i l on %s ’ %j1 )

for j 1 in s e l f . pb [ ’V1 ’ ] ] ) ] ,

” s en s e s ” : [ ”G” ] ,

” rhs ” : [sum ( [ s e l f . pb [ ’d ’ ] [ i ]∗ s e l f . s prob . s o l u t i o n . g e t va l u e s ( ’ beta {0} ’ . format ( i )

)

for i in s e l f . pb [ ’ I ’ ] ] ) \
− sum ( [ s e l f . pb [ ’ a2 ’ ] [ j 2 ]∗ s e l f . s prob . s o l u t i o n . g e t va l u e s ( ’ d e l t a {0} ’ .

format ( j 2 ) )

for j 2 in s e l f . pb [ ’V2 ’ ] ] ) ]

}
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s e l f . m prob . l i n e a r c o n s t r a i n t s . add ( l i n e xp r=cut [ ” l i n e xp r ” ] , s en s e s=cut [ ” s en s e s ” ] , rhs=cut [

” rhs ” ] )

end = timer ( )

return end − s t a r t

def s tep ( s e l f ) :

# Magnati−Wong

i f s e l f . loop i s not 0 and s e l f .mw:

s e l f . time mw = s e l f . step mw ()

s e l f . mw cut += 1

else :

s e l f . time mw = 0

s e l f . obj = 1

s e l f . time += s e l f . time mw

super ( ) . s tep ( )

#debug

i f s e l f . debug :

s e l f . r epor t [ ”time mw” ] = s e l f . time mw

s e l f . r epor t [ ”mw cut” ] = s e l f . mw cut

#Improvement

i f s e l f . loop i s 1 :

s e l f .Y0 = l i s t ( s e l f . F1)

#Amel io ra t i on o f s o l u t i o n i f s l ow improvement

# i f abs (1 − s e l f . o b j / s e l f . t emp ob j ) < 0 . 0 1 : # no e v o l u t i o n in t h e o b j

# t o l e r a n c e s = s e l f . m prob . parameters . mip . t o l e r a n c e s . i n t e g r a l i t y . g e t ( )

# i f t o l e r a n c e s > 0 . 00001 :

# s e l f . m prob . parameters . mip . t o l e r a n c e s . i n t e g r a l i t y . s e t (

# t o l e r a n c e s / 2

# )

return s e l f . r epor t
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