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Abstract

This thesis presents two main approaches to estimating the spectral density of a

stationary time series, that are based on the classical periodogram. Both of these

are related to the non-parametric density estimation. One is the kernel spectral

density estimator while the other one is the Bernstein polynomial spectral den-

sity estimator. We have also introduced the method to determine the optimal

smoothing parameters for estimating the spectral density of a stationary zero-

mean process. Finally, the thesis concludes with a simulation study in order to

examine the finite sample properties of the proposed spectral density estima-

tors.
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CHAPTER 1

Introduction

1.1 Time Series

Definition of A Time Series

Time series is a set of observations {Xt, t ∈ Z}, each one being recorded at a

specific time t. It is a collection of sample values corresponding to different

random variables. A time series can be discrete or continuous. A discrete time

series is one in which the set of times at which observations are made is a dis-

crete set. Continuous time series are obtained when observations are recorded

continuously over time interval (see Brockwell & Davis, 1991). In general, if a

time series contains a single variable is termed as uni− variate. Otherwise, It is

termed as multivariate.

Time Series Analysis

Time series analysis is the procedure of fitting a time series to a proper model

(see Hipel & McLeod, 1994). The basic objective of time series analysis is to un-
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CHAPTER 1: INTRODUCTION

derstand the underlying context of the data through the use of stochastic mod-

els to forecast future values and to simulate based on previously observed val-

ues. Methods for time series analysis may be divided into two classes: frequency-

domain method and time-domain method. The first one includes spectral-

analysis and wavelet-analysis, and the other one includes auto-correlation and

cross-correlation analysis. In real life, time series analysis are used in many

different areas such as signal processing, mathematical finance, weather fore-

casting and so on.

1.2 Basic Concepts of Time Series

Most of the following materials are based on the textbooks of Priestley (1981)

and Brockwell and Davis (1991).

Stationary Processes

In general, we have two types of the time series: stationary and non-stationary.

Stationary series vary around a constant mean, neither decreasing nor increas-

ing systematically over time, with a constant variance. Non-stationary series

have systematic trends, such as linear, quadratic, and so on. In this thesis, we

only focus on the stationary time series.

Definition 1. Let {Xt, t ∈ Z} be a time series with E(X2
t ) < ∞. The mean function

of {Xt} is

µX(t) = E(Xt). (1.2.1)

3



CHAPTER 1: INTRODUCTION

The covariance function of {Xt} is

γX(r, s) = Cov(Xr, Xs)

= E[(Xr − µX(r))(Xs − µX(s))], r, s ∈ Z (1.2.2)

Definition 2. The time series {Xt, t ∈ Z} is (Weakly) stationary if

(i) µX(t) is independent of t,

(ii) γX(t + h, t) is independent of t for each h.

In other words, a stationary time series {Xt; t ∈ Z} must have these features:

finite variance, constant first moment, and the second moment only depends

on h and independent of t.

Remark 1. Strict stationary time series is defined by the condition that (X1, ..., Xn)

and (X1+h, ..., Xn+h) have the same joint distributions for all integers h and

n > 0. Whenever term stationary is used we shall mean weakly stationary

as in De f inition 2,(see Brockwell & Davis, 1991).

Definition 3. If {Xt, t ∈ Z} is a stationary time series, then the auto-covariance

function (ACVF) is defined by

γX(h) = Cov(Xt+h, Xt)

= E[(Xt+h − µX(t + h))(Xt − µX(t))], t, h ∈ Z (1.2.3)

Note that, for h = 0, the auto-covariance reduces to the variance, that is

γX(0) = E(Xt − µX(t))2 = Var(Xt). (1.2.4)

Time Series Models

The basic building block for all processes considered is the white noise process.

4



CHAPTER 1: INTRODUCTION

Definition 4. (White Noise Process) A white noise process is a sequence {εt, t ∈ Z}

whose elements have zero mean and variance σ2,

E(εt) = 0, E(ε2
t ) = σ2, (1.2.5)

and for which the ε’ s are uncorrelated

E(εtεs) = 0 f or t 6= s. (1.2.6)

If ε’s are independent, the sequence is called independent white noise process. Further-

more, if the ε’s are normally distributed

εt ∼ N(0, σ2) (1.2.7)

is called Gaussian white noise process.

The selection of a proper model for time series data is very important as it re-

flects the underlying structure of the time series and this fitted model in turn

is used for future forecasting. In the main, these models can have many forms

and represent different stochastic processes. The most frequently used time

series models in the literature are the Moving-Average (MA) Model, the Auto-

Regressive (AR) Model, the Auto-Regressive Moving Average (ARMA) Model

and the Auto-Regressive Integrated Moving Average (ARIMA) Model.

Definition 5. (Moving-Average Model) A p-th order moving average process, de-

noted MA(p) is a stochastic process {Xt} characterized by

Xt = εt +
p

∑
i=1

θiεt−i, (1.2.8)

where θi is real number, and εt is white noise.

Definition 6. (Auto-Regressive Model) A q-th order auto-regressive process, de-

noted AR(q) is a stochastic process {Xt} characterized by

Xt =
q

∑
j=1

φjXt−j + εt, (1.2.9)

where φj is any real number and the εt is an independent white noise process.

5



CHAPTER 1: INTRODUCTION

The ARMA model is a composite of AR and MA models.

Definition 7. (Auto-Regressive Moving Average Model) An ARMA model is a

stochastic process {Xt} characterized by:

Xt =
q

∑
j=1

φjXt−j +
p

∑
i=1

θiεt−i + εt. (1.2.10)

where φj and θi are any real number and the εt is an independent white noise process.

Definition 8. (Auto-Regressive Integrated Moving Average Model) The ARIMA

model is a generalization of an ARMA model. ARIMA models are applied in some

cases where data is non-stationary. The model of ARIMA(p, d, q) is defined as:

(1−
p

∑
i=1

φiLi)(1− L)dXt = (1 +
q

∑
i=1

θiLi)εt, (1.2.11)

where L is the lag operator, the φi are the parameters of the auto-regressive part of the

model, and the θi are the parameter of the moving average part and the εt are error

terms.

In the present thesis, we mainly consider non-parametric estimation of the

spectral density function. The non-parametric smoothing methods provide a

powerful methodology for estimating the spectral density function of station-

ary processes. The non-parametric approaches estimate the covariance or the

spectrum of the process without assuming that the process has any particular

structure. There exist a great many different non-parametric density estimation

methods, for example, histogram estimation, kernel density estimation, maxi-

mum penalized likelihood estimators, etc.

6



CHAPTER 1: INTRODUCTION

1.3 Spectral Methods

The Fourier Transform

Let ω ∈ (−π, π) denote the f requency, and T is the period , that is, T = 2π
ω .

Given a time series {Xt; t ∈ Z}, its Fourier trans f ormation is:

X(ω) =
1

2π

∞

∑
t=−∞

eiωtX(t) (1.3.1)

and the inverse trans f orm is:

X(t) =
∫ π

−π
X(ω)e−iωtdω. (1.3.2)

The Spectral Density Function

Definition 9. (Spectral Density Function) Let {Xt; t ∈ Z} be a real value and zero-

mean stationary time series with the auto-covariance function, γX(h) = γX(−h) =

Cov(XtXt+h) = E(XtXt+h), satisfying that

+∞

∑
h=−∞

|γX(h)| < ∞, h ∈ Z. (1.3.3)

The spectral density function of {Xt; t ∈ Z} can be written as

fX(ω) =
1

2π

+∞

∑
h=−∞

e−ihωγX(h) (1.3.4)

=
1

2π

+∞

∑
h=−∞

cos(ωh)γX(h) (1.3.5)

=
1

2π
γX(0) +

1
π

∞

∑
h=1

cos(ωh)γX(h) (1.3.6)

where eiω = cos(ω) + i sin(ω) and i =
√
−1.

7



CHAPTER 1: INTRODUCTION

There are some properties of the spectral density function:

1) fX(ω) is even,

2) fX(ω) is non-negative for all ω ∈ [−π, π], and
∫ π
−π fX(ω)dω = 1,

3) γX(h) =
∫ π
−π eihω fX(ω)dω =

∫ π
−π cos(hω) fX(ω)dω.

Note that since cos is a periodic function with the period 2π, the range of values

of the spectral density is determined by the value of fX(ω) for ω ∈ [0, π]. (see

Brockwell & Davis, 1991)

1.4 Literature Review

Many techniques for spectral density have been established in the literature

estimation. At the turn of the century, the most commonly used methods are

based on the periodogram which was introduced by Arthur Schuster in 1898

when he was searching for hidden periodicities while studying sunspot data

(see Schuster, 1898). Since the periodogram is inconsistent, then many scientists

were concerned with the modification of the periodogram to find a consistent

form such as Bartlett (1948), Daniell (1946), Grenander (1951), Parzen (1962)

and so on.

Other alternative famous estimators, such as kernel density estimator (see Rosen-

blatt, 1956; Parzen, 1962), have received much attention at the same time. More

recently, Kakizawa (2004, 2006) proposed the Bernstein polynomial approxi-

mation method to estimate a spectral density function by properly choosing

different kernel estimates.

8



CHAPTER 1: INTRODUCTION

1.5 Thesis outline

The thesis is organized as follows: in Chapter 2, we define the algorithms for

the several classical estimation methods. In Chapter 3, we provide details of the

Bernstein spectral density estimator as well as the cross-validation for the selec-

tion of the smoothing parameter. In Chapter 4, simple transformation methods

using kernel density estimator and Bernstein polynomial estimator on real line

are explained as an alternative. In Chapter 5, a comparison of estimators given

in the previous chapters is provided through simulation. In Chapter 6, we give

summary of the thesis and provides some directions for future research work.

9



CHAPTER 2

Traditional Smoothed Estimators

2.1 Classical Estimator - The Periodogram

In practice, to estimate the spectral density function, we may replace the the-

oretical auto-covariances by the sample auto-covariances to equation (1.3.4).

Thus, based on T observations X1, X2, ..., XT from Xt at equally spaced interval

in time, the periodogram can be defined for all ω in the range ω ∈ [−π, π] by

IT(ω) =
1

2πT
|

T

∑
t=1

e−itωXt|2 (2.1.1)

=
1

2π
γ̂T(0) +

1
π

T−1

∑
h=1

γ̂T(h) cos(ωh), (2.1.2)

where

γ̂T(h) = T−1
T−|h|

∑
t=1

XtXt+|h|, |h| ≤ T − 1 (2.1.3)

is the sample auto-covariance of lag h. We assume through out that IT(ω) is

continuous for all ω, this will certainly hold if γ̂(s) is absolutely summable. It

shows that the function IT(ω) is even and 2π periodic.

10



CHAPTER 2: TRADITIONAL SMOOTHED ESTIMATORS

We have the following asymptotic distribution of the periodogram,

IT(ω) ∼ fX(ω)χ2
2

2
. (2.1.4)

Since E(χ2
2) = 2, the sample periodogram provides an unbiased estimate of the

spectrum, lim
T→∞

E(IT(ω)) = f (ω). However, the variance of IT(ω) does not go

to zero (see Brillinger, 1981). In fact,

Var(IT(ω)) =

{
2 f 2

X(0), ω = 0

f 2(ω), otherwise.

Therefore, IT(ω) is not a consistent estimator of fX(ω)in mean square (see

Priestley, 1981).

Consistent estimators of fX(ω) can be obtained by smoothing the periodogram.

Let the Fourier frequencies of the sample be defined as ωk = 2πk
T , j ∈ Z. The

basic idea of the simple smoothed periodogram can be expressed as the average

neighboring value estimate:

f ∗X(ω) =
1
n ∑

k
IT(ωk). (2.1.5)

Furthermore, there are several classical methods to have a consistent estimate.

For example, Brillinger (1981) proposed to smooth the data {(ωk, IT(ωk))} , k =

1, 2...n−1
2 directly through a weighted local average; another famous method

is to smooth the log periodogram data {(ωk, log(IT(ωk)))} through the least

square method (see Wahba, 1980), etc.

11



CHAPTER 2: TRADITIONAL SMOOTHED ESTIMATORS

2.2 Kernel Smoothed Estimator

Kernel Density Estimator

The kernel method for density estimator was introduced by Rosenblatt (1956)

and Parzen (1962) which is defined as follows,

Definition 10. Let {Xt, t ∈ N} be a random sample from a continuous distribution

function F with density function f , its kernel density estimator is

f̂ (x) =
1
n

n

∑
j=1

Kh(x− Xj) (2.2.1)

=
1

nh

n

∑
j=1

K
(x− Xj

h

)
(2.2.2)

where K is a symmetric density with zero mean and unit variance, non-negative and

real-valued kernel function.

The bandwidth h > 0 which depends on n such that h → 0 and nh → ∞ as

the sample size n → ∞. Several types of kernels are commonly used such as

Uni f orm, Parabolic, Biweight and Gaussian and so on.

Remark 2. In particular, if we consider estimation of the density for circular

data, i.e. an absolutely continuous circular density f (θ), θ ∈ [−π, π] which is

2π-periodic,

f (θ) ≥ 0 f or θ ∈ R and
∫ π

−π
f (θ)dθ = 1 (2.2.3)

Given a random sample {θ1, θ2, ..., θn} for the above density, thus the kernel

density estimator may be written as (see Chaubey, 2017)

f̂ (θ) =
1

nh

n

∑
i=1

K
(θ − θi

h

)
. (2.2.4)

12
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Kernel Spectral Density Estimator

Kernel based estimator of the spectral density is the weighted sum of auto-

covariance, in which weights are decided by the kernel K and bandwidth h.

More generally, we can consider Lag Window Estimator, that is,

f̂ (ω) =
1

2π

T−1

∑
s=1−T

λ(s)γ̂(s)e−iωs (2.2.5)

(see Priestley, 1981), where {λ(.)} is called lag window.

According to (see Priestley, 1981), if we apply the properties of Fourier trans-

forms, the lag window density estimator may be written as an integrated ver-

sion of periodogram,

f̂ (ω) =
∫ π

−π
IT(θ)W(ω− θ)dθ, (2.2.6)

where W(.) is the spectral window,

W(θ) =
1

2π

T−1

∑
s=−(T−1)

λ(s)e−iθs (2.2.7)

(see Brockwell & Davis, 1991; Priestley, 1981)

Remark 3. For practical purposes, instead of the integral we will rather use the

discrete sum over all Fourier frequency, which is

f̂ (ω) ≈ 1
2π

N

∑
j=−N

W(ω−ωj)IT(ωj). (2.2.8)

where N is the largest integer less or equal to T−1
2 .

There are lots of different possible lag windows that would fulfill the conditions

to obtain a consistent estimate of the spectral density (see Priestley, p. 434). A

rather convenient type of lag windows are the scale parameter windows (see

Priestley, p. 446). These contain a parameter, the scale parameter, that in some

way controls for the width of the window.

13
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Definition 11. λ(.) is a scale parameter window if

λ(s) = k(s/M) (2.2.9)

where k(.) is a lag window generator with k(0) = 1 and M is the scale parameter. Its

Fourier transform

K(θ) =
1

2π

∫ ∞

−∞
k(u)e−iuθdu, (2.2.10)

is called a spectral window generator.

Thus, the relationship between the W(θ) and K(θ) is

W(θ) =
1

2π

T−1

∑
s=−(T−1)

λ(s)e−iθs

= M[
1

2πM

∞

∑
s=−∞

k(s/M)e−i(s/M)Mθ]

= M
∞

∑
s=−∞

K[M(θ + 2πs)]

∼ MK(Mθ). (2.2.11)

Remark 4. However, in particular the Lomnicki-Zaremba window, the Whittle

window, the Daniells window, and the ’exact’ form of the Bartlett window can-

not be written in the form (2.2.9), so that these windows are not of the ’scale

parameter’ form.

Therefore, the periodogram can be smoothed by convolving with a spectral ker-

nel weight K to obtain the kernel spectral density estimator f (ω) from equation

(2.2.6)

f̂ (ω) =
∫ π

−π

1
h

K[
ω− θ

h
]IT(θ)dθ, (2.2.12)

14



CHAPTER 2: TRADITIONAL SMOOTHED ESTIMATORS

For the kernel estimation of spectral density, the following kernel windows are

commonly used (see Priestly, 1981):

1. Truncated kernel

k(z) = 1(|z| ≤ 1)

Its Fourier transform

K(u) =
sinu
πu

.

2. Bartlett kernel

k(z) = (1− |z|)1(|z| ≤ 1)

Its Fourier transform

K(u) =
1

2π

( sin(u/2)
u/2

)2
.

3. Daniell kernel

k(z) =
sin(πz)

πz
Its Fourier transform

K(u) =


1

2π
, if |u| ≤ π,

0, otherwise.

4. Parzen kernel

k(z) =


1− 6z2 + 6|z|3, if |z| ≤ 1/2,

2(1− |z|)3, 1/2 ≤ |z| < 1,

0, otherwise.

Its Fourier transform

K(u) =
3

8π

( sin(u/4)
u/4

)4
.

5. Quadratic-Spectral kernel (Epanechnikov)

k(z) =
3

(πz)2 [
sin(πz)

πz
− cos(πz)]

Its Fourier transform

K(u) =
3

4π
[1− (

u
π
)2]1(|u| ≤ π)

15



CHAPTER 2: TRADITIONAL SMOOTHED ESTIMATORS

Bandwidth Selection

Smoothed estimators of the spectral density, relies on the choice of a bandwidth

or lag number depending on the sample size. Selecting the bandwidth h is a

very important step in estimating density function. If the bandwidth chosen

is too large, the kernel density estimator is over-smoothed and key aspects of

the true density may not be revealed. On the other hand, if the bandwidth is

too small, then the kernel density estimator is under-smoothed (see Mugdadi

and Jetter, 2010). The shape of the kernel must be specified but has little effect

on the resulting estimate compared to the choice of h (see Silverman 1986). In

summary, while there exists many bandwidth selectors, no rule comes with a

guarantee that it will work satisfactorily in all cases. Different techniques and

details have been proposed by Wand and Jones (1994).

16



CHAPTER 3

Alternative Smooth Estimator Based

on Bernstein Polynomial

3.1 Introduction

Theorem 1. (Weierstrass Approximation Theorem) Suppose f is a continues real-

valued function defined on the real interval [a, b]. For every ε > 0, there exists a

polynomial p such that for all x in [a, b], we have | f (x)− p(x)| < ε, or equivalently,

the supremum norm || f − g|| < ε.

It is well-known that the Bernstein polynomial is a useful tool for interpolat-

ing functions defined on a closed interval and can be used to approximate a

density function defined on such an interval. Bernstein polynomials were first

introduced by Bernstein (1912) who developed them as a probabilistic proof

of the Weierstrass Approximation Theorem. He showed that for any continu-

ous function can be uniformly approximated by Bernstein polynomials. The

Bernstein−Weierstrass Approximation Theorem assures that as the degree of

the polynomial increase to infinity the Bernstein polynomial approximation

17
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coverages uniformly to the true function. Bernstein-based approaches to other

problems of non-parametric function have also been developed by different

authors. Vitale (1975) considered the smooth estimate of a probability density

function with a finite support [0, 1]. Babu et al. (2002) investigated the asymp-

totic properties of using Bernstein polynomials to approximate bounded and

continuous density functions. Kakizawa (2006) considered the Bernstein poly-

nomial can be used as a non-parametric prior for continuous densities. Then

Kakizawa (2006) modified the Bernstein polynomial to estimate spectral den-

sity function.

3.2 Bernstein Probability Density Estimator

Let G be an any continuous function on the closed interval [x0, x0 + ∆], then the

associated Bernstein polynomial is

B(x) =
m

∑
j=0

G
(

x0 +
j∆
m

)
bj,m

(x− x0

∆

)
(3.2.1)

converges to G(x) uniformly in x ∈ [x0, x0 + ∆] as m→ ∞, where

G(x) =
∫ x

x0

g(u)du, (3.2.2)

and

bj,m(y) =
(

m
j

)
yj(1− y)m−j, y ∈ [0, 1]. (3.2.3)

Differentiating the formula of B(x), we obtain

B′(x) =
m

∑
j=0

G
(

x0 +
j∆
m

) d
dx

bj,m

(x− x0

∆

)
=

m
∆

m−1

∑
j=0

{
G
(

x0 +
(j + 1)∆

m

)
− G

(
x0 +

j∆
m

)}
bj,m−1

(x− x0

∆

)
,

(3.2.4)

B′(x) converges to G′(x) = g(x) uniformly in x ∈ [x0, x0 + ∆] as m→ ∞, where

g(x) is assumed to be continuous in [x0, x0 + ∆] (see Kakizawa, 2006).
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Remark 5. In particular, without loss of generality, for the interval [0, 1], the

Bernstein polynomial is

B(x) =
m

∑
j=0

G
( j

m

)(m
j

)
xj(1− x)m−j, (3.2.5)

which converges to G(x) uniformly as m is large; and its derivative

B′(x) = m
m−1

∑
j=0

{
G
( j + 1

m

)
− G

( j
m

)}
bj,m−1(x) (3.2.6)

converges to g(x) under the same condition.

Note that the asymptotic properties of B(x) and B′(x) are examined in a pa-

per by Babu, Canty and Chaubey (2002).

3.3 Bernstein Spectral Density Estimator

Let’s extend the use of the Bernstein polynomials to the spectral density func-

tion on the closed interval θ ∈ [−π, π]. Since the spectral density function is

even and periodic, it is sufficient to confine ourselves to the study of the in-

terval θ ∈ [0, π]. Once an estimator f̂ (θ) of a spectral density function f (θ) is

constructed for all θ ∈ [0, π], it can be extended to θ ∈ R, in such a way that

we set f̂ (θ) = f̂ (|ω|) when θ = ω + 2πv for some ω ∈ (−π, π] and v ∈ Z (see

Lorentz, 1986).

We may use the linear trans f ormation to θ:

x =
θ

π
∈ [0, 1], (3.3.1)

then apply the Bernstein polynomial approximation theory. It is possible that

to apply the Bernstein polynomial for the spectral density f (θ) itself directly,
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then we will have (see Kakizawa, 2006)

B(θ) =
m

∑
j=0

f
(π j

m

)(m
j

)( θ

π

)j(
1− θ

π

)m−j
(3.3.2)

≈ f (θ), θ ∈ [0, π]. (3.3.3)

We already know the property of the spectral density from the Chapter 1. Since

the periodogram is inconsistent estimator of the spectral density f (ω), although

it is, for each ω ∈ [−π, π], an asymptotically unbiased estimator of f (ω).

Specifically, if f (ω) satisfies a Lipshitz condition of order 1, i.e. if | f (α) −

f (β)| ≤ C|α− β| as |α− β| → 0 and C being a constant, then implies,

E[IT(ω)] =

 f (ω) + O
( log T

T

)
, if γ = 1; (3.3.4)

f (ω) + O(T−γ), if γ < 1. (3.3.5)

both uniformly in ω ∈ [−π, π] (see Hannan, 1970; Priestley, 1981).

Moreover, the periodogram is used to estimate the linear function of

L( f ) =
∫ π

−π
A(ω) f (ω)dω (3.3.6)

=
∫ π

−π

1
2
{A(ω) + A(−ω)} f (ω)dω (3.3.7)

for given function A(ω). If we substitute the periodogram for the spectral

density in this function, L(IT) or its discrete average at the points 2π j
T is an

asymptotically unbiased, T1/2-consistent and asymptotically normal estimator

of L(IT). (see Brillinger, 1981; Hosoya and Taniguchi, 1982).

In particular, for the spectral distribution function, i.e. cumulative spectrum is:

F(θ) =
∫ θ

−π
f (ω)dω, (3.3.8)

then we set

F+(θ) = 2
∫ θ

0
f (ω)dω, (3.3.9)
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since f (ω) is even, which is naturally estimated by substituting the periodogram,

F̂+
T (θ) = 2

∫ θ

0
IT(ω)dω

= 2
∫ θ

0

{ 1
2π

γ̂T(0) +
1
π

T−1

∑
h=1

γ̂T(h) cos(ωh)
}

dω

= 2
∫ θ

0

1
2π

γ̂T(0)dω + 2
∫ θ

0

1
π

T−1

∑
h=1

γ̂T(h) cos(ωh)dω

=
θ

π
γ̂T(0) +

1
π

T−1

∑
h=1

γ̂T(h)
∫ θ

0
cos(ωh)dω

=
θ

π
γ̂T(0) +

2
π

T−1

∑
h=1

1
h

γ̂T(h) sin(θh). (3.3.10)

F̂+
T (θ) is an asymptotically unbiased estimate of F+(θ), it follows that F̂+

T (θ) is

a consistent estimate of F+(θ) (see Priestly, 1981).

Then we can propose for θ ∈ [0, π],

f̂T,m(θ) =
m
2π

m−1

∑
j=0

{
F̂+

T

( (j + 1)π
m

)
− F̂+

T

( jπ
m

)}
bj,m−1

( θ

π

)
=

m
π

m−1

∑
j=0

bj,m−1

( θ

π

) ∫ (j+1)π
m

jπ
m

IT(θ)dθ

=
m
π

m−1

∑
j=0

bj,m−1

( θ

π

) ∫ (j+1)π
m

jπ
m

1
2π

γ̂T(0) +
1
π

T−1

∑
h=1

γ̂T(h)cos(θh)]dθ

=
m
π

m−1

∑
j=0

bj,m−1

( θ

π

){ 1
2m

γ̂T(0) +
1
π

T−1

∑
h=1

γ̂T(h)
1
h

sin
( (j + 1)π

m

)}
(3.3.11)

as an estimator of f (θ). (see Kakizawa, 2006)
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3.4 Bernstein-Kernel Spectral Density Estimator

Recall that for Bernstein spectral density estimator:

f̂ (θ) =
m
π

m−1

∑
j=0

bj,m−1

( θ

π

) ∫ (j+1)π
m

jπ
m

IT(θ)dθ (3.4.1)

From the Chapter 2, the kernel spectral density function is:

f̂K(ω) =
∫ π

−π
IT(θ)W(ω− θ)dθ, (3.4.2)

where W(ω) ≈ MK(Mω).

Then we define Bernstein’s generalized kernel spectral density estimator

f̂BGK(θ) =
m−1

∑
j=0

bj,m−1

( θ

π

)
f̂K(xj) (3.4.3)

=
∫ (j+1)π

m

jπ
m

φ(λ)IT(λ)dλ, θ ∈ [0, π] (3.4.4)

(see Kakizawa, 2006)

where

φ(λ) = 2m
m−1

∑
j=0

K{2m(λ− xj)}1(λ; B)bj,m−1(
θ

π
), (3.4.5)

and 1(λ; B) is the indicator function,

1(y; B)

{
1; if y ∈ B; (3.4.6)

0; otherwise. (3.4.7)

Example 1. For example, the Daniell-kernel spectral density estimator is de-

fined as follows:

f̂Daniell(λ) =
∫ λ+π

h

λ−π
h

IT(ω)
h

2π
dω. (3.4.8)

It may noted that this estimator at the frequency 0 and π but for the Daniell-

kernel spectral density estimator at frequency π
2m and π − π

2m :

f̂ (0) = f̂Daniell

( π

2m

)
(3.4.9)
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and

f̂ (π) = f̂Daniell

(
π − π

2m

)
(3.4.10)

Therefore,

f̂ (λ) =
m−1

∑
j=0

bj,m−1

(λ

π

)
f̂Daniell(xj) (3.4.11)

where xj = −π + (j+1/2)π
m for all j = 0, ..., m− 1.

3.5 The Selection of the Degree m

Beltrao and Bloomfield (1987) provide the first objective criterion for the selec-

tion of the parameter in the area of cross-validation methods. They argue that,

by minimizing a cross-validation version of the log-likelihood function (CVLL),

one will also minimize the mean square integrated error, which is what they

propose as a theoretical figure of merit for a spectrum estimate. Since it only

contains non-parametric estimates, then Hurvich (1985) extends to any estimate

derived from the observed data. In particular, the class of estimates now in-

clude both Yule-Walker and periodogram-based type estimates. As Hurvich

(1985) still wants to use Beltrao and Bloomfield’s (1987) technique for the au-

tomatic smoothness parameter selection, he defines a leave-out-one spectrum

version for any estimates. His main contribution is certainly the introduction

of a method that allows for simultaneous and objective choice of both type of

estimate and the corresponding smoothness parameters.

Hurvich (1985) presents three different forms of cross-validation methods: the

cross-validated log-likelihood method of Beltrao and Bloomfield (1987), Stuet-

zle’s smoothed estimate (SES, see Palmer (1983)) and an adaptation of the cross-

validation mean squared error (CVMSE) method of Wahba and Wold (1975).
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By introducing two generally applicable definitions of leave-out-one versions

of the spectrum estimate he extends the applicability of the CVLL, SES and

CVMSE techniques. Either of these definitions in conjunction with the CVLL,

SES or CVMSE methods will yield an objective choice from a general class C,

where C includes any estimate whose leave-out-one versions is defined.

The distance measure, which Hurvich(1985) quite loosely denotes MISE, for

the CVLL, SES, and CVMSE methods, respectively, are defined by,

MISE1( f̂ ) = E

{
1
Ñ

Ñ

∑
p=1

(
f̂ (ωp)− f (ωp)

f (ωp)
)2

}
, (3.5.1)

MISE2( f̂ ) = E

{
1
Ñ

Ñ

∑
p=1

( f̂ (ωp)− f (ωp))
2

}
, (3.5.2)

MISE3( f̂ ) = E

{
1
Ñ

Ñ

∑
p=1

(log f̂ (ωp)− log f (ωp))
2

}
, (3.5.3)

The cross-validation estimates of MISEi( f̂ ), for i = 1, 2, 3 are

CVLL( f̂ ) =
1
Ñ

{
Ñ

∑
p=1

log f̂−p(ωp) +
I(ωp)

f̂−p(ωp)

}
, (3.5.4)

SES( f̂ ) =
1
Ñ

Ñ

∑
p=1

( f̂−p(ωp)− I(ωp))
2, (3.5.5)

CVMSE( f̂ ) =
1
Ñ

Ñ

∑
p=1

((log f̂−p(ωp)− (log I(ωp) + C))2 − π2

6
) (3.5.6)

where C = 0.577216... is the Euler’s constant and f̂−p(ωp) is a general leave-

out-one version of f̂ , such that f̂−p(ωp) is approximately independent of I(ωp)

for each p. The independence is achieved by omitting I(ωp) from the compu-

tation of f̂−p(ωp).
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In a first step, Hurvich (1985) defines the general leave-out-one spectrum es-

timate for any estimate that is a function of the sample auto-covariances γ̂(k)

as defined before. In particular, this class of estimated includes both all non-

parametric estimates and the Yule-Walker auto-regressive estimates. Let any

estimate of this class be written as f̂ (ω, (γ̂(k))).

I−p(ω) = I(ω) ω /∈ ((ωp−1, ωp+1) ∪ (ω−p−1, ω−p+1))

= θ1,ω I(ωp−1) + θ2,ω I(ωp+1) ω ∈ (ωp−1, ωp+1)

= I−p(−ω) ω ∈ (ω−p−1, ω−p+1) (3.5.7)

for ω ∈ [−π, π], where

θ1,ω = 1−
ω−ωp−1

ωp+1 −ωp−1
(3.5.8)

and

θ2,ω =
ω−ωp−1

ωp+1 −ωp−1
. (3.5.9)

In general, the periodogram is only evaluated at the Fourier frequencies. If it is

evaluated on a sufficiently fine grid, though, it completely determines the γ̂(k)

sequence by

γ̂(k) =
2π

n′
n′−1

∑
k=0

I(ω′k)e
irω′k , (3.5.10)

where n′ = 2n and ω′k = 2πk
n′ . Here the ω′k are defined on a grid exactly twice

as finely spaced as the Fourier frequencies. Hurvich (1985) then defines the

sequence γ̂(k)−p by

γ̂(k)−p =
2π

n′
n′−1

∑
k=0

I−p(ω′k)e
irω′k . (3.5.11)

Finally he defines the general leave-out-one version of the spectrum estimate

f̂−p(ωp) for 1 ≤ p ≤ N as follows:

f̂−p(ωp) = f̂ (ωp; γ̂(k)−p). (3.5.12)
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It is important to note that f̂−p(ωp) and I(ωp) will be approximately indepen-

dent for each p, as the computation of f̂−p does not involve I(ω) for ω in the

intervals (ωp−1, ωp+1) and (ω−p−1, ω−p+1).

Next, Hurvich (1985) defines a second general leave-out-one spectrum estimate

which can be applied to any estimate and is denoted by f̂ (ω; xt). First, he de-

fines {Jk}n
k=1, the Fourier transform of {xt}n

t=1, by

Jk =
1
n

n

∑
t=1

xte−iωkt. (3.5.13)

This sequence completely determines the data sequence, through the relation

xt =
n

∑
k=1

Jkeiωkt. (3.5.14)

Then, Hurvich (1985) defines the leave-out-one version of Jk, J−p
k , for 1 ≤ p ≤

N:

J−p
k = Jk k 6= p, k 6= n− p (3.5.15)

= 0.5(Jk−1 + Jk+1) k = p, k = n− p (3.5.16)

and the leave-out-one-ωp version of the data sequence
{

x−p
t

}n−1

t=0
by

x−p
t =

n

∑
k=1

J−p
k e−ωkt. (3.5.17)

Finally, the general leave-out-one spectrum estimate is defined as:

f̂−p(ωp) = f̂ (ωp;
{

x−p
t

}
). (3.5.18)

(see Hurvich, 1985; Fortin and Kuzmics, 2000)
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CHAPTER 4

Transformation Based Smooth

Estimators

Now, we are assuming that the density function fΘ(θ) is a continuous, circu-

lar random variable, Θ, is a non-negative continuous function such that (see

Carnicero et al., 2018)

fΘ(θ + 2πr) = fΘ(θ), r ∈ Z, (4.0.1)

and ∫ π

−π
fΘ(θ) = 1. (4.0.2)

4.1 Transformation Based Kernel Estimator

If we transform the angular data θ on [−π, π] to the [−∞, ∞], the kernel density

estimator on the real line may use the transformation:

x = tan
(θ

2

)
∈ [−∞, ∞], (4.1.1)
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and the kernel density estimator of x is given by

p̂(x) =
1
n

n

∑
j=1

Kh

(
x− tan

(θj

2

))
. (4.1.2)

Thus the transformation based kernel density estimator of f (θ) is given by

f̂ (θ) =
1

1 + cos(θ)
p̂
{ sin(θ)

1 + cos(θ)

}
(4.1.3)

This is a motivation about transform the linear model to the periodic model.

(see Chaubey, 2017)

4.2 Transformation Based Bernstein Polynomial Es-

timator

Babu and Chaubey (2006) consider estimating the distributions defined on a

hyper-cube, extending the uni-variate Bernstein polynomials (see Babu, Canty

and Chaubey, 2002; Vitale, 1973).

The interval [0, 1] can be mapped into the interval [−π, π] through a one-to-one

transformation, such as (see Chaubey, 2017),

θ = 2 arctan
{1

c
tan(π

(
x− 1

2

)
)
}

, c ∈ Z, (4.2.1)

while, the backward transformation for θ ∈ [−π, π] is given by

xc(θ) =
1
2
+

1
π

arctan
(

c tan
(θ

2

))
, c ∈ Z (4.2.2)

The transforms the Bernstein polynomial to a periodic function given by

f̂ (θ) = B′
{1

2
+

1
π

arctan
(

c tan
(θ

2

))}
=

1
2π

B′(xc(θ))
c(1 + tan2( θ

2))

1 + c2 tan2( θ
2)
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The function xc(θ) is periodic according to the above definition because of the

periodicity of arctan function. In particular, when c = 1 we will get the linear

transformation as considered in Kakizawa (2006). For c > 1, the graph starts as

concave and then becomes convex where as for c < 1, the nature of the graph

is opposite.

Figure 4.1: Graphs of arctan transformation for different c

In this thesis we only consider c = 1, however other values may be explored.

This transformation yields a periodic density even for c = 1.
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CHAPTER 5

A Simulation Study

5.1 Simulated Examples

In this section, we compare some estimators which is discussed in the previ-

ous chapters, for obtaining optimal parameters by means of a small simulation

study. These procedures are applied to a set of AR and MA processes, selected

such as to exhibit different shapes of the spectral densities. Three typical esti-

mators are considered for comparison.

The first experiment was concerned with the smoothing of the periodogram.

We are going to consider the Modified Bartlett kernel

κ(z) =

1− z
q + 1

, for z = 1, 2, ..., q(the length o f the window),

0, otherwise.

and the Quadratic-Spectral kernel (Epanechnikov)

κ(z) =
3

(πz)2

{sin(πz)
πz

− cos(πz)
}

.

Many of the commonly used kernels in non-paramtric estimation, but the Quadratic−

Spectral kernel (Epanechnikov) is the optimal one since its optimality properties
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in the density estimation setting (see Jerome and Donald, 1981).

The other experiment is about the Bernstein polynomial estimator. Here I

will use the ideas presented in the previous section to generalize SES method

(similar studies could be carried out for the CVLL and CVMSE methods) (see

Hurvich, 1985). Since data-driven choices of m are not the subject of this thesis,

we have fixed the interval of m from T/2 to T for convenience.

There are three different models we considered for the simulation study were

from the ARMA(a, b) model

Xt +
p

∑
m=1

amXt−m =
q

∑
n=0

bnZt−n, {Zt} ∼ N(0, 1) (5.1.1)

given by

Example 1. AR(1) model: Xt = −0.75Xt−1 + Zt.

Example 2. AR(2) model: Xt = 0.7Xt−1 − 0.1Xt−2 + Zt.

Example 3. MA(2) model: Xt = −0.7Zt + 0.1Zt−1.

These models are convenient because of their simplicity and the different spec-

tra they represent. In general, the spectrum of the observed data can be ex-

pressed by:

f (ω) =

σ2|
q
∑

n=0
bne−inω|2

2π|1−
p
∑

m=1
ame−imω|2

, (5.1.2)

Therefore, we could find the spectral density function for above models:

(1) AR(1) model with the spectral density

f (ω) =
1

2π|1 + 0.75e−iω|2
(5.1.3)

(2) AR(2) model with the spectral density

f (ω) =
1

2π|1− 0.7e−iω + 0.1e−2iω|2
(5.1.4)
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Figure 5.1: Spectral density & Periodogram of three models

(3) MA(2) model with the spectral density

f (ω) =
|1− 0.7e−iω + 0.1e−2iω|2

2π
(5.1.5)

As a measure of performance, first we use the ISE(Integrated Squared Error)

as a criterion to compare the results of each estimator.

Definition 12. The Integrated Squared Error or ISE of a spectral density estimate

f̂ is given by:

ISE( f̂ ) =
∫ π

−π
[ f̂ (λ)− f (λ)]2dλ, (5.1.6)

thus the ISE is the squared value of the distance between the estimated density and the

true density, integrated over the support of the distribution.
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Note that, from M pseudo-random samples of size T,

MISE( f̂ ) ≈ 1
M

M

∑
i=1

ISEi( f̂ ) (5.1.7)

is a Monte Carlo approximation of MISE( f̂ ), where ISEi( f̂ ) denotes the value

of ISE caculated from the ith randomly generated sample from f .

However, we have considered the following measure as goodness of the es-

timators of the simulated averages of ISE (see Guillen et al., 2003):

D =
1
n

n

∑
i=1

[ f̂ (u)− f (u)]2, (5.1.8)

In order to see the distribution of these divergence measures, we repeat the

data 1000 times for each sample size (T = 30, 60, 90). Even though this pro-

vides a limited study, it does give a relative comparison of the estimators based

on the simulation. A small number of replications is chosen, specially for lo-

cal comparison as the computing time required becomes enormous for larger

replication.

Remark 6. For the data-driven method,

ISE( f̂ ) ≈ 1
Ñ

Ñ

∑
j=1

( f̂ (ωj)− f (ωj))
2 (5.1.9)

where ωj =
2π j
T and Ñ = T−1

2 . (see Hurvich, 1985)

5.2 Global Comparison of the Estimator

The results of the global comparison for the three estimators is referred to Table 5.1

to Table 5.3. Smaller value of MISE indicate better performance of the corre-

sponding estimation method.
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Table 5.1: Three Estimators with Simulated ISE for AR(1) model

Sample Size ISE Modified Bartlett Quadratic Bernstein

T=30 Mean 0.4706822 0.24657 0.3036055

Sd 0.908447 0.7360596 0.6637804

Median 0.1671616 0.1504551 0.1880033

T=60 Mean 0.5358472 0.1474206 0.1996915

Sd 0.9443545 0.1351729 0.3390923

Median 0.274227 0.1181745 0.118315

T=90 Mean 0.5735706 0.1322012 0.16835

Sd 0.8066755 0.05799178 0.3908912

Median 0.3320279 0.1167127 0.09840433

Table 5.2: Three Estimators with Simulated ISE for AR(2) model

Sample Size ISE Modified Bartlett Quadratic Bernstein

T=30 Mean 0.1067432 0.04290031 0.03130121

Sd 0.1500781 0.0380971 0.03200272

Median 0.06404788 0.03460981 0.02493879

T=60 Mean 0.1385082 0.02725096 0.02028

Sd 0.1350772 0.02129694 0.01753757

Median 0.09761639 0.02153008 0.01518008

T=90 Mean 0.1357193 0.02138214 0.01626558

Sd 0.1091978 0.01544942 0.01688769

Median 0.1059413 0.01679605 0.01212275
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Table 5.3: Three Estimators with Simulated ISE for MA(2) model

Sample Size ISE Modified Bartlett Quadratic Bernstein

T=30 Mean 0.07181 0.01755306 0.02365606

Sd 0.08117924 0.02765912 0.03458512

Median 0.04891364 0.0103875 0.01643942

T=60 Mean 0.07643905 0.007452475 0.01624438

Sd 0.9443545 0.009347472 0.01712805

Median 0.274227 0.00464611 0.01518008

T=90 Mean 0.08468778 0.005281107 0.01626558

Sd 0.05233537 0.00569866 0.01688769

Median 0.07326121 0.003419347 0.01212275

According to these summary statistics showed in the tables, the Bernstein poly-

nomial estimator and the Quadratic kernel estimator do better than another one

in all the presented cases. Typically, the Bernstein polynomial method performs

pretty much the same as the Quadratic kernel method for these three models.

Then Let’s consider the Local Comparison.
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5.3 Local Comparison of the Estimator

If we are interested in non-parametric spectral density estimation at a single fre-

quency, we need to minimize local distance measures such as MSE (Mean Squared Error)

and so on. We consider only fixed frequencies of the form ωj =
2π j
T , where j is

an integer. By the usual variance decomposition the MSE can be written as the

sum of the squared bias and the variance.

E( f̂ (ω)− f (ω))2 = (E( f̂ )− f (ω))2 + E( f̂ (ω)−E( f̂ (ω)))2 (5.3.1)

MSE( f̂ (ω)) = BIAS2( f̂ (ω)) + VARS( f̂ (ω)) (5.3.2)

For various spectral bandwidths, given the true spectral density, it is possible to

at least asymptotically assess bias and variance of the corresponding estimators.

The bias as well as variance generally will depend on the spectral density and

its derivatives and the form of the spectral window.

MSE( f̂ ) =
1
T

T

∑
i=1

{
f̂i(ω)− f (ω)

}2
, (5.3.3)

where f̂i(ω) is the density estimator of f (ω) based on the ith replication. (see

Priestley, 1981)

The plots with the simulation outcomes are given at the following.
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Figure 5.2: MSE for AR(1) model (T=30)
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Figure 5.3: MSE for AR(1) model (T=60)
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Figure 5.4: MSE for AR(1) model (T=90)
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Figure 5.5: MSE for AR(2) model (T=30)

40



CHAPTER 5: A SIMULATION STUDY

Figure 5.6: MSE for AR(2) model (T=60)
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Figure 5.7: MSE for AR(2) model (T=90)
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Figure 5.8: MSE for MA(2) model (T=30)
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Figure 5.9: MSE for MA(2) model (T=60)
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Figure 5.10: MSE for MA(2) model (T=90)
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Focussing on the Figure 5.2 to Figure 5.4, we can see that at the first half the

Bernstein estimator is pretty much similar to the Quadratic kernel estimator in

terms of MSE. However, we can find that Bernstein estimator is better than

the Quadratic kernel estimator when estimating the tail. Further looking at

the Figure 5.5 to Figure 5.7, these three estimators seem very similar to each

other, but as the T is getting larger, the Bernstein estimator seems better than

others. Figure 5.8 to Figure 5.10 is for MA(2) model, here is different than other

two models, we can clearly see that kernel estimator is better than Bernstein

estimator in this model.
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Conclusion and Future Work

6.1 Conclusion

In this thesis we have compared several estimations of the spectral density and

reviewed some methods for determining optimal scale parameters for non-

parametric spectral window. These are cross-validation based estimates fol-

lowing Hurvich (1985) and Beltrao & Bloomfield (1987).

A small simulation study indicates that all of the three estimators considered

here are quite good, if the sample size T is large. However, we conclude that

Bernstein estimator is the best choice for AR(1) model and AR(2) model, and

the transformed kernel estimation with quadratic kernel is the best for MA(2)

model in our case. The estimators are found to achieve good mean square error

in our simulation study.
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6.2 Future Work

In the future, we may consider larger sample sizes and focus on other spectral

density models such ARMA and ARIMA, that are of importance in the area

of time series. It may be very useful if we could apply the Bernstein-Kernel

polynomial estimators to the circular case. We could also consider extensions

to spherical data or data defined on the torus. Such approaches could be im-

plemented by exploring generalizations of multivariate Bernstein polynomial

density estimators as in e.g. Babu and Chaubey (2006).

Another problem relevant to the transformation based Bernstein polynomial es-

timator is the determination of ‘optimal’ value of c. This may be explored based

on the asymptotic Mean Integrated Squared Error. This is usually achieved by

considering the leading term of an appropriate expansion of MISE.
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The R-Code of the program

A.1 MISE of Bernstein

ISECal <-function (){

T <- 30

x1<-arima.sim(model=list(ar=-0.75),n=T)

j <- 1:ceiling ((T-1)/2)

omega_j <- (2*pi*j)/T

IOmegaJ <- function(xVector ,omega) {

T <- length(xVector)

lagh <- 1:(T-1)

acvfPart <- acvf(xVector ,h=(T-1))[-1]

cosPart <- cos(lagh*omega)

fun <- 1/(2*pi)*acvf(xVector ,h=0)+1/pi*sum(acvfPart*cosPart)

return(fun)

}

periodogramVec <- sapply(omega_j,IOmegaJ ,xVector=x1)

f <- function(omegaVector) 1/(2*pi*(1+1.5*cos(omegaVector )+9/16))
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fVvalue <- sapply(omega_j,f)

kseq <- 1:T

omega_k <- 2*pi*kseq/T

tseq <- 1:T

J_kreal <-function(k,xVector ){

T<-length(xVector)

tseq <-seq(1,T)

csvector <-cos(2*pi*k*tseq/T)

return(sum(csvector*xVector )/T)

}

J_kvalR <- sapply(kseq , J_kreal , xVector=x1)

J_kIm <-function(k,xVector ){

T<-length(xVector)

tseq <-seq(1,T)

sinvector <- -sin(2*pi*k*tseq/T)

return(sum(sinvector*xVector )/T)

}

J_kvalI <- sapply(kseq , J_kIm , xVector=x1)

J_kminsonevalR <-sapply ((kseq -1),J_kreal ,xVector=x1)

J_kminsonevalI <-sapply ((kseq -1),J_kIm ,xVector=x1)

J_kplusonevalR <- sapply ((kseq+1),J_kreal ,xVector=x1)

J_kplusonevalI <- sapply ((kseq+1),J_kIm ,xVector=x1)

J_minsjR <- 1/2 *(J_kminsonevalR+J_kplusonevalR)

J_minsjI <- 1/2 *(J_kminsonevalI+J_kplusonevalI)
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x_minsj.real <- function(t){

kseq <-seq(1,T)

cosTerm <- cos(2*pi*kseq*t/T)

sinTerm <- sin(2*pi*kseq*t/T)

val <- sum(J_minsjR*cosTerm -J_minsjI*sinTerm)

return(val)}

x_minsjval.real <- sapply(tseq , x_minsj.real)

x_minsj.im <- function(t){

kseq <-seq(1,T)

cosTerm <- cos(2*pi*kseq*t/T)

sinTerm <- sin(2*pi*kseq*t/T)

val <- sum(J_minsjR*sinTerm+J_minsjI*cosTerm)

return(val)}

x_minsjval.im <- sapply(tseq , x_minsj.im)

hHat <- function(xVector , omega){

N <- length(xVector)

lagTerm <- 1:(N-1)

jInverse <- 1/lagTerm

acvfTerm <- acvf(xVector , h = (N-1))[-1]

sinTerm <- sin(omega*lagTerm)

val <- (( omega+pi)/(2*pi))* acvf(xVector , h=0)

+ (1/pi)*sum(jInverse*acvfTerm*sinTerm)

return(val)

}

BsmdenWithM <-function(omega ,xVector ,m = m)

{

N <- length(xVector)
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m <- m

jSequence <- 0:(m-1)

jPiMSeqUpper <- -pi+(( jSequence + 1)*2*pi)/m

jPiMSeqLower <- -pi+( jSequence*2*pi/m)

hUpper <- sapply(jPiMSeqUpper , hHat , xVector = xVector)

hLower <- sapply(jPiMSeqLower , hHat , xVector = xVector)

hTerm <- hUpper - hLower

bTerm <- dbinom(jSequence , size=m-1, prob = (omega+pi)/(2*pi))

val <- m/(2*pi)*sum(hTerm*bTerm)

return(val)

}

bdsmVector <- function(m)

{sapply(omega_j, BsmdenWithM , xVector = x_minsjval.real ,m=m)}

bdsmVectorIn <- function(m)

{sapply(omega_j, BsmdenWithM , xVector = x1,m=m)}

c <- ceiling(T/log(T))

periodogramVecNew <- sapply(omega_j,IOmegaJ ,xVector=x_minsjval.real)

value <- function(m){

T <- length(x_minsjval.real)

j <- 1:ceiling ((T-1)/2)

val <- (1/ceiling ((T-1)/2))* sum(log(bdsmVector(m))

+periodogramVecNew/bdsmVector(m))

return(val)

}

simplify=FALSE) )
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mSequence <- c:(T/2)

valueOfIse <- sapply(mSequence ,value)

optimalM <- mSequence[which.min(valueOfIse )]

ISEvalue <- function(m){

T <- length(x1)

j <- 1:T

val <- (1/T)*sum(( bdsmVectorIn(m)-fVvalue )^2)

return(val)

}

FINALVALUE <- ISEvalue(optimalM)

FINALVALUE

}

N <- 1000

SOL <- replicate(N,ISECal ())

sum(SOL)/N
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A.2 MSE of Bernstein

T <- 30

omegaVec <- seq(0,pi,length.out = 8)

f <- function(omegaVector) 1/(2*pi*(1+1.5*cos(omegaVector )+9/16))

fVvalue <- function(omegaVector) sapply(omegaVector ,f)

j <- 1:ceiling ((T-1)/2)

omega_j <- (2*pi*j)/T

IOmegaJ <- function(xVector ,omega) {

T <- length(xVector)

lagh <- 1:(T-1)

acvfPart <- acvf(xVector ,h=(T-1))[-1]

cosPart <- cos(lagh*omega)

fun <- 1/(2*pi)*acvf(xVector ,h=0)+1/pi*sum(acvfPart*cosPart)

return(fun)

}

periodogramVec <- function(xVector)

sapply(omega_j,IOmegaJ ,xVector=xVector)

kseq <- 1:T

omega_k <- 2*pi*kseq/T

tseq <- 1:T

J_kreal <-function(k,xVector ){

T<-length(xVector)

tseq <-seq(1,T)

csvector <-cos(2*pi*k*tseq/T)

return(sum(csvector*xVector )/T)

}

J_kvalR <- function(xVector) sapply(kseq , J_kreal , xVector=xVector)
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J_kIm <-function(k,xVector ){

T<-length(xVector)

tseq <-seq(1,T)

sinvector <- -sin(2*pi*k*tseq/T)

return(sum(sinvector*xVector )/T)

}

J_kvalI <- function(xVector) sapply(kseq , J_kIm , xVector=xVector)

J_kminsonevalR <-function(xVector)

sapply ((kseq -1),J_kreal ,xVector=xVector)

J_kminsonevalI <-function(xVector)

sapply ((kseq -1),J_kIm ,xVector=xVector)

J_kplusonevalR <-function(xVector)

sapply ((kseq+1),J_kreal ,xVector=xVector)

J_kplusonevalI <- function(xVector)

sapply ((kseq+1),J_kIm ,xVector=xVector)

J_minsjR <-function(xVector)

1/2 *(J_kminsonevalR(xVector )+J_kplusonevalR(xVector ))

J_minsjI <-function(xVector)

1/2 *(J_kminsonevalI(xVector )+J_kplusonevalI(xVector ))

x_minsj.real <- function(t,xVector ){

kseq <-seq(1,T)

cosTerm <- cos(2*pi*kseq*t/T)

sinTerm <- sin(2*pi*kseq*t/T)

val <- sum(J_minsjR(xVector )*cosTerm -J_minsjI(xVector )* sinTerm)

return(val)}
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hHat <- function(xVector , omega){

N <- length(xVector)

lagTerm <- 1:(N-1)

jInverse <- 1/lagTerm

acvfTerm <- acvf(xVector , h = (N-1))[-1]

sinTerm <- sin(omega*lagTerm)

val <- (( omega+pi)/(2*pi))* acvf(xVector , h=0)

+ (1/pi)*sum(jInverse*acvfTerm*sinTerm)

return(val)

}

BsmdenWithM <-function(omega ,xVector ,m = m)

{

N <- length(xVector)

jSequence <- 0:(m-1)

jPiMSeqUpper <- -pi+(( jSequence + 1)*2*pi)/m

jPiMSeqLower <- -pi+( jSequence*2*pi/m)

hUpper <- sapply(jPiMSeqUpper , hHat , xVector = xVector)

hLower <- sapply(jPiMSeqLower , hHat , xVector = xVector)

hTerm <- hUpper - hLower

bTerm <- dbinom(jSequence , size=m-1, prob = (omega+pi)/(2*pi))

val <- m/(2*pi)*sum(hTerm*bTerm)

return(val)

}

bdsmVector <- function(m,xVector)

{sapply(omega_j, BsmdenWithM , xVector =xVector ,m=m)}
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bdsmVectorIn <- function(xVector ,m)

{sapply(omega_j, BsmdenWithM , xVector = xVector ,m=m)}

BernsteinVec <- function(m,xVector)

sapply(omegaVec ,BsmdenWithM ,m=m,xVector=xVector)

simTime <- 1000

BMse <- replicate(simTime ,{

x1<-arima.sim(model=list(ar=-0.75),n=T)

x_minsjval.real <- sapply(tseq , x_minsj.real , x1)

value <- function(m){

j <- 1:ceiling ((T-1)/2)

val <- (1/ceiling ((T-1)/2))

*sum(( bdsmVector(m,xVector=x_minsjval.real)-periodogramVec(xVector=x1))^2)

return(val)

}

mSequence <- (0.5*T):T

valueOfIse <- sapply(mSequence ,value)

optimalM <- mSequence[which.min(valueOfIse )]

BernsteinMse <- (BernsteinVec(optimalM ,x1)-fVvalue(omegaVec ))^2

print(BernsteinMse)

})

c(sum(BMse[2 ,])/simTime ,sum(BMse[3 ,])/simTime ,sum(BMse[4 ,])/simTime ,

sum(BMse[5 ,])/simTime ,sum(BMse[6 ,])/simTime ,sum(BMse[7 ,])/ simTime)
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