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Abstract

Estimation of the probability density function for circular data is an important topic in

statistical inference. In this thesis, I would like to introduce two transformation based

methods for estimating probability density function in this context. One is derived from

traditional kernel density estimator and the other one comes from the Bernstein poly-

nomial estimator (Chaubey, 2017). We know both of the kernel density estimator (Sil-

verman, 1986) and Bernstein polynomial estimator (Babu, Canty and Chaubey, 2002)

are appropriate for the case of linear data, transformation of circular data to linear data

would bring extreme simplicity to estimation of probability density function in the case

of circular data by back transformation. I will conduct a simulation study to compare

these methods with respect to their global and local errors. We find through our sim-

ulation study that transformed kernel density estimator has a stronger ability to allevi-

ate the boundary problems than transformed Bernstein polynomial estimator, however,

their overall performance is pretty much similar in the central part of the distribution.

Therefore, in general we can say transformed kernel density estimator leads to a bet-

ter method as compared to the transformed Bernstein polynomial estimator, however

further research may be needed to study other transformations.
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Chapter 1

Introduction

1.1 Background

Circular statistics (sometimes referred to as directional statistics) is a very important

subfield of statistics, where the observed values represent directions. Such data are im-

portant in many fields, for instance, a biologist may be interested in the movement of

migrating animals while a geologist may be interested in study the circulation of un-

derground water. Circular statistics began to apply in more and more areas (such as

biology, geology, meteorology) and is gaining much more attention from statisticians.

In circular statistics, circular data is a group of data that occurs around a circle, and we

usually measure it from 0◦ to 180◦ in degrees or 0 to 2π radians. Obviously, it’s different

from the linear data and special methods maybe required to handle such data.

As the specialized tools and technology for analyzing circular data are not currently

widely used, many statisticians are still looking for a better way to do statistical analysis

for circular statistics. As we know, statistical analysis includes data analysis, estimation,

modeling, fitting, and so on. Estimation is a very important step and we want to focus

on the estimators based on both circular data and linear data. Since the transformation

between circular data and linear data exists, we can also find some effective methods

to convert a linear density estimation to a circular density estimator, that is the main

subject matter of this thesis.
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1.2 Circular data and some descriptive statistics

Circular data consists observations that occur around a circle and it can be represented

as angles or as points on the round surface. If we create an origin and two axes and

draw a circle with the origin as the center, we could use the trigonometric functions of

X and Y to express the coordinates of the point P on the circle. In this way, we could

convert the polar co-ordinates into the rectangular co-ordinates easily. Let r be the dis-

tance from P to the origin and θ be the direction, we could write down the co-ordinates

of the point P

(x = r cos θ, y = r sin θ),

in this thesis the range of θ is fixed to [−π, π).

When the distance r equals to 1, the conversion between polar co-ordinates and rect-

angular co-ordinates is

(1, θ) → (cos θ, sin θ).

Figure 1.1: Relation between rectangular and polar co-ordinates
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After understanding the basic concepts of the circular data, we begin to consider some

descriptive statistics of it. The first one we want to know is the circular mean. As we

know that the circular data is different from the linear data, we cannot use the normal

way to calculate the mean. For example, in the figure below, suppose we have two

points A and B, which direction are 15◦ and 345◦ respectively (suppose the North be

the zero direction and clockwise as the positive sense of rotation). Here we can see,

the arithmetic mean is 180◦ and it points due South whereas the true mean should be

towards North.

From the example, it is obvious that the arithmetic mean is not suitable for the circular

data. Besides, the sample variance, which is related with the sample mean, is also not

suitable for the circular data and we should find some alternative measures for center

and dispersion if we want to deal with the circular data.

One way to calculate the circular mean is to treat the data composed of unit vectors

and use the direction of their resultant vector. Let α1, α2,..., and αn be a set of the cir-

cular observation given in terms of angles. Recall the conversion between polar and

rectangular co-ordinates, which is

(1, θ) → (x = cos θ, y = sin θ).

We could obtain the resultant vector of these n unit vectors by summing them component-

3



wise, and get

R = (
n∑

i=1

cos θi,
n∑

i=1

sin θi) = (COS, SIN) (1.1)

Let R represents the length of the resultant vector R, where

R = ||R|| =
√
COS2 + SIN2. (1.2)

Then we could get the direction of R, which we also call the circular mean direction, θ0.

There are two facts we know about θ0 is that

cos θ0 =
COS

R
, sin θ0 =

SIN

R
.

To find θ0, we can do the following calculation.

Since

tan θ0 =
sin θ0

cos θ0
,

we can get

θ0 = arctan
SIN

COS
.

According to the property of trigonometric function, we can conclude

θ0 = arctan
SIN

COS
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

arctan SIN
COS

, if COS > 0, SIN ≥ 0,

π
2
, if COS = 0, SIN > 0,

arctan SIN
COS

+ π, if COS < 0,

arctan SIN
COS

+ 2π, if COS ≥ 0, SIN = 0,

undefined, ifCOS = SIN = 0.

(1.3)
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(Jammalamadaka and Sengupta, 2001)

1.3 Circular probability distribution

A circular probability distribution, literally, is a distribution with its total probability

concentrated on a circumference of an unit circle. Every point on this circle has a di-

rection, as we already know, the data is directional. If we measure a circular random

variable θ in radians, then the range of it may be taken as [0, 2π) or [−π, π).

1.3.1 Generating circular distribution

To generate a circular distribution, many different models can be used. Here we give

a brief introduction for a few such general methods. (Jammalamadaka and Sengupta,

2001)

Wrapped Distribution

Literally, wrapped distribution means we could wrap a linear distribution around a

unit circle to conduct a circular distribution. Given a linear random variable X on the

real line, we could transform it to a circular random variable by reducing its module

2π, e.g. θ = X(mod 2π). This operation is nothing but wrap the real line around the

circle of unit radius, and accumulate probability over all the overlapping points x =

θ, θ± 2π, θ± 4π, ..., so if we have the linear density function p(x) and the corresponding

circular density function f(θ), it can be described as:

f(θ) =
∞∑

m=−∞
p(θ + 2πm), −π ≤ θ < π.

By using this technique, we could conduct both discrete and continuous wrapped dis-

tributions.

5



Characterization properties

Generating a circular distribution through some characterize properties such as max-

imum entropy is the most common method for normal distribution (Jammalamadaka

and Sengupta, 2001 and von Mises, 1918). The circular normal distribution has the max-

imum entropy property and also, its mean direction is estimated with maximum like-

lihood by the direction of the resultant vector. This characterization goes back to von

Mises (1918) which is why we also call circular normal distribution as the von Mises

distribution.

Offset distributions

By transforming a linear random vector to its directional component, we can obtain the

offset distributions (Jammalamadaka and Sengupta, 2001). We transform the bivariate

random vector (X, Y ) into polar co-ordinates (r, θ) and integrate over r for a given θ. If

the joint distribution of a bivariate distribution is p(x, y), then the corresponding circular

offset distribution f(x, y) is given by

g(θ) =

∫ ∞

0

f(r cos θ, r sin θ)rdr. (1.4)

In the following part, we will describe some standard circular distributions for a general

reference (see Fisher, 1995).

1.3.2 Some standard circular distribution

Uniform circular distribution

Definition 1.3.1 If the total probability is spread out uniformly on the circumference of a circle,

we call it a Circular Uniform Distribution with the constant density

f(θ) =
1

2π
,−π ≤ θ < π.

It’s not hard to find that, in a uniform circular distribution, all the directions have equal

probability and the mean direction is undefined. From the probability function we can

6



also write the cumulative distribution function F (θ) as

F (θ) =
θ

2π
,−π ≤ θ < π

Wrapped Cauchy distribution

By wrapping the Cauchy distribution on the real line we can get the wrapped Cauchy

distribution. Since we know the density function of a Cauchy distribution is given by:

p(x) = (
1

π
)

σ

σ2 + (x− μ)2
, x ∈ (−∞,∞). (1.5)

We could get the probability density function for a wrapped cauchy distribution:

f(θ) =
1

2π
(1 + 2

∞∑
k=1

ρkcos k(θ − μ)), (1.6)

=
1

2π

1− ρ2

1 + ρ2 − 2ρ cos(θ − μ)
, (1.7)

where ρ = e−σ. (see Jammalamadaka and Sengupta, 2001)

This distribution is unimodal and symmetric. As ρ → 0, the distribution tends to the

uniform circular distribution and as ρ → 1, the distribution goes to a point distribution

with the concentrated direction μ.

Circular normal distribution

Circular normal distribution was proposed as a statistical model by von Mises (1918)

and we also call it von Mises distribution. The density function of a circular random

variable with this distribution is shown as below

f(θ;μ, κ) =
1

2πIo(κ)
eκ cos(θ−μ), θ ∈ [−π, π), (1.8)

where −π ≤ μ < π and κ ≥ 0. Here I0(κ) is the modified Bessel function of the first kind

7



and order zero, and it’s given by

I0(κ) =
1

2π

∫ 2π

0

exp(κ cos θ)dθ =
∞∑
r=0

(
κ

2
)2(

1

r!
)2. (1.9)

Also, we could get the cumulative distribution function of the von Mises distribution

based on the density function given in

F (θ) =
1

2πI0(κ)
(θI0(κ) + 2

∞∑
p=1

Ip(κ) sin p(θ − μ)

p
), θ ∈ [−π, π). (1.10)

(Jammalamadaka and Sengupta, 2001)

1.4 From parametric density estimation to nonparametric

density estimation

1.4.1 Parametric density estimation

Density estimation, basically is a method to conduct an estimator for the density func-

tion f(x) from the random sample X . In statistics, it can be broadly divided into two

types: parametric density estimation and nonparametric density estimation. We firstly

give a brief introduction about the parametric one.

Consider a random sample X that has the probability density function f(x), and the

function f(x) gives a natural description of the distribution of X , we know

P (a < X < b) =

∫ b

a

f(x)dx.

Parametric density estimation is based on a specific theoretical distribution. Suppose

the distribution of the sample data is known, for example, the normal distribution with

mean μ and variance σ2. We could firstly use the available data to find the estimator of

μ and σ2, and then the density function f can be estimated according to the formula of

8



normal distribution.

Here we would like to describe one of the popular methods of parametric density esti-

mation, namely, the Maximum Likelihood method.

Suppose we have the data set D = {x1, x2, ..., xn} corresponding to random sample

{X1, X2, ..., Xn} from a distribution with density function f , where (x1, x2, ..., xn) are n

independent and identically distributed observations. The density function f is from a

known family of distributions. Here we suppose f(x) = N(μ, σ2). Then the parameters

we want to find will be θ = (μ, σ2). (Johnson and Wichern, 2007)

Now we consider the joint density function with respect to the data set D:

f(x1, x2, ..., xn|θ) = f(x1|θ)× f(x2|θ)× · · · × f(xn|θ). (1.11)

We also call the above function as likelihood function of θ,

L(θ|x1, ..., xn) =
n∏

i=1

f(xi|θ). (1.12)

Then we can do some algebra to find a value of θ that maximizes the above function.

But instead of maximizing this function, it’s usually easier to maximize the natural log-

arithm of it:

ln(L(θ|x1, ..., xn)) = ln(
n∏

i=1

p(xi|θ))

=
n∑

i=1

ln p(xi|θ).

We call it the log-likelihood function and one method to maximize the log-likelihood

function is the standard method from Calculus.

Since this density estimation is based on the specific distribution, it has a high statis-

9



tical efficiency if the model is correct. Otherwise a method not dependent on a model

may be more appropriate.

1.4.2 Importance of nonparametric density estimation

With the increasing application of large database and the rise of data mining, the non-

parametric density estimation becomes more attractive. In a nonparametric density

estimation, we don’t need to know the probability density function and we just use the

data itself. There are not so many restrictions such as the parametric density estimation

- a parametric family of distribution or something else - we can explore the information

we need just from the data set itself. It’s apparently more practical. Another attraction

of nonparametric density estimation is that it’s more comprehensible for people who

don’t have much statistical knowledge.

There are many kinds of nonparametric density estimation methods such as histogram

estimation, nearest neighbor estimation, kernel density estimation, and so on. We will

give some brief introduction for two of them in the following chapter.

10



Chapter 2

Nonparametric Density Estimation

2.1 General method

In this section we will give some brief introduction for some main univariate nonpara-

metric density estimation.

2.1.1 Histograms

Histogram estimation is the earliest and most widely used density estimation method.

Histogram is a kind of representation of the sample data. In a one-dimensional case, we

divide real lines into cells that have equal size-which we also call ”bin”. Suppose x0 is

the origin and h is the bandwidth, we define the bins of the histogram to be the intervals

[x0 +mh, x0 + (m+ 1)h) for any integer m, and here we choose the left of the interval is

closed and the right to be an open one for the definiteness. (Silverman, 1986)

Now we could write the histogram as:

f̂(x) =
1

nh
(number of Xi in the same bin as x).

Suppose that we have divided the real lines into bins, then the histogram estimate can

be defined as:

11



f̂(x) =
1

n
× (number of Xi in the same bin as x)

(width of bin containing x)
.

Recall that, if we want to construct a histogram, firstly we should choose a bin width

and an origin. Obviously, the bin width affects much more on our estimation and it

raised some problems like when we choose a big bin width and highlight the role of

averaging, the potential details of the estimation may not be fully demonstrated. On

the other hand, if we choose a small bin width, the random may affect too much on the

histogram and we might get an irregular shape, which could lead to a not so correct

conclusion.

Although histogram density estimation has some weakness, it’s still an excellent tool

for data analyzing and I look forward to further study it in the future.

2.1.2 The naive estimator

As we already know, the histogram estimation has a serious problem - the bin width

selection, and sometimes some extreme cases may happen. Due to the uncertainty of

data, some bins might be empty while some others have more than 100 occurrences.

If that so, the probability density between two adjacent bins - one has 100 occurrences

and another one is empty - would vary greatly. Considering this situation, the naive

estimator raised.

In this estimator, Silverman (1986) considered the definition of a probability density:

Definition 2.1.1 If the random variable X has a density f, then

f(x) = lim
h→0

1

2h
P (x− h < X < x+ h)

for any given x.

Based on the above definition, we can choose a small h and get the estimator by calcu-

lating the proportion of all the Xi falling in the interval (x − h, x + h), then the naive

12



estimator is given by

f̂(x) =
1

2hn
(number of X1, ..., Xn falling in (x− h, x+ h)). (2.1)

To express this estimator more transparently, Silverman (1986) defined a weight func-

tion w by

w(x) =

⎧⎪⎨
⎪⎩

1
2
, if |x| < 1

0, otherwise.
(2.2)

Then the naive estimator can be written as

f̂(x) =
1

n

n∑
i=1

1

h
w(

x−Xi

h
). (2.3)

The generalization of the above estimator to generate weight functions gives, what is

known as the kernel density estimator described below.

2.2 Kernel density estimation

2.2.1 Definition

Kernel density estimation was originally put forward by Parzen (1962) and Rosenblatt

(1956), and it was popularized in many subsequent papers. The basic form of the com-

mon kernel density estimator (Silverman, 1986) is described below.

Suppose (X1, X2, ..., Xn) is an independent and identically distributed sample of a ran-

dom variable X with an unknown density function p(x), then the kernel density estima-

tor of p(x) is given by

p̂(x;h) =
1

nh

n∑
i=1

K(
x−Xi

h
), (2.4)

13



where K is the kernel function, a symmetric function that integrates to 1 and its mean is

0. h is the smoothing parameter, usually called the bandwidth or windowwidth. Gener-

ally, we choose the kernel function K to be symmetric around zero but it’s not necessary

to be a positive function. Typically, the bandwidth h tends to 0 ad the sample size n

tends to infinity.

There are many types of kernel functions such like:

Uniform kernel function

K(u) =
1

2
I(|u| ≤ 1),

Triangular kernel function

K(u) = (1− |u|)I(|u| ≤ 1),

Quartic kernel function

K(u) =
15

16
(1− u2)2I(|u| ≤ 1),

Gaussian kernel function

K(u) =
1√
2π

e−
1
2
u2

.

It has been proved that the kernel density function is not the crucial part in a kernel den-

sity estimator, any kernel function can guarantee the consistency of the density estima-

tion (Wand and Jones, 1995). However, choosing an optimal bandwidth is a much more

important problem. That is because, a big bandwidth may lead to a over-smoothed es-

timator, and a small bandwidth may yield a density estimator which is spiky and very

hard to explain. So we will give more details in the following part about the bandwidth

selection.

2.2.2 Bandwidth selection

There are different methods for us to specify the bandwidth h, such like Rule-of-thumb,

Biased cross-validation, Unbiased cross-validation and so on. Basically, they are all

14



based on AMISE (asymptotic mean integrated squared error). So before we get to know

those methods, we would like to introduce AMISE first.

There is a vector for us to compare the estimated density function with the real one

and we call it ISE (integrated squared error). It’s given by:

ISE =

∫ π

−π

{
f̂(x)− f(x)

}2

dx. (2.5)

By averaging ISE we could get another quantity, called MISE (mean integrated squared

error), and the asymptotic approximation for MISE is just the AMISE. The AMISE is

usually derived via the Taylor’s series. Based on some certain assumptions, we have

the AMISE as shown below (Tang, 2011):

AMISE(f̂(x;h)) =
1

nh
R(K) +

1

4
h4μ2(k)

2R(f
′′
). (2.6)

Here μ2(K) =
∫
x2K(x)dx, R(K) =

∫
K2(x)dx, and f

′′ is the second derivative of the

density f .

The optimal bandwidth can be obtained by minimizing MISE, and it’s given by:

hAMISE = (
R(K)

μ2(K)2R(f ′′)n
)1/5. (2.7)

However, neither the AMISE nor the hAMISE can be used directly since there is always

the unknown density function f . So now we can introduce some popular method for

bandwidth selection based on these above equations.

Rule-of-thumb

Deheuvels (1977) proposed the Rule-of-thumb firstly and it was popularized by Silver-

man (1986) later, and that’s why it’s also called by Silverman’s Rule-of-thumb. Based

on the equation (2.7), Deheuvels proposed the kernel function K as the Gaussian dis-

tribution and the standard normal distribution as the reference distribution, and the

estimator of h is given by:

ĥROT = 1.06σ̂n−1/5, (2.8)
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where σ2 is the sample variance.

This method is easy to compute, however, it could also yield some problems. When

the density is not close to being normal, the estimation may become inaccurate. To fix

that, Silverman (1986) proposed a modified estimator which can decrease this inaccu-

racy:

ĥM.ROT = 1.06 ∗min(σ̂,
Q

1.34
)n−1/5, (2.9)

where Q is the interquartile range:

Q = X[0.75n] −X[0.25n]. (2.10)

When the density is very close to the normal distribution, both estimators ĥ are good

and helpful. However, if the true density is not normal distribution or we can’t deter-

minate it, the second estimator gives a better result.

Unbiased cross-validation

The Unbiased cross-validation method is based on the formula of MISE:

MISE(f̂(x;h)) = E

∫
(f̂(x;h)− f(x))2dx

= E

∫
f̂ 2(x;h)dx− 2E

∫
f̂(x;h)f(x)dx+

∫
f 2(x)dx. (2.11)

Chaubey et al. (2012) adapted this method Wand and Jones (1995) that we describe be-

low.

Since the last term in the above function is constant, we can drive an unbiased estimator

of MISE with replacing the first two terms by its estimator.

UCV (h) =

∫
f̂ 2(x;h)dx− 2

n

n∑
i=1

f̂i(Xi;h). (2.12)

Noted here the second term is the leave-one-out estimator given by

f̂i(Xi;h) =
1

n− 1

n∑
j �=i

Kh(x−Xj), (2.13)
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where

Kh(u) =
1

h
K(

u

h
).

Then we can obtain an optimal ĥUCV by finding the h that minimized the function (2.13).

Biased cross-validation

The biased cross-validation method was proposed by Scott and Terrell (1987). Recall the

asymptotic mean squared error:

AMISE(f̂(x;h)) =
1

nh
R(K) +

1

4
h4μ2(k)

2R(f
′′
). (2.14)

To get the estimator of h, they used the estimated function of R(f
′′
) instead of a reference

distribution,

R̂(f
′′
) =

1

n2

∑∑
i �=j

(K
′′
h ∗K ′′

h)(Xi −Xj). (2.15)

Then it leads to the score function:

BCV (h) =
R(K)

nh
+ h4μ

2
2(K)

4n2

∑∑
i �=j

(K
′′
h ∗K ′′

h)(Xi −Xj). (2.16)

Scott and Terrell (1987) proposed to use the optimal bandwidth ĥBCV which could min-

imize the function above.

Conclusion

After we introduced some widely used bandwidth selection methods, an important

question must be asked by ourselves: which method is the most efficient one? It’s really

difficult to define which one is ”the best”, since it all depends on the situation. When we

analyze a real data set, the best way for us to select the ”best” bandwidth is to apply dif-

ferent bandwidth selectors to our data and try to compare all the possible bandwidths,

and then we could find out the most suitable one for our data.
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2.3 Asymmetric density estimation

Since the standard symmetric fixed kernels are not appropriate for some density func-

tions with bounded support, asymmetric kernels presented. Kernel density estima-

tor with asymmetric kernels such as gamma kernels have been proposed to solve the

boundary consistency problem. For example, Chen (2000) used Gamma kernels and

Scaillet (2004) used inverse Gaussian (IG) and reciprocal inverse Gaussian (RIG). To fo-

cus on the case of non-negative data, Chaubey et al. (2012) proposed an estimator which

is based on the generalization of Hille’s smoothing lemma (Feller, 1965).

Lemma 2.3.1 Let u be any bounded and continuous function and Gx,n, n=1,2,. . . be a family of

distributions with mean μn(x) and variance h2
n(x) such that μn(x) → x and hn(x) → 0. Then

û(x) =

∫ ∞

−∞
u(t)dGx,n(t) → u(x). (2.17)

The convergence is uniform in every subinterval in which hn(x) → 0 uniformly and u is uni-

formly continuous.

According to this lemma, the smooth estimator of an empirical distribution function

F (x) could be obtained easily by replace u(x) with Fn(x)

F̂n(x) =

∫ ∞

−∞
Fn(t)dGx,n(t). (2.18)

To obtain more details about F̂n(x), Chaubey et al. (2012) considered the following

theorem.

Theorem 2.3.1 Let hn(x) to be the variance of G(x, n) as in Lemma , and suppose that hn(x) →
0 as n → 0 for every fixed x. Then we have

sup
x

|F̃n(x)− F (x)| a.s.−→ 0 (2.19)

as n → 0.
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A restricted condition on Gx,n(Xi) can be seen easily if we change the form of F̃n(x) to:

F̃n(x) = 1− 1

n
Gx,n(Xi). (2.20)

For F̃n(x) to be a proper distribution function, Gx,n must be a decreasing function of x.

Based on that, we can get the smooth estimator of the density function given by:

f̂n(x) =
dF̃n(x)

dx

= − 1

n

n∑
i=1

d

dx
Gx,n(Xi). (2.21)

2.4 Bernstein polynomial estimation

The empirical distribution function is known to have good properties when we use it to

estimate distribution function. However, since it’s not a continuous function, it may not

be appropriate to use it to estimate a continuous distribution function. Babu, Canty and

Chaubey (2002) considered the application of Bernstein polynomials to approximate a

bounded and continuous function, and they proved that with a continuous approxima-

tion of the empirical distribution function, the Bernstein polynomials could be naturally

adapted to smooth an estimated distribution function that concentrated on the interval

[0,1].

We firstly have a look at the definition of the empirical distribution function:

Fn(x) =
1

n

n∑
i=1

I {Xi ≤ x} . (2.22)

The above function is appropriate when the support of distribution is R+. If we have

the support of F in the interval [a,b], where a ≤ b, it would be better to transform the

variable X to Y with support [0,1]. This transformation could be done by Y = X−a
b−a

.

Based on that, Babu, Canty and Chaubey (2002) introduced the following theorem to

adapt Bernstein polynomials to estimation.
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Theorem 2.4.1 (Feller, 1965) If u(x) is a bounded and continuous function on the interval

[0,1], then as m → ∞
u∗
m(x) =

m∑
k=0

u(k/m)bk(m, x) → u(x) (2.23)

uniformly for x ∈ [0, 1], where

bk(m, x) =

(
m

k

)
xk(1− x)m−k, k = 0, . . . ,m. (2.24)

With the theorem given below, Babu, Canty and Chaubey (2002) considered F with sup-

port [0,1], and motivated the smooth estimator F̃ based on Bernstein polynomial, which

is given by:

F̂n,m(x) =
m∑
k=0

Fn(
k

m
)bk(m, x), x ∈ [0, 1] (2.25)

Noted here this estimator is based on the empirical distribution function Fn:

Fn(x) = n−1

n∑
i=1

I {Xi ≤ x} . (2.26)

To prove that F̂n,m is a proper distribution function and it has derivative, consider an

alternative form of the function in (2.25).

F̂n,m(x) =
m∑
k=0

fn(
k

m
)Bk(m, x), (2.27)

where

fn(0) = 0,

fn(
k

m
) = Fn(

k

m
)− Fn(

k − 1

m
), k = 1, . . . ,m (2.28)

and
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Bk(m, x) =
m∑
j=k

bk(m, x)

= m

(
m− 1

k − 1

)∫ x

0

tk−1(1− t)m−kdt. (2.29)

The above equation is given by the definition of the cumulative distribution function of

a binomial distribution. Since bk(m, x) is just the form of the probability mass function

of a binomial distribution with parameters m, k, x, Bk(m, x) =
m∑
j=k

bk(m, x) will be the

probability mass function of this given binomial distribution. From the definition we

can get the equation of Bk(m, x).

Noted here F̂n,m is a polynomial in terms of x so it’s continuous and has all the deriva-

tives, and 0 ≤ F̂n,m ≤ 1 for x in interval [0, 1]. Based on the equations in (2.28) and (2.29),

we can see that fn( k
m
) is a non-negative polynomial and Bk(m, x) is non-decreasing in

x. Thus, we know F̂n,m is non-decreasing also.

Upon taking the derivative of F̂n,m, we can get the density estimator of f as proposed

in Babu, Canty and Chaubey (2002):

f̂n,m(x) =
m∑
k=1

fn(
k

m
)
d

dx
Bk(m, x)

= m

m−1∑
k=0

fn(
k + 1

m
)bk(m− 1, x)

= m

m−1∑
k=0

(Fn(
k + 1

m
)− Fn(

k

m
)bk(m− 1, x)). (2.30)

We will adapt this estimator for estimation of a circular density in the next chapter.
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Chapter 3

Transformation Based Nonparametric

Density Estimators

3.1 General method

Recall the kernel density estimator and if we consider it for circular data, we can assume

a continuous circular density function f(θ), where θ ∈ [−π, π), f(θ) ≥ 0 for θ ∈ R and∫ π

−π
f(θ)dθ = 1.

For a random sample that satisfies the above density function, i.e. (θ1, ..., θn), we can

write the kernel density estimator as follows:

f̂(θ;h) =
1

nh

n∑
i=1

K(
θ − θi
h

). (3.1)

To obtain this density estimator, Fisher (1989) used the quartic kernel function to adapt

the linear kernel density estimator and defined the kernel function:

K(θ) =

⎧⎪⎨
⎪⎩
0.9375(1− θ2), if θ ∈ [−1, 1]

0, otherwise.
(3.2)

Noted here the data θ must be transformed to the interval [-1,1] and the factor 0.9375 is
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to ensure that
∫
K(θ)dθ = 1 and K(θ) is a density function. It’s indeed one method to

do the transformation but here is one obvious problem-the estimator is not periodic. To

fix this, Fisher (1995) suggested to perform the smoothing by replicating the data to 3 to

4 circles and consider only one interval, [−π, π).

3.2 Transformation based kernel density estimator

Since the major different between circular data and linear data is the type of data, we

may adapt the linear density estimator to the circular density estimator by transform-

ing the data interval. In this section we will focus on kernel density estimator and try to

transform the data on [−π, π) to (−∞,∞). (Chaubey, 2017)

Let f(θ) be the density function of the circular data and p(x) be the density function

of the linear data. Suppose x = t(θ) is the one-to-one transform function t : (−π, π) →
(−∞,∞), e.g. t(θ) = tan( θ

2
).

Using the transformation and the fact that

f(θ) = p(t(θ))|dt(θ)
dθ

|,

and recall the kernel density estimator of x:

p̂K(x;h) =
1

nh

n∑
i=1

K(
x− xi

h
)

=
1

nh
K(

x− tan(θi/2)

h
), (3.3)

then this transformation could be done by the following steps:

f̂K(θ;h) = p̃(t(θ);h)|d(t(θ))
dθ

|, (3.4)

23



where

t(θ) = tan(
θ

2
)

=
sin θ

1 + cos θ
,

and

d(t(θ))

d(θ)
= (

sin θ

1 + cos θ
)′

=
cos θ(1 + cos θ) + sin2 θ

(1 + cos θ)2

=
1

1 + cos θ
,

then

f̂K(θ;h) =
1

1 + cos(θ)
p̂(

sin θ

1 + cos θ
;h) (3.5)

is the estimator for the circular density function.

3.3 Transformation based Bernstein polynomial density

estimator

Another transformation between circular density estimator and linear density estima-

tor can be done based on Bernstein polynomials (Chaubey, 2017). We introduced the

Bernstein polynomials estimator (Babu, Canty and Chaubey, 2002) in chapter 2, and to

differentiate the circular density function from the linear one, we denote the linear Bern-

stein polynomial density estimator by p̂(x;m), and it’s given by

p̂B(x;m) = m

m∑
k=1

Fn(
k

m
)bk(x;m− k + 1), x ∈ [0, 1], (3.6)

where bk(x;m− k + 1) is the Bernstein polynomial.
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Chaubey (2017) considered the following transformation:

t(θ) =
1

2
+

1

π
tan−1(c tan(

θ

2
)), (3.7)

where c is a positive number.

With this function, we could convert the interval of θ - which is [−π, π) to [0,1), and

it’s also a one-to-one transformation for all c > 0. An important thing is that the trans-

form function t(θ) is periodic.

Now the transformed estimator of f(x) can be obtained and it’s given by

f̂B(θ;m) =
1

2π
p̂B(t(θ);m)

c(1 + tan2( θ
2
))

1 + c2 tan2( θ
2
)
. (3.8)
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Chapter 4

A Simulation Study

4.1 Introduction

In order to compare the two estimators we discussed in Chapter 3, I would like to use

simulation method in this chapter. Concerning the data we would like to use is circular

data, I’d like to introduce ISE and MSE as the reference for comparing them.

For ISE, integrated squared error, the function is given by:

ISE =

∫ ∞

−∞
(f̂(x)− f(x))

2
dx. (4.1)

From the function above, we can see that the value of ISE is the square of the distance

between the estimated density and the simulated density. We can simplify the function

as:(Chaubey et al., 2012)

ISE =

∫ ∞

−∞
(f̂(x)− f(x))2dx (4.2)

=

∫ ∞

−∞
f̂ 2(x)dx− 2

∫ ∞

−∞
f̂(x)f(x)dx+

∫ ∞

−∞
f 2(x)dx. (4.3)

The above function motivated a method to smooth the parameter, which is called unbi-

ased cross validation. Since the third term in the function ISE is constant, and we can
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estimate the second term by the leave− one− out estimator 2
n

∑
f̂n(Xi;ωi),

where ωi = {X1, ..., Xi−1, Xi+1, ...Xn}. The estimated ISE with cross-validation in our

case is given by:

CVISE =

∫ π

−π

f̂ 2(x)dx− 2

n

n∑
i=1

f̂n(Xi;ωi). (4.4)

With this unbiased estimator of ISE, we could obtain the optimal h in the kernel den-

sity estimator and m in the Bernstein polynomial density estimator by minimizing the

ISE.CV function. To makes it more clearly, I will check the mean, median and standard

deviation of ISE and MSE for these two estimators based on different distributions

and different sample sizes.

Before we start the simulation, it’s better to look at the range of bandwidth in the kernel

estimator firstly. Here we use the Gaussian kernel function as the kernel function K and

it’s given by:

K(u) =
1√
2π

e−
1
2
u2

. (4.5)

When we plug the kernel function into the kernel density estimator for circular data,

f̂K(θ;h) =
1

1 + cos(θ)
p̂(

sin θ

1 + cos θ
;h), (4.6)

and here the estimated density function for linear data is given by:

p̂(x;h) =
1

nh

n∑
i=1

K(
x− xi

h
), (4.7)

we can see that the density function is nothing but the mean of the following function:

k(θ, h) =
1

h(1 + cos(θ))
K(

tan(θ/2)− tan(θi/2)

h
). (4.8)

Noted here we want the kernel estimated density function to be symmetric around zero

and it also has the maximum value in zero, so we have to ensure that when x−xi

h
equals

to 0, the derivative of function k̂ is also 0. To make it more convenient for us to study,

we use θ to replace tan(θ/2)− tan(θi/2) in equation 4.8 and took a look at the plot of the
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following function:

k̂(θ, h) =
1

h
√
2π(1 + cos θ)

exp

[
− 1

2h2
(

sin θ

1 + cos θ
)2
]
. (4.9)
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Figure 4.1: Kernel function with different h value
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When h = 0.5, the given function is definitely symmetric around zero and its maximum

value also appears at zero. With the value of h becomes larger, the upper part gets more

flatter. For h = 0.7, the peak almost disappear and it’s very flat. Even more, when

h = 0.8, the upper part becomes hollow and two peak shows up. Since the special con-

dition we want to have for function k̂(θ, h), we restrict h to be smaller than or equal to

0.6 in this thesis.

In this simulation we considered 3 models in total: wrapped Cauchy distribution with

(σ=1, μ=0), von Mises distribution with (κ=1, μ=0), and a mixture distribution of 40%

von Mises distribution with (κ=1, μ=0) and 60% Wrapped Cauchy distribution with

(σ=1, μ=0). The domain for each model is in [−π, π).

4.2 Global comparison

Here are the results of our global comparison for these two estimators. Noted here the

function we used to calculate ISE is given by:

ISE =

∫ π

−π

(f̂(x)− f(x))
2
dx, (4.10)

and the parameter h is obtained by unbiased cross validation method we mentioned

before.
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ISE n=100 n=200 n=400

mean
kernel 0.007839894 0.004649004 0.002747486

Bernstein(c=1) 0.00912195 0.005277216 0.003033216

Bernstein(c=0.5) 0.03048433 0.02982057 0.01277822

Bernstein(c=2) 0.04376135 0.04254877 0.04193504

median
kernel 0.006207218 0.0037773064 0.002226404

Bernstein(c=1) 0.007930931 0.004729214 0.00269449

Bernstein(c=0.5) 0.02962856 0.0294122 0.01277754

Bernstein(c=2) 0.04343982 0.04271339 0.04222359

sd
kernel 0.006462172 0.003479234 0.00214282

Bernstein(c=1) 0.005054517 0.002774371 0.001544781

Bernstein(c=0.5) 0.003076889 0.001725131 0.009291902

Bernstein(c=2) 0.01029532 0.007748815 0.005816618

Table 4.1: Transformation based on different estimators with wrapped Cauchy distribu-

tion (σ=1, μ=0)

If we focus on Bernstein polynomial density estimator only, we notice that as the value

of c goes greater, the average value of ISE is also getting greater and the accuracy of

estimation is declining. At the same time, when we decrease the value of c, the aver-
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age value of ISE also gets greater, which gives us the result that c = 1 gives us a better

estimation than other c values. So we will only compare kernel density estimator with

Bernstein polynomial density estimator with c = 1

When we compare the kernel density estimator with the Bernstein polynomial density

estimator, we found that the kernel density estimator performs a little better than Bern-

stein polynomial density estimator when sample size n=100. As the sample size goes

greater, the difference between their ISE values becomes smaller and smaller. When

sample size n is 400, these two estimators’ ISE values are very close.

ISE n=100 n=200 n=400

mean
kernel 0.007430471 0.004372632 0.002349617

Bernstein(c=1) 0.007600224 0.004474659 0.002517603

median
kernel 0.005641455 0.003463993 0.001899657

Bernstein(c=1) 0.006388351 0.003918022 0.002181035

sd
kernel 0.006650624 0.002686281 0.001797038

Bernstein(c=1) 0.004872336 0.002686281 0.001405067

Table 4.2: Transformation based on different estimators with von Mises distribution

(κ=1, μ=0)

In the second model, the performance of kernel density estimator still looks like very

similar with Bernstein polynomial density estimator since their ISE values are very close

for all three sample sizes.
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ISE n=100 n=200 n=400

mean
kernel 0.005584709 0.00441631 0.002503583

Bernstein(c=1) 0.00570089 0.004810359 0.002700961

median
kernel 0.004631101 0.003433499 0.002131873

Bernstein(c=1) 0.005434047 0.00423467 0.002340753

sd
kernel 0.004009296 0.00334669 0.00183587

Bernstein(c=1) 0.002532875 0.002758459 0.001556152

Table 4.3: Transformation based on different estimators with Mixture distribution

In the third model, we considered a mixture distribution of 40% von Mises distribution

and 60% wrapped Cauchy distribution. The result shows that kernel density estimator

still performs much similar as Bernstein polynomial density estimator since their ISE

values are very close.

We cannot decide which estimator is better only depend on their ISE values, and we

would like to continue our local comparison based on MSE.
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4.3 Local comparison

In this section we will focus on the factor MSE, mean square error, which defined as

MSE(f̂(θ)) =
1

N
E
{
(f̂(θ)− f(θ))2

}
(4.11)

=

∫
(f̂(θ)− f(θ))2f(θ)dθ.

Instead of computing the MSE directly, we would like to choose the estimator of it:

ˆMSE =
1

N

N∑
i=1

(f̂i(θ)− f(θ))2, (4.12)

where N is the replication number. (Allen, 1971)

This ˆMSE is easier for us to compute, and it could also tell us the estimate ability of

these two estimators.

We’d like to express the performance of MSE in form of graphs, and consider different

sample size we have in each distribution, there will be 9 cases in total: wrapped Cauchy

distribution with parameters (σ=1, μ=0) and sample size n=(100, 200, 400) separately,

von Mises distribution with parameters (κ=1, μ=0) and sample size n=(100, 200, 400)

separately , mixture distribution of 40% von Mises distribution with parameter (κ=1,

μ=0) and 60% wrapped Cauchy distribution with parameter (σ=1, μ=0) and sample size

n=(100, 200, 400) separately.

In the first case we compared kernel density estimator and Bernstein polynomial den-

sity estimator with c = (1, 2, 0.5), and the effect of increasing or decreasing the value of

c is exactly the same as what we found in global comparison. c = 1 results in a better

estimation in our case. So we will only compare kernel density estimator with Bernstein

polynomial density estimator with c = 1 in the left 5 cases.
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Figure 4.2: Mean squared error for wrapped Cauchy distribution (σ=1, μ=0,n=100)
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Figure 4.3: Mean squared error for wrapped Cauchy distribution (σ=1, μ=0,n=200)
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Figure 4.4: Mean squared error for wrapped Cauchy distribution (σ=1, μ=0,n=400)
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Figure 4.5: Mean squared error for von Mises distribution (κ=1, μ=0,n=100)
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Figure 4.6: Mean squared error for von Mises distribution (κ=1, μ=0,n=200)
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Figure 4.7: Mean squared error for von Mises distribution (κ=1, μ=0,n=400)
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Figure 4.8: Mean squared error for Mixture distribution(n=100)
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Figure 4.9: Mean squared error for Mixture distribution(n=200)
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Figure 4.10: Mean squared error for Mixture distribution(n=400)
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4.4 Conclusion and further research

4.4.1 Conclusion

In the first case (n = 100) of the first distribution (Figure 4.2), if we focus on the tails, we

can see that kernel estimator performs better than Bernstein estimator, and comparing

different values of c, c = 0.5 gives a better result than c = 1 and c = 2. However, in the

central part, Bernstein polynomial estimator with c = 1 performs pretty much similar to

the kernel density estimator, and as the value of c becomes greater (c=2) smaller (c=.5),

the value of MSE also increases conspicuously. Further looking at the result with dif-

ferent sample sizes, we see that these two estimators are quite similar when estimating

the central part, and for the tails, kernel density estimator performs much better than

Bernstein polynomial estimator. So in general we can say that kernel density estimator

is more accurate than Bernstein polynomial estimator for the wrapped Cauchy distribu-

tion. However, investigation by considering other circular probability density functions

for simulation may be desired.

Figure 4.5, 4.6 and 4.7 give the results based on von Mises distribution. In this case

kernel estimator still performs better than Bernstein estimator when we estimate the

tails. However, for estimating the central part, Bernstein estimator performs a little bit

better than kernel estimator when the sample size is not big enough. As the sample size

goes bigger, the performances of these two estimator becomes very similar.

For the third distribution (See Figure 4.8, 4.9 and 4.10), the result also shows that kernel

estimator has a stronger estimation ability than Bernstein estimator. In general, these

two transformations are very comparable when we estimate the central part for all dis-

tributions, however, the kernel transformation are much more efficient than Bernstein

transformation when it comes to the tail.

To sum it up, for all distributions we mentioned in this chapter, the performances of

these two estimators are very similar when estimating the central part and the kernel

estimator is more efficient than the Bernstein estimator with the tail part. In general
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we can say, the kernel density estimator is better than Bernstein polynomial density

estimator.

4.4.2 Further research

Since we just compared two estimators based on three models, it’s conspicuous that

kernel density estimator has a stronger ability to alleviate the boundary problem than

Bernstein polynomial density estimator in these models. However, we may need to do

more about the boundary problems in the transformed Bernstein polynomial density

estimator. On the other hand, we just used three different sample size to do the research

and small sample size may cause many problems, so more tests with larger sample size

may be needed in the further research.

Another important line of investigation would be to consider other circular probability

distribution for simulation which are not necessarily symmetric. One way to generate

such distribution would be to consider mixture distribution such as the one considered

in this thesis, but with different mean directions.

Also for a definitive treatment for the choice of c could be to analyze the asymptotic

nature of the MISE; the leading term may cast some light on its optimal choice.
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APPENDIX: R codes for computing ISE

and MSE for transformed kernel density

estimator (Based on Wrapped Cauchy

distribution (σ=1, μ=0))

## Global Error : ISE

## Kernel es t imator

##Wrapped Cauchy D i s t r i b u t i o n

##p . d . f of wrapped cauchy d i s t r i b u t i o n with mu=o , rho=exp (−1)

WCauchyf=funct ion ( t h e t a ){
(1/(2∗ pi ) )∗ ( ( 1 − ( exp ( −1 ) ) ˆ 2 ) / ( 1 + ( exp (−1))ˆ2−2∗exp (−1)∗ cos ( t h e t a ) ) )

}

## f h a t funct ion

f h a t . kernel<−funct ion ( theta , the tas , h ){
dcnorm<−funct ion ( theta , h ){

( 1 / ( ( 2∗ pi ) ˆ 0 . 5 ∗ h∗(1+ cos ( t h e t a ) ) ) ) ∗ exp ( −0.5∗ ( s i n ( t h e t a )/

( h∗(1+ cos ( t h e t a ) ) ) ) ˆ 2 )

}
xs<−tan ( t h e t a s /2)

mean( dcnorm ( theta−the tas , h=h ) )
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}

#CV. ISE funct ion

CVISE . kernel<−funct ion ( h , t h e t a s ){
n<−length ( t h e t a s )

FT . Int<−funct ion ( theta , t h e t a s =thetas , h=h )

{ ( f h a t . kernel ( theta , thetas , h ) ) ˆ 2 }
FT<−Vector ize ( FT . Int , ” t h e t a ” )

f i r s t . termK<−i n t e g r a t e ( FT,−pi , pi , t h e t a s =thetas , h=h ) $value

#second term

ST<−0

f o r ( i in 1 : n ){
ST=ST+ f h a t . kernel ( t h e t a s [ i ] , t h e t a s = t h e t a s [− i ] , h=h )

}
second . termK<−2∗ST/n

cv<− f i r s t . termK−second . termK

return ( cv )

}

## Minimize CV. ISE to f ind h

h . cv=as . numeric ( optimise ( CVISE . kernel , i n t e r v a l =c ( 0 , 0 . 6 ) ,

t h e t a s = t h e t a s ) [ 1 ] )

## D e f i n i t i o n of ISE

func . integrand=funct ion ( theta , the tas , h ){
( f h a t . kernel ( theta , thetas , h)−WCauchyf ( t h e t a ) ) ˆ 2

}

ISE . kerne l= r e p l i c a t e (1000 ,{
t h e t a s =rwrpcauchy ( 1 0 0 , l o c a t i o n =pi , rho=exp(−1))−pi

47



h . cv=as . numeric ( optimise ( CVISE . kernel , i n t e r v a l =c ( 0 , 0 . 6 ) ,

t h e t a s = t h e t a s ) [ 1 ] )

i n t e g r a t e ( func . integrand ,−pi + 0 . 1 , pi , t h e t a s =thetas , h=h . cv ) $value

} )

mean( ISE . kernel )

median ( ISE . kernel )

sd ( ISE . kernel )

## Local Error : MSE

## Kernel es t imator

##Wrapped Cauchy D i s t r i b u t i o n

##p . d . f of wrapped cauchy d i s t r i b u t i o n with mu=o , rho=exp (−1)

WCauchyf=funct ion ( t h e t a ){
(1/(2∗ pi ) )∗ ( ( 1 − ( exp ( −1 ) ) ˆ 2 ) / ( 1 + ( exp (−1))ˆ2−2∗exp (−1)∗ cos ( t h e t a ) ) )

}

#MSE d e f i n i t i o n f o r kernel t ransformat ion

mse . kerne l . wc=funct ion ( theta , thetas , h ){
( f h a t . kernel ( theta , thetas , h)−WCauchyf ( t h e t a ) ) ˆ 2

}

t h e t a . mse=seq(−pi , pi , length . out = 7)

MSE. wc= r e p l i c a t e (1000 ,{
t h e t a s =rwrpcauchy ( 1 0 0 , l o c a t i o n = pi , rho=exp(−1))−pi

h . cv=as . numeric ( optimise ( CVISE . kernel , i n t e r v a l =c ( 0 , 0 . 6 ) ,

t h e t a s = t h e t a s ) [ 1 ] )

MSEmatrixy=sapply ( t h e t a . mse , mse . kerne l . wc , t h e t a s =thetas , h=h . cv )

MSEmatrixy
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} )

KernelMSE1=rowMeans (MSE. wc)

#MSE P l o t f o r kerne l es t imator

sp1= s p l i n e ( t h e t a . mse , KernelMSE1 , n=1000)

p l o t ( sp1 , ylim=c ( 0 , 0 . 0 3 5 ) , x lab=express ion ( t h e t a ) , ylab =”MSE” ,

type=”s ” , l t y =2)
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