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ABSTRACT

Some Results for FO-definable Constraint Satisfaction Problems Described by

Digraph Homomorphisms

Patrick Aaron Moore

Constraint satisfaction problems, or CSPs, are a naturally occurring class of problems which

involve assigning values to variables while respecting a set of constraints. When studying the

computational and descriptive complexity of such problems it is convenient to use the equivalent

formulation, introduced by Feder and Vardi, that CSPs are homomorphism problems. In this con-

text we ask if there exists a homomorphism to some target structure. Using this view many tools

and ideas have been introduced in combinatorics, logic and algebra for studying the complexity of

CSPs. In this thesis we concentrate on combinatorics and give characterization results based on

digraph properties. Where previous studies focused on CSPs defined by a single digraph with lists

we extend our relational structures to consist of many binary relations which each individually de-

scribe a distinct digraph on the structures universe. A majority of our results are obtained by using

an algorithm introduced by Larose, Loten and Tardif which determines whether a structure defines

a CSP whose homomorphism problem can be represented by first order logic. Using this tool we

begin by completely classifying which of these structures are FO-definable when each of the re-

lations defines a transitive tournament. We then generalize a characterization theorem, first given

by Lemaı̂tre, to include structures containing any finite number of digraph relations and lists. We

conclude with examples of obstructions and properties that can determine if a particular relational

structure has a CSP which is FO-definable and how to construct such structures.
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Chapter 1

Introduction

A Constraint Satisfaction Problem, abbreviated to CSP, consists of determining, given a finite

set of variables with constraints, whether there exists a suitable assignment of values to these

variables that satisfies all of the given constraints. The generality of this schema makes it an

effective framework for many types of problems and this has made it a popular area of research

for various branches of mathematics and computer science. In the latter it is natural to investigate

such problems in terms of computational and descriptive complexity. In general the constraint

satisfaction problem is known to be NP-complete. However, when certain restrictions on the form

of the allowed constraints are added then one can find problems solvable in polynomial time. The

well known dichotomy conjecture of Feder and Vardi states that any CSP is either in P or NP-

complete [1]. Attacks on this conjecture have come from a combination of universal algebra,

combinatorics and logic. In the process many tools and and ideas have been formulated in order

to study the complexity of CSPs. In this text we will focus primarily on tractable CSPs using the

combinatorial approach.

In [2] Feder and Vardi also offered the powerful observation that every CSP can be seen as a

fixed target homomorphism problem which asks if there exists a homomorphism to a fixed rela-

tional structure. This is the standard view that we will take throughout this work. From this point

of view it is also possible to discuss CSPs in terms of their descriptive complexity where we use

sentences from different logics to describe a problem.

The dichotomy conjecture has been resolved for many types of CSPs, such as Boolean CSPs

or those defined by graph homomorphisms, whose complexity has been completely classified. For

example when it comes to (undirected) graph CSPs it was shown by Hell and Nes̃etril [3] that the
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dichotomy can be characterized rather simply. If we have a graph G, then the CSP defined by this

graph is tractable if G is bipartite or if G has a loop and is in NP-complete otherwise. Such clean

and concise results motivate researchers to find similar classifications for CSPs whose constraints

are defined by various relational structures. Many of these problems still remain open. Feder

and Vardi also showed the equivalence of resolving the dichotomy for digraphs and resolving the

general dichotomy [1]. Bulatov proved this dichotomy in [4] for a particular type of relational

structure which contains among its relations all possible unary relations on its universe. When

these relations are present we say that this is a structure with lists. Bulatov’s characterization of

these structures with lists is purely algebraic and not graph theoretic. In this thesis we take a

combinatorial and graph theoretic approach to classifying constraint satisfaction problems that are

described by digraphs with lists as our template structures.

In Chapters 2, 3 and 4 we provide relevant results and properties for relational structures,

digraphs and constraint satisfaction problems respectively. In chapter 5 we present a brief overview

of computational and descriptive complexity where we define the idea of a first order definable

problem. In Chapter 6 we present a dismantling algorithm, which was developed by Larose, Loten

and Tardif in [5], for determining whether or not a particular CSP is FO-definable. Using the notion

of relational domination introduced in this algorithm we present a full characterization, which was

first established by Lemaı̂tre in [6], of which digraphs with lists have CSPs which are FO-definable.

We then shift our attention to multi-relational binary structures where the set of relations contain

more than one binary relation. An obvious first question is ”If a structure has a set of binary

relations which define digraphs that have CSPs that are FO-definable, then is the larger structure

also FO-definable?” Starting with the fact that all transitive tournament digraphs with lists have

CSPs which are FO-definable we construct larger structures with sets of transitive tournaments as

the relations and show that this this larger structure may not have a CSP which is FO-definable.

This implies that there are properties between these relations that make the overall CSP harder.

Lastly, we discover these properties and generalize the characterization result of Lemaı̂tre in [6]

for those structures with lists and many binary relations and provide some interesting examples

from the culmination of our results.
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Chapter 2

Relational Structures

We begin our investigation by defining some of our main objects of study. These include

relational structures, digraphs, digraphs with lists and cores. We also define and describe some of

the different types of mappings between these structures. The main result in this chapter is the proof

that every relational structure has a unique core, up to isomorphism. This core is an interesting and

important substructure because it captures the structure of the overall object in a homomorphism

context. In later chapters we will show that we can define strong complexity results for problems

described by cores. We in no way believe that this is a comprehensive or complete introduction to

these objects and for that we would encourage the reader towards [7] or [8].

2.1 Relational structures and their properties

We begin by defining the components necessary to construct a relational structure.

Definition 2.1.1. Let A be a set. We define An as the set of all n-tuples (x0, . . . , xn−1) where each

xi ∈ A.

Definition 2.1.2. An n-ary relation R on a set A is a subset of An.

When n = 1 we call R a unary relation, when n = 2 we call R a binary relation and so on.

Definition 2.1.3. Let σ be a finite set of n relation symbols {Rr1
1 , ..., Rrn

n } where each ri ∈ N
+.

We say that each Ri has arity ri and we call the set σ a vocabulary.

Combining these we can define our main object of study, the relational structure.

3



Definition 2.1.4. Let σ = {Rr1
1 , ..., Rrn

n } be a vocabulary and A a non-empty set. We call A =

〈A;RA
1 , R

A
2 · · · , R

A
n〉 a relational structure with universe A and vocabulary σ or, simply, a σ-

structure, if RA
i ⊆ Ari for each i.

We call two relational structures with the same vocabulary similar.

Definition 2.1.5. A digraph, or directed graph, is a relational structure G = 〈V ;E〉. The elements

of its universe, V , are called vertices and it has one binary relation symbol, E, which defines its

edges. We denote the set of vertices of G as V (G) and the set of edges as E(G). We call an

element of E an edge. For any edge (x, y) ∈ E(G) we say that x is an in-neighbour of y and that

y is an out-neighbour of x.

Throughout this study we will follow convention and denote our graphs and digraphs as G =

(V,E) but we will use relational structure notation, G = 〈V ;E〉, when E denotes a list of relations.

Example 2.1.1. Let G = ({a, b, c}, {(a, b), (b, c)}). Then the universe of G is V (G) = {a, b, c}

and it has a single binary relation defined by E(G) = {(a, b), (b, c)}.

a

b

c

G

The digraph G is a basic relational structure with a single binary relation.

Although many of the results and ideas that will be discussed in this work can be applied

for all types of relational structures our primary focus will be on those structures that have only

binary relations. Which means each relation will define a digraph on the universe of the structure.

However it is also important to our study to define an extension of the digraph known as a digraph

with lists.

Definition 2.1.6. Let G be a digraph whose universe is the set of vertices V . Let UH = {U1, . . . , Uk}

denote the set of all non-empty subsets of V . Let σ be the vocabulary that consists of one binary

symbol E and the unary symbols Ri, for 1 ≤ i ≤ k. We call the σ-structure, GL, with the binary

edge relation E(GL) and unary relations Ri(GL) = Ui, a digraph with lists.

If we have some digraph G we are able to build GL by adding to it all of its unary relations.

We now give an illustrative example.

4



a

b

c

d

G

b

c

d

H

Figure 2.1: G and its induced subdigraph H

Example 2.1.2. Let G be the digraph from Example 2.1.1, where G = ({a, b, c}, {(a, b), (b, c)}).

Then GL = ({a, b, c}, {(a, b), (b, c)}, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}) is G with lists.

We can similarly build a relational structure with lists from any relational structure by adding

these unary relations. We can think of these unary relations as sets of vertex colourings. Each of

these unary relations is a list that can be assigned to any vertex and their inclusion results in a more

general structure which offers some useful properties to our study.

Definition 2.1.7. Let G be a digraph. We call the digraph H a subdigraph of G if V (H) ⊆ V (G)

and E(H) ⊆ E(G) and we write H ⊆ G. We call H an induced subdigraph of G if E(H) =

E(G) ∩ V (H2).

Example 2.1.3. Let G = (V,E) be a digraph with V (G) = {a, b, c, d} and E(G) = {(a, b), (a, c),

(c, b), (c, d)}. Then we can induce a substructure H by removing the vertex a of G. Thus we have

V (H) = {b, c, d} and E(H) = {(c, b), (c, d)}. (Figure 2.1)

Like many other mathematical objects we are able to define some operations on relational

structures. The most important of these operations for our study is that of the product. Which we

define now.

Definition 2.1.8. Let A and B be similar relational structures such that A = 〈A;RA
1 , . . . , R

A
n〉 and

B = 〈B,RB
1 , . . . , R

B
n〉 then we can define the product A × B = 〈A × B;RA×B

1 , . . . , RA×B
n 〉. The

elements in the universe of the product are the pairs (ai, bi) for all ai ∈ A and bi ∈ B. We define

the relations of the product as RA×B
i = {((a1, b1), . . . , (an, bn)) : (a1, . . . , an) ∈ RA

i , (b1, . . . , bn) ∈

RB
i }.

Example 2.1.4. Let G = ({a, b, c}, {(a, b), (b, c)}) and H = ({1, 2}, {(1, 2), (2, 2)}) then the

product of G and H can be described as:

V (G × H) = {(a, 1), (a, 2), (b, 1), (b, 2), (c, 1), (c, 2)}

E(G × H) = {((a, 1), (b, 2)), ((a, 2), (b, 2)), ((b, 1), (c, 2)), ((b, 2), (c, 2))}

5



a

b

c

G

1

2

H

(a, 1)

(a, 2)

(b, 1)

(b, 2)

(c, 1)

(c, 2)

G × H

We can also define the square of a relational structure as A2 = A × A. Similarly we define the

nth power of A, An, as the product of A with itself n times.

Example 2.1.5. Let G be the digraph from Example 2.1.4. Then:

V (G2) = {{(a, a), (a, b), (a, c), (b, a), (b, b), (b, c), (c, a), (c, b), (c, c)}

E(G2) = {((a, a), (b, b)), ((a, b), (b, c)), ((b, a), (c, b)), ((b, b), (c, c))}}

(a, a)

(a, b)

(a, c)

(b, a)

(b, b)

(b, c)

(c, a)

(c, b)

(c, c)

The digraph G2.
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For the square of any digraph G we have that |V (G2)| = |V (G)|2 and |E(G2)| = |E(G)|2.

Where |V (G)| and |E(G)| are the number of vertices and edges of G respectively. We call the

substructure of G2 induced by the set of vertices {(x, x)|x ∈ V (G)} the diagonal of G2.

2.2 Homomorphisms, retracts and cores

Another important concept for our study is that of homomorphisms between structures. Homo-

morphisms are simply relation-preserving mappings. In the case of digraphs we can think of these

as edge-preserving functions.

Definition 2.2.1. A homomorphism from a relational structure A to a similar relational structure

B is a mapping h : A → B such that for each n-ary relation RA
i and every (ai, ..., an) ∈ RA

i we

have (h(ai), ..., h(an)) ∈ RB
i .

Example 2.2.1. Let G and H be a digraphs with V (G) = {a, b, c} and E(G) = {(a, b), (c, b)}

and V (H) = {1, 2} and E(H) = {(1, 2)} . Then h : G → H defined by h(a) = h(c) = 1

and h(b) = 2 is a homomorphism. We see that that both edges in G map to (1, 2) ∈ E(H).

(h(a), h(b)) = (h(c), h(b)) = (1, 2) ∈ E(H).

1

2

a

b

c

h

h

h

G

H

A homomorphism h from G to H.

If there exists a homomorphism from G → H and a homomorphism from H → G then we call

G and H homomorphically equivalent.

Definition 2.2.2. An endomorphism of a structure G is a homomorphism h : G → G.

Definition 2.2.3. A homomorphism from h : G → H is called an isomorphism if h is a bijection

and h−1 is a homomorphism from H → G. If there exists an isomorphism between G and H then

we say that G and H are isomorphic and we write G ∼= H. An isomorphism between G and itself

is called an automorphism.

7



1

2

3
4

5

6

7
8

9

T3

Figure 2.2: The tournament T3 is a retract of G

Definition 2.2.4. We call a homomorphism h : G → H a retraction if H ⊆ G and h(x) = x for

all x ∈ H. We call a structure H a retract of G if there exists a retraction from G to H and we call

this a proper retract if H is a proper substructure of G.

Example 2.2.2. In Figure 2.2 the digraph G has T3 = ({3, 4, 5}, {(3, 4), (3, 5), (4, 5)}) as a proper

retract. We can construct the homomorphism h : G → T3 such that:

h(1) = h(3) = h(6) = h(8) = 3,

h(2) = h(5) = h(7) = h(9) = 5,

h(4) = 4

Since h fixes the image of T3 and T3 ⊂ G then T3 is a proper retract of G.

Definition 2.2.5. We call a structure C a core if it has no proper retracts. We say that a structure

C is a core of a structure G if C is a retract of G and C is a core.

A core, as its name suggests, is central in describing an overall structure. From the homo-

morphism point of view the core provides us with the DNA of a structure since all of its unique

homomorphic information is contained in its cores. In Example 2.2 it should be obvious that T3

is a core of the digraph G because T3 does not have a proper retract. It should also be easy to see

that all structures with lists are cores. This will be an important fact when we begin discussing the

complexity of constraint satisfaction problems described by digraphs with lists.

Lemma 1. Let G and H be two similar structures. If there exists surjective homomorphisms f :

G → H and h : H → G then G and H are isomorphic.

8



Proof. Since both f and h exist and are surjective we know that |G| = |H|. Thus both f and h are

bijections and therefore h ◦ f is also a bijection. Therefore there exists a positive integer k such

that (h ◦ f)k is the identity mapping. Then we see that (h ◦ f)k−1 ◦ h = f−1. Since f−1 is clearly

a homomorphism we have that f is an isomorphism.

Lemma 2. Let C1 and C2 be two cores. If C1 and C2 are homomorphically equivalent then C1 and

C2 are isomorphic.

Proof. Let f : C1 → C2 and h : C2 → C1 be homomorphisms. Then we have that h ◦ f is an

endomorphism of C2 and since C2 is a core then this is an automorphism. Therefore both f and h

are surjective and by Lemma 1 we have that C1 and C2 are isomorphic.

Proposition 3. Every relational structure G has a unique core C, up to isomorphism, and C is a

unique core to which G is homomorphically equivalent.

Proof. First we show the existence of a core C of G. Let C be a retract of G with minimal

cardinality. Any proper retract of C would also be a retract of G and therefore C is a core.

Next, let C1 and C2 be two distinct cores of G. Then by the definition of a core we have that

there exist homomorphisms h1 : G → C1 and h2 : G → C2. Let r1 define the restriction of h1

to C2 and r2 be the restriction of h2 to C1. Then r1 and r2 show that the cores C1 and C2 are

homomorphically equivalent and by Lemma 2 they are isomorphic.

As we have stated throughout our investigation we will only be concerned with particular rela-

tional structures such as digraphs, digraphs with lists or structures with lists that only have binary

relations (other than the set of allof its unary relations). Our study will be centred primarily on

a combinatorial and graph theoretic approach, thus, for the sake of convenience, we will always

denote the universe of all of our structures as V and the set of binary relations as E to emphasize

this digraph connection. In the next chapter we present some properties of digraphs that will be

useful to us throughout the remaining chapters of this exposition.

9



Chapter 3

Digraphs

In this chapter we will define many properties of the digraph. We will see in Chapter 4 that

we can define a constraint satisfaction problem for every relational structure. It turns out that even

though digraphs are rather simple structures they are sufficient for understanding these types of

constraint satisfaction problems in general. Hence digraphs are an obvious choice for our inves-

tigation. The deep knowledge base pertaining to digraphs is extremely useful when attempting to

understand their CSPs. For futher reference and more exhaustive studies of digraphs we suggest

[9] or [7] to the reader.

3.1 Properties of digraphs

Definition 3.1.1. Let G = (V,E) be a digraph. If (u, v) ∈ E implies that (v, u) ∈ E then we call

G a symmetric digraph. A digraph which is symmetric is often simply called a graph. (Figure

3.1).

Definition 3.1.2. Let G = (V,E) be a digraph such that for any u, v ∈ V we have that (u, v), (v, u)

∈ E and u 6= v then we call G a complete graph. (Figure 3.2).

Definition 3.1.3. We call a digraph G = (V,E) a tournament if for every a, b ∈ V , with a 6= b,

either (a, b) ∈ E or (b, a) ∈ E but not both.

Definition 3.1.4. Let G = (V,E) be a tournament such that for any a, b, c ∈ V where (a, b), (b, c) ∈

E then (a, c) ∈ E. We call G a transitive tournament. (Figure 3.4)
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Figure 3.1: Symmetric digraph
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Figure 3.2: We denote the complete graph on n vertex as Kn.

b

a c
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Figure 3.3: A Tournament
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a c

d

e

Figure 3.4: A Transitive Tournament

You can also think of a transitive tournament as a total strict ordering on the vertices of G. In

Figure 3.4 the edges follow the alphanumeric ordering of the vertex names, [a, b, c, d, e]. Notice

that all edges go out of a and all edges come into e and no two vertices have the same number of in

and out edges. There are special names for the vertex a and the vertex e and we define those next.

Definition 3.1.5. We call the vertex a ∈ V (G) a source of the digraph G if for all b ∈ V (G) we

have that (b, a) /∈ E(G).

Definition 3.1.6. We call the vertex a ∈ V (G) a sink of the digraph G if for all b ∈ V (G) we have

that (a, b) /∈ E(G).

In every transitive tournament there is exactly one sink and one source. In Chapter 6 we will

show how the very regular structure of transitive tournaments and the unique properties of their

sink and their source offer us some non-trivial observations about the complexity of constraint

satisfaction problems defined by these digraphs.

Definition 3.1.7. Let G = (V,E) be a digraph if for all u ∈ V we have (u, u) ∈ E we call G a

reflexive digraph. We call the edge (u, u) a loop. (Figure 3.5)

A digraph that does not contain any loops is called irreflexive.

Definition 3.1.8. Let G = (V,E) be a digraph if the set V can be partitioned into two non-empty

sets U and W such that for any (x, y) ∈ E either x ∈ U and y ∈ W or x ∈ W and y ∈ U we call

G a bipartite digraph. (Figure 3.6)

Definition 3.1.9. A walk is a sequence of vertices where each two consecutive vertices in the

sequence have an edge between them. In a digraph the direction of the edge and the order of the

12



b

a c

d

Figure 3.5: A reflexive digraph

a1

b1 b2

a2

b3

a3 a4

Figure 3.6: A bipartite graph

sequence must coincide. If the sequence starts and ends with the same vertex we call it a closed

walk.

Notice that the choice of starting vertex in a closed walk is irrelevant.

Definition 3.1.10. A path is a walk such that no vertex is repeated.

Definition 3.1.11. A directed cycle is a closed walk on a digraph such that no vertex is repeated in

the sequence. (Figure 3.7)

Definition 3.1.12. Let G = (V,E) be a graph such that there is path between every pair of vertices.

Then we call G a connected graph. (Figure 3.8)

There is a different notion of connectedness when one is working with digraphs.

Definition 3.1.13. Let G = (V,E) be a digraph such that for any u, v ∈ V there exists a walk from

u to v. Then we call G a strongly connected digraph. (Figure 3.9)

Definition 3.1.14. The graph neighborhood of a vertex v in an undirected graph G is the set of all

vertices u such that (v, u) ∈ E(G). We denote this set by N(v).
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Figure 3.7: A directed cycle (a, b, c).
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Figure 3.8: A connected graph
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Figure 3.9: A strongly connected digraph

14



In a digraph we refine the notion of neighbourhoods to take into account the orientation of the

edges.

Definition 3.1.15. Let G = (V,E) be a digraph with v ∈ V we define the set Nout(v) as the

set of all vertex a ∈ V such that (v, a) ∈ E and the set Nin(v) as the set of all vertex a ∈ V

such that (a, v) ∈ E. We call the set Nin(x) the in-neighbourhood of x and the set Nout(x) the

out-neighbourhood of x. We say that the out-degree of x is |Nout(x)| and the in-degree of x is

|Nin(x)|.

Example 3.1.1. Consider the digraph G = ({0, 1, 2}, {(0, 2), (1, 0), (1, 2), (2, 0), (2, 2)}). Then

we have the sets:

Nout(0) = {2} Nin(0) = {1, 2}

Nout(1) = {0, 2} Nin(1) = ∅

Nout(2) = {0, 2} Nin(2) = {0, 1, 2}

We will appreciate the usefulness of defining these neighbourhoods when we present the idea

of vertex domination in Chapter 6.

In the next chapter we will define the constraint satisfaction problem and we will show the

natural connection between these decision problems and the digraph homomorphisms we discussed

in Chapter 2.
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Chapter 4

Constraint Satisfaction Problems

Constraint satisfaction problems, or CSPs, are mathematical problems where one must find

values which satisfy a set of constraints or criteria. They can be used to represent many real

world problems such as those of scheduling or the allotment of resources, they can be used to

define and frame many different games and puzzles, and are frequently found in various areas of

computer science such as the study of Artificial Intelligence. The goal when working with CSPs is

to determine an assignment of values given to variables from a specific domain which satisfy the

given constraints. This can also be framed as a decision problem by asking whether not such an

assignment exists. This framework is obviously quite versatile and can be used to describe many

types of problems. This is why CSPs have been actively studied for many decades and through the

lens of many different disciplines. We begin with the formal definition of a constraint satisfaction

problem and then present some alternate views using homomorphisms.

4.1 The formal approach to CSPs

Definition 4.1.1. A constraint satisfaction problem is a triplet (V,D,C) Where V = {V1, . . . , Vn}

is a set of variables, D is a non-empty domain, and C = {C1, . . . , Cm} is a set of constraints. A

constraint, with arity k, is a pair (t, U) where t = (t1, . . . , tk) is a tuple of variables such that each

ti ∈ V and U = {u1, . . . , us} is a set of tuples with each ui ∈ Dk.

Definition 4.1.2. A valuation of a CSP is a mapping f : V → D. We say that a valuation satisfies

a constraint C = (t, U) if (f(t1), . . . , f(tk)) ∈ U , where k is the arity of the constraint. We call a

valuation a solution to a constraint satisfaction problem if it is satisfies all constraints.
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Figure 4.1: 3-Colouring of a digraph with 6 vertices where no edge is shared between two vertices

of the same colour.

Constraint satisfaction problems can be found in our every day experiences in the games of

sudoku or newspaper crosswords. In computer science they can be found in the canonical example

of graph colouring. To illustrate these problems further we provide a few examples of CSPs below.

Example 4.1.1. Let G = (V,E) be a graph. A k-colouring of the graph G is an assignment of

one of k possible colours to each vertex v ∈ V such that no two adjacent vertices receive the

same colour. In the language of a constraint satisfaction problem the k-colouring problem can

be seen as the triplet (V,D,C) where V consists of the vertices of the graph G, the domain, D,

is the set {1, . . . , k} of k colours. The binary relation consists of all pairs of distinct colours,

R 6= = D2 \ {(1, 1), (2, 2), . . . , (k, k)}. For any edge (vi, vj) ∈ E(G) we have the constraint

C = ((vi, vj), R6=).

In Figure 4.1 we see that a solution to this 3-colouring CSP with domain D = {R,G,B} is

given by:

f(0) = B = f(3),

f(1) = G = f(4),

f(2) = R = f(5)

Example 4.1.2. Sudoku is a puzzle game that involves placing the numbers from the set {1, 2, 3, 4,

5, 6, 7, 8, 9} into various empty spaces on a 9 × 9 grid. Each row and column can only have one

instance of each of the numbers 1 through 9 and each 3 × 3 grid marked by the thicker lines can

also only contain one instance of those numbers as well.
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2 5 1 9

8 2 3 6

3 6 7

1 6

5 4 1 9

2 7

9 3 8

2 8 4 7

1 9 7 6

Unsolved Sudoku

2 5 1 9

8 2 3 6

3 6 7

1 6

5 4 1 9

2 7

9 3 8

2 8 4 7

1 9 7 6

Solved Sudoku

4 6 7 3 8

5 7 9 1 4

1 9 4 8 2 5

9 7 3 8 5 2 4

3 7 2 6 8

6 8 1 4 9 5 3

7 4 6 2 5 1

6 5 1 9 3

3 8 5 4 2

In the language of CSPs we would consider each cell of the grid as a variable. In this case

we could label each variable as xij where i denotes the row and j the column of the particular

cell. So V = {x11, x12, . . . , x98, x99}. The domain for these variables is the possible values they

can take on which is simply the numbers 1 through 9, thus we have D = {1, 2, 3, 4, 5, 6, 7, 8, 9}.

The constraints that describe the restrictions on the rows, columns and grids are relations of arity

9 and we use unary relations to describe the cells that are already filled at the problems outset.

Let Dper be the set of tuples defined by all possible permutations of the numbers 1 to 9 then if

we take the top row the constraint that each variable must be assigned a different value from our

domain can be expressed as C = ({x11, x12, . . . , x19}, Dper). We can also give a unary constraint

for the the values that are already present at the puzzles outset. From the example above we have

C32 = ({x32}, (3)) and C67 = ({x67}, (7)).

4.2 CSPs as homomorphism problems

Constraint satisfaction problems can also be framed in another interesting and useful way.

Feder and Vardi observed that we can consider each CSP as a homomorphism problem in [2]. In-

formally we can imagine that the set of variables defines one structure, G, and the domain defines

another structure, H, and the valuation h is a map between the two. If we define our structures prop-

erly and the mapping h defines a homomorphism between our structures then this homomorphism

provides a solution to the CSP. To convey this more formally we offer the following definition.

Definition 4.2.1. Given a constraint satisfaction problem defined by the triplet (V,D,C) we define

two relational structures G and H such that V (G) = V and V (H) = D. Using each set of tuples

U occurring in some constraint (t, U) ∈ C, with t = {t1, . . . , tk}, we define a k-ary relation Si on

V (H) for which the corresponding relation Ri on V (G) consists of all k-tuples t′ of variables with

a constraint defined as C ′ = (t′, U). Then a solution to CSP(H) is a homomorphism h : G → H.
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This definition is incredibly useful when we turn our gaze to the theoretical and view this

through the lens of the complexity classification of various CSPs. In Example 4.1 we saw how we

could represent the k-colouring problem as a CSP. Now we give an illustrative example of how this

CSP can be represented as a homomorphism problem.

Example 4.2.1. It is well known that the problem of k-colouring graphs is closely linked to

the complete graph on k vertices. It is easy to see that one can transform the question of k-

colouring a particular graph to that of finding a homomorphism from that graph to the complete

graph on k vertices. In Figure 4.1 we showed a 3 colouring of an undirected graph, G, where

G = ({0, 1, 2, 3, 4, 5}, {(0, 1), (0, 2), (0, 4), (0, 5), (1, 2), (1, 3), (1, 5),

(2, 3), (2, 4), (3, 4), (3, 5), (4, 5)}) and K3 = {(a, b, c), {(a, b), (a, c), (c, b)}}. This implies that

there exists a homomorphism h that goes from G to K3.

We can define the homomorphism h as:

h(0) = a,

h(1) = b,

h(2) = c,

h(3) = a,

h(4) = b,

h(5) = c

We can see that this maintains the edge relations of G in K3

h((0, 1)) = (a, b),

h((0, 2)) = (a, c),

h((0, 4)) = (a, b),

h((0, 5)) = (a, c),

h((1, 2)) = (b, c),

h((1, 3)) = (b, a),

h((1, 5)) = (b, c),

h((2, 3)) = (c, a),

h((2, 4)) = (c, b),

h((3, 4)) = (a, b),

h((3, 5)) = (a, c),

h((4, 5)) = (b, c)

Since these are undirected edges we see that each of the relations is preserved by h and therefore

h defines a homomorphism from G to K3. the following diagram gives the visual interpretation of

the homomorphism h:
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a

bc

The homomorphism h from G to K3.

In general a CSP has G and H as inputs but we can fix the target structure H and ask ”which

structures G have a homomorphism to H?” Using this fixed target idea it is natural to define a

particular constraint satisfaction problem in terms of a set of structures.

Definition 4.2.2. Let H be a relational structure then CSP(H) is defined as the set of all similar

relational structures G such that there exists a homomorphism h : G → H. We call the structure

H the target structure.

Example 4.2.2. Looking back at Example 4.2.1 we would say that G ∈ CSP(K3) because we have

a homomorphism h : G → K3.

Notice that by Proposition 3, in Chapter 2, we have that if C is the core of some structure G

then CSP(C) = CSP(G). This nice property is one of the reasons cores are helpful in the study of

constraint satisfaction problems and one of the reasons digraphs with lists, which are themselves

cores, are central in this work.
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Chapter 5

Descriptive and Computational Complexity

Constraint satisfaction problems arise naturally in the study of computational complexity. This

is because so many everyday and scientific problems can be easily translated into the language

of CSPs. This motivates computer scientists and mathematicians alike to study and understand

the difficulty or ”hardness” in solving general forms of these problems. Since the concepts of

computational complexity were formalized in the 1960s and 1970s, by the likes of Hartmans and

Stearns [10], Levin [11] and Cook [12] and others, CSPs were among some of the earliest problems

studied in this new context.

In this chapter we will briefly discuss the well-known complexity classes P and NP as well as

the methods for ordering problems in these classes in terms of their relative hardness. We will also

define some subclasses of P, such as the classes L and NL as well as problems that are known as

first order definable (FO). We make no pretense of this being a complete or comprehensive study

of this subject but more of a primer to show the underlying motivations for the work presented in

the rest of this thesis. We direct the reader to [13] or [14] for a more comprehensive reference. We

will present the famous dichotomy of Feder and Vardi found in [1] for the complexity of CSPs and

explain how this motivates our current study. Finally, we conclude with an illustrative example

of a problem that is first order definable. We will link this descriptive complexity to our study of

digraph defined constraint satisfaction problems in the next chapter.
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5.1 Efficient computation, efficient verification and the com-

plexity classes P and NP

The complexity classes of P and NP are very familiar to anyone who has a basic knowledge of

complexity theory. They have also been made infamous in popular science culture because of the

well known open question ”Does P equal NP?” whose proof offers a million dollar prize and end-

less fame to the researchers who finally crack it. Motivated by the elegance and simplicity found

in the forthcoming text by Avi Wigderson [15] we will present what we believe are the simplest

constructions of these very important classes.

The easiest way to understand complexity is to think of it as the study of what can be efficiently

computed. Of course the word efficient can be defined in many different ways from many different

viewpoints but very generally we think of it as computation that uses a reasonable amount of time

and a reasonable amount of space in order to arrive at some conclusion. One class of problems

that arise naturally in the study of Computer Science are decision problems. These problems can

simply be thought of as questions with a yes or no answer. For example we could ask if the

number 1993 is a prime number?, or if a particular graph, G, 3-colourable?, or if one can solve a

Rubik’s cube with a particular configuration in 21 moves or less? and so on. A convenient way to

frame a question into a decision problem is to consider whether a particular object has a specific

property and then divide these objects into sets which have this property and those that do not. We

can ask does the number 1993 belong to the set of primes? or does it belong to the complement

set of composite numbers? Does this particular Rubik’s cube configuration belong to the set of

configurations, R21, of configurations that can be solved in 21 moves or less? To illustrate these

points we formalize the famous 3-colourable graph problem in the following example:

Example 5.1.1. Let C3 be the class of 3-colourable graphs and let G = (V,E) be a graph then the

framework for a decision problem is:

Problem : C3

Input: the graph G

Output: True if G ∈ C3 and false if G /∈ C3.

This example illustrates how we can set up a decision problem for a graph G and some charac-

teristic C. By describing the problem in this way we are able to try to describe a solution-finding

algorithm for a Turing machine to perform in order to determine whether the input graph G has
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the characteristic C. Note that every decision problem has an obvious complement, C̄ which rep-

resents the set of all structures not in C. In this case C̄3 would contain all graphs which are not

3-colourable.

An algorithm, by definition, must at some point stop for every input and give an output to

the decision problem, but different algorithms can take different amounts of time to complete their

tasks. An algorithm is thought to be efficient if it stops in a reasonable amount of time, but how can

we define this notion of reasonable? It has been agreed upon, for many reasons, that polynomial

time, as opposed to exponential time, is a good definition for reasonable. This implies that the

runtime for a particular input of length n is bounded by a polynomial function in n. Problems that

have such a solution are said to be contained in the complexity class P. We will use the definition

found in [15] to formally define this class. Let I define the set of all binary sequences. This is the

set of all possible inputs to our decision problem. Now let In be the set of all binary sequences of

size n, eg. In = {0, 1}n then we can define the complexity class P as follows:

Definition 5.1.1. A function f : I → I is in the complexity class P if there is an algorithm

computing f and positive constants A and c, such that for every n and every x ∈ In the algorithm

computes f(x) in at most Anc steps.

We consider each of these steps to be a basic operation. Notice that this definition works well

with decision problems since the output bit can be either a 1 or a 0, or in other words ”yes” or ”no”.

There are many non-trivial and natural problems that are known to belong to P such as instances

of factoring polynomials, finding greatest common divisors, prime checking and more. Often ex-

tensive study is needed in order to discover an elegant polynomial time algorithm which solves

problems in P, but once an algorithm is presented it is often the case that these algorithms can be

made more and more efficient than their first formulations. For every problem that is found to be

in P there are many more which have yet to find their polynomial time algorithm. Are we naive to

think that every problem can have a polynomial time algorithm which solves it? How do we know

we are not wasting our time in searching for one? Are there properties inherent in problems that

can point to which are more likely to be found in P and which are not?

An interesting fact of a decision problem is that it is often easier to determine whether a par-

ticular input satisfies some property than it is to come up with an algorithm to check all general

inputs. These ”acts of verification” have varying degrees of complexity themselves. This begs

the question: is it easier to find algorithms that determine whether a general input has a particu-

lar property if it is easier to verify that a particular input has that property? For example, if you

are given a graph that is 3-coloured it is far easier to check if the 3-colouring is proper (ie. no
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vertices with an edge between them have the same colour) then to find such a colouring. We are

not concerned with colouring the graph but simply verifying that the given colouring is proper or

not. These problems are connected but different. It is well know that the verification problem of

3-colouring can be done efficiently whereas the problem of finding a 3-colouring might not be. So

what does efficient verification say about a problem in general?

The class NP is born from this idea of verification. NP contains all the properties C where the

question ”is x ∈ C?” has an efficient verification process. Again, we use polynomials to define the

idea of efficient. In this case we say that the verification is efficient if the candidate proof, y, can

be defined in a length that is polynomial to the length n of the input x and it can be checked using

a verification algorithm VC within a time which is also polynomial to this length n.

Definition 5.1.2. The set C is in the complexity class NP if there is a function VC ∈ P and a

constant k such that:

(i) If x ∈ C then there exists a y with |y| ≤ k ˙|x|k and VC(x, y) = 1.

(ii) If x /∈ C then for all y we have VC(x; y) = 0.

Problems in the class P are defined by the efficiency of the algorithms designed to classify

them whereas problems in the class NP are defined by the efficiency in which one can verify that

a given input has a property or not. Two problems known to be in NP are the problem of finding

Hamiltonian paths in graphs and the general problem of finding graph isomorphisms [15]. It’s

clear that P ⊂ NP but the other way around is a far different story. The idealist in us may hope that

by finding an efficient verification for a problem we might be closer to an efficient algorithm for

solving the problem but the majority of computer scientists do not agree and that is why we have

the famous conjecture P 6= NP.

Arguably the most important and powerful tool in the study of complexity is that of reductions.

A reduction is a function that allows a complexity comparison of two problems that may, at first

glance, seem completely disjoint. Basically, if we are able to translate one problem C, into another

problem D in an efficient way, then this means that C is at most as difficult as D.

Definition 5.1.3. Let C,D ⊂ I be two classification problems. We call f : I → I an efficient

reduction from C to D if f ∈ P and for every x ∈ I we have that x ∈ C if and only if f(x) ∈ D.

We write C ≤ D if there exists an efficient reduction from C to D.

The usefulness of reductions should be immediately apparent. Our first obervation is that be-

cause P is closed under composition thr relation ≤ is transitive and therefore defines a partial
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ordering on classification problems. Our second observation is that if one is able to efficiently

reduce a problem C to D and there already exists an efficient algorithm for D then we can con-

struct an efficient algorithm for C. This offers researchers another route for classifying particular

problems. Instead of looking for a direct algorithm to solve a particular problem one could find a

reduction to a different problem that has been already classified. This partial ordering also allows

us to define the hardest problems in any given complexity class.

Definition 5.1.4. A problem D is called C-hard if for all C ∈ C we have that C ≤ D and if D ∈ C

then we call D C-complete.

These complete problems, which are the most difficult problem in any particular complexity

class, are very important because they capture the complexity of their entire class. For example

we know that the problem of boolean satisfiability known as SAT is NP-complete. SAT is the

set of all satisfiable boolean statements. It was an incredibly important result of both Cook [12]

and Levin[11] to show that this was in fact NP-complete. Returning to example 5.1.1 it is well

known that this particular decision problem, known as the 3-colouring problem, is NP-complete.

We know this because there exists a reduction from SAT to 3-colouring. We will not provide this

reduction here because it is outside the scope of this work but it can be found in [15].

There are obvious similarities between boolean satisfiability and the general constraint satis-

faction problem. They are both NP-complete. Even though the problem of CSPs is hard in general

it is possible to find CSPs with certain characteristics that are tractable. This fact is captured in the

famous dichotomy conjecture of Feder and Vardi.

Conjecture 4. [1]For all relational structures, A, the problem CSP(A) is either in P or NP-

complete.

This means that a constraint satisfaction problem is either tractable or it is as hard as SAT

and the other hardest problem in NP. In this study we will focus on CSPs that are tractable and

belong to a simple form of descriptive complexity, associated with first order logic, known as FO.

Problems that are in FO are those which can be captured by first order logical sentences. It is know

that problems with first order definability are contained in P. In order to better understand FO we

will describe two different classes also contained in P. These are L and NL. By defining these

classes and their inclusions we hope to give a greater understanding of these tractable problems.

In order to understand these complexity classes it is important to understand that Turing ma-

chines use two resources, time and space. In order to classify a problem we must focus on the

limits of these resources.
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Definition 5.1.5. Let the function f : N → R
+ then:

(1) TIME(f(n)) is the class of problems that can be solved by a deterministic Turing machine

in O(f(n)) steps.

(2) NTIME(f(n)) is the class of problems that can be solved by a non-deterministic Turing

machine in O(f(n)) steps.

(3) SPACE(f(n)) is the class of problems that can be by a deterministic Turing machine using

O(f(n)) blocks of memory.

(4) NSPACE(f(n)) is the class of problems that can be solved by a non-deterministic Turing

machine using O(f(n)) blocks of memory.

5.2 L

The class L contains those problems which can be solved by a deterministic Turing machine

using only a logarithmic amount of memory space relative to the input. Thus we have that L =

SPACE(log(n)). This class can be called deterministic log space. An example problem in this

class is the decision problem determining whether a graph is 2-colourable.

5.3 NL

The class NL is the non-deterministic counterpart to the class L and therefore contains those

problems which can be solved by a non-deterministic Turing machine using only a logarithmic

amount of memory space relative to the input. Thus we have that NL = NSPACE(log(n)). This

class can also be called non-deterministic log space. An example problem in this class is the

decision problem for determining whether there exists a directed path between two vertices in a

digraph. It is clear that L is contained in NL but like P and NP it is not known whether L = NL.
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5.4 FO

A set of structures S belongs to the descriptive complexity class FO if there exists a first order

sentence φ such that G ∈ S if and only if G satisfies φ; a first order sentence is one that can be

written using atomic formulas, connectives and both the universal and existence quantifiers. It is

known that FO is a proper subclass of L. [16]

With these definitions in place it is possible to give the following chain of inclusions to give the

reader a better understanding of where FO definability is positioned in terms of relative hardness.

FO ⊂ L ⊆ NL ⊆ P ⊆ NP

Through our homomorphism point of view of the CSP we have that if we take some fixed finite

structure G then the question presented by CSP(G) is ”which structures have a homomorphism

to G?”. It is well known that in general the problem CSP(G) is in NP but it natural to wonder

what kind of structures yield tractable problems. The easiest of these problems, that are not trivial,

would be those which can be defined by first order logic. It is reasonable to ask if it is possible to

characterize which constraint satisfaction problems are first order definable and we now provide

an example of a digraph with such a property..

Example 5.4.1. Let T3 be the transitive tournament on 3 vertices and let P3 be a directed path of

length 3. It is well known and easy to see that a digraph G has a homomorphism to T3 if and only if

there does not exist a homomorphism from P3 to G. This restriction can be defined in a first order

sentence as follows: ¬(∃a∃b∃c∃d E(a, b) ∧ E(b, c) ∧ E(c, d)) where E(x, y) indicates that there

is an arc from x to y. This sentence clearly states that there is no homomorphism from P3 to G.

Thus CSP(T3) is FO-definable. We will confirm this in the next chapter using a special algorithm

that compares the coordinates in the square of T3.

a

b

c
T3

0

1

2

3

P3

This is of course a very specific example of a well known result. In general these first order

sentences are not always easy to formulate. Luckily there are some combinatorial methods which
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can help us determine if a particular CSP is FO-definable without needing to explicitly find a first

order sentence to describe it.

There is a simple and easy algorithm for determining which relational structures with lists have

CSPs which are FO-definable. It is known as the dismantling algorithm and it is the main subject

of our next chapter.
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Chapter 6

Characterizations of Relational Structures

That Define CSPs Which Are FO-definable

With Lists

In the previous chapter we saw an example of a constraint satisfaction problem that was defin-

able in first order logic. In this chapter we present a general technique for determining if a certain

relational structure with lists defines a CSP that is FO-definable or not. This is the dismantling

algorithm and it was first defined by Larose, Loten and Tardif in [5]. We will also present a char-

acterization described by Lemaı̂tre in [6] for which digraphs with lists satisfy this algorithm. Mo-

tivated by these results we begin our investigation of CSPs defined by larger relational structures,

with many binary relations and lists, by focusing on the special case of transitive tournaments.

We present a new algorithm for classifying these types of structures and give a full classification.

Lastly, we generalize the classification theorem for a single digraph for those structures with lists

that have multiple binary relations. Lastly, using the various results of this chapter we present

examples of obstructions in particular structures as well as some ideas on how to build structures

that will define constraint satisfaction problems that are FO-definable.

6.1 The dismantling algorithm

There is a simple algorithm based on comparing relations in the square of a relational structure

that can determine whether a particular structure has a CSP which is FO-definable. In order to

describe this algorithm we will first to introduce the idea of domination in a relational structure.
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Definition 6.1.1. Let A = 〈A;R0, R1, . . . , Rn〉 be a relational structure. Let x, y ∈ V (A) where

x 6= y. We say that x dominates y in A if for all relations Ri of A we have (y1, . . . , yn) ∈ Ri, with

yj = y, implies that (x1, . . . , xn) ∈ Ri with xj = x and yk = xk for all k 6= j. We say that y is

dominated in A if there exists a vertex x ∈ V (A) such that x dominates y.

The definition of domination becomes simpler when we focus specifically on the study of

digraphs. We can restate this definition using the concepts of in and out neighbourhoods of a

particular vertex.

Definition 6.1.2. Let G = (V,E) be a digraph and let x, y ∈ V (G). We say that x dominates

y in G if for all edges of the form (y, a) and (a, y) where a is some vertex in V , we also have

that (x, a), (a, x) ∈ E. This is equivalent to saying that x dominates y if Nin(y) ⊆ Nin(x) and

Nout(y) ⊆ Nout(x).

Notice that in this definition the in and out neighbourhoods do not need to be proper subsets in

order for there to be domination. This means that if two vertices have the exact same relations then

x dominates y and y dominates x. Also notice that any isolated vertex v is dominated by any other

vertex, isolated or not, because for any isolated vertex we have that Nout(v) = ∅ and Nin(v) = ∅.

Example 6.1.1. Consider the digraph G = {(a, b, c, d), {(a, c), (a, d), (b, d), (c, a), (c, b)}}

a

b

c

d

It is easy to see that the vertex a dominates the vertex b either by quickly reviewing the relations

on G or by general visual inspection. We can also write it out more formally using the in and out

edge sets of both a and b. For the vertex a we have Nout(a) = {c, d} and for the vertex b we have

Nin(a) = {c} where Nout(b) = {d} and Nin(b) = {c}. Thus we see that Nout(a) ⊇ Nout(b) and

Nin(a) ⊇ Nin(b) and these are the conditions for vertex domination.

Definition 6.1.3. Let A be a relational structure and let there be a sequence A0,A1, . . . ,An where

A0 = A and An = A′ such that for 0 ≤ i ≤ n we have that Ai is the induced substructure of Ai−1

with V (Ai) = V (Ai−1) \ {x} where x is dominated in Ai−1. We say that A dismantles to A′.

Continuing with the digraph in Example 6.1.1 we can proceed further with the dismantling

process. In the next part of the example we remove the dominated vertex and show the induced

subdigraph that remains.
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Example 6.1.2. In Example 6.1.1 we had G = ((a, b, c, d), {(a, c), (a, d), (b, d), (c, a), (c, b)}) and

observed that the vertex a dominated the vertex b thus in our dismantling we are to remove the

edges involving b. This means we would remove the edges (b, d) and (c, b). Leaving us with the

graph below.

a

b

c

d

The digraph G where the vertex b is dominated by he vertex a.

a c

d

The induced subdigraph G \ {b} with the edges (b, d) and (c, b) removed.

At this point the induced subdigraph G \ {b} does not contain any more dominated vertices

and the dismantling can not be performed further. It turns out that the structure A′, the remaining

induced substructure of A, can be instrumental in determining the complexity of CSP(A).

Theorem 5. [5] Let A be a relational structure then the problem CSP(A) is FO-definable if and

only if there is a core C of A such that C2 dismantles to the diagonal.

Since relational structures with lists are also always cores we are able to rewrite this theorem

as the following useful corollary.

Corollary 6. [5] Let A be a relational structure then the problem CSP(AL) is FO-definable if and

only if A2

L can be dismantled to the diagonal.

Since we will be focusing our attention on the dismantling of digraphs with lists the following

lemma will be extremely useful. In fact this lemma will be one of our primary tools used in many

of the proofs that follow later.
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Lemma 7. Let G be a digraph and let x, y ∈ V (G). If G2

L dismantles to the induced substructure

H that contains the diagonal then if (x, y) is dominated in H it is dominated by either (x, x) or

(y, y).

Proof. Let GL be a digraph with lists and let x, y ∈ V (GL). Then by the definition of the

square of a digraph with lists we have that (x, x), (x, y), (y, x), (y, y) ∈ V (GL
2) and that R =

{(x, x), (x, y), (y, x), (y, y)} is a relation of G2

L. This means that the vertex (x, y) must be domi-

nated by (x, x), (y, x) or (y, y) because in order to dominate (x, y) in H a vertex must also satisfy

R. If it is (x, x) or (y, y) we are done. So we suppose (y, x) dominates (x, y) and show that if this

is the case then (x, x) and (y, y) must dominate as well.

By the definition of domination if (y, x) dominates (x, y) then for any (u, v) ∈ V (H) if

((x, y), (u, v)) ∈ E(H) then we have ((y, x), (u, v)) ∈ E(H). This implies that we also have

((x, x), (u, v)), ((y, y), (u, v)) ∈ E(H). Similarly if we have ((u, v), (x, y)) ∈ E(H) then we have

((u, v), (y, x)) ∈ E(H) then we also have ((u, v), (x, x)), ((u, v), (y, y)) ∈ E(H). Which means

that if (y, x) dominates (x, y) then so do both (x, x) and (y, y).

This is a very useful property because it simplifies the dismantling process significantly for

digraphs with lists. To check the domination of any particular vertex (x, y) we do not need to

compare its in and out neighbourhoods with all other vertices in the square of the digraph but just

(x, x) and (y, y). For larger structures this greatly reduces the time needed to confirm if a structure

dismantles to the diagonal or not.

6.2 A classification of digraphs with lists whose CSPs are FO-

definable

In a previous study [6] Lemaı̂tre introduced a classification for the FO-definability of a CSP

defined by a single digraph. It was found that there are two digraph characteristics that impede

the dismantling process and therefore act as markers for digraphs that do not have FO-definable

CSPs. The first property is that all digraphs which dismantle must be telescopic. To understand

this property we need to define add another definition to our digraph vocabulary.

Definition 6.2.1. Let G = (V,E) be a digraph where a, b, c, d ∈ V and (a, b), (c, d) ∈ E but

(a, d), (c, b) /∈ E then we call the edges (a, b) and (c, d) separated edges. (Figure 6.1)

Definition 6.2.2. Let G = (V,E) be a digraph if G does not contain any separated edges then we

call G a telescopic digraph.
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c

a

d

b

Figure 6.1: Digraph with separated edges (a, b) and (c, d). (The red dotted edge indicates that this

edge is not present)

It can be shown that a digraph that has separated edges, and is therefore not telescopic, can not

be dismantled:

Proposition 8. Let GL be a digraph with lists. If G2

L dismantles to the diagonal then GL is tele-

scopic.

Proof. Let (a, b), (c, d) ∈ E(GL) be separated edges. Thus we have ((a, c), (b, d)) ∈ E(G2

L) but

((a, a), (b, d)), ((c, c), (b, d)) /∈ E(G2

L). This means that the vertex (a, c) can not be dominated

until we remove the vertex (b, d). Notice we have ((a, c), (b, d)) ∈ E(G2

L) but ((a, c), (b, b)),

((a, c), (d, d)) /∈ E(G2

L). This means thats (c, d) can not be dominated until we remove (a, c)

therefore neither will be dominated in the dismantling and we will not arrive at the diagonal.

It turns out that the telescopic property is not enough to characterize which digraphs have

squares that dismantle to the diagonal or not. Even in telescopic digraphs another obstruction

was found in [6] and we call this obstruction an impeding bicycle. This obstruction involves two

directed cycles, an upper and a lower, (hence the bicycle name) with the forced exclusion of a

particular edge for each corresponding pair of edges.

Definition 6.2.3. Let G = (V,E) be a digraph we say that G has an impeding bicycle if there exists

vertices x0, x1, . . . , xk, y0, y1, . . . , yk ∈ V such that for all t, 1 ≤ t ≤ k, we have (xt, xt+1), (yt, yt+1)

∈ E and (xt, yt+1) /∈ E. The indices are defined modulo k + 1 (eg. xk+1 = x0). (Figure 6.2)

Notice that if the digraph G is telescopic, and thus contains no separated edges, then we must

have (xi, yi+1) ∈ E(GL) because the edge (yi, xi+1) /∈ E(GL). Now we show that the square of a

digraph which contains one of these impeding bicycles can not dismantle to the diagonal.

Lemma 9. [6] Let G = (V,E) be a digraph. If G contains an impeding bicycle then G2

L does not

dismantle to the diagonal.
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y0

x0

y1

x1

. . .

. . .

yk

xk

Figure 6.2: An impeding bicycle

Proof. Suppose G contains an impeding bicycle with the sequence (x0, x1, . . . , xk) as its top and

(y0, y1, . . . , yk) as its bottom. Suppose that G2

L does in fact dismantle to the diagonal. Let the vertex

(xi, yi) ∈ V (G2

L) be the first vertex of the impeding bicycle to be dismantled. Then (xi, yi) is domi-

nated by either (xi, xi) or (yi, yi) in a substructure of G2

L that contains the entire bicycle. Notice that

((xi−1, yi−1), (yi, yi)), ((xi, xi), (xi+1, yi+1)) /∈ E(G2

L) but ((xi−1, yi−1), (xi, yi)), ((xi, yi), (xi+1, yi+1))

∈ E(G2

L). This means that (xi, yi) is not dominated by either (xi, xi) or (yi, yi) and we arrive at a

contradiction.

The reason that this impeding bicycle obstructs dismantling can be found in its repeating struc-

ture. For any ai, bi ∈ V (G) that appear in our bicycle we are not able to remove the vertex

(xi, yi) ∈ V (G2

L) during the dismantling of G2

L without first removing a different vertex (xj, yj).

Thus we can not remove any.

We now describe a particular configuration that can not be present in the induced substructure

H of G2

L, obtained by dismantling, when H is not the diagonal. This property will aid us in the

proof of Proposition 11.

Proposition 10. [6] Let G be a telescopic digraph such that G2

L does not dismantle to the diagonal.

Let H be the induced subgraph of G2

L that is not the diagonal and such that there is no vertex in H

that is dominated. Then there can not exist vertices (a, b), (c, d), (e, f) ∈ E(G) such that:

((c, d), (a, b)), ((a, b), (e, f)) ∈ E(H) and

((c, d), (a, a)), ((a, a), (e, f)) /∈ E(G2

L)
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d

c

b

a

f

e

Figure 6.3: Configuration from Proposition 10.

d

c

b

a

h

g

Figure 6.4: Case (1) from Proposition 10.

Proof. We will suppose that we have 3 such vertices and obtain a contradiction. Since G is tele-

scopic we have that (c, b), (b, e) ∈ E(G) (Figure 6.3). Which means we have

((c, d), (b, b)), ((b, b), (c, f)) ∈ E(H). Then there exists a vertex (g, h) ∈ V (H) such that:

(1) ((g, h), (a, b)) ∈ E(H) and ((g, h), (b, b)) /∈ E(H); or

(2) ((a, b), (g, h)) ∈ E(H) and ((b, b), (g, h)) /∈ E(H).

One of these cases must occur or else (b, b) dominates (a, b) in H which would contradict our

earlier assumption that no vertex in H is dominated. Suppose we have case (1) then we have

((g, h), (a, b)), ((c, d), (a, b)) ∈ E(H) and ((g, h), (b, b)), ((c, d), (a, a)) /∈ H. This would produce

the separated edges (g, a) and (d, b) but G is telescopic so we reach a contradiction. (Figure 6.4)

Now suppose that we have case (2) then we have ((a, b), (g, h)), ((a, b), (e, f)) ∈ E(H) and

((a, a), (e, f)), ((b, b), (g, h)) /∈ H. This would produce the separated edges (a, g) and (b, f) but

G is telescopic and we reach another contradiction (Figure 6.5). Thus we cannot have the given

structure in H.

Proposition 11. [6] Let G be a telescopic digraph such that G2

L does not dismantle to the diagonal
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h

g

b

a

f

e

Figure 6.5: Case (2) from Proposition 10.

then GL contains an impeding bicycle.

Proof. Since G2

L does not dismantle to the diagonal we know that it dismantles to an induced

substructure H, that contains the diagonal properly, such that no vertex in H is dominated. Let

(x, y) ∈ V (H), x 6= y. Because (x, y) is not dominated by either (x, x) or (y, y) in H we have that

there exists vertices (a, b), (c, d), (e, f), (g, h) ∈ V (H), not necessarily unique, such that:

(i) (x, a), (y, b), (y, a) ∈ E(G) and (x, b) /∈ E(G), or

(ii) (e, x), (f, y), (e, y) ∈ E(G) and (f, x) /∈ E(G)

and

(iii) (x, c), (y, d), (x, d) ∈ E(G) and (y, c) /∈ E(G), or

(iv) (g, x), (h, y), (h, x) ∈ E(G) and (g, y) /∈ E(G)

Cases (i) and (ii) say that (x, x) does not dominate (x, y) and cases (iii) and (iv) say that (y, y)

does not dominate (x, y) so one of each of these must be true. Cases (i) and (iii) are mutually

exclusive, as are cases (ii) and (iv), because GL is telescopic. If we have both (i) and (iii) we would

have the separated edges (x, c) and (y, b). If we have both (ii) and (iv) we would then have the

separated edges (g, x) and (f, y). Thus we must have that both (i) and (iv) are true or both (ii) and

(iii) are true. Assume (i) and (iv) are true. Then using induction we can show that there exists a

sequence (x0, y0), . . . , (xn, yn) with xi, yi ∈ V (H) that satisfies the following properties:

(x, y) = (x0, y0),

(xi, xi+1), (yi, yi+1), (xi, yi+1) ∈ E(G),

(xi, yi+1) /∈ E(G)

The case where n = 1 is clear. We assumed (i) and we let a = x1 and b = y1. Then we

assume this sequence exists for n = k, ie. we have a sequence (x0, y0), . . . , (xk, yk) that satisfies
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the conditions above. Now we show that the sequence exists for n = k+ 1. We know that (xk, yk)

is not dominated by either (xk, xk) or (yk, yk) because (xk, yk) ∈ V (H), so again we have the cases

(i) and (iv) or (ii) and (iii), with x = xk and y = yk. We can not have case (iii) because that would

introduce the separated edges (xk−1, xk) and (f, yk). Thus we must have (i) and (iv). If we let

a = xk+1 and b = yk+1 in (i) then we have satisfied our conditions for n = k + 1. We have shown

by induction that the sequence (x0, y0), . . . , (xk+1, yk+1) exists in H.

Now because G is finite we have that both G2

L and H are also finite. This means that if we

choose a suitably large n then a vertex in the sequence (x0, y0), . . . , (xn, yn) must appear twice.

Let this vertex be (xi, yi) = (xj, yj) with i < j then if we move back to G from the square we

have the cycles xi, . . . , xj and yi, . . . , yj and these form the top and bottom respectively of the

impeding bicycle and the condition that (xt−1, yt) /∈ E(G) for i ≤ t ≤ j gives us the missing

middle edges. Thus we have shown that if G is telescopic and does not dismantle to the diagonal

then it contains an impeding bicycle. The same argument can be made to show the existence of an

impeding bicycle if we had assumed cases (ii) and (iii) were true.

Theorem 12. [6] Let G be a digraph, then G2

L dismantles to the diagonal if and only if G is

telescopic and does not contain an impeding bicycle.

Proof. The proof is clear from the results found above. The left side comes from Proposition 8

and Lemma 9 and the right side from Proposition 11.

This theorem characterizes, using graph properties, all digraphs with lists that have constraint

satisfaction problems that are FO-definable. Digraphs are simple relational structures that are

quite easy to work with and we are naturally motivated by this result to want to investigate more

complicated structures such as those with many binary relations. If we build these larger structures

using only binary relations that define digraphs that dismantle to he diagonal on their own can we

expect that this larger structure will dismantle as well? If not, can we characterize these larger

structures with some similar obstruction in order to know their descriptive complexity? In the next

section we investigate a special case where each binary relation defines a transitive tournament on

the vertex set.
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6.3 CSPs that are FO-definable when the relations of GL are

transitive tournaments

We will now investigate the interesting example of transitive tournaments. These highly struc-

tured digraphs that when you add lists have squares that always dismantle to the diagonal. These

properties make them a natural candidate to begin our study of larger relational structures with

many binary relations. In this section we will often be viewing these tournaments in their equiva-

lent description as a total strict ordering on the vertex set.

We begin by showing that the square of any single transitive tournament Tn with lists disman-

tles to the diagonal.

Proposition 13. Let T = (V,E) be a digraph where E defines a transitive tournament on V . Then

T2
L dismantles to the diagonal.

Proof. From Theorem 12 we know that if T does not dismantle to the diagonal then it must have

a separated edge or an impeding bicycle. We will show that T has neither. First we show that

transitive tournaments do not contain any separated edges. If we think of our transitive tournament

as a strict total ordering then for any a, b, c, d ∈ V (T) if (a, b), (c, d) ∈ E(T) then we have that

a < b and c < d. There are three possibilities either a < c, a = c or a > c. If a < c then a < d

and we have (a, d) ∈ E(T). If a = c we have both a < d and c < b. Thus (a, d), (c, b) ∈ E(T).

Lastly if a > c then we have c < b and (c, b) ∈ E(T). Thus we have no separated edges and

all transitive tournaments are telescopic. Secondly, by definition transitive tournaments are acyclic

and therefore cannot contain an impeding bicycle. Thus TL
2 dismantles to the diagonal and CSP(T)

is FO-definable.

We can also show that a particular tournament is FO-definable explicitly by using our disman-

tling algorithm. Next we present the examples for transitive tournaments with 2 and 3 vertices.

Example 6.3.1. Let T be the transitive tournament on 2 vertices then T = ({0, 1},

{(0, 1)}) and T2 = ({(0, 0), (0, 1), (1, 0), (1, 1)}, {((0, 0), (1, 1))}). Since both (0, 1) and (1, 0)

are isolated vertices in T2 both can be removed leaving us with the diagonal. Therefore CSP(TL)

is FO-definable.

Example 6.3.2. Let T be the transitive tournament on 3 vertices then T = ({0, 1, 2},

{(0, 1), (0, 2), (1, 2)}).
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The square T2 = ({(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)},

{((0, 0), (1, 1)), ((0, 0), (1, 2)), ((0, 1), (1, 2)), ((0, 0), (2, 1)), ((0, 0), (2, 2)), ((0, 1), (2, 2)),

((1, 0), (2, 1)), ((1, 0), (2, 2)), ((1, 1), (2, 2))}).

We will show that all vertices of T2 outside of the diagonal are dominated in the first step. Both

(1, 0) and (0, 1) are dominated by (0, 0) and both (2, 1) and (1, 2) are dominated by (2, 2). Lastly

we have that (0, 2) and (2, 0) are isolated so they are dominated by both (0, 0) and (2, 2). Thus

we can remove these 6 vertices in one step and be left with the diagonal. Thus CSP(TL) is FO-

definable.

One can define a unique transitive tournament, up to isomorphism, on any set of n vertices.

Thus, when determining whether a set of relations, which all define transitive tournaments on a

set of vertices, dismantles to the diagonal or not we only need to consider the difference in the

ordering of the vertices for each tournament. For example, we consider the standard ordering of

a transitive tournament T with 4 vertices to be [0, 1, 2, 3], but we could define a different ordering

for a digraph T′ as [2, 0, 3, 1]. The difference is simple, for T the vertex labeled 0 is the source

whereas for T′ the vertex labeled 2 is the source. The vertex labeled 3 in T is the sink whereas for

T′ the vertex labeled 1 is the sink. In the following the standard ordering on n vertices will always

be considered to be [0, 1, . . . , n − 2, n − 1], where 0 is the source and n − 1 is the sink with the

other vertices ordered sequentially between them.

Example 6.3.3. The transitive tournament with the standard labeling on 4 vertices is defined as

T = 〈{0, 1, 2, 3}, {(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)}〉.

Another ordering we could have on this 4 vertex set is [2, 0, 3, 1] which would result in the

digraph: T′ = 〈{0, 1, 2, 3}, {(2, 0), (2, 3), (2, 1), (0, 3), (0, 1), (3, 1)}〉

0

1 2

3
T

0

1 2

3
T′

Two different orderings of the 4 vertex transitive tournament.

The problem we will be focusing on is this: for any n, k > 0 if T = 〈{0, . . . , n−1};E1, . . . , Ek〉,

where each Ei is a binary relation that defines a transitive tournament, then can we characterize
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which sets of orderings allow for CSP(TL) to be FO-definable and which sets of orderings will not?

To begin our search for such a characterization of this set of orderings we decided to write a

digraph drawing and dismantling software in Java and run exhaustive dismantlings on all pairs of

transitive tournaments with |V (T)| ∈ {2, 3, 4, 5, 6, 7, 8}. The source code for this program can

be found in Appendix A. Our first experiment was to dismantle pairs of orderings. We paired the

standard ordering on n vertices with all other possible orderings. The first observation from this

experiment was that all pairs of relations where n = 2, 3 dismantled with each other. We can

illustrate this using our dismantling algorithm explicitly.

Example 6.3.4. Let T = 〈{0, 1};E1, E2〉 With E1 = {(0, 1)} and E2 = {(1, 0)}. These are the

only two orderings of {0, 1}.

(0, 0)

(0, 1) (1, 1)

(1, 0)

We can see that both E2
1 and E2

2 have (0, 1) and (1, 0) as isolated vertex and therefore both are

dominated.Thus T2 dismantles using the dismantling sequence S = ((0, 1), (1, 0)).

Next we look at the slightly more interesting example of two orderings on T3.

Example 6.3.5. Let T = 〈{0, 1, 2};E1, E2〉 With E1 = {(0, 1), (0, 2), (1, 2)} and E2 = {(2, 0),

(2, 1), (0, 1)}. The relation E1 corresponds to the standard ordering on 3 vertices and E2 corre-

sponds to the ordering [2, 0, 1].
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(0, 1)

(0, 2)

(0, 0)
(1, 1)

(1, 2)

(1, 0)

(2, 1)
(2, 2)

(2, 0)

(0, 1)

(0, 2)

(0, 0)
(1, 1)

(1, 2)

(1, 0)

(2, 1)
(2, 2)

(2, 0)

The structures E2
1 and E2

2 .

For T to dismantle we need to find a mutual dismantling sequence for both E2
1 and E2

2 . This

can be performed in just two steps. Notice that (0, 1) and (1, 0) are dominated by (0, 0) in E2
1 and

are dominated by (1, 1) in E2
2 thus we can not remove them yet. If we turn our attention to (0, 2)

and (2, 0) we see that both are isolated in E2
1 and both are dominated by (2, 2) in E2

2 . Next, (1, 2)

and (2, 1) are dominated by (2, 2) in E2
1 and they are isolated in E2

2 . Removing these vertices and

their incident edges we are now left with:
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(0, 1)

(0, 2)

(0, 0)
(1, 1)

(1, 2)

(1, 0)

(2, 1)
(2, 2)

(2, 0)

The induced substructure with E2
1 \ {(0, 2), (2, 0), (1, 2), (2, 1)}

(0, 1)

(0, 2)

(0, 0)
(1, 1)

(1, 2)

(1, 0)

(2, 1)
(2, 2)

(2, 0)

The induced substructure with E2
2 \ {(0, 2), (2, 0), (1, 2), (2, 1)}

Now we see that (0, 1) and (1, 0) are dominated by both (0, 0) and (1, 1) in both digraphs. We

can now remove these last two vertices. We have now removed all 6 of the vertices in two steps of

dismantling and we are left with just the diagonal elements, therefore CSP(TL) is FO-definable.

From our exhaustive search we learned that all pairs of relations that define transitive tourna-

ments on 3 vertices (n = 3) dismantle with each other. The more interesting cases appear when

n ≥ 4. In the case where n = 4 we find that there are 4 orderings that do not dismantle when paired

with the relation that has the standard ordering [0, 1, 2, 3] (Figure 6.6). These ”bad” pairs corre-

spond to the orderings [1, 0, 3, 2], [1, 3, 0, 2], [2, 0, 3, 1], and [2, 3, 0, 1] (Figure 6.7). These pairings

demonstrate an important point for our continued study. Specifically, if each relation in a set of
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1 2

3

Figure 6.6: The standard ordering of the transitive tournament on 4 vertices.

0

1 2

3 0

1 2

3 0

1 2

3 1

0 3

2

[1, 0, 3, 2] [1, 3, 0, 2] [2, 0, 3, 1] [2, 3, 0, 1].

Figure 6.7: The 4 tournament orderings that do not dismantle when paired with the standard order-

ing

binary relations has a square that dismantles to the diagonal on its own we do not have that the

larger structure formed by adding these relations to the relation set will also dismantle. This means

that there must be more general obstructions than in the single digraph case when attempting to

dismantle these larger structures. Reflecting on these ”bad” orderings of T4 we noticed that none

of these orderings share a source or a sink with the standard ordering. This observation turns out

to be very important when trying to characterize which sets of transitive tournaments dismantle to

the diagonal or not.

Definition 6.3.1. Let [v1, v2, . . . , vn−1, vn] be a total strict ordering such that v1 < v2 < · · · <

vn−1 < vn. Then we call v1 and vn the extrema of the ordering.

Transitive tournaments are total strict orderings and we can speak of them interchangeably so

it is natural for us to define of the extrema of these digraphs.

Definition 6.3.2. Let Tn = ({0, . . . , n−1}, E) be a transitive tournament. Then the edge relations

of T define a total strict order [v1, . . . , vn] with each distinct vi ∈ V (Tn). We define the vertices

¯
S and S̄ as the vertices such that for any vi ∈ V (T) we have

¯
S < vi and vi < S̄. We call the set

{
¯
S, S̄} the extrema of the order defined by the transitive tournament Tn.
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0

12
E1

0

21
E2

1

02
E3

Figure 6.8: The square of the structure T = 〈{0, 1, 2};E1, E2, E3〉 does not dismantle to the

diagonal

Notice that for any transitive tournament the extrema are the sink and the source of the tourna-

ment.

Another interesting observation obtained from our exhaustive dismantlings was that no set of 3

transitive tournaments on 3 vertices with pairwise distinct extrema had squares that dismantled to

the diagonal. Actually there were no dominated vertices in these structures at all.

Example 6.3.6. The square of the structure T = 〈{0, 1, 2};E1, E2, E3〉, where E1 is the stan-

dard ordering [0, 1, 2], E2 corresponds to the ordering [0, 2, 1] and E3 corresponds to the ordering

[1, 0, 2], does not dismantle to the diagonal. (Figure 6.8)

It turns out that there are no dominated vertices in this structure. This is because in order to

be dominated in the total structure a pair must be dominated by the same pair in all relations. The

simplest way to see that there are no dominated pairs is to look at the isolated vertices in each

square. In E2
1 the vertices (0, 2) and (2, 0) are isolated and therefore dominated by both (0, 0) and

(2, 2), but in E2
2 they are dominated by (0, 0) but not (2, 2) and in E2

3 by (2, 2) but not (0, 0), thus

they are not dominated by a common vertex in the total structure. Now (0, 1) and (1, 0) are isolated

in E2
2 and therefore dominated by both (0, 0) and (1, 1) but they are not dominated by (1, 1) in E2

1

and not dominated by (0, 0) in E2
3 . Lastly, the vertices (1, 2) and (2, 1) are isolated in E2

3 but are

not dominated by (1, 1) in E2
1 and not dominated by (2, 2) in E2

2 . Thus there is no vertex in T2 that

can be removed and it does not dismantle to the diagonal.

Example 6.3.6 shows how restrictive our dismantling process becomes as we add more rela-

tions. The square of the single transitive tournament on 3 vertices dismantled to the diagonal in one

step, when paired with a different ordering we saw it took at most two steps. Now we have found
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a set of three orderings whose square does not dismantle at all. Again, looking at these orderings

we see that they all share extrema pairwise but as a set there is no common extrema. From this

observation we decided to look back at the dismantling of the square of individual transitive tourna-

ments to see if we could account for this behaviour by studying their dismantling sequences. From

this investigation we discovered that there is a simple way to construct dismantling sequences for

transitive tournaments. Using this we can produce a simple algorithm for dismantling relational

structures with lists which have many binary relations that define transitive tournaments.

The following propositions will help give us a better understanding of the strict order in which

vertices can be dominated in the square of a transitive tournament.

Proposition 14. Let T = ({0, . . . , n− 1}, E) be a transitive tournament. A vertex (x, y) ∈ V (T2
L)

is the first pair to be dismantled if and only if x ∈ {
¯
S, S̄} or y ∈ {

¯
S, S̄} and x 6= y.

Proof. First we show that if x /∈ {
¯
S, S̄} and y /∈ {

¯
S, S̄} then (x, y) is not dominated and can not

be the first pair in the dismantling sequence. Without loss of generality let x < y. Since neither x

nor y are extrema we have
¯
S < x < y < S̄. This means that (x, x) does not dominate (x, y) in T2

L

because ((
¯
S, x), (x, y)) ∈ E2 but ((

¯
S, x), (x, x)) /∈ E2. Similarly, (y, y) does not dominate (x, y)

in T2

L because ((x, y), (y, S̄)) ∈ E2 but ((x, y), (y, y)) /∈ E2.

Next we show that if x ∈ {
¯
S, S̄} or y ∈ {

¯
S, S̄} and x 6= y then the vertex (x, y) is dominated.

We will only prove the case where either x or y is a source because due to symmetry it is the same

for when either x or y is a sink. First notice that (v,
¯
S) /∈ E for all v ∈ V (T) because

¯
S is a source.

This means (x, y) is a source in T 2. Without loss of generality assume that
¯
S = x and x < y then

it is clear that for any (w, z) ∈ V (T2) if ((x, y), (w, z)) ∈ E2 then ((
¯
S,

¯
S), (w, z)) ∈ E2. Thus

(x, y) is dominated by (x, x) = (
¯
S,

¯
S) in T2.

Proposition 15. Let T be a transitive tournament with n vertices and the ordering [v1, . . . , vt, . . . , vn].

Let H be the induced substructure of T2 obtained by removing all non-diagonal pairs with a coordi-

nate in {vt+1, . . . , vn}. Then any vertex (x, y) with vt in one coordinate is dominated by (vt, vt) in

H. Similarly let K be the induced substructure of T2 obtained by removing all non-diagonal pairs

with a coordinate in {vt+1, . . . , vn}. Then any vertex (x, y) with vt in one coordinate is dominated

by (vt, vt) in K.

Proof. Let (x, y) ∈ V (H). Without loss of generality suppose x = vt, x 6= y, and that vt < y

(or else (x, y) would have already been removed). Since all pairs with a v1, . . . , vt−1 in only one

coordinate have been removed the only in-edges, if any, of both (x, y) and (vt, vt) are the diagonal

elements (v1, v1), . . . , (vt−1, vt−1) and since x = vt and vt < y we have that if ((x, y), (w, z)) for
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any w, z ∈ V (T) then ((vt, vt), (w, z)). Thus we have that (vt, vt) dominates (x, y) in H. A similar

argument can be made to show that if we had removed all pairs with vt+1, . . . , vn that (x, y) would

be also be dominated by (vt, , vt) in K.

We will now describe a special dismantling algorithm for relational structures comprised of

many transitive tournaments.

Definition 6.3.3. Let T = 〈{0, . . . , n − 1};E1, . . . , Ek〉 be a relational structure with n vertices

and where each Ei describes a transitive tournament with ordering [vi1, . . . , v
i
n]. To begin we assign

¯
Si = v11 and S̄i = vin for each 1 ≤ i ≤ k and call these vertices the extrema of Ei. We now

describe our simplified dismantling for transitive tournaments. We say that we can remove a

vertex x ∈ V (T) if x ∈ {
¯
Si, S̄i} for all i, where 1 ≤ i ≤ k. We remove the vertex x from each

order Ei. We now reassign the extrema
¯
Si and S̄i for each order to reflect the removal of x. We

now check to see if any vertices can be removed. We say a structure is dismantled simply if we

can remove each of its vertices.

The dismantling process we described in Definition 6.1.3 and Theorem 6 for general digraphs

involved moving to the square of its edge relations, but when we are working with transitive tour-

naments this simplified dismantling only relates the orderings of the tournaments and not their

squares. We simply look for a common vertex x in the extrema of each ordering and if one is

present we remove it from each ordering. We continue this process with the new orderings ob-

tained by removing the common extrema x until we meet an obstruction or remove all v ∈ V (T).

We can now relate our simplified dismantling of these tournaments to the FO-definability of their

CSPs.

Theorem 16. Let T = 〈{0, . . . , n − 1};E1, . . . , Ek〉 be a relational structure where each Ei de-

scribes a transitive tournament with ordering [vi1, . . . , v
i
n] on V (T). Then the following are equiv-

alent:

(1) CSP(TL) is FO-definable.

(2) T can be dismantled simply.

Proof. (2) ⇒ (1)

Since T dismantles simply we know that there exists a sequence of vertices {s1, . . . , sn}, st ∈

V (T), which can be removed in the context of our simplified dismantling. We can easily construct

a common dismantling sequence for each relation Ei. We begin this sequence with all vertices

with s1 in one coordinate we know these are removable by Proposition 15 since s1 ∈ {vi1, v
i
n}
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for 1 ≤ i ≤ k. Next we add to our dismantling sequence each vertex with an s2 in a coordinate

(but not a s1 in a coordinate because these have already been added) and so on. Since each st,

1 ≤ t ≤ n, is always an extrema of each Ei Proposition 15 says that each of these vertices is

commonly dominated by (st, st) at this point. We continue until we reach sn and we have created

a common dismantling sequence for each Ei and using this we can dismantle T2 to the diagonal.

(1) ⇒ (2)

We will prove this by induction. Our hypothesis will be the statement P (n) that if CSP(TL)

is FO-definable and T has n vertices then it admits a simplified dismantling. P (1) is trivially

true. We now assume P (n − 1), n ≥ 2 and show P (n). Since T2

L dismantles to the diagonal,

Proposition 14 says that each relation Ei must share a common extrema, which we will call S,

or else there would be no vertex in which to start the dismantling. Consider the structure T′ =

〈{0, . . . , n− 1} \ {S};E ′
1, . . . , E

′
k〉 where each E ′

i is the restriction of Ei to {0, . . . , n− 1} \ {S}.

Notice that each E ′
i is still a transitive tournament. Now since CSP(TL) is FO-definable we know

that CSP(T′
L) is also FO-definable. Then by the induction hypothesis T′ has a simplified dis-

mantling sequence. Thus we can construct a simplified dismantling sequence for T by simply

appending S to the beginning of the sequence for T′.

Now that we have proven that our simplified dismantling algorithm can determine the FO-

definability for relational structures with lists and many transitive tournaments we present some

illustrative examples of its use.

Example 6.3.7. Let T = 〈{0, 1, 2, 3, 4, 5};E1, E2〉 where E1 is the transitive tournament with the

standard ordering and E2 is the transitive tournament ordered [1, 5, 3, 4, 2, 0]. Then T2

L dismantles

to the diagonal.

We start by comparing the sinks and sources. The extrema for E1 are 0 and 5 and for E2 we

have 1 and 0. Thus the algorithm says that we we can begin by removing the common 0 element

from both. This leaves us with [1, 2, 3, 4, 5] for E1 and [1, 5, 3, 4, 2] for E2. Now we compare

extrema again. For E1 we have 1 and 5 and for E2 we have 1 and 2. So we remove common vertex

1 and we are left with [2, 3, 4, 5] and [5, 3, 4, 2]. Next we remove the common 5 and that leaves

us with [2, 3, 4] and [3, 4, 2]. We can now remove 2 leaving us with [3, 4] for both orderings and

clearly we can remove each of these. Since we have successfully removed all the vertices in both

relations of T then by Theorem 16 we have that CSP(TL) is FO with lists.
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These two orderings on T6 share a dismantling sequence.

Example 6.3.7 provided us with a simplified dismantling sequence for each of our transitive

tournaments E1 and E2 which corresponds to S = {0, 1, 5, 2, 3, 4}. The sequence S, consisting of

vertices from T, can be easily translated into a dismantling sequence for T2

L. Let Si correspond to

the ith element in the simplified dismantling sequence then to construct a dismantling sequence of

T2

L we begin by adding all vertices of the form (S1, v) and (v, S1) for all v ∈ V (T) in any order.

We then add all vertices of the form (S2, v) and (v, S2) for all v ∈ V (T) that have not already

been added to the sequence and continue this up to S6 = 4. Note that the order of each (Si, v) and

(v, Si) in our sequence for a particular vertex Si does not matter because as long as each (Si−1, v)

and (v, Si−1) has already been removed then each (Si, v) and (v, Si) are equally dominated. Using

this sequence of pairs we can dismantle T2

L to the diagonal. Now let us turn our attention to an

example that does not dismantle.

Example 6.3.8. Let T = 〈{0, 1, 2, 3, 4, 5};E1, E2〉 where E1 is the transitive tournament with the

standard ordering and E2 is the transitive tournament ordered [4, 1, 3, 5, 2, 0]. Then T2

L does not

dismantle to the diagonal.

In the first step we see that the extrema are 0 and 5 for E1 and 4 and 0 for E2. Again we begin

by removing 0. We are now left with [1, 2, 3, 4, 5] and [4, 1, 3, 5, 2]. At this point the two orderings

do not share any extrema and therefore no simplified dismantling sequence exists for T and by

Theorem 16 CSP(TL) is not FO-definable.

0

1 2

3

45

4

1 3

5

20

48



We can easily construct relational structures comprised of sets of transitive tournaments which

either dismantle or not by using the reverse of the algorithm found in Definition 16. If we are

considering only sets of orderings which can be dismantled simply then we see that there are limits

to the the largest sets of unique orderings based on the amount of vertices n. If we fix any particular

simple dismantling sequence, a sequence constructed from Definition 16, then we see that there

are only a finite number of orderings that also can be dismantled using that same sequence.

Consider the standard ordering on Tn, and the simple dismantling sequence S = {0, 1, . . . , n−

2, n− 1}. Using the strict rules of the simplified dismantling we can use this sequence to construct

each of the unique orderings that dismantle simply using the same sequence. This is because in

the simplified dismantling we are always removing a common extrema from each order, which is

either a bottom or top element of a particular ordering. Using our sequence S we start with the

vertex 0. It must be placed at an extrema of the ordering, the first element or the last, since it is

removed first. We will fix 0 as the source for all these orderings and note that the reverse of any

order we construct will also dismantle using the same sequence S. Thus with 0 fixed as the source

we only have 2 choices for where to place the vertex 1. We can either put it in the second value

of the ordering or as the sink in order (the n-1th value) to ensure it is removable at the second step

and satisfies our dismantling sequence. This is actually the case for each vertex v ∈ {1, . . . .n−2}.

We always have two choices of where we can place these vertices and we only have 1 choice for

the vertices 0 and n − 1. Thus combinatorially we see that we have 2n−2 unique orderings that

satisfy any particular dismantling sequence of transitive tournaments on n vertices with 0 fixed as

the source. Since the reverse of these orders will also dismantle simple the total becomes 2n−1.

Example 6.3.9. If we fix a dismantling sequence for each structure T with n vertices and whose

relations define transitive tournaments then we can determine the largest sets of unique orderings

that dismantle to the diagonal. For n = 2 we have that this set can have at most 22−1 = 21 = 2

orderings. This corresponds to the only two orderings of T2 [1, 2] and [2, 1]. For n = 3 we have

22 = 4 and only pairs and their reverse orderings dismantle. For example the orderings [0, 1, 2],

[0, 2, 1], [2, 1, 0] and [1, 2, 0] are the only orderings that dismantle using S = {0, 1, 2}. This actually

verifies our results from Example 6.3.6. Any set of unique orderings on 3 vertices of size 3 or more

must contain a reverse ordering of one of the orderings if it is to dismantle. For n = 4 we have that

there are sets of 23 = 8 unique orderings and if we include the standard ordering these correspond

to [0, 1, 2, 3], [0, 2, 3, 1], [0, 3, 2, 1], [0, 1, 3, 2] and their revere orderings.
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6.4 A classification of relational structures with lists and n bi-

nary relations whose CSPs are FO-definable

In Section 6.2 we presented a characterization for which digraphs with lists have CSPs which

are FO-definable. These results motivated us to ask if we could extend this characterization to a

general relational structure which has k relations that are all binary. In this section we present a

general theorem and classification for determining exactly this.

In terms of the work we have already done our new task is to dismantle the squares of many di-

graphs at once. We will be using tools developed for the single digraph case and extending them to

help us understand these larger structures. We do not have to make too large of a logical leap since

domination and dismantling are defined for all relational structures. The primary consideration

with these larger structures is that each of the squares must share a mutual dismantling sequence.

This means that each square of a digraph needs to be dismantled in the same order and each dom-

inated pair needs to be dominated by the same pair in each square. We could easily construct a

larger structure by adding to its relation set multiple copies of the same digraph and we could still

use Theorem 12 to show if this structure dismantles or not. This of course would add nothing new

to our understanding. We are interested in those relational structures with multiple unique digraphs

as relations and we would like to characterize which of these structures with lists have CSPs that

are FO-definable.

As we move to these larger structures with multiple binary relations a simple and interesting

starting point is to construct a relation set with two relations. One relation, E, defining a digraph

and the other being what we will call its flip, EF .

Definition 6.4.1. Let G = (V,E) be a digraph. We define EF as the edge relation such that

(y, x) ∈ EF whenever (x, y) ∈ E. We call the relation EF the flip of E and the digraph GF =

(V,EF ) the flip of G.

The following observation will provide us with a powerful tool when working with these larger

binary structures.

Lemma 17. Let G = (V,E) be a digraph with lists and let GF = 〈V ;E,EF 〉 be the relational

structure where E is a binary relation and EF is its flip. Then CSP(GL) is FO-definable if and only

if CSP((GF )L) is FO-definable.

Proof. We will prove this lemma using ideas from first order logic directly. One direction is

obvious. If (GF )L satisfies a first order sentence φ then so does GL
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The other direction is more involved. We want to show that if GL satisfies a first order sentence

φ then we can create a different first order sentence φF that (GF )L satisfies. Let G = (V,E) be a

digraph such that CSP(GL) is FO-definable. This means that there exists an existential positive sen-

tence φ with atomic subformulas of the form ”(x, y) ∈ α” such that a structure H = 〈H;α〉 satisfies

φ if and only if there is no homomorphism h : HL → GL. We will create the first order sentence

φF from the sentence φ by replacing each of these atomic formulas with ”(x, y) ∈ α∨ (y, x) ∈ β”.

Claim: Let HF = 〈H;α, β〉 be a relational structure with α, β binary relations. Then HF

satisfies φF if and only if there is no homomorphism hF : (HF )L → (GF )L.

Proof. We will show that the following holds and use it to prove our claim: If K = 〈H;α ∪

βF 〉, then (HF )L → (GF )L if and only if KL → GL. Suppose h : (HF )L → (GF )L then

for any a1, a2, b1, b2 ∈ H such that (a1, a2) ∈ α and (b1, b2) ∈ β then we have (b2, b1) ∈ βF .

Since h is a homomorphism we have (h(a1), h(a2)) ∈ E and (h(b1), h(b2)) ∈ EF which implies

(h(b2), h(b1)) ∈ E. Thus, h : KL → GL. Now suppose f : KL → GL and let a1, a2, b1, b2 ∈ H

such that (a1, a2) ∈ α and (b2, b1) ∈ βF then (a1, a2), (b2, b1) ⊆ α ∪ βF then (f(b2), f(b1)) ∈ E

which means (f(b1), f(b2)) ∈ EF . So f : (HF )L → (GF )L.

This implies that there is no homomorphism hF : (HF )L → (GF )L if and only if KL satisfies

φ. KL satisfies φ if and only if we have elements of KL that satisfy all atomic formula ”(x, y) ∈

α ∪ βF ”, but this is equivalent to saying that we can find elements in (HF )L thats satisfy each

”(x, y) ∈ α ∨ (y, x) ∈ β”. This means that (HF )L satisfies φF .

This turns out to be a very useful and interesting observation. We could have also proved

Lemma 17 by showing that both structures actually have the same dismantling sequence of their

squares. The idea of these flip relations gives rise to a new structure which we define now.

Definition 6.4.2. Let G = (V,E) be a relational structure such that E = {E1, E2, . . . , En} is a list

of binary relations. If for every Ei ∈ E we have EiF ∈ E, where EiF is the flip of Ei, then we call

the structure G flip closed.

Since adding the flip of a relation does not affect a structure’s property to dismantle we can now

build flip closed structures by adding the flip of any edge relation that is missing from a structure’s

set of relations. Using the idea of flip closure we can generalize Lemma 17.

Lemma 18. Let G be a relational structure with binary relations and let GF be the flip closure of

G then CSP(GL) is FO-definable if and only if CSP((GF )L) is FO-definable.
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Figure 6.9: GF is the flip of G.
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Figure 6.10: The generalized impeding bicycle

Proof. The proof of this is simple. By the comment following Lemma 17 we know that the dis-

mantling sequence for G2

L will also work for (GF )
2
L. The dismantling sequence for (GF )

2
L also

clearly works for G2

L because we have E(GL) ⊆ E((GF )L).

We can close the relation set of a relational structure with lists with all of its flipped binary

relations and not affect its dismantling. Thus for the remainder of this section we will consider all

of our relational structures to be flip closed. Before we can give our full characterization of these

structures we need to define the extension of the impeding bicycle from the previous section.

Definition 6.4.3. Let G = 〈V ;E1, E2, . . . , En〉 be a relational structure where each Ei is a binary

relation. Then G has a generalized impeding bicycle if there exists vertices a1, a2 . . . , ak, b1, b2, . . . , bk

∈ V and indices i1, . . . , ik ∈ {1, . . . , n} such that for all t, 1 ≤ t ≤ k, we have (at, at+1), (bt, bt+1) ∈

Eit and (at, bt+1) /∈ Eit . (where the indices are considered modulo k + 1) (Figure 6.10)

Notice that this configuration is the same as the impeding bicycle from Definition 6.2 when we

are working with a single digraph and each of the relations, Ei, are the same.
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Figure 6.11: Generalized impeding bicycle formed by separated edges in a flip closed structure.

Proposition 19. Let G = 〈V ;E1, . . . , En〉 be a flip closed relational structure such that each Ei is

a binary relation. If any relation Ei defines a digraph on V that is not telescopic then G contains

a generalized impeding bicycle.

Proof. Let GEi
= (V,Ei) be a digraph which is not telescopic. Thus GEi

has separated edges.

Then we have (a, b), (c, d) ∈ Ei and (a, c), (b, d) /∈ Ei. Since GL is flip closed EiF ∈ E. Then we

have the bicycle with the top formed by (a, b) ∈ Ei and (b, a) ∈ EiF and the bottom formed by

(c, d) ∈ Ei and (d, c) ∈ EiF .

By Proposition 19 if we have one binary relation in our flip closed relational structure that is

not telescopic then we can always find an impeding bicycle. This can be seen in Figure 6.11. This

result allows us to remove the necessary condition that the relations be telescopic as we extend

Theorem 12 to our generalized theorem.

Theorem 20. Let G = 〈V ;E1, . . . , En〉 be a flip closed relational structure where each Ei is a

binary relation. Then the following are equivalent:

(1) CSP(GL) is FO-definable.

(2) G does not contain a generalized impeding bicycle.

Proof. (1) ⇒ (2)

We will suppose that G has a generalized impeding bicycle and arrive at a contradiction.

Now because CSP(GL) is FO-definable there exists a dismantling sequence from G2

L to the di-

agonal. Without loss of generality there must be a vertex (at, bt) from the generalized impeding
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bicycle that appears first in the dismantling sequence. We dismantle G2

L to an induced substructure

H and let E ′
i be the restriction of each Ei to H. The vertex (at, bt) must be dominated by either

(at, at) or (bt, bt) in each E ′
it

.

Notice that (at−1, at), (bt−1, bt) ∈ E ′
it

but (at−1, bt) /∈ E ′
it

. Therefore ((at−1, bt−1), (at, bt)) ∈ E ′
it

2

but ((at−1, bt−1), (bt, bt)) /∈ E ′
it

2
. Meaning that (at, bt) cannot be dominated by (bt, bt) in E ′

it

2
.

Now if we turn our attention to E ′
it+1

we have that (at, at+1), (bt, bt+1) ∈ E ′
it+1

but (at, bt+1) /∈

E ′
it+1

. Therefore ((at, bt), (at+1, bt+1)) ∈ E ′
it+1

2
but ((at, at), (at+1, bt+1)) /∈ E ′

it+1

2
. Meaning that

(at, bt) cannot be dominated by (at, at) in E ′
it+1

2
. Thus, (at, bt) is not dominated and we have a

contradiction.

Next we will show that we can find an impeding bicycle in any flip closed GL such that

CSP(GL) is not FO-definable.

(2) ⇒ (1)

Assume CSP(GL) is not FO-definable. This implies that G2

L does not dismantle to the diago-

nal. Therefore we have that G2

L dismantles to some structure H where H contains the diagonal

properly and no vertex of H is dominated. Let E ′
i be the restriction of each Ei to H. We will use

the following proposition in order to construct our generalized impeding bicycle.

Proposition 21. For every vertex (a, b) ∈ V (H) there exists a relation E ′
i and a vertex (c, d) ∈

V (H) such that ((a, b), (c, d)) ∈ E ′
i
2

and ((a, a), (c, d)) /∈ E ′
i
2
.

Proof. We will suppose that no such relation exists and reach a contradiction. If no such relation

exists then for all E ′
i, 1 ≤ i ≤ k and for all (c, d) ∈ V (H), we have that if ((a, b), (c, d)) ∈ E ′

i
2

then

((a, a), (c, d)) ∈ E ′
i
2
; since G is flip-closed we have that E ′

iF

2 ∈ E(H) and that ((a, b), (c, d)) ∈

E ′
iF

2
and ((a, a), (c, d)) ∈ E ′

iF

2
but this implies that (a, a) dominates (a, b). This is a contradiction

because we have assumed that there are no dominated vertices in H.

Now to show that H has a generalized impeding bicycle we construct a new digraph D =

(V,R) with V (D) = V (H) and with the edge relation R such that ((at, bt), (at+1, bt+1)) ∈ R if

it satisfies the property that there exists a relation Ei such that ((at, bt), (at+1, bt+1)) ∈ E2
i and

((at, at), (at+1, bt+1)) /∈ E2
i . Proposition 21 states that every vertex of D will have an out-degree

of at least 1. Now since the out-degree of every vertex of our new digraph D is at least 1 we know

that it contains a directed cycle of some length n. Let C = {(a1, b1), (a2, b2), . . . , (an−1, bn−1),
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(an, bn)} be this directed cycle. If we consider the meaning of this cycle C in D in terms of

G2

L we see that this implies there are two sequences in GL, C1 = {a1, a2, . . . .an} and C2 =

{b1, b2, . . . .bn}, such that each (at, at+1), (bt, bt+1) ∈ Ei and (at, bt+1) /∈ Ei for some relation Ei.

This is exactly the definition of our generalized impeding bicycle. Thus GL contains a generalized

impeding bicycle.

We have discovered a combinatorial characteristic which we can use to classify the CSPs of

flip closed relational structures with lists and k binary relations. This is the digraph-like structure

we have named a generalized impeding bicycle. We now show that the problem of detection for

this structure is tractable and that it is in NL.

Definition 6.4.4. We can describe the decision problem for detecting the impeding bicycle as fol-

lows:

Problem : GENERALIZED BICYCLE

Input: A relational structure G = 〈V,E〉

Output: True if G contains a generalized impeding bicycle and false if G does not.

Lemma 22. The decision problem GENERALIZED BICYCLE is in NL.

Proof. We describe the algorithm for which a nondeterministic Turing machine could perform in

order to determine if a generalized impeding bicycle is present in a given relational structure in

terms of the space needed.

We have a input relational structure G = 〈V ;E〉 where E is a sequence of binary edge rela-

tions. We only need to remember the starting pair, a previous pair, that meets the conditions of our

bicycle, and the guess pair. This amounts to writing only 6 vertex indices in memory. |V | = n,

then total pairs = (n)(n− 1)/2. We describe the algorithm with the following pseudo code:

start_pair = (a_1,b_1)

prev_pair = start_pair

count = (n)*(n-1)/2

loop while count > 0
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{

current_pair = (a_2,b_2) (correctly guess the next pair in the

impeding bicycle)

if there exists an E_i such that

(prev_pair_1,current_pair_1), (prev_pair_1, current_pair_2)

in E_i and (prev_pair_1,current_pair_2) not in E_i then

if (current_pair = start_pair) then {

accept

}else

prev_pair = current_pair

count = count - 1

}

else{

reject

}

}

reject (We have gone through each vertex without an accept)

Thus we have found a universal obstruction to the dismantling of the square of these relational

structures with many binary relations and lists. The generalized impeding bicycle is the universal

combinatorial structure whose presence determines if the CSP of these structures are FO-definable

or not. We have also shown that the problem of detecting these impeding bicycles is a tractable

problem meaning that Theorem 20 is a reasonable tool for determining the descriptive complexity

of these structures.

6.5 Observations and examples

We saw that the problem of detecting a generalized impeding bicycle is in NL but it can still

be difficult to use in a practical sense and we think it best to illustrate these bicycles with some

examples. We have already encountered some larger relational structures that do not dismantle

to the diagonal and therefore are not FO-definable. By the theorem we should be able to find a

generalized impeding bicycle lurking within its relations. We start with the following example of
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transitive tournaments on 4 vertices.

Example 6.5.1. Let T = 〈{0, 1, 2, 3};E1, E2〉, where E1 defines the standard ordered tournament

on 4 vertices and E2 defines a tournament with the ordering [2, 3, 0, 1]. We know from Section

6.3 that T2

L does not dismantle to the diagonal because the two orderings do not share a sink or a

source. Theorem 20 says that there must exist an impeding bicycle. With some investigation the

following obstruction can be found:

1

2

2

3

3

0

0

1

E1

E1

E2

E2

E2

E2

E1

E1

The impeding bicycle found in the structure T.

In the above example we did not need to use the flip closure in order to find our generalized

impeding bicycle. If we look back at the structure T in Example 6.3.6 we actually see that we can

not find an impeding bicycle as defined in Definition 6.4.3 but we can find one in its flip closure

TF .

Example 6.5.2. Let T = 〈{0, 1, 2};E1, E2, E3〉, where E1 defines the standard ordering, E2 de-

fines a transitive tournament with the ordering [0, 2, 1], and E3 defines a transitive tournament with

ordering [1, 0, 2]. We saw in Example 6.3.6 that T2

L does not dismantle to the diagonal. Thus we

can find an impeding bicycle in its flip closure TF = 〈{0, 1, 2};E1, E1F
, E2, E2F

, E3, E3F
〉. This

obstruction can be found in Figure 6.12.

Example 6.5.2 illustrates that we could have defined our obstruction for these larger structures

differently. If we concern ourselves with just T, instead of its flip closure TF , we can construct

a slightly different obstruction which can be seen in Figure 6.13. This obstruction contains the

same information as the bicycle in Figure 6.12. Mainly, that there exists a relationship between the

vertices (1, 0), (2, 1), (0, 2) ∈ V (T2) such that none of these vertices can be dismantled until one

of the others is removed. The difference being that the bicycle in Figure 6.12 has a consistency

in the direction of its edges for each segment where as the bicycle in Figure 6.13 does not. Of
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Figure 6.12: The impeding bicycle found in the flip closed structure TF from Example 6.5.2.

0

1

1

2

2

0

E1

E1

E2

E2

E3

E3

Figure 6.13: An obstruction found in the structure T from Example 6.5.2.

course finding an obstruction like the one in T implies there is a generalized impeding bicycle as

in Definition 6.10 in TF . This is the equivalent of showing that the bicycle in T (Figure 6.13)

implies the bicycle in TF (Figure 6.12). This provides us with a good example of, and insight into,

Proposition 18.

So far we have only been able to determine whether a particular structure has a CSP which is

either FO-definable or not. A natural question, and a source for future study, is: ”If these CSPs are

not FO-definable then what is their complexity?” We will turn our attention back to the structure

in Example 6.5.1 and show that interestingly its CSP is NL-complete.

Theorem 23. Let T = 〈{0, 1, 2};E1, E2, E3〉 where E1 defines the standard ordering, E2 defines

a transitive tournament with the ordering [0, 2, 1], and E3 defines a transitive tournament with

ordering [1, 0, 2]. Then CSP(TL) is NL-complete.
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Proof. We first show that the problem is in NL; by [17] it is sufficient to show that TL admits

a majority polymorphism, i.e. that there exists a map m : {0, 1, 2}3 → {0, 1, 2} satisfying the

majority identities

m(x, x, y) = m(x, y, x) = m(y, x, x) = x

for all x, y, and that preserves every relation of TL, i.e. m(x, y, z) ∈ {x, y, z} for all x, y, z, and

(m(x, y, z),m(x′, y′, z′)) ∈ Ei whenever (x, x′), (y, y′), (z, z′) ∈ Ei, for 1 ≤ i ≤ 3.

Claim: Let m be an operation on {0, 1, 2} satisfying the majority identities. Then m preserves

any transitive tournament.

Proof. Indeed, it suffices to prove the result for the tournament with the standard ordering [0, 1, 2].

Suppose that (x, x′), (y, y′), (z, z′) ∈ E; then {x, y, z} ⊆ {0, 1} and {x′, y′, z′} ⊆ {1, 2}. Hence

(m(x, y, z),m(x′, y′, z′)) ∈ E unless m(x, y, z) = m(x′, y′, z′) = 1. But since m is majority, this

implies that at least 2 entries of both {x, y, z} and {x′, y′, z′} are equal to 1, and thus one of the

three pairs (x, x′), (y, y′), (z, z′) must be (1, 1), a contradiction.

By the claim, it follows that TL admits a majority polymorphism (in fact, several).

Secondly, we must show that CSP(TL) is NL-hard; following results from [18] it will suffice to

prove the following claim:

Claim: There exists a pp-definition from TL of the order {(0, 0), (0, 1), (1, 1)}.

Proof. In fact,

{(x, y) ∈ {0, 1}2 : ∃u ∃v (x, u) ∈ E1, (v, u) ∈ E2, (y, v) ∈ E3} = {(0, 0), (0, 1), (1, 1)}

Notice that we may restrict to the set {0, 1} as all lists are unary relations of the structures. For

x = 0 = y take u = 1, v = 2 and for x ∈ {0, 1} and y = 1 take u = 2, v = 0. On the other hand

if x = 1 then it forces u = 2, which forces v = 0, which forces y = 1, and thus (1, 0) is not in the

relation.
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Chapter 7

Conclusion

7.1 Contribution

Throughout this work we have investigated the complexity of constraint satisfaction problems

from a combinatorial point of view. Motivated by the foundational research of Larose, Tardif

and Loten [5] and the use of relational domination we aimed to further the classification results

for constraint satisfaction problems described by digraphs with lists that are first order definable.

Theorem 20 extended the results found in [6] by defining an obstruction that characterized those

structures consisting of several digraphs with lists whose CSP is not FO-definable.

We designed software routines to facilitate the dismantling of sets of many digraphs. With this

software we conducted the exhaustive dismantlings of sets of well known graph structures. From

the results and observations this process provided we were able to postulate and then prove a

classification result for the special case of transitive tournaments. We also presented an algorithm

for checking the FO-definability of these structures. The simplicity of this algorithm gives one a

very easy way to construct large structures that are guaranteed to be FO-definable without needing

to consider the properties of that structure’s square. Using the restrictive nature of the simplified

dismantling sequence of a transitive tournament (Definition 16) and by fixing a simple dismantling

sequence we found that we could produce an upper bound on the size of the set of unique transitive

tournaments that can dismantle with each other in terms of the number of vertex n. For these

structures with lists and n vertices we used a counting method to show that the upper bound on the

size of their relational set is 2n−1.

With these tools in hand we found structures with many binary relations which did not dismantle
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to the diagonal even though each of its relations dismantled individually. This implied that there

existed inter-relational obstructions and motivated us to search for a generalization of Theorem 12.

We were successful in this. Our classification, Theorem 20, relied on the non-existence of a cycle-

like structure which we named a generalized impeding bicycle (Definition 6.10). We saw that this

is the only obstruction needed to characterize the first order definability of flip closed relational

structures with lists and binary relations. Finally, we concluded by presenting some interesting

examples that integrated many of our results in a concise and demonstrative way.

7.2 Outlook

During the process of writing this thesis it was announced that two proofs of the general di-

chotomy conjecture of Feder and Vardi had been found [19] [20]. This is a great advancement in

our field and although this conjecture was a great motivator, the classification of CSPs is far from

complete. There are still several dichotomies within the subclasses of P which remain unresolved.

Thus, there are still open questions for future research of constraint satisfaction problems such as

those belonging to classes such L or NL [21]. Direct extensions to the research carried out in this

thesis could include discovering dismantling obstructions and other properties for structures with

only ternary (or larger) relations or the formulation of a general combinatorial characterization of

all FO-definable structures with lists. The dismantling software, whose source code is provided in

Appendix A, could be modified to add new functionality to facilitate the dismantling of relations

that have arities greater than 2. With these new functionalities in hand we could investigate and

hopefully discover the properties of these structures that could classify their first order definability.

Lastly, as problems in our field are often approached from an algebraic context it may be enlight-

ening and useful to translate our combinatorial classifications and observations into the language

of algebra and investigate if these results lead to any new and non-trivial observations in this field.
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Appendix A

Dismantling Software

In this appendix we provide the source code to our dismantling software. This program is

capable of drawing and dismantling relational structures with 1, 2 or 3 binary relations. It can also

run exhaustive searches on which transitive tournaments on n vertices dismantle with the transitive

tournament Tn with the natural ordering. This result can either be listed as the positive or negative

outcome (ie. all bad pairs or all good pairs).

Dismantle.java is the main class and the class where one defines the parameters of the cur-

rent dismantlings. These parameters include defining the structures to be dismantled or to set

up an exhaustive search for transitive tournaments. The other 3 classes Graph.java, RStruct.java,

RStruct3.java define the objects used throughout the dismantling. They represent the structures

with 1,2, or 3 binary relations respectively.

A.1 Dismantle.java

package dismantleFO;

import java.awt.*;

import java.util.Arrays;

import javax.swing.*;

public class Dismantle extends JFrame{
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int[][] arra = new int[factorial(4)][];

public static void main(String arg[]){

Dismantle frame = new Dismantle();

frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

frame.setSize(1200,800);

frame.setVisible(true);

}

public Dismantle(){

super();

}

int hi = 0;

public void paint(Graphics g){

Boolean oneDis = true; //true if we are dismantling one structure,

false if we want to do exhaustive (tournaments)

Boolean twoGraphs = true; //if structure has 2 binary relations

Boolean threeGraphs = false; //if structure has 3 binary realtions

int num = 5; //number of vertices

int generator = 7; //used for randomizing vertex location in the

digraph drawings.

int mover = 7; //distance between arrow heads going in and out of

vertex

if(!oneDis){

int[] intArray = new int[] {0,1,2,3,4};

permute(intArray, 0);

}

String[] relations = {"0 1,0 2,0 3,0 4,1 2,1 3,1 4,2 3,2 4,3

4",""}; //Definitions of the digraphs

String[] relations2 = {"3 0,3 2,3 1,3 4,0 2,0 1,0 4,2 1,2 4,1

4",""}; // and edge (a,b) is defined by "a b"
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String[] relations3 = {"2 0,2 3,2 1,2 4,0 3,0 1,0 4,3 1,3 4,1

4",""}; //these each define transitive tournaments

Graph orig = new Graph(num, relations); //stores a copy of the

original graph for single dismantling

//This is the method that lets you dismantle a structure with 3

binary relations

if (threeGraphs){

int draw = 0;

g.setColor(Color.WHITE);

g.fillRect(0, 0, 1200, 800);

if (draw < 1){

if (oneDis){

Graph Graph = new Graph(num,relations);

Graph orig2 = new Graph(num,relations2);

Graph Graph2 = new Graph(num, relations2);

Graph orig3 = new Graph(num,relations3);

Graph Graph3 = new Graph(num, relations3);

RStruct3 RS = new RStruct3(Graph, Graph2, Graph3);

RS.setOneDis(false);

orig.GraphDraw(g,generator,mover,240,300,60,false);

orig2.GraphDraw(g,generator,mover,440,160,60,false);

orig3.GraphDraw(g,generator,mover,440,300,60,false);

RS.dismantle();

RS.getg1().GraphDraw(g,generator,mover,350,590,160,true);

RS.getg2().GraphDraw(g,generator,mover,850,220,160,true);

RS.getg3().GraphDraw(g,generator,mover,850,590,160,true);

}else{ //TRANSITIVE TOURNAMENT LOOP

int graphC = 0;

int counter = 0;
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Graph Graph = new Graph(num,relations);

Graph.squareGraph();

for (int i = 0; i < factorial(num);i++){

String[] g2Rel = {relabel(relations,arra[i]),""};

Graph Graph2 = new Graph(num, g2Rel);

Graph2.squareGraph();

for(int j = 0; j < factorial(num); j++){

counter++;

String[] g3Rel = {relabel(relations,arra[j]),""};

Graph Graph3 = new Graph(num, g3Rel);

Graph3.squareGraph();

RStruct3 RS = new RStruct3(Graph, Graph2, Graph3);

RS.setOneDis(false);

RS.dismantle();

if(i == 0 || RS.getg1().getIsDis() == false ||

RS.getg2().getIsDis() == false ||

RS.getg3().getIsDis() == false){

graphC++;

System.out.println(counter + " " + i + " BAD " +

graphC + " --- G2: " + Arrays.toString(arra[i]) +

" G3: " + Arrays.toString(arra[j]));

}

}

}

}

draw++;

}

//this is the method for dismantling structures with 2 binary

relations

}else if (twoGraphs){

int draw = 0;

g.setColor(Color.WHITE);

g.fillRect(0, 0, 1200, 800);

if (draw < 1){

if (oneDis){
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Graph Graph = new Graph(num,relations);

Graph orig2 = new Graph(num,relations2);

Graph Graph2 = new Graph(num, relations2);

RStruct RS = new RStruct(Graph, Graph2);

RS.setOneDis(true);

orig.GraphDraw(g,generator,mover,500,450,60,false);

orig2.GraphDraw(g,generator,mover,700,450,60,false);

Graph.GraphDraw(g,generator,mover,300,250,160,true);

Graph2.GraphDraw(g,generator,mover,900,250,160,true);

RS.dismantle();

RS.getg1().GraphDraw(g,generator,mover,300,620,160,true);

RS.getg2().GraphDraw(g,generator,mover,900,620,160,true);

}else{

int graphC = 0;

for (int i = 0; i < factorial(num);i++){

Graph Graph = new Graph(num,relations);

String[] g2Rel = {relabel(relations,arra[i]),""};

Graph Graph2 = new Graph(num, g2Rel);

RStruct RS = new RStruct(Graph, Graph2);

RS.setOneDis(false);

RS.dismantle();

if(Graph.getIsDis() == false || Graph2.getIsDis() ==

false){

graphC++;

System.out.println(i + " BAD " + graphC + " " +

Arrays.toString(arra[i]));

}

}

}

draw++;
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}

//This is the method for dismantling a single digraph

}else{

Graph Graph = new Graph(num,relations);

//Clear Screen

g.setColor(Color.WHITE);

g.fillRect(0, 0, 1200, 800);

if(hi < 1){

Graph.GraphDraw(g,1,mover,600,200,100,false);

Graph.squareGraph();

Graph.GraphDraw(g,generator,mover,300,500,250,true);

//the dismantling algorithm

int domCount = 0;

int[] dominate = {0,0};

while(dominate[0] != -1){

dominate = Graph.findDomVert();

if(dominate[0] != -1){

Graph.RemoveVert(dominate[1]);

domCount++;

}

}

//draws the dominated graph.

Graph.GraphDraw(g,generator,mover,900,500,250,true);

}

//double buffer of input graph image

orig.GraphDraw(g,1,mover,599,200,100,false);

hi++;

}

}

//this function generates transitive tournaments with all possible

orderings.

public String relabel(String[] relations, int[] labels){

String[] edges = relations[0].split(",");
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int numEdges = edges.length;

String newLabel = "";

for(int i = 0; i < numEdges; i++){

String verts[] = edges[i].split(" ");

newLabel =

newLabel.concat(Integer.toString(labels[Integer.valueOf(verts[0])])

+ " " + labels[Integer.valueOf(verts[1])] + ",");

}

newLabel = newLabel.substring(0, newLabel.length()-1);

String[] sorter = newLabel.split(",");

Arrays.sort(sorter);

newLabel = "";

for(int i = 0; i < numEdges; i++){

newLabel = newLabel.concat(sorter[i] + ",");

}

newLabel = newLabel.substring(0, newLabel.length()-1);

return newLabel;

}

int count = 0;

public void permute(int[] input2, int startIndex) {

int length = input2.length;

if (length == startIndex + 1 && count < factorial(length)) {

arra[count] = new int[5];

arra[count] = input2;

count++;

} else {

for (int i = startIndex; i < length; i++) {

int[] input = input2.clone();

int temp = input[i];

input[i] = input[startIndex];
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input[startIndex] = temp;

permute(input, startIndex + 1);

}

}

}

public int factorial(int a){

int result = 1;

for (int i = 1; i <= a; i++){

result = result*i;

}

return result;

}

}
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A.2 Graph.java

package dismantleFO;

import java.awt.Color;

import java.awt.Graphics;

import java.util.Arrays;

import java.util.Enumeration;

import java.util.Hashtable;

public class graph {

private int numVert, numEdges, oldVert;

private String[] relSet, newEdges,edges,newVert,vertSet;

private String[][] inNeighbours, outNeighbours,outEdges,inEdges;

private int[] numG2EdgeIn, numG2EdgeOut,numOutEdge,numInEdge;

private String[][] domPair;

private boolean isDis,oneDis;

//square graph constructor

public graph (int numVert, String[] relSet){

this.numVert = numVert;

this.relSet = relSet;

oldVert = numVert;

vertSet = new String[numVert*numVert];

domPair = new String[numVert*numVert][2];

isDis = false;

for(int i = 0; i< numVert; i++){

vertSet[i] = Integer.toString(i);

}

String[] sig = new String[relSet.length];

//Consructs a dismantling signature for the graph

for(int i = 0; i < relSet.length ;i++ ){

String relSplit[] = relSet[i].split(",");
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int a = relSplit.length;

sig[i] = Integer.toString(a);

}

numEdges = relSet[0].split(",").length;

edges = new String[numEdges];

edges = relSet[0].split(",");

outEdges = new String[numVert][numVert+1];

inEdges = new String[numVert][numVert + 1];

//Assigns the name to each outEdge array for the input graph

int r = 1;

for(int i = 0; i < numVert;i++){

outEdges[i][0] = Integer.toString(i);

}

//Gathers the out edges of the input graph

for(int i = 0;i < numVert;i++){

for(int t = 0; t< numEdges;t++){

String[] g1node = edges[t].split(" ");

if(g1node[0].equals(outEdges[i][0])){

outEdges[i][r] = g1node[1];

r++;

}

}

r = 1;

}

r = 1;

for(int i = 0; i < numVert;i++){

inEdges[i][0] = Integer.toString(i);

}

//Gathers the out edges of the input graph

for(int i = 0;i < numVert;i++){

for(int t = 0; t< numEdges;t++){

String[] g1node = edges[t].split(" ");

if(g1node[1].equals(outEdges[i][0])){

inEdges[i][r] = g1node[0];
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r++;

}

}

r = 1;

}

r = 0;

//Count G1 in and out

int q = 0;

int out = 0;

int in = 0;

numOutEdge = new int[numVert];

numInEdge = new int[numVert];

for(int i = 0; i < numVert; i++){

for(int t = 1; t < numVert + 1; t++){

if(outEdges[i][t] != null){

out++;

}

if(inEdges[i][t] != null){

in++;

}

}

numOutEdge[q] = out;

numInEdge[q] = in;

out = 0;

in = 0;

q++;

}

}

//This methid squares the input relational structure

public void squareGraph(){

newVert = new String[numVert*numVert] ;

//Constructs vertices of the square

int k = 0;
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for (int i = 0;i < numVert; i++){

for (int t = 0;t < numVert; t++){

newVert[k] = Integer.toString(i) +Integer.toString(t);

k++;

}

}

newEdges = new String[numEdges*numEdges];

outNeighbours = new String[numVert*numVert][numVert*numVert+1];

inNeighbours = new String[numVert*numVert][numVert*numVert+1];

int r = 0;

//constructs the new edges of the square graph

for(int i = 0;i < numEdges;i++){

for(int t = 0; t < numEdges; t++){

String edgeSplit1[] = edges[i].split(" ");

String edgeSplit2[] = edges[t].split(" ");

newEdges[r] = edgeSplit1[0]+edgeSplit2[0]+"

"+edgeSplit1[1]+edgeSplit2[1];

r++;

}

}

r = 0;

for(int i = 0; i< numVert; i++){

for(int t = 0; t < numVert; t++){

outNeighbours[r][0] = Integer.toString(i)+Integer.toString(t);

r++;

}

}

r = 0;

//sets name of each in edge array for square graph

for(int i = 0; i< numVert; i++){

for(int t = 0; t < numVert; t++){

inNeighbours[r][0] = Integer.toString(i)+Integer.toString(t);

r++;

}

}

int numNewEdges = newEdges.length;
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int e = 1;

//gathers the out neighbours for square

for(int i = 0; i<numVert*numVert;i++){

for(int t = 0; t < numNewEdges; t++){

String newNode = outNeighbours[i][0];

String[] nodes = newEdges[t].split(" ");

if (nodes[0].equals(newNode)){

for(int p = 0; p < numVert*numVert;p++){

if(nodes[1].equals(newVert[p])){

outNeighbours[i][e] = Integer.toString(p);

}

}

e++;

}

}

e = 1;

}

e = 1;

//gathers in neighbours of square graph

for(int i = 0; i<numVert*numVert;i++){

for(int t = 0; t < numNewEdges; t++){

String newNode = inNeighbours[i][0];

String[] nodes = newEdges[t].split(" ");

if (nodes[1].equals(newNode)){

for(int p = 0; p < numVert*numVert;p++){

if(nodes[0].equals(newVert[p])){

inNeighbours[i][e] = Integer.toString(p);

}

}

e++;

}

}

e = 1;

}

int q = 0;
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int out = 0;

int in = 0;

numG2EdgeIn = new int[numVert*numVert];

numG2EdgeOut = new int[numVert*numVert];

//counts number of out/in edges for each new vertex

for(int i = 0; i < numVert*numVert; i++){

for(int t = 1; t < numVert*numVert + 1; t++){

if(outNeighbours[i][t] != null){

out++;

}

if(inNeighbours[i][t] !=null){

in++;

}

}

numG2EdgeIn[q] = in;

numG2EdgeOut[q] = out;

out = 0;

in = 0;

q++;

}

outEdges = outNeighbours;

inEdges = inNeighbours;

vertSet = newVert;

numVert = numVert*numVert;

numInEdge = numG2EdgeIn;

numOutEdge = numG2EdgeOut;

}

//This is the graph drawing method

public void GraphDraw(Graphics g, int coprime, int moverRate, int

CentreX,int CentreY, int Rad, boolean Square){

g.setColor(Color.BLACK);

int x1,y1;

double degrees;

int[][] coords = new int[numVert][2];

75



int counter = 0;

int firstNum = 0;

//draw input graph vertices and labels

for (int i = 0; i< numVert; i++){

degrees =

((360/(numVert))*((coprime*(i+1))%(numVert)))*(Math.PI/180);

x1 = (int) Math.round(Rad*Math.cos(degrees));

y1 = (int) Math.round(Rad*Math.sin(degrees));

if (!Square){

g.drawString(Integer.toString(i), CentreX+x1, CentreY-5 -y1);

}else{

g.drawString(Integer.toString(firstNum)+

Integer.toString(i%oldVert), CentreX+x1, CentreY-5 -y1);

}

g.setColor(Color.GREEN);

g.fillRect(CentreX+x1,CentreY-y1, 10, 10);

g.setColor(Color.BLACK);

coords[i][0] = x1+CentreX;

coords[i][1] = -y1+CentreY;

counter++;

if(counter%oldVert == 0){

firstNum++;

}

}

//sets up the g1mover array that spreads out edge ends

int[] g1mover = new int[numVert];

int[] g1moverOut = new int[numVert];

for (int i =0; i < numVert;i++){

g1mover[i] = moverRate;

g1moverOut[i] = moverRate;

}
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//draw Edges

for (int i = 0; i < numVert; i++){

for(int t = 0; t < numOutEdge[i]; t++){

if(i == Integer.valueOf(outEdges[i][t+1])){

g.drawOval(coords[i][0], coords[i][1], 30, 30);

}else{

g.drawLine(coords[i][0]-g1moverOut[i],

coords[i][1],coords[Integer.valueOf(outEdges[i][t+1])][0]+g1mover[Integer.valueOf(outEdges[i][t+1])]

, coords[Integer.valueOf(outEdges[i][t+1])][1]);

g.setColor(Color.RED);

g.fillRect(coords[Integer.valueOf(outEdges[i][t+1])][0] +

g1mover[Integer.valueOf(outEdges[i][t+1])] ,

coords[Integer.valueOf(outEdges[i][t+1])][1],5,5);

g.setColor(Color.BLUE);

g.fillRect(coords[i][0] - g1moverOut[i] , coords[i][1],5,5);

g.setColor(Color.BLACK);

g1mover[Integer.valueOf(outEdges[i][t+1])] =

g1mover[Integer.valueOf(outEdges[i][t+1])] + moverRate;

g1moverOut[i] = g1moverOut[i] + moverRate;

}

}

}

}

//FIND DOMINATED VERTEX METHOD

public int[] findDomVert(){

int dom[] = {0,0};

boolean foundDom = false;

Hashtable<Integer, String> Hin = new Hashtable<Integer, String>();

Hashtable<Integer, String> Hout = new Hashtable<Integer, String>();

int countIn=0,countOut=0;

int iter = 0;

int isoCount = 0;

while (!foundDom){

Hout.clear();
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Hin.clear();

for(int i = 0; i < numOutEdge[iter];i++){

Hout.put(i,outEdges[iter][i+1]);

}

for(int i = 0; i < numInEdge[iter];i++){

Hin.put(i,inEdges[iter][i+1]);

}

boolean iso = false;

if(numInEdge[iter] == 0 && numOutEdge[iter] == 0){

iso = true;

isoCount++;

}

for(int r = 0; r < numVert; r++){

countIn = 0;

countOut = 0;

if(r != iter && iso == false){

for (int k =0; k < numOutEdge[r];k++){

if(Hout.containsValue(outEdges[r][k+1]) == true){

countOut++;

}

}

for (int k = 0; k< numInEdge[r];k++){

if(Hin.containsValue(inEdges[r][k+1]) == true){

countIn++;

}

}

if(countIn == numInEdge[iter] && countOut == numOutEdge[iter]

&& iter%(oldVert+1) != 0){

String a = Character.toString(getVertSet()[iter].charAt(0)) +

Character.toString(getVertSet()[iter].charAt(0));

String b = Character.toString(getVertSet()[iter].charAt(1)) +

Character.toString(getVertSet()[iter].charAt(1));;

if(getVertSet()[r].equals(a) || getVertSet()[r].equals(b)) {
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dom[0] = r;

dom[1] = iter;

foundDom = true;

break;

}

}

}

iter++;

if(iter == numVert){

foundDom = true;

dom[0] = -1;

dom[1] = -1;

}

}

return dom;

}

//FIND DOMINATED LIST

public void findDomList() {

boolean foundDom = false;

Hashtable<Integer, String> Hin = new Hashtable<Integer, String>();

Hashtable<Integer, String> Hout = new Hashtable<Integer, String>();

int countIn = 0, countOut = 0;

int iter = 0;

while (!foundDom) {

Hout.clear();

Hin.clear();

for (int i = 0; i < numOutEdge[iter]; i++) {

Hout.put(i, outEdges[iter][i + 1]);

}

for (int i = 0; i < numInEdge[iter]; i++) {

Hin.put(i, inEdges[iter][i + 1]);

}

boolean iso = false;

if (numInEdge[iter] == 0 && numOutEdge[iter] == 0) {
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iso = true;

//set the dominated pair list for any isolated vertex

domPair[iter][0] = newVert[(int) (Math.floor(iter / oldVert)

* (oldVert + 1))];

domPair[iter][1] = newVert[(iter % oldVert) * (oldVert + 1)];

}

for (int r = 0; r < numVert; r++) {

countIn = 0;

countOut = 0;

if (r != iter && iso == false) {

for (int k = 0; k < numOutEdge[r]; k++) {

if (Hout.containsValue(outEdges[r][k + 1]) == true) {

countOut++;

}

}

for (int k = 0; k < numInEdge[r]; k++) {

if (Hin.containsValue(inEdges[r][k + 1]) == true) {

countIn++;

}

}

if (countIn == numInEdge[iter]

&& countOut == numOutEdge[iter]

&& iter % (oldVert + 1) != 0) {

if (r == Math.floor(iter / oldVert) * (oldVert + 1)) {

domPair[iter][0] = newVert[r];

}

if (r == (iter % oldVert) * (oldVert + 1)) {

domPair[iter][1] = newVert[r];

}
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}

}

}

iter++;

if(iter == numVert){

foundDom = true;

}

}

}

//REMOVE VERTEX METHOD

public void RemoveVert(int vertInt){

String vert = vertSet[vertInt];

for(int i = 0; i < numOutEdge[vertInt]; i++){

outEdges[vertInt][i+1] = null;

}

for(int i = 0; i < numInEdge[vertInt]; i++){

inEdges[vertInt][i+1] = null;

}

numInEdge[vertInt] = 0;

numOutEdge[vertInt] = 0;

//remove vertex from outedges

int rCount = 1;

for(int i = 0; i < numVert; i++){

String[] temp = new String[numVert+1];

temp[0] = outEdges[i][0];

for(int t = 0; t < numOutEdge[i]; t++){

if(outEdges[i][t+1].equals(Integer.toString(vertInt)) ==

false){

temp[rCount] = outEdges[i][t+1];

rCount++;

}

}

outEdges[i] = temp;

numOutEdge[i] = numOutEdge[i] - (numOutEdge[i] - (rCount-1));
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rCount = 1;

}

//remove vertex from in edges

rCount = 1;

for(int i = 0; i < numVert; i++){

String[] temp = new String[numVert+1];

temp[0] = inEdges[i][0];

for(int t = 0; t < numInEdge[i]; t++){

if(inEdges[i][t+1].equals(Integer.toString(vertInt)) ==

false){

temp[rCount] = inEdges[i][t+1];

rCount++;

}

}

inEdges[i] = temp;

numInEdge[i] = numInEdge[i] - (numInEdge[i] - (rCount-1));

rCount = 1;

}

}

//Checks if a particular graph is dismantled to the diagonal after

Dismantle() is called.

public void isDismantled(){

for(int i = 0; i < numVert;i++){

if(numInEdge[i] > 0 || numOutEdge[i] > 0){

if (i % (oldVert + 1) != 0){

isDis = false;

break;

}

}else{

isDis = true;

}

}

}

public boolean getIsDis(){

isDismantled();

return isDis;
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}

public int getNumVert() {

return numVert;

}

public void setNumVert(int numVert) {

this.numVert = numVert;

}

public String[] getRelSet() {

return relSet;

}

public void setRelSet(String[] relSet) {

this.relSet = relSet;

}

public String[] getNewEdges() {

return newEdges;

}

public void setNewEdges(String[] newEdges) {

this.newEdges = newEdges;

}

public String[][] getInNeighbours() {

return inNeighbours;

}

public void setInNeighbours(String[][] inNeighbours) {

this.inNeighbours = inNeighbours;

}

public String[][] getOutNeighbours() {

return outNeighbours;

}
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public void setOutNeighbours(String[][] outNeighbours) {

this.outNeighbours = outNeighbours;

}

public int[] getNumG2EdgeIn() {

return numG2EdgeIn;

}

public void setNumG2EdgeIn(int[] numG2EdgeIn) {

this.numG2EdgeIn = numG2EdgeIn;

}

public int[] getNumG2EdgeOut() {

return numG2EdgeOut;

}

public void setNumG2EdgeOut(int[] numG2EdgeOut) {

this.numG2EdgeOut = numG2EdgeOut;

}

public String[][] getInEdges() {

return inEdges;

}

public void setInEdges(String[][] inEdges) {

this.inEdges = inEdges;

}

public String[] getNewVert() {

return newVert;

}

public void setNewVert(String[] newVert) {

this.newVert = newVert;

}

public int getNumEdges() {

return numEdges;
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}

public void setNumEdges(int numEdges) {

this.numEdges = numEdges;

}

public String[] getEdges() {

return edges;

}

public void setEdges(String[] edges) {

this.edges = edges;

}

public String[][] getOutEdges() {

return outEdges;

}

public void setOutEdges(String[][] outEdges) {

this.outEdges = outEdges;

}

public int[] getNumEdgeOut() {

return numOutEdge;

}

public void setNumEdgeOut(int[] numEdgeOut) {

this.numOutEdge = numEdgeOut;

}

public String[] getVertSet() {

return vertSet;

}

public void setVertSet(String[] vertSet) {

this.vertSet = vertSet;

}
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public String[][] getDomPair() {

return domPair;

}

public void setDomPair(String[][] domPair) {

this.domPair = domPair;

}

public boolean isOneDis() {

return oneDis;

}

public void setOneDis(boolean oneDis) {

this.oneDis = oneDis;

}

}
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A.3 RStruct.java

package dismantleFO;

import java.lang.reflect.Array;

import java.util.Arrays;

public class RStruct {

Graph g1,g2;

int numVert;

boolean oneDis;

//This is the relational structure with 2 binary relations

public RStruct(Graph g1, Graph g2){

this.g1 = g1;

this.g2 = g2;

g1.squareGraph();

g2.squareGraph();

this.numVert = g1.getNumVert();

for(int i = 0; i < numVert; i++){

g1.getDomPair()[i][0] = "1";

g1.getDomPair()[i][1] = "1";

g2.getDomPair()[i][0] = "2";

g2.getDomPair()[i][1] = "2";

}

}

//this is the dismantling algorithm for a relataional structure with

2 binary relations

public void dismantle(){

int removeCount = 1;

boolean[] vRemoved = new boolean[numVert];

for(int i = 0; i < numVert; i++){

vRemoved[i] = false;
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}

int steps = 0;

int prevRemoveCount = 1;

int totRemove = 0;

while(removeCount != 0){

prevRemoveCount = removeCount;

steps++;

removeCount = 0;

if(oneDis){

System.out.println("--------------------------------");

}

g1.findDomList();

g2.findDomList();

for(int i = 0; i < numVert; i++){

if(g1.getDomPair()[i][0].equals(g2.getDomPair()[i][0]) ||

g1.getDomPair()[i][0].equals(g2.getDomPair()[i][1])){

if((g1.getDomPair()[i][0] != "" || g1.getDomPair()[i][1] !=

"") && vRemoved[i] == false ){

g1.RemoveVert(i);

g2.RemoveVert(i);

if (oneDis){

System.out.println(totRemove+1 + " " + "REMOVED: " +

g1.getNewVert()[i] + " DOM’D BY " +

g1.getDomPair()[i][0]);

}

removeCount++;

totRemove++;

vRemoved[i] = true;

}

}

if(g1.getDomPair()[i][1].equals(g2.getDomPair()[i][0]) ||

g1.getDomPair()[i][1].equals(g2.getDomPair()[i][1])){
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if((g1.getDomPair()[i][0] != "" || g1.getDomPair()[i][1] !=

"") && vRemoved[i] == false){

g1.RemoveVert(i);

g2.RemoveVert(i);

if(oneDis){

System.out.println(totRemove+1 + " " + "REMOVED: " +

g1.getNewVert()[i] + " DOM’D BY " +

g1.getDomPair()[i][1]);

}

removeCount++;

totRemove++;

vRemoved[i] = true;

}

}

}

}

if (oneDis){

System.out.println("Removed: " + totRemove + " vertices in " +

(steps-1) + " steps." );

}

}

public boolean isOneDis() {

return oneDis;

}

public void setOneDis(boolean oneDis) {

this.oneDis = oneDis;

}

public Graph getg1() {

return g1;

}

public void setg1(Graph G1) {

g1 = G1;
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}

public Graph getg2() {

return g2;

}

public void setG2(Graph G2) {

g2 = G2;

}

}
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A.4 RStruct3.java

package dismantleFO;

import java.lang.reflect.Array;

import java.util.Arrays;

public class RStruct3 {

Graph g1,g2, g3;

int numVert;

boolean oneDis;

//Constructor methid for relational structure with 3 binary relations

public RStruct3(Graph g1, Graph g2, Graph g3){

this.g1 = g1;

this.g2 = g2;

this.g3 = g3;

g1.squareGraph();

g2.squareGraph();

g3.squareGraph();

this.numVert = g1.getNumVert();

for(int i = 0; i < numVert; i++){

g1.getDomPair()[i][0] = "1";

g1.getDomPair()[i][1] = "1";

g2.getDomPair()[i][0] = "2";

g2.getDomPair()[i][1] = "2";

g3.getDomPair()[i][0] = "3";

g3.getDomPair()[i][1] = "3";

}

}

//dismantling algorithm for structures with 3 binary relations

public void dismantle(){

System.out.println("--------------------------------");
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int removeCount = 1;

boolean[] vRemoved = new boolean[numVert];

for(int i = 0; i < numVert; i++){

vRemoved[i] = false;

}

int steps = 0;

int prevRemoveCount = 1;

int totRemove = 0;

while(removeCount != 0){

prevRemoveCount = removeCount;

steps++;

removeCount = 0;

System.out.println("--------------------------------");

g1.findDomList();

g2.findDomList();

g3.findDomList();

for(int i = 0; i < numVert; i++){

if((g1.getDomPair()[i][0].equals(g2.getDomPair()[i][0]) ||

g1.getDomPair()[i][0].equals(g2.getDomPair()[i][1])) &&

(g1.getDomPair()[i][0].equals(g3.getDomPair()[i][0]) ||

g1.getDomPair()[i][0].equals(g3.getDomPair()[i][1]))){

if((g1.getDomPair()[i][0] != "" || g1.getDomPair()[i][1] !=

"") && vRemoved[i] == false ){

g1.RemoveVert(i);

g2.RemoveVert(i);

g3.RemoveVert(i);

System.out.println(totRemove+1 + " " + "REMOVED: " +

g1.getNewVert()[i] + " DOM’D BY " +

g1.getDomPair()[i][0]);

removeCount++;

totRemove++;

vRemoved[i] = true;
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}

}

if((g1.getDomPair()[i][1].equals(g2.getDomPair()[i][0]) ||

g1.getDomPair()[i][1].equals(g2.getDomPair()[i][1])) &&

(g1.getDomPair()[i][1].equals(g3.getDomPair()[i][0]) ||

g1.getDomPair()[i][1].equals(g3.getDomPair()[i][1]))){

if((g1.getDomPair()[i][0] != "" || g1.getDomPair()[i][1] !=

"") && vRemoved[i] == false){

g1.RemoveVert(i);

g2.RemoveVert(i);

g3.RemoveVert(i);

System.out.println(totRemove+1 + " " + "REMOVED: " +

g1.getNewVert()[i] + " DOM’D BY " +

g1.getDomPair()[i][1]);

removeCount++;

totRemove++;

vRemoved[i] = true;

}

}

}

}

if (oneDis){

System.out.println("Removed: " + totRemove + " vertices in " +

(steps-1) + " steps." );

}

}

public boolean isOneDis() {

return oneDis;

}

public void setOneDis(boolean oneDis) {

this.oneDis = oneDis;

}

public Graph getg1() {

return g1;
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}

public void setg1(Graph G1) {

g1 = G1;

}

public Graph getg2() {

return g2;

}

public void setG2(Graph G2) {

g2 = G2;

}

public Graph getg3() {

return g3;

}

}
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[6] Adrien Lemaı̂tre. Complexité des Homomorphismes de Graphes avec Listes. PhD thesis,
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and Jakub Opršal. Robust Algorithms with Polynomial Loss for Near-unanimity CSPs. In

Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms,

SODA ’17, pages 340–357, Philadelphia, PA, USA, 2017. Society for Industrial and Applied

Mathematics.

[18] L. Egri, A. Krokhin, B. Larose, and P. Tesson. The Complexity of the List Homomorphism

Problem forGraphs. Theor. Comp. Sys., 51(2):143–178, 2012.

[19] A. A. Bulatov. A Dichotomy Theorem for Nonuniform CSPs. In 2017 IEEE 58th Annual

Symposium on Foundations of Computer Science (FOCS), pages 319–330, Oct 2017.

[20] D. Zhuk. A Proof of CSP Dichotomy Conjecture. In 2017 IEEE 58th Annual Symposium on

Foundations of Computer Science (FOCS), pages 331–342, Oct 2017.

[21] Benoı̂t Larose and Pascal Tesson. Universal Algebra and Hardness Results for Constraint

Satisfaction Problems. In Lars Arge, Christian Cachin, Tomasz Jurdziński, and Andrzej Tar-
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