
Accepted Manuscript

Dynamic instability of rotating doubly-tapered laminated composite beams un-
der periodic rotational speeds

Saemul Seraj, Rajamohan Ganesan

PII: S0263-8223(17)33035-0
DOI: https://doi.org/10.1016/j.compstruct.2018.05.133
Reference: COST 9772

To appear in: Composite Structures

Received Date: 7 October 2017
Revised Date: 15 April 2018
Accepted Date: 28 May 2018

Please cite this article as: Seraj, S., Ganesan, R., Dynamic instability of rotating doubly-tapered laminated composite
beams under periodic rotational speeds, Composite Structures (2018), doi: https://doi.org/10.1016/j.compstruct.
2018.05.133

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers
we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and
review of the resulting proof before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.compstruct.2018.05.133
https://doi.org/10.1016/j.compstruct.2018.05.133
https://doi.org/10.1016/j.compstruct.2018.05.133


  

* Corresponding author. Tel.: +1 514 848 2424x3164; Fax: +1 514 8482424x3175. 

E-mail address: ganesan@encs.concordia.ca (R. Ganesan). 

Dynamic instability of rotating doubly-tapered laminated composite beams under periodic 

rotational speeds 

Saemul Seraj, Rajamohan Ganesan* 

Concordia Center for Composites, Department of Mechanical, Industrial and Aerospace 

Engineering, Concordia University, Montreal, Quebec, Canada. 

 

Abstract 

Dynamic instability analysis of doubly-tapered cantilever composite beams rotating with 

periodic rotational velocity is conducted in the present work for out-of-plane bending (flap), in-

plane bending (lag) and axial vibrations. Rayleigh-Ritz method and classical lamination theory 

are used along with an energy formulation. Bolotin’s method is applied to obtain the instability 

regions. To verify the dynamic instability analysis results, time responses are investigated at 

different locations of the instability region by using the Runge-Kutta method. A comprehensive 

parametric study is conducted in order to understand the effects of taper configurations and 

various system parameters including mean rotational velocity, hub radius, double-tapering angles 

and stacking sequences, on the dynamic instability characteristics of the composite beam. The 

composite material considered in the present work in numerical results is NCT-301 graphite-

epoxy prepreg. 

Keywords: Dynamic instability, Doubly-tapered composite laminates, Composite beams, 

Rotating blade, Free vibration. 

1. Introduction 

Composite material has outstanding engineering properties, such as high strength/stiffness to 

weight ratios and favorable fatigue characteristics and due to this reason composite material is 

used in the design of rotating structure such as aircraft turbo fans, helicopter rotor blades and 

wind turbine blades. In some specific applications such as helicopter blades, robot arms, turbine 
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blades and satellite antenna components need to be stiff at one location and flexible at another 

location. A typical example is a helicopter rotor blade, where a progressive variation in the 

thickness of the blade is required to provide high stiffness at the hub and flexibility in the middle 

of blade length, to accommodate for flapping. This type of structure is formed by terminating or 

dropping off plies at the pre-determined location to reduce the stiffness of the structure which is 

called tapered composite structure [1]. These elastic tailoring properties and more significant 

weight saving than commonly used laminated components allow an increasing use of tapered 

composite structure in commercial and military aerospace and power generation engineering 

applications.  

In a rotating composite beam, dynamic instability can be caused by in-plane periodic load or 

by periodic rotational velocity. When the frequency of dynamic periodic load and the frequency 

of free vibration of the component coincide, parametric resonance will occur in the structure, 

which results dynamic instability of the structure. Mechanical structures that operate within the 

instability region will experience parametric resonance. This incident reduces the durability of 

structure and leads to unpredictable and catastrophic failure. Especially in an aircraft engine or in 

wind turbine, rotating blade experiences periodic aerodynamic loads which change the constant 

angular velocity to pulsating angular velocity. The excitation frequency of the pulsating load 

may coincide with the natural frequency of free vibration of the blade and the blade becomes 

dynamically unstable from nominal position. Even when the parametric vibration might not have 

an immediate effect, it is a future threat for fatigue failure, if they continue to act. Dynamic 

instability analysis introduces a method to predict and prevent the parametric vibration which is 

necessary to design a structure for safety and reliability especially when it is out of immediate 

maintenance.  
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Dynamic instability analysis of a beam subjected to periodic loads is an important and 

advanced research topic. A number of research works can be traced to parametric resonance or 

dynamic instability of isotropic non-rotating beam. Bolotin [2] first comprehensively reviewed 

the research works on dynamic instability problems of bars, plates and shells. Hyun and Yoo [3] 

studied the dynamic stability of an axially oscillating cantilever beam considering the stiffness 

variation. The dynamic stability of a radially rotating beam subjected to base excitation was 

investigated by Tan et al. [4]. 

With a few exceptions, most of these studies have addressed the axially oscillating problem. 

On the other hand, Yoo et al. [5] analyzed the dynamics of a rotating cantilever beam. They 

presented a linear modeling method for the dynamic analysis of a flexible beam undergoing 

overall motion. Based on this modeling method, Chung and Yoo [6] derived the partial 

differential equations of motion for a rotating cantilever beam and discretized using the Galerkin 

method to investigate the natural frequencies and time response. This study investigates the 

dynamic stability of the flap wise motion of a cantilever beam by using the method of multiple 

scales, when the beam oscillates in the rotational direction.  

In relation to composite materials, Saravia et al. [7] first investigated the dynamic stability 

behavior of thin-walled rotating composite beams using finite element method. Lin and Chen [8] 

studied the dynamic stability of a rotating composite beam with a constrained damping layer 

subjected to axial periodic loads. Chen et al. [9] investigated the dynamic stability of rotating 

composite shafts under axial periodic loads. Chattopadhyay and Radu [10] studied the dynamic 

instability of composite laminates using a higher order theory. 

In addition to these works, many researchers considered the dynamic instability of beams that 

are subjected to follower forces. Beck [11] examined the dynamic instability of a cantilever 
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beam subjected to an axial follower force that was applied at the free end. Instability of a rotating 

cantilever beam subjected to dissipative, aerodynamic, and transverse follower forces has been 

investigated by Anderson [12]. Most recently, Torki et al. [13] evaluated the stability 

characteristics of cantilevered FGM cylindrical shell under axial follower forces. They have used 

Love's hypothesis to derive the differential equations of motion, and used an extended Galerkin's 

method to solve the equations of motion. Goyal et al. [14] and Kim et al. [15] studied the 

dynamic stability of laminated composite beams subjected to non-conservative tangential 

follower loads. 

To the present authors’ knowledge, a comprehensive study on the dynamic instability of 

doubly-tapered (thickness-and width-tapered) rotating composite beam has not so far been 

carried out. In the present paper, the dynamic instability of doubly-tapered composite beam 

rotating with periodic rotational velocity is investigated considering out-of-plane bending, in-

plane bending and axial undamped vibrations. Rayleigh-Ritz approximate solution method based 

on classical lamination theory has been employed for energy formulations. Bolotin’s method is 

applied to obtain the instability regions. A comprehensive parametric study is conducted in order 

to understand the effects of various parameters including mean rotational velocity, hub radius, 

double-tapering and different stacking sequences. In addition, to verify the instability analysis 

results, time responses are investigated at different locations of the instability region by using the 

Runge-Kutta method.  

2. Energy Formulation 

Consider a laminated composite beam of length  , which is attached to a hub of radius  , as 

shown in the Fig. 1 in Cartesian coordinates. The hub rotates about its axis at a constant angular 

speed Ω rad/s. The origin for the coordinates is taken at the edge of the hub. The  -axis coincides 
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with the neutral axis of the beam, the  -axis is parallel to the axis of rotation and the  -axis lies 

in the plane of rotation.                

 

 

Fig. 1 (a) Doubly-tapered rotating composite beam (b) Different taper configurations 

View on  -  plane illustrates beam changing the thickness from    to    and changing its width 

from    to    over the length  . The laminated composite beam consists of N layers, numbered 

from the lower to the upper face. To study the out-of-plane bending vibration,  -  plane is 

chosen as the mid-surface and reference plane. Dynamic instability analysis of the above 

composite beam requires associated equation of motion. The Lagrange’s equation can be used to 

obtain the equation of motion of this physical system. To use Lagrange’s equation, total strain 

energy, including work done by the centrifugal force and kinetic energy of the system, needs to 

be determined. Considering that the beam’s length to thickness ratio is high, Classical Laminate 

Theory (CLT) can be used to determine the strain energy which assumes that transverse shear 

strains are zero and neglects  -direction stress, that is    
           

     
    for the k-

th ply. Therefore, strain energy for a laminate with N plies can be written as: 
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where    
  and    

  denote the stresses in corresponding ply along the   and   directions, 

respectively,    
  and    

  denote the strains in corresponding ply along   and   directions, 

respectively.    
  is shear stress and    

  is shear strain in the corresponding ply acting on the 

 -  plane. For the doubly-tapered laminated composite beam shown in the Fig. 1, strain energy 

equation can be written as: 

   
 

 
       

    
     

    
     

    
  

  

    

    

 

 
    

 

 

 
         

                      (2) 

Here, for linearly width-tapered beam the variable width      can be defined as: 

                
       

 
                  (3) 

     In the present work, width-tapering is described by width-ratio (   
  

  
  and thickness-

tapering in the laminated beam is described by the number of ply drop-offs ( ). In equation (2), 

   is the distance from mid-plane to top of the k-th lamina and      is the distance from mid-

plane to bottom of the k-th lamina. Expressions for    and      depend on different types of 

internal mid-plane tapered laminates obtained by configuring the ply drop-offs at different 

locations of the laminate as shown in Fig 1(b).  
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Fig. 2 Deformation of the beam in the lamination plane (x-y plane) 

Fig. 2 illustrates the in-plane bending and axial deformation and the terms considered in the 

strain field. In Fig. 2,   is any arbitrary point in the lamination plane of the beam and,     and 

   are axial and lateral (in-plane) mid-plane displacements, respectively.  Strain in  -direction 

can be written as: 

   
  

   

  
  

    

     
    

           (4) 

where,    is out-of-plane mid-plane displacements. 

     Considering plane stress assumption [16], stresses in the k-th ply are written as follows: 
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here,            
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     is the transformed reduced stiffness matrix of a composite ply in a tapered laminate 

(defined in Appendix A), which is a function of the mechanical properties of composite material 

and the transformation matrices due both to fiber angle ( ) and laminate taper angle ( ). 

Laminate taper angle and number of ply drop-offs can be related by a formula 

(        
 
 

 
      

 
 ). For resin plies in taper configurations,      is replaced with         , which 

can be defined by the mechanical properties of resin, as: 
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Substituting    
  from equation (4) and    

  from equation (5) into the equation (2) and 

neglecting    
  and    

 , strain energy expression leads to: 
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    From Classical Laminate Theory:         
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where,                and         are the first coefficients of stretching stiffness matrix, 

coupling stiffness matrix and bending stiffness matrix respectively. Coefficients 

               and         vary with different taper configurations and the integrations 

involved have to be carried out part-by-part corresponding to the specific taper configuration. 

Each part corresponds to the particular region of the laminate with a particular taper 

configuration, in which the direction (i.e. taper angle) of the plies remains the same. For the 

detailed method of calculation in this regard, see references [17-18]. Now using equations (9-11), 

equation (8) leads to: 
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For symmetrical stacking sequence,         , then equation (12) becomes: 
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Using the Rayleigh-Ritz method, mid-plane displacements   ,    and    can be assumed as: 
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        (16) 

where,          and     are approximate shape functions for axial, in-plane bending and out-of-

plane bending displacements, respectively. Any compact set of admissible functions that satisfy 

the geometric boundary conditions 

(                  
  ,                           

    

  
 
    

  
 
     

    
    

  
 
    

  
 
     

   ) of the beam 

can be used as the shape functions.               and        are corresponding generalized 

coordinates and m is the number of terms in       and   . Substituting equations (14-16) in 

equation (13) one can get: 
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Equation (17) can be written as:   
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where, 
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     When the free end of a cantilever rotating beam deflects transversely (out-of-plane bending) 

and laterally (in-plane bending), particles of the beam undergo axial displacement due to 

centrifugal force. The work done by this centrifugal force and corresponding axial displacement 

produces centrifugal stiffening that has effects on the fundamental frequency of free vibration. 

This axial displacement can be expressed in terms of transverse displacement and lateral 

displacement as: 

                 
   

  
   

 
  

   

  
   

 
           

   

  
 

 
  

   

  
 

 
    

 

  
  

   

  
    

   

  
           (22) 

Here    is the length of an undeformed infinitesimal beam element and    is the deformed arc 

length of the infinitesimal beam element shown in the Fig. 3. 

         

Fig. 3 (a) Transversely deflected cantilever beam, (b) Geometrical representation 

If      is the centrifugal force at any point  , then work done by this centrifugal force in doubly-

tapered laminated composite beam can be written as:    

                    (23)  

Using equation (22), one can get:         
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Here,      for the doubly-tapered laminate can be written as:          
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(a) (b) 
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Here,           
       

   
  is variable width of a ply within   and   (shown in Fig. 4), 

                         
     where                 is variable distance between top 

and bottom faces of a ply within   and  ,  and    is mass density of ply. 

 

Fig. 4 Doubly-tapered rotating composite beam (x-y plane view) 

Substituting Rayleigh-Ritz approximate function, equation (24) can be written as:    
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Equation (26) can be written as:   
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where,  
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The kinetic energy of a doubly-tapered rotating composite beam can be expressed as: 
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Here,                 
    denotes the mass per unit length per unit width of the laminated 

beam and        and      are the velocity components in x, y and z directions, respectively. The 

velocity vector of any point in a rotating composite beam can be expressed as [19]:                        
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(31)    

where  ,   and   are the displacements in  ,   and   directions, respectively and       is position 

vector after deformation.         and    are unit vectors in  ,   and   directions, respectively. 

Applying vector cross-product formula (                                 equation (31) can be 

written as: 

                                
  

  
         

  

  
               

  

  
      (32) 

Therefore, velocity components in three directions are:                                                                              

                                           
  

  
       

  

  
                     

  

  
            (33) 

Considering in-plane bending in the context of Classical Laminate Theory one can get: 

           
        

  
  

        

  
    (34) 

                                                                       (35) 

                                  (36) 

Using equations (33-36) into the equation (30), the kinetic energy equation of a doubly-tapered 

rotating laminated composite beam becomes: 
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Neglecting rotary inertia terms ( 
    

    
  

    

    
) and Coriolis term (  

   

  
  ), the kinetic energy 

equation simplifies to: 
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After applying the Rayleigh-Ritz approximate displacement functions one can write: 
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Equation (39) can be written as: 
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where,  
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To get the equations of motion encompassing axial, in-plane bending and out-of-plane bending 

vibrations, Lagrange’s equation is used. For three generalized co-ordinates of three 

displacements, Lagrange’s equation can be written as: 
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where, suffix         or    defines axial, in-plane bending and out-of-plane bending 

displacements, respectively. Substituting ??, ?? and ?? from equations (18), (27) and (40), 

respectively, into the equations (47), one can get three sets of equations of motions in matrix 

form as follows: 

                                                                (48)  

                      
       

         =            (49)        

                           =           (50) 

where, [  ], [   ], [    ] and      are mass matrix, global stiffness matrix, softening matrix 

due to centrifugal action and system axial displacement vector respectively for the axial 

vibration; [  ], [   ], [   
  

],    
    and      are mass matrix, global stiffness matrix, stiffness 

matrix due to centrifugal action, softening matrix due to centrifugal action and system in-plane 

displacement vector respectively for the in-plane bending vibration; and [  ], [   ], [    ]  

and      are mass matrix, global stiffness matrix, stiffness matrix due to centrifugal action and 

system out-of-plane displacement vector respectively for the out-of-plane bending vibration. 

Equations (48-50) can be written as: 

                                        (51) 

where,         

          

          

          

          

          

          

          

 ,          

            

      
       

      

           

  and       

    

    

    
 .  

The solution of equation (51) can be assumed in the form   

                               (52) 

where,      is the mode shape (eigen) vector and   is the natural frequency. Substituting equation 

(52) into the equation (51) yields: 

                                      (53) 
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Equation (53) is an eigenvalue problem and can be solved to determine the natural frequencies of 

axial, in-plane bending and out-of-plane bending vibrations of a doubly-tapered rotating 

cantilever laminated composite beam.  

3. Dynamic instability analysis 

       Dynamic instability can occur when a rotating structure experiences axial, in-plane bending 

and out-of-plane bending vibrations. Periodic rotational velocity will result in a parametric 

excitation on the rotating beam. Periodic rotational velocity can be introduced into the equations 

of motion, which is given in equation (51). The equation (51) can be expressed as: 

                                             (54) 

The periodic rotational velocity can be written in terms of static and dynamic rotational speed 

terms and parametric resonance frequency, as 

                                                              (55) 

Here,    is mean or static value of periodic rotational velocity,    is amplitude of periodic 

rotational velocity,    is parametric resonance frequency and   is time. The amplitude of periodic 

rotational velocity      can be defined by a measure of the mean value of rotational velocity 

     as: 

              (56) 

where,   is the amplitude factor. Therefore, periodic rotational velocity can be expressed as: 

                       (57) 

Substituting      from equation (55) into the equation (54) yields: 

                       
     

         
  

   

 
                                 (58)                                                                                            
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This is a Mathieu-Hill type equation that can describe the instability behavior of a rotating beam 

with a periodic rotational load. Dynamic instability occurs only within certain regions on the 

resonance frequency-driving amplitude plane. The boundaries of the regions of instability on this 

plane represent periodic solutions of the equations of motion. Dynamic instability region is 

separated from stable region by periodic solutions with period   
  

  
 and    

  

  
. The 

solutions with period    are of greater practical importance as the widths of these unstable 

regions are usually larger than those associated with the solutions having period of   [20]. To 

find the periodic solution with period   , Bolotin’s first approximation [2] can be considered. 

The periodic solutions with period    can be sought in the form: 

                
    

 
          

    

 
   

            (59) 

One can consider more-than-one terms of the above series in the solution, depending on the 

complexity of the boundary conditions, material and geometric property distributions in the 

beam, number of harmonic components present in the periodic axial loading, and the order (or 

number) of instability regions desired to be determined. Consideration of more-than-one terms in 

the solution yields the same type of eigenvalue problem as that of one-term solution, but of 

larger size matrix eigenvalue problem.  

However, one-term solution reduces the complexity of calculations and has been shown in 

existing works on dynamic instability such as Refs. [17] and [20] to provide acceptable accuracy 

and conservative results for the first (i.e. fundamental) dynamic instability region, especially for 

periodic axial loading with one excitation frequency. Inclusion of more-than-one terms in the 

solution would essentially be required if dynamic instability regions beyond the fundamental 

region such as the second, third, and fourth regions are sought. 
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Since the present work considers periodic axial loading of one frequency and further, the 

fundamental dynamic instability region is sought, based on the above mentioned considerations, 

a one-term solution is sought. 

Taking one-term solution [17] and differentiating two times with respect to time t, 

          
  

 

 
        

   

 
  

  
 

 
        

   

 
     (60) 

After substituting for      and       in equation (58) and simplifying through trigonometric 

formulae and finally comparing the coefficients of     
   

 
  and     

   

 
  in the governing 

equation, two algebraic matrix equations can be found: 

For     
   

 
   

 
  

 

 
                                

                
       

  
   

 
                     (61) 

For     
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                    (62) 

Equations (61) and (62) can be written in the matrix form as 

 
 

  
 

 
                        

  
  

   

 
              

  

          
   

  
 

 
                        

  
  

   

 
        

  
    
    

       

                     (63) 

For non-trivial solution determinant of the matrix coefficients must be zero.  

    
 

  
 

 
                        

  
  

   

 
                  

  

          
   

  
 

 
                        

  
  

   

 
        

    

                            (64)  

After expanding the determinant and solving for   
   one can get two equations that can be 

written in matrix form as: 



  

18 

 

 
           

             
              

              

              
             

              
           

  

  
  

         

         
                                             (65) 

Equation (65) can be solved as an eigenvalue problem using MATLAB
®
 software, where each 

eigenvalue   
 
 is the square of parametric resonance frequency which gives the boundary 

between stable and unstable regions in resonance frequency-driving amplitude plane.  

4. Validation, result and discussion 

To investigate the accuracy of above formulation a graph has been plotted to find the 

instability region where the upper and lower boundaries are determined from the eigenvalues of 

equation (65). In this graph, vertical axis represents the parametric ratio  
  

  
  and the horizontal 

axis represents the amplitude factor ( ) of the periodic rotational velocity which is the ratio 

between amplitude of periodic rotational velocity and mean value of rotational velocity. Figs. 5, 

7 and 8 show the instability regions for first three out-of-plane bending vibration modes for a 

doubly-tapered rotating cantilever composite beam with different taper configurations. The mean 

value of angular velocity is 50 rad/s. The beam is 25 cm long and has 2 cm width at fixed side 

and the width-ratio (  ) is 0.1. The hub radius is taken as 0.025 m. The ply thickness is 0.125 

mm. The beam has 36 plies on thick (hub) side and 18 plies on thin (beam tip) side, with 18 ply 

drop-offs. All the composite plies have 90  fiber angle. Ply stacking sequence on thick side 

varies with different taper configurations for the same 18 ply drop-offs. On thin side the stacking 

sequence is [90]9s for all taper configurations. For taper configurations A, B, C and D, the 

corresponding stacking sequences on the thick side (i.e. on the hub side) can be written as 

[909/Resin-ply9]s, [909/Resin-ply/908]s, [9017/Resin-ply]s and [90/Resin-ply/9016]s, respectively. 

Mechanical properties chosen for the composite material are:                 

                                     ,              ,                      
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and for resin they are:                          and       . Here, subscripts 1, 2 and 

3 correspond to the principal coordinates (also called as material coordinates)        and     

respectively that are shown in Fig A.1. in Appendix A. From Figs. 5, 6 and 8, one can see that 

the areas inside the upper and lower boundary lines are unstable regions where the width of 

instability region increases with amplitude factor. If any parametric point    
  

  
  of the structural 

system is in these unstable regions, the system becomes dynamically unstable. In order to verify 

such a statement, the response        for out-of-plane bending is determined for any parametric 

point using Mathieu-Hill equation (58). The response        should keep increasing with time 

when the beam is unstable. The Mathieu-Hill equation given in (58) can be converted to the first-

order matrix differential form as: 

 
     

     
   

                

      
  

     

    
                           (66) 

where,                
     

         
  

   

 
                      and     is 

    identity matrix. Setting    
     

    
 in equation (66), yields:     

                                               (67) 

First-order matrix differential equation (67) can be solved using fourth-order Runge-Kutta 

method [21-22]. The solution gives the time response for 1 to   modes in modal (generalized) 

coordinate. Time response for out-of-plane mid-plane displacement (which is the geometric 

coordinate) can be determined by substituting the value of modal (generalized) coordinate in 

equation (16). In Fig. 6, the mid-plane displacement response at the free end (tip) of the beam 

corresponding to three different points P1, P2 and P3 of Fig. 5 are given for first vibrational 

mode of out-of-plane bending, where points P1                       , P3 (   
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                    are located in the stable region and P2                        is 

located in unstable region for the doubly-tapered beam with Configuration-A. The time response 

of points P1 and P2 are confined in a range of about 0.02 m, while that of point P2 increases 

rapidly and exceeds 10 m in the same duration. Hence, the structural system corresponding to 

points P1 and P3 is dynamically stable, but that corresponding to point P2 is dynamically 

unstable. It may be noted here that the amplitude of response can be reduced to some little extent 

by damping. Damping would also alter slightly the locations and widths of unstable regions. 

However, the undamped system would provide [2] conservative prediction of these parameters 

and the dynamic instability behavior.  

It can be understood from Figs. 5, 7 and 8, that the beam with Configuration-D has the smallest 

width of instability region among all the tapered configurations considered and Configuration-A 

has the largest width of instability region. Figs. 9 and 10 show the instability regions for first 

three in-plane bending and first two axial vibrational modes, respectively. From Fig. 9 for first 

three modes of in-plane bending vibration, it can be stated that the beam with Configuration-D 

has the largest width of instability region and the beam with Configuration-B has the smallest 

width of instability region. Also, from Fig. 10 for first two modes of axial vibration, it can be 

stated that the beam with Configuration-D has the largest width of instability region and the 

beam with Configuration-A has the smallest width of instability region. 



  

21 

 

 
Fig. 5 Instability region for first out-of-plane bending mode of doubly-tapered composite beam 
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Fig. 6 Time response for the parametric points P1, P2 and P3 
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Fig. 7 Instability region for second out-of-plane bending mode of doubly-tapered composite 

beam 

 

Fig. 8 Instability region for third out-of-plane bending mode of doubly-tapered composite 

beam 
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Fig. 9 Effect of different taper configurations on the widths of instability regions for first three 

modes of in-plane bending vibration 
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Fig. 10 Effect of different taper configurations on the widths of instability regions for first two 

modes of axial vibration 
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Different system parameters (i.e. rotational velocity, hub radius, double-taper ratio and stacking 

sequence) have different magnitudes of influences on the dynamic instability of a rotating 

structure that is vibrating in different motions (out-of-plane bending, in-plane bending and axial). 

Following graphs illustrate the effects of various parameters on the width of instability region. 

The analysis is conducted using taper Configurations A and D. Also, the analysis is conducted 

considering first three out-of-plane bending and in-plane bending vibrational modes and first two 

axial vibrational modes.  

     The increase of mean rotational velocity in time-varying rotational load increases the  

resonance frequency in a doubly-tapered rotating cantilever composite beam that affects the 

dynamic instability characteristics. Figs. 11, 12 and 13 show the effect on the widths of 

instability regions of out-of-plane bending, in-plane bending and axial vibrations, respectively, 

due to change in mean rotational velocity. From Figs. 11, 12 and 13, one can observe that for 

first three modes of out-of-plane bending and in-plane bending vibrations and first two modes of 

axial vibrations, the widths of instability regions increase as the rotational velocity increases. It 

means that as the mean rotational velocity increases the rotating beam becomes more unstable. 

Also, following graphs for out-of-plane bending vibration show that the width of instability 

region for Configuration-D is smaller than the width of instability region for Configuration-A 

and for in-plane bending and axial vibrations, it is the other way around, that is, the width of 

instability region for Configuration-A is smaller than the width of instability region for 

Configuration-D. 
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Fig. 11 Effect of mean rotational velocity on the widths of instability regions for first three 

modes of out-of-plane bending vibration 
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Fig. 12 Effect of mean rotational velocity on the widths of instability regions for first three 

modes of in-plane bending vibration 
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Fig. 13 Effect of mean rotational velocity on the widths of instability regions for first two modes 

of axial vibration 

     Although hub radius has no effect on the mass of the rotating beam, it has an effect on the 

stiffness caused by centrifugal action. Therefore instability region parameters change due to 

change of hub radius. Figs. 14, 15 and 16, illustrate the variation of instability regions due to 

change in the ratio of hub radius over beam length (   ). The mean rotational velocity in this 

case is 50 rad/s. The following graphs for first three modes of out-of-plane bending vibration and 

first three modes of in-plane bending vibration show that the width of instability region increases 

as the ratio of hub radius to beam length increases and for out-of-plane bending vibration, the 
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width of instability region for Configuration-D is smaller than the width of instability region for 

Configuration-A. Fig. 16 for first two modes of axial vibration shows that hub radius has no 

effect on the dynamic instability of axial vibration. Also, it can be understood from Figs. 15 and 

16 for in-plane bending vibration and axial vibration, respectively, that the width of instability 

region for Configuration-A is smaller than the width of instability region for Configuration-D.  
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Fig. 14 Effect of hub radius to beam length ratio on the widths of instability regions for first 

three modes of out-of-plane bending vibration 
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Fig. 15 Effect of hub radius to beam length ratio on the widths of instability regions for first 

three modes of in-plane bending vibration 
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Fig. 16 Effect of hub radius to beam length ratio on the widths of instability regions for first two 

modes of axial vibration 

     Figs. 17 to 19 show the variation of instability region due to double-tapering in the composite 

beam. In the present work, double-tapering is described as:  

                       
 

  
      (68) 

where    
  

  
 is width-ratio and   is number of ply drop-offs. The hub radius in this case is 

0.025 m. From Figs. 17 and 19 for out-of-plane bending vibration and axial vibration, 

respectively, it can be stated that increase of double-taper ratio decreases the width of instability 

region. More clearly, increase of double-tapering decreases the risk of dynamic instability for 
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out-of-plane bending and axial vibrations. Also, following three graphs for first three modes of 

out-of-plane bending vibration show that the width of instability region for Configuration-D is 

smaller than the width of instability region for Configuration-A. From Fig. 18 for first three 

modes of in-plane bending vibration, it can be stated that increase of double-taper ratio (increase 

of double-tapering) increases the width of instability region, that is, the risk of instability 

increases. Also, it can be understood from Figs. 18 and 19 for in-plane bending vibration and 

axial vibration, respectively that the width of instability region for Configuration-A is smaller 

than the width of instability region for Configuration-D. 
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Fig. 17 Effect of double-tapering on the widths of instability regions for first three modes of out-

of-plane bending vibration 
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Fig. 18 Effect of double-tapering on the widths of instability regions for first three modes of in-

plane bending vibration 
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Fig. 19 Effect of double-tapering on the width of instability regions for first two modes of axial 

vibration 

     Figs. 20 to 22 show the variation of instability region with respect to different laminate 

stacking sequences at the thin side of the doubly-tapered (       = 0.1) rotating (50 rad/s) 

composite beam. From Fig. 20 for out-of-plane bending vibration, it can be observed that for 

both Configuration-A and Configuration-D, the laminate with the stacking sequence ([0]18) has 

less width of instability region whereas the laminate with the stacking sequence [90]18 has largest 

width of instability region. Cross-ply laminate [0/90]9 and angle-ply laminate [-45/45/0]6 

stacking sequences have almost the same width of instability regions, but greater than that of the 

laminate with [0]18 stacking sequence and less than that of the laminate with [90]18 stacking 
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sequence. From Fig. 21 for first three modes of in-plane bending vibration, it can be observed 

that ply stacking sequence [0]18 has the smallest width of instability regions and on the other 

hand, stacking sequence [90]18 has the largest width of instability region. Cross-ply laminate 

with stacking sequence [0/90]9 and angle-ply laminate with stacking sequence [-45/45/0]6 have 

almost the same width of instability region. Also, it can be noticed from Fig. 21 that except for 

the stacking sequence [90]18, the width of instability region for Configuration-D is less than the 

width of instability region for Configuration-A. From Fig. 22 for first two modes of axial 

vibration, it can be observed that Configuration-A follows the same consequence as that of in-

plane bending vibration but in the case of Configuration-D, cross-ply stacking sequence [0/90]9 

has the smallest width of instability regions and on the other hand, stacking sequences [90]18 and 

[-45/45/0]6 have the largest width of instability region.  
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Fig. 20 Effect of stacking sequence on the widths of instability regions for first three modes of 

out-of-plane bending vibration 
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Fig. 21 Effect of stacking sequence on the widths of instability regions for first three modes of 

in-plane bending vibration 
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Fig. 22 Effect of stacking sequence on the widths of instability regions for first two modes of 

axial vibration 

     A comparative study is conducted in order to identify the largest instability regions of out-of-

plane bending and in-plane bending vibrations. In Figs. 23 to 25, first three instability regions of 

a doubly-tapered composite beam (                                 on thin side), 

are plotted in a three-dimensional parametric plane for out-of-plane bending and in-plane 

bending vibrations. In Figs. 23 to 25, it is shown that for all configurations and for all modes, the 

width of instability region increases as the amplitude factor ( ) and mean rotational velocity (  ) 

increase. Also, one can observe that the instability region of out-of-plane bending vibration is 

much larger than that of the in-plane bending vibration. In Fig. 26, the spacing between the 
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points of origin of the first three instability regions of out-of-plane bending vibration and first 

three instability regions of in-plane bending vibration are investigated by considering four 

different taper configurations. In this graph vertical axis represents the amplitude factor of 

periodic rotational velocity and the horizontal axis represents the resonance frequency. It is 

shown that for all the taper configurations, spacing between two consecutive instability regions 

of out-of-plane bending vibration is less than the spacing between two consecutive instability 

regions of in-plane bending vibration. Also, from Fig. 26, it can be understood that first 

instability region of in-plane bending vibration has the smallest width of all instability regions 

and third instability region of out-of-plane bending vibration has the largest width of all 

instability regions. 
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Fig. 23 First instability regions of out-of-plane bending and in-plane bending vibrations for 

different taper configurations 
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Fig. 24 Second instability regions of out-of-plane bending and in-plane bending vibrations for 

different taper configurations 
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Fig. 25 Third instability regions of out-of-plane bending and in-plane bending vibrations for 

different taper configurations 
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Fig. 26 Spacing between the points of origin of first three instability regions of out-of-plane and 

of in-plane bending vibrations for different taper configurations. 
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5. Conclusion 

In the present work, dynamic instability analysis of doubly-tapered rotating cantilever 

composite beam is conducted for three different types of vibrations (out-of-plane bending, in-

plane bending and axial). Rayleigh-Ritz method in conjunction with classical lamination theory 

have been employed to formulate the energy equations of the dynamic system. Bolotin’s method 

has been applied to determine the instability regions. Numerical and symbolic computations have 

been performed using MATLAB software. A comprehensive parametric study is conducted in 

order to understand the effects of various parameters such as rotational velocity, hub radius, 

double taper ratio and stacking sequence on the instability regions of the doubly-tapered 

composite beams. Four different thickness-tapering configurations (Configurations A, B, C and 

D) were considered in the analysis. The important conclusions on the dynamic instability due to 

time-varying rotational speed are given in the following: 

 Increase of mean rotational velocity increases the widths of instability regions for out-of-

plane bending, in-plane bending and axial vibrations of a doubly-tapered cantilever 

composite beam. Also, for any specific mean rotational velocity, increase of amplitude of 

time-varying rotational velocity increases the widths of instability regions for all the three 

vibrational motions. 

 Increase of hub radius increases the widths of instability regions of out-of-plane and in-plane 

bending vibrations; Hub radius has no effect on the dynamic instability of axial vibration. 

 Double-tapering of the composite beam decreases the widths of instability regions of out-of-

plane bending and axial vibrations, that is the risk is less. On the other hand double-tapering 

increases the width of instability region of in-plane bending vibration, that is the risk is more. 
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 Configuration-D has the smallest width of instability region and Configuration-A has the 

largest width of instability region for out-of-plane bending vibration. For in-plane bending 

vibration, Configuration-B has the smallest width of instability region and Configuration-D 

has the largest width of instability region. For axial vibration, Configuration-D has the largest 

width of instability region and Configuration-A has the smallest width of instability region. 

 Laminate with only ‘0’ degree fiber orientation gives the smallest width of instability region 

and laminate with only ‘90’ degree fiber orientation gives the largest width of instability 

region for any type of vibrational motion. 

 Instability region of out-plane bending vibration is larger than the instability region of in-

plane bending vibration for any specific taper and laminate configurations and loading 

parameters. 

 Spacing between the points of origin of two consecutive instability regions of out-of-plane 

bending vibration is less than that space between two consecutive instability regions of in-

plane bending vibration. 
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Appendix A 

In Fig. A.1, principal directions (           ) and reference directions (     ) are defined for a 

tapered laminate where the direction     is the direction of the fibers. Tapered laminate makes an 

angle   with reference axis   and fibers make an angle   with the direction   . The angle   is 

obtained by rotating laminate about   axis and the angle   corresponds to the rotation of fibers 

about    axis as shown in the Fig. A.1.  

 
Fig. A.1 Orientation of fibers and laminate 

The relation between stress and strain in reference coordinate system    , in a ply, can be 

expressed as: 

                                  (A.1) 

Where     is stiffness matrix in reference coordinate system    , which can be expressed by 

stiffness matrix       in the principal coordinate system           and transformation matrices as 

[17, 23-24]: 

                                                                     
 
             (A.2) 
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Here, 
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In case of plane stress state, equation (A.1) can be reduced as: 
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