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ABSTRACT 

Bicycling is a sustainable mode of transportation given its health benefits, reduced air and noise 

pollution, savings in fuel consumption, and role in shifting demand away from the automobile. 

A significant increase of bicycle users is an aim of many cities around the world. Responding 

to this, various cities announced their strategies to extend and/or upgrade their bikeway 

networks. However, there is a disconnection between the strategies to support bicycles and 

road management systems, which are typically used for optimal scheduling of maintenance and 

interventions for roads’ infrastructure. Traditional road management systems consider neither 

the need to sustain bicycle pathways at good levels of service, nor consider bicycling demand 

to prioritize their selection. This thesis extends road management systems to support bicycling 

networks. This enables the ability to optimally allocate available resources for sustaining the 

surface of bicycle pathways in good condition, and implement physically-separated bicycle 

lanes to enhance safety conditions and encourage bicycle ridership. A simple formulation of 

bicycle demand is proposed; it employs the capabilities of smartphones for collecting and 

estimating bicycling demand based on GPS trajectories of cyclists. Goal programming 

optimization is applied to address scheduling of maintenance and upgrade investments of 

pathways. Two scenarios are investigated with different annual budgets. The results show that 

the first scenario allows a rapid upgrade of existing bicycle lanes to protected paths while 

accomplishing good conditions of pavements. However, the second scenario is not able to 

prevent the deterioration of pavement segments. 
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1. Chapter 1: Introduction 

1.1 Background 

Bicycling is healthy, environmentally friendly, and affordable solution to crowded 

transit and congested streets in urban areas. Recently, with the rapid increase of bicycle users 

since people have become more environmentally and health conscious, bicycle is being 

regarded as a key component of a sustainable transportation system, rather than just a 

supporting transportation option. Responding to this change, development and improvement of 

bicycle networks are now planned in several cities around the world. 

Cyclists can utilize various types of roads from cycle tracks to narrow streets because 

of their size and flexibility. However, bicycle networks that are safe, consistent, immediate, 

well-connected, and convenient encourage people to consider bicycling as a daily commuting 

option rather than just for recreational purposes. Bicycling facilities are typically chosen based 

on vehicular traffic, level of bicycling in area, and cost. The main difference between many 

types of bicycling infrastructure is whether they are separated or shared with other road users; 

pedestrians and/or vehicles. In this context, there are many various designations of bicycling 

infrastructure including singed bicycle routes (also called sharrows); bicycle lanes, cycle tracks 

(i.e. physically separated bicycle paths), and off-street bicycle facilities. 

Across Canada, bicycling is growing in popularity in urban areas and some suburbs. 

However, not all Canadian cities are investing in bicycling infrastructure to the same degree, 

particularly when it comes to creating separated lanes and other measures that improve safety 

and attract new cyclists (Vijayakumar and Burda, 2015). Among five large Canadian cities 

(Toronto, Montreal, Vancouver, Calgary, and Ottawa), Montreal has most separated bicycling 

lanes; around 70 kilometres of separated bicycling facilities across the island. Montreal’s 

bicycling infrastructure has increased from 400 km in 2009 to 648 km in 2015; which 

represents a growth of 162% (Vijayakumar and Burda, 2015). However, Montreal has the 

highest crash rate among these cities, with seven crashes for every 100,000 bicycling trips 

(Vijayakumar and Burda, 2015). 

In 2017, The City of Montreal announced its commitment to increase the bicycling 

mode share up to 15% in the coming 15 years, which requires investing $150 million over the 

first five-year period (Ville de Montréal, 2017). Although the City has been extending the 

bicycle network covering most of the Island of Montreal, better infrastructure are still required. 
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Thus, the city has been giving greater attention to the quality of bicycle facilities, especially to 

the construction of new protected bicycling corridors, in line with the vision of the city at 

minimizing the serious or fatal traffic accidents until reaching a target of zero (Ville de 

Montréal, 2017). 

Consequently, there is a need to develop a cost-effective decision making procedure to 

optimal allocation of the available budgets for maintenance and rehabilitation (M&R) 

interventions and improvement treatments. This procedure should be able to evaluate benefits, 

economic cost, and associated impacts on bicycling demand, vehicular traffic, environment and 

society. These projects include repair, upgrade or extend the existing bicycling infrastructure. 

1.2 Problem Statement 

Many travel plans and strategies associated with transportation impact assessment do 

recommend supporting bicycling in addition to walking and using transit. Modern 

Transportation Master Plans contain specific strategies to develop or improve their bicycle 

networks.  However there is a disconnection between them and traditional Asset Management 

Framework (AMF), often used for optimal scheduling of maintenance and interventions of road 

infrastructure. Road Management Systems do not explicitly take into consideration the need to 

sustain shared bicycle paths in good level or surface condition, but most importantly to consider 

bicycling demand and to encourage more individuals to shift daily commuting to bicycling by 

providing more convenient, compatible, and safe bicycling facilities, such as separated bicycle 

lanes, and fully protected bicycling lanes. 

1.3 Research Objective 

1.3.1  Overall Goal 

The overall goal of this research is to propose a decision-making model that is able to 

allocate the investments to encourage more bicycle riders in the city by considering existing 

bicycling demand and road condition. 

1.3.2  Research Tasks 

Two tasks were identified to address the main goal of this research: 
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Task 1 

The motivation of this task is to address the need to take into consideration the 

maintenance of existing bikeway network. This task will adapt the concepts of traditional 

pavement management systems. Firstly, Pavement Performance Prediction (PPP) models for 

bicycle lanes. Such models will be developed based on historical data of pavement surface 

condition of roads with low traffic load intensity. Moreover, this task will utilize the capabilities 

of smartphones in collecting pavement surface condition data via built-in accelerometers as 

done by others before. This task will apply classical linear integer programming to find the 

optimal selection of intervention and improvement investments given a predetermined annual 

budget. 

Task 2 

This task is motivated by the very important need to establish strategies that encourage 

bicycling as a sustainable mode of transportation, particularly in congested cities, through 

providing more convenient, compatible, and safe bicycling facilities. This task will introduce 

an integrated approach by extending traditional road management systems to consider different 

designations of bicycling facilities. This task will also estimate existing bicycling demand over 

the network based on cyclists’ trip data collected through built-in GPS systems in smartphones. 

Goal optimization will be applied to deal with conflicting objectives pursuing a trade-off 

analysis between cost of treatments, road condition, and bicycling rates. 

1.4 Scope and Limitations 

The scope of this research is limited to applications in road infrastructure management. 

Only on-street bicycling facilities are considered; off-street facilities, mixed-use trails and on-

curb paths are excluded. Optimization is conducted based on pavement surface condition and 

estimated existing bicycling usage; no considerations are given to structural strength of 

pavement, vehicular traffic flow, and environmental impact. Moreover, beside the bicycling 

infrastructure, other factors influencing the bicycling demand including employment rate, land 

use, bike sharing stations, and social characteristics of urban zones are not considered. Different 

scenarios are needed to be investigated; pessimistic, optimistic and most probable. 

The data required for this research including digital representations of road and bicycle 

networks, pavement surface condition, GPS trip data are provided by the City of Montreal, 
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except pavement surface condition for Plateau-Mont-Royal borough. The latest was collected 

via smartphones in winter 2017. The pavement was frozen during the data collection which 

might affect the reliability of condition data. 

1.5 Research Significance 

This thesis adapts traditional road management methods for bicycle networks. Such 

adaptation enables not only the ability to allocate resources for sustaining the surface condition 

of bicycle paths in good condition, but most importantly to implement  bicycle pathways that 

are separated from other road users through physical barriers. Separated bicycle pathways 

provide more convenient and safe conditions for cyclists, and minimize the interaction with 

motorized traffic along network segments. This is expected to enhance the safety along network 

segments through reducing the likelihood of vehicle-bicycle collisions and conflicts, and 

increase the level of service through reducing the delay induced by the interruption of 

motorized traffic. 

Moreover, such improvement is expected to attract more bicycle riders and therefore 

accomplishing a larger modal shift encouraging healthier active transportation for people, 

particularly in congested areas such as in downtown areas. This in turn results in reduced traffic 

related emissions and noise pollution, and even less congestion for those requiring the use of 

motorized modes (courier delivery, service vehicles, goods delivery, emergency vehicles, and 

aged population and/or people with reduced mobility). 

1.6 Organization of the Thesis 

This thesis is presented in five chapters as follows: Chapter 1 defines the problem and 

presents the objectives of the research and structure of the thesis. Chapter 2 contains a review 

of the state of practice in pavement management system and bicycle travel demand modeling: 

traditional strategic planning approaches and data collection methods are discussed. Traditional 

management methods are criticized for the lack of bicycling usage considerations. The impact 

of surface quality and different designations of bicycling facilities on behavior of cyclists is 

highlighted. Chapter 3 presents the methodology employed to obtain coordinated strategic 

plans considering the bicycle demand. Chapter 4 presents the work under Task 1 of the 

research. A case study illustrates the results of long-term strategic analysis of on-street bicycle 
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lanes, and utilize the capabilities of smartphones in collecting surface condition data of 

pavements. Chapter 5 presents the work covered under Task 2. This chapter is devoted to 

incorporate bicycling considerations in a road management system. The chapter demonstrates 

how bicycle counts can be integrated into a multi-criteria decision making procedure to 

maximize pavement condition, and encourage bicycling among individuals. Chapter 6 presents 

the conclusions and lessons learnt from the modeling experience, and make recommendations 

for future research. 

 

The work described in Chapters 4, and 5 have been written as self-contained papers and as 

such, each chapter has its own abstract. Chapter 4 has been submitted for publication while 

Chapter 5 will be submitted soon, as follows: 

 

Chapter 4:  Elsaid, F., Amador-Jimenez, L., and Alecsandru, C. (2018). Pavement 

Management System for On-Street Bicycle Network: Plateau-Mont Royal, 

Montréal. International Journal of Sustainable Transportation. Submitted. 

 

Chapter 5: Elsaid, F., Amador-Jimenez, L., and Alecsandru, C. (2018). Towards 

Convenient Bikeway Networks: Incorporating Bicycling Demand into Road 

Management Systems. 
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2. Chapter 2: Literature Review 

2.1 Introduction 

The goal of this chapter is to establish the need for a better management system 

including coordinated planning of Maintenance and Rehabilitation (M&R) actions and 

considerations of bicycling demand and behaviour. 

The chapter is divided in two major sections: the first one (Section 2.2) provides a 

review of the state of the practice in pavement management systems. This is accomplish by 

reviewing pavement-condition data collection and evaluation methods, pavement performance 

prediction models, and optimization approaches of M&R activities at the network-level. The 

second part (Section 2.3) highlights the impact of bicycling facilities on bicycling travel 

demand and behaviour of cyclists. This section also provides a review of the development of 

various methods and the utilization of technologies in conducting travel surveys to understand 

the current and predict the future demand. 

2.2 Pavement Management System 

The objective of any Pavement Management System (PMS) is to best utilize the 

available funding to improve or preserve the roadway pavement. A PMS determines the best 

point through the life cycle of each pavement section to apply a given maintenance treatment. 

This strategy aims at maintaining existing pavements in good condition, and keeping the 

number of roads in poor condition at a minimum. A PMS consists of two essential components: 

a comprehensive database and a set of tools and optimization techniques to assist policy makers 

in establishing cost-effective strategies for the evaluation and maintenance of roadway 

pavement. The database should contain comprehensive information on historical and current 

road condition (functional and structural), pavement structure (pavement type, number and 

thickness of layers, etc.), traffic and environmental information. The set of tools and 

optimization methods help in determining the current and future conditions of roadway 

segments, estimating necessary financial resources, identifying most cost-effective 

maintenance treatments, and prioritizing roadway segments for rehabilitation projects. 

A PMS addresses questions about which pavement section to treat, which type of 

treatment to apply, and when this treatment must be applied. PMS must integrate three 

management levels that vary in terms of information detail and complexity of used models in 
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decision making process: strategic, network and project level. At the network level, the primary 

purpose is the design of the network maintenance program given overall budget constraints 

(Torres-Machí, Chamorro, Videla, Pellicer, and Yepes, 2014). 

The key elements of an optimization model include pavement deterioration model, 

maintenance decision making process, cost of M&R actions cost, available budget, functional 

classification of the roadways, and cost-factor associated with the maintenance treatment type. 

The system ensures that the overall condition of roadway network is maximized considering 

other significant factors such as traffic demand and environmental impact. The road 

maintenance in PMS is a multi-objective optimization problem for several reasons (Saha and 

Ksaibati, 2017). These reasons are: (1) the objective of engineers or decision makers is to 

maximize the overall condition of road network under specific budget limitations; (2) 

preventive and minor rehabilitation treatments are more cost-effective than reconstruction; (3) 

budget should be more than a certain amount to achieve maximum benefit to society; and (4) 

the best mix of roadway segments for rehabilitation should include the segments with high 

traffic volume. 

2.2.1  International Roughness Index 

Smoothness is a measure of the level of comfort experienced by the traveling public 

while riding over a pavement surface (FHWA, 2016). Smoothness is used interchangeably with 

roughness as an important indicator of pavement performance and user satisfaction. 

Smoothness also relates to other benefits including reduced fuel consumption and vehicle 

maintenance cost (Dam et al., 2015; Zaabar and Chatti, 2014). 

In the 1970s the World Bank supported several wide-ranging projects aimed at 

proposing cost effective maintenance actions for roadway pavements. The roughness of 

pavement surface emerged as a key indicator for the costs, such as damage to vehicles, 

associated with using roadway pavements. The International Roughness Index (IRI) was 

proposed by the World Bank in Brazil as a standard to correlate and to calibrate pavement 

surface roughness measurements (Sayers, Gillespie, and Queiroz, 1986). The IRI measures the 

cumulative movement of suspension in a vehicle traversing a specific distance, and is expressed 

in units of slope (m/km, in/mi, mm/m etc.). The IRI quantifies the vehicle vibrations resulted 

from the pavement surface and is linearly proportional to roadway roughness (Park, Thomas, 

and Wayne Lee, 2007). The flatter of pavement surface the lower measured IRI value; an IRI 
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of 0.0 (m/km) represents a perfectly flat paved road. Though there is no theoretical upper limit 

on IRI, values above 8 (m/km) practically reflect pavements almost impassible by vehicle at 

regular speed (Park et al., 2007). A proper pavement surface condition is necessary for reducing 

dynamic load on vehicle and pavement, and it ensures ride safety and comfort, worldwide, the 

IRI is the most commonly used index to characterize longitudinal road roughness for managing 

road systems (Múčka, 2017). The IRI is also implemented in American Society for Testing and 

Materials (ASTM) E1926-08. The IRI is usually used as a pavement condition performance 

measure in PMS and in the transportation engineering community (Múčka, 2017). 

2.2.2  Measurement of IRI 

The several approaches used worldwide for measuring road roughness can be grouped 

into four generic classes based on how directly their measurements are related to the IRI 

(Sayers et al., 1986). Class 1 “Precision profiles” provides the most accurate measurement of 

IRI (Sayers et al., 1986). In this approach, the longitudinal profile of a wheel path is measured 

as a series of elevation points along the travelled wheel path. Class I includes laser profilers 

(noncontact lightweight profiling devices and portable laser profilers) and manually operated 

devices (Dipstick, Walking Profiler) (Múčka, 2017). 

The newer devices are equipped with onboard computers for digital analysis, non-

contacting height sensors, and software that allows a variable measurement speed. (Múčka, 

2017). The measuring wheels have been replaced by non-contacting sensors in modern 

profilers. These sensors measure the height using more technologically-advanced approaches 

such as ultrasound, laser beams, and optical images (Perera and Kohn, 2005). According to 

Múčka (2017), the current most common used equipment for measuring IRI are as follows: 

 Inertial profilers 

o High-speed inertial profilers 

o Lightweight inertial profilers 

 Inclinometer-based devices (Walking Profiler, Dipstick) 

Inertial profilers are vehicle-mounted instrumentation systems that measure vertical 

deviations of pavement surface along the direction of travel. High-speed inertial profilers are 

capable of taking measurements at highway speeds and are appropriate for testing long sections 

of pavement. Modern version of high-speed inertial profilers empowered by laser height 
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sensors are currently prevailed for IRI measurements, shown in Figure 2.1. Lightweight 

profilers are ideal for testing new pavements, shown in Figure 2.2. Walking profiler is operated 

manually and can be used at speed up to 5 km/h., and it includes high-resolution incline and 

position sensors (Múčka, 2017), shown in Figure 2.3. American Association of State Highway 

and Transportation Officials (AASHTO) standard R 43M/R 43-07 and the ASTM standard 

E1926 provide standardized methods to compute the IRI. However, for large roadway 

networks, it is a costly and time-consuming process to collect the necessary data (Patrick and 

Soliman, 2018). 

 

Figure 2.1 Model 8300: Portable High Speed Profiler (source: amesengineering.com) 

 

Figure 2.2 Model 6200: Lightweight Profiler (source: amesengineering.com) 
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Figure 2.3 Walking Profiler G3 (source: arrbgroup.net) 

2.2.3  Pavement Performance Prediction Models 

The pavement performance prediction process involves predicting future pavement 

conditions under specified traffic loading and environmental conditions (Kulkarni and Miller, 

2003). The appropriate and effective pavement performance models are essential for the long-

range evaluation process of PMS (Amin and Amador-Jiménez, 2014). The pavement 

performance prediction (PPP) models aims at estimating the future condition of pavement, both 

structural and functional. PPP models play a significant role in PMS. They are used in the 

prioritization of rehabilitation and maintenance actions of road segments in the network; they 

are used in estimating long-term required investment (budget) during the life-span of the 

pavement and the consequences of budget allocation for maintenance treatments of a particular 

road segment on the future pavement condition of that road segment (Amin and Amador-

Jiménez, 2014). Early PMS did not have prediction models and the pavement evaluation was 

based only on the current pavement conditions; any consideration of future pavement 

conditions was implicit. Later, simplified prediction models, based on the judgment of experts 

of the expected life-span of different rehabilitation and maintenance actions, were proposed. 

These models considered the age of pavement as the only predictive variable (Kulkarni and 
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Miller, 2003). The current PPP models use either deterministic or probabilistic approaches to 

characterize pavement performance (Mills, Attoh-Okine, and McNeil, 2012). 

Deterministic models include empirical, mechanistic, or mechanistic–empirical 

methods. Empirical models are based on the analysis of time series pavement condition data 

implicitly considering the impact of different environmental and loading conditions. 

Mechanistic models involve interactions between traffic loading and pavement strength 

parameters and between loading and pavement deflections. Mechanistic–empirical models are 

developed by using regression approaches and pavement responses as dependent variables. 

These models incorporate time series condition data and interactions between 

loading and pavement deflections. Empirical models can be reliable for the regions that they 

are developed for, but they are difficult to be used in other regions that have different traffic 

and environmental conditions. Mechanistic models need input data from extensive laboratory 

testing or precise field measurements or both, which is not always practical for planning 

agencies (Mills et al., 2012). 

In probabilistic approaches, the future pavement condition is predicted typically by 

using stochastic models such as the Markov model (Abaza, 2016; Hong and Wang, 2003; 

Lethanh and Adey, 2013; Wang, Zaniewski, and Way, 1994). In the Markov 

model, a transition probability matrix is defined that specifies the probability that a pavement 

remains in its current condition state or changes to another one in the future. Therefore, the 

major challenge is to establish a transition probability matrices (TPMs) (Amin and Amador-

Jiménez, 2014). 

The performance of pavement is significantly influenced by several environmental and 

load-related factors and their interactions. Most highway agencies express the pavement 

condition, which is the dependent variable in PPP models, as a numeric value either as an index 

or a rating. The initial selection of independent variables is based on experience.  The prediction 

of the pavement significantly depends on the following factors: the age of the pavement, traffic 

volume and load, thickness of last overlay, strength and condition of pavement structure; 

environmental conditions; and the construction quality. Of all these factors, research suggests 

that the age of a pavement plays a key role in predicting pavement deterioration (George, 

Rajagopal, and Lim, 1989). Age is expected to be a good predictor as it can be determined 

precisely for any pavement while other factors can be more difficult to quantify. 
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2.2.4  Network-Level Pavement Maintenance Strategies 

The widespread pavement M&R strategies are categorized into: worst-first (WF), 

best-first (BF), threshold-based (THR), and optimization-based (OPT) strategies. (Chu and 

Huang, 2018) briefly defined these strategies as follows: 

 BF strategy: The pavement segments are sorted according to their conditions. The 

pavement sections in good condition are maintained before the ones in poor condition. 

The maintenance process continue covering as many pavement segments as possible 

until the budget is completely spent. The incentive of this strategy is to conduct 

preventive maintenance to sustain pavement segments in good condition before they 

deteriorate to poor condition, which requires intensive maintenance actions. However, 

BF strategies are rarely studied in the literature. 

 WF strategy: In the WF strategy, the pavement segments are sorted according to their 

conditions. The pavement sections in poor condition are maintained before the ones in 

good condition. The maintenance process continue covering as many pavement 

segments as possible until the budget is completely spent. The advantage of this strategy 

is that it is easy to implement. 

 THR strategy: In THR strategy, a pavement receives maintenance treatment when its 

condition reaches a predetermined threshold. In practice, the strategy fits the workflow 

of transportation agencies well and is therefore widely adopted (Chu and Huang, 2018). 

However, the maintenance thresholds are often derived on the basis of engineering 

judgment (Khurshid, Irfan, and Labi, 2011). THR strategy has been studied for a single 

facility problem and for system-level problem (Chu and Chen, 2012; Gu, Ouyang, and 

Madanat, 2012; Hajibabai, Bai, and Ouyang, 2014; Lee and Madanat, 2014; Lee, 

Madanat, and Reger, 2016; Ouyang and Madanat, 2006; Sathaye and Madanat, 2011, 

2012). 

 OPT strategy: The OPT strategy is defined as using optimization methods to generate 

optimal or near-optimal maintenance long-term plans for pavements. Several studies 

have adopted this strategy (Lee and Madanat, 2015; Zhang, Fu, Gu, Ouyang, and Hu, 

2017). These optimization approaches usually provide detailed plans of the types and 

magnitudes of maintenance actions for each pavement segment in each time period. 

The advantage of the strategy is that pavement segment conditions and the efficiency 

of budget allocation are optimized. 
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The optimization of pavement maintenance is frequently conducted under the OPT and 

THR strategies. A variety of methods have been proposed for the OPT and THR strategies. The 

main assumptions adopted in these optimization models include facility- and network-level, 

continuous- and discrete-time, continuous- and discrete-condition state, Markovian- and non-

Markovian deterioration, and the set of available M&R actions (Chu and Huang, 2018). 

Optimization approaches seek an allocation that minimizes costs (or maximizes benefits) 

within the constraints of good levels of service (or budget) over the whole network for the long 

term (Faghih-Imani and Amador-Jimenez, 2013). 

Various approaches for network-level optimization of M&R actions have been 

proposed in recent years. Two major classes of optimization approaches have been used in 

PMS; mathematical and near optimization approaches. Mathematical optimization approaches 

select alternatives to maximize or minimize a predefined objective function while satisfying 

given constraints. Objective functions can include technical, economic, and social objectives 

such as maintenance costs, vehicle operating costs, and effectiveness. Most commonly used 

mathematical optimization methods for pavement management are linear, nonlinear, integer, 

and dynamic programming (Harvey, 2012). Linear and nonlinear programming seek optimal 

solutions using continuous variables. The main difference between the two approaches is that 

the former considers linear functions correlated with time, while the latter may consider 

curvilinear dependency. Integer programming simplifies the analysis by considering only two 

variables in the model: a do nothing alternative or do something. Dynamic programming is 

used when a number of sequential decisions are required. This optimization approach begins 

at the desired final solution and works backwards to find optimal values of variables. Near 

optimization methods, also called heuristic methods, provide solutions that are close 

approximations to those derived from mathematical optimization. These optimization methods 

start with an initial solution and search for better solutions within the constraints. Although 

there are global search and local search methods, applications in PMS often involve global 

search heuristics (usually population based), such as genetic algorithms (GAs), particle swarm 

optimization, ant colony optimization, and evolutionary programming (France-Mensah and 

O’Brien, 2018). A sample of studies are shown in Table 2.1. 

Haas and Huot (1998) proposed an approach to multiyear optimization programming 

for M&R actions in pavement network management. The effects of various treatments were 

defined in terms of costs, benefits, and performance impacts on the existing pavements. The 
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treatments range from minor and routine maintenance to major rehabilitation or reconstruction. 

The study proposed a cost-effectiveness-based integer programming for the preservation of 

deteriorated pavements in a road network with the constraints of budget limitations and a 

required pavement serviceability level. The objective of the proposed approach is to select the 

most effective M&R projects for each year. This procedure can also be used to calculate the 

minimum budget requirements for maintaining a prescribed level of the pavement network 

performance or serviceability. 

Table 2.1 Selected studies on optimization approaches used in PMS 

Optimization method 

Linear 

programming 

(Amador-Jiménez and Mrawira, 2009; Davis and Van Dine, 1988; de la 

Garza, Akyildiz, Bish, and Krueger, 2011; Gao, Xie, Zhang, and Waller, 

2012; Grivas, Ravirala, and Schultz, 1993) 

Nonlinear 

programming 

(Abaza, Ashur, and Al-Khatib, 2004; Abaza and Ashur, 1999; Gao and 

Zhang, 2008; Wu and Flintsch, 2009) 

Integer 

programming 

(Faghih-Imani and Amador-Jimenez, 2013; Ferreira, Antunes, and Picado-

Santos, 2002; Li et al., 1998; Ng, Zhang, and Travis Waller, 2011; Wang, 

Zhang, and Machemehl, 2003) 

Dynamic 

programming 

(Farhan and Fwa, 2012; Feighan, Shahin, Sinha, and White, 1989; Fwa and 

Farhan, 2012; Yoo and Garcia-Diaz, 2008) 

Genetic 

Algorithms 

(GA) 

(Chootinan, Chen, Horrocks, and Bolling, 2006; Elhadidy, Elbeltagi, and 

Ammar, 2015; Farhan and Fwa, 2012, 2016; Fwa and Farhan, 2012; Fwa, 

Tan, and Chan, 1994; Jorge and Ferreira, 2012; Maji and Jha, 2007; 

Marecos, Fontul, de Lurdes Antunes, and Solla, 2017; Moreira, Fwa, 

Oliveira, and Costa, 2017; Pilson, Hudson, and Anderson, 1999) 

Faghih-Imani and Amador-Jimenez (2013) considered the environmental impacts 

resulting from M&R actions into strategic planning of pavement sections at network-level. The 

energy use of such activities and resulting greenhouse gas emissions are explicitly considered. 

The study followed a three-step procedure to identify the required mean annual budget 

necessary to achieve target levels of service (e.g. the IRI) process: (1) finding the minimum 
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requirement for the annual budget, (2) maximizing pavement condition, and (3) reducing 

environmental impacts. 

2.3 Bicycle Travel Demand Modeling 

2.3.1  The Impact of Bicycle Facilities on Bicycling 

Most researchers concluded a positive relationship between the development of 

bikeway network and bicycling levels (Buehler and Dill, 2016). The bikeway network is 

composed of links and nodes (intersections). The bicycling links are either shared with 

motorized traffic or separated. Several interventions are done to accommodate bicycling along 

with motorized traffic. These interventions include signed routes, extra-wide road travel lanes 

or shoulders, markings on roadways (sharrows), streets that give priority to cyclists, and traffic 

calming zones that reduce traffic speed and volume. While separated bicycling pathways are 

classified into three categories: bike lanes, cycle tracks and bike paths. Bike lanes are separated 

from motorized traffic by painted lines on the roadway and they are typically located between 

motorized travel lanes and car parking or the sidewalk. Cycle tracks are physically separated 

from motorized traffic by a curb or concrete barriers. They are also known as protected or 

separated bike lanes; they keep cyclists protected from vehicles. Bike paths are also physically 

separated from motorized traffic but typically run through parks away from the road network. 

Several studies found a positive relationship between bicycling rates and the presence of bike 

lanes (Buehler and Pucher, 2012; Dill and Carr, 2003; Goodno, McNeil, Parks, and Dock, 

2013). Figures 2.4 and 2.5 illustrate possible configurations of bicycle lanes and cycle tracks. 

Dill and Carr (2003) conducted an aggregate study across 42 large US cities (with 

population more than 250,000) and found that approximately 1% increase in bicycling rates is 

associated with each additional linear mile of bike lanes per square mile land area. 
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Figure 2.4 Shared singed route (left) and Bicycle lane (right) (source: Ontario Traffic Manual 2013) 



   

17 

 

 

Figure 2.5 Cycle tracks separated with bollards (left); separated with median (right) (source: Ontario 

Traffic Manual 2013) 

Buehler and Pucher (2012) studied the influence of bike paths and lanes on commuting 

using bicycle based on a dataset contains the length of bike lanes and paths in 2008 collected 

from 90 large cities in US. The statistical analysis confirmed that cities with a greater supply 

of both bicycling facilities, both bicycle paths (cycle tracks) and bicycle lanes, have 

significantly higher bike commute rates even when controlling for other factors. The findings 

show that 10% greater supply of bicycle lanes is associated with a 3.1% greater number of bike 

commuters per 10,000 population. Similarly, a 10% greater supply of bike paths is associated 

with a 2.5% higher level of bike commuting. Among several factors that influence the 

preferences of cyclists, safety is considered to be significant. Stated-preference studies showed 

that bike lanes, trails and paths would encourage cyclists and non-cyclists to bike more often 

as they feel safer (Akar and Clifton, 2009; Landis, Vattikuti, and Brannick, 1997; Monsere et 

al., 2014; Sener, Eluru, and Bhat, 2009). Nearly 2 in 3 residents across five cities in the US 
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stated their potentiality to bike if bicycle and motorized traffic were physically separated 

(Monsere et al., 2014).  

Landis et al. (1997) compared two road segments that are similar with all geometric 

aspects except that one had a striped bike lane while the other had an unstriped wide outside 

lane. They found that the corresponding Bicycle Level of Service (BLOS) score of striped bike 

lane was 50 percent higher than the unstriped even though it had a traffic volume as twice as 

the unstriped segment. (Sener et al., 2009) conducted a survey that included 1605 individuals 

across 100 cities in Texas, US to collect detailed information on perceptions of bicyclists. The 

results showed that commuters found it dangerous to ride in the presence of an unsigned shared 

roadway. Furthermore, three revealed-preference studies from Copenhagen, Washington, DC, 

and five US cities found an increase in bicycling levels after the installation of cycle tracks 

(Goodno et al., 2013; Monsere et al., 2014; Snizek, Nielsen, and Skov-Petersen, 2013). 

Lusk et al. (2011) studied six cycle tracks (two-way protected bicycle lanes on one side 

of the street) in Montreal. They compared each cycle track with one or two reference streets 

without bicycle facilities that were considered alternative bicycling routes. The study found 

that the cycle tracks were much highly used, 2.5 times (250 % increase in ridership), compared 

with reference streets, and the risk injury was lower in the cycle tracks. 

Several studies investigated the effect of installing separated on-street bicycle 

infrastructure (cycle tracks or bicycle lanes) on average daily bicycle volumes (Goodno, 

McNeil, Parks, and Dock, 2013; Monsere et al., 2014; Parker et al., 2013; Parker, Gustat, and 

Rice, 2011). These studies are summarized in Table 2.2. 

Goodno et al. (2013) concluded that the bicycle volume roughly quadrupled after the 

installation of a two-way cycle track, well above the average in the city, and the BLOS was 

also improved. Monsere et al. (2014) studied the effect of installing cycle tracks (protected 

bicycle lanes) in five cities: Austin, TX; Chicago, IL; Portland, OR; San Francisco, CA; and 

Washington, D.C in terms of use, perception benefits and impacts, using video, surveys of 

intercepted bicyclists (n=1,111) and nearby residents (n=2,283), and count data. City database 

containing counts before and after installation of protected bicycle lanes, along with counts 

extracted from video observation, were used to analyze change in ridership. They observed a 

measured increase in ridership ranging from 21% to 171% on all facilities. The increases were 

greater than overall increases in bicycle commuting in each city. Some of the increase in 
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ridership at each facility likely came from new riders (i.e. riders who, in the absent of the 

protected bike lane, would have travelled using a different mode or would not have taken the 

trip) and some from riders diverted from other nearby streets (i.e. riders who were attracted to 

the route because of the facility, but would have chosen to ride a bicycle for that trip regardless). 

The study also conducted a stated-preference survey which showed that 10% of the riders 

shifted from other modes, and 24% switched from other bicycle routes. An increase in the 

frequency of biking on the installed protected lanes was reported by over a quarter of 

respondents. A strong support for building protected bicycle lanes at other locations was also 

reported by 75% of the residents. Approximately 67% of surveyed residents expressed their 

intention to ride a bicycle if motorized traffic and bicycles were physically separated by a 

barrier. 

Parker, Gustat, and Rice (2011) studied the impact of the installation of the first on-

street bicycle lane (3.1 mile dedicated bike lane) in New Orleans, LA during the spring of 2008. 

The number of cyclists riding on St. Claude Avenue was counted in November of 2007 (before 

the installation) and again in November 2008 (after the installation). Data were collected for 

10 days in 2017: 8 weekdays and 2 weekend days, and 14 days in 2008: 10 weekdays and 4 

weekend days. Cyclists were observed over a 9-hour period from 8 AM to 5 PM. The results 

show an increase in the mean number of cyclists observed per day from 90.0 to 142.5 (58.33%). 

There was a 133% increase in the average daily number of women riders and a 44% increase 

in the average number of male riders. The observations were made 6 months after the 

installation, which reflected a real increase in bicycling observed rather than a temporary one. 

Parker et al. (2013) similarly studied the impact of installing 1-mile dedicated bike lane 

on S. Carrollton Avenue in New Orleans, LA in 2010. This study examined the impact through 

direct observation of one street with a new bike lane and two adjacent streets without bike 

lanes, before and after the installation. The study found an increase in the average daily number 

of cyclists after the installation of the bike lane from 79.2 to 257.1 (224.62%), but a reduction 

on the two adjacent streets from 54.4 to 36.4 (-33.09%). The study concluded that more people 

rode in the overall neighborhood after the lanes were striped; however, the increase in cyclists 

was greatest on the street with the new bike lane. The decrease in cyclists on the side streets 

suggests that few of those cyclists may have started using the dedicated bike lane. 
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Table 2.2 Summary of studies on the installation of separated bicycle lanes 

Year Intervention 

Observed increase 

in average daily 

bicycle volume 

Location Reference 

2011 Bicycle lane 58.33% New Orleans, LA 
(Parker, Gustat, and 

Rice, 2011) 

2013 Bicycle lane 224.62% New Orleans, LA 
(Parker et al., 

2013) 

2013 Cycle track Roughly 400% Washington, D.C 

(Goodno, McNeil, 

Parks, and Dock, 

2013) 

2014 Cycle track 21% to 171% 

Austin, TX; 

Chicago, IL; 

Portland, OR; San 

Francisco, CA; and 

Washington, D.C 

(Monsere et al., 

2014) 

2.3.2  The Impact of Pavement Surface Quality on Bicycling 

Antonakos (1994) studied the environmental and travel preferences of cyclists through 

distributing a questionnaire to 552 cyclists at four recreational bicycle tours in Michigan. In the 

questionnaire, cyclists rated their preferences for different types of bicycling corridors using a 

five-point scale ranging from 1 (not at all preferred) to 5 (very preferred). Smooth pavement 

surface, among other factors, was reported to be an important factor for choosing bicycling 

routes with average ratings of 3.8 and 4.1 reported for commuting and recreational purposes, 

respectively. 

Stinson and Bhat (2003) evaluated the importance of 11 factors affecting commuter 

cyclists’ route choice decision making process, using data from a stated preference survey. 

Factors at both route-level (e.g. travel time and number of stop signs per mile) and link-level 

(e.g. roadway class and riding surface) are investigated. The quality of riding surface was 
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included and categorized into three types: rough pavement, smooth pavement, and coarse sand 

surface. A binary logit model was used in the route choice analysis to estimate the main and 

interaction effects of included variables. The study also included a comprehensive exploration 

of interactions of the route attributes with cyclists’ characteristics (including demographics, 

residential location, and experience in bicycling). The final model results showed a clear 

preference among cyclists for a smooth pavement surface over rough and coarse sand surfaces. 

This preference for smooth riding surface is found to be stronger among older individuals who 

are more comfort-conscious. 

Kang and Fricker (2013) conducted a study aims at identifying the factors that explain 

a bicyclist’s choice between available facilities; off-street (sidewalk and bicycle path) or on-

street (bicycle lane and roadway). The study used revealed preference cross-section choice data 

collected through intercept surveys of 178 bicyclists heading to Purdue University, West 

Lafayette, Indiana, USA during fall semesters of years 2006-2008. A mixed logit model was 

used to analyze the preferences of bicyclists and capture the unobserved heterogeneity across 

the population. The results showed that effective sidewalk width, traffic signals, segment 

length, road functional class, street pavement condition, and one-way street configuration were 

found to be statistically significant. The results also suggested that 57 % of bicyclists are more 

likely to use an on-street facility if the pavement condition is good or better (the pavement 

condition rating is greater than 6 according to PASER system). An increase of 0.03 in the 

likelihood of using on-street facilities instead of sidewalk is expected for improving the street 

pavement condition. 

2.3.3  Travel Surveys Data Collection Methods 

Transportation planning models require good-quality travel survey data to forecast and 

evaluate various transportation system scenarios. Travel surveys started as face-to-face 

interview in the 1950s, in which interviewers visited the respondents and asked questions about 

the household’s travel behaviour. The answers were recorded using paper and pencil. To 

minimize the labour and time costs, these interviews were gradually replaced by the mail-back 

survey in the 1960s, in which households received survey forms by mail and returned them 

after filling the survey. The major issue of this approach was the low response rate, and it still 

requires labour to enter the records into computers (Shen and Stopher, 2014). These self-

reporting methods as well as telephone interviews have certain limitations. These limitations 

include lack of reporting of short trips and actual routes traveled; poor data on travel start and 
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end times; total durations of trips; and destination location (Chung and Shalaby, 2005; 

Murakami, Wagner, and Neumeister, 1997). In order to overcome these disadvantages, 

computer-assisted surveys were introduced in the 1980s. Computer-assisted surveys include 

computer-assisted telephone interviewing (CATI), personal interviews (CAPI), self-interviews 

(CASI). The web-based survey, in which respondents can fill in the travel information in a web 

interface, is considered one of the CASI approaches (Shen and Stopher, 2014). 

Most conventional travel data collection methods including mail-back, CATI, CAPI, 

CASI, web-based questionnaires, analyses of transport schedule inquires, and traffic counting 

on cross sections or intersections are intensive in terms of cost and time, therefore, often applied 

once a decade, particularly for large-scale travel surveys (Nitsche, Widhalm, Breuss, and 

Maurer, 2012). Nevertheless, issues of underreported trips and nonresponse are significant in 

surveys, as discussed by Richardson, Ampt, and Meyburg (1996). Sometimes, respondents 

underreport short trips as well as trips that do not end or start at home. Moreover, car drivers 

might underestimate their travel time, while people who travel with public transportation might 

overestimate the time spent on travelling. 

Travel surveys, are used to collect the input and calibration data used to derive and 

validate travel demand models. In this context, the first question is about the validity of using 

24-hour travel diary to capture origins, destinations, travel times, and purposes of trips done by 

various modes of transportation including bicycling. The second is about the accuracy of 

estimating bicycling demand based only on observing commuting trips on a typical day. 

This requires collecting data from thousands of households across the region to be 

analyzed to estimate current travel demand and to predict future travel demand. Therefore, the 

accuracy and completeness of the travel data have a critical impact on the developed planning 

models. 

2.3.4  The Utilization of Global Positioning System in Travel Surveys 

The Global Positioning System (GPS) is a satellite-based location system. When a GPS 

device receives signals from at least three satellites, the location of the device can be recorded 

within approximately 10 m. In addition to location coordinates, GPS devices record the times 

at which they were situated at these locations. As a result, the accuracy of the collected data 

depends much less on the memory of respondent. Due to the lower burden on the respondent, 
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the data can be collected over an extended period instead of few days. Moreover, the collected 

data are available immediately in digital format, therefore avoiding the need for time-

consuming data entry, and possible entry errors (Bohte and Maat, 2009).  

In the late 1990s, GPS data loggers were used as a supplementary tool to measure 

individual travel. Several studies were conducted to assess the application of GPS to describe 

travel behavior (Gong, Chen, Bialostozky, and Lawson, 2012; Murakami et al., 1997; Wolf, 

Guensler, and Bachman, 2001). The results indicated the potential of using GPS devices 

(wearable or mounted devices in household vehicles) instead of traditional methods. 

GPS technology, which provides second-by-second position data, velocity and time 

data, introduced a comprehensive and accurate method to be used in travel surveys. The 

advantages of using GPS technology include automatic recording of trip origin, destination, 

and route data; accurate recording of trip start and end times as well as trip length; and the 

potential using of GPS data in the verification of traditionally-collected travel data bases. 

Wolf, Guensler, and Bachman (2001) assessed the potential of using GPS-based travel 

surveys to eliminate travel diaries. They demonstrated that it is feasible to use GPS data loggers 

to obtain most of the traditional travel diary information. The study used GPS data loggers to 

collect travel data in personal vehicles. The collected data were processed using a GIS and then 

were compared with data recorded on paper diaries by participants in the survey and were found 

to match or exceed the reporting quality of the participants. 

GPS technology has also been used in modeling the behaviour of cyclists and assessing 

the potential impact of infrastructure, environmental, social, and other associated factors on the 

tendency of cyclists to use specific routes to make their trips. For example, Dill (2009) 

conducted a study to provide insight on the role of daily bicycling to help US adults meet the 

recommended levels of physical activity. The study collected data on bicycling behavior from 

166 regular cyclists in the Portland, Oregon metropolitan region using GPS devices. This study 

also demonstrated the potential capabilities of utilizing GPS technology to observe the behavior 

of cyclists. The advantage of using GPS technology over other measurement tools such as 

accelerometers (which provide information on speed of travel), is the ability of GPS technology 

to provide location information. For behavior that is dependent upon infrastructure or otherwise 

influenced by the physical environment, this information is helpful in evaluating the relative 

effects of various environments. It was also concluded that a supportive environment appears 
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to be necessary to encourage bicycling for everyday travel, allowing more adults to achieve 

daily active goals. 

As Smartphones have become one of the necessities of daily life and most current 

smartphones have built-in GPS module, Smartphone-based GPS surveys have been proposed 

to replace dedicated GPS devices (Shen and Stopher, 2014). Despite the increase use of 

handheld or dedicated GPS devices for measuring individual trips along with their travel times 

and distances, other associated travel characteristics such as travel mode and trip purpose 

cannot be derived directly from GPS logs and require more complex derivation approaches 

(Bohte and Maat, 2009). 

Generally, it is widely accepted that GPS surveys provide more accurate data. However, 

two main issues GPS units have: signal loss and signal noise. Signal problems occur for several 

reasons, such as a cold start or warm start, and travelling through blocks of tall buildings (Shen 

and Stopher, 2014). Cold starts usually occur at the beginning of each day, while warm starts 

usually occur when GPS devices switch from ‘sleep mode’ to ‘working mode’ after a person 

stops for one or two hours. High rise buildings, usually in downtown area, and tunnels have 

impacts on GPS signal reception, and cause missing GPS data. Signal problems result in 

missing trips or parts of trips. A sample of conducted GPS surveys in several places around the 

world is summarized in Table 2.3. 

Table 2.3 A sample of GPS surveys conducted in the world (adapted from Shen, L. and Stopher, P. R., 

2014) 

Location Year Survey purpose Device Sample size 
Collection 

period 

Greater 

Copenhagen 

Area 

2013 

Part of the 

research on 

travel chain and 

sustainable 

mobility 

Dedicated GPS 

device, recording 

data every second 

54 

households 
3-5 days 

UK 2011 

Test the 

possibility of 

replacing travel 

diaries 

Accelerometer-

equipped 

GPS units, 

recording 

data every second 

429 

households 
7 days 

Beijing, 

China 
2010 

Sub-sample of 

Beijing 

Household 

Travel Surveys 

Dedicated GPS 

device, recording 

data every five 

seconds 

890 persons 1 day 

Ohio, US 

2009

-

2010 

GPS-based 

household 

travel survey 

Dedicated GPS 

device, recording 

data every second 

2059 

households 
3 days 
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Table 2.4 A sample of GPS surveys conducted in the world (continued) 

Graz and 

Tullnerfeld, 

Austria 

2009-

2010 

Test an 

integration of 

new technologies 

for a mobility 

survey 

Dedicated GPS 

device 

235 

respondents 
3 days 

Western 

Cape, South 

Africa 

2008 

Assess the 

reliability of GPS 

survey 

Dedicated GPS 

device, 

recording data 

every 

second 

100 

respondents 
14 days 

Three cities 

in 

Switzerland 

2008 

Explore whether 

participants pass 

certain billboards 

Dedicated GPS 

device 

4882 

respondents 

Average 

6.6 days 

France 
2007-

2008 

Sub-sample of 

National Travel 

Surveys 

Dedicated GPS 

device recording 

data every 10 

seconds 

9% of the 

main survey 
7 days 

Four states 

in Australia 
2007 

Travel behaviour 

changes 

monitoring 

Dedicated GPS 

device recording 

data every second 

130 

households 
15 days 

Ontario, 

Canada 
2007 

Route choice 

modeling 

Smartphone plus 

a GPS receiver 

31 

respondents 
2 days 

Three cities 

in the 

Netherlands 

2007 
Residential 

selection 

Dedicated GPS 

device, 

recording data 

every 

six seconds 

1104 

respondents 
7 days 

Matsuyama, 

Japan 
2004 

Compare GPS 

records and travel 

diaries 

GPS-equipped 

mobile 

phone, recording 

data 

every 30 seconds 

31 

respondents 
5 days 

Borlange, 

Sweden 
1999 Traffic safety 

In-vehicle GPS 

device, 

recording data 

every 

second 

310 vehicles 

15 – 

243 

days 

2.3.5 Trip Reconstruction Using GPS Travel Surveys 

Chung and Shalaby (2005) proposed a procedure for trip reconstruction based on GPS 

data to transform the GPS data collected for single-purpose trips into a list of links and modes 

used. The procedure was tested using a sample of sixty records and was able to detect 78.5% 

of the links traveled correctly. However, the study concluded certain limitations and problems 

such as the cold or warm start problem (GPS receivers require an initial amount of time to 
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acquire sufficient signals to properly measure the location after being turned on) and 

incomplete trip data due to signal blockage. They recommended using appropriate estimation 

rules like shortest path algorithm to identify the full path in the case of GPS signal blockage. 

Bierlaire, Chen, and Newman (2013) proposed a robust probabilistic approach for 

matching GPS data to a set of paths. This approach generates a set of paths, and associates a 

likelihood of each of them. The likelihood is calculated based on spatial (GPS coordinates) 

and temporal (speed and time) information. 

Dalumpines and Scott (2011) developed a set of tools in ArcGIS for map-matching and 

processing of GPS traces in which the shortest path algorithm in ArcGIS is utilized. The 

proposed approach consists of filling any gaps within the GPS data points, creating a buffer 

around the points, and solving for the shortest route between the origin and destination points 

within the buffer area using route solver in ArcGIS. If the route solver fails to find a route 

within the predefined buffer area, the buffer area is increased and the process is started again. 

The accuracy of the developed GIS-based map-matching algorithm is sensitive to the generated 

buffer distance around the GPS points. They concluded that the buffer distance for the GPS 

trajectory should be, more or less, 5x to 6x the horizontal accuracy of GPS data. This range of 

buffer distance values accounts for the width of the roads, the sharpness of curves, and GPS 

positioning error.  



   

27 

 

3. Chapter 3: Methodology 

3.1 Introduction 

This chapter presents the methodology employed to obtain long-term plans for 

interventions and improvements of roads and bicycle pathways that considers bicycling 

demand. The chapter is divided into three sections. The first section describe briefly the datasets 

used in this research. The second sections explains the method used to estimate bicycle counts 

along the network based on GPS trajectories of cyclists. The third section explains the 

procedure followed to incorporate bicycling demand into performance-based optimization of 

roads strategic purposes. 

3.2 Data Description 

This section provides a brief description of datasets used in estimating bicycle counts, 

developing pavement performance models, and establishing strategic plans of M&R activities. 

3.2.1  Road Network 

The road network is obtained from the City of Montreal, Open Data Portal 

(http://donnees.ville.montreal.qc.ca/dataset/geobase). The dataset is a shapefile that contains 

the centerlines of road segments with several attributes including unique identifier of each road 

segment, road type, direction of traffic flow, and segment length. 

3.2.2  Bikeway Network 

The bikeway network is provided by the City of Montreal on the Open Data Portal 

(http://donnees.ville.montreal.qc.ca/dataset/pistes-cyclables). The dataset is a shapefile that 

contains the centerlines of bikeway network segments including several attributes such as a 

segment identifier, anticipated road segment identifier (where available), facility designation, 

number of lanes, type of separator (where available) and segment length. 

The 2016 GIS representation of bikeways contained the designations listed in Table 3.1 

including the category of “no designated facility”, along with their total length. Pictures taken 

from Google® StreetView for different designations are shown in Figures 3.1 and 3.2. Together, 

these designations were grouped into broader categories for the analysis in this research; cycle 

tracks (protected bicycle paths), bicycle lanes, off-street bicycle facilities, and links shared with 

http://donnees.ville.montreal.qc.ca/dataset/geobase
http://donnees.ville.montreal.qc.ca/dataset/pistes-cyclables
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motorized traffic. It should be noted that off-street bicycle facilities were excluded from the 

analysis in this research. 

Table 3.1 Different designations of bikeways in Montreal 

Category Designation name Length (m) 

Shared with 

motorized traffic 

Shared street 183,082 

Bicycle boulevard 3,632 

Bicycle lane Bicycle lane 233,405 

Cycle track Cycle track (two-way protected bicycle path) 69,477 

Off-street bicycle 

facilities 

Off-street bike path 189,432 

Sidewalk-level bike path 12,852 

Multi-use trail 91,603 
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Bicycle lane 
Cycle track or two-way protected bicycle 

path 

  

Shared street Bicycle boulevard 

Figure 3.1. Different designations of bikeways in Montreal (taken from Google StreetViewer) 
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Multi-use trail Off-street bike path 

Figure 3.2. Different designations of bikeways in Montreal (taken from Google StreetViewer) 

3.2.3  Smartphone Travel Survey 

 In this study, GPS observations were collected by a smartphone application, MTL 

Trajet, developed by the City of Montreal. MTL Trajet dataset files are accessible on the official 

website of the City of Montreal (http://donnees.ville.montreal.qc.ca/dataset/mtl-trajet). The 

GPS trajectories allow tracking the routes of cyclists and provide more cost-effective approach 

to collect revealed data. Two datasets were used in this research: the “Coordinates” and “Trips” 

datasets. It is worth mentioning that private information of participants were removed before 

both datasets were published online. First, “Coordinates” dataset includes GPS-recorded 

points, with an acceptable positioning quality, collected during the travel survey in 2016.  

Second, the “Trip” dataset includes each path obtained using the filtered data points. The 

attributes contained in both dataset files are shown in Table 3.2. The total number of bicycle 

trips is 3955 and were recorded between September 9th, 2016 and December 1st, 2016.  

  

http://donnees.ville.montreal.qc.ca/dataset/mtl-trajet
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Table 3.2 Metadata/ Data Dictionary 

The “Trips” dataset 

Attribute name Data type (unit) Description 

id_trip Numerical Unique identifier of the trip 

avg_speed Numerical (km/h) Average speed over the entire trip 

duration Numerical (seconds) Total trip duration 

mode Text 
Mode of transport reported by the 

participant 

purpose Text Purpose of making the trip 

n_coord Numerical 
Number of GPS points recorded in 

the “Coordinates” dataset via id_trip 

segments Text List of traversed segments 

geometry - 
Spatial information according to the 

WGS84 spatial reference system 

The “Coordinates” dataset 

id_coord Numerical Unique identifier of the point 

latitude Numerical Point latitude 

longitude Numerical Point longitude 

speed Numerical (m/s) Instantaneous speed detected 

h_accuracy Numerical 
The accuracy level of the horizontal 

position of the GPS position 

v_accuracy Numerical 
The accuracy level of the vertical 

position of the GPS position 

timestamp Text 
Timestamp of a point (YYYY-MM-

DDT HH: MM: SS-TIMEZONE) 

id_trip Numerical Unique identifier of the trip 

geometry - 
Spatial information according to the 

WGS84 spatial reference system 

3.2.4  Pavement surface condition 

A dataset containing pavement surface condition in terms of the International 

Roughness Index (IRI) for 2010 and 2015 was obtained from the City of Montreal 

(http://donnees.ville.montreal.qc.ca/dataset). This dataset was used to develop Pavement 

http://donnees.ville.montreal.qc.ca/dataset/geobase
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Performance Prediction (PPP) models. Moreover, to demonstrate the capabilities of 

smartphone in collecting surface condition of roads, a dataset was collected using the Android-

based application, ANDROSENSOR, which is available for free on 

(https://play.google.com/store/apps/details?id=com.fivasim.androsensorandhl=en). The 

collection process was conducted using two smartphones on January 21st 2017 and January 

28th, 2017. In the first session, the application recorded acceleration and speed values every 

0.25 seconds. Although the type of smartphone might have an impact on the data collection 

process, this does not significantly affect the data collected for long-term planning purposes at 

a network-level scale. For instance, the highest percent of difference between the estimated IRI 

values using smartphones and those measured by Class 1 profiler was 5.4% (Hanson, Cameron, 

and Hildebrand, 2014). In the second session, data collection was done every 0.02 seconds, 

which represented 50 data points collected per second. 

3.3 Assignment of GPS Trip Data 

GPS cyclist trip data provide large spatial coverage which helps understanding the 

behaviour of cyclists over the entire network. For instance, it allows identifying those links 

with high bicycle flows. These capabilities enable urban planners and engineers to develop 

models that are able to provide more realistic insight about the current demand and more 

accurate predictions of future demand. The estimation of bicycle counts on various links in the 

network using a dataset collected through a GPS travel survey was suggested in this research 

for several reasons: 1) this dataset is provided by the City of Montreal and easily accessible 

online, 2) this simplified approach in estimating the bicycle counts satisfies the needs of this 

research, and 3) it is in line with the global tendency to using the GPS technology instead of 

traditional trip diaries. 

Each set of points corresponding to a trip were aggregated based on a unique identifier 

of each trip (id_trip). These aggregated points were converted to polylines that represent the 

traveled path. However, GPS systems in smartphone have system errors. These errors could be 

significant in the presence of tall buildings and tunnels. Most GPS-empowered smartphones 

have an average horizontal error of 20 meters, but this error can range from 5 to 35 meters 

(Paek, Kim, and Govindan, 2010). To address this issue, it is necessary to pre-process the GPS 

data and exclude the outliers from the analysis. The GPS observations were filtered based on 

average speed, duration and location of the trip, and consequently, some trips were dropped. 

https://play.google.com/store/apps/details?id=com.fivasim.androsensor&hl=en
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3.3.1  Average trip speed 

Based on the average speed for the whole trip, those trips having an average speed 

above 30 km/h were classified as non-bike trips and excluded from the analysis. These trips 

are more likely were done by motorized vehicle while the application was running and 

recording (Zangenehpour, Miranda-Moreno, and Saunier, 2015). Similarly, trips with an 

average speed less than 1 km/h were excluded from the analysis since it is very likely that the 

application was left collecting the data for hours after the trip ended and the cyclist reached the 

intended destination (Strauss and Miranda-Moreno, 2017a). 

3.3.2  Minimum trip duration 

Since the purpose is to estimate bicycle counts, trips with duration less than 1 min were 

excluded from the analysis as they are too short for our interests. 

3.3.3  The location of the trip 

The trips that were not recorded entirely within the island of Montreal were excluded 

from the analysis as they fall outside the scope of our interest. 

3.3.4  Assignment of GPS traces 

The reconstruction process of trips, from GPS traces, requires complex algorithms to 

accurately assign the traces (trajectories) to the associated network segments. In this research, 

a simplified approach was used to assign GPS traces and to estimate bicycle counts on each 

link in the network. This was accomplished via ArcGIS version 10.3 (which is a mapping and 

analytics platform developed by Esri®) by the following steps: 

1. Integrate the road and bicycle links into one layer. 

2. Create a buffer area around the links in the entire network to enclose the GPS traces of 

cyclists. This allows to attach each cyclist trace to the nearest segment. The enclosing 

of GPS traces within this buffer area minimizes the error due to the fact that some GPS 

traces were irregular and projected far away from the network segments. This issue is 

caused when GPS signals are hindered by tall buildings, trees and tunnels as well as the 

accuracy degree of the smartphones’ GPS system. The buffer area was chosen to be 25 
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m around the network segments, this was enough to enclose the most GPS traces, as 

shown in Figure 3.3. 

3. Determine the central point of each segment and create a circular buffer area with a 

radius of 25m around the central point. This circular buffer area serves to catch the 

crossing lines (GPS traces), as shown in Figure 3.3. The number of intersecting lines 

(GPS traces) to each circular buffer area represents the bicycle count on this segment. 

 

Figure 3.3 Assignment of GPS trajectories of cyclists to network segments 
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3.4 Coordination of M&R Activities 

This section presents the procedure followed to incorporate bicycling demand into road 

management systems to accomplish long-term performance-based optimal coordinated M&R 

activities, as illustrated in Figure 3.4. 

StartData Input:

Pavement condition, Pavement 

structure, Road classification, 

Traffic load intensity, 

Environmental condition, etc.
Pavement 

Performance 

Prediction Model

Data Input:

width and length of road 

segment, number of lanes,

cost of interventions, 

effectiveness of intervention, 

annual budget

Goal 

Optimization

Consider cycling 

demand?

Integer Linear 

Optimization

Yes No

Data Input:

GPS cyclist trip data, 

network characteristics 

Estimating 

bicycle 

volumes along 

segments

Output:

Scheduled M&R 

activities over 

planning period
 

Figure 3.4 The procedure followed to incorporate bicycling demand into road infrastructure management 

system 

3.4.1  Typical Performance-Based Optimization 

Mathematical formulations for optimizing M&R activities in a network of spatially 

distributed assets can be found elsewhere (Amin and Amador-Jiménez, 2015; Faghih-Imani 

and Amador-Jimenez, 2013; Li, Haas, and Huot, 1998). A typical optimization process 

attempts to achieve the objectives while subject to constraints. In road management systems, 
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optimization approaches are applied to maximize the aggregated condition at the network-level 

(Equation 3.1) subject to a given budget over the planning horizon, an annual budget (Bt) is 

usually used. Other traditional constraints include the limitation that every asset can receive no 

more than one treatment per year, and, in some circumstances, the preclusion of treating assets 

within a certain period after they have received a specialized intervention. 

It should be noted that the binary variable x carries three sub-indices that represent time 

(t), asset (i) and treatment (j). Solutions for this optimization will enumerate chains of variables 

xt,i,j that represent sets of assets at different periods of time receiving those treatments that 

produce the most cost-effective solution in terms of the objectives. The objectives are 

traditionally related to asset condition or cost. 

Maximize 

∑ 𝐿𝑖𝑄𝑡,𝑖
𝑁
𝑖=1    for all values of t     [3.1] 

Subject to 

∑ ∑ 𝐶𝑡,𝑗𝑥𝑡,𝑖,𝑗𝐿𝑖 ≤ 𝐵𝑡
𝐾
𝑗=1

𝑁
𝑖=1  for all values of  t     [3.2] 

𝑥𝑡,𝑖,𝑗 ∈ 𝐵𝑖𝑛𝑎𝑟𝑦 𝑆𝑒𝑡[0,1] 

Where the following time links connects consecutive periods of times 

Qt,i,j = xt,i,j (Q(t-1),i,j + Ei,j)+ (1-xt,i,,j) (Q(t-1),i,j - Di,t)          [3.3] 

Z= total aggregated condition at the network-level; 

xt,i,j = 1 if treatment j is applied on road segment i at year t, 0 otherwise;  

Qi,t = the asset condition index for road segment i at year t; 

Qi,(t-1) = the asset condition index for road segment i at year (t-1);  

Qt,i,j = the asset condition index of road segment i at year t for intervention j;  

Q(t-1),i,j = the asset condition index of road segment i at year (t-1) for intervention j;  

Ct,j = the cost of intervention j at year t; 
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Li = the size of asset i; 

Ei,j = the improvement of asset i from intervention j;  

Di,t = the deterioration of asset i at time t; 

Bt = the budget at year t; 

N = the total number of assets; 

T = the total number of time periods; and 

K = the total number of applicable treatments. 

 This formulation relies on the forward dynamic links of Equation 3.3 which support a 

decision tree containing all possible paths of asset condition across time, after hypothetically 

receiving available treatments (Amador-Jiménez and Afghari, 2013; Amin and Amador-

Jiménez, 2015; Faghih-Imani and Amador-Jimenez, 2013). This tree is based upon a transfer 

function used to estimate asset condition (Qt,i) as a combination based on the decision variable 

(xt,i,j) and the effectiveness (Ei,j) or deterioration (Di,t) of the specific asset i on time t. This 

generates chains of alternative decision variables; one of these chains is the optimal set of 

treatments regarding to particular objectives and constraints which the algorithm would select. 

Integer linear programming (ILP) is suggested to be used to obtain a solution. 

 Since the objective is to encourage individuals to bike more through providing safe 

bicycle paths with smooth surfaces, in this thesis, assists consisted of pavement segments, and 

the IRI was used as indicator of condition. Lower values of IRI indicate smoother roads, 

therefore, better condition. Consequently, to maximize the condition, the optimization 

algorithm should attempt to minimize IRI. Two steps are typically found in pavement 

management systems (Amin and Amador-Jiménez, 2015; Faghih-Imani and Amador-Jimenez, 

2013; Li, Haas, and Huot, 1998). The first step estimates annual budget that is necessary to 

keep condition of pavements at an appropriate level (Equations 3.4 and 3.5). The constraint 

that pavement condition index in each year must be better than the one during the previous year 

results in a non-decreasing level of condition. Due to the nature IRI, it is expected to be a non-

increasing function. In the second step, the optimization model attempts to reach the maximum 

possible level of condition subjected to a fixed annual budget Bt (Equations 3.6 and 3.7). 
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Minimize 

𝑍 = ∑ ∑ 𝐶𝑡,𝑗𝑥𝑡,𝑖,𝑗
𝐾
𝑗=1 𝐿𝑖

𝑁
𝑖=1   for all values of t    [3.4]

 

Subject to 

 ∑ 𝐿𝑖𝐼𝑅𝐼𝑡,𝑖 ≤𝑁
𝑖=1 ∑ 𝐿𝑖𝐼𝑅𝐼𝑡−1,𝑖

𝑁
𝑖=1  for all values of t    [3.5] 

𝑥𝑡,𝑖,𝑗 ∈ [0,1] 

where 

Z= the total aggregated cost of all pavement segments; 

xt,i,j = 1 if treatment j is applied on road segment i at year t, 0 otherwise;  

IRIt,i = the pavement condition index for road segment i at year t; 

IRI(t-1),i = the pavement condition index for road segment i at year (t-1); 

IRIt,i,j = xt,i,j (IRI(t-1),i,j - Ei,j)+ (1-xt,i,j) (IRI(t-1),i,j + Di,t) 

IRIt,i,j = the pavement condition index of road segment i at year t for intervention j;  

IRI(t-1)i,j = the pavement condition index of road segment i at year (t-1) for intervention j;  

Ct,j = the cost of intervention j at year t; 

Li = the length of road segment i; 

Ei,j = the improvement in terms of IRI reduction on road segment i from intervention j;  

Di,t = the deterioration on road segment i at time t; 

N = the total number of road segments; 

T = the total number of time periods; and 

K = the total number of applicable treatments. 
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Minimize 

∑ 𝐿𝑖𝐼𝑅𝐼𝑡,𝑖
𝑁
𝑖=1      for all values of t   [3.6] 

Subject to 

∑ ∑ 𝐶𝑡,𝑗𝑥𝑡,𝑖,𝑗𝐿𝑖 ≤ 𝐵𝑡
𝐾
𝑗=1

𝑁
𝑖=1    for all values of t   [3.7] 

3.4.2  Incorporating Bicycling Usage in Performance-Based Optimization 

The steps mentioned in section 3.4.1 can satisfy the economic aspect of sustainability 

but still do not take into consideration the bicycling usage in the analysis. To address this issue, 

the mathematical formulation was extended to accommodate bicycling usage across the 

network. A Goal Programming (GP) was used with three objective functions. The first 

objective function is to force the pavement condition index in each year to be better than or 

equal to the one during the previous year. This objective seeks improving the aggregate 

network pavement condition as possible to achieve and sustain an appropriate level of 

condition. The second objective function is to consider the budgetary constraints for the 

analysis period. The third objective function is to increase bicycling rates on network road 

segments. The last objective is based on the potential impact of various types of bicycling 

facilities on bicycling rates. Generally, providing compatible, convenient, and safe bicycling 

facilities is associated with higher bicycling rates in cities. Consequently, the optimization 

algorithm attempts to either upgrade the existing facilities to more safe and convenient 

designations or schedule projects to build bicycling facilities on roads where they do not exist. 

A potential increase (Pi,j) in bicycling rates can result from upgrading an existing facility (or 

building a new one) on a road segment i through a specific improvement j. 

Objective functions: 

𝑓1 = ∑ 𝐼𝑅𝐼𝑡,𝑖
𝑁
𝑖=1 ≤ ∑ 𝐼𝑅𝐼(𝑡−1),𝑖

𝑁
𝑖=1    for all values of t  [3.8] 

𝑓2 = ∑ ∑ 𝐶𝑡,𝑗𝑥𝑡,𝑖,𝑗
𝐾
𝑗=1 𝐿𝑖 ≤ 𝐵𝑡

𝑁
𝑖=1    for all values of t  [3.9] 

𝑓2 = ∑ 𝑉𝑡,𝑖 ≥ ∑ 𝑉(𝑡−1),𝑖
𝑁
𝑖=1

𝑁
𝑖=1     for all values of t  [3.10] 

 



   

40 

 

where 

Vt,i,j = xt,i,j (Pi,j V(t-1),i,j) + (1-xt,i,j)(V(t-1),i,j)      [5.11]

 

Vt,i = the bicycle volume on road segment i at year t; 

V(t-1),i = the bicycle volume on road segment i at year (t-1); 

GP approach was applied to find the optimal set of M&R activates over a long-term 

planning period. This approach is able to accommodate multiple conflicting objectives. Both 

optimization models in this thesis, ILP and GP, were solved by employing Remsoft® Spatial 

Planning System 4.0; it has the capability of modelling linear binary programming including 

goal and weighted objective programming, and formulating the long-term planning 

optimization problem as a standard linear programming problem, generating matrices and 

solving the problem by using a commercial solver (e.g., MOSEK, LPABO). 

It is worth mentioning that there are a variety of methods to estimate bicycle volume 

during any desired period of time. Typically, the Annual Average Daily Bicycle (AADB) 

volume is used in most applications. The AADB volume is typically estimated using daily, 

hourly, and monthly adjustment factors as well as short-and- long term counts (El Esawey, 

2016). Recently, a regression model was proposed  to estimate AADB volumes along segments 

and intersections in the entire network based on short-term, long-term, and GPS data (Strauss, 

Miranda-Moreno, and Morency, 2015).  However, bicycle counts that are estimated based on 

GPS trip data, collected through smartphones of cyclists, were used as indicators of the current 

bicycle volumes along segments in this thesis. This satisfies the purposes of this research since 

it does not mainly focus on calculating bicycle flow rates on road segments. 
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4. Chapter 4: Adapting Pavement Management to On-Street Bicycle 

Networks: Case Study of Plateau-Mont-Royal, Montréal 

Feras Elsaid, Luis Amador-Jimenez and Ciprian Alecsandru 

Abstract  

There are needs maintain on-street bicycle networks on optimal condition and to 

upgrade certain corridors to higher degrees of protection. This paper develops the foundation 

of such system for a case study of the Plateau-Mont-Royal borough in Montréal, QC. The case 

study borrows concepts of road management systems: historical data of pavement condition, 

at low-volume roads, and for the years 2010 and 2015, was used to construct performance 

curves for the bicycle network. The year 2017 was set as baseline and pavement’s surface 

condition data collected using a mobile-phone application, for roads shared between bicycles 

and automobiles. A long-term plan was developed using a linear programming optimization 

approach over a span of 40 years. It was found that the optimal strategy allocates resources for 

the reconstruction of roads and on-street bikeways for the first 13 years, and recommends 

preventive maintenance thereafter. Future research will investigate the improvement of the 

degree of protection of on-street bicycle lanes. 

Keywords: Pavement Management System; Bicycling; Optimization 

4.1 Introduction 

4.1.1  Bicycling as a Sustainable Mode of Transportation in Cities 

Health benefits of bicycling are significantly greater than its associated risks, by 

comparison with automobiles (de Hartog, Boogaard, Nijland, and Hoek, 2010). The society as 

a whole can experience even more benefits due to expected lower levels of air pollution and 

traffic accidents (de Hartog, Boogaard, Nijland, and Hoek, 2010). A growing body of research 

supports the advantages of active transportation (bicycling and walking) on individual health; 

reducing obesity rates, preventing cardiovascular diseases, and reducing Type 2 Diabetes 

(Andersen, Schnohr, Schroll, and Hein, 2000; Bassett, Pucher, Buehler, Thompson, and 

Crouter, 2008; Bauman et al., 2008; Brown, 2000; Gordon-Larsen et al., 2009; Hamer and 

Chida, 2008; Hillman, 1993; Huy, Becker, Gomolinsky, Klein, and Thiel, 2008; Matthews et 

al., 2007; Nick Cavill, Sonja Kahlmeier, Racioppi., and Organization, 2006; 
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OECD/International Transport Forum, 2013; Rasmussen et al., 2016; Shephard, 2008). 

Bicycling also helps reduce traffic congestion (OECD/International Transport Forum, 2013; 

Transport, 2004). 

For these reasons, many government agencies and municipalities around the world have 

started the implementation of long-term plans to encourage bicycling among individuals. This 

could be achieved by adopting a wide range of infrastructure, program and policy interventions 

to promote bicycling in cities. The infrastructure related interventions include; on-street bicycle 

lanes, off-street bicycle paths, shared bus/bicycle lanes, signed bicycle routes, colored lanes, 

bicycle boulevards, bicycle boxes (advanced stop lines), bicycle-phases traffic signals, 

improving quality of pavement, traffic calming zones, car-free zones and bicycle parking 

(Pucher, Dill, and Handy, 2010).The impact of these interventions on bicycling rates has been 

studied by several researchers using either stated preference (SP) or revealed preference (RP) 

studies. SP studies are usually used to evaluate proposed interventions by asking people’s 

opinions or intended behavior. The revealed preference (RP) studies observe the actual 

behavior either by self-reporting surveys or using technologies such as automatic counters, 

global positioning systems (GPS) and mobile sensing (Pucher et al., 2010; Strauss and 

Miranda-Moreno, 2017b). Most of the network-level studies found a positive relationship 

between bicycle lanes and bicycling levels (Pucher et al., 2010). A positive and significant 

correlation was also found for levels of bicycle infrastructure and commuting using bicycles 

(Dill and Carr, 2003; Nelson and Allen, 1997). Cities around the world are increasingly 

investing in the extension and maintenance of bicycle networks. The City of Berlin, for 

example, implemented a comprehensive intervention package that extended the bicycling 

facilities and separated them from the road network. Berlin’s bicycle network grew from 271 

km to 920 km during the 1970 to 2008 period, and provided 22,600 bicycle parking spots at 

both metro and rail stations, it added 70 km of bus/bicycle lanes and 100 km of shared-use 

paths (City of Burlin, 2003; Pucher and Buelher, 2007). In addition, the City of Berlin created 

training and education programs, and supportive policies for cyclists. Overall, these 

interventions contributed to increase the bicycle mode share from 5% to 10% during 17-year 

period starting from 1990 (City of Burlin, 2003; Pucher and Buelher, 2007). 

In Canada, several cities are following the same path as Berlin. Toronto in Ontario, 

Vancouver in British Columbia, Montréal in Quebec, Calgary in Alberta and other cities have 
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set bicycling as a key mode of transportation with a high priority in their long-term plans (Table 

4.1). 
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Table 4.1 Canadian Cities Supporting Bicycling 

City Goal Bicycle support 

Toronto “To create a safe, comfortable and bicycle-

friendly environment, which encourages 

people of all ages to use bicycles for 

everyday transportation and enjoyment”. 

Extend the bicycle network from 166 km in 2001 to 1000 km within 10 years. 

Bicycle lanes will constitute roughly half (495 km) of the proposed network. This 

extension was expected to cost $66.8 million as a total, of which $11.6 million were 

dedicated to the installation of new bicycle lanes (The City of Toronto, 2001) 

Vancouver Shifting to sustainable transportation 

systems 67% of trips in the city will be 

made by sustainable modes of 

transportation including transit, walking or 

bicycling by 2040. 

Building a bicycling bicycle network on which cyclists experience comfortable 

bicycle trips. More attention is being given to children and elderly cyclists in the 

proposed network in terms of design, traffic management and supportive education 

and training programs (The City of Vancouver, 2012). 

 

Calgary 

The goal of the city is to become one of 

the most bicycle-friendly cities in North 

America 

New bicycling strategy: planning, designing and building; operating and 

maintaining; educating and promoting. So far 205 km of on-street bicycle lanes 

have been built from 1999 to 2010. The amount of funding allocated for the 

extension of the network was reported to be approximately $28 million during 2012 

to 2014 (The City of Calgary, 2011). 

Montreal Greater attention given to the quality of 

bicycle facilities, especially to the 

construction of new protected bicycling 

corridors, 

Increase the bicycling mode share up to 15% in the coming 15 years. Investing 

$150 million over the first five-year period. Minimizing the serious or fatal traffic 

accidents until reaching a target of zero (Ville de Montréal, 2017). 



44 

 

4.1.2 Pavement Management System 

Pavement Management System (PMS) is an approach that incorporates the economic 

assessment of trade-offs between competing alternatives (Haas and Hudson, 1978; Hudson, 

Uddin, and Haas, 1997). PMS operates at two levels; project level (i.e. specific road) and 

network level. At both levels, field data collection is necessary to evaluate pavement 

performance to strengthen the decision-making process of appropriate maintenance, 

preservation and rehabilitation treatments, and priority planning and programming. Pavement 

performance is evaluated based on several measures: surface and structural. Pavement 

performance models are generally classified into two categories: deterministic and stochastic 

(Amador-Jiménez and Mrawira, 2009; George et al., 1989; Prozzi and Madanat, 2003). One of 

challenges in formulating these models is the lack of time-series data. (Amador-Jiménez and 

Mrawira, 2009) proposed an approach by which a pavement performance model can be 

formulated using as little as two time-series points. 

4.1.3  Measuring IRI Using Smartphones 

One of the surface condition measures used in PMS is the IRI. The IRI was originally 

developed by World Bank to produce an objective indicator for road roughness that was time-

stable, transportable, and relatable to values collected by practitioners regardless of their 

location (Sayers, Gillespie, and Queiroz, 1986). The roughness of a pavement is defined as the 

variations in the longitudinal surface profile that cause vibrations in traversing vehicles at a 

specific point of time (Sayers et al., 1986). The IRI summarizes the longitudinal surface profile 

in the wheel path and is computed from surface elevation data collected by either a topographic 

survey or a mechanical profilometer. It is defined by the average rectified slope (ARS), which 

is a ratio of the accumulated suspension motion to the distance traveled obtained from a 

mathematical model of a standard car traversing a measured profile at a speed of 50 mph (80 

km/h) (Huang, 2004). IRI is typically expressed in vertical distance per horizontal distance of 

travel (mm/m, m/km, in/mi). 

During last decade, researchers have been working on exploring the applicability of 

sensing capabilities of the smartphone to collect data on an objective performance measures 

for pavement surface  (Aksamit and Szmechta, 2011; Byrne, Parry, Isola, and Dawson, 2013; 

Mednis, Strazdins, Zviedris, Kanonirs, and Selavo, 2011; Perttunen et al., 2011; Strutu, 
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Stamatescu, and Popescu, 2013). In particular the potential of using the output of smartphone 

sensors in determining IRI for pavement was studied (Douangphachanh and Oneyama, 2013, 

2014; Du, Liu, Wu, and Jiang, 2014; Hanson et al., 2014; Islam, Buttlar, Aldunate, and Vavrik, 

2014). IRI has become an international standard for road roughness since its beginning (Hanson 

et al., 2014; Tighe, 2013). In Canada, IRI was the most widely used pavement performance 

index by provincial, federal, and territorial agencies in Canada, with 85% of the 14 agencies 

surveyed reported using it (Tighe, 2013). 

4.2 Objective 

The main objective of this paper is to develop a Pavement Management System (PMS) 

for an on-street bicycle network in an urban context. The bike network of Plateau-Mont-Royal 

was used to assess the condition and available implementation of interventions, with goals to 

developing investment plans. The paper also discusses the advantages of adopting PMS to 

bicycle lanes as well as the limitation and drawbacks of low-cost data collection approaches. 

Finally, the study concludes with the potential future work in this research area. 

4.3 Methodology 

The size of bicycle network in the City of Montréal is approximately 748 km, of which 214 

km and 181 km are on-street bicycle lanes, and roads shared by cars and bicycles, respectively 

(Vélo Québec, 2015). the City of Montréal is ranked 2nd across Canada after Calgary’s network, 

1032 km (Vélo Québec, 2015). Plateau-Mont-Royal region itself has 46.3km of bicycle lanes, 

of which 40.6km are on shared roads which makes it the densest borough for bicycle lanes in 

the City of Montréal (Vélo Québec, 2015). Furthermore, Plateau-Mont-Royal has the highest 

bicycle mode share (percentage of trips made by travelers using a particular type of 

transportation); 10.8% versus 2.5% across the Island of Montréal (Vélo Québec, 2015). For 

these reasons, Plateau-Mont-Royal was selected as a case study in this paper. The performance 

curves were developed based on a dataset that contains road condition in terms of International 

Roughness Index (IRI) for two years, 2010 and 2015. This dataset was provided by City of 

Montréal. The condition of on-street bicycle lanes was evaluated during the year 2017, and an 

optimization algorithm was used to identify the required budget and achievable condition levels 

for 40 years. 
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4.3.1  Performance Curves 

The following steps are followed to accomplish the main objective: first, to create 

performance curves for Montréal’s road network based on data collected in 2010 and 2015. 

Second, to collect pavement roughness data for Plateau-Mont Royal borough for 2017. Third 

to prepare a decision support system based on an optimization framework to forecast budget 

allocation for different interventions over a period of 40 years. 

Performance curves were developed for road segments with low volume of vehicles, since 

on-street bicycle lanes are impacted by minimal loads. It is expected that the environmental 

freeze-thaw cycle is the dominating criterion in the deterioration process of bicycle lanes where 

the environment is expected to be the main factor. Low-traffic-volume was set for Equivalent 

Single Axle Load (ESAL) values below 3,739,185; the 33rd percentile threshold within the 

whole island. 

Road segments were categorized into four homogeneous groups of similar characteristics 

those have an effect on the performance model such as pavement structure, as-built quality, 

environmental exposure, traffic loading, and maintenance practice. This step is helpful in 

developing performance models for network-level long-term planning (Amador-Jiménez and 

Mrawira, 2009; Butt, Shahin, Feighan, and Carpenter, 1987; Pedigo, Hudson, and Roberts, 

1981). This resulted in four homogeneous groups: arterial roads made of flexible pavement, 

local roads made of flexible pavement, arterial roads made of rigid pavement, and local roads 

made of rigid pavement, all of them have low traffic volumes. Table 4.1 presents a summary 

of the groups along with average IRI and ESALs values for each group. 

Table 4.2 Summary of database, low-traffic-volume roads 

Pavement Type Flexible Pavement Rigid Pavement 

Road Classification Arterial Local Arterial Local 

Average ESALs 2,078,553 1,983,417 1,986,362 2,457,579 

Average IRI 2010 3.66 4.33 3.92 4.84 

Average IRI 2015 4.72 5.37 4.98 5.87 

Number of segments 541 2066 1933 1045 
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The performance curves for these homogeneous groups were developed using the 

approach proposed by (Amador-Jiménez and Mrawira, 2009); by which a pavement 

performance model can be formulated using as little as two time-series data for a large cross-

sectional sample (whole network of roads) on condition and traffic data. Figure 4.1 shows the 

developed performance curves for homogeneous groups. As noticed in Figure 4.1, the four 

homogeneous groups have similar behaviour in terms of deterioration, thus, an overall 

performance curve was considered for all groups with a best-fitted linear equation. 

 

Figure 4.1 Performance curves developed for homogeneous groups 

4.3.2  Data Collection Using Smartphone 

Data was collected using the Android-based application, ANDROSENSOR 

(https://play.google.com/store/apps/details?id=com.fivasim.androsensorandhl=en), using two 

separate smartphones on January 21st 2017 and January 28th, 2017, between 10:00AM-3:00PM 

in order to validate observed values. Values of acceleration and speed were logged every 0.25 

seconds. The type of smartphone might have an impact on the data collection process. 

However, this does not significantly affect the data collected for long-term planning purposes 

at a network-level scale. For instance, the highest percent of difference between the estimated 

IRI values using smartphones and those measured by Class 1 profiler was 5.4% (Hanson et al., 
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2014). In the second session, data collection was done every 0.02 seconds, which represented 

50 data points collected per second. Both of these data collection files are presented in Figure 

4.2. 

 

Figure 4.2 Collected data in the Plateau-Mont-Royal 

For both surveys, data was collected using the same automobile and the same driver to 

minimize the effect of the damping system in the vehicle, and to some extent, the driver’s 

behaviour. The smartphones were left to rest on the floor of the vehicle in two different 

locations. The latter was assumed not to cause discrepancies in the data since it was concluded 

that smartphone applications, the type of the device, and the location of the smartphone inside 

the vehicle have insignificant impact on the observed vertical accelerations (Al-Dabbagh, 

2014). Variability in the speed of the vehicle is a factor that could affect data collected, because 

the car reacts differently at high speeds versus low speeds and the driver generally drives at a 

speed suitable to the road surface condition (the driver will slow down to avoid violent 

movements which cause discomfort and vehicle damage on the poor-condition road). Thus, 

data collection initiated well before the initial and final locations of each road segment to 
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remove the effect of acceleration and deceleration. In addition observed vertical accelerations 

were normalized by speed (1/s) and speed was kept constant as previously suggested (Al-

Dabbagh, 2014). Extreme values caused by the presence of speed bumps were eliminated from 

the data collected. One of the difficulties found was the fact that on-street bicycle lanes take a 

portion of the road on which it is difficult to drive on. 

4.3.3  Estimating Roughness Index (RI) 

Several studies have verified that Z-axis acceleration obtained from smartphones can 

be used as an effective and reliable signal estimation of road surface condition (Amador-

Jimenez and Matout, 2014; Hanson, Cameron, and Hildebrand, 2014; Li and Goldberg, 2018). 

Based on the recorded data by ANDROSENSOR, Root Mean Square (RMS) was used to capture 

variation on cyclical responses of sinusoidal form. The following equations were generated 

based on (Al-Dabbagh, 2014, Amador-Jiménez and Matout, 2014; Li and Goldberg, 2018), and 

were used to estimate Roughness Index (RI): 

Standard deviation of the vertical component of acceleration (𝜎𝑧): 

 𝜎𝑧 = √
1

𝑁
∑ (𝑎𝑧𝑖 − 𝑎̅)2𝑁

𝑖=1    [4.1] 

Speed-normalized standard deviation of the vertical component of acceleration: 

  
𝜎𝑧

𝜐𝑦𝑖
=

√
1

𝑁
∑ (𝑎𝑧𝑖−𝑎̅)2𝑁

𝑖=1

𝜐𝑦𝑖
   [4.2] 

Roughness Index: 

(𝑅𝐼) =  
𝜎𝑧

𝜐𝑦𝑖
× 100   [4.3] 

where 𝑎𝑧𝑖is the vertical component of acceleration, 𝑎̅ is the mean, N is the total number of 

recorded values, 𝑣𝑦𝑖 is the vehicle’s speed. 

Values of RI for the roads that contain on-street bicycle lanes or shared roads (bicycles 

and automobiles) were extracted from the City of Montréal’s geo-database. The data points 

were imported from a Geo-referenced map of the Plateau-Mont-Royal region using ArcGIS 

10.3. 
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Table 4.2 presents the operational window of each treatment, lower and upper ranges 

for each applicable treatment along with the service life extension, values were provided by 

practitioners and local engineers in Montréal. 

Table 4.3 Service life, cost and operational window for each treatment 

Treatment 
Treatment service 

life (Years) 

Treatment 

cost (US$/m2) 

Operational 

Window 

Micro-surfacing 4 6.74 RI ≤ 2.49 

Mill and Overlay 8 25 RI ≤ 3.53 

Reconstruction Brand New 42 RI > 3.54 

Dynamic binary programming was applied to achieve the optimal pavement roughness 

condition (Amin and Amador-Jiménez, 2015). This is done by minimizing 𝑅𝐼̅̅ ̅ while subjected 

to a given budget (Equations 4.4 and 4.5). The identification of the sequence of interventions 

through time is further detailed by Equation 4.6. This identification relies on a time transfer 

function that connects all periods of time. 
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where  RItij = xtij (RI(t-1)ij - Eij)+ (1-xtij) (RI(t-1)ij + Dit)         [4.6] 

𝑥𝑡,𝑖,𝑗 ∈ [0,1] 

where xtij is 1 if treatment j is applied on road segment i at year t, zero otherwise; RIti is 

condition Index for road segment i at year t; RItij is condition index of road segment i at year t 

for intervention j; RI(t-1)ij is condition Index of road segment i at year (t-1) for intervention j; 

Ctj is cost ($) of intervention j at year t; Li is length of road (km) for road segment i; Eij is 

improvement in terms of RI reduction on road segment i from intervention j, Dit is deterioration 

on road segment i at time t, Bt is the budget at year t. 
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The above optimization problem was solved over a 40-year period of time using a 

Commercial package: Remsoft. The solution was expressed in terms of the application of the 

most cost-effective intervention at the most suitable period of time to each road segment within 

the inventory. 

4.4 Analysis and Results 

Bicycle-lanes’ condition (minimize RI) was maximized with an annual budget of 

$200,000 over a 40 year-period. The average RI obtained for each year due to treatment actions 

is illustrated in Figure 4.3. The RI value decreased over the first 15 years until reaching a 

minimum value representing a very good average surface condition for the bicycle-lanes 

network. Figure 4.4 shows details of the treatment expenditure per year. During the first 11 

years, reconstruction is the dominant choice, however, for the remaining 29 years, mill and 

overlay and micro-surfacing are the appropriate solutions to sustain the good condition on the 

bicycle network (Figure 4.4). Figure 4.5 illustrates the percentage of road segments according 

to their surface condition. The percentage of segments with poor surface condition is decreasing 

over the first 11 years. After 13th year, all segments in the network become at good condition; 

this phase can be described as stable and sustainable. 

 

Figure 4.3 Average RI of on-street bicycle lanes 
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Figure 4.4 Expenditure according to applied treatment actions 

 

Figure 4.5 Surface condition of on-street bicycle lanes 
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was considered as the case study. Furthermore, it considered the costs associated with utilizing 

different treatment interventions in the Plateau-Mont-Royal borough. However, this PMS has 

several limitations which are discussed in details including the shortcomings of conventional 

PMS techniques, such that future PMS will be enhanced. 
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First, an error can arise in the data collection process. Speed has a significant effect on 

the collected of data. During our data collection process, the speed of the car ranged from 10 

km/hr to 60 km/hr. The variation in speed affects how the car reacts to the pavement condition. 

Bicycles usually occupy a small portion of the lane, so this differs slightly from the pavement 

that is being totally occupied by the car. 

The PMS for this case study used historical data to forecast future performance in 

pavement condition. Accordingly, there is some deterioration uncertainty associated with the 

PMS approach. Also, the operational windows of treatments were subjectively developed.  

Another consideration is that only one indicator was used in defining the operational 

window (RI); other indicators, such as rutting, roughness, segregation, transverse cracks, 

ravelling and wheel path bleeding, were not taken into account. The PMS for this case study 

found the optimal path to take advantage of cost-effectiveness of individual treatments. 

However, it still did not address socio-economic criteria such as safety, congestion, mobility, 

pollution, or social costs. Even more, indicators related to the convenience of the bicycle 

network, such as safety, lighting, proximity to public transportation, protection, etc. should be 

incorporated in future research. Therefore, there is a need for PMS to be “extended, by 

incorporating dynamic states of land use, regional economy, travel modelling, and socio-

economic criteria” (M. S. R. Amin, 2015). Policy makers need to consider socio-economic 

benefits of communities when allocating budget in M&R planning (M. S. R. Amin, 2015). 

Environmental conditions should become the main factor behind the development of 

deterioration models and the role of ESAL values must be removed whereas possible. 

Finally, this study did not consider a life cycle cost analysis or unforeseen costs 

associated with specific treatments; rather, it focused on the costs of the treatment interventions 

themselves. Nevertheless, a life cycle cost analysis is needed to better understand the best 

treatment option. For instance, specific preservation strategies may be affected by existing 

pavement lane width. Furthermore, if overlay is proposed as a first treatment option, costs 

associated with pre-treating distress repair prior to overlay should be considered. 

4.6 Conclusion 

Pavement management systems can be applied to bicycle lanes given the set of tools 

that allow to keep the pavement at a predetermined level of service while applying certain 

budget limitations. This case study adopted the concepts of pavement management systems. 
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Historical data of pavement condition (IRI) for low-volume roads in Montréal was used to 

develop performance curves transferable to bicycle networks along with a dataset of current 

surface condition that were collected using a smartphone. This resulted in developing an 

optimal long-term plan over a span of 40 years. This allows selecting the most cost-effective 

treatment alternative among several Maintenance and Repair actions and contributes in 

establishing long-term strategies, and maximize the operational efficiency. The results of this 

study show that an annual budget of around $200,000 is appropriate to improve the surface 

condition of on-street bicycle lanes in the study area up to a good level and then to sustain that 

level of the segments in the network. This annual amount is allocated for 43.89 km of bike 

lanes. As a quick approximation, it costs $4557 per km, which sums up to $3.41 million as an 

annual operating budget to cover the whole bicycle network in Montreal. This amount 

represents 2.47% of the annual operating budget for road repairs allocated by the City of 

Montreal allocated in 2016 (City of Montreal, 2016). This procedure, that adopts the principles 

of PMS can be a powerful tool that helps practitioners, planners, policy makers and government 

agencies to set the optimal annual operating budget to achieve their strategic objectives.
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5. Chapter 5: Towards Convenient Bikeway Networks: Incorporating 

Bicycling demand into Road Management Systems 

Abstract 

Several cities around the world have announced strategies to extend and/or upgrade their 

bikeway networks in response to the rapid increase of bicycle users. However, there is a 

disconnection between these strategies and management systems, often used for the scheduling of 

maintenance and rehabilitation of roads. Such systems fail to sustain bicycle pathways in optimal 

condition, and most importantly, to consider bicycling demand as the driving element to budget 

for improvements. In turn, more convenient, and safer bicycling facilities can encourage more 

individuals to shift their daily commuting habits to bicycling. This study incorporates bicycling 

demand into road management systems to produce strategic plans for the maintenance and 

improvement of the bicycle networks. Furthermore, this study employs the capabilities of 

smartphones in representing bicycling demand via GPS trajectories of bicycles. Goal optimization 

was applied to schedule interventions and improvements. Two scenarios were investigated with 

different annual budgets. The results show that the first scenario allows upgrading all bicycle lanes 

to protected paths more rapidly while accomplishing good levels of condition of pavements. The 

second scenario is not able to prevent the deterioration of pavement segments. 

5.1 Introduction 

Bicycling is increasingly being promoted as a sustainable mode of transportation in several 

cities around the world due to health benefits, reduced air and noise pollution, savings in energy 

consumption, and to reduce congestion on transportation infrastructure in urban regions (Deenihan 

and Caulfield, 2014; Mueller et al., 2015; Pérez et al., 2017; Rojas-Rueda, de Nazelle, Teixidó, 

and Nieuwenhuijsen, 2013). Policy makers therefore are adopting strategies to encourage 

sustainable modes of transportation in cities (transit, bicycling and walking), and discourage the 

use of the automobiles. Several cities around the world announced their strategies to extend and/or 

upgrade their bikeway networks such as Amsterdam (The City of Amsterdam, 2012), Melbourne 

(The City of Melbourne, 2016), Copenhagen (The City of Copenhagen, 2011), San Diego (The 

City of San Diego, 2013), Seattle (Seattle Department of Transportation, 2017), and Wellington 
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(City Council of Wellington, 2015). Regional and municipal governments have been taking 

initiatives to encourage bicycling  (Pucher, Dill, and Handy, 2010). A significant correlation was 

found between pavement quality and the share of residents bicycling to work (Parkin, Wardman, 

and Page, 2007). Nevertheless, pavement condition is used as a key variable in determining the 

Bicycle Level of Service (BLOS), which is based on cyclists’ perceptions of the roadway 

environment. Pavement condition for BLOS analysis is a general classification of the pavement 

surface, three categories are used: desirable, typical, and undesirable pavement condition (FDOT, 

2013, 2014). This study extended the traditional management system of road infrastructure to 

incorporate bicycling demand, therefore, to promote bicycling in cities by providing more 

compatible, convenient, smooth, and safe bicycle facilities. 

5.2 Literature Review 

5.2.1  Bicycling Travel Demand 

The objective of travel demand forecasting is to predict changes in travel behaviour and 

transportation conditions, as a result of proposed transportation projects, policies, and future 

changes in socioeconomic characteristics of the users and land use patterns. For non-motorized 

(bicycling and walking) users the objective is generally to predict the change in volumes or 

characteristics of bicycling, walking, or vehicle-trips as a result of facility improvements or policy 

changes which are designed to make bicycling or walking more attractive  (FHWA, 1999).  

Generally, available methods to estimate demand are grouped into five broad categories: 

aggregate behavioural studies, comparison studies, sketch pan methods, discrete choice models, 

and regional travel models. An overview of these methods, typical applications, their capabilities 

and limitations can be found in FHWA (1999). 

Traditional methods for estimating bicycle volumes can be categorized as multi-step travel 

demand models or as direct demand models (Porter, Suhrbier, and Schwartz, 1999). Multi-step 

models attempt to forecast a detailed combination of travel choices across large transportation 

networks. The common four-step model is a sophisticated procedure to estimate four aspects of 

travel behaviour: trip generation, trip distribution, mode choice, and route choice (McDaniel, 

Lowry, and Dixon, 2014). The trip generation step tries to estimate the number of trips originating 
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from a specific analysis zone for a particular purpose and time of day. The trip distribution is a 

prediction of the destination for each generated trip. The mode choice attempts to predict the mode 

of travel that will be used to make the trip. Finally, the route choice step aims at predicting the 

network segments that will be used to reach the destination. Several studies investigated, 

developed and applied various approaches for each step: trip generation (Barnes and Krizek, 2005; 

Cui, Mishra, and Welch, 2014; Franco, Campos, and Monteiro, 2014; Stinson, Porter, 

Proussaloglou, Calix, and Chu, 2014), trip distribution (Eash, 1999), mode choice (An and Chen, 

2007; Broach and Dill, 2016; Eash, 1999; Kuhnimhof, Chlond, and Huang, 2010; Stinson et al., 

2014), and route choice. Route choice studies used either stated preference surveys (Monsere, 

McNeil, and Dill, 2012; Segadilha and Sanches, 2014b; Sener, Eluru, and Bhat, 2009; Stinson and 

Bhat, 2003), or revealed preference surveys (Howard and Burns, 2001; Kang and Fricker, 2013). 

The latest are often based on GPS-collected data (Broach, Dill, and Gliebe, 2012; Casello and 

Usyukov, 2014; Chen, Shen, and Childress, 2018; Heesch and Langdon, 2016; Guensler, and Ogle, 

2005; Muresan, and Fu, 2017; Menghini, Carrasco, Schüssler, and Axhausen, 2010; Segadilha and 

Sanches, 2014a; Ton, Cats, Duives, and Hoogendoorn, 2017; Zacharias and Zhang, 2016). 

Direct demand models simply avoid the behavioural aspect of travel by predicting the 

volume on a particular bicycle facility as a function of the attributes of the facility. Several studies 

proposed and applied direct demand models in estimating bicycle volume (Fagnant and 

Kockelman, 2016; Griswold, Medury, and Schneider, 2011; Hankey et al., 2012; Hankey and 

Lindsey, 2016; Tabeshian and Kattan, 2014). Although direct demand models are advantageous 

since they simplify the complexities of travel behavior, but this feature makes it more difficult to 

gain a comprehensive understanding of travel patterns. In contrast, multi-step demand models are 

capable of providing rich understanding of travel behavior: for example they can predict every 

expected turn movement through an intersection rather than just predicting the total number at the 

intersection. However, this ability of multi-step demand models rely significantly on the 

availability of detailed information about the entire network and the interaction between origins 

and destinations (McDaniel et al., 2014). 

Recent practices in regional demand modeling of non-motorized travel in the United States 

were reviewed (Liu, Evans, and Rossi, 2012). Three structural approaches in the regional modeling 

framework were discussed: pre-trip distribution, pre-mode choice, and mode choice. In addition, 
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non-motorized travel modeling may be carried out via route choice-trip assignment in which a pre-

mode choice or mode choice travel model application is required. The study recommended 

agencies to use the mode choice approach with the route choice-trip assignment option in modeling 

non-motorized travel to evaluate proposed bicycle facilities. However, this requires intensive data 

that usually do not exist in the database, and some sensitivities to urban design variables may not 

be representative (Liu et al., 2012). 

5.2.2  Bicycling Rates and Bicycling Facilities 

Recently, the number of studies investigating the impact of various types of bicycling 

facilities on bicycling rates in cities has been increased significantly. Several studies found a 

positive relationship between bicycling rates and the presence of bike lanes (Buehler and Pucher, 

2012; Dill and Carr, 2003; Goodno, McNeil, Parks, and Dock, 2013). Approximately 1% increase 

in bicycling rates is found to be associated with each additional linear mile of bike lanes per square 

mile land area (Dill and Carr, 2003). Buehler and Pucher (2012) studied the influence of bike paths 

and lanes on commuting using bicycle based on a dataset contains the length of bike lanes and 

paths in 2008 collected from 90 large cities in US. The findings show that 10% greater supply of 

bicycle lanes is associated with a 3.1% greater number of bike commuters per 10,000 population. 

Similarly, a 10% greater supply of bike paths is associated with a 2.5% higher level of bike 

commuting. Furthermore, three revealed-preference studies from Copenhagen, Washington, DC, 

and five US cities found an increase in bicycling levels after the installation of cycle tracks 

(Goodno et al., 2013; Monsere et al., 2014; Snizek, Nielsen, and Skov-Petersen, 2013). Goodno 

et al. (2013) concluded that the bicycle volume roughly quadrupled after the installation of a two-

way cycle track, well above the average in the city, and the BLOS was also improved.  

 Monsere et al. (2014) studied the effect of installing cycle tracks (protected bicycle lanes) 

in five cities: Austin, TX; Chicago, IL; Portland, OR; San Francisco, CA; and Washington, D.C in 

terms of use, perception benefits and impacts, using video, surveys of intercepted bicyclists 

(n=1,111) and nearby residents (n=2,283), and count data. City database containing counts before 

and after installation of protected bicycle lanes, along with counts extracted from video 

observation, were used to analyze change in ridership. They observed a measured increase in 

ridership ranging from 21% to 171% on all facilities. The increases were greater than overall 
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increases in bicycle commuting in each city. Some of the increase in ridership at each facility likely 

came from new riders (i.e. riders who, in the absent of the protected bike lane, would have travelled 

using a different mode or would not have taken the trip) and some from riders diverted from other 

nearby streets (i.e. riders who were attracted to the route because of the facility, but would have 

chosen to ride a bicycle for that trip regardless). The study also conducted a stated-preference 

survey which showed that 10% of the riders shifted from other modes, and 24% switched from 

other bicycle routes. An increase in the frequency of biking on the installed protected lanes was 

reported by over a quarter of respondents. A strong support for building protected bicycle lanes at 

other locations was also reported by 75% of the residents. Approximately 67% of surveyed 

residents expressed their intention to ride a bicycle if motorized traffic and bicycles were 

physically separated by a barrier. 

Parker, Gustat, and Rice (2011) studied the impact of the installation of the first on-street 

bicycle lane (3.1 mile dedicated bike lane) in New Orleans, LA during the spring of 2008. The 

results show an increase in the mean number of cyclists observed per day from 90.0 to 142.5 

(58.33%). Parker et al. (2013) similarly studied the impact of installing 1-mile dedicated bike lane 

on S. Carrollton Avenue in New Orleans, LA in 2010. This study examined the impact through 

direct observation of one street with a new bike lane and two adjacent streets without bike lanes, 

before and after the installation. The study found an increase in the average daily number of 

cyclists after the installation of the bike lane from 79.2 to 257.1 (224.62%), but a reduction on the 

two adjacent streets from 54.4 to 36.4 (-33.09%). The study concluded that more people rode in 

the overall neighborhood after the lanes were striped; however, the increase in cyclists was greatest 

on the street with the new bike lane. The decrease in cyclists on the side streets suggests that few 

of those cyclists may have started using the dedicated bike lane.  

In Montreal, Lusk et al. (2011) studied six cycle tracks (two-way protected bicycle lanes 

on one side of the street), and compared each cycle track with one or two reference streets without 

bicycle facilities that were considered alternative bicycling routes. The study found that the cycle 

tracks were much highly used, 2.5 times (250 % increase in ridership), compared with reference 

streets, and the risk injury was lower in the cycle tracks. 
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5.2.3  Pavement Management System 

The Pavement Management System (PMS) is a set of tools or approaches that assist 

decision makers in identifying optimum strategies for providing and maintaining pavements in a 

serviceable condition over a given period of time (Haas, Hudson, and Zaniewski, 1994). Although 

the expenditure for sustaining and rehabilitating deteriorating pavement to provide a network at 

serviceable level is unavoidable, overall cost can be minimized through timely, appropriate, and 

effective Maintenance and Rehabilitation (M&R) strategies. PMS is an effective way to address 

the growing concern of managing high expectation from the road users, while considering 

budgetary limitations. Government agencies and municipalities use PMS as a planning tool in 

identifying cost-effective strategies for maintaining a pavement network at the desired level of 

service and determining the required level of funding. The PMS is composed of three essential 

components: a comprehensive database, pavement performance prediction (PPP) models, and a 

set of prioritization tools and optimization methods to assist in establishing cost-effective strategies 

for the evaluation and maintenance of roadway pavement. 

An effective PMS requires a comprehensive and periodically updated database. Generally, 

besides traffic volume, traffic load, and environmental conditions, two types of data are collected 

for a PMS: inventory and condition. Inventory data describe physical elements of the roadway 

network that do not experience a noticeable change over time such as pavement surface type, 

pavement structure (number and thickness of layers), functional classification, number of lanes, 

lane width, segment length, segment width, and type and width of shoulder. Condition data 

describe the functional condition (e.g. roughness and skid resistance) and structural condition (e.g. 

surface distresses and load capacity) of pavement over time. A record of historical maintenance 

treatments, effectiveness of treatments, and associated cost information are also necessary. 

Technically, the type of required data for PMS depends on agency goals and PMS software that is 

being used. Several agencies use Geographic Information System (GIS) to store location-

referenced spatial data to connect multiple data items to specific links or nodes of a roadway 

network (Kulkarni and Miller, 2003). 

PPP models aims at predicting future pavement conditions under specified traffic loading 

and environmental conditions (Kulkarni and Miller, 2003). The current PPP models use either 
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deterministic or probabilistic methods to characterize pavement performance (Mills, Attoh-Okine, 

and McNeil, 2012). Reliable PPP models are necessary for identifying the least-cost rehabilitation 

strategies that maintain desired levels of pavement performance (Kulkarni and Miller, 2003). 

The optimization component involves using various methods to identify optimal pavement 

rehabilitation policies. The purpose is to maximize benefits given budgetary and other applicable 

policy constraints or to minimize the overall cost subject to meeting predefined performance levels 

and agency goals. Before the development of formal optimization techniques, agencies relied on 

simple priority ranking approaches. In the 1980s, few optimization models were developed for 

project-level decision making (Kulkarni and Miller, 2003). The first network-level optimization 

model was proposed in the PMS developed for the Arizona Department of Transportation 

(Kulkarni, 1984). Recently, several optimization methods have been applied in the PMS such as 

linear optimization (Amador-Jiménez and Mrawira, 2009), dynamic optimization (Farhan and 

Fwa, 2012), and genetic algorithm (Moreira, Fwa, Oliveira, and Costa, 2017). 

5.3 Methodology 

This study introduces an integrated approach in which bicycling demand is incorporated 

into a PMS. The approach, first, identifies the optimal set of M&R actions over a long-term 

planning horizon that achieves and sustains an acceptable level of service in terms of pavement 

condition at the network-level, second, upgrade the bikeway network to increase bicycling rates 

and promote bicycling as a sustainable mode of transportation. Figure 5.1 illustrates the procedure 

followed in this study. The first step involves developing a PPP model based on a historical dataset 

of pavement condition. In the second step, paths that are frequently traversed by cyclists were 

identified. It should be noted that bicycling demand was represented by bicycle counts estimated 

based on GPS cyclist trip data. The third step involves a decision-making framework of selecting 

M&R activities considering estimated bicycle counts. 
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Figure 5.1 The procedure followed in this work 

5.3.1  Smartphone GPS Travel Survey 

This study uses GPS cyclist trip data collected by the MTL Trajet smartphone application. 

MTL Trajet dataset files are accessible on the official website of the City of Montreal 

(http://donnees.ville.montreal.qc.ca/dataset/mtl-trajet). This study uses data collected from cyclists 

between September 9th, 2016 and December 1st, 2016. Cyclists start this application at the 

beginning of their trips, and it provides second-by-second positional information, in terms of 

latitudes and longitudes, and timestamps (depending on the smartphone and the quality of the GPS 

signal). The total number of recorded bicycle trips is 3955. The collected trip data allow analyzing 

the movements of cyclists and identifying the traversed routes. This provides cost-effective 

approach to collect revealed data over an extended spatial area. However, smartphone GPS 

receivers have system errors. These errors could be significant in the presence of tall buildings and 

tunnels. For most GPS-enabled smartphones, the average horizontal error is around 20 meters, but 

can range from 5 to 35 meters (Paek, Kim, and Govindan, 2010). It is therefore necessary to pre-

process the GPS traces by filtering the outliers. 

http://donnees.ville.montreal.qc.ca/dataset/mtl-trajet
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Figure 5.2 GPS trajectories extracted from MTL Trajet survey 

 The GPS observations were filtered based on average speed, duration and location of the 

trip, and consequentially, some trips were dropped as follows: 

 Average trip speed 

Based on the average speed for each entire trip, the entire trips having an average more than 30 

km/h were classified as non-bike trips and excluded from the analysis. These trips are more likely 

were done by motorized vehicle while the application was running and recording (Zangenehpour, 

Miranda-Moreno, and Saunier, 2015). Similarly, trips with an average speed less than 1 km/h were 

excluded from the analysis since it is very likely that the application was left collecting the data 

for hours after the trip ended and the cyclist reached the intended destination (Strauss and Miranda-

Moreno, 2017a). 
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 Minimum trip duration 

Since the purpose is to estimate bicycle counts, trips with duration less than 1 min were excluded 

from the analysis as they are too short for our interests. 

 The location of the trip 

The trips that were not recorded entirely within the island of Montreal were excluded from the 

analysis as they fall outside the scope of our interest. 

5.3.2 Assignment of GPS Traces 

Since the reconstruction process of trips from GPS traces (i.e. trajectories) requires 

complex algorithms to accurately assign the traces to the associated network segments, simplified 

approach was used in this study to assign GPS traces/trajectories and estimate bicycle counts along 

each link in the network. This was accomplished via ArcGIS software by the following steps: 

1. Integrate road and bicycle links.  

2. Create a buffer area around the links in the entire network to enclose the GPS traces of 

cyclists. This allows to attach each cyclist trace to the nearest segment. The enclosing of 

GPS traces within this buffer area minimizes the error due to the fact that some GPS traces 

were irregular and projected far away from the network segments. This issue is caused 

when GPS signals are hindered by tall buildings, trees and tunnels as well as the accuracy 

degree of the smartphones’ GPS system. The buffer area was chosen to be 25 m around the 

network segments, this was enough to enclose the most GPS traces. 

3. Determine the central point of each segment and create a circular buffer area with a radius 

of 25 m around the central point. This circular buffer area serves to catch the crossing lines 

(GPS traces) as shown in Figure 5.3. The number of intersecting lines (GPS traces) to each 

circular buffer area represents the bicycle count on this segment. 
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Figure 5.3 Snapping of GPS traces to network segments 

5.3.3  Pavement Performance Prediction Model 

Several casual factors could affect the deterioration process of pavement including traffic 

loading, pavement structure such as number and thickness of layers, material types, soil strength, 

or environmental exposure conditions. For simplicity, traffic loading was used as the primary 

causal factor in the performance model. Traffic loading can be expressed in term of the 

accumulated amount of Equivalent Single-Axle load (ESALs) on pavement sections. In this study, 



   

66 

 

the International Roughness Index (IRI) was used as the indicator of pavement surface condition. 

A dataset containing pavement surface condition (i.e. IRI) of road segments in Montreal for 2010 

and 2015 was used to develop the performance model. The development of the performance model 

was based on a procedure proposed by Amador-Jiménez and Mrawira (2009, 2011). The procedure 

suggested separating the pavement sections into homogeneous groups of similar characteristics 

such as pavement structure, environmental conditions, and traffic loading. This helps enhance the 

reliability of the performance model developed for network-level long-term planning. In the 

absence of road absolute age data, the surface condition of pavement (i.e. IRI) in 2010 was used 

to separate the pavement sections into homogeneous groups. They were broken into three levels: 

good, fair, and poor; while traffic load intensity was divided into three levels: high, medium and 

low. This resulted in establishing nine groups of pavements, corresponding to each pair of traffic-

apparent age level as shown in Table 5.1. The apparent age represents the age that is associated 

with the existing condition of a pavement, considering the treatments that were received. 

According to the criteria mentioned in Table 5.1, most roads in Montreal have poor 

pavement surface condition in 2015 as shown in Figure 5.4. Since there are three levels of traffic 

load intensity; high, medium, and low, three PPP models were developed corresponding to each 

level. Figure 5.5 shows the deterioration process of pavement as in terms of traffic loading and 

apparent age. Since the three groups have similar behavior, one performance curve was used to 

represent the overall behavior of all groups.  

Table 5.1 Summary of pavement groups mean condition, 2010–2015 

Group 
IRI 2010 rang 

(m/km) 

Condition 

class 

ESAL/year 

(104) 

Mean 2010 

IRI (m/km) 

Mean 2015 

IRI (m/km) 

1 ≤ 2.5 Good >953 2.13 3.13 

2 2.5-4 Fair >953 3.30 4.31 

3 > 4 Poor >953 5.62 6.54 

4 ≤ 2.5 Good 389-953 2.12 3.24 

5 2.5-4 Fair 389-953 3.24 4.28 

6 > 4 Poor 389-953 5.60 6.60 

7 ≤ 2.5 Good <389 2.12 3.21 

8 2.5-4 Fair <389 3.26 4.31 

9 > 4 Poor <389 5.57 6.60 
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Figure 5.4 Pavement surface condition 2015-Montreal 

5.3.4  Optimal Allocation of Budget 

Once M&R actions have been evaluated, pavement managers need to optimize the 

allocation of the available budget. Pavement management systems mainly rely on mathematical 

programming and near-optimization methods (Torres-Machí, Chamorro, Videla, Pellicer, and 

Yepes, 2014). The scheduling of M&R activities to achieve an acceptable level of service at the 

network-level has been addressed (Amador-Jiménez and Afghari, 2013; Amin and Amador-

Jiménez, 2015; Faghih-Imani and Amador-Jimenez, 2013; Haas, and Huot, 1998). In this study, 

goal programming which is a branch of multi-objective optimization based on integer linear 

programming (ILP) is proposed to achieve a cost-effective allocation of the available budget. 
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Figure 5.5 Pavement performance prediction model 

A typical application of the optimization process seeks maximizing the aggregated network 

pavement condition subject to a given budget per a planning period (𝐵𝑡). Other traditional 

constraints include the limitation that every pavement can receive no more than one treatment per 

year, and, in some circumstances, the preclusion of treating pavements within a certain period after 

they have received a special intervention. The main objective of this study is to incorporate the 

bicycling travel demand into a strategic planning of M&R projects at the network-level. The first 

step was to determine the minimum budget required to prevent the aggregated network pavement 

condition from declining. It is worth mentioning that the bicycle demand was not considered in 

this step. The mathematical formulation to estimate the minimum required budget relies on ILP 

method, and can be synthesized by Equations 5.1, 5.2, and 5.3: 
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minimize 

𝑍 = ∑ ∑ 𝐶𝑡,𝑗𝑥𝑡𝑖𝑗
𝐾
𝑗=1 𝐿𝑖

𝑁
𝑖=1    for values of t     [5.1]

 

subject to 

 ∑ 𝐿𝑖𝐼𝑅𝐼𝑖𝑡 ≤𝑁
𝑖=1 ∑ 𝐿𝑖𝐼𝑅𝐼𝑖𝑡−1

𝑁
𝑖=1   for values of t     [5.2] 

where IRItij = xtij (IRI(t-1)ij - Eij)+ (1-xtij) (IRI(t-1)ij + Dit)          [5.3]

 

𝑥𝑡𝑖𝑗 ∈ [0,1] 

where 

Z= total aggregated cost at the network-level; 

xtij = 1 if treatment j is applied on road segment i at year t, 0 otherwise;  

IRIit = the pavement condition index for road segment i at year t; 

IRIi(t-1) = the pavement condition index for road segment i at year (t-1);  

IRItij = the pavement condition index of road segment i at year t for intervention j;  

IRI(t-1)ij = the pavement condition index of road segment i at year (t-1) for intervention j;  

Ctj = the cost (CAD$) of intervention j at year t; 

Li = the length (km) of road segment i; 

Eij = the improvement in terms of IRI reduction on road segment i from intervention j;  

Dit = the deterioration on road segment i at time t; 

Bt = the budget at year t; 

N = the total number of road segments; 

T = the total number of time periods; and 
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K = the total number of applicable treatments. 

This formulation relied on the forward dynamic links of Equation 5.3 which support a decision 

tree containing all possible paths of pavement condition across time, after hypothetically receiving 

available treatments (Amador-Jiménez and Afghari, 2013; Amin and Amador-Jiménez, 2015; 

Faghih-Imani and Amador-Jimenez, 2013). This tree is based upon a transfer function used to 

estimate pavement condition (IRIti) as a combination based on the decision variable (xtij) and the 

effectiveness (Eij) or deterioration (Dit) of the specific road segment on time t (Equation 5.3). 

After estimating the required budget, the allocation of budget was done using goal 

programming. The objective is to achieve and sustain an acceptable level of network mean 

pavement condition (i.e. IRI) while encouraging cyclists to ride more frequently and non-cyclists 

to consider bicycling in making their trips. To promote bicycling as a sustainable mode of 

transportation, and increase its rates across the city, this study proposes including an upgrade 

alternative of roads either having dedicated lanes for bicycles or having no bicycling facilities to 

protected bicycle paths (i.e. cycle tracks). The optimal strategic programming of M&R actions for 

pavements in the network considering bicycle count on each road segment Vi is done using goal 

programming approach, which seeks maximizing both the network aggregate pavement condition 

and bicycling rates. The formulation of the optimization model is presented as follows: 

objective functions: 

𝑓1 = ∑ 𝐼𝑅𝐼𝑡𝑖
𝑁
𝑖=1 ≤ ∑ 𝐼𝑅𝐼(𝑡−1)𝑖

𝑁
𝑖=1   for all values of t    [5.4] 

𝑓2 = ∑ 𝑉𝑡𝑖 ≥ ∑ 𝑉(𝑡−1)𝑖
𝑁
𝑖=1

𝑁
𝑖=1    for all values of t    [5.5] 

𝑓3 = ∑ ∑ 𝐶𝑡,𝑗𝑥𝑡𝑖𝑗
𝐾
𝑗=1 𝐿𝑖 ≤ 𝐵𝑡

𝑁
𝑖=1   for all values of t    [5.6] 

where 

 IRItij = xtij (IRI(t-1)ij - Eij)+ (1-xtij) (IRI(t-1)ij + Dit)          [5.7] 

Vtij = xtij (Pij V(t-1)ij) + (1-xtij)(V(t-1)ij)       [5.8]
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Pij = the potential increase in bicycling rates on road segment i from intervention j; while 

the remaining variables are as defined earlier. 

5.4 Analysis and Results 

5.4.1  Bicycle Counts from GPS trajectories 

The bikeway network in Montreal is composed of 233 km of bicycle lanes, 69 km of cycle 

tracks, 294 km of off-street paths and 187 km of streets that are shared with motorized traffic, as 

shown in Figure 5.6. The assignment of GPS traces of cyclists was done by following the procedure 

described in section 5.3.2. After the filtration process, 1778 GPS traces from the total of 3955 were 

assigned to network segments. The results show bicycle counts ranging from no bicycle count on 

some links to 181. As expected, high bicycle counts were observed in downtown area. Figure 5.7 

shows the distribution of estimated bicycle counts over the entire network. 
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Figure 5.6 Bikeway network- Montreal 
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Figure 5.7 Bicycle counts-MTL Trajet 

5.4.2  Budget Allocation 

Table 5.2 presents the criteria used in identifying the type of intervention that is applicable 

to every segment at different points of time and which considers multiple periods of time. The 

criteria includes cost, effectiveness and range of applicability. Costs of interventions were roughly 

estimated based on local practices and include material, labour, and transportation. The timing of 

the intervention is modelled as a binary decision variable (Equations 5.1 through 5.8). The 

optimization algorithm identifies the optimal set of interventions for the whole network during the 

analysis period (40 years in this study) within a complex structure with time dependencies that link 

the consequences of decisions through time. Both optimization models were solved with Remsoft® 

Spatial Planning System 4.0; which has the capability of modelling linear binary programming, 

including goal and weighted objective formulations for long-term planning as a standard linear 
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programming, generating matrices and solving the problem with commercial solvers (e.g., 

MOSEK, LPABO). 

This study qualitatively grouped pavement condition in terms of IRI into three groups: 

good (IRI ≤ 2.5), fair (2.5 < IRI ≤ 4.00), and poor (IRI > 4.00). The applicability of upgrading 

depends on two thresholds; pavement condition and predefined bicycle volume Vo.  The pavement 

condition threshold was selected to be the same as the reconstruction intervention. For the second 

threshold, the 33th percentile of the bicycle counts was selected in this study.  

It is worth to mention that the Annual Average Daily Bicycle (AADB) volume is typically 

estimated using daily, hourly, and monthly adjustment factors as well as short-and- long term 

counts (El Esawey, 2016). Recently, a regression model was proposed  to estimate AADB volumes 

along segments and intersections in the entire network based on short-term, long-term, and GPS 

data (Strauss, Miranda-Moreno, and Morency, 2015). The potential increase in bicycling rate is 

usually estimated based on stated preference surveys, revealed surveys, or before-and-after studies. 

The last approach is able to provide more accurate insights than other ones: an average of previous 

studies suggest that AADB could increase as much as 400%, with other studies identifying a 224% 

and a 171%, however a potential increase of 150% was used in this study to remain on a more 

conservative side. 

In the case of protected bicycle paths (those fully separated from the road with a median), 

“Reconstruction” and “Mill and Overlay” interventions were applied over the width of the path 

and not the road. Whereas, the total width of the road was considered in the application of the 

interventions for the remaining facilities. It is worth mentioning that: all roads in the network were 

assumed to have two lanes, 3.6 m each, and only bicycle lanes (those with sufficient space to 

enable a separate bike-lane through pavement markings) were considered as candidates for 

upgrading to protected bicycle paths. Although the bicycle volumes might have an impact on the 

deterioration of pavement, the minimum recommended thickness by AASHTO is 7.5 cm 

(AASHTO, 1993) 

The aggregation of individual annual interventions found at the solution of Equations 5.1, 

5.2, and 5.3 returns the minimum annual budget to achieve and sustain acceptable pavement 

condition at the network-level, therefore, the required budget was found to be CAD$320 million 
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on average per year as show in Figure 5.8. Figure 5.9 shows the expected mean pavement condition 

for each year during the panning period based on the previously mentioned scenario. However, the 

City of Montreal announced CAD$138 million as an annual budget for repairing roads in the city 

(Ville de Montreal, 2016). Two scenarios considering both budget amounts were investigated in 

this study.  

Table 5.2 Cost effectiveness, cost and operational window of interventions 

Intervention 

Cost effectiveness 
Cost 

(CAD$/lane-

km) 

Operational window Improvement 

in pavement 

condition 

Potential 

increase in 

bicycling rate  

Reconstruction As new  - 600,000 IRI > 4.0 

Major rehabilitation 

(mill and overlay) 

Extension of 

10 years 
- 175,000 2.5 < IRI ≤ 4.0 

Preventive treatment 

(Micro-surfacing) 

Extension of 5 

years 
- 80,000 IRI ≤ 2.5 

Upgrade to a 

protected bicycle 

path 

As new  150% 600,000 

IRI > 4.0 and Vi > Vo 

only bike lanes with 

sufficient space 

Figure 5.10 shows that overall pavement condition will deteriorate during the analysis 

period under an annual budget of CAD$138 Million, with or without upgrading bike lanes to 

protected bike paths. After 40 years, the mean aggregate IRI of the network is estimated to be 7.93 

m/km. The distributions of expenditures according to applied interventions for a budgetary 

constraint of CAD$138 million is illustrated in Figure 5.11. Only a small portion of the overall 

budget is required during the first four years to upgrade all bicycle lanes to protected bike paths. 

Signifying that bike lanes could be easily improved without affecting overall road network 

condition. The deterioration trend of both scenarios with CAD138 Million is almost identical, 

however, an increase from 30% to 46% is noticed in the percentage of roads that are in good or 

fair condition as shown in Figure 5.12.  

On the other hand, a budget of CAD$320 (Figure 5.10) is the minimum to accomplish 

continuous improvement in the overall pavement condition during the 40 year analysis period. The 

expected mean IRI in the 40th year is 3.9 m/km, which overall indicates a fair condition of roads 

in the city. Nevertheless, the percentage of roads that are not in poor condition is estimated as 78% 

as shown in Figure 5.14. The distributions of expenditures according to applied interventions under 
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budgetary constraints of CAD$320 million is illustrated in Figure 5.13. The budget will invested 

in upgrading all bicycle lanes to protected bicycle paths in the first year according to CAD320-

miilion-budget scenario. While the upgrading processes will take place during the first four years 

in the other scenario. Reconstruction projects are more uniformly distributed over the planning 

period under an annual budget of CAD$320 million, while the pattern is more irregular under an 

annual budget of CAD$138 million. 

 

Figure 5.8 Annual expenditures for each intervention 
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Figure 5.9 Overall pavement condition 

 

Figure 5.10 Overall pavement condition for both scenarios 
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Figure 5.11 Expenditures according to applied interventions; annual budget of CAD$138 million 

 

Figure 5.12 Pavement condition; annual budget of CAD$138 million 
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Figure 5.13 Expenditures according to applied interventions; annual budget of CAD$320 million 

 

 

Figure 5.14 Pavement condition; annual budget of CAD$320 million 
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5.5 Conclusions 

The scheduling process of M&R projects is usually based on pavement performance 

indicators (e.g. PCI, IRI, etc.) as well as other associated costs (e.g. vehicle operating costs) and 

environmental impact such as greenhouse gas emissions produced by M&R actions. This study 

proposes an approach to incorporate bicycling demand into long-term planning of M&R activities 

of pavements at the network-level. This is in line with strategies that have been adopted by several 

cities around the world to encourage bicycling among individuals through a wide variety of 

bicycling interventions. Goal optimization was applied to address the conflicting objectives in the 

scheduling of interventions; reconstruction, major rehabilitation, preventive treatments, and 

upgrading. Furthermore, this work employed the capabilities of smartphones in representing 

bicycling demand through a sample of bicycle volumes over the entire road network.  The bicycle 

counts on network segments were estimated based on GPS traces of cyclists across the city. In this 

work we investigated two scenarios with different annual budgetary constraints; CAD$320 million 

and CAD$138 million respectively. The results show that the first scenario allows upgrading all 

bicycle lanes to protected paths in the first year of the planning period. In the second scenario, the 

upgrading process is being executed over the first four years. The first scenario led to achieving 

an acceptable overall pavement surface condition. However, the condition of pavement segments 

continued deteriorating until reaching poor condition due to the lack of sufficient financial 

resources in the second scenario. 

The main benefit of using GPS data is the large spatial coverage it provides through a 

sample of cyclists collected over the entire road network. This spatial coverage is crucial to 

establish more realistic urban infrastructure planning models. For instance, GPS trip data help in 

planning new bicycling infrastructure by identifying the network segments that are highly 

traversed by cyclists. Nonetheless, the collected sample of bicycle volumes can be extrapolated to 

AADB by means of regression models based on short- and long- terms counts. Among the 

limitations, first, this study did not consider the practical issues of upgrading bicycle lanes to 

protected paths as well as the potential impact on vehicular traffic conditions. Second, further 

investigation is needed to define the criterion in terms of bicycle volume to trigger the upgrading 

intervention instead of using the 33th percentile value of bicycle counts in this study. 
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The proposed decision-making model in this study can be extended to include other factors 

such as vehicular traffic flows, environmental impact, vehicle operating costs, and social 

characteristics of urban neighbourhoods. Finally, this study attempts to propose an integrated 

decision-making model that assists government agencies, municipalities, policy makers, urban 

planners, and engineers in establishing more efficient strategies to promote bicycling in cities.  
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6. Chapter 6: Conclusions and Recommendations 

6.1 Conclusions 

This research has presented an extension to traditional performance-based optimization for 

strategic management of road infrastructure to incorporate bicycling demand in cities. The main 

objective is to propose a decision-making model that assists policy makers in establishing 

strategies that supports sustainability in cities and encourage bicycling among individuals. The 

model presented in this research can be extended to include vehicular traffic; vehicle operating 

cost induced by surface roughness; environmental impact from maintenance and rehabilitation 

actions; and social characteristics of urban neighbourhoods. 

The first goal of this thesis was to introduce an approach to develop an initial pavement 

management system for on-street bicycle facilities. This approach adopted the concepts of 

traditional pavement management system. Historical data of pavement surface condition in terms 

of IRI for roads with low traffic load intensity were used to develop pavement performance 

prediction models that are transferable to bicycle facilities. Moreover, the proposed approach 

demonstrates the utilization of smartphone capabilities in collecting pavement surface condition 

data via built-in accelerometers that are able to capture the surface vertical irregularities. 

Smartphones can provide, in absent of surface data collected through standardized methods, a 

practical solution to collect data and provide indicators about the current pavement surface 

condition. The coordination of maintenance and rehabilitation projects was accomplished through 

the application of linear optimization software Remsoft® Spatial Planning System 4.0; which 

allows selecting the most cost-effective set among various treatment alternatives. A case study of 

a portion of the roads in Plateau-Mont-Royal region in Montreal was used to demonstrate the 

proposed approach. Plateau-Mont-Royal region was selected since it has around 44 km of bicycle 

lanes. A long-term plan, over a span of 40 years, was established to achieve and sustain an 

acceptable overall pavement surface condition, and maximize the operational efficiency. The 

results show that an annual budget of around $200,000 is sufficient to improve the surface 

condition of bicycle lanes in the study area up to a good level and then to sustain that level. 

The second objective of this research aimed at extending the mathematical formulation of 

traditional management system of road infrastructure to incorporate bicycling demand. The 
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presented approach, first, identifies the optimal set of M&R actions over a long-term planning 

horizon that achieves and sustains an acceptable level of service in terms of pavement surface 

condition at the network-level, second, upgrade the bikeway network to increase bicycling rates 

and promote bicycling as a sustainable mode of transportation. Goal optimization was applied to 

maximize mean pavement surface condition (i.e. minimize average IRI of all segments), and 

maximize bicycling rates over the entire network. The bicycling facilities were classified into cycle 

tracks (i.e. protected bicycle paths), bicycle lanes, off-street facilities, and those shared with 

motorized traffic. Based on previous studies, providing more cycle tracks has a significant positive 

influence on bicycling rates. For instance, the physical separation of cyclists from motorized traffic 

results in improved safety conditions. Consequently, the set of interventions investigated in this 

study included reconstruction, major rehabilitation, preventive treatment, and upgrading to 

physically separated bicycle paths (cycle tracks). Furthermore, this work employed the capabilities 

of smartphones in representing bicycling demand through a sample of bicycle volumes over the 

entire road network. The bicycle counts on network segments were estimated based on GPS traces 

of cyclists across the city. The results show that an annual budget of CAD$320 million is required 

to achieve and sustain an acceptable overall pavement surface condition, while all bicycle lanes 

are being upgraded to cycle tracks in the first year. Whereas, an annual budget of CAD$138 million 

is not sufficient to keep the pavement condition in the network at serviceable levels, though bicycle 

lanes will be upgraded during the first four years. 

6.2 Future Work 

In terms of modeling, accurate costing, intervention effectiveness and pavement 

performance are crucial for the trade-off between condition, intervention and potential impact on 

bicycling demand. In this research some of such values were approximated (intervention unit cost), 

others incorporated from common practices (treatment applicability) and some assumed (potential 

impact on demand) in the agreement with the purposes of this academic work. In addition, the 

development of specific PPP models for physically separated bicycle pathways (e.g. cycle tracks) 

is recommended since these pathways do not carry vehicular traffic. 

In this research, a potential increase of 150% in bicycle ridership was assumed; however, 

microsimulation of bicycling traffic should be conducted to investigate the impact of various 
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designations of bicycle infrastructure on safety levels. Once new facility is added or an existing 

facility is improved, bicycle traffic in the network is expected to be affected and more bicycle 

riders are expected to be attracted, depending on how attractive the facility is. 

Further, to enhance our understanding of behavioural aspects of cyclists, impedance factors 

should be estimated via the development of route choice models with a consideration to different 

designations of bicycling facilities and various configurations of bicycle pathways in terms of 

separation from other road users. In this context, GPS trip data provide a rich source to develop 

such more realistic models that are able to capture and predict patterns of demand, route 

preferences, and other behavioural factors. 

Before and after studies should be conducted after the implementation of protective 

measures to evaluate the effectiveness and more accurately determine the impact on bicycling 

demand. 

Nonetheless, first mile and last mile initiatives such as heated cabins; showers; and bike 

parking at bus stops, rail and transit stations, particularly sheltered or guarded, can be provided to 

encourage the modal shift towards bicycling in cities. Most bike parking in cities is in unsheltered 

bike racks on sidewalks, so there is a need to providing sheltered parking, at least covered with a 

roof. Guarded parking can also be provided to prevent theft, both in special facilities such as bike 

stations and in outdoor parking guarded by attendants. 

The incorporation of such initiatives as well as safety measures and pathway related 

improvements into management systems help in developing a more comprehensive decision 

making– behavioural framework. 
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