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General Abstract 

Assessing limitations on reintroduction success: the influence of spawning habitat and 

thiamine deficiency on Atlantic salmon in Lake Champlain  

With the decline of freshwater fish populations, reintroductions are becoming more prevalent. In 

this study, we evaluated two limiting factors on the reintroduction success of Atlantic salmon 

(Salmo salar) within the Lake Champlain Basin: 1) the effects of dam removal on spawning 

habitat availability; and 2) the influence of thiamine deficiency, caused by the consumption of 

non-native alewife, on the survival and behavior of salmon embryos. The removal of the 

Willsboro dam increased availability of spawning habitat for Atlantic salmon by allowing them 

to access large areas of good quality habitat upstream of the former dam site and improving the 

quality of the small area of habitat available downstream. However, reproductive success may 

still be limited by thiamine deficiency. High young-of-the-year mortality occurred in families 

with egg thiamine levels up to 8.5 nmol/g, indicating a larger influence on recruitment then 

previously thought based on the 1.1nmol/g threshold for Atlantic salmon given in the literature. 

Though we did not find any behavioral evidence to suggest low thiamine embryos could not 

partake in early feeding, which may help to naturally mitigate the effects of the deficiency, 

recruitment remains low within the basin, suggesting the potential need for more controlled 

management. While this study helps to fill a gap in the literature on reintroduction monitoring 

and demonstrates the complex nature of population reestablishment, the results also contribute to 

the overall knowledge on dam removal and thiamine deficiency, which can be applied to 

research and management outside of the framework of reintroductions.  
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General Introduction 

While freshwater ecosystems are of significant value economically, culturally, and 

biologically they are also extremely vulnerable to anthropogenic influences (Vörösmarty et al., 

2010). Urban and agricultural run off pollutes local river and lakes, dams modify flows and 

fragment habitats, and commercial and recreational harvests deplete fish communities (Dudgeon 

et al., 2006). Consequently, many species that inhabit freshwater systems are at risk (Dudgeon et 

al., 2006). Two-hundred and eighty taxa of freshwater fishes are in decline in North America 

alone while another 61 have been extirpated (Jelks et al., 2008). Species reintroductions have 

been increasingly employed as a conservation tool to combat this biodiversity loss (Cochran‐

Biederman et al., 2015). A reintroduction is the intentional movement and release of an organism 

within its indigenous range in an effort to re-establish a viable population (IUCN, 2013). Many 

reintroduction programs have been successful in re-establishing extirpated populations, however, 

approximately the same number have been unsuccessful (George et al., 2009; Cochran‐

Biederman et al., 2015).  

While population reintroductions are conceptually simple, there are many biotic and abiotic 

factors that influence reintroduction success that need to be considered (Cochran‐Biederman et 

al., 2015; Galloway et al., 2016). Though efforts may be limited by administrative factors such as 

funding, the biological limitations on reintroduction success can be grouped broadly into two 

main categories: 1) those pertaining to the ability of a donor population to support the 

reintroduction and 2) those pertaining to the ability of the recipient ecosystem to support the 

reintroduction (Dunham et al., 2011). The ability of a donor population to support a 

reintroduction can be constrained by its genetic and biological similarity to the extirpated 

population or its’ overall genetic diversity (Fischer and Lindenmayer, 2000; Dunham et al., 
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2011).  These factors can limit the genetic variation within a population and their ability to 

successfully adapt to the new environment (Fischer and Lindenmayer, 2000). Of equal 

importance is the ability of the receiving ecosystem to support the reintroduced population, 

which is influenced by factors such as habitat and food availability, or the presence of invasive 

species that might outcompete or prey upon the reintroduced native (George et al., 2009; 

Cochran‐Biederman et al., 2015). It is often assumed that a species’ presence within a given 

range historically indicates that the same area will be the best location in which to return it. 

However, many ecosystems are undergoing accelerated rates of change due to climate change 

and continual human influence (Seddon et al., 2014) and may no longer be suitable for the 

population (IUCN, 2013; Seddon et al., 2014).  

In this thesis I will be focusing on the second category of limitations, factors within the 

receiving ecosystem that influence reintroduction success, and how they have effected the 

recolonization success of reintroduced Atlantic salmon in the Lake Champlain Basin. Atlantic 

salmon were extirpated from Lake Champlain in the 1800s due to overfishing and the damming 

of many of the tributaries which feed the lake (Marsden and Langdon, 2012). However, they 

were reintroduced in the 1970s. Since that time roughly 450,000 fry and 240,000 smolts have 

been stocked into Lake Champlain’s major tributaries yearly in hopes of creating a self-

sustaining population. While adult salmon return annually to these tributaries to spawn, there has 

been limited reproductive success and a self-sustaining population has yet to be achieved. 

Reintroduction success in Lake Champlain may be constrained by several different factors 

including, but not limited to, the presence of invasive alewife which cause thiamine deficiencies 

in salmonids when consumed in large quantities, habitat degradation due to land development for 

commercial and recreational use, and disrupted migration due to the damming of many of the 
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tributaries in which salmon traditionally spawned. As part of an ongoing adaptive management 

program employed by the United States Fish and Wildlife Service I have examined two specific 

factors thought to be of concern. In chapter 1 I explore the effect of dam removal on the 

availability and quality of spawning habitat for Atlantic salmon on the Boquet River, a major 

tributary of Lake Champlain. In chapter 2 I examine the influence of thiamine deficiency on 

juvenile recruitment within the system by assessing differences in survival and behavior of 

salmon larvae with naturally varying egg thiamine levels.   
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Effect of dam removal on the quality and availability of spawning habitat for a 

reintroduced Atlantic salmon population 
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Abstract 

By impeding migration and degrading habitat downstream, dam construction has caused 

severe population declines in many migratory fish populations. The landlocked Atlantic salmon 

(Salmo salar) reintroduction program in Lake Champlain provides a useful opportunity to study 

the effects of dam removal on spawning habitat quality and availability. Spawning habitat 

surveys were conducted downstream of the former Willsboro Dam on the Boquet River, New 

York, before and after its removal in 2014, 2016, and 2017 and in historical spawning grounds 

farther upstream in 2016 and 2017. Habitat use was quantified by measuring depth, water 

velocity, and substrate size at each redd. To ensure a sufficient sample of redds above the former 

dam site, 81 and 87 adult salmon were translocated upstream in the fall of 2016 and 2017, 

respectively. Mean habitat use did not differ between the two sites for any habitat variables in 

2016 and only differed for depth in 2017. However, variation in used depth and substrate were 

lower in traditional spawning grounds upstream in 2016, likely due to an abundance of habitat. 

Downstream, the mean and variance in depth at redds decreased after dam removal as did the 

variance in substrate size, increasing habitat suitability within the site overall. When compared to 

primary literature data, habitat used upstream of the former dam was of good quality in both 

2016 and 2017 and improved downstream after dam removal. This study illustrates that positive 

shifts in habitat quality and use can occur rapidly following dam removal through increased 

access to suitable spawning habitat upstream and improvements in habitat downstream. 

 

Keywords: Dam removal, Reintroduction, Spawning habitat, Atlantic salmon 
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Introduction 

 Anthropogenic activities have altered freshwater ecosystems worldwide, putting both 

species and the ecosystem services they provide at risk (Dudgeon et al., 2006; Vörösmarty et al., 

2010). In North America alone, 39% of all described freshwater fish species are considered to be 

imperiled, and 61 taxa are now presumed to be extinct (Jelks et al., 2008). In some systems 

where populations have been extirpated, reintroduction programs are ongoing, but these 

programs are not always successful in creating self-sustaining populations (Cochran-Biederman 

et al., 2015; Gephard and McMenemy 2004). While reasons for this lack of success vary between 

systems, often the initial cause of decline has not been remedied and continues to hinder any 

efforts at restoration (Cochran-Biederman et al., 2015). 

 Habitat degradation and fragmentation are the greatest threats to freshwater biodiversity 

(Jelks et al., 2008; Venter et al., 2006), particularly for migratory species that utilize different 

habitats throughout their life cycle. Anthropogenic barriers such as dams and weirs often impede 

upstream migration, limiting access to traditional spawning and rearing habitat for migratory 

species, leading to severe population declines in many species (Baras and Lucan, 2001; Limburg 

and Waldman, 2009). While some habitat may be available below a dam site, it may be 

insufficient to support a viable population. Obstructed flow and sediment transport can also lead 

to the loss of important gravel bars downstream, decreasing habitat quality (Ligon et al., 1995). 

Installation of fishways and fish lifts improve passage in some areas, but in many cases less than 

half of the fish that attempt passage succeed (Brown et al., 2013; Noonan et al., 2011). With an 

increasing awareness of their negative effects, the removal of aging dams is becoming more 

common in the United States and Canada, as well as parts of Europe and Australia (Harris et al., 

2017; Lejon, et al., 2009; O'Connor et al., 2015; Stanley and Doyle, 2003). 
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 The Atlantic salmon reintroduction program in Lake Champlain provides a useful 

opportunity to study the relationship between spawning habitat availability and recolonization 

success. Lake Champlain had a thriving landlocked Atlantic salmon population (Marsden and 

Langdon, 2012), which supported commercial fisheries in both the United States and Canada. 

The native population was extirpated in the 1800s, due in part to the damming of tributaries 

flowing into the lake. A stocking program was initiated in the lake and its tributaries in 1962; 

each year an average of 450,000 fry and 240,000 smolts are stocked into the system (Marsden 

and Langdon, 2012). However, a self-sustaining population has yet to be established; dams that 

still obstruct most rivers in the Lake Champlain basin likely contribute to this lack of success. 

 In August 2015, a run-of-the-river dam was removed from the Boquet River, in 

Willsboro, New York. Located 3.2 kilometers from the mouth of the river, the dam prevented 

returning Atlantic salmon from reaching their historical spawning grounds upstream. While a 

fish ladder was installed in 1982, passage numbers were variable in the years prior to removal 

(Lake Champlain Fish and Wildlife Management Cooperative, 2009 - 2014) and most 

reproduction took place in a 400-meter reach below the dam. Habitat within this reach was 

thought to be of poor quality, as there had been no confirmed fry production (Ashlee Prevost, 

Concordia University, 2016, personal communication).  

Atlantic salmon redd surveys were conducted below the former dam site in 2014, 2016, 

and 2017 and in traditional spawning grounds further upstream in 2016 and 2017 as part of an 

ongoing monitoring program exploring the effects of the Willsboro dam removal. Because 

passage success was unknown after dam removal, we supplemented the breeding population 

upstream of the previous dam site by trapping adult salmon below the cascades in 2016 and 2017 

and moving them upstream to traditional spawning sites. These surveys had two main objectives. 
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First, we quantified the habitat used by spawning individuals (i.e. redds) both above (upper site) 

and below (lower site) the former dam site to explore differences in the mean and variance of 

habitat used between the two sites. Second, we quantified whether habitat quality changed in the 

lower site after dam removal. To do so we measured depth, substrate size and water velocity at 

redds, and at randomly selected sites nearby that were not used for spawning. Habitat quality was 

inferred by assigning habitat suitability scores to our data based on a meta-analysis (Louhi et al. 

2008). These data were used to test the following predictions: 1) habitat used for spawning 

would differ upstream and downstream of the dam/cascades; 2) the variance in used habitat 

would be higher downstream than upstream, because of the limited habitat below the 

dam/cascades; and, 3) habitat suitability would be higher upstream than downstream of the 

dam/cascades.  
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Materials and Methods  

Study Site 

 The Boquet River originates in the Adirondack Mountains, and flows 125 km before 

emptying into Lake Champlain just east of Willsboro, New York (Wu and Kalma, 2013). Until 

the summer of 2015, the upstream migration of salmon was inhibited by the Willsboro dam, a 3 

x 61 m (height x length) timber crib structure originally built in the early 1800’s and most 

recently rebuilt in 1983 (American Rivers, 2018; Putman, 2015). The dam was constructed 

directly upstream of a series of bedrock cascades, hereafter referred to as the Willsboro 

Cascades, that present the first natural obstacle to salmon migrating upstream (Harbicht et al., 

2018; Putman, 2015). Obstruction caused by the dam was partially mitigated by a denil-style 

fishway, but the number of fish passing upstream in recent years was low and variable, ranging 

from 0-43 per year (Harbicht et al., 2018; Lake Champlain Fish and Wildlife Management 

Cooperative, 2009 - 2014). The dam and fishway were removed to allow spawning salmon to 

migrate through the cascades as they did in the 1800’s (Marsden and Langdon, 2012). However, 

after removal, sediment that had accumulated upstream of the dam was released, and may have 

filled important plunge pools within the cascades, making the cascades mostly impassable (Lake 

Champlain Fish and Wildlife Management Cooperative, 2015). Migration monitoring was 

conducted in the fall of 2015 using a fyke net both above and below the former dam site. While 

these data could not confirm the passage of any fish, a genetic analysis of young-of-the-year 

captured in traditional spawning grounds upstream, during the summer of 2016, indicated that 

some adults were able to bypass the cascades successfully (Ashlee Prevost, Concordia 

University, 2018, unpublished). 
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Translocation 

 To facilitate salmon migration, returning adults were intercepted during the fall of 2016 

and 2017 in the two large pools directly below the Willsboro Cascades. Pools were fished twice 

a week from 13 September to 11 November, 2016, and 18 September to 17 November, 2017. A 

15 m Duluth gill net, with a stretched mesh size of 8 cm, was deployed either by canoe or on foot 

within each pool for a maximum of three minutes, up to 15 times per day. Once a salmon was 

caught, we removed it immediately from the net and placed it in a flow-through bin at the side of 

the pool to recover. Each fish was identified with a Floy tag, and measured for length and 

weight. Eighty-one adult salmon (49 males and 32 females) were translocated in 2016, and 87 

(58 males and 29 females) in 2017. Fish were out of water for less than 30 seconds, so we did not 

use anesthetic for this procedure. Up to ten salmon at a time were placed in a 946 L oxygenated 

tank and transported via truck to a release site in North Branch of the river, 13 km upstream. To 

protect spawning Atlantic salmon, fishing is prohibited in this area by the New York Department 

of Environmental Conservation during the spawning run. While most fish were released in the 

same site, the location was changed to a more remote area 5.3 km farther upstream in late 

October 2017 due to concerns about poaching. 

Habitat Surveys 

 In the fall of 2014, during a previous study on the Boquet River, GPS coordinates were 

collected for 80 redds located below the Willsboro Dam using by Andrew Harbicht (Karlstads 

Universitet, 2015, personal communication). In July 2015, habitat measurements could only be 

taken for a random sample of 30 of these redds, as time was limited before the removal of the 

dam. 

 In late November 2016, redd surveys were conducted on foot below and above the old 
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dam site. We found 69 redds in a 400 m reach below the Willsboro Cascades, and 83 redds in a 

15-km reach of the North Branch, beginning 4 km downstream of the release site (Figure 1.1). 

Due to early ice formation on the river in fall 2016, redd habitat measurements could not be 

taken until 2017. River discharge rates were too high during the spring to be representative of 

spawning conditions, so measurements were taken between 30 July and 16 August, when the 

average river discharge was within 2.8 m3/s of fall conditions (Table 1.1).  

 In 2017, we found and measured 32 redds during the spawning run, from 29 September 

to 4 December, in a 20 km reach in the North Branch, beginning 9 km downstream of the 

original release site and continuing 11 km upstream from the release site (Figure 1.1). We found 

only 9 redds in the same 400 m reach below the Willsboro Cascades (Table 1.1). Habitat 

measurements and GPS coordinates were taken at each redd on the day it was located. 

 Three habitat variables were measured at each redd: water depth, mean water column 

velocity (40% of the water column) and dominant surface substrate size. Substrate was 

quantified using the modified Wentworth Scale: 1, 0.07–2 mm; 2, 2.1–8 mm; 3, 8.1– 16 mm; 4, 

16.1–32 mm; 5, 32.1–64 mm ; 6, 64.1–128 mm; 7, 128.1–256 mm; 8, 256.1–512 mm; 9, 512.1–

1024 mm; 10, bedrock (Heggenes and Dokk, 2001; Mäki-Petäys, 2004). Water velocity was 

measured using either a Marsh McBirney Flo-Mate 2000 velocity meter or a Swoffer 2100 flow 

meter, depending on availability. These habitat variables were chosen because they are 

considered to be important for reproductive success and are routinely measured when 

quantifying redd habitat (Louhi et al., 2008).  

 For each redd, the same three habitat variables were measured at a random point that was 

not used for spawning. In 2014, unused points were extracted randomly from transects of the 
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area taken on the same day. These unused points were on average 19 m away from a nearby 

redd. In 2016 and 2017, unused points were measured 3 to 4 m away from each redd.  

Statistical Analysis 

 Welch’s t-tests were used for each habitat variable to compare differences in habitat use 

above and below the previous dam site in 2016 and 2017. The Welch’s adjustment was necessary 

to account for unequal variances between samples. Variance in habitat use was compared 

between the upper and lower sites using F tests. Variance in habitat not used was also compared 

between sites to control for differences in the overall variability of habitat between sites.  

 To compare changes in habitat use between years for data collected in the lower site, one-

way ANOVAs were used. Levene’s tests were used to compare variance between years for each 

habitat variable, for both habitat used and habitat not used. Depth and substrate were particularly 

heteroscedastic between years, even after a square root transformation, so a Welch’s correction 

for heteroscedasticity was applied. When ANOVAs were significant, post-hoc Welch’s t-tests 

were used with Bonferroni-corrected p-values; standard posthoc tests, such as Tukey’s test, are 

not compatible with Welch’s ANOVA.  

 We evaluated the quality of the habitat used for spawning in each site and each year by 

comparing our data to suitability curves from a meta-analysis (see Figure 2 in Louhi et al., 2008). 

We interpolated suitability values for each habitat measurement from these curves and generated 

mean suitability scores for each habitat variable in a site. Suitability scores were generated for 

both used and not used habitat. We considered the habitat used in a site to be of good quality if it 

had an average suitability score > 0.5 for all habitat variables (Brown et al., 2000).  
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Results  

 Contrary to our first prediction, there were few indications that the habitat used for 

spawning differed above and below the former dam (Figure 1.2). In 2016, there were no 

differences in mean depth (Welch’s t103.7 = -0.87, p = 0.39), velocity (t129.55 = 0.76, p = 0.45), and 

substrate (t100.69 = -0.06, p = 0.96) of redds in the upper and lower sites (Figure 1.2). Similarly, in 

2017, velocity (t9.78 = 2.00, p = 0.073) and substrate (t14.09 = 0.75, p = 0.48) did not differ, but the 

mean depth of redds was greater in the upper than the lower site (Welch’s t-test, t13.4 =2.45, p = 

0.029). 

 Consistent with our second prediction, the variance in habitat used in 2016 was typically 

higher below the former dam site than upstream (Figure 1.2). The variance in depth (F test, F65,77 

= 2.69, p < 0.001) and substrate (F 65,77 = 2.96, p < 0.001) were higher in the lower than in the 

upper site, but not for current velocity (F65,77 = 1.34, p = 0.21). For substrate, these differences 

were not seemingly due to a difference in the variability of available habitat within each site, as 

the variance in unused habitat did not differ significantly above and below the cascades (F65,77 = 

1.08, p = 0.38). However, the greater variance in depths used below the cascade may have been 

related to the greater variance in available depths in the lower than in the upper site (F test, F65,77 

= 1.90, p = 0.004). In 2017, when few fish spawned below the cascades, the variance in habitat 

used did not differ between the lower and upper sites for any habitat variables (all P-values > 

0.28).  

 There were few changes in habitat used for spawning above the cascades between 2016 

and 2017 (Figure 1.2). Substrate (t41.3 = 0.07, p-value = 0.95) and current velocity (t82 = -0.51, p-

value = 0.62) used did not differ between years, but salmon used greater depths in 2016 than in 

2017 (Welch’s t-test, t67 = 1.76 p = 0.041). Below the cascades, depth over redds decreased after 
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the dam removal (Welch’s ANOVA, F2, 28.8 = 12.77 p-value < 0.001). However, substrate size 

(Welch’s ANOVA, F2,22.2 = 2.04, p = 0.15) and current velocity (ANOVA, F2, 102 = 3.00, p = 

0.055) did not change significantly after dam removal. Variance in use of substrate (Levene’s 

test, F2,102 = 6.31, p = 0.0026) and depth (Levene’s test, F2,102 = 6.62, p = 0.0020) in the lower 

site decreased significantly after dam removal. Variance in substrate also decreased in areas not 

used for spawning (Levene’s test, F2,102 = 3.64, p = 0.030). 

 If a suitability value of 0.5 is an indicator of good quality habitat (Brown et al., 2000), 

then the habitat used above the cascades was of excellent quality. Based on the confidence 

intervals for all three habitat variables, the average suitability scores above the cascades were 

significantly higher than 0.5 (Figure 1.3). As predicted, the suitability scores were higher above 

rather than below the cascades before the dam was removed. After dam removal, the suitability 

values improved markedly below the cascades for current velocity, slightly for substrate size, but 

did not improve for depth (Figure 1.3).  
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Discussion  

Though dam removals are becoming more prominent globally, our knowledge of their 

ecological impacts is far from complete (Harris et al., 2017; Lejon, et al., 2009; O'Connor et al., 

2015; Stanley and Doyle, 2003). Post removal monitoring is critical to adaptive management, but 

few studies have monitored or reported whether restoration goals were achieved following dam 

removal (Babbitt, 2002; Brewitt, 2016). Every removal differs, due to the particularities of each 

dam and watershed, but the data and insight collected from each case contributes valuable 

knowledge to the growing science of dam removal. Our study helps to fill the literature gap on 

post removal monitoring and will hopefully lend support to similar policy decisions regarding 

aging dams in other systems. 

At the time of the study, no young-of-the-year (YOY) salmon had been observed below 

the Willsboro Cascades, though they had been documented in traditional spawning grounds 

upstream. Because of this, the habitat in this lower site was thought to be of poor quality. 

However, mean habitat used did not differ upstream and downstream of the Willsboro Cascades 

in 2016 and 2017. While suitability scores were consistently higher upstream than downstream 

of the cascades in both years, the differences were small. These data suggest that the habitat at 

both sites was of good quality after removal of the dam. The amount of habitat available below 

the cascades, rather than its quality, is likely the limiting factor on overall spawning success in 

this site.  

Variance in habitat use was greater downstream than upstream of the Willsboro Cascades 

for both depth and substrate. This difference was not due to differences in the overall variability 

of habitat available within each site, as the variance in depths and substrates not used for 

spawning did not differ between the two sites. Rather, the greater variance in the lower site was 
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likely due to the small area of habitat available for spawning downstream of the cascades. These 

observations are consistent with the theory of density dependent habitat selection (Fretwell and 

Lucas, 1970): the high density of spawners in the lower site in 2016 likely forced some salmon to 

spawn in less than ideal micro-habitats. While Atlantic salmon are not territorial after spawning, 

they will defend their redd site for multiple days during construction of the redd and oviposition 

(Fleming, 1996). In 2017, the variance in habitat use was similar for all habitat variables above 

and below the Willsboro Cascades, presumably due to the low density of spawners below the 

cascades and the abundance of habitat above. While suitability scores for depth and substrate 

size were above 0.5 below the cascades, column velocity had a low suitability score, suggesting 

that velocities both used and available for salmon were not ideal.  

Differences in habitat quality between upstream and downstream sites appeared to be 

decreasing over time, perhaps due to the removal of the dam. Below the cascades, mean depth 

used for spawning decreased progressively after dam removal. Though discharge on days 

sampled was highest in 2014, it was similar between 2016 and 2017, suggesting that this change 

was not merely a reflection of changes in discharge (Table 1.1). The variance in habitat used and 

not used also decreased for substrate after dam removal, potentially indicating that the habitat 

has become more uniform. Suitability scores were in fact higher in 2016 and 2017 compared to 

2014 for both used and not used habitat (Table S1.1), suggesting the change in mean habitat use 

and variability may reflect better habitat quality overall. These trends are consistent with other 

research on the downstream effects of dam removal. For example, Hatten et al. (2016) found a 

50% decrease in pools and an overall increase in salmon spawning habitat following dam 

removal.  
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Given the apparent increase in spawning habitat quality, it is tempting to speculate 

whether the habitat below the cascades can become a productive habitat for Atlantic salmon in 

the future. However, regardless of quality, the habitat directly below the cascades is limited and 

would likely not be sufficient to support the large number of YOY emerging from any successful 

redds. Additionally, any emerging fry that dispersed downstream would encounter poor habitat, 

characterized by sand and slow current velocities. However, the small amount of habitat below 

the cascades does not explain the complete absence of YOY found in the previous surveys. Other 

habitat variables that were not measured in this study could also be influencing reproductive 

success. Qualitative observations suggest that fine sediment (< 2 mm) infiltration, which can lead 

to the suffocation of gametes during the overwintering stage, may also be a limiting factor.  

Fewer than 100 YOY were observed in traditional spawning sites upstream (Ashlee 

Prevost, Concordia University, 2017, personal communication), suggesting factors other than 

habitat may be inhibiting reproductive success. Early Mortality Syndrome, a condition caused by 

maternally transferred thiamine deficiency, causes up to 100% mortality in juvenile salmon 

(Fisher et al. 1995, Ketola et al. 2000, Werner et al. 2006) and is known to occur in the Lake 

Champlain watershed. Currently there are no measures in place to mitigate its effects for 

naturally spawning individuals (Harbicht et al., 2018).  

Though unavoidable, measuring used habitat for the 2014 and 2016 redds the following 

summer, rather than during the fall spawning run, raised two important caveats with our data: 1) 

that habitat conditions may have changed at redd sites between seasons and 2) that habitat 

measurements may have been taken at incorrect locations due to the accuracy of the Garmin 

eTrex 20x gps (±3 meters). While it is important to acknowledge these caveats, there is evidence 

to support the validity of our data in representing spawning habitat choice. First, the redds 
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located below the Willsboro Cascades in 2014 and 2016 were densely packed within a small 

area, meaning that any location within 3 m of a given redd would have been “suitable” habitat 

for spawning. Additionally, habitat used for redds in the downstream site did not differ 

significantly from random sites that were within 3-19 m for 7 of 9 (3 years x 3 variables) 

comparisons (Table S1.1). These data suggest that microhabitat was relatively consistent at a 3 m 

spatial scale. The locations of redds at the downstream site were also very consistent over years, 

indicating that the river did not change markedly over time. Above the cascades, neither the 

suitability scores for habitat used nor mean substrate or water velocity used deferred between 

2016, when habitat was measured eight months after spawning, and 2017, when habitat was 

measured during the spawning season. These data suggest that the river did not change markedly 

over time and that the timing of the measurements had little effect. While our data have some 

limitations, these analyses suggest that they provide a valid description of habitat quality in the 

Boquet River.  

Overall, the removal of the Willsboro dam has been a positive step towards the re-

establishment of a naturally reproducing Atlantic salmon population in Lake Champlain. With 

our help, salmon were able to bypass the Willsboro Cascades and rapidly recolonize the newly 

accessible habitat upstream of the former dam site. They are also using habitat within the suitable 

range for the species (Louhi et al., 2008) despite the potential novelty of the area. Our study 

suggests that salmon will benefit from an increase in spawning habitat quantity and quality after 

dam removal and that improvements in spawning habitat below a former dam site can occur 

within a few years. 
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Tables 

Table 1.1 The number of Atlantic salmon redds located each year in the Boquet River and the 

average river discharge, from a United States Geological Survey water gauge located just 

upstream of the Willsboro Cascades, during the time they were located and the time during 

which habitat measurements were recorded. 

Year Site 
Redds 

Located 

Redds 

Measured 

Average Discharge 

During Spawning 

(m3/s) 

Average Discharge 

During Habitat 

Surveys (m3/s) 

 
  

   

2014 Lower 67 30 5.90 (2.71 – 39.64) 7.33 

2016 Lower 69 66* 2.61 (1.03 – 8.64) 4.08 (3.06 - 5.13) 

2016 Upper 85 78* 2.61 (1.03 – 8.64) 4.47 (3.14 – 5.10) 

2017 Lower 9 9 5.21 (4.70 – 5.58) 5.21 (4.70 – 5.58) 

2017 Upper 32 32 5.61 (2.92 – 12.37) 5.61 (2.92 – 12.37) 

 

*redds in water deeper than 1 m were not measured 
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Figures 

 
Figure 1.1 The Boquet River in New York, U.S.A., showing the lower site, below the Willsboro 

Cascades (Box A) and the upper site in the North Branch (Box B). Atlantic salmon redd 

locations are indicated by squares (2014), circles (2016), and triangles (2017). The former dam is 

indicated by the striped box and the downstream flow of the river is indicated with an arrow.  
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Figure 1.2 Mean and standard deviation of Atlantic salmon spawning habitat on the Boquet 

River for depth, column velocity, and substrate size downstream (lower) and upstream (upper) of 

the former dam site, respectively.   
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Figure 1.3 Mean (±95% CI) suitability scores for depth (A), column velocity (B), and substrate 

size (C) of used Atlantic salmon spawning habitat on the Boquet River downstream (lower) and 

upstream (upper) of a former dam site. Scores for the upper site were combined as there were no 

significant differences between years. The dashed line denotes the 0.5 threshold for good quality 

habitat while the dotted line indicates the removal of the Willsboro dam in 2015. 
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Supplementary Material 

Table S1.1 Average suitability scores (± 95% CI) for Atlantic salmon spawning habitat on the 

Boquet River calculated from the suitability curves in Louhi et al., (2008). Scores range from 0 

to 1 with 1 being the highest. Scores for the upper site were combined as there were no 

significant differences between years. 

Habitat Variable 

Suitability Score 

Lower  

2014  

Lower 

2016  

Lower  

2017  

Upper 

2016 + 2017 

     

Water Depth  

(Used)  

 

0.59 ± 0.10 0.71 ± 0.05 0.80 ± 0.20 0.80 ± 0.03 

Water Column Velocity  

(Used) 

 

0.44 ± 0.09 0.61 ± 0.06 0.52 ± 0.10 0.69 ± 0.04 

Substrate  

(Used) 

 

0.47 ± 0.12 0.67 ± 0.08 0.57 ± 0.21 0.71 ± 0.05 

Water Depth  

(Not used) 
0.59 ± 0.09 0.72 ± 0.05 0.67 ± 0.12 0.75 ± 0.04 

Water Column Velocity  

(Not used) 
0.38 ± 0.12 0.57 ± 0.06 0.39 ± 0.17 0.61 ± 0.06 

Substrate  

(Not used) 
0.31 ± 0.12 0.65 ± 0.15 0.56 ± 0.27 0.52 ± 0.06 
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Abstract 

The introduction of alewife to freshwater ecosystems in the eastern United States and 

Canada has resulted in the development of thiamine deficiencies in many local salmonids. These 

deficiencies often lead to a condition known as Early Mortality Syndrome (EMS) in which high 

mortality is experienced in salmonid embryos between hatching and button up (i.e. when yolk is 

fully absorbed). We explored the influence of egg thiamine level (ETL) on the behavior and 

mortality of embryos from 17 families of landlocked Atlantic salmon (Salmo salar) from Lake 

Champlain with naturally varying egg thiamine levels. Embryos from each family were divided 

into two groups, one treated with thiamine and one untreated, allowing for treatment 

comparisons within families. Behavioral responses to light and physical stimulus were evaluated 

at the free embryo and button up life stages. Survival was consistently lower in untreated fish 

than thiamine treated fish, but increased to > 80 % as ETL increased to 8.5nmol/g. EMS 

occurred in untreated individuals in all families with ETL below 2.7 nmol/g, and varied in 

families between 2.7 and 8.5 nmol/g; ETLs much higher than the previously suggested threshold 

of 1.1 nmol/g for Atlantic salmon. However, no significant behavioral differences were detected 

between treated and untreated salmon at the free embryo life stage, prior to the occurrence of 

high rates of mortality. Our results suggest that the occurrence of EMS may be influenced by 

factors other than ETL at intermediate thiamine levels and that free embryos may be capable of 

foraging on thiamine rich food sources, which could help to mitigate the deficiency before the 

onset of EMS.  

 

Keywords: Thiamine deficiency, Early Mortality Syndrome, Atlantic Salmon, Behavior 
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Introduction 

Invasive species pose a major threat to native populations in freshwater ecosystems 

worldwide (Ricciardi and MacIsaac, 2011). Though the impact of an invasive is often associated 

with their ability to out-compete or prey upon the native species, they may also have more subtle 

effects on local biota (Simon and Townsend, 2003). For instance, the introduced zebra mussel 

has outcompeted native bivalves in the Laurentian Great Lakes, but it has also lead to an 

unanticipated increase in outbreaks of avian botulism (Ricciardi and MacIsaac, 2011) by creating 

environments conducive to the growth of botulism bacteria which they then concentrate within 

their tissues, and pass up the food chain.  

The impact of introduced alewife (Alosa pseudoharengus) on freshwater salmonid 

populations in the eastern United States and Canada is another example in which an invasive 

species has affected the survival or performance of a native species through unforeseen 

interactions. These small forage fish contain gut bacteria that are high in thiaminase, an enzyme 

that breaks down thiamine (Werner et al., 2006). When alewife make up a large portion of the 

salmonid diet, thiamine deficiencies often result, leading to reduced energy levels in adult fish, 

which limit their ability to successfully complete spawning migrations (Fitzsimons et al., 2005; 

Harbicht et al., in press; Ketola et al., 2005). While these effects on adults are serious, the effects 

of the deficiency on the embryos of successful spawners can be even more detrimental. Thiamine 

deficiency is maternally transferred to developing embryos, causing yolk coagulation and 

improper absorption, vascular congestion, and neurobehavioral abnormalities (Fisher et al., 

1995). Such deficiencies often result in high mortality rates (up to 100%) by the button up life 

stage, defined as the stage at which healthy embryos would have depleted their yolk and begun 

exogenous feeding (Fisher et al., 1998; Fisher et al., 1995; Ketola et al., 2000; Werner et al., 
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2006). The condition has been termed Early Mortality Syndrome (EMS) in the Laurentian Great 

Lakes, Cayuga Syndrome in the Finger Lakes of the eastern U.S., and M74 in the Baltic Sea of 

Europe (Brown et al., 2005c; Fisher et al., 1995; Madenjian et al., 2008).  

Research on EMS has been ongoing since the early 1990s. Brown et al. (2005a), Fisher et 

al. (1998), and Werner et al. (2006) all found species-specific threshold egg thiamine levels 

above which high rates of mortality were not experienced. However, few studies have explored 

sublethal effects of thiamine deficiency in individuals that survive with thiamine levels near 

these thresholds. Anything that reduces the ability to capture prey, avoid predation, or hold 

position within the current may inhibit survival beyond the button up life stage (Carvalho et al., 

2009; Fitzsimons et al., 2014). The negative effects on survival can be mitigated by immersion of 

EMS fry in a thiamine solution (Fitzsimons, 1995). Further research has shown that thiamine 

baths can be successfully administered to eggs during water hardening (Brown et al., 2005b), a 

technique which has been adopted by many hatcheries to prevent EMS in their stocks. While 

encouraging for hatchery production, these baths do not solve the problem for naturally 

reproducing populations.  

Limited work on EMS has investigated potential mitigating factors within the natural 

environment that may not be present in a hatchery setting. Ladago et al. (2016) suggested that 

foraging on thiamine rich zooplankton during the free embryo stage, before yolk sac absorption, 

could allow individuals to counteract the deficiency. They showed that lake trout fry begin to 

feed as early as two weeks post hatching, when the yolk sac is still present, and could consume 

enough zooplankton to provide the thiamine needed to offset mortality. Many salmonids are 

thought to begin feeding while yolk is present (Heming et al., 1982; Koss and Bromage, 1990; 

Skoglund and Barlaup, 2006), making this a viable possibility for multiple species. However, if 
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free embryos are weakened by thiamine deficiency early in their development they may not be 

able to forage successfully.  

In this study, we explored the effects of egg thiamine level on behavior and mortality of 

landlocked Atlantic salmon embryos in Lake Champlain. Alewife are thought to have been 

introduced to Lake Champlain in 2003 through an unauthorized stocking event (Marsden and 

Hauser, 2009). Though the native Atlantic salmon population was extirpated in the 1800s, a 

reintroduction program has been present since the 1970s in an effort to re-establish a self-

sustaining population. While this goal has yet to be reached, some natural reproduction was 

documented within the lake’s tributaries in 2016 and 2017 (Ashlee Prevost, Concordia 

University, 2018, unpublished data), suggesting either variability in thiamine levels within the 

population or the presence of a mitigating factor within the river environment.  

The eggs from each of 17 females, that were collected during the 2016 spawning run, 

were fertilized by a separate male, and divided into two groups; one group received a thiamine 

treatment, the other did not. Total egg thiamine levels (ETL) were determined for each family 

and mortality was recorded from hatching to the button up stage. Behavioral assays were 

performed at the free embryo and button-up life stages to explore difference between treatment 

groups, and families with varying ranges of ETL. We predicted that 1) the threshold ETL above 

which EMS would not occur would be around 1.1 nmol/g, based on previous studies by Fisher et 

al. (1998) and Ketola et al. (2000); 2) there would be behavioral differences between thiamine 

treated and untreated individuals, as well as high thiamine and low thiamine individuals at the 

free embryo stage that might prohibit early feeding success or survival; and 3) there would be 

behavioral differences between surviving thiamine treated and untreated individuals at the button 

up life stage indicating potential sublethal effects of thiamine deficiency.  
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Materials and Methods 

Egg Collection and Rearing 

Spawning salmon were collected on the 15 and 17 November 2016 as they migrated from 

Lake Champlain to Hatchery Brook, a small stream originating at the Ed Weed Fish Culture 

Station in Grand Isle, Vermont, U.S.A. Eggs were collected from 17 females over the two days 

(11 and 6, respectively). Each female’s eggs were placed into a 3.8 L bucket for transportation. 

Milt was collected from 14 males on the two days (11 and 3, respectively) and stored in 50 mL 

conical tubes. After collection, eggs and milt were stored on ice and transported to the White 

River Fish Hatchery in Bethel Vermont, 150 km away.  

Eggs were fertilized upon arrival at the hatchery. On 15 November, each female’s eggs 

were fertilized with sperm from a single, unique male. However, on 17 November, due to the 

small number of males collected, each male’s milt was used to fertilize the eggs of 1 to 3 females 

(Table S1.1). After fertilization a sample of eggs from each family was collected for thiamine 

analysis. The remaining embryos were then disinfected in a 50ppm iodophor bath for 30 minutes 

(Kevin Kelsey, Ed Weed Fish Culture Station, 2016, personal communication). Following 

disinfection embryos from each family were split into two groups, one which received a 

10,000ppm thiamine bath for 30 minutes, using PureBulk food grade thiamine mononitrate, to 

treat for thiamine deficiency (Kelsey, Ed Weed Fish Culture Station, 2016, personal 

communication) and one which was bathed in water for 30 minutes. This design allowed for the 

evaluation of both thiamine treated and untreated individuals within each family. Each group of 

fertilized embryos was randomly placed into a separate incubation tray for rearing. Embryos 

were reared on well water (5.7 - 10.9⁰C) and dead individuals were removed from each tray once 

every two weeks between January and February, and once daily from March to April. Total 
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mortality was calculated on 2 April, prior to moving larvae to open tanks to begin exogenous 

feeding. Degree days (dd) were used as a standard unit for monitoring developmental rate 

amongst groups throughout the study. One dd was equal to a 24-hour period in which the mean 

water temperature was 1⁰C.  

Thiamine Analysis 

Egg thiamine was analysed for each family, prior to thiamine treatment, following Futia 

et al. (2017). Free thiamine, thiamine monophosphate, and thiamine pyrophosphate were 

extracted from a 1g sample of fertilized egg tissue and summed to give total thiamine. Once 

extracted, high performance liquid chromatography was used to determine thiamine levels within 

each sample. Each sample was run twice, and the two values were averaged. These analyses 

were completed by Dr. Jacques Rinchard at the College at Brockport, New York. 

Behavioral Study 

Behavioral assays were performed between 662 and 674 dd for the free embryo life stage, 

and 857 and 863 dd for the button up life stage. Previous work has shown that behavioral 

manifestations of EMS arise between 641 to 700 dd (Fisher et al., 1995; Ketola et al., 2000), 

prior to the onset of mortality. Behavior was measured (see below) as a response to light and a 

physical stimulus. During early development, larval salmon are photonegative (Dill, 1977), 

responding to light by hiding within the gravel, protecting them from potential predators. A lack 

of photonegative response would suggest a deviation from normal larval behavior that may 

increase mortality in a natural setting (Fast and Stober, 1984). A physical stimulus mimics 

contact by a predator, which should elicit an even stronger flight response than light (Hale, 

1999).  
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To control for light exposure, assays were performed within a 20m2, portable tent, which 

kept the environment dark throughout the experiment. Three-liter rectangular plastic tanks were 

set up in a two by two pattern on a table within the shelter. Each tank held a single individual per 

trial and was filled with well water (5.7 - 10.9⁰C) to a depth of 2.5 cm to encourage horizontal 

rather than vertical movement. Water was replaced after each trial. Behavior was filmed using 

Canon GL1 and GL2 cameras mounted on tripods above the tanks. Portable clamp lights with 

2700k bulbs were secured to the side of the table and used to provide the light stimulus. The 

physical stimulus was applied as a gentle tap on the caudal fin using a 4.5 mm wide plastic rod. 

Individuals were given 5 minutes to acclimate to the experimental tanks before the light 

stimulus was provided. Response to the light stimulus was recorded for 1 minute, followed by a 

10 minute acclimation period to the lit conditions. After this period the physical stimulus was 

given, and responses were recorded for another minute. Multiple trials were run over a 2-3 day 

period to obtain 8 replicates for each of the two treatments within each family (Table 2.1). To 

account for potential differences caused by the time of day during which a trial was conducted, a 

single fish from each family group was tested before moving on to succeeding individuals, 

thereby dispersing the effect of time of day evenly amongst families. To ensure that no fish was 

assayed twice, individuals were put in a separate hatchery tray after their trial and were 

euthanized using MS-222 upon the completion of the experiment. Due to mortality and 

equipment malfunctions, usable data was not always obtained for all 8 replicates (Table 2.1). 

Only families with at least 1 representative individual from both thiamine treated and non-treated 

groups were included in the behavioral analysis. 

Atlantic salmon embryos from a Merrimack River domestic brood stock were assayed as 

a “control” for this experiment. These individuals, which were also housed at White River Fish 
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Hatchery, were second generation hatchery reared-fish from a line of sea-run salmon that had no 

previous exposure to thiamine deficiency. These fish provided baseline data of how “normal” 

fish should behave. Because Merrimack and Lake Champlain stocks were on different 

developmental schedules, Merrimack fish were tested during alternative sessions on 25 March 

and 21 April, which corresponded to the appropriate developmental stages. The same 

experimental procedures were followed for 20 individuals per life stage.  

Video Analysis  

Videos were analysed using KINOVEA 0.8.15, an open source software used to track and 

study movement. A two by two grid was superimposed upon each tank and the number of times 

a gridline was crossed throughout the 1 minute response period was recorded. To ensure this was 

a good metric for movement, a subsample of individuals from each family was analysed for time 

spent moving (s) and distance traveled (cm). These measurements were taken using the motion 

tracking and stop watch functions in KINOVEA. Results were compared to the gridline data for 

the same individuals. A strong correlation was found between the number of grids crossed and 

distance travelled (r = 0.92, df = 281, p < 0.001) and time spent moving (r = 0.71, df = 281, p < 

0.001).  

Statistical Analysis 

To explore the influence of ETL and thiamine treatment on survival and behavior, 

generalized linear mixed models were constructed using packages lme4 and glmmTMB in R 

3.4.3 (Table 2.2). ETL was log10 transformed prior to testing to reduce the influence of outliers 

from two families that had markedly higher thiamine levels than the rest of the group (Table 

S2.2). ETL, treatment, and their interaction term were analysed as fixed effects in all models. 

The interaction term was only reported when significant. To evaluate the effect of ETL and 
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treatment on survival, a model was constructed using a binomial probability distribution. 

Treatment and family were included as crossed random effects to account for variation amongst 

individuals in different treatment groups within each family.  

When evaluating the effects of ETL and treatment on behavioral response to stimuli, each 

life stage and stimulus was tested separately. Family was incorporated as a random effect in each 

model to account for within family variability. Treatment was not incorporated as a crossed 

random effect as it was for analysing mortality, as it explained very little variance and was 

highly correlated with family in all cases (r > 0.9). Zero inflated negative binomial models were 

constructed for behavioral responses to physical stimulus at both life stages. The negative 

binomial distribution was used to account for higher variance within the data than normally 

observed in a Poisson distribution (over-dispersion) (http://qcbs.ca/wiki/r_workshop7). Zero-

inflated models fit two different distributions to the data, one which modeled count data (number 

of times a gridline is crossed, Poisson/negative binomial distribution) and one which modeled the 

excess of zeros through presence/absence (Bernouilli distribution; whether a fish will cross a 

gridline or not) (Hu et al. 2011). This procedure allowed the models to deal with the large 

number of individuals that did not exhibit a movement response. Akaike information criterion 

(AIC) were used to compare the zero inflated models to their non-zero inflated counterparts, and 

models with the lowest AIC value were selected (Akaike 1987). A zero inflated Poisson model 

was used to analyse the effects of ETL and treatment on light stimulus response at the free 

embryo life stage as over dispersion was minimal (Ф = 1.37). For analysing behavioral response 

to light at the button up stage, a non-zero inflated model with a negative binomial distribution 

was constructed as the data were over dispersed and the non-zero inflated model had a better fit 

(lower AIC) than its zero-inflated counterpart.  
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To compare differences in behavioral responses between our experimental groups from 

Lake Champlain and from the Merrimack River, generalized linear models were constructed 

using MASS and pscl in R 3.4.3. Behavioral responses were tested for each stimulus at each life 

stage separately. Treatment group (thiamine treated, untreated, or Merrimack) was the only fixed 

effect in each model, as ETL was not known for the Merrimack fish. Family was not included as 

a random effect because the family origins for the Merrimack fish were unknown. Zero inflated 

negative binomial models were constructed for response to a physical stimulus at both life stages 

and response to light stimulus at the free embryo life stage. A negative binomial model was 

constructed for response to light stimulus at the button up stage. As above, models were selected 

based on AIC (Akaike 1987).  
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Results 

Survival 

As expected, there was a significant interaction between the effects of ETL and treatment 

on salmon embryo survival (Figure 2.1; Wald’s test, Z = 3.252, df = 27, p = 0.001; all other test 

statistics reported are for Wald’s tests). Survival increased with ETL in untreated fish (Z = 2.896, 

df = 27, p = 0.004), but not in the treated fish (Z = -1.217, df = 27, p = 0.224). Despite this 

interaction, and consistent with previous research, survival was higher in the thiamine treated 

fish than the untreated (Figure 2.1; Z = -4.804, df = 27, p < 0.001), but this difference diminished 

as ETL approached 9.3 nmol/g.  

Survival was low (< 20%) for untreated individuals in 11 of the 17 families tested (Table 

S2.2). Out of the remaining 6 families, 3 had moderate survival (20-80%), and 3 had high 

survival (> 80%) amongst untreated individuals. Within the thiamine treated group, 3 and 14 

families had moderate and high survival rates, respectively. Defining EMS as the occurrence of 

20% or greater mortality within a family (Brown et al., 2005b; Fisher et al., 2007; Fitzsimons et 

al., 1998), untreated fish had a higher incidence of EMS than treated fish (Fisher’s exact test: 

P<0.001). Amongst our sample group the threshold level above which survival was at least 80% 

in untreated fish was 8.5 nmol/g. Survival below this threshold was variable. While families 1, 3, 

and 8 all had ETLs of 3.1 nmol/g survival varied between 7.4% and 97.3%. In all families with 

an ETL less than or equal to 2.7 nmol/g, survival in untreated individuals was low, varying 

between 1.1% and 12.4% (Table S2.2).  
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Behavior – free embryo stage 

Untreated fish were significantly more likely to move in response to the light stimulus 

than treated individuals (Table 2.2; Z = -2.038, df = 215, p = 0.042). Overall, only 23% of 106 

untreated individuals moved compared to 11% of 119 of treated. However, amongst individuals 

that did respond to light, there was no significant difference in the amount of movement between 

treated and untreated groups (Figure 2.2A; Z = -1.513, df = 215, p = 0.130), nor was there a 

significant effect of ETL (Z = 0.074, df = 215, p = 0.941). There were no significant differences 

between the control fish from the Merrimack River and the thiamine treated (Z = 1.185, df = 238, 

p = 0.236) and untreated (Z = -0.056, p = 0.955) fish from Lake Champlain in whether an 

individual would respond to light stimulus (Figure 2.3A); only 30% of the 20 control fish 

responded to the light stimulus. Similarly, there were no significant differences between groups 

in individuals that did respond (Figure 2.3A; treated Z = 0.242, df = 238, p = 0.809; untreated Z 

= -1.687, p = 0.0922) 

There was no significant effect of treatment (Z = 0.170, df =182, p = 0.864) or ETL (Z = 

-0.827, df = 182, p = 0.408) on whether a fish moved in response to the physical stimulus at the 

free embryo stage. Amongst fish exhibiting a response, untreated fish tended to move less than 

treated fish (Z = -1.862, df = 182, p = 0.063), but there was no significant effect of ETL (Figure 

2.2B; Z = -0.100, df = 182, p = 0.920). There were no significant differences between treatment 

groups and the Merrimack control group in whether a fish would respond to physical stimulus 

(treated Z = 1.295, df = 206, p = 0.195; untreated Z = 1.435, p = 0.151): 48% of 104 treated fish, 

54% of 89 untreated fish, and 35% of 20 control fish did not move. Amongst individuals that did 

respond to the stimulus, thiamine treated fish moved more than the control fish (Figure 2.3B; Z = 
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3.466, df = 206, p = 0.001), but untreated and control fish did not differ significantly (Z = 1.796, 

df = 206, p = 0.963). 

Behavior – button up stage 

Neither treatment (Z = 1.680, df = 122, p = 0.093) nor ETL (Z = 0.522, df = 122, p = 

0.602) was a significant predictor of a fish’s response to the light stimulus (Figure 2.2C). The 

response of control fish did not differ significantly from either thiamine treated (Figure 2.3C; Z = 

-0.898, df = 145, p = 0.369) or untreated groups (Z = -0.491, df = 145, p = 0.624). The 

percentage of individuals within each group that did not respond was similar to that for the light 

stimulus at the free embryo stage; 71% of 71 treated; 68% of 57 untreated; and 65% of 20 

control fish.  

There were no significant predictors of whether a fish moved in response to the physical 

stimulus at the button up life stage (ETL Z = -0.343, df = 105, p = 0.731; treatment Z = 0.560, p 

= 0.576). However, amongst individuals that did move there was a significant interaction 

between ETL and treatment (Figure 2.2D; Z = 3.173, df = 105, p = 0.002). Movement was not 

affected by ETL in treated individuals (Z = -0.343, df = 105, p = 0.731), but increased 

significantly with increasing ETL in untreated individuals (Z = 3.521, df = 105, p < 0.001) until 

it equaled and even surpassed that of treated individuals at 5.9 nmol/g (Figure 2.2D). When 

compared to the control group, untreated individuals were significantly less likely to exhibit a 

movement response (Z = 2.148, df = 129, p = 0.032) relative to control fish; 53% of 52 untreated 

fish, 27% of 64 treated fish, and 20% of 20 control fish did not move. Amongst moving 

individuals, there were no significant differences between groups (Figure 2.3D; treated Z = -

0.692, df = 129, p = 0.489; untreated Z = -0.769, p = 0.442).  



38 

 

Discussion 

Prior to this study, the threshold ETL above which Atlantic salmon experienced normal 

survival was 1.1 nmol/g (Fisher et al., 1998; Ketola et al., 2000). Despite differences in 

populations, rearing conditions, or analysis this threshold has remained relatively consistent 

across studies (Werner et al., 2006). Accordingly, all Lake Champlain embryos sampled should 

have had sufficient ETL to prevent thiamine deficiency related mortality. However, high 

mortality rates symptomatic of EMS (> 20%) (Brown et al., 2005b; Fisher et al., 2007; 

Fitzsimons et al., 1998) occurred in untreated embryos for 14 out of 17 families (Table S2.2). 

Families with ETLs as high as 4.9nmol/g experienced mortality over 80%. Though survival 

significantly increased with increasing ETL in untreated embryos, the distinction between 

families that did and did not experience EMS was not clearly defined. The 8.5 nmol/g threshold 

correctly classified the 1 family with an ETL above the threshold, but incorrectly assigned 2 out 

of the 16 families below the threshold, overestimating the number of families effected by EMS 

(Figure 2.1). This variability suggests that factors other than ETL determine whether a family 

will be affected by EMS. While mortality rates were lower in the thiamine treated group than the 

untreated group, there was one notable exception: in family 4, which had an ETL of 7.7 nmol/g, 

treated individuals had lower survival (59%) than their untreated counterparts (74%). This family 

may have suffered from other developmental issues rather than just EMS.  

The survival rates observed in this study indicate that EMS may be influencing 

reproductive success in a larger proportion of the Atlantic salmon population within Lake 

Champlain than previously suspected. Eggs sampled in both 2014 and 2015 were at or above the 

1.1 nmol/g threshold, implying the potential for strong survival and recruitment (William 

Ardren, United States Fish and Wildlife Service, 2017, personal communication). However, in 
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2014 only 3% of families had thiamine levels above 8.5 nmol/g, with 60% of families within the 

variable area between 2.7 and 8.5 nmol/g, and 37% below 2.7 nmol/g. While thiamine levels 

were higher in 2015, only 17% of the sample had total ETLs at or above 8.5 nmol/g (William 

Ardren, United States Fish and Wildlife Service, 2017, personal communication).  

Despite these discouraging results, successful natural reproduction has been documented 

within two of Lake Champlain’s major tributaries (Ashlee Prevost, Concordia University, 2018, 

unpublished data); though fewer fry have been found than would be expected given the number 

of redds observed each year. The low number of fry may indicate that success is limited to high 

thiamine individuals, as they likely make up only a small portion of the population. However, the 

observed fry were clustered in a few small areas and produced by several females (Ashlee 

Prevost, Concordia University, 2018, unpublished data). Because it is unlikely that all high 

thiamine females spawned in the same location, these data suggest that local habitat 

characteristics may be influencing embryo survival. These could include factors such as 

sediment input or over wintering conditions but may also include the availability of prey for 

early feeding individuals.  

Behavioral manifestations of thiamine deficiency at the free embryo life stage are 

frequently described in studies on EMS (Fisher et al., 1995; Ketola et al., 2000; Wooster et al., 

2000). In our data, however, we detected few, if any, behavioral differences that might indicate 

decreased survival in a natural environment or an inability to partake in early feeding. Overall, 

untreated individuals differed little across all thiamine levels and were more likely to show a 

behavioral response to a light stimulus than thiamine treated individuals; while there were no 

significant differences between the two groups in those that did respond. Though there was a 

trend for treated fish to move more than untreated when responding to physical stimulus, the 
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difference was not statistically significant and may not represent a biologically relevant 

distinction. These results suggest that thiamine deficiency did not adversely affect 

photonegativity or the reaction to a physical stimulus, both of which are important antipredator 

responses at the free embryo life stage. Furthermore, untreated fish did not differ from the 

Merrimack River control fish in their response to light or physical stimulus. While neither a 

photo-stimulus nor physical stimulus are direct predictors of foraging capacity, they provide a 

baseline for behavioral comparison that could be expanded to encompass more complex 

responses in future research. Overall the lack of significant behavioral differences is encouraging 

and suggests early feeding may be a viable mitigating factor within a natural environment.   

Out of 17 families with egg thiamine levels ranging from 2.3 to 12.7 nmol/g, 9 had 

surviving, untreated individuals at the button up life stage. While there were no significant 

differences between groups in response to light stimulus, salmon tend to be less photonegative 

by the button up stage (Carey and Noakes, 1981; Dill, 1977); therefore, light may not have been 

a strong enough stimulus at this life stage to detect sublethal effects. Significant differences in 

behavior were detected between treatments and across egg thiamine levels in response to the 

physical stimulus. However, 6 of the 9 families that survived to this life stage experienced heavy 

mortality in untreated individuals prior to completion of the experiment, suggesting the observed 

differences were precursors of EMS rather than sublethal effects. While there may be a slight 

trend within the remaining 3 families for untreated individuals to move more at higher thiamine 

levels (Figure 2.4), the sample size was too small to make any general conclusions about the 

occurrence of sublethal effects. 

Though our knowledge of the Early Mortality Syndrome and the effects of thiamine 

deficiency on salmonid populations has increased in the past twenty years there is still much to 



41 

 

be learned about the intricacies of the condition. The results of this study suggest that EMS may 

be having a larger impact on wild Atlantic salmon recruitment than previously thought, not only 

within Lake Champlain but in other systems where thiamine deficiency is prevalent. However, 

they also demonstrate variability in mortality in families with moderate thiamine levels, 

suggesting that not all genotypes are equally susceptible to EMS. This may allow hatcheries to 

develop broodstocks that are more resistant to thiamine deficiency, which could then be used to 

supplement threatened populations. A lack of significant behavioral differences detected between 

low thiamine and high thiamine fish at the free embryo stage suggests that fish may be able to 

partake in early feeding to offset the deficiency. This behaviour may be a crucial mitigating 

factor within the natural environment that is not present in a hatchery setting. To date most 

research on EMS has been done in closed, experimental environments, not allowing for the 

presence of natural complexities which may lessen the severity of this deficiency in the wild. To 

truly understand the impact of thiamine deficiency on natural populations more work is needed 

within a natural environment. Such research will be imperative to the proper management of 

salmonid fisheries in freshwater systems influenced by EMS.



42 

 

Tables 

Table 2.1 The expected and observed number of experimental replicates for thiamine treated and untreated Lake Champlain Atlantic 

salmon embryos from 17 families at two different life stages, free embryo and button up.  

 

1 losses due to mortality 

2 losses due to video malfunction

Family Expected 

 Light Stimulus  Physical Stimulus 

 Free Embryo  Button Up  Free Embryo  Button Up 

 Treated Untreated  Treated Untreated  Treated Untreated  Treated Untreated 

              

1 8  7 2 7 2  8 8  6 2 6 2  8 8 

2 8  8 8  8 1  7 2 7 2  7 2 0 1 

3 8  8 8  8 8  7 2 7 2  7 2 7 2 

4 8  8 7 1  8 8  7 2 6 12  7 2 7 2 

5 8  8 8  8 0 1  8 8  8 0 1 

6 8  8 1 1  8 0 1  8 1 1  7 2 0 1 

7 8  7 2 5 12  7 2 0 1  6 2 4 12  6 2 0 1 

8 8  7 2 7 2  7 2 0 1  7 2 7 2  8 0 1 

9 8  8 0 1  8 0 1  8 0 1  7 2 0 1 

10 8  8 8  8 0 1  6 2 6 2  8 2 0 1 

11 8  8 8  8 0 1  8 8  7 2 0 1 

12 8  8 8  6 2 6 2  6 2 6 2  7 2 7 2 

13 8  8 8  8 8  8 8  7 2 7 2 

14 8  8 8  8 8  6 2 6 2  8 8 

15 8  8 4 1  8 3 1  8 4 1  8 3 1 

16 8  8 8  7 2 7 2  7 2 7 2  6 2 6 2 

18 8  8 8  8 1 1  6 2 6 2  6 2 1 1 

              



 

43 

 

Table 2.2 The results of generalized linear models and generalized linear mixed models for survival and behavioral response to 

stimuli of thiamine treated and untreated Atlantic salmon embryos from 17 families of varying egg thiamine levels in Lake 

Champlain; in addition to a control group from the Merrimack River that had no previous exposure to thiamine deficiency.  

 Model 
Residual 

df 
AIC Fixed Effects 

Count Model Zero Inflated Model 

Estimate SE 
Z-

value 
Pr(>|z| Estimate SE 

Z-

value 
Pr(>|z| 

             

Survival GLMM 27.00 396.50  (intercept) 3.329 1.036 3.213 0.001 - - - - 
    Treatment -10.718 2.231 -4.804 0.000 - - - - 

    ETL : Treatment 10.886 3.348 3.252 0.001 - - - - 

    ETL: Treated -1.890 1.554 -1.217 0.224 - - - - 
    ETL : Untreated 8.996 3.107 2.896 0.004 - - - - 

Free 

Embryo: 

Light  

GLMM 215.00 314.00  (intercept) 0.411 1.596 0.257 0.797 1.048 1.353 0.774 0.439 

    Treatment -4.860 3.212 -1.513 0.130 -7.826 3.840 -2.038 0.042 

    ETL 0.197 2.664 0.074 0.941 1.131 2.110 0.536 0.592 
    ETL : Treatment 6.903 5.645 1.223 0.221 10.278 6.034 1.703 0.885 

 GLM 238.00 371.48 
Control 

(intercept) 
0.313 0.722 0.433 0.665 -1.003 1.946 -0.515 0.607 

    Treated 0.190 0.785 0.242 0.809 2.106 1.777 1.185 0.236 
    Untreated -1.236 0.736 -1.684 0.092 -4.940 87.526 -0.056 0.955 

Free 

Embryo: 

Physical  

GLMM 182.00 755.50  (intercept) 1.812 0.401 4.514 < 0.001 0.553 0.856 0.646 0.519 

    Treatment -1.088 0.585 -1.862 0.063 0.219 1.280 0.171 0.864 

    ETL -0.058 0.582 -0.100 0.920 -1.068 1.292 -0.827 0.408 

    ETL : Treatment 0.966 0.805 1.200 0.230 -0.076 1.893 -0.040 0.968 

 GLM 206.00 827.79 
Control 

(intercept) 
0.808 0.268 3.016 0.003 -1.403 0.944 -1.487 0.137 

    Treated 0.984 0.284 3.466 0.001 1.242 0.959 1.295 0.195 
    Untreated 0.528 0.294 1.796 0.725 1.382 0.963 1.435 0.151 
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Button 

Up: 

Light  

GLMM 122.00 355.75  (intercept) -0.917 1.665 -0.551 0.582 - - - - 

    Treatment 3.124 1.860 1.680 0.093 - - - - 

    ETL 1.181 2.262 0.522 0.602 - - - - 

    ETL : Treatment -4.205 2.569 -1.637 0.102 - - - - 

 GLM 145.00 423.93 
Control 

(intercept) 
0.854 0.582 1.467 0.142 - - - - 

    Treated -0.595 0.663 -0.898 0.369 - - - - 
    Untreated -0.333 0.679 -0.491 0.624 - - - - 

Button 

Up: 

Physical  

GLMM 105.00 567.10  (intercept) 2.240 0.448 5.003 < 0.001 -0.754 1.278 -0.590 0.555 

    Treatment -2.602 0.785 -3.314 0.001 0.964 1.723 0.560 0.576 

    ETL : Treatment 3.267 1.030 3.173 0.002 0.338 2.401 0.141 0.888 

    ETL : Treated -0.411 0.633 -0.650 0.516 -0.639 1.863 -0.343 0.731 

    ETL : Untreated 2.856 0.811 3.521 < 0.001 -0.301 1.508 -0.200 0.842 

 GLM 129.00 690.53 
Control 

(intercept) 
2.107 0.219 9.646 < 0.001 -1.695 0.747 -2.269 0.023 

    Treated -0.175 0.252 -0.692 0.489 0.387 0.813 0.476 0.634 
    Untreated -0.217 0.283 -0.769 0.442 1.708 0.795 2.148 0.032 
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Figures 

 

Figure 2.1 The survival of thiamine treated (open circles) and untreated (x’s) Lake Champlain 

Atlantic salmon from 17 families of varying egg thiamine levels from hatch to button up. The 

dashed line indicates the predicted relationship for untreated individuals based on the results of a 

generalized linear mixed model while the solid line indicates the non-significant trend for treated 

individuals with a slope of 0.  
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 Figure 2.2 The behavioral response of thiamine treated (open circles) and untreated (x’s) Lake 

Champlain Atlantic salmon to light stimulus at the free embryo stage (A), physical stimulus at 

the free embryo stage (B), light stimulus at the button up stage (C), and physical stimulus at the 

button up stage (D). The dashed line indicates the predicted relationship for untreated individuals 

based on the results of a generalized linear mixed model while the solid line indicates the non-

significant trend for treated individuals with a slope of 0. When neither relationship was 

significant no trendlines are depicted. 
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Figure 2.3 Box and whisker plot of the median behavioral response of thiamine treated and 

untreated Atlantic salmon larvae from Lake Champlain, and a control group from the Merrimack 

River to light stimulus at the free embryo stage (A), physical stimulus at the free embryo stage 

(B), light stimulus at the button up stage (C), and physical stimulus at the button up stage (D). 

The median is indicated by the horizontal line within the box while the box itself depicts the 25th 

to 75th percentile. The whiskers indicate the inter quartile range, while outliers are depicted as 

open circles.
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Figure 2.4 The behavioral response to physical stimulus at the button up stage of thiamine 

treated (open circles) and untreated (x’s) Lake Champlain Atlantic salmon in the three remaining 

families which did not experience Early Mortality Syndrome.  
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Supplementary Material 

Table S2.1 Mating crosses for 17 families of Atlantic salmon collected from Lake Champlain. 

Each family was assigned a number based on the ID number of the Female. 

Date Crossed  

(dd/mm/yy) 
Female ID Male ID 

   

15/11/16 1 1 

15/11/16 2 2 

15/11/16 3 3 

15/11/16 4 4 

15/11/16 5 5 

15/11/16 6 6 

15/11/16 7 7 

15/11/16 8 8 

15/11/16 9 9 

15/11/16 10 10 

15/11/16 11 11 

17/11/16 12 12 

17/11/16 13 12 

17/11/16 14 13 

17/11/16 15 14 

17/11/16 16 13 

17/11/16 17 12 
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Table S2.2 The average total egg thiamine level for 17 families of Lake Champlain Atlantic 

salmon and percent mortalities amongst thiamine treated and untreated groups within each 

family. 

Family 
Egg Thiamine Level 

(nmol/g) 

Survival (%) 

Thiamine Treated Untreated 

    

1 3.1 96.9 97.3 

2 2.4 95.7 1.1 

3 3.1 86.7 68.1 

4 7.7 58.9 73.9 

5 2.7 97.1 2.9 

6 2.5 84.4 2.1 

7 2.1 98.4 5.2 

8 3.1 92.8 7.4 

9 2.6 45.6 5.6 

10 3.4 87.5 2.0 

11 4.9 89.7 1.9 

12 3.4 68.7 42.3 

13 4.3 91.6 87.8 

14 2.5 94.0 4.5 

15 2.3 83.8 12.4 

16 12.7 87.6 93.3 

17 2.4 85.9 3.0 
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General Conclusions 

The re-establishment of a native population often takes many years and requires 

persistence on behalf of those undertaking the endeavour (George et al., 2009). An adaptive 

management approach is fundamental in monitoring and evaluating progress throughout the 

duration of the program and identifying any limitations on recolonization success. (Cochran‐

Biederman et al., 2015; IUCN, 2013; Seddon et al., 2014).  

The continued presence of factors which contributed to the original extirpation of the 

population is one of the most consistent predictors of reintroduction failure (Cochran‐Biederman 

et al., 2015; Fischer and Lindenmayer, 2000). Theoretically, these factors should be addressed 

prior to reintroduction; though this can be difficult when the limiting factors provides benefits to 

society. In the case of Lake Champlain, the damming of many tributaries is thought to have 

contributed to the extirpation of Atlantic salmon within the system. Despite this, most have not 

been removed, as they provide services to the surrounding communities such as hydroelectric 

power. However, the timber crib dam on the Boquet River, Willsboro was no longer in use and 

beginning to fail, making it a good candidate for removal (Lake Champlin Fish and Wildlife 

Conservation Office, 2016). The removal of the dam has potentially increased spawning habitat 

availability for Atlantic salmon on the Boquet, by allowing access to high quality spawning 

grounds upstream and improving habitat quality below the former dam site. While the Willsboro 

Cascades may still represent a significant migration barrier, some untagged fish were observed in 

spawning grounds upstream. Further monitoring will be needed to determine the percentage of 

the population that can successfully traverse the cascades on their own. Continued translocation 

would require extensive external intervention and is not a viable, long term solution. 
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Spawning habitat availability, however, is not the only factor limiting reintroduction 

success in Lake Champlain. The invasion of non-native alewife and their interaction with the 

local Atlantic salmon population has resulted in a more complex constraint on recruitment in the 

form of Early Mortality Syndrome (EMS). Until an effective management plan is in place to 

mitigate the occurrence of EMS in naturally spawned embryos, spawning habitat restoration will 

likely not be sufficient to support a viable population. Our results suggest that the egg thiamine 

level needed to circumvent deficiency induced mortality is significantly higher than described in 

the previous literature. Out of the 17 families we sampled, 14 (or 82%) experienced EMS in 

untreated embryos. A lack of behavioral differences at the free embryo stage suggests that some 

fish may be able to off set the deficiency in the wild by early feeding. However, this does not 

seem to be occurring in a large proportion of the population as less than 200 naturally spawned 

fry have been observed in the lake’s major tributaries in the past two years. To properly manage 

EMS, a better understanding of its effects on reproductive success in a natural environment will 

be needed. It is still likely that there are external factors that influence the occurrence of EMS, 

and which cannot be accounted for within a hatchery environment. While alewife populations 

may eventually decline naturally, it is likely that further intervention will be necessary to either 

mitigate this issue or maintain the Atlantic salmon population. By selecting for embryos that 

survive without thiamine treatment, hatcheries may be able to develop a deficiency resistant 

broodstock which could be used to help augment the low population numbers. However, there is 

currently no definitive research on the heritability of these traits.  

There is no single or simple solution to reintroduction success. There are many different 

factors that influence a populations ability to re-establish within a given environment, not all of 

which are easily mitigated. However, consistent monitoring and an adaptive approach to 
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population management may help to increase the likelihood of success (Cochran‐Biederman et 

al., 2015). While a self-sustaining population of Atlantic salmon has not yet been established in 

Lake Champlain, by learning about and working towards the management of issues such as 

habitat availability and the effects of invasive species, the program is making slow progress 

towards its goal.  
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